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Thesis overview 
 

This thesis is based on the following publications: 

Deshpande I, Seeber A, Shimada K, Keusch JJ, Gut H, Gasser SM. (2017). Structural basis of Mec1-
Ddc2-RPA assembly and activation on single-stranded DNA at sites of damage. Mol Cell. 68(2):431-445. 

Seeber A, Hegnauer AM, Hustedt N, Deshpande I, Poli J, Eglinger J, Pasero P, Gut H, Shinohara M, 
Hopfner KP, Shimada K, Gasser SM. (2016). RPA mediates recruitment of MRX to forks and double-
strand breaks to hold sister chromatids together. Mol Cell. 64(5):951-966. 

 

This thesis comprises five chapters.  

Chapter 1 presents the introduction. It summarizes the role of checkpoint kinase Mec1-Ddc2 in the DNA 

damage response. In chapter 1, an extensive account of the literature on Mec1-Ddc2 recruitment and 

activation at DNA damage sites is provided which sets the foundation for chapter 2. 

Chapter 2 presents results that contribute the major finding of my thesis. This chapter focuses on how 

homodimers of Ddc2 are recruited to DNA damage sites via interaction with RPA. Based on structural, 

biochemical and in vivo data, the chapter presents a to-scale model of Mec1-Ddc2 bound to ssDNA-RPA 

complexes at DNA damage sites and shows that cell survival after UV-damage is dependent on Ddc2 

homodimerization and recruitment to RPA. These results are published in Deshpande et al., Molecular 

Cell 2017. 

Chapter 3 presents experimental results which show that an N-terminal region within the coiled-coil 

domain of human ATRIP is important for coiled-coil homodimerization. 

Chapter 4 presents results on the role of the MRX protein complex as a structural linchpin that holds 

sister chromatids together at DNA double-strand breaks. This function of MRX is apparently dependent 

on its interaction with a domain in RPA that also binds Ddc2. The results are published in Seeber et al., 

Molecular Cell 2016. 

Chapter 5 summarizes the major conclusions of this thesis and discusses the future directions.  
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Chapter 1: 

Introduction 
Our genomes carry the information that is necessary to maintain proper functioning of the cells in our 

body. It is imperative that this genetic information is protected in the face of genomic insults and 

transmitted faithfully across generations. Genomic insults alter the chemical structure of DNA by causing 

breaks in the phosphate backbone of DNA strands, either single strand breaks (SSB) or double strand 

breaks (DSB); or by introducing base modifications such as alkylation, oxidation and thymine dimerization 

among others (Figure 1). Failure to repair such DNA lesions can cause local mutations, while highly toxic 

lesions such as DSBs can generate gross chromosomal rearrangements such as deletions, 

translocations and fusions of chromosomes, ultimately leading to cell death. 

DNA damage occurs at a constant rate of ~100,000 events per cell per day, and can arise from 

exogenous as well as endogenous sources. One of the most common sources of DNA damage is 

ultraviolet (UV) light and ionizing radiation (IR) from sunlight. Indeed, exposure to sunlight is sufficient to 

generate 100,000 lesions per cell per day (Hoeijmakers, 2009). Other exogenous sources of DNA insults 

include, for example, cigarette smoke, medical treatments that employ X-rays, ionizing radiation and 

chemotherapeutic agents. Endogenous sources, most of which are by-products of cell metabolism, 

include DNA depurination which can generate abasic sites, DNA deamination which can interconvert 

bases, replication errors and reactive oxygen species.  

To counter these toxic genomic insults, cells have evolved DNA repair mechanisms specific for the 

different types of DNA damage. Nucleotide excision repair (NER) is the most versatile repair pathway 

since it processes structurally unrelated DNA lesions such as thymine dimers, bulky adducts and intra-

strand crosslinks and repairs them using a cut and patch type reaction (Marteijn et al., 2014). Less 

complicated lesions resulting from base modifications are repaired by base excision repair (BER) (Lindahl 

and Barnes, 2000). DSBs are prominently repaired by either error-free homologous recombination (HR) 

or error-prone nonhomologous end-joining (NHEJ) (Chapman et al., 2012), whereas SSBs are processed 

by the single-strand break repair pathway (Caldecott, 2008). The mismatch repair (MMR) pathway 

resolves mispaired bases (Jiricny, 2006), whereas interstrand crosslinks are largely repaired by the 

proteins involved in the Fanconi anemia pathway, making use of enzymes and reactions implicated in the 

other types of repair (Deans and West, 2011). 
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Figure 1: Alteration of DNA structure by DNA damage. (A) UV-light causes thymine-thymine (T-T) dimerization of two 

consecutive thymines on the same strand of DNA, resulting in the disruption of normal base-pairing. (B) Guanine is 

alkylated by methyl methanesulfonate (MMS) to form O6-methylguanine which base pairs with a thymine instead of a 

cytosine, resulting in a C -> T point mutation. (C) Cytosine can undergo methylation and deamination to form a 

thymine, resulting in a C -> T point mutation. 

 

Indeed, our cells have evolved exhaustive pathways involving at least 450 proteins that repair the 

constant barrage of DNA insults. Owing to the high frequency of DNA damage events, specificity of repair 

pathways for lesions and the dangerous consequences of improper repair, eukaryotic cells have 

developed stringent mechanisms to regulate the assembly and activation of the right repair proteins at the 

right place and at the right time. These regulatory mechanisms, in addition to the cell cycle checkpoints, 
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collectively constitute a network of conserved and coordinated pathways called the DNA damage 

response (DDR). Efficient DDR is critical for protection of the genome and hence cell survival. 

At the core of the DDR are two conserved kinases called Mec1 (Mitosis entry checkpoint 1, ATR in 

human and Rad3 in fission yeast Schizosaccharomyces pombe) and Tel1 (Telomere maintenance 1, 

ATM in human and fission yeast). Mec1 functions as an enzyme complex with its regulatory subunit Ddc2 

(ATRIP, ATR Interacting Protein, in human, and Rad26 in S. pombe) and the function and stability of the 

two proteins are inter-dependent on each other (Cortez et al., 2001; Edwards et al., 1999; Paciotti et al., 

2000; Wakayama et al., 2001). Therefore, Ddc2 is considered to be an obligate partner of Mec1. Unless 

noted otherwise, I will refer to the budding yeast Saccharomyces cerevisiae protein nomenclature (see 

Table 1 for an overview of DDR protein names in several model organisms). Upon DNA damage, either of 

the kinases can get recruited to damage sites and induce the DDR by phosphorylating hundreds of 

targets that set in motion a signaling cascade which coordinates DNA repair and cell cycle progression 

(Friedel et al., 2009). Since these apical kinases play a role in the early recognition of DNA damage and 

the subsequent induction of the DDR signaling cascade, they are referred to as “DNA damage sensing 

kinases” or “Signal transducing kinases” (Figure 2). 
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Figure 2: DNA damage response pathway. Upon DNA damage (represented by a black triangle), long stretches of 

ssDNA are generated which rapidly get coated by RPA to form an ssDNA-RPA platform. This platform recruits sensor 

kinase Mec1-Ddc2 through co-sensor and co-activator proteins such as 9-1-1 and Dpb11. Activated Mec1 

phosphorylates several targets including Rad9, Mrc1 and Sgs1 which act as adaptors for the key signaling kinase 

Rad53. Activated Rad53 further phosphorylates several effector kinases to control cell cycle progression, origin firing, 

DNA repair and replication fork stability.  

 

Mec1 and Tel1 belong to the phosphoinositide 3-kinase related protein kinases (PIKK) family which 

shares similar domain organization and a conserved kinase domain (details on PIKKs are presented in 

section 4). There are, however, key differences between Mec1 and Tel1. In budding yeast, Mec1 

responds to a gamut of genomic insults such as replication stress, UV-induced lesions, base adducts and 

DSBs (Figure 3) (Cimprich and Cortez, 2008), whereas Tel1 responds primarily to DSBs. 

 

 

 

Figure 3: DNA structures that induce Mec1 activation. (A) Lesion (black triangle) in the lagging strand of the 

replication fork blocks the polymerase but not the helicase generating ssDNA regions with a dsDNA primer carrying a 

5’ free end. (B) Lesion in the leading strand of the replication fork also generates ssDNA. Repriming events generate 

the requisite dsDNA primer with a 5’ free end to induce Mec1 activation. (C) UV-damage generates short ssDNA 

regions (30 nt) which are further resected to generate longer ssDNA regions (up to 2 kb) adjacent to dsDNA with a 5’ 

end. (D) DSBs undergo resection to generate ssDNA stretches which are adjacent to a 5’ end. 
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Mec1/ATR is essential for viability in several organisms from yeast to man and its loss causes lethality in 

early mice embryos (Brown and Baltimore, 2000). In contrast, Tel1/ATM is dispensable for cell viability 

(Shiloh and Ziv, 2013). However, mutations in ATM result in an elevated predisposition towards cancer 

and are found in 0.5 to 1.0% of the population (Renwick et al., 2006; Taylor et al., 1975). In fact, ATM is 

found to be mutated in a variety of cancers such as colorectal (Cancer Genome Atlas, 2012a), lung 

(Cancer Genome Atlas Research, 2012) and breast (Cancer Genome Atlas, 2012b), and is considered to 

be a tumor suppressor. On the other hand, cancer cells rarely carry mutations in ATR owing to the 

essential functions of ATR in maintaining genome integrity. Nevertheless, in some cancers, ATR may be 

a useful target for cancer therapy. Cancer cells replicate abnormally and are under a constant level of low 

replicative stress, accentuating the need for ATR for cell survival (Gorgoulis et al., 2005). Furthermore, 

some cancers have a dysfunctional DNA damage-induced G1 checkpoint owing to mutations in Rb, p53 

or c-myc. This makes cancer cells over-dependent on the S-phase checkpoint which is regulated by the 

ATR kinase. Thus, by combining S-phase specific ATR inhibitors with DNA damaging agents to generate 

synthetic lethality, it is possible to selectively or preferentially kill cancer cells. Indeed, inhibition of the 

ATR kinase activity sensitizes cells to DNA damaging agents (Caporali et al., 2004; Cliby et al., 1998; 

Nghiem et al., 2002). These initial studies inspired the development of selective and potent ATR inhibitors 

such as VE-822, the first ATR inhibitor to enter clinical trials (Fokas et al., 2012).  

Table 1: Conserved checkpoint proteins and their functions 

S. cerevisiae S. pombe H. sapiens Function 

Mec1-Ddc2 Rad3-Rad26 ATR-ATRIP Sensor signaling kinase 

Tel1 Tel1 ATM Sensor signaling kinase 

Rfa1 Rad11/Rpa1 RPA70 ssDNA binding and protein-

protein interactions 

Rad24-RFC Rad17-RFC RAD17-RFC 9-1-1 clamp loader 

Ddc1-Rad17-Mec3 Rad9-Rad1-Hus1 RAD9-RAD1-HUS1 Co-sensor and Mec1 

activator 

Dpb11 Cut5/Rad4 TopBP1 Mec1 activator 

Dna2 Dna2 DNA2 Mec1 activator in S-phase 

Mrc1 Mrc1 Claspin Checkpoint mediator 

Rad9 Crb2 53BP1, BRCA1 Checkpoint mediator 

Sgs1 Rqh1 BLM Rad53 activation 

Rad53 Cds1 CHK2 Effector kinase 

Chk1 Chk1 CHK1 Effector kinase 

Mre11-Rad50-Xrs2 Mre11/Rad32-Rad50-

Nbs1 

MRE11-RAD50-NBS1 DSB resection, Tel1 

recruitment 

Exo1 Exo1 EXO1 NER gap resection 
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1. Mec1/ATR damage recognition 

Being an apical DNA damage sensing kinase, Mec1 needs to rapidly localize to DNA damage sites and 

activate the DDR signaling cascade. The ability of Mec1 to respond to a wide spectrum of DNA damaging 

lesions and replication stress is largely dependent on the ability of Mec1 to recognize a common 

structural signal, replication protein A (RPA) bound to single-stranded DNA (ssDNA). This section reviews 

the current understanding of Mec1 recruitment to sites of DNA damage. 

1.1.  The ssDNA-RPA platform 
Generation of long stretches of ssDNA is one of the earliest events and is a hallmark of DNA damage and 

replication stress. The functional uncoupling of replicative helicases and polymerases upon replication 

stress can expose up to 200 nucleotides (nt) of ssDNA (Sogo et al., 2002). End resection of DSBs for 

repair by HR and nuclease processing of NER intermediates of UV-induced lesions also generate long 

ssDNA gaps (Giannattasio et al., 2010; Paques and Haber, 1999), while the collision of a UV lesion with 

the replication fork can generate remarkably long ssDNA regions, extending up to 3 kb in length, as seen 

by electron microscopy (EM) (Lopes et al., 2006). R-loops or RNA:DNA hybrids that form as an aberrant 

intermediate of transcription, are a source of ssDNA and genomic instability (Skourti-Stathaki and 

Proudfoot, 2014). ssDNA is intrinsically more labile than dsDNA and tends to form secondary structures 

that might impede cellular processes. To prevent this, in the cell, most of the ssDNA generated during 

replication and repair is rapidly coated with the major ssDNA binding protein RPA (Alani et al., 1992). 

RPA is a heterotrimeric complex consisting of the Rfa1, Rfa2 and Rfa3 subunits (RPA70, RPA32 and 

RPA14 in human). It was first described for its essential role in DNA replication (Wold and Kelly, 1988). 

Later, additional functions for RPA were uncovered in a wide array of processes, including DNA 

replication, recombination, repair, and DNA damage checkpoint activation (Zou et al., 2006). RPA 

primarily functions by protecting ssDNA from nucleases and secondary structure formation, but also by 

acting as a protein-protein interaction platform. RPA contains six oligosaccharide/oligonucleotide binding 

(OB) folds, each of which contains five β-strands forming a β-barrel structure that is present in other 

ssDNA binding proteins (Gomes et al., 1996). Four of the six OB-folds namely: N-OB, OB-A, OB-B and 

OB-C lie in the largest subunit Rfa1; one, OB-D, is present in the Rfa2 subunit, while OB-E lies in the 

smallest subunit, Rfa3 (Figure 4A). RPA binds ssDNA in three different modes depending on the length of 

ssDNA that it contacts (Figure 4B). Either it binds to 8 nt in a low-affinity mode that is initiated by OB-A 

and OB-B folds (Bochkarev et al., 1997), or it covers 12-23 nt in a medium-affinity mode that additionally 

involves the OB-C fold (Brill and Bastin-Shanower, 1998), or finally it contacts 30 nt in a high-affinity 

binding mode that involves the OB-D fold (Bastin-Shanower and Brill, 2001). RPA binds ssDNA strongly 

with a dissociation constant in the high picomolar range (Kim et al., 1994; Kim and Wold, 1995). Although 

a high resolution structure of the full length RPA has not yet been revealed, crystal structures of all RPA 

domains have been determined (Bochkareva et al., 2005; Fan and Pavletich, 2012; Feldkamp et al., 

2014). These structural data along with nuclear magnetic resonance (NMR) and small-angle X-ray 
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scattering (SAXS) experiments suggest that RPA is a modular protein complex with the N-OB domain 

being structurally and dynamically independent from the rest of the RPA molecule (Brosey et al., 2015). 

 

Figure 4: The OB domains of RPA bind ssDNA. (A) Domain organization of RPA. RPA comprises three subunits, 

Rfa1, Rfa2 and Rfa3, which are represented in different shades of green. OB: Oligosaccharide/oligonucleotide 

binding; and WH: Winged helix domains are indicated by boxes. (B) ssDNA binding modes of RPA. RPA binds 

ssDNA in the low affinity mode (8 nt), medium affinity mode (12-23 nt), and the high affinity mode (30 nt) involving 

different subunits of RPA. 

 

Interestingly, the N-OB domain in the Rfa1 subunit interacts with multiple proteins in the DDR pathway 

including Ddc1, Ddc2, Dna2, Mre11-Rad50-Xrs2 (MRX), and Sgs1, as well as p53 in mammals 

(Bochkareva et al., 2005; Hegnauer et al., 2012; Lin et al., 1996; Seeber et al., 2016; Xu et al., 2008; 

Zhou et al., 2015). Early genetic analysis of yeast RPA identified rfa1-t11, a charge reversal K45E point 

mutation in the basic cleft of the N-OB fold (Umezu et al., 1998). rfa1-t11 is about 1000-fold more 

sensitive than wild-type to DNA damage by UV-light and DNA alkylating agent MMS (Chen et al., 1998). 

The mutant is defective in recombination, but proficient in DNA replication (Soustelle et al., 2002). We 

recently showed that the K45E mutation disrupts a basic patch formed by the R44, K45 and R62 residues 

in the N-OB cleft (Seeber et al., 2016). In the same study, using genetic and biochemical analyses, we 
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showed that the MRX protein complex binds Rfa1, but not Rfa1-t11. In chapter 2, we elaborate on the 

interactions of Rfa1 and Rfa1-t11 with Ddc2 (ATRIP, ATR Interacting Protein, in human, and Rad26 in S. 

pombe), the regulatory partner of Mec1, and with Dna2, a nuclease-helicase involved in the maturation of 

Okazaki fragments. In conclusion, the ssDNA-RPA complex not only protects ssDNA in the cell, but also 

acts as a platform to recruit several proteins in the DDR pathway. 

1.2. Mec1-Ddc2 recruitment to the ssDNA-RPA platform 

The major mode of DNA damage recognition by Mec1-Ddc2 (ATR-ATRIP in human) occurs via the 

interaction of Ddc2 with the ssDNA-RPA platform (Zou and Elledge, 2003). Depletion of RPA in human 

cells and Xenopus egg extracts is defective in localizing ATR to sites of DNA damage and activating the 

ATR-mediated checkpoint pathway (Costanzo et al., 2003). The major interface of the Ddc2-RPA 

interaction involves the N-terminal 50 amino acid (aa) residues in Ddc2 (100 aa in ATRIP) and the N-OB 

domain of RPA subunit Rfa1 (Ball et al., 2007; Ball et al., 2005). NMR and mutagenesis experiments 

have proposed that a conserved acidic patch in the Ddc2 N-terminus is responsible for RPA binding and 

the disruption of this acidic patch reduced Ddc2 localization to DNA breaks and sensitized cells to DNA 

damage (Ball et al., 2007). The structural dissection of this interaction is presented in chapter 2. Notably, 

weaker RPA interacting domains in human ATRIP outside this N-terminal region may provide functional 

redundancy (Namiki and Zou, 2006). 

If ssDNA-RPA is the major signal that recruits Mec1-Ddc2 and induces the DNA damage checkpoint 

activation, then normal replication processes which generate short ssDNA-RPA patches might activate 

Mec1 even in the absence of DNA damage. However, cells seem to tolerate the short ssDNA-RPA 

patches generated in S-phase and only when a certain threshold of ssDNA was reached, did Mec1 

induce the checkpoint (Byun et al., 2005; Shimada et al., 2002) (Figure 5). Interestingly, the length of 

ssDNA generated correlates with Mec1/ATR mediated phosphorylation of major downstream effector 

kinase Chk1/CHK1 (Byun et al., 2005). The fact that Mec1 responds to different amounts of signal in 

different cell cycles supports the theory of a threshold signal for Mec1 activation (Shimada et al., 2002). 

The amount of the ssDNA-RPA signal required to breach this threshold, however, remains unclear. The 

ssDNA-RPA signal in the context of normal replication is kept at a minimum level by coupling DNA 

unwinding and DNA synthesis rates by the helicase and the polymerase, respectively. Functional 

uncoupling of the helicases and polymerases and subsequent generation of ssDNA-RPA can be 

achieved by treatment with MMS, DNA polymerase inhibitor aphidicolin, or hydroxyurea (HU), which 

inhibits ribonucleotide reductase and depletes deoxyribonucleotide (dNTP) pools. These drugs indeed 

activate the Mec1/ATR kinase dependent checkpoint (Walter and Newport, 2000). Interestingly, inhibition 

of DNA unwinding activity in the presence of DNA damage prevents Mec1/ATR-mediated checkpoint 

activation (Byun et al., 2005). This suggests that DNA damage per se is not sufficient to activate 

Mec1/ATR, but Mec1/ATR activation rather depends on the amount of ssDNA-RPA. Mec1/ATR can also 

be recruited by damage-specific repair proteins. For example, O6-methyl G/T mispairing that is 
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recognized by mismatch repair proteins Msh2-Msh6 (MutSα) can specifically recruit ATR-ATRIP, and this 

is sufficient for CHK1 phosphorylation (Yoshioka et al., 2006). Msh2-Msh3 (MutSβ) that bind to hairpins in 

the ssDNA-RPA complex, can also form a complex with human ATR-ATRIP and promote ATR checkpoint 

function in response to replication associated DSBs (Burdova et al., 2015). 

 

 

 

Figure 5: Model of ssDNA-RPA generation after helicase-polymerase uncoupling. (A) Under non-damaging 

conditions, the rate of DNA unwinding by the MCM (minichromosome maintenance) helicase is functionally coupled 

to the rate of DNA synthesis by the leading and the lagging strand polymerases. Therefore, the amount of ssDNA-

RPA in an intact replication fork is minimal and below the threshold for Mec1-mediated checkpoint activation. (B) 

Under damaging conditions, polymerase movement is stalled; however, the helicase continues to unwind DNA 

generating long ssDNA-RPA regions. ssDNA-RPA recruits Mec1-Ddc2 and induces checkpoint activation. 
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2. Mec1/ATR activation 

Mere recruitment of Mec1-Ddc2 is not sufficient for its activation. Mec1/ATR activation is regulated by 

several co-factors that act redundantly to ensure checkpoint induction. Misactivation of Mec1/ATR in the 

absence of DNA damage creates cell cycle blocks and induces cellular senescence (Toledo et al., 2008). 

Therefore, it is important to activate Mec1 at the right place and at the right time. This is reflected in the 

redundancy of Mec1 activation pathways and the independent sensing of DNA damage by Mec1-Ddc2 

and its co-activators. The following section describes the mechanisms of Mec1 activation. 

2.1. Mec1/ATR maturation: Folding and assembling the kinase 

Before Mec1-Ddc2 is localized to and activated at sites of DNA damage or replication stress, it needs to 

be folded and assembled. This maturation of Mec1-Ddc2 occurs even in the absence of genomic insults. 

Mec1, like other PIKK proteins, is large (2,368 aa) and contains extensive N-terminal α-helical HEAT 

(Huntingtin, Elongation factor 3, A subunit of protein phosphatase 2A and TOR1) repeats. The proper 

folding and assembly of the Mec1-Ddc2 complex are mainly regulated by the Hsp90 chaperone that binds 

the nascent client protein Mec1-Ddc2 via the R2TP (Rvb1 and Rvb2, Tah1, and Pih1) and TTT (Tel2, Tti1 

and Tti2) co-chaperone complexes (Hurov et al., 2010; Pal et al., 2014; Takai et al., 2007). The Hsp90-

R2TP-TTT chaperone complex also regulates proper folding and assembly of other PIKKs owing to their 

large size and extensive HEAT repeats. In addition, post-translational modifications by the SUMO (Small 

Ubiquitin-like Modifier) ligase PIAS3 and the kinase Nek1 appear to prime Mec1/ATR for efficient DNA 

damage response (Figure 6) (Liu et al., 2013; Wu and Zou, 2016). 

 

Figure 6: Model of Mec1-Ddc2 maturation and recruitment. Mec1-Ddc2 is folded and assembled, even before DNA 

damage, by the Hsp90-R2TP-TTT co-chaperone complex and priming kinase Nek1. After maturation, Mec1-Ddc2 

complexes are recruited to sites of DNA damage through a direct interaction of Ddc2 and RPA. Recruited Mec1-Ddc2 

is activated by the 9-1-1 checkpoint clamp and other factors (see Figure 7 for Mec1-Ddc2 activation). 
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2.2. Co-activators of Mec1/ATR 

ssDNA-RPA generated at DNA damage sites or after replication stress is not sufficient for checkpoint 

induction by Mec1, but requires a double-stranded primer with a free 5‘ end (Figure 3) (MacDougall et al., 

2007). The length of ssDNA adjacent to dsDNA positively correlates with Mec1 phosphorylation of Chk1. 

Such primed ssDNA structures containing long ssDNA tracts are formed as intermediates in various DNA 

repair processes and at stalled replication forks. However, during normal replication, such structures 

rarely feature long ssDNA tracts and therefore the threshold for Mec1/ATR activation might not be 

reached. The ds-ssDNA junction in the primed ssDNA structures recruits the Rad24-RFC clamp loader 

complex that binds the so-called 9-1-1 checkpoint clamp, which is a heterotrimeric ring-shaped protein 

complex containing Ddc1-Rad17-Mec3 in budding yeast (RAD9-HUS1-RAD1 in human and S. pombe) 

(Majka and Burgers, 2004). Crystal structures of the 9-1-1 clamp and the DNA polymerase associated 

trimeric sliding clamp PCNA (proliferating cell nuclear antigen) show structural similarity (Dore et al., 

2009). However, distinct clamp loading complexes ensure specificity of 9-1-1 for 5’ junctions promoted by 

ssDNA-RPA, whereas PCNA gets recruited to 3’ junctions during normal DNA replication (Majka et al., 

2006a). An important requirement of proper checkpoint signaling is the independent recruitment of the 

Mec1-Ddc2 and the 9-1-1 complexes to damage sites (Kondo et al., 2001; Melo et al., 2001). Under 

physiological salt concentrations, the 9-1-1 clamp, the clamp loader and the ssDNA-RPA platform are 

necessary for Mec1 phosphorylation of downstream target Rad53 (human Chk2, S. pombe Cds1) in vitro 

(Majka et al., 2006b). However, the Ddc1 subunit of the 9-1-1 clamp can directly activate Mec1 under low 

salt conditions i.e. 20 to 40 mM NaCl, in the absence of other factors. The Mec1 activation domain of 

Ddc1 lies in Ddc1’s poorly conserved unstructured C-terminal tail, and mutagenesis showed the 

requirement of two conserved aromatic residues in Ddc1, W352 and W544, for Mec1 activation in vitro 

(Navadgi-Patil and Burgers, 2009). In other organisms, however, direct activation of Mec1 by 9-1-1 is not 

conserved.  

A conserved activator of Mec1/ATR is the essential replication protein Dpb11 (TopBP1 in human, 

Cut5/Rad4 in S. pombe). Through its multiple BRCA-1 C-terminal (BRCT) domains, yeast Dpb11 

recognizes phosphorylated 9-1-1 subunit Ddc1 (residue T602), whereas human TopBP1 recognizes 

autophosphorylated ATR (residue T1989) (Delacroix et al., 2007; Furuya et al., 2004; Liu et al., 2011b). 

Once localized to damage sites, Dpb11 then activates Mec1-Ddc2 through an unstructured C-terminal tail 

(Navadgi-Patil and Burgers, 2008) and this activation is dependent on the interaction of the Dpb11 C-

terminal tail with Ddc2 (Mordes et al., 2008). This tail is not conserved in human and instead ATR 

activation by TopBP1 is attributed to a region between the sixth and the seventh BRCT domains of 

TopBP1 (Kumagai et al., 2006). Like yeast, human ATR activation is promoted by TopBP1 interaction 

with ATRIP. Overexpression of this ATR-activating domain alone is sufficient to activate ATR. 

Additionally, tethering the ATR-activating domain to the PCNA clamp or the nucleosome, can bypass the 

requirement of the 9-1-1 clamp to activate ATR. Like Ddc1, the Dpb11 C-terminus and the TopBP1 ATR-

activating domain harbor an unstructured tail that contains two conserved aromatic residues crucial for 
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Mec1/ATR activation. Although both Ddc1 and Dpb11 can activate Mec1 in vitro, their cellular function is 

most likely cell-cycle dependent. Whereas Ddc1 seems to activate Mec1 in G1-phase, Ddc1 and Dpb11 

act redundantly to activate Mec1 in G2-phase (Navadgi-Patil and Burgers, 2009). Similarly, S. pombe 

Cut5 (ortholog of budding yeast Dpb11) is the predominant activator of Rad3 (Mec1 ortholog) in G1 (Lin 

et al., 2012). Contrasting reports show that Ddc1 and Dpb11 act redundantly in G1, whereas Ddc1 

predominantly activates Mec1 in G2/M after UV damage (Puddu et al., 2011). 

However, in S-phase cells, Mec1 can be activated even when the Mec1 activating domains of Ddc1 or 

Dpb11 are mutated. Biochemical screening of 39 proteins involved in DNA replication identified Dna2, a 

nuclease-helicase, as an S-phase specific Mec1 activator (Kumar and Burgers, 2013). Like Ddc1 and 

Dpb11, Dna2 harbors a Mec1-activating domain containing two aromatic residues (W128 and Y130) in an 

unstructured region. Mutations in ddc1, dpb11, and dna2, the three activators of Mec1, completely 

abolished the Mec1-mediated checkpoint in S-phase cells lacking the Tel1 kinase, Tel1 being a 

compensatory kinase of Mec1 (Sanchez et al., 1996). However, it is unknown whether human DNA2, like 

Ddc1 in yeast, activates ATR. 

Recently, three separate studies identified a previously uncharacterized protein, ETAA1 (Ewing’s tumor-

associated antigen 1) as an activator of ATR in humans (Bass et al., 2016; Haahr et al., 2016; Lee et al., 

2016). ETAA1 activation of ATR is independent of TopBP1 and simultaneous depletion of ETAA1 and 

TopBP1 results in synergistic lethality, abolishes ATR checkpoint signaling and results in genomic 

instability. While TopBP1 is recruited by the 9-1-1 and the MRE11-RAD50-NBS1 (MRN) complexes, 

ETAA1 is an RPA-binding protein (Feng et al., 2016). 9-1-1 preferentially binds 5’ ds-ssDNA junctions in 

vivo, whereas RPA binds ssDNA. This might allow for different numbers and coverage of TopBP1 and 

ETAA1 proteins at DNA damage sites. Like other Mec1/ATR co-activators, ETAA1 contains an 

unstructured ATR-activating domain. Although, it is clear that an unstructured region containing two 

aromatic residues forms a motif that activates Mec1/ATR, the molecular details of how such a motif 

stimulates Mec1/ATR kinase activity are unclear.  

Taken together, budding yeast contains at least three co-activators of Mec1: Ddc1, Dpb11 and Dna2 

(Figure 7), whereas human cells contain at least two co-activators of ATR: TopBP1 and ETAA1. This 

redundancy of co-activators underscores the importance of a localized and timely activation of the 

Mec1/ATR checkpoint pathway. Indeed, artificial colocalization of Ddc1 and Mec1-Ddc2 induces Mec1 

activation and checkpoint signaling even in the absence of DNA damage (Bonilla et al., 2008). Similarly, 

colocalization of Mrc1, a replisome component, and Mec1-Ddc2 is sufficient for Mec1 to phosphorylate 

Rad53 independent of co-activators Dpb11 and Ddc1 (Berens and Toczyski, 2012). Since misactivation 

of Mec1/ATR in the absence of DNA damage or replication stress can cause cellular senescence (Toledo 

et al., 2008), it is crucial that recruitment and activation of Mec1 are coupled and tightly regulated. 
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Figure 7: Cell-cycle dependent Mec1 activation. In budding yeast, the 9-1-1 checkpoint clamp activates Mec1 via two 

conserved aromatic residues (not shown) in the flexible C-terminal tail of the Ddc1 subunit. In G2 and S-phases, 

phosphorylated 9-1-1 recruits Dpb11, which activates Mec1 directly. In S-phase, Dna2 which is recruited to long 5’ 

flaps generated during lagging strand synthesis, can activate Mec1. 

 

2.3. Amplifying Mec1/ATR signaling 
Once Mec1/ATR is properly recruited and activated, post-translational modifications further stimulate 

Mec1/ATR kinase activity and amplify the DNA damage signaling pathway. After DNA damage, PRP19, a 

ubiquitin ligase, binds ssDNA-RPA and deposits K63 poly-ubiquitin chains on the RPA32 subunit of RPA 

(Marechal et al., 2014; Wan and Huang, 2014). These K63 linked chains are recognized by ATRIP 

promoting further recruitment of ATR-ATRIP complexes. Mutants of PRP19 defective in binding RPA or 

ubiquitin ligase activity, fail to efficiently phosphorylate ATR targets including RPA32 and Chk1. The 

PRP19-mediated signal amplification pathway is conserved in budding yeast. Similarly, RFWD3, another 

ubiquitin ligase gets recruited to RPA and ubiquitylates RPA in a DNA damage dependent manner to 

promote RPA and Chk1 phosphorylation (Elia et al., 2015; Liu et al., 2011a). In addition to ubiquitylation, 

SUMOylation strengthens Mec1/ATR signaling. Specifically, ATRIP modification by SUMO2/3 at K234 

and K289 boosts the interaction of ATRIP with multiple proteins including ATR, RPA70, TopBP1 and the 

MRN complex (Wu et al., 2014). ATRIP carrying K234R and K289R mutations resulted in reduced ATR-

ATRIP recruitment to damage sites and reduced Chk1 phosphorylation. Recently, it was shown that 

Sirtuin2 (SIRT2) interacts with and deacetylates K32 of ATRIP in response to replication stress (Zhang et 

al., 2016). Residue K32 lies in close proximity to the RPA-binding domain of ATRIP and K32 

deacetylation promotes ATRIP binding to ssDNA-RPA, ATR autophosphorylation, and ultimately ATR 

checkpoint signaling. 



20 
 

2.4. Adaptor proteins for Mec1/ATR signaling  

Adaptor or mediator proteins are a class of checkpoint proteins that act as regulatory nodes to activate 

specific signaling pathways. Rad9, the first checkpoint protein to be identified in budding yeast, is the 

prototypical adaptor. Rad9 (Crb2 in S. pombe) has no clear ortholog in higher organisms but is 

functionally homologous to BRCA1, 53BP1 and MDC1. Through its protein-protein interaction domains, 

Rad9 acts as an adaptor for Mec1-dependent Rad53 activation in the DNA damage checkpoint during G1 

and G2/M phases, but not in the replication checkpoint in S-phase (Weinert et al., 1994). Rad9 

localization to damage sites depends on the recognition of histone H3 lysine 79 methylation (H3K79me) 

by the Rad9 Tudor domain (Grenon et al., 2007), and histone H2A serine 129 phosphorylation (γ-H2A in 

yeast, γ-H2AX in human) by the Rad9 tandem BRCT domain (Hammet et al., 2007) (Figure 8). 

Methyltransferase Dot1 deposits the H3K79me mark, while Mec1 and Tel1 phosphorylate H2A serine 129 

rapidly in response to DNA damage (Downs et al., 2000; Shroff et al., 2004; van Leeuwen et al., 2002). 

Furthermore, Rad9 itself is hyperphosphorylated by Mec1 and Tel1 in response to DNA damage (Vialard 

et al., 1998). Phosphorylated Rad9 is then recognized by the Rad53 forkhead-associated (FHA) domains, 

which increases the local concentration of Rad53 to damage sites (Sun et al., 1998). Mutations of Rad9 

residues that are phosphorylated by Mec1 and Tel1, or mutations in Rad53 FHA domains, disrupt Rad9-

Rad53 interaction and impair checkpoint activation (Lee et al., 2003; Schwartz et al., 2002). Thus, Rad9 

acts as a mediator scaffold to localize Rad53 near the Mec1 kinase. In support of this model, one can 

bypass the requirement of Rad9 by creating a fusion of Rad53 to Mec1-Ddc2 (Lee et al., 2004). How 

Rad9 releases Rad53 to transduce the signal of damage once Rad53 is activated is unclear. The 

possibility of a negative feedback loop is suggested by the fact that Rad9 disassembles after it becomes 

phosphorylated by Rad53 (Usui et al., 2009). In conclusion, Rad9 is an adaptor for Rad53 activation in 

the DNA damage checkpoint in G1 and G2/M phases. 

 

Figure 8: Rad9-dependent Rad53 activation. Upon DNA damage in G1 and G2-phases, nucleosome modifications 

H3K79me and γ-H2A, recruit the Rad9 adaptor protein. Rad9 gets phosphorylated in a Mec1/Tel1-dependent 

manner. Phosphorylated Rad9 localizes Rad53 close to Mec1-Ddc2 to promote Rad53 activation. 
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In S-phase, yeast Mrc1 (Claspin in human) mediates Rad53 activation (Alcasabas et al., 2001; Tanaka 

and Russell, 2001). Indeed, a rad9∆ mrc1∆ double mutant fails to activate Rad53 and induces synthetic 

lethality. Similarly, in human cells, Claspin interacts with Chk1 and promotes Chk1 phosphorylation (Chini 

and Chen, 2003; Kumagai and Dunphy, 2000). In addition to its role in checkpoint signaling, Mrc1/Claspin 

plays a role in DNA replication. Mrc1, along with Tof1-Csm3, localizes to replication forks under normal S-

phase conditions, and travels with the fork to promote efficient replication (Osborn and Elledge, 2003). 

Upon encountering replication blocks, Mrc1 and Tof1-Csm3 form a stable replisome pausing complex 

(Katou et al., 2003). In addition, Mrc1 and Tof1-Csm3 interact with leading strand polymerase epsilon and 

the MCM replicative helicase and thus couple DNA synthesis and unwinding activities (Bando et al., 

2009; Lou et al., 2008). Upon replication stress, Mrc1/Claspin gets phosphorylated by Mec1/ATR 

(Alcasabas et al., 2001). Alanine substitution mutations of the phosphorylated residues of Mrc1 render 

Mrc1 proficient in replication but defective in checkpoint function. Furthermore, yeast Mrc1 

phosphorylation was shown to be important for Mec1 recruitment to stalled forks (Naylor et al., 2009). 

However, human Claspin was shown to act downstream of TopBP1 and depletion of Claspin selectively 

abrogated ATR’s ability to phosphorylate Chk1, but not other ATR targets (Liu et al., 2006).  

RecQ family helicase Sgs1 (human BLM, S. pombe Rqh1) is also involved in activating Rad53 in 

response to replication stress (Frei and Gasser, 2000) and this activity is independent of Sgs1 helicase 

function (Bjergbaek et al., 2005). Upon replication stress, Sgs1 is phosphorylated by Mec1-Ddc2 and this 

phosphorylation is recognized by the Rad53 FHA domain (Hegnauer et al., 2012). In addition, Sgs1 

constitutively associates with replication forks (Cejka et al., 2010). Therefore, Sgs1 acts as a mediator to 

recruit Rad53 close to Mec1 at stalled forks. Whereas Sgs1 and Mrc1 are epistatic for Rad53 activation at 

stalled forks, Sgs1 and 9-1-1 act in parallel pathways and hence show synergy (Bjergbaek et al., 2005). 

In human cells, the Sgs1 ortholog BLM was also reported to be a target of ATR phosphorylation, and 

plays a role in recovery from replication stress (Davies et al., 2004). 

In addition to Rad9, Mrc1 and Sgs1, which act as cell cycle specific adaptors of the Mec1-Rad53 

signaling pathway, the Mec1/ATR pathway can also be regulated by damage-specific repair proteins. For 

example, Fanconi anemia pathway proteins, FANCM and FAAP24, which are recruited to inter-strand 

crosslinks, are implicated in Mec1/ATR activation independently of the Fanconi anemia core complex 

(Collis et al., 2008). NER proteins and the Exo1 exonuclease process UV-lesions to expose ssDNA which 

recruits RPA and activates Mec1/ATR (Giannattasio et al., 2010). Thus Mec1/ATR activation is regulated 

by a wide variety of context-specific regulators. 

3. Mec1/ATR targets 

Once Mec1/ATR is assembled and activated at sites of DNA damage or replication stress, it 

phosphorylates several targets and initiates a signaling cascade to control the cell-cycle, regulate origin 

firing and protect the replication fork while coordinating DNA repair and recovery (Friedel et al., 2009). 

Over the last decade, proteomics approaches have revealed numerous Mec1/ATR targets (Bastos de 



22 
 

Oliveira et al., 2015; Chen et al., 2010; Hustedt et al., 2015; Smolka et al., 2007). In this section, I will 

discuss some of the key targets that are essential in maintaining genome stability. 

3.1. Rad53/CHK1: The major Mec1/ATR target 
In budding yeast, there are two effector kinases downstream of Mec1, Rad53 (CHK2 in S. pombe and 

humans) and Chk1 (CHK1 in humans and S. pombe) (Sanchez et al., 1999). Rad53 is the major effector 

kinase in budding yeast, while in S. pombe and higher eukaryotes, CHK1 (Chk1 in budding yeast) 

assumes this role. Rad53/CHK1 is rapidly phosphorylated on multiple sites in a Mec1/ATR dependent 

manner upon DNA damage or replication stress and is a hallmark of an active Mec1/ATR checkpoint 

pathway (Pellicioli and Foiani, 2005). As described in section 2.4., Rad53 recruitment to Mec1 is 

dependent on adaptor proteins, Rad9 and Mrc1. In humans, adaptor protein Claspin brings CHK1 and 

ATR together. Following phosphorylation and activation, Rad53/CHK1 is released from chromatin and 

transmits the checkpoint signal throughout the cell (Smits et al., 2006). This is especially important 

because Mec1/ATR is considered to be a local kinase that acts at sites of DNA damage. An important 

target of Rad53 is the Dun1 kinase (Zhou and Elledge, 1993). A diphosphothreonine motif in the Rad53 

kinase is recognized by the Dun1 FHA domain, allowing Rad53-dependent phosphorylation and 

activation of Dun1 (Bashkirov et al., 2003; Pike et al., 2003).  

3.2. Cell cycle control 

Rad53 and Chk1 phosphorylate several targets to arrest the cell cycle including Cdc5, a polo-like kinase 

involved in mitosis regulation, Pds1 (securin), which inhibits metaphase to anaphase transition, and the 

Bfa1-Bub2 GTPase activating protein complex, which inhibits mitotic exit (Hu et al., 2001; Sanchez et al., 

1999; Smits et al., 2000). In S. pombe and higher organisms, CHK1 kinase phosphorylates and thereby 

inhibits all three CDC25 (Mih1 in S. pombe) phosphatase isoforms that function to activate cyclin-

dependent kinases (CDKs) (Furnari et al., 1997; Sanchez et al., 1997; Uto et al., 2004). 

A key mechanism of Mec1/ATR regulation of the cell cycle occurs through control of origin firing. Indeed, 

cells lacking Mec1 or Rad53 fire late origins prematurely and show loss of viability (Santocanale and 

Diffley, 1998; Shirahige et al., 1998). Rad53 phosphorylates and inactivates three DNA replication factors, 

Sld3, Dbf4 (the regulatory partner of the Cdc7 kinase), and helicase subunit Mcm4 (Lopez-Mosqueda et 

al., 2010; Sheu et al., 2014; Zegerman and Diffley, 2010). In agreement, mutations in all the three targets, 

Sld2-Sld3, Dbf4 and Mcm4, activated late origins prematurely, similar to cells lacking Mec1 or Rad53 

(Sheu et al., 2016). In human cells, ATR/CHK1 phosphorylates Dbf4 and Treslin (related to budding yeast 

Sld3) (Heffernan et al., 2007). CDKs phosphorylate Sld2 and Sld3 to create a binding site for the BRCT 

domains of Dpb11 (Tanaka et al., 2007; Zegerman and Diffley, 2007). This Sld3-Dpb11-Sld2 complex is 

important for the loading and activation of the Cdc45-Mcm2-7-GINS (CMG) replicative helicase. In 

response to replication stress, Rad53/CHK1-dependent phosphorylation of Sld3/Treslin prevents the 

interaction of Sld3/Treslin and Dpb11/TopBP1, which prevents late origin firing (Boos et al., 2011; Guo et 
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al., 2015; Lopez-Mosqueda et al., 2010; Zegerman and Diffley, 2010). Thus, Mec1-Rad53 checkpoint 

signaling regulates cell cycle transitions to prevent duplication of an unrepaired genome.  

In budding yeast, Mec1-Rad53 signaling activates the Dun1 kinase, which in turn phosphorylates and 

inhibits Sml1 and Dif1, inhibitors of ribonucleotide reductase (RNR) (Lee et al., 2008; Zhao and Rothstein, 

2002). Thus, the Mec1-Rad53-Dun1 cascade causes an 8-fold increase in the dNTP pool, which 

facilitates cell survival in the face of DNA damage or replication stress (Chabes et al., 2003). Even under 

normal replication conditions, this pathway is important for dNTP regulation and cell survival. In fact, the 

lethality associated with mec1 deletion in yeast is not due to its checkpoint function, but due to its role in 

dNTP level regulation (Desany et al., 1998; Zhao et al., 1998). Therefore, up-regulating dNTP pools by 

sml1 deletion, is routinely used to suppress lethality associated with mec1 or rad53 deletions. 

Alternatively, increasing the RNR activity by deleting RNR inhibitors, such as dif1, crt1 and hug1, or 

overexpressing RNR1 or RNR3 can also bypass mec1 or rad53 deletions (Basrai et al., 1999; Huang et 

al., 1998; Wu and Huang, 2008; Zhao et al., 1998). In higher organisms, however, Mec1/ATR does not 

play an essential role in dNTP regulation, although ATR promotes accumulation of RNR subunit RRM2 in 

human cells (D'Angiolella et al., 2012).  

3.3. Replication fork protection 
In addition to dNTP regulation, a crucial function of Mec1 is the maintenance of replication fork stability in 

response to replication stress. Early studies suggested that Mec1 regulation of cell cycle, transcription, 

and late origin firing only make modest contributions to cell viability. On the other hand, Mec1 checkpoint 

signaling is essential for avoiding irreversible breakdown of stalled replication forks termed as ‘fork 

collapse’ (Tercero et al., 2003). Collapsed forks contain large ssDNA regions and hemi-replicated 

intermediates which may give rise to reversed forks, as seen by electron microscopy of HU-treated cells 

lacking Rad53 (Sogo et al., 2002).  

One mechanism of Mec1/ATR protection of stalled forks is through SMARCAL1. SMARCAL1 binds RPA 

and regresses stalled forks to promote fork restoration (Ciccia et al., 2009). Both too much and too little of 

SMARCAL1 activity causes replication-associated DNA damage (Bansbach et al., 2009). ATR 

phosphorylates a conserved serine residue in SMARCAL1 which regulates its DNA processing activity to 

prevent fork collapse (Couch et al., 2013). Selective ATR inhibition deregulates SMARCAL1 activity and 

induces fork collapse by causing aberrant fork structures that give rise to DSBs. 

Mec1/ATR is important to maintain the replisome components at sites of origin following replication stress 

(Cobb et al., 2003; Tercero et al., 2003). Quantitative chromatin immunoprecipitation analysis of HU-

arrested forks showed that leading and lagging strand polymerases and Cdc45 dissociate in cells lacking 

Mec1. Similar assays in cells lacking Rad53, however, only showed displacement of the MCM helicase 

but not the polymerases and Cdc45, highlighting the distinct roles played by Mec1 and Rad53 at stalled 

forks. Similarly, in higher eukaryotes, chromatin association of PCNA, CDC45 and the POLD2 and POLE 
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polymerases was reduced in ATR-deficient cells after treatment with replicative polymerase inhibitor 

aphidicolin (Ragland et al., 2013). However, genome-wide analysis of replication forks suggest that 

replisome stability at stalled forks might be independent of the Mec1/ATR checkpoint (De Piccoli et al., 

2012). Deep sequencing analyses suggest that the replisome stays on chromatin but randomly slides 

away from the early initiating sites in HU-treated cells lacking Mec1 or Rad53. Recent studies using 

isolation of proteins on nascent DNA also suggest that replication stress in ATR-deficient cells does not 

cause replisome destabilization, but rather altered chromatin association of other fork-associated proteins 

(Dungrawala et al., 2015). 

The Mec1 checkpoint pathway also regulates the activity of nucleases and helicases at perturbed forks. 

In budding yeast, Rad53 hyperphosphorylates DNA helicases Pif1 and Rrm3 to inhibit their activity at HU-

challenged forks, and thus prevents fork reversal, chromosome fragmentation, and genome instability 

(Rossi et al., 2015). Similarly, human Chk1 prevents aberrant origin firing, apoptosis and incorrect fork 

processing by the Mus81/Eme1 endonuclease and the Rqh1 DNA helicase (Doe et al., 2002; Forment et 

al., 2011). Similarly, S. pombe Cds1 (Rad53 in budding yeast) prevents unscheduled Mus81/Eme1-

mediated fork processing (Froget et al., 2008). In addition, Cds1 phosphorylates Dna2 on S220 after HU 

treatment and increases the chromatin association and nuclease activity of Dna2 to prevent fork reversal 

at stalled forks (Hu et al., 2012). The exonuclease Exo1 is also phosphorylated and inhibited by the 

checkpoint kinases (Morin et al., 2008). Interestingly, the major function of Rad53 at stalled forks is to 

prevent Exo1-dependent replication fork collapse, since cells lacking Exo1 almost completely rescued the 

sensitivity of cells lacking Rad53 after treatment with MMS (Segurado and Diffley, 2008). As described in 

section 2.4., the Sgs1 helicase gets phosphorylated by Mec1 and acts as an adaptor protein for Mec1-

dependent activation of Rad53. In addition, Mec1 phosphorylation of Sgs1 also regulates Sgs1 helicase 

activity to prevent fork collapse (Cobb et al., 2005). Importantly, prevention of fork collapse is dependent 

on the helicase activity of Sgs1 and not just the role of Sgs1 in recruiting Rad53 to perturbed forks. Thus, 

checkpoint kinases target numerous nucleases and helicases to prevent abnormal fork processing that 

may hinder replication fork restart after repair of DNA damage.  

3.4. Coordination of DNA repair 

DNA repair is coupled to the DNA damage checkpoint and therefore an important class of Mec1/ATR 

targets includes proteins involved in DNA repair. Mec1/ATR induces phosphorylation of proteins involved 

in the regulation of homologous recombination such as RAD51, BRCA1, WRN (Werner syndrome ATP-

dependent helicase) and BLM in humans (Davies et al., 2004; Pichierri et al., 2003; Sorensen et al., 

2005; Tibbetts et al., 2000). Although the direct implication of these phosphorylation events is not fully 

understood, the function is most likely prevention of aberrant strand-exchange events (Meister et al., 

2005). In human cells, ATR has been shown to phosphorylate NER protein XPA to regulate its 

intracellular localization (Wu et al., 2007). Additionally, yeast checkpoint protein Ddc1, part of the 9-1-1 

clamp, physically interacts with Rad14 (XPA ortholog) (Giannattasio et al., 2004). Similarly, 9-1-1 also 
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interacts with BER factors including MYH, Polβ, NEIL1, TDG, Fen1 and DNA Ligase I, and stimulates 

their enzymatic activities (Balakrishnan et al., 2009; Chang and Lu, 2005; Gembka et al., 2007; Guan et 

al., 2007a; Guan et al., 2007b; Toueille et al., 2004; Wang et al., 2004). In S. pombe, Rad3 (Mec1 in 

budding yeast) dependent phosphorylation of Rad9 (Ddc1 in budding yeast) on T225 promotes Rad9 

interaction with the post-replication repair protein Mms2 for efficient error-free repair and suppression of 

error-prone repair synthesis by translesion polymerases and strand invasion by Rhp51 (Kai et al., 2007).  

ATR signaling also targets the Fanconi-anemia protein FANCD2 to promote its localization to DNA 

damage for efficient inter-strand crosslink repair (Andreassen et al., 2004). Thus, Mec1/ATR signaling 

regulates DNA repair pathways in response to a variety of lesions. 

 

4. Architecture of PIKKs 

Phosphoinositide 3-kinase (PI3K)-related protein kinases (PIKKs) are a family of Ser/Thr protein kinases, 

whose kinase domains share homology with the PI3K lipid kinases, but lack lipid kinase activity (Baretic 

and Williams, 2014). Mammals express six PIKKs: ATR, ATM, mTOR (mammalian target of rapamycin), 

DNA-PK (DNA-dependent protein kinase), SMG1 and TRRAP. In budding yeast, the orthologs of four 

PIKK members, ATR (Mec1), ATM (Tel1), mTOR (Tor1p and Tor2p) and TRRAP (Tra1p) have been 

found, but that of SMG1 and DNA-PK are not known. These so-called “giant” kinases range in size 

between 2,547 and 4,128 aa in humans and share a common domain organization (Figure 9). The highly 

conserved kinase domain at the C-terminus is flanked by regions of sequence similarity called the FAT 

(FRAP, ATM, TRRAP) and the FATC (FAT C-terminus) domains. A large part of the N-terminus of the 

PIKKs consists of extensive α-solenoid helical HEAT repeats, as mentioned in section 2.1. 
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Figure 9: Domain organization of human PIKK proteins. The N-terminus is folded into α-helical HEAT repeats (shown 

in teal). HEAT repeats extend into a region of sequence similarity called FAT domain (shown in pink). KD represents 

the highly conserved kinase domain (shown in green). FATC is a highly conserved regulatory region at the 

C-terminus (shown in light orange).  

 

Despite structural conservation, PIKKs serve diverse functions, reflecting their distinct subcellular 

distribution, substrate recognition and activation mechanisms, which depend on distinct regulatory 

subunits and co-activators (Table 2). 

Table 2: Regulatory subunits and co-activators of major mammalian PIKKs. Yeast orthologs are 

mentioned in brackets. 

PIKK Regulatory subunit Co-activator 

ATR (Mec1) ATRIP (Ddc2) TopBP1/ETAA1 

(Ddc1, Dpb11, Dna2) 

ATM (Tel1) NBS1 (Xrs2) MRE11/RAD50 

(Mre11/Rad50) 

mTOR (Tor1p/Tor2p) RAPTOR/RICTOR/mLST8 

(Kog1/Tco89/Avo3/Lst8) 

RHEB/TSC1/2/AMPK 

(Rhbp/Snf1) 

DNA-PKcs (?) Ku 70/80 Ku/DNA 

 

Since their discovery in the mid-1990s, structural studies of PIKKs remained largely unsuccessful owing 

to their large size and complex architecture. The crystal structure of DNA-PKcs (DNA-PK catalytic 

subunit) at 6.6 Å resolution provided the first structural insights into PIKK architecture (Sibanda et al., 

2010). The structure revealed that the α-helical HEAT repeats bend to form a hollow circular ring-like 

structure and allow the kinase domain to sit on top of it. A more detailed view of the PIKK architecture 

was provided with a high-resolution crystal structure of the mTOR C-terminus (encompassing the 

FAT/Kinase/FATC domains) in complex with accessory protein mLST8 (Yang et al., 2013). Surprisingly, 

the mTOR FAT domain was tightly associated with the kinase domain, while the highly conserved FATC 

domain interacted with the kinase activation loop. Moreover, structural analysis of the activation state of 

the kinase domain and mechanism of phosphotransfer, suggested that the crystallized kinase complex 

was intrinsically active even in the absence of additional regulatory subunits and shared the same 

catalytic mechanism as canonical protein kinases.  

The last couple of years have seen a flurry of medium-resolution PIKK structures, largely owing to major 

advancements in the field of cryo-electron microscopy (cryo-EM). These cryo-EM structures include 

human mTORC1 (mTOR with subunits Raptor and mLST8) bound to a FK506 binding protein 
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(FKBP)-rapamycin complex at 5.9 Å resolution (Aylett et al., 2016), a 6 Å resolution structure of the full-

length Tor–Lst8 complex from the thermotolerant yeast Kluyveromyces marxianus describing the complex 

topology of the HEAT repeats using domain insertions (Baretic et al., 2016) (Figure 10A), human 

mTORC1 at 4.4 Å resolution (Yang et al., 2016), S. pombe ATM/Tel1 at 8.7 Å resolution (Wang et al., 

2016), closed and open conformations of human ATM dimers (Baretic et al., 2017), human DNA-PKcs at 

4.4 Å resolution (Figure 10B) and the DNA-PK holoenzyme at 5.8 Å resolution (Sharif et al., 2017). In 

addition to the 6.6 Å resolution crystal structure of DNA-PKcs (Sibanda et al., 2010), the Blundell lab has 

recently published a 4.3 Å resolution crystal structure of DNA-PKcs in complex with residues 539 to 732 

of Ku80 which suggests an allosteric mechanism modulating DNA DSB repair (Sibanda et al., 2017). 

Remarkably, Mec1/ATR structures have not been reported except for a 22 Å resolution negative-stain EM 

map of S. cerevisiae Mec1-Ddc2 (Sawicka et al., 2016). 

 

 

 

Figure 10: Structures of (A) Dimeric mTOR (PDB ID: 5FVM, Lst8 not shown) and (B) Monomeric DNA-PKcs (PDB 

ID: 5LUQ). Top and front views are shown. The N-terminal α-helical HEAT repeats are colored in teal. FAT domain is 

colored in pink. KD is colored in green. N and C termini are labeled. 
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A common theme that emerges from these structural studies is the oligomeric nature of PIKKs. 

DNA-PKcs, which is monomeric on gel filtration columns, was dimeric in the crystallographic asymmetric 

unit as well as in EM analysis. Thus, it is tempting to suggest that a DNA-PKcs dimer would align two 

broken DNA ends for ligation. Tel1/ATM, on the other hand, is catalytically inactive in its dimeric form. In 

response to DSBs, ATM is autophosphorylated on residue S1981, causing dissociation of inert dimers 

into catalytically active monomers (Bakkenist and Kastan, 2003). However, this dimer-monomer transition 

does not seem to be conserved in the case of ATR, since both ATR and ATRIP exist as oligomers before 

and after the induction of DNA damage (Ball and Cortez, 2005). These studies, however, were performed 

by tagging the proteins differentially, followed by immunoprecipitating with one tag and immunoblotting for 

the other tag. Therefore, we cannot rule out the possibility that ATR-ATRIP may co-exist as monomers 

and oligomers. In fact, overexpressed and purified budding yeast Mec1-Ddc2 was monomeric (19%) as 

well as dimeric (81%) in negative-stain EM experiments (Sawicka et al., 2016). Furthermore, support for 

both monomeric and dimeric Mec1-Ddc2 species, can be found in the literature (Bomgarden et al., 2004; 

Itakura et al., 2005; Kim et al., 2005; Unsal-Kacmaz and Sancar, 2004). Despite several efforts, the 

homodimerization of Mec1-Ddc2 is poorly understood. For example, complete information about the 

homodimerization interfaces between Mec1-Ddc2 molecules is missing. Moreover, the binding interface 

between Mec1 and Ddc2 remains unclear. An important unanswered question is whether Mec1-Ddc2 

undergoes conformational changes that reflect its activity. Another open question is: How do the two 

conserved aromatic residues present in the multiple Mec1 co-activators stimulate Mec1 catalytic activity? 

Clearly, high resolution structures of Mec1-Ddc2 are needed to fill these knowledge gaps and provide 

detailed mechanistic insights into Mec1 kinase regulation. 

Despite structural conservation, PIKKs perform diverse functions due to dissimilar localization, activation 

and substrate recognition, mostly as a result of their respective regulatory subunits. Indeed, Mec1 forms 

an enzyme complex with its regulatory subunit Ddc2, since the functions and stability of the proteins are 

inter-dependent (Cortez et al., 2001; Paciotti et al., 2000). Cells lacking Ddc2 phenotypically mimic cells 

lacking Mec1 in yeast and higher organisms (Edwards et al., 1999; Rouse and Jackson, 2000; 

Wakayama et al., 2001). Therefore, mechanistic insights into how Ddc2 regulates Mec1 recruitment and 

activation are crucial. In the recently published 22 Å resolution negative-stain EM-map (Sawicka et al., 

2016), the proposed electron density for Ddc2 was calculated by subtracting the Mec1-Ddc2 density from 

the Tel1 density after fitting in the mTOR density from PDB ID: 5FLC. Although, Mec1, Tel1 and mTOR 

carry HEAT repeats at their N-termini, the low sequence similarity and variability in length of the HEAT 

repeats in these three kinases suggest that the architecture of the N-terminal HEAT repeats might be 

different. This is especially relevant considering Mec1, Tel1 and mTOR use their HEAT repeats to interact 

with their different substrates. Therefore, a comparison of the HEAT repeat densities might lead to 

problematic outcomes. Thus, it is possible that the proposed Ddc2 electron density in the negative-stain 

EM map may have been incorrectly assigned. 
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To gain structural insights into Mec1-Ddc2 assembly and activation at DNA damage sites, I carried out 

structural, biochemical and in vivo experiments on the homodimerization and recruitment domains of 

Ddc2. 
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Summary 
Mec1-Ddc2 (ATR-ATRIP) is a key DNA damage-sensing kinase that is recruited through the 

single-stranded (ss) DNA binding replication protein A (RPA) to initiate the DNA damage checkpoint 

response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important 

that damage-specific recruitment precedes kinase activation, which is achieved at least in part by 

Mec1-Ddc2 homodimerization. Here we report a structural, biochemical and functional characterization of 

the yeast Mec1-Ddc2-RPA assembly. High resolution co-crystal structures of Ddc2-Rfa1 and 

Ddc2-Rfa1-t11 (K45E mutant) N-termini, and of the Ddc2 coiled-coil domain (CCD) provide insight into 

Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, 

we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that 

RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA, and 

that Ddc2’s recruitment domain and CCD are important for Mec1-dependent survival of UV-light induced 

DNA damage.  
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SUMMARY

Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-
sensing kinase that is recruited through the single-
stranded (ss) DNA-binding replication protein
A (RPA) to initiate the DNA damage checkpoint
response. Activation of ATR-ATRIP in the absence
of DNA damage is lethal. Therefore, it is important
that damage-specific recruitment precedes kinase
activation, which is achieved at least in part by
Mec1-Ddc2 homodimerization. Here, we report a
structural, biochemical, and functional characteriza-
tion of the yeast Mec1-Ddc2-RPA assembly. High-
resolution co-crystal structures of Ddc2-Rfa1 and
Ddc2-Rfa1-t11 (K45E mutant) N termini and of the
Ddc2 coiled-coil domain (CCD) provide insight into
Mec1-Ddc2 homodimerization and damage-site tar-
geting. Based on our structural and functional find-
ings, we present aMec1-Ddc2-RPA-ssDNA compos-
ite structural model. By way of validation, we show
that RPA-dependent recruitment of Mec1-Ddc2 is
crucial for maintaining its homodimeric state at
ssDNA and that Ddc2’s recruitment domain and
CCD are important for Mec1-dependent survival of
UV-light-induced DNA damage.

INTRODUCTION

Genome integrity is crucial for the survival of eukaryotic organ-

isms. It is maintained by an evolutionarily conserved and metic-

ulously coordinated network of pathways, collectively known as

the DNA damage response (DDR). Ataxia telangiectasiamutated

and Rad3 related (ATR, or Mec1 in budding yeast) and ataxia tel-

angiectasia mutated (ATM, or Tel1 in budding yeast) are apical

kinases of two key DDR signaling cascades. In contrast to

ATM/Tel1, which is dispensable for viability (Shiloh and Ziv,

2013), ATR/Mec1 is essential in a number of organisms. Notably,

its loss is early embryonic lethal in mice (Brown and Baltimore,

2000; Liu et al., 2000). In budding yeast, the lethality ensuing

from loss of Mec1 can be suppressed by upregulating ribonucle-

otide reductase through a sml1 deletion (Zhao et al., 1998).

Although viable, mec1D sml1D cells nonetheless remain

extremely sensitive to DNA-damaging agents.

Mec1 forms a complex with its regulatory subunit Ddc2 (ATRIP

in human), and the function and stability of the two proteins are

completely dependent on each other (Cortez et al., 2001; Paciotti

et al., 2000). In other words, loss of the catalytic subunit, Mec1,

and of the regulatory subunit Ddc2 yield identical phenotypes in

face of a wide variety of genomic insults, including replication

stress, base adducts, UV-induced nucleotide damage, and dou-

ble-strand breaks (DSBs) (Cortez et al., 2001; Edwards et al.,

1999; Paciotti et al., 2000; Rouse and Jackson, 2002;Wakayama

et al., 2001). Upon activation, Mec1-Ddc2 phosphorylates over

100 substrates (Bastos de Oliveira et al., 2015; Hustedt et al.,

2015), initiating a signaling cascade that controls DNA repair

and fork restart as well as cell-cycle progression, replisome sta-

bility, and deoxynucleotide triphosphate (dNTP) levels (Friedel

et al., 2009).

DNA damage or replication stress exposes long stretches of

single-stranded (ss) DNA, which are rapidly bound by replication

protein A (RPA) to form an ssDNA-RPA complex (Alani et al.,

1992). The ssDNA-RPA platform recruits Mec1-Ddc2 (Dubrana

et al., 2007; Rouse and Jackson, 2002; Zou and Elledge,

2003); however, this recruitment is not sufficient to induce

Mec1 activation. In Xenopus egg extracts, ATR/Mec1-depen-

dent checkpoint activation required the presence of double-

stranded (ds) DNA adjacent to the ssDNA stretch, a structure

recognized by the so-called 9-1-1 clamp (MacDougall et al.,

2007). Similarly, the long unstructured C-terminal tail of 9-1-1

subunit Ddc1 can activate Mec1 kinase in vitro (Majka et al.,

2006a), as well as in vivo, when artificially targeted together

with Ddc2 to an integrated array of binding sites (Bonilla et al.,

2008). Mec1-dependent phosphorylation of Ddc1 in turn recruits

Dpb11 (TopBP1 in human), which further activates Mec1/ATR

(Furuya et al., 2004; Kumagai et al., 2006; Puddu et al., 2008).

The hierarchy of factors contributing to Mec1 activation is

influenced by the cell cycle. In G1 phase, Ddc1 is the predomi-

nant activator and in S/G2, Ddc1 and Dpb11 act redundantly

(Navadgi-Patil and Burgers, 2009), whereas the Dna2 and

Sgs1 helicases also contribute to activate Mec1 in S phase cells

(Frei and Gasser, 2000; Kumar and Burgers, 2013). This redun-

dancy underscores the significance of a localized and timely

activation of Mec1-Ddc2, which is a highly relevant feature of
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the kinase, given that Mec1 activation in the absence of damage

causes cellular senescence (Toledo et al., 2008).

In the DDR pathway, Ddc2 plays a crucial, non-redundant

role in checkpoint activation, and cells lacking Ddc2, like those

lacking Mec1, are non-viable. Deletion analysis within the

DDC2 gene identified an RPA-binding domain (RBD) at its

N terminus (Ball and Cortez, 2005; Kim et al., 2005), which is

followed by a predicted CCD (Ball and Cortez, 2005; Itakura

et al., 2005) and a Mec1 interaction domain in the C terminus

that is essential for cell viability (Wakayama et al., 2001; Fig-

ure 1A). The RBD interacts with the N-terminal oligonucleo-

tide/oligosaccharide (N-OB) domain of RPA’s largest subunit

(Rfa1 in yeast; RPA70 in human), which serves as a platform

for interaction with multiple DDR proteins, including Ddc1,

Dna2, Mre11-Rad50-Xrs2 (MRX), and Sgs1 in yeast, as well

as p53 in mammals (Hegnauer et al., 2012; Lin et al., 1996;

Seeber et al., 2016; Xu et al., 2008; Zhou et al., 2015). Due to

the lack of structural information for Ddc2, it remained unclear

how Ddc2 recognizes or binds the Rfa1 N-OB domain,

although a theoretical model has been proposed (Ball et al.,

2007). Interestingly, a yeast mutant in which the Rfa1 N-OB

domain carries a charge reversal mutation (K45E; or rfa-t11)

renders cells defective in recombination and DNA repair but

proficient in replication (Chen et al., 1998; Seeber et al.,

2016; Soustelle et al., 2002; Umezu et al., 1998).

Like the RBD of Ddc2, its CCD is well studied on a functional,

but not structural, level. The CCD of the human homolog ATRIP

was needed for ATRIP oligomerization, stable ATR-ATRIP

complex formation, ATRIP’s recruitment to DNA lesions, and

the activation of checkpoint signaling (Ball and Cortez, 2005;

Itakura et al., 2005). Interestingly, replacing the ATRIP CCD

with a heterologous dimerization domain restored stable ATRIP

oligomerization, complex formation, and recruitment, but not

checkpoint activation (Ball and Cortez, 2005), arguing that

oligomerization per se is not sufficient for ATR-ATRIP activation.

Surprisingly, however, deletion of the Ddc2 CCD in S. cerevisiae

did not yield an obvious phenotype (Bandhu et al., 2014). In

conclusion, it remained unclear how the structure of Ddc2’s

RBD and CCD might contribute to the assembly of Mec1-Ddc2

complexes at sites of damage.
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Figure 1. Architecture of the Ddc2N-Rfa1N Complex

(A) Schematic diagram of Ddc2 and Rfa1 constructs used for crystallization. CCD, coiled-coil domain; Kl, Kluyveromyces lactis; OB, oligonucleotide/oligo-

saccharide binding; RBD (denoted by *), Rfa1-binding domain; Sc, Saccharomyces cerevisiae. Black bars above protein segments indicate protein-protein

interactions.

(B) Crystal structure of the Ddc2N-Rfa1N complex in cartoon representation; ScRfa1N is colored in green and KlDdc2N in blue. Two loops lacking electron density

due to flexibility are indicated by dashed lines. RBD, CCD, and N-terminal OB (N-OB) fold cleft are highlighted.

(C) Superposition of the crystal structure of ScDdc2CCD (cyan) onto the CCD of KlDdc2N (blue) in cartoon representation. Residues involved in dimerization are

shown as colored sticks. Salt bridges are indicated by arrows. Length of the CCD is indicated. RMSD, root-mean-square deviation.

See also Figure S1.
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Here, we present crystal structures of Ddc2CCD,

Ddc2RBD+CCD-Rfa1N-OB, and Ddc2RBD+CCD-Rfa1N-OB-t11 com-

plexes and analyze the functional role of Ddc2 N-terminal do-

mains in vitro and in vivo. Importantly, our Ddc2-Rfa1 crystal

structure provides the missing link to existing structural data,

allowing us to propose a mode of assembly for Mec1-Ddc2 on

the ssDNA-RPA platform at sites of DNA damage. On the func-

tional side, we reveal a complete dependency on the Ddc2 N ter-

minus for cell survival following inefficient repair of UV-induced

damage and generation of ssDNA gaps. Our model provides

an explanation of how recruitment to ssDNA can itself contribute

to dimerization and activation of the Mec1-Ddc2 complex. It also

suggests a role for the Ddc2CCD as a structural spacer, allowing

Mec1 to selectively phosphorylate targets locally.

RESULTS

Architecture of the Ddc2N-Rfa1N Complex
To gain structural insights into recruitment and oligomerization of

Mec1-Ddc2 by RPA, we co-crystallized Ddc2N, residues 1–109

from the budding yeast Kluyveromyces lactis, and Rfa1N, resi-

dues 1–132 from Saccharomyces cerevisiae (Figure 1A), and

determined its crystal structure at 1.9 Å resolution (Figure 1B).

High sequence conservation (33% identity; Figure S1) allowed

us to substitute KlDdc2N for ScDdc2N to obtain well-diffracting

crystals. Ddc2N includes the RBD (residues 10–30) and the

CCD (residues 35–109) connected by a short linker. Rfa1N con-

tains a five-stranded beta barrel N-OB fold flanked by two flex-

ible loops, forming a basic-hydrophobic cleft. The structure of

the Ddc2N-Rfa1N complex was experimentally determined by

single-wavelength anomalous diffraction (SAD) using seleno-

methionine-labeled Rfa1N (Table 1). The complex crystallized in

space group P212121 with four protein chains per asymmetric

unit. The entire Ddc2 CCD dimerizes to form a parallel coiled-

coil, which allows two Ddc2 RBDs to interact with two Rfa1N

molecules, creating the A2B2 stoichiometry. Because RPA mol-

ecules coat ssDNA in a ‘‘beads on a string’’ fashion (Alani

et al., 1992), it is reasonable to propose that the two Rfa1N

molecules in our crystal structure resemble two adjacent RPA

molecules on a physiological stretch of ssDNA. Thus, the A2B2

architecture of the Ddc2N-Rfa1N complex could represent the

biological assembly of homodimers of the Mec1-Ddc2 hetero-

dimer on ssDNA-RPA.

Ddc2N Homodimerizes through the CCD
The Ddc2 CCD is formed by two 103-Å-long parallel a helices

and creates a 2-fold symmetry axis running along the center of

the CCD (Figure 1B). The CCD homodimer is stabilized by clas-

sical hydrophobic knobs-into-holes leucine side-chain interac-

tions at both ends, where additional polar side chains interact.

TheCCD opens up in themiddle section, where polar side chains

Asp65, Gln68, or His79 occupy the center, allowing access of

solvent. To validate the CCD arrangement present in the K. lactis

protein, we also determined the crystal structure of ScDdc2CCD

(S. cerevisiae Ddc2 CCD; residues 73–136) at 2.1 Å resolution

(Table 1) and found that the crystallographic ScDdc2CCD homo-

dimer and the K. lactis CCD superimpose well (root-mean-

square deviation [RMSD] = 1.15 Å), with all structural features

of dimerization being conserved (Figure 1C). This is consistent

with the sequence conservation (39% identity) of the two Ddc2

CCDs (Figure S1). In conclusion, the CCD is an extended helix

(103 Å) that homodimerizes in a parallel orientation, thus being

well-positioned to serve an architectural role in the enzyme

complex.

Ddc2N Binds Rfa1N by Polar and Hydrophobic
Interactions
The conserved acidic-hydrophobic motif in the KlDdc2 RBD in-

teracts with the basic-hydrophobic cleft ofScRfa1N (Figure S2A).

The Ddc2 RBD, formed by residues 10–30 (Figure 2A), consists

of a short a helix (residues 12–15) followed by a rigid proline-

rich turn (residues 16–28), which together contribute to a buried

surface area of�850 Å2 in the Ddc2N-Rfa1N complex (Figures 2B

and S2B). Detailed protein-protein interface analysis by proteins,

interfaces, structures, and assemblies (PISA) (Krissinel and Hen-

rick, 2007) identified key residues on both proteins, highlighting

the dual polar-hydrophobic character of the interaction. The

Rfa1N-interacting residues of KlDdc2 RBD are mostly conserved

in ScDdc2 RBD (blue circles, Figure 2A).

The Ddc2N-Rfa1N interface can be classified into four

spatially distinct regions (panels 1–4, Figure 2C). To confirm

these and extend the analysis to ScDdc2N, we determined

the dissociation constant (Kd) using microscale thermophoresis

(MST) of Cy5-labeled ScDdc2 RBD (residues 7–27) and

ScRfa1N that was either wild-type (WT) or carried alanine sub-

stitutions that were predicted to weaken the interaction (labeled

Rfa1N KREK for K58A, R62A, E86A, and K95A). The ScDdc2

RBD peptide bound ScRfa1N WT with nanomolar affinity

(Kd = 0.43 ± 0.08 mM), whereas ScRfa1N KREK failed to interact

with ScDdc2 RBD (Figure 2D). In conclusion, Ddc2N binds

Rfa1N by polar and hydrophobic interactions with a moderately

high affinity, and the residues involved for this interaction are

conserved.

Ddc2 Interacts with Rfa1-t11 Mutant Protein
The rfa1-t11 strain carries a K45E mutation close to the Ddc2-

RPA interface, which renders cells defective in recombination

and repair after damage by UV light, hydroxyurea (HU), Zeocin,

and methyl methanesulfonate (MMS) but still able to carry out

unperturbed DNA replication (Chen et al., 1998; Soustelle

et al., 2002; Umezu et al., 1998). The K45E substitution indeed

disrupts a positively charged patch in the basic-hydrophobic

cleft of Rfa1N, compromising the binding of MRX to RPA

(Seeber et al., 2016). Although the Rfa1-t11 mutant protein

failed to recruit Ddc2 to ssDNA in vitro (Zou and Elledge,

2003) and compromised Mec1 focus formation at an induced

DSB (Dubrana et al., 2007), it was not defective in Ddc2

recruitment to HU-stalled replication forks in vivo (Kanoh

et al., 2006), nor was checkpoint activation by HU treatment

compromised (Seeber et al., 2016). To investigate whether

the K45E mutation in Rfa1N alters its interaction with Ddc2,

we performed MST using Cy5-labeled ScDdc2 RBD and

purified ScRfa1N-t11. We found that the ScDdc2 RBD peptide

bound ScRfa1N-t11 with a 6-fold weaker affinity of Kd = 2.61 ±

0.37 mM (Figure 3A) compared to ScRfa1N WT. This difference

in affinity might explain the defect of the rfa1-t11 mutant in
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recruiting Ddc2 to ssDNA reported earlier (Zou and Elledge,

2003), although Rfa1-t11 still binds Ddc2 with significant

affinity.

Recently, an N-terminal peptide (residues 1–20) of human

Dna2, a nuclease-helicase, was co-crystallized with the human

RPA N-OB domain (Zhou et al., 2015; PDB: 5EAY). R41 of

human Rfa1, equivalent to K45 of yeast Rfa1 (mutated in

rfa1-t11), was involved in a salt bridge with E6 of Dna2. Based

on sequence alignments, we hypothesized that residues

355–372 of yeast Dna2 might interact with Rfa1N in an

rfa1-t11-sensitive manner. To test this hypothesis, we performed

MST using Cy5-labeled ScDna2 RBD (residues 355–372)

and purified ScRfa1N WT or ScRfa1N-t11. The ScDna2 RBD

peptide bound ScRfa1N WT with an affinity of Kd = 118 ± 8 mM

(Figure 3A) but failed to bind ScRfa1N-t11 (Figure S4A). Similarly,

we have previously shown that a peptide of the MRX complex

(Rad50 residues 145–162) binds Rfa1N with an affinity of

Kd = 63 ± 7 mM in an rfa1-t11-sensitive manner (Seeber et al.,

2016). In conclusion, the basic cleft compromised by the

rfa1-t11 allele affects some, but not all, Rfa1N ligands. Whereas

the Rfa1-Dna2 and Rfa1-MRX interactions are strongly compro-

mised by the mutation, the Ddc2 RBD shows only minor sensi-

tivity to the K45E substitution, arguing that Ddc2 binds Rfa1N

in a distinct manner.

We next determined the crystal structure of Ddc2N in complex

with Rfa1N-t11 at 2.4 Å resolution (Table 1). Similar to WT

Ddc2N-Rfa1N, the Ddc2N-Rfa1N-t11 complex crystallized in the

P212121 packing with comparable unit cell constants and

contained the same A2B2 oligomer (Figure S3). There were no

significant conformational changes in the overall arrangement

Table 1. Crystallographic Data Collection and Refinement Statistics

Ddc2N-Rfa1N Se-Met peak Ddc2N-Rfa1N-t11 ScDdc2CCD

Data collection

Space group P212121 P212121 P2221

Unit cell: a, b, c (Å) 34.05, 94.94, 170.47 34.42, 94.59, 170.84 116.94, 19.89, 30.80

Unit cell: a, b, g (�) 90.0, 90.0, 90.0 90.0, 90.0, 90.0 90.0, 90.0, 90.0

Resolution range (Å)a 50.00–1.94 (1.99–1.94) 50.00–2.38 (2.45–2.38) 50.00–2.10 (2.15–2.10)

Wavelength (Å) 0.9794 1.0000 1.0001

Completeness (%)a 98.0 (91.3) 92.1 (69.9) 99.8 (98.5)

Redundancya 11.4 (11.0) 3.77 (2.92) 6.08 (5.72)

Rsym
a 0.110 (1.573) 0.139 (0.919) 0.090 (0.856)

I/s(I)a 12.1 (1.6) 5.87 (0.99) 13.23 (2.19)

CC (1/2) (%)a 99.9 (60.5) 99.3 (35.5) 99.9 (70.6)

Unique reflections 41,015 21,408 4,644

Refinement

Rwork 0.185 0.201 0.228

Rfree 0.220 0.261 0.270

Resolution range (Å) 48.76–1.94 47.29–2.38 38.98–2.10

Reflections (all) 41,015 21,407 4,644

Reflections (test set) 2,046 (5%) 1,071 (5%) 558 (12%)

Number of atoms

Overall 3,915 3,673 561

Protein 3,706 3,578 516

Solvent 202 95 45

B Factors (Å2)

Overall 50.9 57.1 51.8

Protein 50.8 57.3 52.4

Solvent 52.6 50.9 44.9

RMSD

Bond lengths (Å) 0.01 0.01 0.01

Bond angles (�) 1.03 1.13 1.15

Ramachandran plot

Allowed (%) 99.2 99.8 100

Outliers (%) 0.8 0.2 0

RMSD, root-mean-square deviation
aValues in parentheses refer to the highest-resolution shell
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of domains or mode of binding. In the WT Ddc2N-Rfa1N struc-

ture, K45 is found in a short 310 helix toward the end of a loop

that connects the first and second b strand of the N-OB-fold

b-barrel, lining one side of the Ddc2 RBD binding cleft. The

K45 side chain was not involved in Ddc2N binding and in fact

pointed away from the Ddc2 RBD, as did the E45 side chain in

the mutant crystal structure (Figure 3B), explaining why Rfa1N-

t11 is capable of binding Ddc2N. To confirm this, we tested

Ddc2N-Rfa1N-t11 binding in aqueous pull-down experiments.

Purified histidine-tagged Rfa1N and Rfa1N-t11 proteins were im-

mobilized on Ni2+ magnetic beads and incubated with purified

untagged ScDdc2N. Eluates were analyzed on SDS-PAGE and

by mass spectrometry. ScDdc2N was recovered with both

Rfa1N WT and Rfa1N-t11 proteins (lanes 5 and 7, Figure 3C),

but not in the presence of beads alone (lane 8, Figure 3C). This

was confirmed by subjecting eluates to mass spectrometry.

After characterizing the Ddc2N-Rfa1N-t11 interaction in vitro,

we tested the interaction in vivo using budding yeast strains,

in which the endogenous DDC2 locus was replaced by a C-ter-

minal DDC2-GFP fusion in either a WT RFA1 or rfa1-t11

background. We performed immunoprecipitation with anti-GFP

antibody and probed for Rfa1 using a polyclonal anti-Rfa1

antibody. Bolstering our structural and biochemical findings,

Rfa1-t11 precipitated with Ddc2-GFP as efficiently as WT Rfa1

A B

C

D
WT

WT

Figure 2. Ddc2N Binds Rfa1N by Polar and Hydrophobic Interactions

(A) Multiple sequence alignment of Ddc2 RBD (residues 10–30); Ag, A. gossypii. Secondary structure elements of the KlDdc2 RBD present in the crystal structure

are indicated at the top (a, a helix; TT, turn). Blue dots represent residues that interact with ScRfa1N. Identical and highly conserved residues are colored and

bordered in blue, respectively.

(B) Structural overview of KlDdc2 RBD (blue) binding to ScRfa1N (green) in cartoon representation. ScRfa1N is also shown as transparent surface. Sub-interfaces

of the Ddc2N-Rfa1N complex are numbered 1–4.

(C) Close-up view of the Ddc2N-Rfa1N sub-interfaces (panels 1–4). Residues involved in binding are displayed as colored sticks. Inter-molecular polar interactions

are highlighted as orange dashed lines, whereas intra-molecular polar interactions are in green.

(D) Microscale thermophoresis (MST) analysis of binding of Cy5-labeled ScDdc2 RBD to ScRfa1N WT (wild-type) (green curve) and ScRfa1N KREK (K58A, R62A,

E86A, and K95A; black data points). Kd represents dissociation constant. DFnorm (&) represents change in fluorescence during thermophoresis normalized to

initial fluorescence. Data are represented as mean ± SEM from three independent measurements.

See also Figure S2.
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(Figures 3D and S4B) and neither bound to GFP alone. We mini-

mized any impact that contaminating nucleic acids might have

on the Ddc2-Rfa1-t11 interaction by performing the binding

assay in the presence of the nuclease Benzonase.

To extend this analysis to DNA-damage-specific recruitment

of Ddc2, we analyzed Ddc2-GFP foci formation by exposing

WT and rfa1-t11 cells expressing DDC2-GFP to either

0.2 M HU (which causes replication stress) or 0.5 mg/mL
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Figure 3. Ddc2 Interacts with Rfa1-t11 Mutant Protein

(A) MST analysis of binding of Cy5-labeled ScDdc2 RBD to ScRfa1N WT (green curve; from Figure 2D) and ScRfa1N-t11 (gray curve) and Cy5-labeled ScDna2

RBD toScRfa1NWT(black curve).Kd represents dissociation constant.DFnorm valueswere divided by the amplitude of the saturation level, resulting in the fraction

bound (from 0 to 1) for each data point. Data are represented as mean ± SEM from three independent measurements.

(B) Detailed view of the binding of Ddc2 RBD to Rfa1N-t11 as present in the Ddc2N-Rfa1N-t11 crystal structure (see also Figure S3). Ddc2 RBD is displayed as blue

cartoonwhereas Rfa1N-t11 is shown as gray cartoon and transparent surface. The side chain of residue E45 (K45Emutation in rfa1-t11) is displayed as atom-type

colored stick.

(C) In vitro pull-down: purified WT or K45E His-ScRfa1N proteins were immobilized on Ni2+ magnetic beads and incubated with purified untagged ScDdc2N. Eluates

were subjected toSDS-PAGEandLC-MS.LC-MS identificationofScRfa1 is representedasR;LC-MS identificationofbothScRfa1andScDdc2 is representedasRD.

(D) In vivo immunoprecipitation: extracts from cycling cultures of haploid S. cerevisiae (strains GA-1981, 4968, 9149, and 9828; see also Table S1) were subjected

to anti-GFP immunoprecipitation (IP) in the presence of Benzonase. Shown are the western blots performed with indicated antibodies. Quantification is shown in

Figure S4B.

(E and F) DDC2-GFP cells carrying either RFA1-wt or rfa1-t11 alleles (strains GA-8705 and 9828; see also Table S1) were exposed to 0.2 M HU or 0.5 mg/mL

4-NQO for 0, 30, 60, 90, and 120 min prior to fixation for microscopy. (E) Example images of S phase cells exposed to 0.5 mg/mL 4-NQO for 120 min show Ddc2

foci (white arrowheads). (F) Quantification of S phase cells containing Ddc2-GFP foci is shown (N = 3 and n R 100 per N; N indicates independent experiments

and n indicates number of cells counted). n.s., not significant; *p < 0.05 (chi-square test). Data are represented as mean ± SD from three independent

experiments.

See also Figures S3 and S4 and Table S1.
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4-Nitroquinoline N-oxide (4-NQO), a UV-mimetic agent. As ex-

pected, after damage induction, Ddc2-GFP formed distinct

sub-nuclear foci (Figure 3E). Consistent with the in vitro data,

we could not measure significant differences in Ddc2 focus for-

mation between rfa1-t11mutant andWTRFA1 strains after treat-

ment with HU (Figure 3F). However, upon treatment with 4-NQO,

wemeasured a significant reduction in Ddc2 foci formation in the

rfa1-t11 strain (Figure 3F). Whereas UV-induced thymine dimers

can be repaired by short-patch nucleotide excision repair (NER),

obviating the need for checkpoint activation, it has been shown

that unrepaired UV/4-NQO damage generates ssDNA (Giannat-

tasio et al., 2010; Lopes et al., 2006), consistent with the strong

Ddc2 focus formation that we observe in WT yeast after 4-NQO

exposure (Figure 3F). Intriguingly, the sensitivity of rfa1-t11 for

growth on 0.01 M HU or 30 J/m2 UV was additive with ddc2DN

(Ddc2 lacking both RBD and CCD, i.e., residues 2–136;

Figure S4C), arguing that compromised growth may not be

due to defective Mec1-Ddc2 binding, in contrast to the epistasis

observed between rfa1-t11 and MRX mutations (Seeber et al.,

2016). This argues that the rfa1-t11 phenotypes, particularly on

HU or UV, may well reflect the loss of binding of Rfa1-t11 to

MRX or Dna2, but probably not to Ddc2.

Ddc2 RBD and CCD Function Additively under DNA
Damage Conditions
We next examined the roles of the Ddc2 N terminus in the

survival of DNA damage in vivo. We created isogenic ddc2

alleles expressed from the endogenous promoter lacking resi-

dues 2–56 (ddc2DRBD), residues 58–136 (ddc2DCCD), or lack-

ing both domains, i.e., residues 2–136 (ddc2DN; Figure 4A).

Because Tel1 kinase (ATM in humans) is functionally redundant

with Mec1 kinase for Rad53 activation in budding yeast (Morrow

et al., 1995), we also created the above-mentioned ddc2 mu-

tants in strains lacking Tel1. Growth was scored by plating a dilu-

tion series of cultures on YPAD agar plates with and without

exposure to UV light, 4-NQO, HU, or MMS. In the absence of

Tel1, ddc2DNwas highly sensitive to all tested damaging agents

(row 4, Figure 4B), and it was hyper-sensitive to UV light and

UV-mimetic 4-NQO, even in the presence of Tel1 kinase

(row 2, Figure 4B). This suggests that Ddc2N is involved in

Mec1-dependent survival in response to a variety of DNA dam-

age types. The sensitivity of the single-domain mutants,

ddc2DRBD and ddc2DCCD, to all damaging agents was

masked by Tel1, yet in its absence, they showed severe sensi-

tivity to DNA damage (last two rows, Figure 4B). Nonetheless,

single-domain deletions were not as sensitive as the combined

deletion, suggesting that the RBD and the CCD are additive for

Ddc2N function.

To assess whether the sensitivity of ddc2DN cells stems from

a defect in checkpoint induction, wemonitored the phosphoryla-

tion-dependent activation of Rad53 by a phospho-upshift on a

western blot. ddc2DN cells had strongly delayed and reduced

Rad53 phosphorylation after exposure to 2 mg/mL 4-NQO, espe-

cially 15–30 min post-damage (Figure 4C). In contrast, the

kinetics of Rad53 phosphorylation in ddc2DN cells on HU was

nearly comparable to that of WT. This was true even in the

absence of Tel1: ddc2DN tel1D cells completely failed to phos-

phorylate Rad53 after exposure to 4-NQO, whereas tel1D cells

do (Figure 4C). We note that, although the N-terminal tail of

Ddc2DN was partially degraded (data not shown), the protein

was able to function as a co-factor of Mec1, as demonstrated

by cell survival on high HU concentrations and robust checkpoint

induction. Because ddc2DN was defective in Rad53 activation

on 4-NQO, we tested whether the 4-NQO sensitivity of ddc2DN

can only be attributed to defective Rad53 signaling. We exam-

ined epistasis between ddc2DN and rad53D mutants in cells

lacking sml1 at low 4-NQO concentrations, because rad53Dmu-

tants fail to grow at higher 4-NQO levels (Figure S5A). We

observed that the ddc2DN rad53D doublemutant wasmore sen-

sitive than rad53D single mutant, suggesting that the 4-NQO

sensitivity of ddc2DN cannot be only ascribed to defective

Rad53 signaling. In conclusion, the Ddc2 RBD and the CCD

are important for survival after DNA damage by UV and the

UV-mimetic drug 4-NQO and for proficient Mec1 signaling to

Rad53 and possibly other targets.

UV lesions are exclusively repaired by a ‘‘cut and patch’’-type

reaction called NER. Exo1, a 50-30 exonuclease, captures NER in-

termediates stabilized by impediments in repair synthesis and

converts the initial 24- to 30-nucleotide (nt) ssDNA gap into a

long (>500 nt) ssDNA gap, which triggers the DNA damage

checkpoint response (Giannattasio et al., 2010). During S phase,

replication forks running intoUV lesions generate remarkably long

ssDNA regions, up to 3 kb in length (Lopes et al., 2006). A study

suggests that checkpoint activation by Mec1-Ddc2 in response

to replication fork-stallingUV lesions ismainly triggeredby ssDNA

expanded by Exo1 (N. Garcı́a-Rodrı́guez and H. Ulrich, personal

communication). To test whether the 4-NQO sensitivity of

ddc2DN arises from defective Mec1-Ddc2 recruitment to the

ssDNA-RPA platform generated by Exo1 activity, we monitored

Rad53 phosphorylation and cell survival in ddc2DN, exo1D, and

Figure 4. Ddc2 RBD and CCD Function Additively under DNA Damage Conditions
(A) Schematic diagram of ScDdc2 mutants used in this study and integrated into isogenic yeast strains.

(B) DNA damage sensitivity of ddc2mutants. A 5-fold dilution series of isogenic yeast strains with indicated genotypes (see also Table S1) on YPAD plates without

or with 100 J/m2 UV light, 0.12 mg/mL 4-NQO, 0.1 M HU, or 0.1 mg/mL MMS. Plates were incubated at 30�C for two days.

(C) Rad53 phosphorylation of strains used in (B) monitored bywestern blotting with anti-Rad53 antibody after synchronization in the G1 phase of the cell cycle (by

a-factor) and release for indicated times into either 2 mg/mL 4-NQO or 0.2 M HU.

(D) Rad53 phosphorylation of isogenic strains GA-1981, 6354, 9479, and 9970 (see also Table S1) monitored as in Figure 4C.

(E) Isogenic strains GA-8163, 9485, and 9417 (see also Table S1) were synchronized in the G1 phase of the cell cycle (by a-factor) and released for indicated times

into 2 mg/mL 4-NQO. Lysates were probed with anti-Rad53 antibody (Santa Cruz Biotechnology), anti-phospho-S122-Rfa2 antibody (Rockland), and anti-

phospho-S129-H2A antibody (Sigma).

(F) Quantification of the intensities of Rfa2 phospho-S122 and H2A phospho-S129 normalized to actin loading control. Data are represented as mean ± SD from

two independent experiments.

See also Figure S5 and Table S1.
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ddc2DN exo1Dmutants upon 4-NQO treatment. In the presence

of Exo1, Rad53 phosphorylation was strongly reduced and de-

layed in ddc2DN cells, whereas, in the absence of Exo1, ddc2DN

cells failed to phosphorylate Rad53, even after 30 min of 4-NQO

treatment (Figure 4D). However, ddc2DNmutation did not further

sensitize exo1D mutants (Figure S5B), indicating that ssDNA

generated by Exo1 is crucial for the Mec1-Ddc2 function for sur-

vival after 4-NQO and UV-induced damage, which is not neces-

sarily correlated with Rad53 activation (Figure 4D).

Next, we tested whether the Ddc2 N terminus, especially the

103-Å-long CCD, would serve not only as a recruitment domain

but also as a structural spacer that might allow Mec1 to selec-

tively phosphorylate DNA-bound targets in cis while remaining

bound to ssDNA-RPA. In ddc2DCCD and ddc2DNmutants lack-

ing Tel1, we monitored phosphorylation of three Mec1 sub-

strates following treatment with 2 mg/mL 4-NQO (Figure 4E).

First, we scored Rad53 phosphorylation, as Rad53 diffuses

freely and its phosphorylation should not be dependent on a

structural spacer. Indeed, in this case, the ddc2DCCD mutant

was as proficient as WT Ddc2 for Rad53 phosphorylation,

whereas ddc2DN was deficient. Next, we tested the phosphory-

lation of S122 in the RPA subunit 2 (Rfa2-S122), which is local-

ized to ssDNA sites. Again, ddc2DCCD cells modified S122

efficiently, with only a minor reduction over WT cells, whereas

ddc2DN cells showed a significant reduction (39% of the

ddc2DCCD level; Figures 4E and 4F). On the other hand, for

the phosphorylation of histone H2A on S129 (gH2A), which, as

part of a nucleosome, would sit further from the site of Mec1-

Ddc2 binding than Rfa2, reduced levels in both ddc2DCCD

and ddc2DN cells were observed (29% as compared to WT).

This is consistent with the notion that the long CCD of Ddc2 al-

lows Mec1 to reach targets that are further away from damage

sites, such as gH2A, providing a degree of substrate selectivity

to the RPA-bound Mec1 kinase.

Ddc2 RBD and CCD Are Critical for Ddc2 Focus
Formation after 4-NQO or UV Damage in S Phase
To measure Ddc2 recruitment to 4-NQO damage sites quantita-

tively in ddc2 mutants, we generated red fluorescent protein

(RFP)-tagged Rfa1 and GFP-tagged Ddc2 in WT and Ddc2

mutants. All fusion proteins were C-terminally tagged and

expressed from their endogenous loci under the genomic

promoter. Consistent with previous reports, G1 phase cells

rarely formRfa1/Ddc2 foci, regardless of 4-NQOor UV treatment

(Figure 5A; Lisby et al., 2004). S phase cells, however, showed

punctate sub-nuclear Rfa1/Ddc2 foci in 15%–20% untreated

cells, indicative of endogenous damage, and both markers

showed an increase in focus number after 4-NQO or UV, as
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Figure 5. Ddc2 RBD and CCD Are Critical for Ddc2 Recruitment to 4-NQO and UV Damage Sites in S Phase

RFA1-RFP cells carrying indicated ddc2 N-terminal truncations tagged with GFP (strains GA-8705, 9961, 9963, and 9965; see also Table S1) were either

untreated or treated with 0.5 mg/mL 4-NQO or 100 J/m2 UV 2 hr prior to fixation for microscopy.

(A) Images of RFA1-RFP DDC2-GFP G1 phase cells ± 4-NQO treatment. The scale bar represents 2 mm.

(B) Images of RFA1-RFP DDC2-GFP S phase cells ± 4-NQO treatment. White arrowheads indicate Rfa1 and Ddc2 foci and their colocalization (lower panel). The

scale bar represents 2 mm.

(C) Quantification of S phase cells containing Rfa1-RFP foci. Data are represented as mean ± SD from three independent experiments where greater than

100 cells were counted. *p < 0.005 (chi-square test).

(D) Quantification of S phase cells containing Ddc2-GFP foci. Data are represented as mean ± SD from three independent experiments where greater than

100 cells were counted. *p < 0.0005 (chi-square test).

See also Table S1.
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expected (Figures 5B–5D). When examining the Ddc2 mutants,

we found that Rfa1-RFP foci still increased 2- to 3-fold upon

4-NQO or UV treatment in WT, ddc2DRBD, and ddc2DCCD

strains, whereas ddc2DNcells showed a reduction, but not com-

plete loss, upon 4-NQO treatment (denoted by asterisk, Fig-

ure 5C). This may indicate a feedforward amplification loop, in

which RPA-dependent Mec1-Ddc2 recruitment to 4-NQO dam-

age sites promotes further RPA recruitment. In the case of Ddc2

foci, however, despite a 3-fold increase in cells containing Ddc2

foci on 4-NQO (Figure 5D), neither ddc2DN nor ddc2DRBD cells

showed an increase in Ddc2 foci on damage. In the ddc2DCCD

strain on 4-NQO, the increase occurred and was slightly attenu-

ated versus WT cells, whereas after UV, the increase was equal

toWT. Combined with the survival studies, this suggests that the

interaction of the Ddc2RBDwith Rfa1 is crucial for recruitment to

4-NQO or UV damage sites, whereas the CCD is more important

for survival than for recruitment.

Ddc2 RBD Is Essential for Homodimerization under
Damage Conditions
To examine the roles of these subdomains in homodimerization,

we performed pull-down studies. Recent work has shown the

co-existence of monomer-dimer species (Mec1-Ddc2 and

[Mec1-Ddc2]2), when Mec1-Ddc2 was overexpressed and puri-

fied under physiological salt concentrations (Andersen, 2017;

Sawicka et al., 2016). Discrepancies in the literature regarding

the size of the Mec1-Ddc2 complex may argue for a dynamic

equilibrium between pools of Mec1-Ddc2 and (Mec1-Ddc2)2
(Bomgarden et al., 2004; Itakura et al., 2005; Kim et al., 2005;

Majka et al., 2006b; Unsal-Kaçmaz and Sancar, 2004). Con-

gruently, in our hands, size-exclusion chromatography coupled

with multi-angle light scattering (SEC-MALS) analysis showed

that recombinant ScDdc2N and ScDdc2CCD were monomeric

(Figures S6A and S6B), suggesting that the Ddc2 CCD is not a

constitutive dimer. To test whether the Ddc2 CCD is nonetheless

important for homodimerization in vivo, we createdWT, ddc2DN,

ddc2DRBD, and ddc2DCCD strains in a diploid background,

wherein one endogenous allele of DDC2 was C-terminally GFP

tagged and the other allele was C-terminally PK tagged. In the

absence of DNA damage, immunoprecipitation of WT GFP-

Ddc2 co-precipitated WT PK-Ddc2; however, PK-Ddc2DN did

not co-precipitate with GFP-Ddc2DN (Figure 6A). Importantly,

PK-Ddc2DRBD, but not PK-Ddc2DCCD, was recovered from

immunoprecipitates of GFP-Ddc2DRBD and GFP-Ddc2DCCD,

respectively, arguing that the CCD, but not the RBD, is essential

for Ddc2 homodimerization in the absence of DNA damage. All

the mutant forms of Ddc2 tested here retain the ability to asso-

ciate with Mec1 and form a Mec1-Ddc2 heterodimer.

We next tested whether the response to DNA damage would

alter the observed domain-dependent interaction. From the

lysates of cells treated with 2 mg/mL 4-NQO, PK-Ddc2DRBD

was not as efficiently recovered in immunoprecipitates of

GFP-Ddc2DRBD as the WT Ddc2 (Figure 6B). This indicates

that the Ddc2 RBD promotes Ddc2 homodimerization in the

presence of UV-mimetic stress, but not in the absence of the

damage. On the other hand, the Ddc2CCD is essential for homo-

dimerization both in the presence and absence of damage. Of

course, these experiments do not exclude that interactions be-

tween the Mec1 moieties could also contribute to homodimeri-

zation of the Mec1-Ddc2 heterodimer, i.e., to the (Mec1-

Ddc2)2 assembly.

DISCUSSION

Assembly of Mec1-Ddc2 on ssDNA-RPA
Our structural, biochemical, and in vivo findings allowed us to

define the structural building blocks to model the higher-order

Mec1-Ddc2 assembly on ssDNA-RPA at sites of DNA damage.

The Ddc2N-Rfa1N crystal structure provides the missing link be-

tween the crystal structure of the ssDNA-RPA complex (Fan and

Pavletich, 2012; PDB: 4GNX) and the negative-stain electron mi-

croscopy (EM) map of a homodimer of heterodimeric Mec1-

Ddc2 (Sawicka et al., 2016; EMDB-4085). Specifically, the RPA

construct in the crystal structure of ssDNA-RPA lacks the Rfa1

N-OB domain that is present in our Ddc2N-Rfa1N crystal struc-

ture. Similarly, the thin and long Ddc2 CCD dimer (6 3 103 Å)

is absent in the �22-Å negative-stain (Mec1-Ddc2)2 map.

Indeed, Ddc2N is expected to be masked or averaged out due

to the weak contrast of the thin CCD and its conformational

flexibility.

To ascertain the position of Ddc2N with respect to the Mec1-

Ddc2 core complex, we tagged the N terminus of KlDdc2 with

residues 840–978 of the ScSir3 winged helix dimerization

domain (Sir3wH) (Oppikofer et al., 2013). We then co-expressed

and purified Sir3wH-Ddc2 with KlMec1N (residues 1–341) and

subjected the Sir3wH-Ddc2-Mec1N homodimeric complex to

negative-stain EM to gain structural information. 2D class

averages of (Sir3wH-Ddc2-Mec1N)2 showed strong contrast for

dimeric Sir3wH and core domains of Ddc2-Mec1N but weak

contrast for Ddc2N (located between globular domains of

Ddc2-Mec1N and Sir3wH; Figure S7A). Our EM analysis

confirmed two things. First, in agreement with the earlier
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Figure 6. Ddc2 RBD Is Essential for Homodimerization under Dam-

age Conditions
Extracts from cycling cultures of diploid S. cerevisiae strains GA-9842, 9843,

9844, 9845, and 9846 (see also Table S1) were subjected to anti-GFP IP and

western blotting with indicated antibodies in the absence of DNA damage

(A) or after 30 min exposure to 2 mg/mL 4-NQO (B).

See also Figure S6 and Table S1.
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(Mec1-Ddc2)2 negative-stained images (Sawicka et al., 2016),

the Ddc2 N terminus showed poor contrast, reflecting its small

diameter. Second, the Ddc2 N terminus—made visible through

its fusion to Sir3wH—was positioned away from the Ddc2-

Mec1N globular core. This allowed us to model the recruitment

of (Mec1-Ddc2)2 to ssDNA-RPA by compiling the following

structural data: the crystal structure of the ssDNA-RPA complex

lacking Rfa2wH and Rfa1N—PDB: 4GNX; the negative-stain EM

map of (Mec1-Ddc2)2—EMD-4085; and the crystal structure of

Ddc2N-Rfa1N complex (this study). We assembled these in a

to-scale composite model (Figures 7 and S7B), which illustrates

the recruitment of (Mec1-Ddc2)2 to two adjacent ssDNA-bound

RPA molecules.

According to this model, Ddc2N would serve not only as a

recruitment domain but also as a structural spacer, allowing

the large (Mec1-Ddc2)2 core module to move without encoun-

tering the DNA and thus preventing steric clashes with the as-

sembly and disassembly of DNA repair and damage-process-

ing complexes that must interact with the damage sites. This

model also allows Mec1 kinase to phosphorylate multiple

spatially distinct substrates while remaining bound, gaining

flexibility from two long unstructured linkers. The first 50-resi-

due-long linker is found between the Rfa1 N-OB and OB-A do-

mains and can reach a maximum distance of �158 Å. This

linker was in fact reported to be highly flexible (Brosey et al.,

2015). The second linker, between Ddc2N and the Mec1-

Ddc2 globular core, is 64 residues long and maximally

�210 Å long. Both linkers show little amino acid conservation,

yet their existence is conserved and their lengths increase from

yeast to man. This is consistent with the proposed function as a

flexible spacer. Our model reveals that two adjacent ssDNA-

bound RPA molecules recruit one (Mec1-Ddc2)2 entity to

form the principal building block of the Mec1-Ddc2 higher-or-

der assembly.

Our data suggest that Ddc2N is a non-constitutive homodimer.

Due to the presence of long linkers in Ddc2 and RPA that flank

Ddc2N, it is reasonable to propose that Ddc2N homodimerization

is independent of the Mec1-Ddc2 globular core homodimeri-

zation. Because the binding affinity of the RBD-Rfa1N interaction

(Kd = 0.43 mM) was much higher than that of Ddc2N homo-

dimerization, we propose that Ddc2 recruitment to ssDNA-RPA

arrays increases the local concentration of the Ddc2 N terminus,

promoting its homodimerization. The model reinforces

our finding that the Ddc2 RBD becomes critical to maintain

Ddc2 homodimerization only in response to DNA damage.

Another explanation of the RBD-dependent homodimerization

of Mec1-Ddc2 could be that the activation of Mec1-Ddc2 at

damage sites, e.g., binding of Mec1-Ddc2 to Dpb11, induces a

conformational change that weakens the Mec1-Ddc2 core

homodimerization, increasing the dependency of Mec1-Ddc2

homodimerization on the Ddc2 N terminus. This may be a regu-

latory feature that helps prevent improper Mec1 activation in the

absence of sufficiently long stretches of ssDNA. Indeed, in

human cells, ATR failed to phosphorylate downstream effectors

when the ATRIP CCD was replaced by the constitutively homo-

dimeric GCN4 CCD (Ball and Cortez, 2005). A further means to

regulate Mec1 activation could be recognition of homodimeric

Ddc2 CCD by Mec1 co-activators, such as Dpb11 and 9-1-1.

Exo1-Dependent Assembly of (Mec1-Ddc2)2 Molecules
on ssDNA-RPA after UV Damage
RPA binds ssDNA in three different modes, depending on the

length of ssDNA that it contacts: either the 8-nt low-affinity

mode; the 12- to 23-nt medium-affinity mode; or the 30-nt

high-affinity mode (Bochkareva et al., 2001). Because two RPA

molecules bind one (Mec1-Ddc2)2 entity, we expect 60 nt

(high-affinity mode) to be the minimum length of ssDNA that is

required to assemble (Mec1-Ddc2)2 efficiently. Indeed, it was re-

ported that, in the presence of RPA, Ddc2 binds more efficiently

to 75-nt ssDNA (space for two RPA molecules) than it does to

50-nt or 30-nt ssDNA (space for one RPA molecule; Zou and

Elledge, 2003). Thus, it is clear that Mec1-Ddc2 is efficiently

recruited to an Exo1-expanded ssDNA gap, where long arrays

of RPA bound to ssDNA in high-affinity mode are present. Of

course, Mec1 recruitment and activation on ssDNA is dependent

on the Ddc2N-Rfa1N interaction, and ddc2DN cells showed

greatly delayed and reduced Rad53 phosphorylation upon

4-NQO treatment (Figure 4D). Notably, Rad53 was still phos-

phorylated at low levels. On the other hand, in exo1D cells, the

initial 24- to 30-nt gap cannot be elongated and long

RPA-Mec1-Ddc2 arrays cannot build up. Congruently, we

observed delayed and reduced Rad53 phosphorylation, hinting

at a weak recruitment and dimerization mode for Mec1-Ddc2,

even to the 24- to 30-nt short gap. It is imaginable that one

Mec1-Ddc2 homodimer binds to two of the three RPAmolecules

that could occupy the initial 24- to 30-nt gap generated during

NER in the 8-nt low-affinity mode. Such a scenario could still

trigger weak and delayed Rad53 phosphorylation. Together,

these mechanistic insights explain why ddc2DN and exo1D

were additive for Rad53 phosphorylation upon 4-NQO treatment

and that the delayed and reduced Rad53 activation in the case of

ddc2DN is dependent on Exo1.

Interestingly, the additivity of ddc2DN and exo1D for Rad53

phosphorylation does not reflect on cell survival in our drop

assays (Figure S5B). Nonetheless, the epistasis between

ddc2DN and exo1D on survival assays suggests that Exo1-

dependent ssDNA formation is crucial to fulfill Mec1-Ddc2 func-

tion in response to UV damage. This discrepancy between

Rad53 activation and cell survival assays may reflect the distinct

natures of the two experiments; Rad53 phosphorylation was

done in liquid cultures acutely exposed to 4-NQO, whereas, for

the drop assay, colonies were continuously exposed to 4-NQO

for two days on plates, where both Exo1 and Mec1-Ddc2 may

be involved in an alternative rescue pathway. Taken together,

we suggest that, in the presence of UV lesions, Exo1 extends

short unrepaired ssDNA gaps to recruit Mec1-Ddc2 efficiently

by means of the Ddc2N-Rfa1N interaction, promoting checkpoint

induction and survival (Figure 7A). This occurs, apparently, in

S phase cells.

Activation of (Mec1-Ddc2)2 on ssDNA-RPA at DNA
Damage Sites
Finally, we extrapolated our composite to-scale model to mimic

Mec1-Ddc2 activation on ssDNA-RPA after DNA damage (Fig-

ure 7B; see STAR Methods for assembly details). The model re-

capitulates the role of Ddc2N as both a recruitment and spacer

module that may allow Mec1 kinase to phosphorylate spatially
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Figure 7. Assembly and Activation of Mec1-Ddc2-RPA at DNA Damage Sites

(A) Schematic diagram of the DNA damage response to a UV lesion. In the first step, early NER factors recognize the damage and excise a 24- to 30-nt gap

containing the lesion. In the second step, the NER reaction is completed by gap-filling DNA synthesis and ligation (short-patch NER). An impediment between

these two steps, e.g., replication fork or opposing lesion, allows Exo1 exonuclease to process the 24- to 30-nt gap and generate long ssDNA gaps, which recruit

Mec1-Ddc2 via the Ddc2N-Rfa1N interaction. Mec1 induces checkpoint activation by phosphorylating multiple substrates, including Rad53, RPA, and Exo1, to

allow DNA repair (long-patch NER).

(B) To-scale composite structural model of the Mec1-Ddc2-RPA assembly (see also Figure S7B) and activation at DNA damage sites (see STAR Methods for

assembly details). (1) indicates the ssDNA-RPA platform, (2) indicates assembly of (Mec1-Ddc2)2 on the ssDNA-RPA platform via Ddc2N-Rfa1N, (3) indicates

activation of Mec1 kinase, and (4) indicates phosphorylation of Rad53 and checkpoint induction.

See also Figure S7.
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distinct targets, including proximal or readily diffusing targets like

RPA and Rad53, but also more distal substrates like histone

H2A, 9-1-1, and Dpb11, thanks to the extended CCD and the

long unstructured linkers (dotted lines; see also Figure S7B).

The capacity of Ddc2 for spatial flexibility may also facilitate an

efficient activation of Mec1 by the long unstructured C-terminal

tails of either the Ddc1 subunit in the 9-1-1 clamp or of Dpb11.

The model is consistent with the notion that the recruitments of

9-1-1-Dpb11 and/or (Mec1-Ddc2)2 to damage are largely inde-

pendent events (Kondo et al., 2001; Melo et al., 2001), which

may reduce the likelihood of untimely Mec1 activation. Once

activated, Mec1-Ddc2 appears to remain bound and act locally

on substrates in the vicinity, given that it forms a bright focus at

the site of damage (Dubrana et al., 2007). Thus, the structures

presented here and the composite model of the Mec1-Ddc2

higher-order assembly on ssDNA-RPA that they enabled have

elucidated structural features of the enzyme complex that have

functional implications for the activation and target recognition

of this kinase. We find that these unusual Mec1/ATR character-

istics are crucial for the maintenance of genomic integrity in face

of genomic insult.
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Rfa2 winged helix crystal structure Feldkamp et al., 2014 PDB: 4OU0
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83p9gjhggs.1 https://doi.org/10.17632/g5tzf37v28.1 https://doi.
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Raw data for gels, blots and EM images This paper https://doi.org/10.17632/48xj5b2g86.1

Experimental Models: Cell Lines
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Experimental Models: Organisms/Strains
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, SusanM.

Gasser (susan.gasser@fmi.ch).

METHOD DETAILS

Protein engineering and purification from E. coli

KlDdc2N (residues 1-109) from K. lactis; and ScDdc2N (residues 1-136), ScDdc2CCD (residues 73-136), Rfa1N (residues 1-132),

Rfa1N-t11 (residues 1-132; K45E), Rfa1N KREK (residues 1-132; K58A, R62A, E86A, K95A) from S. cerevisiaewere separately cloned

into pOPINF vectors using the In-Fusion system (Clontech) (Berrow et al., 2007) and individually expressed in E. coliBL21(DE3). Cells

expressing appropriate target were pelleted, resuspended in lysis buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 20 mM imidazole,

0.2%Tween-20) then rapidly frozen on dry-ice and stored at�80�C. The frozen cell suspensionwas thawed at room temperature and

supplemented with complete EDTA-free Protease Inhibitor Cocktail (Roche) and Benzonase (Sigma) before sonication. The lysate

was clarified by ultracentrifugation and then affinity purified via an N-terminal His6 tag using Ni-NTA Superflow resin (QIAGEN).

His-tag was removed using His-tagged 3C protease and a second round of affinity purification. Lastly, target was purified using a

Superdex 75 HiLoad 16/60 (GE Healthcare) column equilibrated in 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM TCEP, 0.02%

NaN3. Only in the case of Ddc2N, anion exchange purification was done using a HiTrap Capto Q (GE Healthcare) column before

size exclusion chromatography. Incorporation of seleno-methioninewas performedwith E. coliB834(DE3) as described byMolecular

Dimensions’ seleno-methionine media kit.

Protein engineering and purification from Sf9
Sir3wH-Ddc2 (KlDdc2 lacking residues 115-127 N-terminally fused to ScSir3 winged helix dimerization domain residues 840-978)

andMec1N (KlMec1 residues 1-341 N-terminally tagged with Strep-II) were cloned into separate pAC-derived vectors (Abdulrahman

et al., 2009). Recombinant baculoviruses were prepared using the flashBAC system. The Sir3wH-Ddc2-Mec1N complex was

expressed in Sf9 insect cells by co-infection of separate baculoviruses encoding Sir3wH-Ddc2 and Strep (II) tagged Mec1N. Cells

expressing appropriate target(s) were lysed in 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM MgCl2, 2 mM TCEP, 0.2% Tween-20

freshly supplemented with complete EDTA-free Protease Inhibitor Cocktail (Roche) and Benzonase (Sigma). Following ultracentrifu-

gation, target was extracted by Strep-Tactin Sepharose (IBA) affinity chromatography. The target was removed by overnight TEV

protease treatment. The protein was then separated by a HiTrap Capto Q (GE Healthcare) anion-exchange column and lastly

subjected to size exclusion chromatography on a Superdex 200 HiLoad 16/600 (GE Healthcare) column equilibrated in 20 mM

Tris-HCl, pH 8.0, 150 mM NaCl and 1 mM TCEP.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

XDS Kabsch, 2010 http://xds.mpimf-heidelberg.mpg.de/

PHENIX AutoSol Phenix software suite https://www.phenix-online.org/

PHASER Phenix software suite https://www.phenix-online.org/

BUCCANEER CCP4 software suite http://www.ccp4.ac.uk/

COOT Emsley et al., 2010 https://www2.mrc-lmb.cam.ac.uk/personal/pemsley/coot/

BUSTER Bricogne, 2011 https://www.globalphasing.com/buster/

Molprobity Chen et al., 2010 http://molprobity.biochem.duke.edu/

PyMOL Open source http://www.pymol.org/

ASTRA v6.1 Wyatt Technology

NT.Analysis software v1.5.41 NanoTemper Technologies

GraphPad Prism v6.01 GraphPad Software, Inc. https://www.graphpad.com/scientific-software/prism/

VisiView Visitron Systems http://www.visitron.de/Products/Software/VisiView/visiview.html

EMAN2 Tang et al., 2007 http://blake.bcm.edu/emanwiki/EMAN2

SPARX Hohn et al., 2007 http://sparx-em.org/sparxwiki/

UCSF Chimera Pettersen et al., 2004 https://www.cgl.ucsf.edu/chimera/

Fiji ImageJ 1.51j Open source https://imagej.nih.gov/ij/
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Crystallization
Nanoliter crystallization experiments were performed with a Phoenix dispensing robot (Art Robbins) using the sitting-drop vapor

diffusion method at 20�C. Ddc2N-Rfa1N co-crystals were obtained by mixing 1 mM KlDdc2N and 1.2 mM seleno-methionine labeled

ScRfa1N at 4�C for 30 min and later at 20�C for 3 days in the presence of 0.2 M ammonium citrate tribasic pH 7.0 and 20%PEG 3350.

Crystals were harvested and flash cooled in liquid nitrogen after cryoprotection with 20% ethylene glycol, 0.2 M ammonium citrate

tribasic pH 7.0 and 20% PEG 3350. Ddc2N-Rfa1N-t11 co-crystals were obtained by mixing 1 mM KlDdc2N and 1.2 mM ScRfa1N-t11

at 4�C for 30 min and later at 20�C for 3 days in the presence of 0.2 M lithium sulfate monohydrate, 0.1 M Bis-Tris, pH 6.5 and 25%

PEG 3350, were harvested and flash cooled in liquid nitrogen after cryoprotection with 18% ethylene glycol, 0.2 M lithium sulfate

monohydrate, 0.1 M Bis-Tris, pH 6.5 and 25% PEG 3350. ScDdc2CCD crystals, obtained in 5 days after mixing 0.5 mM ScDdc2CCD

with 0.1 M Tris-HCl, pH 8.5 and 24% PEG 400, were harvested and flash cooled in liquid nitrogen after cryoprotection with 25%

ethylene glycol, 0.1 M Tris-HCl, pH 8.5 and 24% PEG 400.

Data collection and structure determination
Diffraction data were collected at the Swiss Light Source (Villigen, Switzerland) beamlines X06DA using a Pilatus 2M-F detector

(Dectris) and X10SA using a Pilatus 6M detector. Ddc2N-Rfa1N and Ddc2N-Rfa1N-t11 co-crystals belonged to space group

P212121 (four chains per a.u. in both cases) and diffracted to 1.9 Å (lpeak = 0.979 Å) and 2.4 Å (l = 1.000 Å). ScDdc2CCD crystallized

in space group P2 2 21 (one chain per a.u.) and diffracted to 2.1 Å (l = 1.000 Å). For all projects, diffraction data were integrated and

scaled using the XDS program package (Kabsch, 2010). The structure of Ddc2N-Rfa1N was solved by single anomalous dispersion

method using four seleno-methionine sites per molecule of Rfa1N for phase calculation in PHENIX AutoSol (Terwilliger et al., 2009).

Ddc2N-Rfa1N-t11 and ScDdc2CCD structures were solved by the molecular replacement method with PHASER (McCoy et al., 2007)

using Ddc2N-Rfa1N and PDB: 1A92 as search models, respectively. For all projects, phases were then used for automatic model

building in PHENIX (Adams et al., 2011) and BUCCANEER (Cowtan, 2006) followed by manual completion of the model using

COOT (Emsley et al., 2010). The structures were refined by the crystallographic simulated annealing routine followed by individual

B-factor refinement in PHENIX and further rounds of manual rebuilding in COOT and refinement in BUSTER (Bricogne, 2011). The

final structures were validated using Molprobity (Chen et al., 2010) and COOT. Structural images for figures were prepared with

PyMOL (http://www.pymol.org/).

Molecular mass measurement by SEC-MALS
Purified ScDdc2N and ScDdc2CCD were concentrated up to 300 mM and 260 mM respectively, and filtered through a 0.1 mm Amicon

filter before injection. 38 mL of each protein was separated on a Superdex 200 10/300 GL gel-filtration column (GE Healthcare) equil-

ibrated in 20mMTris, pH 7.5, 200mMNaCl, 1mMTCEP, 0.02%NaN3 at a flow rate of 0.65mL/min. Light scattering was recorded on

an in-line miniDAWN TREOS three-angle light scattering detector (Wyatt Technology) and protein concentration detected with an

in-line Optilab Trex refractive index detector. The weight-averaged molecular mass of material contained in chromatographic peaks

was determined using ASTRA 6 software (Wyatt Technology).

Microscale thermophoresis
Experiments were carried out in 20 mM Tris-HCl buffer, pH 8.0, containing 150 mMNaCl, 0.05% Tween-20 and 0.5 mg/ml BSA. Pu-

rified Rfa1N, Rfa1N-t11, Rfa1N KREK and N-terminal Cy5-labeled peptides of S. cerevisiae Ddc2 (7-GEFSSDDDDDILLELGTRPPR-27)

and Dna2 (355-SSDEFSDDSLIELLNETQ-372) (JPT Peptide Technologies, Berlin, Germany) were centrifuged at 13,200 g for 5 min at

room temperature prior to the assays. A dilution series of Rfa1 proteins yielding different protein concentrations starting from 0.6 nM

to 2000 mM was mixed separately with labeled Ddc2 or Dna2 peptide at a fixed concentration of 0.5 mM. After 15 min incubation at

room temperature, followed by centrifugation at 5,000 g for 5 min, approximately 4 mL of each solution was filled into Monolith NT

Premium Coated Capillaries (NanoTemper Technologies GmbH). Thermophoresis was measured using a Monolith NT.115 instru-

ment (NanoTemper Technologies GmbH) at 23�C with 5 s/30 s/5 s laser off/on/off times, respectively. Instrument parameters

were adjusted to 1%–20% LED power and 20% MST power. Data of three independently pipetted measurements were analyzed

(NT.Analysis software version 1.5.41, NanoTemper Technologies GmbH) using the signal from thermophoresis and plotted using

GraphPad Prism version 6.01 (La Jolla, CA, USA).

Immunoprecipitation and western blotting
Yeast strains are described in Table S1. If not stated otherwise, cells were cultured at 30�C in YPADmedium using standard proced-

ures. For anti-GFP IP, 100 mL of log-phase culture was harvested by centrifugation, washed once with cold phosphate buffered sa-

line, and snap-frozen in liquid nitrogen. The pellet was resuspended in IP buffer (50 mM HEPES pH 7.4, 150 mM NaCl, 2 mM EDTA,

0.5% NP-40) supplemented with Complete Protease Inhibitor and PhosSTOP tablets (Roche). In anti-GFP IP experiments to check

RPA interaction, Benzonase nuclease was also added to the IP buffer. Cells were mechanically lysed by bead beating and the lysate

was mixed with anti-GFP antibody (Roche Cat#11814460001) crosslinked to Dynabeads Protein G. Binding reaction was carried out

at 4�C for 1.5 hr. After washing thrice with IP buffer, bound proteins were eluted with 0.2 M Glycine pH 1.9 and analyzed by western

blotting. Anti-GFP antibody (Santa Cruz Cat#sc-8334) was used for western blots.
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For western blot experiments, log-phase cultures were arrested in the G1 phase using alpha-factor mating pheromone for 80 min.

Cultures were then mock treated or treated with DNA damaging agents. Cells were harvested at different time points and protein

samples were prepared by NaOH/Trichloroacetic acid precipitation. Samples were resuspended in 50 mL of NuPAGE sample buffer

supplemented with 50 mM DTT. Samples were boiled, electrophoresed by SDS-PAGE, and then transferred to PVDF membranes.

The membranes were blocked with TBST (20 mM Tris-HCl, pH 7.5, 150 mMNaCl, 0.1% Tween 20) containing 5%BSA or 5% nonfat

dried milk, and probed overnight with primary antibodies, followed by 1 hr incubation with secondary antibodies coupled to perox-

idase. Blots were developed by using enhanced chemiluminescence.

Yeast drop assays
Overnight cultures of yeast cells were adjusted to OD600 of 0.1 and serially diluted 5-fold up to six dilutions. 2.5 mL of cells were drop-

ped onto YPAD plates with or without DNA damaging agents and allowed to grow for two days at 30�C before taking photographs.

Fluorescence microscopy
Cells were grown in synthetic complete (SC) media (Formedium DSCK1000) complemented with all amino acids and with 4x addi-

tional adenine (72 mg/L) to prevent autofluorescence. In addition, cells were transformed with plasmid pRS402 #1388 conveying the

ADE2 gene to reduce autofluorescence. To induce UV damage, 5 mL log phase culture was pelleted and resuspended in 200 mL of

fresh SC media, spread on a YPAD plate and left for 5 min to dry. Cells were exposed to 100 J/m2 UV using a Stratagene UV

Stratalinker 2400. Following this, cells were washed off the YPAD plate and suspended in fresh SC media. Cells were fixed in fresh

paraformaldehyde (PFA) 4% w/v for 5 min, washed six times in PBS and then attached to a 0.17 mm glass coverslip using Conca-

navalin A. Fixed cells were stained with DAPI by suspending the cells in a DAPI-PBS solution of 50 ng/mL DAPI for 30 min and then

washed in PBS three times. Cells were imaged on a Nikon Eclipse Ti microscope, an EM-CCD Cascade II (Photometrics) camera, an

ASI MS-2000 Z-piezo stage, and a PlanApo3 100, numerical aperture (NA) 1.45 total internal reflection fluorescence microscope oil

objective and Visiview software. RFPwas excited using a Coherent Sapphire 561 nm, 200mW laser. GFP andDAPI were excited with

Toptica iBEAM SMART 488 nm and 405 nm lasers, respectively. Brightfield images were acquired with a Lumencore Sola SM II LED

light engine.

Negative-stain electron microscopy
0.02 mg/mL of Sir3wH-Ddc2-Mec1N in 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1 mM TCEP was used for adsorption on glow-dis-

charged Quantifoil grids (S7/2, Cu 400 mesh, Quantifoil Micro Tools GmbH, Grosslöbichau, Germany) coated with a continuous

thin carbon film floated frommica. Samples (4 mL) were applied to the grids and, after blotting, negatively stained with 2% (w/v) uranyl

acetate. Data were acquired with a Philips CM200FEG transmission electron microscope in low-dose mode operated at 200 keV.

Images were recorded with a TVIPS F416 camera at a nominal magnification of3 50,000, resulting in a pixel size of 2.2 Å at the spec-

imen level. Images were recorded by varying the defocus between�1.5 and�3.0 mm. 7,535 particles were picked using e2boxer.py

(EMAN2) (Tang et al., 2007). Contrast transfer function parameters were calculated using sxcter.py (SPARX) (Hohn et al., 2007) and

reference-free 2D class averages were generated using the Iterative Stable Alignment and Clustering (ISAC) method in SPARX (Yang

et al., 2012).

Modeling structural assemblies
Composite structural models were assembled using crystal structures of the ssDNA-RPA complex (PDB: 4GNX), nucleosome core

particle (PDB: 4JJN), Rfa2 winged helix (wH) domain (PDB: 4OU0), the 9-1-1 complex (PDB: 3G65), negative-stain EM map of

(Mec1-Ddc2)2 (EMDB-4085) and homology models of Dpb11 BRCT domains based on closest structural homologs of known

structures identified in HHpred searches (PDB: 1L7B, 3L46, 3UEN, 4BMD). The (Mec1-Ddc2)2 EM map was segmented along the

2-fold symmetry axis to highlight its homodimeric state using the Segger tool in UCSF Chimera (Pettersen et al., 2004). All composite

structural models were assembled using PyMOL.

QUANTIFICATION AND STATISTICAL ANALYSES

MST binding assay
Data are represented as mean ± SEM of three independent experiments. Data were analyzed by NT.Analysis software version 1.5.41

(NanoTemper Technologies GmbH) and the dissociation constant (Kd) was calculated using GraphPad Prism version 6.01 (La Jolla,

CA, USA). The details of the analysis are described in figure legends.

Immunoblots
Intensity calculation of immunoblots was done using Fiji image processing package. The band areas were boxed and backgrounds

were subtracted. The bands of target protein were normalized to an appropriate loading control. Data are represented as mean ± SD

from independent replicates. The details are described in figure legends.
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Fluorescence microscopy
Fluorescence images were deconvolved using Huygens professional and the classic maximum likelihood estimate algorithm with a

signal/noise ratio of 10, automatic background estimation and 40 iterations. For foci number quantification, Z stacks were obtained

by taking 35 slices at 200 nm intervals. The EMCCD gain was set to 800 in all cases except to the brightfield were it was set to 1.

Exposure times were: 30 ms DAPI, 100 ms GFP, 100 ms RFP, 10 ms brightfield. ‘‘Bright foci’’ were counted and defined as foci

that have clear borders. Thresholding was applied in Fiji to help see foci over background nuclear signal. At least 100 cells were

counted per replicate. Data are represented as mean ± SD from three independent replicates. The details of statistical analysis

are described in figure legends.

DATA AND SOFTWARE AVAILABILITY

Accession Numbers
The accession numbers for the crystal structures reported in this paper are PDB: 5OMB (Ddc2N-Rfa1N), 5OMC (Ddc2N-Rfa1N-t11)

and 5OMD (ScDdc2CCD).

Original data used to generate any of the figure panels have been deposited at Mendeley:

https://doi.org/10.17632/shzvjjbht8.1

https://doi.org/10.17632/83p9gjhggs.1

https://doi.org/10.17632/g5tzf37v28.1

https://doi.org/10.17632/jpkhhywwhx.1

https://doi.org/10.17632/48xj5b2g86.1
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Figure S1: Pairwise sequence alignments of Ddc2N and Rfa1N (See also Figure 1) 

Identical residues of Ddc2N and Rfa1N are colored in blue and green respectively. Highly conserved 

residues are bordered. Numbers on top of the alignment refer to the K. lactis protein sequence. 

Secondary structure elements present in the Ddc2N-Rfa1N crystal structure (see also Figure 1B) are 

indicated on top of the alignment (α, α-helix; β, β-strand; TT, turn; η, 3.10 helix). Polar (inverted triangles) 

and hydrophobic (oval) residues of the Ddc2N-Rfa1N interface are highlighted. K45, the residue mutated in 

rfa1-t11, is indicated by a star. Sc: Saccharomyces cerevisiae; Kl: Kluyveromyces lactis. 
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Figure S2 (related to Figure 2)
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Figure S2: Ddc2N binds the Rfa1N basic-hydrophobic cleft (See also Figure 2) 

A) Rfa1N is displayed as a surface and colored according to the surface electrostatic potential, ranging

from blue (basic) to red (acidic). Hydrophobic surface patches are shown in white. Surface electrostatic 

potential was computed using the APBS plug-in implemented in PyMOL (www.pymol.org). 

B) Detailed view of the binding of Ddc2 RBD to Rfa1N present in the Ddc2N-Rfa1N crystal structure (see

also Figure 2B). Rfa1N is displayed as a green cartoon model whereas Ddc2 RBD is shown as sticks 

(blue, atom colors). A composite simulated annealing 2mFo-DFc omit electron density map contoured at 

0.8 σ is displayed in gray. 
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Figure S3 (related to Figure 3)

Figure S3: Crystal structure of Ddc2N-Rfa1N-t11 (See also Figure 3) 

Crystal structure of the Ddc2N-Rfa1N-t11 complex in cartoon representation; Rfa1N-t11 is colored in gray 

and Ddc2N is colored in blue. Two loops lacking electron density due to flexibility are indicated by dashed 

lines. The RBD and the CCD are labeled. 
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Figure S4 (related to Figure 3)
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Figure S4: Ddc2 can bind the Rfa1-t11 mutant protein (See also Figure 3) 

A) MST analysis of binding of Cy5-labeled ScDna2 RBD and ScRfa1N-t11. Kd represents dissociation

constant. ∆Fnorm (‰) represents change in fluorescence during thermophoresis normalized to initial 

fluorescence. n.d. means not detectable (>1mM). Data are represented as mean ± SEM from three 

independent measurements. 

B) Quantification of the intensities of Rfa1 wt and Rfa1-t11 bands normalized to the intensities of Ddc2-

GFP bands after immunoprecipitation with Ddc2-GFP using an anti-GFP antibody. Data are represented 

as mean ± SD from three independent experiments. n.s. = not significant.

C) A 5-fold dilution series of isogenic strains GA-1981, 9827/8, 9835/6 (see also Table S1) on YPAD

plates without or with 30 J/m2 UV or 0.01 M HU. Plates were incubated at 30°C for two days. 



Figure S5 (related to Figure 4)
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Figure S5: ddc2∆N is additive with rad53∆ but epistatic with exo1∆ (See also Figure 4) 

A) A 5-fold dilution series of isogenic strains GA-7371, 8891, 7373 and 10070 (see also Table S1) on

YPAD plates without or with 0.01 µg/ml 4-NQO or 0.03 µg/ml 4-NQO. Plates were incubated at 30°C for 

two days. 

B) A 5-fold dilution series of isogenic strains GA-1981, 6354, 9479 and 9970 (see also Table S1) on

YPAD plates without or with 0.12 µg/ml 4-NQO or 40 J/m2 UV. Plates were incubated at 30°C for two 

days. 
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Molar mass (g/mol):  Expected: 15,743 
Measured: 16,220

Figure S6 (related to Figure 6)
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Figure S6: ScDdc2N and ScDdc2CCD are monomeric in solution (See also Figure 6) 

Size-exclusion chromatography coupled with multi-angle light scattering (SEC-MALS) analysis of 

ScDdc2N and ScDdc2CCD. The Rayleigh ratio is indicated by the blue trace and the molar mass is shown 

by the black line. Experiments were performed in a buffer containing 150 to 200 mM NaCl.

A) The measured molar mass for monomeric ScDdc2N (16.22 kDa) was calculated over peak fractions

covering the elution volume 14.3 ml to 16 ml, which represent a monodisperse sample (polydispersity = 

1.000). 

B) The measured molar mass for monomeric ScDdc2CCD (7.83 kDa) was calculated over peak fractions 

covering the elution volume 16.9 ml to 18.1 ml, which represent a monodisperse sample (polydispersity = 

1.000). 
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Sir3wH-Ddc2-Mec1N

Figure S7 (related to Figure 7)
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Figure S7: To-scale model of Mec1-Ddc2-RPA-ssDNA assembly (See also Figure 7) 

A) Representative 2D class averages of Sir3wH-Ddc2-Mec1N generated by SPARX. Pink arrows indicate

Sir3wH homodimers linked to Ddc2; blue arrows indicate Ddc2-Mec1N. Bar = 10 nm. Sir3wH-Ddc2-Mec1N 

was purified from Sf9 cells and 0.02 mg/ml of pure protein was stained with 2% (w/v) uranyl acetate. 300 

micrographs were collected and 7,535 particles were subjected to 2D classification. 

B) Surface representation of the Mec1-Ddc2-RPA-ssDNA composite structural model assembled by

combining the following structures: Crystal structure of an ssDNA-RPA complex lacking Rfa2wH and 

Rfa1N - PDB ID: 4GNX; negative-stain EM map of (Mec1-Ddc2)2 - EMD-4085; and crystal structure of the 

Ddc2N-Rfa1N complex - this study. RPA lacking Rfa2wH is shown as green surface. ssDNA is shown as 

red and white surface. The (Mec1-Ddc2)2 EM map is segmented along the two-fold symmetry axis to 

highlight its homodimeric state. One Mec1-Ddc2 heterodimer is displayed in blue, while the other 

Mec1-Ddc2 heterodimer is displayed in cyan. Unstructured linkers are represented by dashed lines; aa 

represents amino acid residues. The putative conformational freedom of (Mec1-Ddc2)2 owing to its 

flexible linkers is highlighted by two representatives of an ensemble which are displayed with transparent 

surfaces. The kinase domain is labeled. 
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Table S1: Yeast strains used in this study (Related to Figures 3, 4, 5, 6, S4C and S5) 

strain genotype source 
GA-1981 MATa, ade2-1 ,trp1-1 ,his3-11 , -15, ura3-1, leu2-3, -112, can1-100 (W303), RAD5 H.L. Klein 
GA-1982 MATα, ade2-1 ,trp1-1 ,his3-11, -15, ura3-1, leu2-3, -112, can1-100 (W303), RAD5 H.L. Klein 
GA-4968 GA-1981 with rfa1-t11 Seeber et al., 

2016 
GA-6354 GA-1981 with exo1::Kan this study 
GA-6905 GA-1981 with rad26::NAT H.L. Klein 
GA-6909 GA-1981 with rad16::NAT H.L. Klein 
GA-7371 GA-1981 with sml1::Kan Hustedt et al. 

2015 
GA-7373 GA-1981 with sml1::Kan, rad53::URA3 Hustedt et al. 

2015 
GA-8163 GA-1981 with tel1::HIS3 this study 
GA-8705 GA-1981 with ddc2::DDC2-GFP-Kan, RFA1-RFP-HIS3 Hustedt et al. 

2015 
GA-8891 GA-1981 with sml1::Kan, ddc2::ddc2∆N this study 
GA-9149 GA-1981 with ddc2::DDC2-GFP-HIS3, sml1::Kan this study 
GA-9417 GA-1981 with ddc2::ddc2∆N, tel1::URA3 this study 
GA-9479 GA-1981 with ddc2::ddc2∆N this study 
GA-9480 GA-1981 with ddc2::ddc2∆RBD this study 
GA-9482 GA-1981 with ddc2::ddc2∆RBD, tel1::URA3 this study 
GA-9483 GA-1981 with ddc2::ddc2∆CCD this study 
GA-9485 GA-1981 with ddc2::ddc2∆CCD, tel1::URA3 this study 
GA-9487 GA-1981 with ddc2::ddc2∆N, rad16::NAT this study 
GA-9490 GA-1981 with ddc2::ddc2∆N, rad26::NAT this study 
GA-9827 GA-1981 with ddc2::DDC2-GFP-HIS3 this study 
GA-9828 GA-1981 with ddc2::DDC2-GFP-HIS3, rfa1-t11 this study 
GA-9835 GA-1981 with ddc2:: ddc2∆N-GFP-HIS3 this study 
GA-9836 GA-1981 with ddc2:: ddc2∆N-GFP-HIS3, rfa1-t11 this study 
GA-9842 MATa/MATα, DDC2-PKx9::TRP1/DDC2-GFP-HIS3,  W303,  RAD5 this study 
GA-9843 MATa/MATα, ddc2::ddc2∆N-PKx9::TRP1/ ddc2::ddc2∆N -GFP-HIS3,  W303, 

RAD5 
this study 

GA-9844 MATa/MATα, ddc2::ddc2∆RBD-PKx9::TRP1/ ddc2::ddc2∆RBD -GFP-HIS3,  
W303,  RAD5 

this study 

GA-9845 MATa/MATα, ddc2::ddc2∆CCD-PKx9::TRP1/ ddc2::ddc2∆CCD -GFP-HIS3,  
W303,  RAD5 

this study 

GA-9846 MATa/MATα, DDC2-PKx9::TRP1/DDC2, W303,  RAD5 this study 
GA-9961 GA-1981 with ddc2::ddc2∆RBD-GFP-HIS3, RFA1-RFP-HIS3 this study 
GA-9963 GA-1981 with ddc2::ddc2∆CCD-GFP-HIS3, RFA1-RFP-HIS3 this study 
GA-9965 GA-1981 with ddc2::ddc2∆N-GFP-HIS3, RFA1-RFP-HIS3 this study 
GA-9970 GA-1981 with ddc2::ddc2∆N, exo1::Kan this study 
GA-9972 GA-1981 with ddc2::ddc2∆RBD, exo1::Kan this study 
GA-9974 GA-1981 with ddc2::ddc2∆CCD, exo1::Kan this study 
GA-10070 GA-1981 with sml1::Kan, rad53::URA3, ddc2::ddc2∆N this study 
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Chapter 3: 
ATRIP CCD dimerization depends on a predicted helix within the CCD 
 
 
This chapter provides additional data, which is unpublished. 

 

 

Summary 
The coiled-coil domain (CCD) is a common oligomerization motif that is formed by approximately 10% of 

all amino acids in the proteome. CCDs consist of two to seven α-helices coiled around each other into a 

left-handed supercoil that features a heptad repeat of primarily hydrophobic residues. Some CCDs 

contain short sequences, so-called “trigger” sequences that promote the oligomerization of the entire 

CCD. The CCD oligomerization of the checkpoint protein ATRIP is not well studied. Using size-exclusion 

chromatography coupled with multi-angle light scattering (SEC-MALS), we report that the human ATRIP 

CCD is dimeric in solution, while the CCD of the S. cerevisiae ortholog Ddc2 is monomeric in solution. 

Secondary structure prediction suggests that both the orthologs contain a short N-terminal helix followed 

by a longer helix. Interestingly, we observed that the short N-terminal helix acts as a trigger sequence and 

is essential for CCD dimerization in human ATRIP but not yeast Ddc2. 
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Introduction 
Coiled-coils were first described in the early 1950s by Francis Crick and Linus Pauling independently 

(Crick, 1952; Pauling and Corey, 1953). They noted that α-helices wrap around each other and their side 

chains pack in a knobs-into-holes manner. Since then, this ubiquitous repeat motif has been extensively 

studied. A typical coiled-coil consists of a heptad repeat, abcdefg, where a and d represent conserved 

hydrophobic amino acids, whereas e and g are solvent-exposed, polar residues (Figure 1). This 

amphipathic nature drives coiled-coil formation by burying the hydrophobic residues. 

 

 

Figure 1: Coiled coil architecture. (A) Top view of the crystal structure of S. cerevisiae Ddc2 CCD (residues 73-136) 

(PDB ID: 5OMD, chapter 2) shown as gray cartoon. Hydrophobic residues are shown as blue sticks. Polar residues 

are shown as orange sticks. (B) Wheel diagram showing the heptad repeat in two parallel helices forming a coiled-

coil (top view). Amino acid positions a and d (shown in blue) are occupied by hydrophobic residues and form the 

hydrophobic core, whereas amino acid positions e and g (shown in orange) are occupied by polar residues. 

 

CCDs primarily function as oligomerization domains and have been proposed to act as molecular spacers 

or molecular rulers that either isolate functional domains or scaffold large protein complexes. Examples of 

such spacers are the 50 nm long outer membrane protein Omp-α CCD, the 110 nm long yeast spindle 

pole body protein Spc110 CCD, the 50 nm long cohesin CCD, and the 120 nm long DNA damage 

response protein Rad50 CCD (Engel et al., 1992; Hopfner et al., 2002; Kilmartin et al., 1993; Soh et al., 

2015). An interesting feature of several CCDs is the presence of short sequences within the coiled-coil 

that are necessary for its oligomerization. The so-called “trigger” sequences are believed to form earlier in 

the folding process and probably act as a seeding event that promotes the oligomerization of the rest of 

the coiled-coil. Examples of such trigger sequences include the 13-residue autonomous helical folding 

unit within cortexillin I and GCN4; and a 7-residue sequence within the type I macrophage scavenger 

receptor (Frank et al., 2000; Kammerer et al., 1998; Steinmetz et al., 1998). Deleting such sequences 

was shown to prevent proper coiled-coil assembly.  
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Sequence analysis of the DNA damage response protein ATRIP predicts that residues 110-214 may fold 

into a CCD (see Results and discussion). Indeed, deletion of the predicted ATRIP CCD in human cells, 

disrupted ATRIP oligomerization, ATRIP interaction with its obligate partner ATR, and the recruitment of 

ATR-ATRIP to DNA damage sites (Ball and Cortez, 2005). However, this study did not reveal the degree 

of oligomerization of ATRIP. Recent structural and biochemical studies of the budding yeast Mec1-Ddc2 

(Sawicka et al., 2016) and the Ddc2 N-terminus (see chapter 2) suggest that Ddc2 can exist as both 

monomer and dimer. 

In this chapter, I describe the SEC-MALS analysis of human ATRIP and S. cerevisiae Ddc2 CCD. Our 

results suggest that the human ATRIP CCD contains a trigger sequence which is important for CCD 

dimerization.  

 

Results and discussion 
Sequence analysis using PCOILS (https://toolkit.tuebingen.mpg.de/#/tools/pcoils) of human ATRIP and S. 

cerevisiae Ddc2, hereafter referred to as HsATRIP and ScDdc2, respectively, predicted that residues 

110-214 of HsATRIP, and residues 58-136 of ScDdc2, form a CCD (Figure 2A). Interestingly, secondary 

structure prediction by PSIPRED suggested that HsATRIP residues 110-138 may form a short α-helix, 

while residues 140-214 may form a longer α-helix (Figure 2B). Similarly, ScDdc2 residues 58-71 may 

form a short α-helix, while residues 73-136 may form a longer α-helix. 
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Figure 2: Coiled-coil and secondary structure prediction (A) Prediction of coiled-coil formation using PCOILS of 

HsATRIP and ScDdc2 aa residues 1-250. (B) Secondary structure prediction using PSIPRED of HsATRIP and 

ScDdc2 aa residues 1-250. α-helix formation predicted by PSIPRED is indicated in red, while β-strand formation is 

indicated in green.  

 

Therefore, we expressed and purified the following four protein constructs: HsATRIP residues 110-214, 

HsATRIP residues 140-214, ScDdc2 residues 58-136 and ScDdc2 residues 73-136 (Figure 3). All the 

constructs could be easily purified to homogeneity.  

 

Figure 3: Schematic diagram of (A) HsATRIP (in blue) and (B) ScDdc2 (in green) constructs used for SEC-MALS. 

Helix formation predicted by PSIPRED is indicated. Amino acid boundaries are indicated.  
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Using SEC-MALS, we tested the oligomerization state of all the four CCD constructs. Surprisingly, 

HsATRIP 110-214 was dimeric, whereas, HsATRIP 140-214 was monomeric (Figure 4). This might 

suggest that residues 110-139 are necessary for coiled-coil dimerization. Since residues 110-138 are 

predicted to fold into a short α-helix, it is possible that residues 110-138 may act as a trigger sequence for 

ATRIP CCD dimerization. Unexpectedly, both ScDdc2 58-136 and 73-136 were monomeric even at the 

highest injected concentration of 1.7 mM in our SEC-MALS experiments (Figure 4). This suggests that the 

presence of a trigger helix, if at all, is not conserved in the yeast and human orthologs. 

 

 

Figure 4: SEC-MALS analysis of HsATRIP and ScDdc2 constructs. The Rayleigh ratio is indicated by a solid blue 

line for HsATRIP 110-214, dashed blue line for HsATRIP 140-214, solid green line for ScDdc2 58-136 and dashed 

green line for ScDdc2 73-136. Molar mass calculated over peak fractions is indicated by a solid blue line for HsATRIP 

constructs and a solid green line for ScDdc2 constructs. MW: Molecular weight. 

 

Interestingly, ScDdc2 73-136 formed a crystallographic dimer (chapter 2, Figure 1C). These results 

suggest that the Ddc2 CCD might not be a constitutive dimer and dimerization might be regulated to 

control the function of the Mec1-Ddc2 complex. Indeed, in human cells, replacing the CCD of ATRIP with 

a heterologous CCD from transcription factor GCN4, restored ATR-ATRIP oligomerization, stable ATR-
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ATRIP interaction and recruitment to DNA damage sites (Ball and Cortez, 2005). It is imaginable that the 

homodimerization of the ATRIP CCD trigger helix is regulated by DNA damage, for example, DNA 

damage might promote trigger helix homodimerization and therefore ATR signaling, while repair of DNA 

damage might disrupt trigger helix homodimerization to attenuate ATR-mediated checkpoint pathway. In 

conclusion, we suggest that the ATRIP CCD dimerization might be regulated by a trigger helix at its N-

terminus.  

 

Methods 

Protein engineering and purification from E. coli 

HsATRIP residues 110-214, HsATRIP residues 140-214, ScDdc2 residues 58-136, ScDdc2 residues 73-

136 and ScDdc2 residues 1-136 were separately cloned into pOPINF vectors using the In-Fusion system 

(Clontech) and individually expressed in E. coli BL21(DE3). Cells expressing appropriate target were 

pelleted, resuspended in lysis buffer (50 mM Tris-HCl, pH 7.5, 500 mM NaCl, 20 mM imidazole, 0.2% 

Tween-20), then rapidly frozen on dry-ice and stored at −80°C. For each target, the frozen cell 

suspension was thawed at room temperature and supplemented with complete EDTA-free Protease 

Inhibitor Cocktail (Roche) and Benzonase (Sigma) before sonication. The lysate was clarified by 

ultracentrifugation and then affinity purified via an N-terminal His6 tag using Ni-NTA Superflow resin 

(Qiagen). His-tag was removed using His-tagged 3C protease and a second round of affinity purification. 

Lastly, target was purified using a Superdex 75 HiLoad 16/60 (GE Healthcare) column equilibrated in 20 

mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM TCEP, 0.02% NaN3. 

Molecular mass measurement by SEC-MALS 
SEC-MALS experiments were performed as in chapter 2. Purified proteins were concentrated up to 0.3 

mM (1.7 mM for ScDdc2 58-136), and filtered through a 0.1 μm Amicon filter before injection. 38 μl of 

each protein was separated on a Superdex 200 10/300 GL gel-filtration column (GE Healthcare) 

equilibrated in 20 mM Tris, pH 7.5, 200 mM NaCl, 1 mM TCEP, 0.02% NaN3 at a flow rate of 0.65 ml/min. 

Light scattering was recorded on an in-line miniDAWN TREOS three-angle light scattering detector (Wyatt 

Technology) and protein concentration detected with an in-line Optilab Trex refractive index detector. The 

weight-averaged molecular mass of material contained in chromatographic peaks was determined using 

ASTRA 6 software (Wyatt Technology). 
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Summary 

The Mre11-Rad50-Xrs2 (MRX) complex is related to SMC complexes that form rings capable of holding 

two distinct DNA strands together. MRX functions at stalled replication forks and double-strand breaks 

(DSBs). A mutation in the N-terminal OB fold of the 70 kDa subunit of yeast replication protein A, rfa1-t11, 

abrogates MRX recruitment to both types of DNA damage. The rfa1 mutation is functionally epistatic with 

loss of any of the MRX subunits for survival of replication fork stress or DSB recovery, although it does 

not compromise end-resection. High-resolution imaging shows that either the rfa1-t11 or the rad50Δ 

mutation lets stalled replication forks collapse and allows the separation not only of opposing ends but of 

sister chromatids at breaks. Given that cohesin loss does not provoke visible sister separation as long as 

the RPA-MRX contacts are intact, we conclude that MRX also serves as a structural linchpin holding 

sister chromatids together at breaks. 
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SUMMARY

The Mre11-Rad50-Xrs2 (MRX) complex is related to
SMC complexes that form rings capable of holding
two distinct DNA strands together. MRX functions
at stalled replication forks and double-strand breaks
(DSBs). A mutation in the N-terminal OB fold of the
70 kDa subunit of yeast replication protein A, rfa1-
t11, abrogates MRX recruitment to both types of
DNA damage. The rfa1 mutation is functionally
epistatic with loss of any of the MRX subunits for sur-
vival of replication fork stress or DSB recovery,
although it does not compromise end-resection.
High-resolution imaging shows that either the rfa1-
t11 or the rad50D mutation lets stalled replication
forks collapse and allows the separation not only of
opposing ends but of sister chromatids at breaks.
Given that cohesin loss does not provoke visible
sister separation as long as the RPA-MRX contacts
are intact, we conclude that MRX also serves as a
structural linchpin holding sister chromatids together
at breaks.

INTRODUCTION

The DNA damage and intra-S phase checkpoints are important

response mechanisms that allow cells to deal with damage

from exogenous or endogenous sources both by arresting the

cell cycle when necessary and by activating the appropriate

repair machinery (Ciccia and Elledge, 2010; Harrison and Haber,

2006; Hustedt et al., 2013). Central to the checkpoint response

are the conserved checkpoint kinases Mec1-Ddc2 (ATR-ATRIP)

and Tel1 (ATM). Importantly, the trimeric complex that binds sin-

gle-strand DNA (ssDNA), replication protein A (RPA), acts as a
Molec
recruitment platform for checkpoint and repair proteins,

including but not limited toMec1-Ddc2 and 9-1-1, the DNA dam-

age clamp, both at stalled forks and at DNA double-strand

breaks (DSBs) (Paciotti et al., 2000; Rouse and Jackson, 2002;

Xu et al., 2008; Zou and Elledge, 2003; Kanoh et al., 2006; Majka

et al., 2006). The failure of RPA to coat ssDNA results in replica-

tion catastrophe and also compromises homologous recombi-

nation (HR), underscoring the crucial role of this complex (Hus-

tedt et al., 2013; Toledo et al., 2013). Although checkpoint

activation coordinates cell cycle events, the maintenance of

the physical structure of a stalled fork or a DSB is also crucial

for repair, especially repair that is based on recombination

with a sister chromatid (Bjergbaek et al., 2005; Petermann and

Helleday, 2010; San Filippo et al., 2008; Wang et al., 2004).

Structural maintenance of chromosomes (SMC) complexes

are central to long-range chromatin organization and are

required for the proper meiotic segregation of replicated DNA,

chromosome condensation, and homology-based DNA repair

(Uhlmann, 2016). SMC proteins are characterized by a distinct

coiled-coil domain that contains a hinge, allowing the coil to

fold back on itself, bringing the N- and C-terminal globular

domains together (Hirano, 2006). The best characterized SMC

protein complex is cohesin, which comprises two SMC proteins,

Smc1/3, and two non-SMCproteins, Scc1 (Mcd1) and Scc3. The

latter serve as a clasp to bridge the head domains of Smc1/3.

This complex keeps sister chromatids paired, particularly in

G2 and prometaphase (Uhlmann et al., 1999). Cohesin is also re-

cruited to DSBs and stalled replication forks, where it contributes

to repair (Heidinger-Pauli et al., 2008; Ström et al., 2007; Ström

and Sjögren, 2007; Unal et al., 2004, 2007) and replication fork

recovery (Tittel-Elmer et al., 2012).

The Mre11/Rad50/Xrs2 (MRX) complex is structurally similar

to cohesin and is often characterized as the first responder to

a DSB (Lisby et al., 2004). MRX promotes the initiation of end-

resection with the co-factor Sae2 (CtIP) (Garcia et al., 2011;

Lengsfeld et al., 2007; Mimitou and Symington, 2008; Williams

et al., 2009). Although abundant data implicate MRX in
ular Cell 64, 951–966, December 1, 2016 ª 2016 Elsevier Inc. 951
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Figure 1. rfa1-t11 Is Checkpoint Proficient and Is Epistatic with Loss of MRX on HU

(A) Diagram of the three subunits of RPA. Rfa1 (ScRPA70) contains four OB domains. Unlike the others, the N-OB binds DNA poorly but binds proteins.

(B) Crystal structure of budding yeast Rfa1-t111–132 in cartoon with the five-stranded b-barrel forming the OB fold colored in dark green. Residues 1–4 are not

shown. The E45 side chain is indicated in blue atom colors, while helices and coiled elements are in pale yellow. *Putative MRX-binding site. Right: E45 in the

Rfa1-t111–132 structure with residues R44, K45E, and R62 displayed as sticks and blue atom colors. K45E disrupts this basic patch.

(legend continued on next page)
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checkpoint activation, telomere elongation, and initiation of

resection (reviewed in Stracker and Petrini, 2011; Lafrance-Va-

nasse et al., 2015), only a few studies have asked whether it

plays a structural role at damage. Supporting this, it was shown

that the two sides of a DSB separate from each other in �12%–

15% of cells lacking MRX (Kaye et al., 2004; Lobachev et al.,

2004). MRX is thought to form a dimer complex with two

Rad50 subunits, which, like Smc1 and Smc3 in cohesin, have

long coiled-coil arms that can stretch up to �600 Å (de Jager

et al., 2001a; Hopfner et al., 2002; Moreno-Herrero et al.,

2005). These coiled-coil arms can dimerize at their tips through

a zinc hook domain, allowing the formation of ring-like structures

or higher order oligomers that could hold two DNA molecules

together (de Jager et al., 2001b; Hopfner et al., 2002). Functional

studies showing that the hook domain is essential for MRX func-

tion in DNA repair, telomere maintenance, and meiotic DSB for-

mation (Hohl et al., 2011; Wiltzius et al., 2005) are consistent with

this hypothesis but do not prove it. Genetic data also implicate

MRX in the repair of DSBs by sister chromatid exchange (Gonzá-

lez-Barrera et al., 2003; Hartsuiker et al., 2001).

Our study starts from the discovery of an epistatic relationship

between a point mutation in the large subunit of RPA, rfa1-t11,

and null alleles of MRE11, RAD50, or XRS2, under conditions of

replication stress in S. cerevisiae. The rfa1-t11 allele bears a sin-

gle point mutation (K45E) in the N-oligonucleotide binding (OB)

fold of Rfa1, which renders the strain deficient for both mitotic

and meiotic recombination, although end-resection occurs nor-

mally (Dubrana et al., 2007; Umezu et al., 1998). We show here

that rfa1-t11 fails to stabilize stalled replication forks, leading to

fork collapse. Rather than impairing activation of the S phase

checkpoint, rfa1-t11 reduces the recruitment of MRX to both

stalled replication forks and DSBs in vivo, resulting in an inability

to restart stalled forks and end separation at DSBs.We show that

Rfa1 and MRX interact in an rfa1-t11-sensitive manner in vitro.

Finally, we find that MRX holds sisters and break ends together

in anRPA-dependentmanner atDSBs in vivo, evenwhencohesin

is inactivated. This provides direct evidence that MRX plays a

structural role at stalled replication forks and breaks.

RESULTS

The rfa1-t11 K45E Mutation Disrupts a Basic Patch in
Rfa1’s N-OB Binding Pocket
The ssDNA-bindingproteinRPA is composedof three subunits, all

of which are essential for cell viability in budding yeast (Figure 1A).

The largest subunit (ScRpa70orRfa1) contains 4OB folddomains,

three of which are implicated in ssDNA binding, while the N-termi-

nal OB-fold serves as a recruitment platform for other proteins

involved in replication stress and DSB repair, including Ddc2/

ATRIP and Sgs1 in budding yeast, and Rad9 and p53 in mamma-

lian cells (Ball et al., 2007; Bochkareva et al., 2005; Dutta et al.,

1993; Flynn and Zou, 2010; Hegnauer et al., 2012; Xu et al., 2008).
(C) Western blot showing Rad53 phosphorylation upshift (*) after release from a-

(D) Heatmaps of Pearson correlation coefficients showing patterns of synergism b

while green indicates an anti-correlation. Black ring highlights the strong correla

(E) A 10-fold dilution series showing epistasis of MRX components with rfa1-t11

(F) Additivity with mec1-100 and rad51D. All strains are W303 RAD5+ isogenic s
In earlier studies, RPA was mutagenized for non-lethal muta-

tions, in order to identify crucial binding partners and domain-

specific functions (Binz and Wold, 2008; Umezu et al., 1998;

Zou et al., 2006). A previously characterized mutation, rfa1-t11

(K45E), was reported to be specifically defective in HR, while

supporting normal DNA replication (Kanoh et al., 2006; Wang

and Haber, 2004). The lysine-to-glutamate charge reversal

maps to the binding pocket of the N-terminal OB fold. Intrigu-

ingly, it confers recessive sensitivity to hydroxyurea (HU), which

induces replication stress by inhibiting dNTP synthesis (Fig-

ure S1A), although without HU there was no delay in S phase en-

try: replication forks fire and progress without pausing or forming

aberrant recombination intermediates (Figures S1B and S1C).

To understand the structural changes provoked by the K45E

substitution, we expressed, purified, and crystallized the mutant

N-terminal OB fold of yeast Rfa1 (aa 1–132) and solved its

structure at 1.8 Å (Figure 1B; Table 1) using the single-wave-

length anomalous diffraction method (Supplemental Experi-

mental Procedures). Indeed, the rfa1-t11 mutation disrupts a

basic patch in the binding pocket of the N-terminal OB fold, as

the mutant residue protrudes into the binding cleft. Given that

the ligands of this domain are acidic, we predicted that this

K45E mutation might interfere with protein-protein interactions

that are important at stalled forks.

The N-terminal OB domain is responsible for the recruitment of

ATRIP/Ddc2 to ssDNA and activation of the ATR kinase (Rouse

and Jackson, 2002; Zou and Elledge, 2003). Mec1-Ddc2 is

responsible for the vast majority of Rad53 phosphorylation

induced by replication stress (Hustedt et al., 2013). Therefore,

we tested for defects in checkpoint activation on a synchronized

population of rfa1-t11 cells, after releasing from G1 arrest into

0.2 M HU for 90 min. Rad53, however, was efficiently activated

in the rfa1-t11mutant and showed a pronounced shift in electro-

phoretic migration (Figure 1C). A similar assay in a strain bearing

rfa1-t11 combined with tel1D showed the same shift, arguing

that Rad53 activation on HU is primarily mediated by Mec1 (Fig-

ure S1D). Importantly, impaired Mec1 kinase activation is not

responsible for the rfa1-t11 mutant’s sensitivity to HU.

MRX and rfa1-t11 Show Similar Epistatic Miniarray
Profile Patterns in Response to Replication Stress
To identify rfa1-t11’s pathway of action, we performed an

epistatic miniarray profile (EMAP) to compare the growth of

rfa1-t11 and 34 other query strains crossed to 1,311 deletion

strains or decreased abundance by mRNA perturbation

(DAmP) alleles, grown in 0, 20, or 100 mM HU (Hustedt et al.,

2015). This resulted in a gene network of 45,885 interactions

that had either synergistic or suppressive effects or failed to

grow altogether on HU (Figures 1A, S2A, and S2B). One can

correlate the patterns of sensitivity to identify genetic pathways

affected similarly by specific mutants, because mutants that

share phenotypic correlations often share functionality (Morrison
factor into 0.2 M HU in WT and rfa1-t11 strains.

etween 1,311 nuclear proteins in 0 and 20 mMHU. Red indicates a correlation,

tion between rfa1-t11 and mre11D.

on genotoxic drugs.

trains (Table S1).
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Table 1. Crystallographic Data Collection and Refinement

Statistics

Rfa1-t111–132 Se-Met Peaka

Data Collection

Space group P 21

Unit cell dimensions

a, b, c (Å) 29.62, 115.35, 69.03

a, b, g (�) 90.0, 90.7, 90.0

Resolution range (Å)b 50.0–1.8 (1.85–1.80)

Wavelength (Å) 0.97941

Completeness (%)b 95.4 (86.2)

Redundancyb 2.4 (2.3)

Rsym
b 0.079 (0.527)

I/s(I)b 8.0 (1.7)

CC (1/2) (%)b 99.5 (67.9)

Unique reflections 80,762

Refinement

Rwork 0.164

Rfree 0.214

Resolution range (Å) 44.3–1.8

Reflections (all) 41,721

Reflections (test set) 2,086 (5%)

Number of atoms 4,246

Figure of merit 0.415

B Factors (Å2)

Overall 31.7

Protein 31.0

Solvent 39.4

RMSD

Bond lengths (Å) 0.01

Bond angles (�) 1.05

Ramachandran Plot

Allowed (%) 100.0

Outliers (%) 0.0

RMS, root mean square.
aData collection statistics are reported for unmerged Friedel pairs.
bValues in parentheses refer to the highest-resolution shell.
et al., 2007). For example, the histone variant HTZ1 pattern

correlates best with the nucleosome remodeler SWR1, which in-

corporates Htz1 into nucleosomes (Figures 1D and S2B).

To our surprise we found that rfa1-t11 correlatedmost strongly

with mre11D in both the absence and presence of 20 mM HU

(Figure 1D). On 100 mM HU (Figure S2B), the EMAP pattern of

rfa1-t11 correlated additionally with mec1-100, an S phase

defective allele of Mec1 kinase that is particularly sensitive to

HU (Paciotti et al., 2001). Consistently, at 100 mM HU the

rfa1-t11 andmre11D EMAPs were similar to the template switch

pathway, whereas at 20 mM the patterns of sensitivity scored

for mre11D and rfa1-t11 resemble a null allele of replication

fork component mrc1D. This led to a deeper examination of

the genetic relationship of rfa1-t11, mec1-100, and the MRX

complex.
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We created double mutants of rfa1-t11 with deletions of

MRE11, RAD50, or XRS2 and tested them for epistasis on a

range of DNA-damaging agents. Confirming the EMAP, we

found that the sensitivity of rfa1-t11 for growth on HU is

completely epistatic withmre11D, rad50D, or xrs2D. That is, sin-

gle and double mutants had nearly identical survival rates on HU

(Figure 1E). The same is true for the triple mutant, rfa1-t11

mre11D xrs2D, on either HU or methyl methanesulfonate

(MMS), an alkylating agent that also delays replication fork pro-

gression. On Zeocin, which induces single- and double-strand

breaks, the two complexes again appeared to act on a common

survival pathway, as the double mutants lacked additivity,

although MRX loss of function alleles were significantly more

sensitive than rfa1-t11. Nonetheless, these data confirmed that

rfa1-t11 likely acts through MRX and not on a parallel repair

pathway at stalled forks and DSBs.

We next tested whether the rfa1-t11 allele is epistatic or addi-

tivewithmutations inMec1, the checkpoint kinase, or the recom-

bination protein Rad51. If rfa1-t11’s main defect were an inability

to load or modulate Rad51 on HU (Kantake et al., 2003), one

would expect these twomutants tobeepistatic. However, neither

rad51D nor mec1-100 was epistatic with the rfa1-t11 allele (Fig-

ure 1F), each showing a synthetic lethality with rfa1-t11 on HU.

Similarly, ddc1D, which compromises the 9-1-1 complex,

showed synthetic lethality in combination with rfa1-t11 on HU

(data not shown). Our data suggest that RPA works with MRX

to maintain replication fork integrity on HU, defining a pathway

that acts in parallel to checkpoint activation and to Rad51 (Fig-

ure 1F). Consistently, rad51D was synergistically sensitive with

mre11D andmec1-100 on HU or MMS (Figure 1F).

The Replication Fork Is Unable to Resume after
HU-Induced Arrest in the rfa1-t11 Mutant
To examine how rfa1-t11 affects replication fork integrity, we

scored the resumption of replication after release from an acute

fork arrest in 0.2 M HU. After 6 hr on HU, the recovery rate for

mec1-100 cells is <10% of wild-type (wt) levels, while both the

mre11D and rfa1-t11 strains reduce recovery to about 20% of

WT levels. Strikingly, the rfa1-t11 mutant is again completely

epistatic with the loss of Mre11 and is synergistically lethal

with mec1-100 (Figure 2A). This places the rfa1-t11 defect on

the pathway through which MRX ensures fork restart on HU (Fig-

ures 1D, 1E, and S2).

To see if this reflects the loss of DNA polymerase a (pola) at

forks arrested by 0.2 M HU, we scored the presence of pola at

forks that were arrested synchronously near early firing origins,

using chromatin immunoprecipitation (ChIP) (Cobb et al.,

2003). In contrast to results in an isogenic WT background, we

scored a striking loss of DNA pola at ARS607 in the rfa1-t11

mutant (Figure 2B). This does not reflect an impaired checkpoint

response, as there is no pola at the late firing origin ARS501 (Fig-

ure 2B). In contrast, in mec1-100 cells, impaired Rad53 activa-

tion allows late origin firing (Cobb et al., 2005).

To see if the resumption of DNA synthesis after HU arrest is

compromised by rfa1-t11, we performed a DNA combing assay

that measures fork progression by incorporation of BrdU, a

thymidine analog, after a transient exposure to 0.2 M HU and

release into HU-free media. Whereas WT forks resume
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elongation, the rfa1-t11 mutant is strongly impaired in the

resumption of DNA synthesis (Figures 2D and 2E, white arrows).

Again, we note that the rfa1-t11 defect is additive with mec1-

100. Similar phenotypes have been observed in MRX deletion

alleles, although not for nuclease-deficient Mre11 mutants

(Tittel-Elmer et al., 2009).

rfa1-t11 Interferes with Recruitment of MRX to Stalled
Replication Forks
Given the epistasis of mre11D with rfa1-t11, we examined

whether the K45Emutation in RPA compromises the recruitment

of MRX to stalled replication forks. We performed PK-tagged

Rad50 ChIP after treatment with 0.2 M HU in WT and mutant

strains. Indeed, by quantitative ChIP for Rad50-PK, we found

that Rad50 recruitment to stalled forks at ARS607 was compro-

mised by the rfa1-t11mutation (Figure 2F). Tomake sure that this

was a general phenomenon and not unique to one site, we per-

formed genome-wide ChIP of HA-tagged Rad50 on cells syn-

chronously released from a-factor into 0.2 M HU. Figure 2G

shows the pattern of Rad50 binding across a typical domain

on Chr3, which includes several origins and non-origin binding

sites. Whereas Rad50 binding at non-origin sites was not

impaired in the rfa1-t11 strain, its signal was strongly reduced

at origins. We integrated this over all origins of the yeast genome

(Figure 2H) and foundR50% reduction inMRX (Rad50) at origins

on HU. Combining our data with observations of Tittel-Elmer

et al. (2012), we propose that Rfa1 recruits MRX to stalled repli-

cation forks, the failure of which allows replication fork collapse

on HU soon after origin firing. This pathway of fork maintenance

is independent of Rad53 activation (Figure 2I).

MRX Interacts with RPA through the N-OB Fold of Rfa1
The epistasis and recruitment data on HU suggested that RPA

might directly bind MRX. To detect this interaction and monitor

its response to the rfa1-t11mutation, we co-immunoprecipitated

Rad50-PK from extracts of WT and rfa1-t11 strains, probing for

Rfa1 with an antibody that reacts equally with mutant and WT

Rfa1 (Figure 3A). We find that Rad50 can indeed co-precipitate

Rfa1, while it binds rfa1-t11 less efficiently (Figure 3B). The

converse precipitation (i.e., by anti-Rfa1) confirmed that

the MRX interaction was sensitive to the rfa1-t11 mutation. The

binding did not depend on DNA or RNA, since recovery was

unchanged after treatment with Benzonase, which degrades

nucleic acids (Figures 3B andS3A). Pull-downs fromcell extracts

using antibody specific for Xrs2 recovered Rad50 and Rfa1 but

failed to recover rfa1-t11 (Figure 3B).
Figure 2. Resumption of Replication after HU-Induced Stalling Fails in

(A) Recovery assay after G1 arrest with a-factor and release into 0.2 M HU of ind

(B) ChIP of DNA pola at either the early-firing ARS607 or late-firing ARS501 (Cob

(C) Experimental scheme of DNA combing: synchronized cells are released into 0.

the cells are allowed to recover again with analogue. DNA was combed and new

(D) Example images of DNA combing with gaps (white arrows) and shorter lengt

(E) Cumulative frequency graph showing the non-replicated fiber fraction in WT a

(F) Rad50-PK ChIP to ARS607 after release from a-factor into 0.2 M HU (n = 3).

(G) Example plots of genome-wide Rad50-HA ChIP-chip showing loss of Rad50

(H) Boxplots of Rad50 ChIP-chip signals at all origins after release in to 0.2 M HU

(I) Model placing rfa1-t11 on a pathway with MRX, parallel to Mec1 activation, to
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To determine the component of MRX that binds Rfa1, we

repeated the Rad50-PK pull-down from extracts of mre11D or

xrs2D strains. Rad50-PK precipitates a lower amount of Rfa1

in the absence of either Mre11 or Xrs2, suggesting either the ex-

istence of multiple contacts between Rfa1 andMRX or a need for

MRX complex integrity for the interaction (Figure 3C). A double

point mutation in Xrs2 (xrs2-AA) that disrupts Mre11 binding

and/or the truncation (xrs2-664) of the Xrs2 C terminus (Shima

et al., 2005) compromised Rfa1 recovery to the same extent as

rfa1-t11 in XRS2+ cells (Figure S3B), suggesting a role for MRX

conformation or complex integrity in Rfa1 interaction.

Finally, we examined the specificity of binding by comparing

yeast two-hybrid (Y2H) interactions of Rfa1 with rfa1-t11. Intrigu-

ingly, both Mre11 and Xrs2 bound Rfa1 by Y2H, but only Xrs2

binding was rfa1-t11 sensitive (Figures S3C and S3D). Y2H

with Rad50 was not possible because the cloned fusions

were lethal. Unfortunately, Y2H does not exclude that the en-

dogenous MRX subunits form tertiary complexes with the bait

during the assay, and thus from the Y2H and pull-down results

we concluded only that multiple contact sites exist between

MRX and RPA, with a subset being sensitive to the rfa1-t11

mutation.

To map the interactions more precisely, we used a scanning

peptide microarray that consisted of 206 18-aa-long peptides

(overlapping by 9 aa), covering all of MRX, except the coiled-

coiled arms of Rad50. The peptides were spotted onto glass

slides in triplicate and were incubated with purified recombinant

Rfa1 or rfa1-t11N-OB domains (Figure 3D). Bound proteins were

visualized through anti-Rfa1 staining and a secondary Alexa647-

tagged antibody, whose fluorescence was quantified on a

protein array analyzer (ImageJ plugin; see Supplemental Exper-

imental Procedures). The efficiency of binding of either Rfa1 or

rfa1-t11 is plotted in Figure 3E, and the full list of peptides and

their associated intensities are listed in Table S2.

We scored several clusters of Rfa1-binding peptides that were

sensitive to the rfa1-t11 mutation: namely, in the nuclease

domain of Mre11, in the ATPase domain of Rad50, and two

defined regions in Xrs2, one each in the N-terminal FHA domain

and the C-terminal Mre11-binding domain (Figure 3E). When

mapped onto the 3D structure of Mre11-Rad50 (Seifert et al.,

2015), the peptides cluster in two surface areas: the double-

stranded DNA (dsDNA) binding cleft of the Rad50 dimer, and a

surface patch on the lateral side of the Mre11 phosphodies-

terase domain (Figure 3F). Although peptides from Xrs2 also

showed differential interaction, two of these map to binding sites

for other proteins, and they do not cluster as do those inMre11 or
the rfa1-t11 Mutant

icated mutants (rfa1-t11, mre11D, and mec1-100; n = 3).

b et al., 2003) after release from G1 arrest into in 0.2 M HU (n = 3).

2 M HU with a BrdU analogue for 90 min, after which the HU is washed out and

synthesis was visualized by antibodies against BrdU and DNA.

hs of newly synthesized DNA in mutant backgrounds.

nd mutant strains.

at origins 307–309 in rfa1-t11.

for 60 min at 25�C, in indicated strains. Error bars represent the SEM.

confer replication fork integrity.
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Figure 3. The Interaction between MRX and Rfa1 Is Disrupted in rfa1-t11

(A) Western blot showing that the Rfa1 antibody recognizes the N-OB of both Rfa1 and rfa1-t11 equally.

(B) Co-immunoprecipitation from yeast extracts in WT RFA1 and rfa1-t11 using either antibodies against the PK tag, Xrs2, or Rfa1. Samples were Benzonase

treated (Figure S3A).

(C) Rad50-PK co-immunoprecipitation as in (A) using the indicated mutants.

(D) Scheme of MRX scanning peptide microarray probed with N-OB of either Rfa1 or rfa1-t11. Two hundred six peptides (18 aa each) were spotted onto a glass

slide for binding to Rfa1 or rfa1-t11 N-OB from (A). Supplemental Experimental Procedures describe signal detection and quantitation.

(E) Interaction heatmaps for either Rfa1 or rfa1-t11 across MRX. Arrows indicate regions of strong (red) binding sensitive to the rfa1-t11 mutation (n = 3).

(legend continued on next page)
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Figure 4. rfa1-t11 Has a Diminished Check-

point Response to DSBs, but Resection Is

Intact

(A) A 103 dilution series on YPAD ± HU and Zeocin

of isogenic strains with the indicated genotypes.

(B) Western blot showing Rad53 phosphorylation

upshift after release from a-factor into 250 mg/ml

Zeocin. No Rad53 phosphorylationwas detectable

in tel1D rfa1-t11. Mcm2 is the loading control.

(C) gH2A ChIP to a HO-induced DSB atMATa (van

Attikum et al., 2007) at 120 min after cut induction

(n = 4).

(D) Cut efficiency time course from Figure 5A

showing that WT and rfa1-t11 have similar cut ef-

ficiencies. After replication, both sisters are likely

to be cut at once.

(E) QAOS assay showing equal accumulation of

ssDNA at 1.6kb from the DSB at MATa in WT and

rfa1-t11, reproduced from Dubrana et al. (2007).

Error bars represent SEM.
Rad50. Microscale thermophoresis (MST) showed that the

Rad50 peptide 17 had the highest affinity for Rfa1-N (Figure 3G).

The other peptides tested showedweaker binding. This does not

rule out that they contribute to a binding site but suggests that

the ATPase-domain of Rad50 contains a key interaction site,

which is indeed sensitive to the K45E mutation.
(F) Crystal structure ofChaetomium thermophilumMre11-Rad50 dimer with dsDNA (Seifert et al., 2015). Pept

with RFA1 OB fold domain are highlighted in red.

(G) Purified Rfa1-N (dilution series from 0.12 to 1,000 mM) was incubated with 25 mM Cy5-labeled Rad50

constant Kd of 63.6 ± 7 mM is for Rad50 peptide 17 and Rfa1-N (n = 3), error bars represent SEM, and DF

thermophoresis normalized to initial fluorescence. A detailed list of peptides is provided in Table S2.
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rfa1-t11 Impairs Mec1-Dependent
Checkpoint Activation at DSBs
Because rfa1-t11 had previously been

shown to be important to recruit Ddc2

(ATRIP) and Mec1 (ATR) to a DSB (Du-

brana et al., 2007; Zou and Elledge,

2003), we next interrogated its genetic

relationship with mec1-100 on Zeocin,

which induces both single- and double-

strand breaks. Although rfa1-t11 is sen-

sitive to Zeocin, mec1-100 has a mild

slow-growth phenotype (Figure 4A). In

contrast to growth on HU, where the

combination of rfa1-t11 and mec1-100

was synthetically lethal, the combination

of rfa1-t11 and mec1-100 was only

slightly additive on Zeocin. MRX both

helps recruit the DNA damage check-

point kinase Tel1 (ATM) to DSBs (Nakada

et al., 2003a, 2003b) and promotes

resection to allow Ddc2-Mec1 activation,

explaining their epistasis.

To check the epistatic relationship of

Rfa1 and Mre11 on Zeocin, we scored

the effects of rfa1-t11, mre11D, tel1D,
and their pairwise combinations on Rad53 phosphorylation.

We found that rfa1-t11 and mre11D mutations compromised

checkpoint activation by Zeocin to a similar degree (Figure 4B),

yet in the case of rfa1-t11, the impaired checkpoint response

was strongly additive with tel1D; that is, the tel1D rfa1-t11

completely failed to activate the DNA damage checkpoint
ides scored in the microarray as strongly interacting

and Mre11 peptides for 15 min at rt. Dissociation

norm (&) represents change in fluorescence during



(Figure 4B). This suggests that the rfa1-t11 defect in checkpoint

at DSBs arises from the loss of Mec1 (ATR) activity. Indeed, by

ChIP rfa1-t11 and rad50D were shown to reduce the accumula-

tion of phosphorylated H2A (gH2A, a Mec1 target), at an

HO-induced DSB (Figure 4C). We conclude that rfa1-t11 com-

promises the Mec1 checkpoint response at DNA breaks (i.e.,

on Zeocin) but does not impair Mec1 activation at stalled forks.

This difference likely stems from the redundancy of co-activators

and mediators at stalled forks, namely, 9-1-1, Dbp11, Dna2,

Mrc1, Sgs1, and RPA (Hustedt et al., 2013). We note that

although DSB activation of checkpoint kinases was compro-

mised by rfa1-t11, both the efficiency of HO endonuclease

cleavage and resection rates were at WT levels (Figure 4DE).

rfa1-t11 Reduces Recruitment of MRX to DSBs
and Reduces Repair Efficiency
To see whether RPA is implicated in the recruitment or stabiliza-

tion of MRX at DSBs, possibly by binding either a short overhang

or an internal ssDNA stretch, we measured the recruitment

Rad50-PK to a HO endonuclease-induced DSB at MAT by

ChIP. Consistent with previously published results, MRX binding

is strongest at early time points and close to the cut site

(compare 0.6 versus 1.6 kb probes). This interaction is reduced

(although not entirely eliminated) in the rfa1-t11 mutant (Fig-

ure 5A). Consistently, Mre11-YFP focus formation was reduced

by roughly 50% in response to Zeocin in the rfa1-t11mutant (Fig-

ure 5B). One further function attributed to MRX at DSBs is the

recruitment of cohesin (Unal et al., 2004, 2007). We therefore

tested whether rfa1-t11, like rad50D, fails to recruit cohesin to

an HO-induced DSB. ChIP for cohesin subunit Scc1-HA

(Mcd1) at a DSB confirmed that both mutants reduce cohesin

recruitment similarly after HO induction (Figure 5C).

In contrast to the observation that rfa1-t11 decreases MRX

levels at DSBs, it was recently reported that the loss of Sae2

leads to more MRX at DSBs (Chen et al., 2015; Gobbini et al.,

2015). We therefore tested whether sae2D would compensate

for the reduced RPA-MRXbinding in the rfa1-t11mutant. Indeed,

growth defects of rfa1-t11 on Zeocin, HU, MMS and the topo-

isomerase I inhibitor camptothecin, were partially rescued by

the elimination of Sae2 (Figure S3E). Again, this supports the

model that rfa1-t11 confers sensitivity to DNA damage because

of impaired MRX recruitment.

To see if rfa1-t11 affects DSB repair by a pathway other than

HR, we tested the impact of the mutation on repair by end-

joining of two incompatible DSBs that flank a URA3 reporter

gene (Ma et al., 2003; Matsuzaki et al., 2012). After cleavage

and repair, the survivors are either URA� (indicating repair by

microhomology-mediated repair of non-complementary DSB

ends following resection) or URA+ (precise end-ligation). Like

mutations in the MRX complex, rfa1-t11 reduced the recovery

of both URA� and URA+ colonies (Figure 5D). Importantly,

the xrs2D mutation is epistatic with rfa1-t11 in this assay (Iwa-

saki et al., 2016), consistent with drop assays on Zeocin that

place MRX and Rfa1 on the same repair pathway. Given that

rfa1-t11 does not block resection, we suggest that RPA acts

by recruiting or stabilizing MRX at breaks, allowing it to hold

the two break ends together for either precise or imprecise

end-joining.
RFA1 OB Fold Integrity Is Necessary to Allow MRX
to Hold the Ends of a DSB Together
We next tested whether rfa1-t11 directly interferes with the end-

tethering activity of MRX by scoring the separation of ends by

tagged with different fluorescent protein fusions on either side

of an inducible DSB (Kaye et al., 2004; Lobachev et al., 2004).

As expected, following cleavage by a galactose-inducible

I-SceI endonuclease, the loss of MRX integrity provoked a

significant increase in DSB end separation in cells arrested at

G2/M by the DNA damage checkpoint (Figure 6A; see also

Kaye et al., 2004; Lobachev et al., 2004). Importantly, the level

of end separation scored for mre11D and rad50D mutants was

the same for rfa1-t11 (Figure 6A).

The fact that rfa1-t11 compromised cohesin loading (Fig-

ure 5C) led us to test whether this mutation interferes with the

tight association of sister chromatids, which we could score in

a strain bearing a lacO array adjacent to the HO-induced break

at MATa (Figure 6B). Sister cohesion at DSBs is commonly

ascribed to cohesin, but on the basis of its architecture and di-

mensions, MRX should also be able to hold sister chromatids

together (Hopfner et al., 2002). To test a potential role for MRX

in sister-sister pairing at breaks, we used multiple DSB imaging

approaches. First, super-resolution structured illumination mi-

croscopy (SIM) was used to analyze small changes in the area

occupied by the paired lacO arrays adjacent to a break, in late

S/G2 phase cells. Second, we performed high-speed time-lapse

imaging of the arrays to measure the kinetics of separation

following break induction, in unarrested S phase cells. Finally,

we examined the maintenance of sister-sister juxtaposition after

efficient DSB induction in cells that are arrested by microtubule

depolymerization and fixed, comparing rfa1-t11 with mutants

in cohesin and MRX.

We first confirmed that we can resolve two sister chromatids

with 3D SIM imaging of the cleaved MATa locus (Figure 6BC).

Following projection of the 3D image stack to a 2D plane for a

large number of late S phase cells, we found that the volume

and shape of the fluorescent lacO signal are significantly larger

in the rfa1-t11 mutant, even though the sisters only fully sepa-

rated in <1%of cells (Figure 6CD). We next confirmed the validity

of this spot-size assay by using a strain in which the essential co-

hesin subunit Scc1 (Mcd1) was cleaved by a galactose-induced

TEV protease (Figure 6D). The efficiency of Scc1 cleavage was

documented by western blot (Figures S4A and S4B). In S phase

cells, we scored a robust increase in the area occupied by the

cut-proximal lacO focus after Scc1 cleavage, presumably re-

flecting compromised pairing of sister chromatids (Figures 6D,

red arrow and S4C). We applied the same analysis to the strain

bearing a HO-mediated DSB at the MATa locus adjacent to a

lacO array (Figure 6B). In WT cells there is a slight increase in

array area as cells progress from G1 to S phase; at 120 min after

HO induction, there is again a slight increase in locus size (Fig-

ure 6D). In the rfa1-t11 or rad50D strains, however, the size of

the lacO signal stemming from the two sisters, increased more

significantly than was detected upon Scc1 cleavage (Figure 6D;

0.9 versus 0.6 mm2).

Given that chromatin loci show continual movement in living

cells, and that fixation can introduce artifacts, we examined

the behavior of the lacO arrays on the two tagged sisters using
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(A) Rad50-PK ChIP at an HO-induced DSB atMATa on Chr3 in asynchronous cells (n = 5) (for probes, see van Attikum et al., 2007). HO cut efficiencies for each

experiment are in Table S3. We assume that both sisters are cut, given the high rate of cleavage scored for individual loci.

(B) Mre11-YFP foci accumulation after 250 mg/ml Zeocin (n R 65). Details are provided in Table S4.

(C) Scc1-HA ChIP to an HO-induced DSB at 120 min after induction (n = 4) as in (A).

(D) Scheme of the NHEJ repair pathways that yield eitherURA� (imprecise end-joining) orURA+ (precise end-joining) phenotypes (Matsuzaki et al., 2012). Graph

shows the percentage URA� and URA+ survivors in various genotypes (n = 3).

Error bars represent SEM except for (B), in which they represent the SD.
a high-speed, high-resolution imaging assay with and without

cut induction (Figure 7). In the strains used in Figure 6B, we

acquired z stacks on a spinning-disk confocal microscope (83

0.2 nm z stacks, 10 ms exposure) continuously over 1 min,

yielding 750 stacks per movie at a 3D spatial resolution of

�256 nm. The movies were projected stack by stack on to a

2D plane for analysis by the ImageJ (Fiji) plugin Trackmate

(Supplemental Experimental Procedures), and we quantified

the percentage of frames in which two spots can be resolved.
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Again we used the TEV-cleavable Scc1 strain to confirm that

we can monitor a loss of sister chromatid cohesion at a tagged

ARS607 (Figures S4D and S4E). Spot separation was very low

in a normal WT S phase (�2% of frames separated), while after

1 hr TEV induction, separation increased to �11% (Figure S4E).

Next we induced HO-mediated cleavage at MATa (Figure 7A)

and monitored sister chromatid dynamics in WT, rad50D, or

rfa1-t11 cells. After 2 hr of HO induction in WT S phase cells,

8% of the frames showed resolution of the two sisters into two
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spots, while in either rad50D or rfa1-t11 strains, 16% to 19% of

the frames had separated sisters (Figure 7B). We ruled out that

this is an artifact of galactose addition by expressing HO in a

strain that is resistant to cleavage, matainc. In conclusion, sister

chromatid juxtaposition at a DSB is compromised by loss of

MRX or its recruitment through RPA.

To see if this reflects compromised bridging through MRX it-

self or a failure to recruit and load cohesin at the DSB (Figure 5C;

Unal et al., 2007), we tested the effects of destabilizing Scc1

(Mcd1) at the base of the cohesin ring (Figure 7A). Specifically,

we scored sister lacO foci pairing at the induced cut at MATa

in a temperature sensitive allele of Scc1 called mcd1-1

(Heidinger-Pauli et al., 2008). Previous studies showed that a

1 hr incubation at the non-permissive temperature (37�C) was

sufficient to inactivate cohesin. Our time-lapse imaging showed

that without DSB induction, S phase mcd1-1 cells have sepa-

rated lacO foci in �25% of frames at 37�C (Figure 7C). Remark-

ably, after DSB induction following cohesin inactivation (1 hr at

37�C), spot separation was actually reduced to 5%, suggesting

that the induction of the break stabilizes sister-sister pairing.

Importantly, this effect was lost by combining the mcd1-1

mutant with rfa1-t11 (Figure 7C). The simplest interpretation of

this is that MRX holds sister chromatids together at a DSB,

even in the absence of functional cohesin. We note that this

result is in contrast to a previous report in which a DSB was

not sufficient to keep sisters together (Unal et al., 2007), although

in that case, the experimental setup involved a 2 hr induction of

two adjacent DSBs after 4 hr of Nocodazole arrest. Under that

condition, cohesin seemed to contribute to sister cohesion.

To rule out kinetic limitations of our time-lapse assay, which

scores unfixed cells immediately after cleavage, we tested an

experimental setup much like that used by Unal et al. (2007).

The cells were grown to log phase, and nocodazole was added

at the same time as either glucose (no HO cut) or galactose (in-

duction of HO). After 1 hr, cells were shifted to 37�C to inactivate

cohesin, and cells were fixed and imaged. G2/M cells were

scored for LacI-GFP spot separation (Figure 7D). Remarkably

we found that whereas loss of the cohesin ring (mcd1-1 at

37�C) allowed sisters to separate at an uncut locus, sister pairing

was restored in a manner dependent on Rad50 (MRX) and a

functional Rfa1 N-terminal OB fold after cut induction (Figures

7D–7F). This argues that upon DSB induction, the recruitment

of MRX by Rfa1 is necessary and sufficient to hold both DSB

ends and two broken sister chromatids together, as this can

be achieved in the absence of intact cohesin (Figure 7F).

DISCUSSION

Since their discovery and description, a role of SMC-family pro-

tein complexes in the tethering of broken DNA ends or in the
(B) Construct used to measure sister chromatid pairing at an HO-induced DSB. C

chromatids together at DSBs through Rad50 hook-hook interactions or its ring s

(C) Examples of bright-field/GFP merged SIM images of WT and rfa1-t11 fixed c

show enlarged LacI-GFP foci (scale bar represents 0.5 mm). The focus area is quan

cells and rarely in rfa1-t11 cells. Foci were nonuniform in rfa1-t11 and rad50D.

(D) Boxplots of LacI-GFP spot areas before and after 1 hr TEV induction (upper plo

Table S4.
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maintenance of sister chromatid pairing has been debated

(Huang and Kolodner, 2005; Nasmyth and Haering, 2005;

Uhlmann, 2016). MRX is closely related to cohesin, condensin,

and the SMC5/6 complex, andwedocument here an ‘‘SMC-like’’

function for the MRX complex at DSBs, where it appears to

both hold ends together and contribute to the pairing of broken

sisters. In this function, MRX recruitment is compromised by a

mutation in the N-terminal domain of Rfa1. This helps answer

the long-standing question of how MRX is targeted to sites of

damage.

rfa1-t11 and MRX Mutations Work Epistatically to
Compromise Fork Integrity under Stress
By EMAP analysis against a panel of 1,311 knockout alleles, we

found that the sensitivity of rfa1-t11 to HU parallels that of

mre11D (Figure 1). Although the MRX interaction with RPA

is not entirely compromised by the rfa1-t11 mutation, in all

fork-stalling and recovery assays performed rfa1-t11 acted

epistatically with MRXmutations. Consistently, MRX recruitment

to HU-stalled forks is compromised by the rfa1-t11mutation, yet

rfa1-t11 does not impair activation of the replication checkpoint

on HU. Rad53 is efficiently phosphorylated in both the mre11D

and rfa1-t11 strains on HU (Kanoh et al., 2006). As expected,

rfa1-t11 defects are additive withmec1-100, an S phase-specific

allele of the ATR kinase, Mec1, which fails to activate Rad53 in

response to replication stress (Cobb et al., 2005; Hustedt

et al., 2015). At stalled forks, MRX is thought both to process

fold-back structures, preventing ligation or over-resection,

and to tether replicated sisters together, prior to the loading of

cohesin (Tittel-Elmer et al., 2012).

The MRX Complex Has a Structural Role at DSBs
We also document a clear but unanticipated role for Rfa1 in the

recruitment and stability of MRX at DSBs (Figures 5, 6, and 7).

MRX tethering by RPA at breaks in late S phase contributes

both to end-to-end tethering and the juxtaposition of broken

sisters (late S/G2). On Zeocin, the rfa1-t11 mutation com-

promises Mec1-dependent Rad53 activation (Figure 4), which

likely reflects a role for the Rfa1 N-terminal OB fold in the recruit-

ment of Mec1-Ddc2 at DSB (Zou and Elledge, 2003; Dubrana

et al., 2007). Again, we have tested the effects of rfa1-t11 in a

range of yeast backgrounds, generating the mutant allele by

de novo mutagenesis. In all cases, rfa1-t11 was epistatic to

mre11D.

A previous study documented a role forMRX in the recruitment

of cohesin at breaks (Unal et al., 2007).We confirmed this, but we

found that it is MRX, not cohesin, that holds sisters together at

breaks at early time points. Our experiments differ from theirs

in two significant ways: first, they induced two sets of DSBs

near each other, while we induced only one. Second, Unal
ut efficiencies are scored for each experiment (Table S3). MRX can hold sister

tructure.

ells bearing the construct at time indicated after cleavage induction (B). Insets

tified by Fiji (Table S4). Fully separated foci were never observed inWT S phase

t) or 2 hr after HO cut (lower three plots) (nR 35). Full statistics are provided in
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Figure 7. MRX Is Sufficient and Necessary to Hold Sister Chromatids Together at DSBs

(A) Construct used to measure changes in sister chromatid pairing at a HO induced DSB at MATa. Cohesin binding is later and more distant from the cut site.

Right: an example kymograph of live cell imaging of a LacI-GFP spot projected through the x axis over time in WT versus rfa1-t11 after 120 min galactose in-

duction of HO. Black arrows indicate separation events. Uncut conditions are on glucose.

(B and C) Quantitation of the number of frames containing two LacI-GFP spots at either 25�C (B) or 37�C (C) (nR 5). All details and statistics are provided in Table

S4, and example movies are available in the Supplemental Information.

(D) Experimental layout for the sister chromatid cohesion assay using the construct in (A). Asynchronous cultures of indicated mutants were grown at 25�C until

log phase, 15 mg/ml nocodazole and either glucose (no cut) or galactose (cut) were added. Growth for 1 hr preceded a shift to 37�C and fixation.

(E) Quantitation of the number of G2/M cells with separated sister chromatids (two spots) in the indicated isogenic strains carrying the construct in (A).

(F) Quantitation as in (E) for the indicated mutants (n R 201) (see Table S4 for statistics). *p < 0.005. HO cut efficiencies are provided in Table S3.
et al. (2007) first treated cells with the microtubule-depolymeriz-

ing drug nocodazole for 4 hr before inducing the DSB for a further

2 hr. This extended arrest in G2/M may alter the behavior of the

break.

It is unclear how MRX contributes to cohesin loading, as the

two proteins do not interact (Tittel-Elmer et al., 2012). It may

simply be that MRX holds sisters together to allow cohesin
loading. In any case, it appears that through its interaction with

Rfa1, MRX serves an additional role at DSBs by stabilizing

both end-to-end and sister-sister contacts.

A recent study examined the role of the Rad50 zinc hook in

DSB repair by monitoring sister chromatid exchange in mitosis.

Those investigators found that strains with mutations in the

zinc hook domain that partially impair hook dimerization without
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blocking complex assembly have milder effects on sister chro-

matin exchange than full RAD50 deletions (Hohl et al., 2015).

We propose that these hook mutations reduce, but do not

ablate, Rad50 dimerization. At a DSB multiple MRX molecules

bind and even with a weakened Rad50 hook, their combined

effect may be sufficient to hold both ends and sisters together

(Figures 6 and 7). Cohesin may provide further structural support

later in repair.

Rfa1 Interaction Sites onMRXAre Relevant to Biological
Function and Human Disease
The validated interaction sites between Rfa1 and MRX cluster

in two major sites. One is located in the DNA-binding cleft of

the Rad50 dimer. In the presence of ATP, Rad50 primarily

binds dsDNA and duplexes with extended 30 overhangs (Sei-

fert et al., 2015). Thus, the location of the interacting peptides

would be consistent with a side-by-side binding of Rad50

and RPA at ssDNA/dsDNA junctions. The second cluster of

interacting peptides maps to a surface on the N-terminal

phosphodiesterase domain of Mre11 (peptides 9–12; Table

S3), which was recently shown to be mutated in Mre11 hypo-

morphic alleles that suppress the damage sensitivity of sae2D

(Seifert et al., 2015). This mutation allows easier MRX

removal from ssDNA during the later stages of HR (Chen

et al., 2015).

In addition, the Mre11 peptide 25 (aa 217–234), which binds

Rfa1 in an rfa1-t11-sensitive manner in vitro, contains a site that

is mutated in patients suffering from ataxia-telangiectasia-like

disease (ATLD; Mre11 mutations W210C and W243R) (Fernet

et al., 2005; Regal et al., 2013; Schiller et al., 2012). Very close

to this interaction site is the mre11-58 mutation (H213Y), which

confers a rad50-S-like phenotype (Usui et al., 1998), affecting

Mre11’s nuclease activity and/or its interaction to Nbs1/Xrs2

(Schiller et al., 2012). The fact that this domain interacts with

Rfa1 in an rfa1-t11-sensitive manner suggests that a loss of

Rfa1 binding may also contribute to the ATLD phenotypes.

We note that some interactions sites may require switching be-

tween open and closed conformational states of MRX (Lim

et al., 2011; Möckel et al., 2012) and that some of Rfa1-MRX

interactions are insensitive to the rfa1-t11 mutation. In the

case of Mre11 peptides 37–39, interaction was enhanced

with the mutant Rfa1 domain. Intriguingly, this conserved

Mre11 region is deleted in some ATLD patients (D340–366)

who are predisposed to pulmonary adenocarcinoma (Regal

et al., 2013).

High-Speed and Super-Resolution Imaging Allows New
Insights into Chromatin Biology
We have been able to analyze sister chromatid pairing with su-

per-resolution microscopy of short fluorescent tags either on

the two sisters or both sides of a DSB. Although the resolution

achieved here (250 nm and 80 ms 3D stack imaging) is sufficient

to document sister separation, the imaging method can be

improved to provide even more information about the forces

that hold sisters together. Extending these experiments to

include other SMC proteins such as condensin or the SMC5/6

complex will surely provide a fuller understanding of long-range

chromatin interactions in living cells.
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EXPERIMENTAL PROCEDURES

Yeast Growth Conditions, Plasmids, Repair Assays and ChIP

All strains used were derived from W303-1A or JKM179 (see Table S1).

EMAP, drop assays, and DNA-combing methods are described in Supple-

mental Experimental Procedures. Cohesin experiments used nocodazole at

15 mg/ml with the yeast culture adjusted to 1%DMSObefore nocodazole addi-

tion. Imprecise and precise NHEJ assays were as in Matsuzaki et al. (2012).

ChIP experiments were performed as described in Cobb et al. (2003). For

ChIP-chip and associated bioinformatics analysis, see Tittel-Elmer et al.

(2012).

Protein Purification, Structure Studies, Peptide Arrays, and

Microscale Thermophoresis

Details are presented in Supplemental Experimental Procedures. The scan-

ning peptide array covered all of MRX except the coiled-coil domains of

Rad50, with 18-aa-long peptides with 9 aa overlap spotted onto a glass slide

by JPT Peptide Technologies.

Microscopy and Error Calculation

Details for live and fixed fluorescent imaging and quantitative analysis

including spot volume and spot separation in time lapse movies are described

in Supplemental Experimental Procedures. Structured illumination imaging

used a Zeiss Elyra S.1 microscope with an Andor iXon 885 EMCCD camera.

Error bars on graphs represent the SEM unless otherwise stated. Categor-

ical data such as the one- versus two-spot cohesin assay was tested for

significance using a two-tailed Fisher’s exact test (GraphPad), computing

exact p values using the method of summing small p values. The large spot

separation movie data set was tested for significance using a chi-square

with Yates correction test (GraphPad) against the relevant strain genotype

uncut. Continuous data such as LacI-GFP spot size was shown to be normally

distributed and then tested for differences using a two-tailed Student’s t test

(GraphPad). Significance cutoff was p < 0.05. All p values are listed in Table S4.

ACCESSION NUMBERS

The accession numbers for the rfa1-t11 N-OB crystal structure and the Rad50

ChIP-chip data reported in this paper are PDB: 5M1X and GEO: GSE88816,

respectively.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, four tables, and onemovie and can be foundwith this article online

at http://dx.doi.org/10.1016/j.molcel.2016.10.032.
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Chapter 5: 
Concluding remarks and future prospects 

This thesis contributes to our understanding of the initial steps in the DNA damage response. 

Specifically, in chapter 2, I reveal a mode of assembly of the DNA damage checkpoint kinase Mec1 at 

DNA damage sites through the interaction of Mec1 regulatory subunit Ddc2 and the ssDNA binding 

protein RPA. Four major conclusions based on structural, biochemical and in vivo data are discussed 

below. 

1. Ddc2 N-terminus homodimerizes and binds the N-terminus of the largest RPA subunit Rfa1 

We determined the crystal structure of the Ddc2 N-terminus bound to the Rfa1 N-terminal OB-fold domain 

(Rfa1 N-OB). The crystal structure showed that the Ddc2 N-terminus includes an Rfa1-binding domain 

(RBD) and a coiled-coil domain (CCD) connected by a linker. We showed that the acidic-hydrophobic 

Ddc2 RBD binds the basic-hydrophobic cleft of the Rfa1 N-OB, both in vitro as well as in vivo, to recruit 

Mec1-Ddc2 to DNA damage sites. We observed that the Ddc2 CCD is a 103 Å long helix that 

homodimerizes in a parallel fashion, creating an A2B2 stoichiometry of Ddc2-Rfa1 in the crystallographic 

asymmetric unit. We also determined the crystal structure of the Ddc2 CCD alone. In immunoprecipitation 

experiments, the Ddc2 CCD was essential for Mec1-Ddc2 homodimerization in vivo.  

2. Ddc2 binds Rfa1-t11 

The Rfa1 N-OB cleft binds multiple DNA damage response proteins including Ddc2, MRX, Sgs1, p53 and 

Dna2 (Ball et al., 2007; Hegnauer et al., 2012; Lin et al., 1996; Seeber et al., 2016; Zhou et al., 2015). It 

was previously shown that the Rfa1-t11 (K45E) mutant protein is defective for recruiting Ddc2 to DNA 

double-strand breaks, but not to stalled replication forks (Dubrana et al., 2007; Kanoh et al., 2006; Zou 

and Elledge, 2003). To investigate Ddc2 binding to Rfa1-t11, we performed the following structural, 

biochemical and in vivo experiments. Using microscale thermophoresis (MST), we showed that Ddc2 

binds Rfa1 and Rfa1-t11 with comparable dissociation constants of 0.4 µM and 2.6 µM, respectively. We 

next determined the co-crystal structure of the Ddc2 N-terminus bound to the Rfa1-t11 N-OB domain and 

found that the mechanism of binding is identical to that of Ddc2 and wild-type Rfa1. Importantly, Ddc2 still 

bound Rfa1-t11 in vivo in microscopy and immunoprecipitation experiments. 

3. Ddc2 N-terminus is important for survival after damage by UV/4-NQO 
We observed that the Ddc2 N-terminus is important for cell survival when budding yeast Saccharomyces 

cerevisiae is exposed to UV-light or UV-mimetic drug 4-NQO. Notably, both the RBD and the CCD 

contributed to survival. We also observed that checkpoint pathway induction, monitored by the 

phosphorylation of Rad53, a major Mec1 target, is dependent on the Ddc2 N-terminus after damage by 

4-NQO, but not after replication stress. Expectedly, we observed that without the Ddc2 N-terminus, 

Mec1-Ddc2 is not recruited to RPA foci at DNA damage sites and cannot homodimerize. Moreover, the 
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Ddc2 CCD seems to play a role in substrate selectivity e.g. phosphorylation of histone H2A at S129 

(γH2A).  

4. Homodimeric Mec1-Ddc2 assembles on two adjacent ssDNA-RPA molecules 

An important implication of this study was that our Ddc2-Rfa1 crystal structure (PDB ID: 5OMB) was able 

to link the RPA-ssDNA crystal structure (PDB ID: 4GNX) and the negative stain EM map of Mec1-Ddc2 

(EMD-4085) to build a composite structural model showing the assembly of homodimers of Mec1-Ddc2 

on two adjacent ssDNA-RPA molecules. The model reinforces our finding that the Ddc2 N-terminus acts 

not only as a recruitment domain, but also as a structural spacer to allow the Mec1 kinase to 

phosphorylate several targets while remaining bound to DNA damage sites. The model also supports the 

notion that Ddc2 recruitment to RPA and Ddc2 CCD homodimerization are linked, probably to ensure 

timely and local Mec1 activity.  

 

Chapter 3 focuses on the oligomerization of the CCDs of human ATRIP and yeast Ddc2. 

An N-terminal trigger helix in the ATRIP CCD is important for CCD homodimerization 

Some coiled-coils contain a trigger sequence which initiates coiled-coil assembly and drives 

oligomerization (Frank et al., 2000; Kammerer et al., 1998; Steinmetz et al., 1998). Whether HsATRIP or 

ScDdc2 CCD contains such a trigger sequence was unclear. SEC-MALS analysis of HsATRIP and 

ScDdc2 CCDs with and without the N-terminal predicted helix showed that the N-terminal predicted helix 

is required for dimerization of HsATRIP but not ScDdc2. 

 

Chapter 4 focuses on how MRX is recruited to stalled replication forks and DNA double-strand breaks by 

interacting with a domain in RPA that also binds Ddc2. Below, I will discuss the conclusion of my 

contribution to this study. 

MRX does not bind Rfa1-t11 
The rfa1-t11 allele renders cells defective in recombination and DNA repair, but proficient in replication 

(Dubrana et al., 2007; Soustelle et al., 2002; Umezu et al., 1998). This K45E mutation lies in a loop 

connecting two β-strands of the five-stranded N-OB cleft that binds several proteins in the DNA damage 

response pathway (see conclusion 2 of chapter 2). How this mutation would affect the binding of Rfa1 to 

its ligands was unclear. To understand the structural changes provoked by the K45E substitution, we 

determined the structure of the mutant by X-ray crystallography and observed that the mutation disrupts a 

basic patch in the binding pocket of the N-OB fold. Next, using MST, we showed that a peptide present in 

the ATPase domain of Rad50 binds to the Rfa1 N-OB domain with a dissociation constant of 63 µM. 

Interestingly, the MRX-Rfa1 interaction was sensitive to the rfa1-t11 mutation as observed in a scanning 
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peptide microarray assay. Therefore, chapter 2 and chapter 4 suggest that the rfa1-t11 mutation affects 

binding of Rfa1 to some ligands such as MRX and Dna2, but not others such as Ddc2. 

 

Future directions 

A key question that remains unanswered is: What is the structure of full length Mec1-Ddc2 complexes 

bound to the ssDNA-RPA platform? This question has been the focus of several researchers for more 

than a decade. Given the recent advancement in the field of cryo-EM and the resulting structure 

determinations of other PIKK complexes, one might expect to see the full length Mec1-Ddc2-RPA 

structure in the near future. Ddc2 and RPA have long flexible linkers that may result in multiple 

conformations. This problem could be solved by using a co-activator of Mec1, such as Dpb11. However, 

Dpb11 itself includes a long and flexible C-terminal tail. Instead, the 9-1-1 checkpoint clamp may be used 

to stimulate and potentially stabilize Mec1. Moreover, 9-1-1 binds the ds-ssDNA junction and would 

therefore remain adjacent to the ssDNA that binds RPA. The implications from such a structure might be 

far-reaching and would possibly help answer other key questions in the field such as: How do the two 

conserved aromatic amino acid residues in Mec1 co-activators stimulate the Mec1 kinase? What are the 

homodimerization and heterodimerization motifs in Mec1-Ddc2? Moreover, structural studies on human 

complexes could be useful for drug design experiments. 

A question this thesis raises is: Why is the Ddc2 N-terminus so important for cell survival after DNA 

damage by UV-light compared to other DNA-damaging agents? One possibility is that the different 

lesions might activate Mec1 in a different manner and a co-activator of Mec1 that is specific for UV-

damage depends on the Ddc2 N-terminus. Another possibility is that the Ddc2 N-terminus interacts with a 

component of the NER machinery for efficient recruitment, especially to the initial 24-30 nt gap generated 

during NER. These hypotheses could be tested by analyzing the interactome of the Ddc2 N-terminus 

using mass spectrometry. 

The second question raised by this thesis is: Does the Ddc2 CCD act as a structural spacer to allow Mec1 

to phosphorylate several targets while remaining bound to ssDNA? Although, I have partly answered this 

question by monitoring the phosphorylation of Rad53, Rfa2 and histone H2A in a ddc2 mutant lacking the 

CCD, a large scale mass spectrometry-based phosphoproteomics experiment might provide a more 

complete understanding. 

The third question raised by this thesis is: Does the Ddc2 CCD homodimerize only upon recruitment to 

ssDNA-RPA stretches? Data from chapter 2 suggests that the Ddc2 CCD is not a constitutive dimer and 

the recruitment domain is important for Ddc2 dimerization in DNA damaging conditions. It is tempting to 

hypothesize that Ddc2 recruitment to damage sites increases its local concentration and promotes Ddc2 

CCD dimerization. Ddc2 CCD dimerization might be a necessary event for Mec1 activation, thus ensuring 

that Mec1 is activated only at DNA damage sites. This could be tested by performing fluorescence 
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resonance energy transfer assays. For example, fluorescence of a mixture of donor-tagged Ddc2 

N-terminus and acceptor-tagged Ddc2 N-terminus could be measured in the absence or presence of 

reconstituted ssDNA-RPA.  

In conclusion, this thesis describes the assembly of the checkpoint kinase Mec1-Ddc2 on ssDNA-RPA at 

sites of DNA damage. It focuses on the Ddc2 N-terminus which includes a homodimerization coiled-coil 

domain and an N-terminal recruitment domain that binds RPA. These two domains function together and 

promote cell survival after DNA damage by UV-light. 
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List of abbreviations 
 

 

  

4-NQO 4-nitroquinoline 1-oxide 
BER Base excision repair 
CCD Coiled-coil domain 
CDK Cyclin-dependent kinase 
Ddc2CCD Coiled-coil domain of Ddc2 
Ddc2N Ddc2 N-terminus 
DDR DNA damage response 
DNA Deoxyribonucleic acid 
dNTP Deoxyribonucleotide triphosphate 
DSB Double-strand break 
EM Electron microscopy 
GFP Green fluorescent protein 
HR Homologous recombination 
HU Hydroxyurea 
IR Ionizing radiation 
Kd Dissociation constant 
Kl Kluyveromyces lactis 
MMR Mismatch repair 
MMS Methyl methanesulfonate 
MRX Mre11-Rad50-Xrs2 
MST Microscale thermophoresis 
NER Nucleotide excision repair 
NHEJ Nonhomologous end-joining 
NMR Nuclear magnetic resonance 
N-OB N-terminal oligosaccharide/oligonucleotide binding 
PAGE Polyacrylamide gel electrophoresis 
PDB Protein data bank 
PIKK Phosphoinositide 3-kinase related protein kinase 
RBD Rfa1-binding domain 
Rfa1N Rfa1 N-terminus 
RFP Red fluorescent protein 
RMSD Root mean-squared deviation 
RPA Replication protein A 
SAD Single-wavelength anomalous diffraction 
SAXS Small-angle X-ray scattering 
Sc Saccharomyces cerevisiae 
SDS Sodium dodecyl sulfate  
SEC-MALS Size-exclusion chromatography coupled with multi-angle light scattering 
SSB Single-strand break 
ssDNA Single-stranded DNA 
UV Ultraviolet 
WH Winged helix 
wt Wild-type 
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