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Abstract
The DIRAC collaboration at CERN currently aims at measuring the lifetime of pionium
(π+

π
−-atoms) with an accuracy of 10%. This is a crucial test of Chiral Perturbation The-

ory which predicts the lifetime to be (2.9 ± 0.1) fs. To be able to determine if the theory
is correct is very important for our understanding of the low energy limit of the Standard
Model of particle physics. To be able to extract the lifetime from the measurement of the
breakup probability, theoretical input is needed to describe the Coulomb interaction with the
target atoms. The first order Born approximation of pionium–target atom interaction has,
by now, been calculated completely. The main task of this work is to evaluate higher order
corrections to the excitation cross-sections in Glauber theory. It has been found that they
are non-negligible for heavy target materials (up to 15% difference compared to the Born
approximation). Due to the apparent importance of higher order terms, a coupled channel
calculation was performed to investigate the accuracy of the Glauber approximation. Finally,
a Monte Carlo simulation of pionium moving through the target was done to investigate the
influence of the different cross-sections of pionium–target interaction. It was found that for
small and medium Z, the lifetime of pionium depends very little on the choice of the cross
section, but for large Z targets, the differences become quite important.

Zusammenfassung
Das Experiment DIRAC, das momentan am CERN durchgeführt wird, hat zum Ziel, die Le-
bensdauer von Pionium (einem π

+
π
−-Atom) mit einer Genauigkeit von mindestens 10% zu

bestimmen. Diese Messung ist ein entscheidender Test der chiralen Störungstheorie, mit de-
ren Hilfe eine Lebensdauer von (2.9±0.1) fs vorhergesagt worden ist. Für unser Verständnis
des Standardmodells der Teilchenphysik bei niedrigen Energien ist es sehr wichtig zu wis-
sen, ob diese Theorie richtig ist. Um die Lebensdauer von Pionium aus der Messung der
Ionisationswahrscheinlichkeit bestimmen zu können, wird eine theoretische Beschreibung
der Coulomb-Wechselwirkung des Pioniums mit den Targetatomen benötigt. Diese Wechsel-
wirkung ist in erster Bornscher Näherung schon vollständig berechnet worden. Die Haupt-
aufgabe der vorliegenden Arbeit ist es, Korrekturen höherer Ordnung zu den Anregungs-
querschnitten in der Glauber Näherung zu bestimmen. Diese Korrekturen dürfen nicht ver-
nachlässigt werden, da sie für schwere Target-Atome die Wirkungsquerschnitte bis etwa
15% veringern können. Zur Überprüfung der Genauigkeit der Glauber Theorie wurde ei-
ne ‘gekoppelte Kanäle’ (coupled channel) Rechnung durchgeführt. Letztlich wurde in einer
Monte-Carlo Simulation eines Pioniums im Target ausgeführt. Hierbei wurde der Einfluss
der verschiedenen Wirkungsquerschnitte auf die Lebensdauerbestimmung aus der Ionisati-
onswahrscheinlichkeit untersucht. Das Ergebnis ist, dass für leichte und mittelschwere Tar-
gets, die Lebensdauer von Pionium nur sehr gering von der Wahl der Wirkungsquerschnitte
(und damit der Näherungsverfahren ihrer Berechnung) abhängt. Lediglich für schwere Tar-
getatome mit großer Kernladungszahl Z treten größere Unterschiede auf, und es ist daher
sinnvoll die Querschnitte, die Korrekturen der Glaubernäherung beinhalten, zu verwenden.
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1 General introduction

The Standard Model of particle physics successfully describes the fundamental par-
ticles and forces. Within the Standard Model, quantum chromodynamics (QCD) is
the theory for the dynamics of strongly interacting particles, the quarks and glu-
ons [1, 2, 3, 4, 5]. One of the features of QCD is asymptotic freedom, which al-
lows one to use perturbation theory for calculations involving particles interacting
through high momentum transfers. The low-energy regime, however, can only be
treated non-perturbatively. Using a special symmetry of the full QCD Lagrangian in
the limit of massless quarks (chiral limit), one can write down a new effective theory,
chiral perturbation theory, that describes the strong interaction at low energies, but
now in terms of the pion-fields instead of the quark and gluons [6, 7, 8, 9].

While the Lagrangian of QCD in the chiral limit (massless quarks) is symmetric un-
der chiral symmetry, the ground state is not. Therefore, there are Goldstone bosons,
which are massless in the chiral limit and are pseudoscalars just as the pions. These
Goldstone bosons do not interact at zero momentum, therefore the scattering lengths
describing this interaction are zero in this limit. Weinberg [6] showed that the scat-
tering lengths of the pions are related to the masses of the up and down quarks, and
are therefore a measure of the chiral symmetry breaking.

The isoscalar and isotensor s-wave scattering lengths for pion-pion scattering (a0 and
a2) have been evaluated with ever increasing accuracy [6, 9, 10, 11]. The difference
between these scattering lengths squared turns out to be inversely proportional to
the lifetime of pionium, the π+π−-atom. As there is no experimental data accurate
enough to verify or reject the results obtained from chiral perturbation theory, the ex-
periment DIRAC (Dimeson Relativistic Atom Complex) has been designed to mea-
sure the lifetime of pionium and thus the difference of the scattering lengths [12].
The basic idea is to determine experimentally the breakup probability of pionium
and then to use theoretical input regarding the electromagnetic interaction of pio-
nium with the atoms in the target strip to determine the lifetime. In chapter 2 I will
outline how the breakup probability is measured and in chapter 7 I will give details
of how to determine the lifetime from the breakup probability.

The electromagnetic interaction of pionium with the target atoms has been an ongo-
ing research interest in the Trautmann group since the inception of the experiment
DIRAC. The pionium–target atom system is an ideal case to apply the semi-classical
approximation, in which the π+π−-atom is treated quantum mechanically and the
target atom as a classical particle on a straight line trajectory. In a series of papers,
the first order Born approximation has been completely evaluated for pionium–target
atom scattering, including incoherent scattering off the target atom’s electrons and
relativistic corrections [13, 14, 15]. I will give a review of these papers in chapter 4,

1



2 CHAPTER 1. GENERAL INTRODUCTION

after a general overview on quantum mechanical scattering and the Born and Glauber
approximation in chapter 3.

It was found by Afanasyev et al [16] that the total cross sections for pionium inter-
acting with a target atom via the scalar part of the potential, calculated in Glauber
approximation, differ from the ones found in Born approximation by up to about
10% for heavy targets. This indicates that higher order effects, such as multi-photon
exchange, are important and must be included in the full calculation of the cross
sections. To obtain a meaningful result for the lifetime from the experiment, it was
expected that the cross sections could be calculated with an accuracy of 1% or better.
The main task for this thesis was thus to calculate the excitation cross sections for
pionium in the Glauber theory. In the case of the total cross sections the closure rela-
tion leads to a one-dimensional integral, that can be evaluated numerically with little
effort. The excitation cross sections for a transition between arbitrary states can-
not be simplified this way and extensive numerical calculations were required. The
methods and results are discussed in chapter 5. They have already been published in
[17].

Since the results obtained in Glauber and Born approximation differ by up to around
20% for the excitation cross sections, it is important to clarify which one is correct.
This was attempted in a coupled channel calculation. The results are not conclusive
as yet. The main problem is the coupling to the continuum which is a very delicate
numerical problem. The details are given in chapter 6.

Finally, to relate the lifetime of pionium to its breakup probability a Monte Carlo
simulation of the passage of pionium through the target material is performed. The
results for the cross sections calculated in Born approximation and the ones com-
bining the results of the Born approximation in first order with the Glauber approx-
imation for higher order contributions are compared to another set of cross sections
in first order sudden approximation using also a slightly different parameterization
of the screened Coulomb potential [18]. The details of the simulation are given in
chapter 7. The simulation is based on previous work by Santamarina [19]. The new
results have been submitted for publication [20].

In the final chapter some conclusions are drawn from the work presented here and
an outlook for possible future investigations are given.



2 The experiment DIRAC

2.1 Introduction

The aim of the experiment DIRAC is to measure the lifetime of the exotic atom, pi-
onium, with an accuracy of 10% [12]. A 24 GeV/c proton beam hits a target foil and
produces (among many other particles) π+ and π−. Those pions with a low relative
momentum (q < 3 MeV/c) may form Coulomb-bound exotic atoms, pionium [21].
Moving through the target, pionium can decay via the strong interaction into two
neutral pions (if it is still in a relative s-state), enter an excited state or even ionize
due to the Coulomb interaction with the target atoms. The ionized pionium is de-
tected by the experiment and from the accidental pairs that also enter the detector,
one can calculate the initial number of pionium atoms. From the ration of ionized to
produced pionium, one gets the breakup probability. With a Monte Carlo simulation
of the evolution of pionium in the target, one can relate the breakup probability to
the lifetime (see also chapter 7).

The lifetime is also related to the s-wave ππ-scattering lengths, a0 and a2, with
isospin zero and two, respectively. These scattering lengths are calculated using
Chiral Perturbation Theory and the expected lifetime is τ = (2.9 ± 0.1) fs [8, 9, 22,
23]. The purpose of this experiment is to test this very accurate prediction.

In this chapter, I will outline the motivation for the experiment in section 2.2, the
production mechanism for pionium in section 2.3, and give a brief overview of the
method of determining the breakup probability experimentally in section 2.4. Since
the methods for determining the breakup probability accurately are continuously re-
fined, this section can only give the main ideas behind the procedure. The chapter
ends by stating some preliminary results for the lifetime measurement that have be-
come available through presentations of members of the DIRAC collaboration.

2.2 Theoretical motivation

Quantum chromodynamics (QCD) is the non-Abelian gauge theory describing the
strong interaction between colored quarks and gluons [1, 2, 3, 4, 5]. Its most im-
portant features are asymptotic freedom and color confinement. Due to asymptotic
freedom one can successfully apply perturbation theory for interactions involving
large momentum transfers. For low energy transfers, one needs to treat QCD non-
perturbatively. There are two ways to proceed, lattice QCD, and chiral perturbation
theory [7, 8, 9].

3



4 CHAPTER 2. THE EXPERIMENT DIRAC

If one considers QCD with only the light quarks, up and down (and possibly strange)
quarks, one notes that in the limit of zero quark masses, the Lagrangian of QCD is
invariant under chiral SU(2)L×SU(2)R transformations, but the ground state of the
theory is asymmetric under the action of this symmetry group. This is also called
spontaneous breakdown of chiral symmetry. Thus the theory contains three massless
pseudoscalar particles, the Goldstone bosons. The three lightest known hadrons, the
pions, are also pseudoscalars, but not massless. Since the full QCD Lagrangian is
not invariant under chiral symmetry because even the light quarks have a mass, these
masses, mu and md break the symmetry and provide the mass of the pions.

Massless (theoretical) Goldstone bosons with zero momentum do not interact at all,
and the scattering length describing such an interaction are therefore zero in the
chiral limit. Pions (π+ and π−) are anti-particles and do interact via the strong
interaction. The scattering lengths describing the pion-pion interaction can there-
fore be seen as a measure of chiral symmetry breaking due to the fact that even the
light quarks are not massless. The difference between the isoscalar and isotensor
scattering length ∆ = a0 − a2, can be evaluated in chiral perturbation theory by a
perturbation series in powers and logarithms of the pion mass,

∆ = ∆0

(

1 + ∆2m
2
π + ∆4m

4
π + . . .

)

. (2.1)

Weinberg [6] showed that the leading term ∆0 is given by

∆0 =
9m2

π

32πF 2
π

= 0.20 , (2.2)

where mπ is the pion mass and 4πFπ ≈ 1.2 GeV set the scale. ∆2 is found by
evaluating one-loop diagrams [9]. Two-loop calculations have been performed re-
cently [10]. The most accurate result to date, up to two-loop level using Roy equa-
tions [11], is

∆ = 0.265 ± 0.004 (1.5%) . (2.3)

The main decay channel for pionium is via the charge exchange

π+ + π− → π0 + π0 (2.4)

with a branching ratio of 96.6% [21]. Its lifetime is therefore inversely proportional
to the width Γ2π0 of this decay channel. This width can be given in terms of constants
that have been calculated in chiral perturbation theory [23]

Γ2π0 =
2

9
α3p∗A2(1 +K) (2.5)

where α is the fine structure constant and

A = (a0 − a2) + ε

a0 − a2 = 0.265 ± 0.004

ε = (6.1 ± 1.6) · 10−3

K = (1.15 ± 0.03) · 10−2 .

(2.6)

Gasser et al. [23] found the lifetime of pionium to be

τ0 = (2.9 ± 0.1) fs . (2.7)



2.3. PRODUCTION OF PIONIUM 5

2.3 Production of pionium

Pions are produced by interactions of the 24 GeV/c protons of the CERN Proton
Synchrotron with the nuclei of a target foil. They may combine to form pionium
if their relative momentum is low, i.e. less than 3 MeV/c. We can therefore give
the probability of pionium production in terms of the double inclusive cross section
(dσ0/dp1dp2) for the production of a π+ and a π− with small relative momentum
and the pionium wavefunction at the origin,

dσA
nlm

dP
= (2π)3 E

M
|ψnlm(0)|2 dσ0

s

dp1 dp2

∣

∣

∣

∣

p1=p2=P /2

, (2.8)

where P , E, and M are momentum, energy and mass of the pionium in the labo-
ratory system, respectively. The two terms on the right-hand side of the equation
illustrate the final state interaction mechanism. The rightmost factor is the doubly
inclusive cross section of π+ and π− pairs at equal momenta (p1 = p2) without con-
sidering the final state interaction, as indicated by the superscript 0. The subscript
s means that only pions created from direct hadronic processes and decays of reso-
nances with a very short lifetime are considered, because the Coulomb interaction of
pions from long-lived sources (e.g. η, K0

S and Λ) is negligible and hence they do not
contribute to the production of pionic atoms. The effect of the final state Coulomb
interaction is to create a bound state with quantum numbers n, l, and m; it is given
by the squared wave function at the origin. Due to this factor, pionium can only be
produced in an initial s-wave, since |ψnlm(0)|2 = 0 for l,m 6= 0.

The doubly inclusive cross section can be obtained from the direct measurements of
time correlated π+π− pairs in DIRAC, according to the following reasoning:

• The final state Coulomb interaction for short-lived sources is given, as in the
case of the creation of a bound state, by a multiplicative factor depending only
on q, the magnitude of the relative momentum between the two pions. This is
the so-called Coulomb or Gamow factor [24]

dσs

dp1 dp2

= AC(q)
dσ0

s

dp1 dp2

; AC(q) =
2πMπα/q

1 − e−2πMπα/q
, (2.9)

where α is the fine structure constant.

• The contribution to the doubly inclusive cross section of pairs containing at
least one pion from a long-lived source, ωl(P ), can be calculated with a hadron
physics Monte Carlo simulation. In this case FRITIOF6 was used [25, 26, 27].
This function has been shown to depend only on P , the magnitude of the total
momentum of the pion pair [28] . Taking this into account together with (2.9)
one finds

dσ

dp1 dp2

=
dσs

dp1 dp2

+
dσl

dp1 dp2

= AC(q)
dσ0

s

dp1 dp2

+ωl(P )
dσ

dp1 dp2

, (2.10)

thus relating σ and σ0
s .
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p
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π−

π+

p
b)

π+

π−

Figure 2.1: Creation of (a) π+π−-atoms and (b) Coulomb π+π− pairs in the collision
of a proton with a target nucleus. Both bound and free π+π− pairs shown
here have final state Coulomb interactions distinguishing them from the
not shown non-Coulomb pairs arising from the decay of long-lived par-
ticles.

• Finally, it was found that the P -dependence of the doubly inclusive cross sec-
tion is not correlated to q, given that q ¿ 30 MeV/c.

These findings allow one to relate the P -dependence of σ and σ0
s by

dσ0
s

dp1 dp2

∣

∣

∣

∣

p1=p2=P /2

∝
∫ q∼2 MeV/c

0

(1 − ωl(P ))
dσ

dp1 dp2

dq , (2.11)

where the P distribution is obtained from the direct measurement of the laboratory
momentum of low relative momentum π+π− pairs in DIRAC. In figure 7.1 we show
the distribution of the magnitude of the momentum P and the angular distribution
relative to the proton beam axis for low relative momentum π+π− pairs.

2.4 Measurement of the breakup probability Pbr

Since the expected lifetime of pionium is very small, one can only observe π+π−-
atoms from the breakup due to Coulomb interaction with the target. We have shown
in the previous section that the π+π− pairs are produced either as free or bound states
(pionium). The pionium may annihilate or get ionized into π+π− pairs. The breakup
probability will depend on the target material, its thickness, the pionium momentum
and the lifetime. This will be detailed in chapter 7. Experimentally, one needs to
know the number of produced π+π−-atoms, NA, and the number of ionized π+π−

pairs, nA.

Using a time of flight measurement (see figure 2.2), one determines first the number
of real π+π− pairs by subtracting the accidental pairs detected in the intervals N1
(−15.0 < ∆t < −0.5 ns) and N4 (7.0 < ∆t < 17.0 ns). The intervals are cho-
sen asymmetrically because of the slight asymmetry of the coincidence peak due to
slower protons and kaons being detected in the positive arm of the spectrometer.
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Figure 2.2: Time of flight difference distribution for oppositely charged hadrons. The
regions N1 and N4 are used to determine the size of the accidental pair
contribution N3 to the correlated pairs N2. (Reproduced from [29].)

For large relative momenta q, the real π+π− pairs (i.e. the coincidence pairs N2) can
be described by the sum of Coulomb and non-Coulomb free π+π− pairs

dN real

dq
=

dN real
s

dq
+

dN real
l

dq
, q > 4 MeV (2.12)

from short-lived (s) and long-lived (l) sources, respectively. On the other hand, it is
known that

dNacc

dq
∼ dN real

l

dq
∼ Φ(q), (2.13)

while the Coulomb pairs stemming from short-lived sources are distributed accord-
ing to

dN real
s

dq
∼ Φ(q)Ac(q)(1 + kq), (2.14)

where the Coulomb factor Ac(q) (2.9) takes into account the Coulomb interaction
and the term (1 + kq) the strong interaction in the final state. Combining (2.13) and
(2.14) we can approximate the distribution of real π+π− pairs as

dN real

dq
= NΦ(q) [(1 + kq)Ac(q) + f ] , (2.15)

whereN , k, and f are parameters found by fitting (2.15) to the measured distribution
for q > 3 MeV.

The number of π+π− pairs that were ionized in the target can now be found by
extrapolating the fitted distribution (2.15) to the region of q < 2 MeV and subtracting
it from the total measured distribution in the same relative momentum region.

nA = N real
exp −

∫

q<2 MeV

dq

(

dN real

dq

)

. (2.16)

Figure 2.3 shows the data of measured Coulomb pairs from the 2001-run of the
DIRAC experiment using a Ni target. The left graph also indicates the background
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Figure 2.3: The left graph shows the measured distribution for the Coulomb pairs and
the fitted Coulomb and uncorrelated background. The excess for small q
corresponds to ionized pionium. The right figure shows the distribution
of nA after subtracting the background. The data is compared to a Monte
Carlo simulation. Both graphs refer to data taken with a Ni target in
2001. (Reproduced from [30].)

from Coulomb pairs and from uncorrelated pairs that was fitted to the measured data
according to the procedure outlined above. One can clearly see the small amount of
signal excess for small q corresponding to the pionic pairs. The graph on the right
shows the distribution of the pionic pairs after subtraction of the background [30].
The excess amounts to about 6800 ± 400 atomic pion pairs.

This is only the first ingredient for the measurement of the breakup probability
Pbr = nA/NA. The total number of π+π−-atoms produced, is found by recognizing
that in (2.8) and (2.9) both the number of produced π+π−-atoms and the number of
produced Coulomb pairs are proportional to the production cross section dσ0

s/dp1p2

of two pions. Their ratio is therefore

NA

N real
s

= K, for q < 2 MeV, (2.17)

where

K = 0.62 ± 0.01. (2.18)

So finally, one can combine (2.16) and (2.17) to obtain a value for the breakup prob-
ability for a given target

Pbr =
nA

KNs

. (2.19)

This value can then be used to determine the lifetime of pionium with the help of the
Monte Carlo simulation which is discussed in detail in chapter 7.
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2.5 Preliminary results

Great care has been taken in the calibration of the the detectors. This is very impor-
tant as the momentum- and time-resolution needs to be very high. The momentum
resolution, for example, can be verified by measuring the mass distribution of pπ−-
pairs, which shows a sharp peak at the mass of the Λ (see for example [31]). As
the experiment is ongoing, only preliminary results are available. The lifetime of
pionium from measurements with a Ni target taken in 2000 and with a Ti target in
2000–2001 yield a combined value of (3.6 ± 0.9) fs [29]. Since then, data-taking
has continued, especially with the Ni target. Ni is best suited for a lifetime of around
3 fs, since the curve relating the breakup probability and the lifetime of pionium is
steepest for Ni around a lifetime of 3 fs (refer to 7.4).
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3 The quantum mechanical
scattering process

Before discussing the pionium-specific calculations of the excitation cross sections
in the Born and Glauber approximation, I would like to give a general overview of
quantum mechanical scattering and the Born- and Glauber-approximation in general.

The process of atom–atom scattering is governed by quantum mechanics. The usual
approach is to consider a target atom in an initial state |ui〉 that interacts with the
potential of an incident projectile and is left in a final state |uf〉 after the collision. In
pionium–target-atom scattering, in the lab-frame the projectile is the pionium and the
target is the atom in the target material. But since we are interested in the excitation
of the π+π−-atom, we have to boost the coordinate frame to the rest frame of pionium
and look at the ‘target-atom’ as the projectile. The terminology is unfortunately
somewhat confusing.

In this chapter we will outline the basic idea of a quantum mechanical scattering
problem. Various approximation methods are commonly used this solve the problem.
The Born, the eikonal and the Glauber approximation, which will be used in the
following chapters, are introduced here.

3.1 The scattering amplitude

The simplest scattering problem is a spinless particle of mass m interacting with a
localized potential V (r) with a characteristic length scale (range) a. The energy of
the incident particle is then E = ~

2k2/2m, where the wavevector k describes the
propagation of the incident wave.

We need to solve the Schrödinger equation

(∇2 + k2)ψ(r) =
2m

~2
V (r)ψ(r) , (3.1)

and the solution needs to fulfill the requirement that asymptotically it can be writ-
ten in terms of the incident wave plus an outgoing spherical wave with a scattering
amplitude f ,i.e.,

ψ(r) ∼ eik·r + f(kf ,ki)
eikr

r
. (3.2)

The differential cross section is then given by the square of the scattering amplitude,

11
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i.e.

dσ

dΩ
= |f(kf ,ki)|2 . (3.3)

One possible ansatz to solve the Schrödinger equation (3.1) is to introduce a Green’s
function G(r, r′) that is defined as the solution of

(∇2 + k2)G(r, r′) =
2m

~2
δ3(r − r′) . (3.4)

A general solution to the equation above is given by

G(r, r′) = − 2m

4π~2

αeik|r−r′| + βe−ik|r−r′|

|r − r′| , α + β = 1 . (3.5)

We are looking for a solution of the Schrödinger equation that behaves asymptoti-
cally as stated in (3.2), therefore we set α = 1 and obtain

G(r, r′) = − 2m

4π~2

eik|r−r′|

|r − r′| . (3.6)

The solution to the Schrödinger equation (3.1) can now be expressed as an integral
equation (Lippmann-Schwinger equation):

ψ(r) = eiki·r +

∫

G(r, r′)V (r′)ψ(r′) d3r′ . (3.7)

To verify the asymptotic form of the solution of (3.7) we expand the terms in the
integral for r À r′. Firstly, we have

|r − r′| rÀr′−→ r − r · r′

r
. (3.8)

As was mentioned at the beginning of this section, the potential V has a limited
range (or at least falls off asymptotically faster than 1/r), so that the integration of
r′ is of a limited range as well. Therefore, the assumption of r À r ′ for large r is
reasonable. If we now insert G(r, r′) of (3.6) into (3.7) and use the approximation
(3.8) we obtain

ψ(r) = eik·r − 2m

4π~2

∫

eik|r−r′|

|r − r′| V (r′)ψ(r′) d3r′ (3.9)

rÀr′−→ eik·r − 2m

4π~2

eikr

r

∫

e−ik r·r′

r V (r′)ψ(r′) d3r′ . (3.10)

Comparing equations (3.2) and (3.10) we read off the scattering amplitude

f(kf ,ki) = − 2m

4π~2

∫

e−ikf ·r
′

V (r′)ψki
(r′) d3r′ , (3.11)
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where we introduced kf = kr/r and ki = k. The subscript ki on the wave function
ψki

indicates that ψki
is found by solving the Lippmann-Schwinger equation for an

initial plane wave with a wave vector ki.

We have now found an expression for the scattering amplitude, even though we still
need to insert the wave function that solves the Schrödinger equation (3.1) or the
Lippmann-Schwinger equation (3.9). However, the expression for the scattering am-
plitude has one major advantage, the integral contains the product V (r)ψ(r). As
noted above, V has a localized range and, therefore, to find f(kf ,ki), we only need
to (approximately) know ψ over the range of the potential V .

Before we continue to the approximation methods, we show without proof two im-
portant identities fulfilled by the scattering amplitude.

1. Dynamical reversibility:

f(kf ,ki) = f(−ki,−kf ) . (3.12)

2. Balancing symmetry, if V (r) = V (−r):

f(kf ,ki) = f(−kf ,−ki) = f(ki,kf ) . (3.13)

3.2 The Born approximation

The Born approximation is simply a perturbation series expansion of the scattering
amplitude in powers of the scattering potential. We write as an ansatz

ψki
(r) =

∞
∑

n=0

φn(r) , (3.14)

where φ0 is a plane wave

φ0(r) = eiki·r (3.15)

and

φn(r) =

∫

Kn(r, r′)φ0(r
′) d3r′ n ≥ 1 . (3.16)

The kernel K is defined as

K1(r, r
′) = G(r, r′)V (r′) , (3.17)

Kn(r, r′) =

∫

K1(r, r
′′)Kn−1(r

′′, r′) d3r′′ n ≥ 2 . (3.18)

Inserting the series expansion (3.14) into (3.11) and writing out the first few terms
we obtain

fB(kf ,ki) = − 2m

4π~2

[
∫

e−ikf ·rV (r)eiki·rd3r

+

∫∫

e−ikf ·rV (r)G(r, r′)V (r′)eiki·r
′

d3r d3r′ + . . .

]

.

(3.19)
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We can now write the Born series for the scattering amplitude as

fB(kf ,ki) =
∞
∑

n=1

f̄B
n (kf ,ki) , (3.20)

where

f̄B
1 (kf ,ki) = − 2m

4π~2

∫

e−ikf ·r V (r) eiki·r d3r , (3.21)

f̄B
n (kf ,ki) = − 2m

4π~2

∫

e−ikf ·r V (r)Kn−1(r, r
′) d3r′ d3r (3.22)

= − 2m

4π~2

∫

· · ·
∫

e−ikf ·r V (r)G(r, r′) . . . V (r(n−1))

× eiki·r
(n−1)

d3r . . . d3r(n−1) ,

(3.23)

where fB
n contains the potential V n times and the Green’s functionG, (n−1) times.

The Born approximation of order j is then defined as

fB
j (kf ,ki) =

j
∑

n=1

f̄B
n (kf ,ki) . (3.24)

The Born series can thus be seen as a multiple scattering series in which the particle
interacts with the potential repeatedly and propagates freely in-between. For large
enough energies and/or a sufficiently weak or screened potential, the series should
converge. More specifically, the rate of convergence is dependent on the strength of
the potential V and the time spent in the region of the potential which is a/v. The
requirement for the convergence of the Born series is that the passage time a/v is
much smaller than the time ~/V required for the potential to influence the projectile,
i.e.

V a

~v
¿ 1 . (3.25)

In the following chapter (p. 25) we will apply the first order Born approximation to
the pionium–target atom scattering.

3.3 The eikonal approximation

For projectiles with large enough energies and momenta, one can make an approxi-
mation using less stringent conditions than (3.25). Instead, two separate conditions
are introduced which are easily fulfilled in usual high-energy experiments. The first
requirement is that the magnitude of the potential is much less than the energy of the
projectile,

V

E
¿ 1 , (3.26)
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and the second condition is that the de Broglie-wavelength of the projectile is much
smaller than the typical range of the potential, i.e.

kaÀ 1 . (3.27)

The second condition is also referred to as the semi-classical condition. Under these
two condition we can derive the high-energy or eikonal approximation [32, 33, 34].

3.3.1 The eikonal approximation in one dimension

The basic ideas of the high-energy approximation are already seen by examining a
one-dimensional scattering process. This process is not very realistic, as the only
possible outcomes are forward- and backward-scattering (which is even neglected),
but it best illustrates the mathematical procedure [32]. There are many ways to
approach this problem. We will examine two of them.

The Schrödinger equation in one dimension is given by

(

d2

dx2
+ k2

)

ψ(x) =
2m

~2
V (x)ψ(x) . (3.28)

Assuming the conditions (3.26) and (3.27) are met, back-scattering will be highly
suppressed and we can make an ansatz for the wave function ψ

ψ(x) = eikxϕ(x) , (3.29)

where ϕ(x) is a function that varies only slowly over a projectile wavelength. Insert-
ing (3.29) in the Schrödinger equation (3.28) yields

(

2ik
d

dx
+

d2

dx2

)

ϕ(x) =
2m

~2
V (x)ϕ(x) . (3.30)

Since ϕ is supposed to vary slowly over a wavelength 2π/k the first term in the
brackets on the left-hand side of (3.30) will dominate. We obtain a simple differential
equation for ϕ

dϕ(x)

dx
= − i

~v
V (x)ϕ(x) . (3.31)

Since we assume no back-scattering, the wave function ψ is a plane wave for x →
−∞, and we therefore get a boundary condition for the function ϕ

lim
x→−∞

ϕ(x) = 1 . (3.32)

Equation (3.31) is easily solved and one obtains

ϕ(x) = exp

(

− i

~v

∫ x

−∞

V (x′)dx′
)

. (3.33)
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Another way to derive (3.33), which is useful in the three-dimensional case as well,
and which shows more clearly where the assumptions (3.26) and (3.27) are used, is
to start with the Lippmann-Schwinger equation in one dimension

ψ(x) = eikx +

∫

G(x− x′)V (x′)ψ(x′) dx′ , (3.34)

where the one dimensional Green’s function can be written in Fourier space as

G(x− x′) = − m

π~2

∫ ∞

−∞

eip(x−x′)

p2 − k2 − iε
d3p , ε→ 0+ . (3.35)

After performing the integration one obtains

G(x− x′) = − i

~v
eik|x−x′| . (3.36)

Making the same ansatz as before, and inserting (3.29) into the Lippmann-Schwinger
equation yields

ϕ(x) = 1 − i

~v

∫ ∞

−∞

eik|x−x′|−ik(x−x′)V (x′)ϕ(x′) dx′ (3.37)

= 1 − i

~v

∫ x

−∞

V (x′)ϕ(x′) dx′ − i

~v

∫ ∞

x

e2ik(x−x′)V (x′)ϕ(x′) dx′ .

(3.38)

We have split the integral over x′ into x′ < x and x′ > x. The second integral can
be neglected because the exponential oscillates rapidly while ϕ(x) and V (x) vary
slowly over a projectile wavelength. Keeping only the first integral, we finally need
to solve the integral equation

ϕ(x) = 1 − i

~v

∫ x

−∞

V (x′)ϕ(x′) dx′ . (3.39)

The solution is easily found by first differentiating to obtain

dϕ(x)

dx
= − i

~v
V (x)ϕ(x) , (3.40)

and then together with the boundary condition

lim
x→−∞

ϕ(x) = 1 , (3.41)

we find the same solution for ϕ as in (3.33). The solution for ψ is finally

ψ(x) = exp

(

ikx− i

~v

∫ x

−∞

V (x′) dx′
)

. (3.42)

One assumption in the derivation was that V (x) varies slowly over one wavelength
of the particle, which can be expressed in the form of kaÀ 1. The other assumption
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was that ϕ(x) also varies slowly over one wavelength. Referring back to (3.33) and
setting V (x′) to some average value V , we see that this assumption is just k À V/~v
or, as before, V/E ¿ 1.

These two conditions for the high energy approximation can be compared to the one
of the Born approximation. Multiplying (3.26) and (3.27), we obtain

ka
V

E
= 2

V a

~v
, (3.43)

which can be of arbitrary size, while for the Born approximation to converge rapidly
we had the requirement that V a/~v ¿ 1.

3.3.2 The eikonal approximation in three dimensions

To derive an expression for the wave function of the projectile after the scattering
in a three dimensional problem, we proceed in a similar manner as in the second
case in one dimension. Starting with the Lippmann-Schwinger equation (3.7), we
introduce a linearized Green’s function to solve for the wave function. The Green’s
function (3.6) can be rewritten as

G(r − r′) = − 2m

(2π)3~2

∫

eip·(r−r′)

p2 − k2 − iε
d3p , ε→ 0+ . (3.44)

Again, we require that ka À 1 and V/E ¿ 1. But this means that the projectile
will only be scattered by small angles from its original direction which is given by
k. Therefore, one can expand the momentum p in the integral of (3.44) in terms of
the original momentum k and a small correction q, i.e.

p = k + q, d3p = d3q . (3.45)

Inserting (3.45) into (3.44) and neglecting a term quadratic in q in the denominator
yields

G(r − r′) = − 2m

(2π)3~3
eik·(r−r′)

∫

eiq·(r−r′)

2k · q − iε
d3q (3.46)

= − i

~v
eik·r δ2(b − b′) Θ(z − z′) , (3.47)

If we make a similar ansatz to the one made in the one dimensional case,

ψ(r) = eik·rϕ(r) (3.48)

where ϕ(r) varies slowly over the wavelength of the projectile, we can proceed in
the same way as before and get

ψk(r) = exp

(

ik · r − i

~v

∫ z

−∞

V (b + k̂z′) dz′
)

. (3.49)

We have introduced in (3.47) cylindrical coordinates of the form r = b + k̂z, where
b ⊥ k.
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3.3.3 The eikonal scattering amplitude

We may now insert the wave function found in the previous section into the expres-
sion for the scattering amplitude

fE(kf ,ki) = − 2m

4π~2

∫

e−ikf ·rV (r)eiki·r−
i

~v

R z

−∞
V (b+k̂iz

′) dz′dz d2b (3.50)

= − 2m

4π~2

∫

ei∆·rV (b + n̂z) e−
i

~v

R z

−∞
V (b+n̂z′) dz′dz d2b , (3.51)

where ∆ = ki − kf . We choose the coordinate system such that r = b + n̂z, with
n̂ ⊥ ∆. Then we also have

ei∆·r = ei∆·b . (3.52)

Integrating over the z-coordinate, one obtains

fE(kf ,ki) = − 2m

4π~2

∫

ei∆·b

(
∫

V (b + n̂z) e−
i

~v

R z

−∞
V (b+n̂z′) dz′dz

)

d2b

(3.53)

=
ki

2πi

∫

ei∆·b
(

eiχ(b) − 1
)

d2b , (3.54)

with the eikonal phase shift function

χ(b) = − 1

~v

∫ ∞

−∞

V (b + n̂z′) dz′ . (3.55)

We also introduce the quantity

Γ(b) = 1 − eiχ(b) , (3.56)

which will be useful when we consider multi-particle scattering in terms of the
Glauber approximation.

The eikonal scattering amplitude fE(kf ,ki) is expanded in a similar fashion to the
Born series by writing the exponential containing the eikonal function in a Taylor
series:

fE(kf ,ki) =
∞
∑

n=1

f̄E(kf ,ki) , (3.57)

where

f̄E
n (kf ,ki) =

k

2π

in−1

n!

∫

ei∆·b[χ(b)]n d2b . (3.58)

If we insert χ(b) into the expression for f̄E
1 (kf ,ki), we obtain the same result as

for f̄B
1 (kf ,ki). This fact is used in chapter 5 to numerically calculate the Glauber

approximation.
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3.4 The Glauber approximation

While the eikonal approximation is well suited to problems concerning the scattering
of two particles, an extension is required for a more general case of a composite
target. This extension was first proposed by Glauber [32, 35, 36] and now carries
his name. The main ideas of the Glauber approximation are best illustrated by first
examining the problem of scattering off a bound particle and then the general case
of a many-body target.

3.4.1 Scattering by a bound particle

As it was done in the case of the eikonal approximation, we start by developing the
theory in one dimension and extend it to the full three dimensions.

Before the collision, the target is in an eigenstate |ui〉 of its Hamiltonian H(q), with
an eigenvalue Ei and a position coordinate q. The projectile is described by a coordi-
nate x and the time-dependent Schrödinger equation for the combined system which
is represented by the state vector |Ω(t)〉 as

(

− ~
2

2m

∂2

∂x2
+ V (x− q) +H(q)

)

|Ω(t)〉 = i~
∂

∂t
|Ω(t)〉 . (3.59)

We remove the dependence on the Hamiltonian H(q) governing the dynamics of the
bound target particle by writing

|Ω(t)〉 = e−iH(q)t/~ |ψ〉 . (3.60)

Inserting this into the Schrödinger equation immediately leads to

(

− ~
2

2m

∂2

∂x2
+ eiH(q)t/~ V (x− q) e−iH(q)t/~

)

|ψ〉 = i~
∂

∂t
|ψ〉 . (3.61)

But the time-dependent coordinate operator in the Heisenberg picture is

q(t) = eiH(q)t/~ q e−iH(q)t/~ , (3.62)

and since x and q commute, we finally write the Schrödinger equation as

(

~
2

2m

∂2

∂x2
+ i~

∂

∂t

)

|ψ〉 = V (x− q(t)) |ψ〉 . (3.63)

To solve this time-dependent version of (3.28) we make a similar ansatz as in (3.29)

|ψ〉 = ei(kx−ωt) ϕ(x, t) |ui〉 . (3.64)

Here, ϕ(x, t) is an operator that implicitly depends on q, and ω = E/~ = ~k2/2m.
The main assumption again is, that ϕ varies slowly as a function of x. Therefore,
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upon inserting (3.64) into (3.63) we drop the term containing second partial deriva-
tive with respect to x and obtain

(

∂

∂x
+

1

v

∂

∂t

)

ϕ(x, t) = − i

~v
V (x− q(t)) ϕ(x, t) . (3.65)

To solve this equation, we cannot simply write ϕ as an exponential as it was done
before, but we can still write it as a power series. Considering a simpler example,
the solution of the equation

dϕ(x)

dx
= − i

~v
V (x)ϕ(x) , (3.66)

where V (x) is an operator is given by

ϕ(x) = 1− i

~v

∫ x

−∞

dx′′ V (x′)′ +

(

i

~v

)2 ∫ x

−∞

dx′
∫ x′

−∞

dx′′ V (x′)V (x′′)+ · · · .

(3.67)

If V (x) commutes for any values of x the right-hand side is simply the exponential

exp

(

− i

~v

∫ x

−∞

V (x′) dx′
)

as before. If the operators do not commute, it is convenient to abbreviate the power
series by defining

ϕ(x) =

{

exp

(

− i

~v

∫ x

−∞

V (x′) dx′
)}

+

, (3.68)

where the brackets { }+ indicate that the terms in the series expansion are ordered in
the correct way as in (3.67).

With this definition it is now straightforward to solve for the operator ϕ(x, t)

ϕ(x, t) =

{

exp

(

− i

~c

∫ x

−∞

V

(

x′ − q

(

t− x− x′

v

))

dx′
)}

+

. (3.69)

Before we finally evaluate the scattering amplitude, we first introduce the actual
approximation method by considering the amplitude for the projectile to be at point
x at time t and the target particle to be in a state |uf〉 at the same time. This is just
the scalar product

〈uf |ψ(x, t)〉 = ei(kx−ωt)〈uf |
{

e
− i

~v

R x

−∞
V
“

x′−q
“

t−x−x′

v

””

dx′

}

+

ui〉 . (3.70)

Since |ui〉 and |uf〉 are eigenstates of the Hamiltonian H(q) with the energies Ei

and Ef , respectively, this expression is simplified by removing the time-dependence
from q using

q

(

t− x− x′

v

)

= ei
H(q)

~
(t−x

v ) q

(

x′

v

)

e−i
H(q)

~
(t−x

v ) . (3.71)
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Using (3.71) we remove the t- and x-dependence from the integral in the exponent
of (3.70) and find

〈uf |ψ(x, t)〉 = ei(kx−ωt)〈uf |ei
H(q)

~
(t−x

v )
{

e
− i

~v

R x

−∞
V
“

x′−q
“

x′

v

””

}

+

e−i
H(q)

~
(t−x

v )ui〉

= e
i
h“

k+
Ei−Ef

~v

”

x−
“

ω+
Ei−Ef

~

”

t
i

〈uf |
{

e
− i

~v

R x

−∞
V
“

x′−q
“

x′

v

””

}

+

ui〉 .

(3.72)

This expression accounts for energy and momentum conservation. However, mo-
mentum conservation is only correct for small changes of the bound particle’s en-
ergy (|Ei − Ef |/E ¿ 1). To eliminate the ordering of the operator in (3.72), H(q)
in the original Schrödinger equation (3.63) needs to be much less than the energy E
of the incident particle, not only for the initial and final state of the target, but for all
intermediate states as well. This assumption is similar to that of the eikonal approx-
imation that the momentum transfer must be small. Furthermore, the removal of the
time-dependence of q(t) is related to the retardation effect, i.e., q should be evaluated
at a time at which the projectile is at x′ and will reach x at t. This retardation can be
safely neglected, if the velocity of the projectile is much larger than the velocity of
the bound target.

So, assuming |Ei − Ef |/E ¿ 1 and that the ratio of target and projectile velocities
is also much less than one, we finally simplify (3.72) to

〈uf |ψ(x, t)〉 = ei(kx−ωt)〈uf |e−
i

~v

R x

−∞
V (x′−q) dx′

ui〉 . (3.73)

One can now generalize the above to three dimensions for a time-independent wave
function as

ψk,i(r, q) = exp

(

ik · r − i

~v

∫ z

−∞

V (b + k̂z′ − q) dz′
)

|ui(q)〉 . (3.74)

Given the wave-function above, one can now analogously proceed to the derivation
of (3.11) to find the scattering amplitude. The amplitude will now depend on the
initial and final wave vectors of the projectile ki and kf as well as on the initial and
final state of the target ui and uf . One finds

fG
fi(kf ,ki) = − 2m

4π~2

∫

e−ikf ·ru∗f (q)V (r − q)ψki,i d
3r d3q . (3.75)

By choosing the z-axis perpendicular to the momentum transfer, one can perform
the z integration as in (3.53)–(3.54) to obtain

ffi(kf ,ki) =
ki

2πi

∫

ei(ki−kf )·b

∫

u∗f (q)
[

eiχ(b−s) − 1
]

ui(q) d3q d2b . (3.76)

The vector s stands for the components of q that are perpendicular to the momentum
transfer (and lies therefore in the same plane as b),

s = q − (n̂ · q) n̂ . (3.77)
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The phase shift χ is given by

χ(b − s) = − 1

~v

∫ ∞

−∞

V (b − s + n̂z) dz . (3.78)

This expression for the phase shift is the same as (3.55) except that the impact pa-
rameter is replaced by the impact parameter relative to the coordinate s of the target.
There is no dependence on the z component of the target coordinate because of the
infinite range of the integral.

3.4.2 Many-body scattering

It is straightforward to extend the model of the scattering of a single bound particle
with a projectile to the scattering of a many-body system. One only has to replace
the single-particle wave functions ui and uf by multi-particle wave functions and the
phase-shift χ by a total phase-shift χtot in (3.76). Since χ is only an integral over
the scattering potential and the total potential is the sum of the individual ones, χtot

is also only the sum of the phase shifts from each target particle, i.e.

χtot(b, s1, . . . , sN) =
N
∑

j=1

χj(b − sj) (3.79)

for N target particles. The scattering amplitude for many-body scattering in the
Glauber approximation is then

fG
fi(kf ,ki) =

ki

2πi

∫

ei(ki−kf )·b

∫

u∗f (q1, . . . , qN)
[

eiχtot(b,s1,...,sN ) − 1
]

× ui(q1, . . . , qN) d3q1 . . . d
3qN d2b .

(3.80)

As for single-particle scattering in the eikonal approximation, one can define the
quantity

Γtot(b, s1, . . . sN) = 1 − eiχtot(b,s1,...,sN ) . (3.81)

This leads to the expression

fG
fi(kf ,ki) =

kii

2π

∫

ei(ki−kf )·b

∫

u∗f (q1, . . . , qN)Γtot(b, s1, . . . sN)

× ui(q1, . . . , qN) d3q1 . . . d
3qN d2b (3.82)

for the scattering amplitude. If one furthermore introduces

Γj(b − sj) = 1 − eiχj(b,sj) , (3.83)
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one obtains

Γtot(b, s1, . . . sN) = 1 −
N
∏

j=1

[1 − Γj(b − sj)] (3.84)

=
N
∑

j=1

Γj −
∑

j 6=l

ΓjΓl + · · · + (−1)N−1

N
∏

j=1

Γj . (3.85)

If one now inserts the last equation into (3.82) one obtains a multiple-scattering
expansion. The first term in (3.85) describes the single interaction between the pro-
jectile and each of the target constituents, the next terms describe double, triple, etc,
scattering corrections. The maximal number of scattering events between projectile
and target constituents can only be N . This a consequence of the approximation
which assumes scattering mainly into the forward direction.

3.4.3 Cross sections in the Glauber approximation

For the calculation of the excitation of pionium in the following chapters, we are
mainly interested in the cross sections for a transition from an initial state ui to a
final state uf of the pionium atom but not in the projectile. The cross section for
such a transition is

σG
fi =

∫

kf

ki

|FG
fi(kf ,ki)|2 dΩkf

. (3.86)

Since the energy change of the projectile is neglected, the ratio kf/ki is unity. The
angular integration over the sphere with radius kf can be replaced by an integration
over the tangent plane in the forward direction (i.e. in direction of kf )

dΩkf
→ d2kf

k2
. (3.87)

Inserting (3.76) and (3.87) into the expression for the cross section, one obtains

σG
fi =

(

k

2π

)2 ∫
d2kf

k2

∫∫

d2b d2b′ ei(ki−kf )·(b−b′)

∫∫

d3q′ d3q u∗i (q
′)uf (q

′)

×
[

e−iχ∗(b′−s′) − 1
] [

eiχ(b−s) − 1
]

u∗f (q)ui(q)

(3.88)

=

∫

d2b

∫∫

d3q′ d3q u∗i (q
′)uf (q

′)
[

e−iχ∗(b′−s′) − 1
]

×
[

eiχ(b−s) − 1
]

u∗f (q)ui(q) , (3.89)

where the representation
∫

d2kf ei(ki−kf )·(b−b′) = (2π)2 δ2(b − b′) (3.90)
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of the delta-function was used.

Using the completeness relation of the states uf

∑

f

uf (q
′)u∗f (q) = δ3(q′ − q) , (3.91)

the the total cross section for a target starting in an initial state ui simplifies to

σG
tot =

∑

f

σG
fi =

∫

d2b

∫

d3q |ui(q)|2
∣

∣eiχ(b−s) − 1
∣

∣ . (3.92)

Later on, we will also use the transition amplitude to calculate the excitation cross
section. One can rewrite (3.89) as

σG
fi =

∫

d2b

∣

∣

∣

∣

∫

d3q u∗f (q)
[

eiχ(b−s) − 1
]

ui(q)

∣

∣

∣

∣

2

. (3.93)

If the excitation cross section is written in this form, it is easy to read off the transition
amplitude for an excitation of the target from a state ui to a state uf as

aG
fi(b) =

∫

d3q u∗f (q)
[

eiχ(b−s) − 1
]

ui(q) , (3.94)

consistent with what one would expect.



4 Calculations in the first order
Born approximation

In this chapter I will review some of the work that has been done on calculating the
electro-magnetic interaction pionium–target-nucleus in the first order Born approxi-
mation. Besides the leading term in first order, the interaction due to the scalar part
of the potential, corrections due to excitation of the target (incoherent scattering),
corrections due to the vector potential, and relativistic corrections have so far been
calculated. The calculation of the first order Born approximation of the scalar part
of the target-nucleus potential is also the basis for the work in the following chapter
on the Glauber approximation. This will be the topic of section 4.1. Section 4.2
will deal mainly with the incoherent effects, and also introduce a gauge invariant
treatment of the problem. In section 4.3, finally, we will discuss the corrections to
the first order Born approximation due to the vector potential in the Hamiltonian and
relativistic effects. I will follow closely the published work by Halabuka et al [13]
for the first section, and Heim et al [14, 15] for sections two and three.

4.1 The leading term: the scalar potential

4.1.1 Theory

After discussing the general scattering problem in the previous chapter, we now come
to the specific case of a π+π−-atom interacting with the screened Coulomb potential
of the target nucleus. Since the pionium is moving at relativistic energies, we can
treat the problem semi-classically, i.e., in the rest-frame of the π+π−-atom the heavy
target nucleus can be described as a classical particle on a straight-line trajectory,
R(t) = {b, 0, vt}, at nearly the speed of light, while the π+π−-atom is treated quan-
tum mechanically. The coordinate system is specified in figure 4.1. If we neglect the
short-range strong interactions, the Hamiltonian for the pionium can be written as

H(t) = H0 +Hint(t) , (4.1)

where

H0 =
p2

1

2m
+

p2
2

2m
− e2

|r1 − r1|
(4.2)

25
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Figure 4.1: A relativistic heavy nucleus with charge Z is moving past a pionium
atom. The relevant impact parameter values b are of the order of the
pionium’s dimensions while the electron cloud of the heavy atom extends
over a much larger region (aπ = a0/136.566). (Reproduced from [13].)

describes the two interacting pions with mass m, and

Hint(t) = e (Φ(r1, t) − Φ(r2, t)) −
e

2mc
(p1 · A(r1, t) + A(r1, t) · p1)

+
e

2mc
(p2 · A(r2, t) + A(r2, t) · p2) +

e2

2mc2
(

A2(r1, t) + A2(r2, t)
)

(4.3)

describes the interaction with the time-dependent field of the relativistic nucleus.
Since the velocities of the pions in the bound and free states are of the order vπ/c ≈ α
or smaller, the non-relativistic approximation for H(t) is reasonable.

The scalar and vector potentials, Φ(ri, t) and A(ri, t), respectively, are given by the
screened Coulomb potential of the nucleus. In its rest frame they are











Φ′(r′) =
Ze

r

3
∑

k=1

Ak exp(−αkr
′) ,

A′(r′) = 0 ,

(4.4)

where any magnetic moment of the target nucleus is neglected. For r ′ → 0, (4.4)
becomes the Coulomb potential for the bare nucleus with charge Z if

∑N
k=1Ak = 1.

The parameters Ak and αk are obtained from a six-parameter fit and are available
for Z = 1 to Z = 92 [37]. With these parameters, the sum of exponentials in (4.4)
accurately approximates the Dirac-Hartree-Fock-Slater (DHFS) screening function
of a neutral atom in its ground states. The approximation is best for small values
of r′, which is well suited for the application to the pionium excitation calculation
since the dimension of the π+π−-atom is much smaller than that of the target atom.
The parameters Ak and αk are found by requiring that the six momenta 〈rn〉, n =
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−1, . . . , 4, calculated using the analytical charge distribution, coincide with those of
the full DHFS calculation.

In this section, incoherent scattering off the target atom is neglected. It will be inves-
tigated in detail in section 4.2. For low Z targets, scattering off the target electrons
will be a relatively large contribution to the cross section since the incoherent cross
section scales with Z, while the coherent cross section scales with Z2.

After boosting the target-atom to the rest-frame of the pionium, the scalar and vector
potential become











Φ(r, t) =
Ze

2π2

3
∑

k=1

Ak

∫

exp [is · (r − R(t))]

s2 + α2
k − (βsz)2

d3s ,

A(r, t) = βΦ(r, t) ẑ ,

(4.5)

with β = v/c. If we insert the scalar and vector potentials of (4.5) into the expression
for Hint(t) (4.3), we see that the terms containing the vector potential linearly, are
smaller than the scalar part by at least vπ/(2c) ≈ α/2, and the term containing A2 is
smaller by at least α2. For now, these terms are neglected, but they will be treated in
detail in section 4.3.

The transition amplitude from a state i to a state f , due to the scalar potential of the
nucleus, can be written in first order Born approximation as

aB
fi(b) =

e

i~

∫ ∞

−∞

dt eiωt

∫

d3r ψ∗
f (r)

[

Φ
(r

2
, t
)

− Φ
(

−r
2
, t
)]

ψi(r) , (4.6)

where ω = (Ef − Ei)/~ and r = r1 − r2. One can insert Φ(r, t) from (4.5) and
expand the exponentials in spherical harmonics

e±is·r/2 = 4π
∑

l,m

(±1)lil jl(sr/2)Y
∗
lm(ŝ)Ylm(r̂) (4.7)

where jl are spherical Bessel functions and Ylm spherical harmonics. The pionium
wave functions are split into angular and radial parts

ψi(r) = Ylimi
(r̂)Rnili(r) , (4.8)

and similarly for ψf . The integral over r̂ can then be performed by noting that the
integral over three spherical harmonics is

∫

d2r̂ Y ∗
lf mf

(r̂)Ylm(r̂)Ylimi
(r̂) =

(−1)mf

√
4π

l̂f l̂l̂i

(

lf l li
0 0 0

)(

lf l li
−mf 0 mi

)

(4.9)

with l̂ =
√

2l + 1. The integration over r is absorbed into the radial form factor of
pionium, defined as

F l
fi(k) =

∫ ∞

0

dr r2Rf (r)jl(kr)Ri(r) . (4.10)
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The integral over φs is just an integral expression of the Bessel function Jm

Jm(x) =
i−m

2π

∫ 2π

0

eiz cos φeimφdφ . (4.11)

Finally, one introduces the straight-line trajectory factor [38]

Blm(b, q0, s) = Θ(s− q0)Ylm

(

cos−1
(q0
s

)

, 0
)

Jm

(

b
√

s2 − q2
0

)

, (4.12)

which results from the time-integration. Θ(x) denotes the step function and q0 =
ω/v.

The result for the transition amplitude in first order Born approximation is

aB
fi(b) =

2Zα

iβ

√

4π(2lf + 1)(2li + 1)(−1)mf

∑

lm

il−m
√

2l + 1

(

lf l li
0 0 0

)

×
[

1 − (−1)l
]

(

lf l li
−mf m mi

) 3
∑

k=1

Ak

∫ ∞

0

s ds
Blm(b, q0, s)F

l
fi

(

s
2

)

s2 + α2
k − (q0β)2

.

(4.13)

The probability for a transition from a state i to a state f , summed over the unob-
served magnetic quantum numbers mf and averaged over mi, as a function of the
impact parameter b, is given by

PB
fi(b) =

1

2li + 1

∑

mf ,mi

∣

∣aB
fi(b)

∣

∣

2
= 32π

(

Zα

β

)2

(2lf + 1)
∑

l,m

[

1 − (−1)l
]

×
(

lf l li
0 0 0

)2
[

∫ ∞

0

s ds
3
∑

k=1

AkBlm(b, q0, s)F
l
fi

(

s
2

)

s2 + α2
k − (βq0)2

]2

,

(4.14)

The excitation cross section is therefore

σB
fi = 2π

∫ ∞

0

b db PB
fi(b)

= 16π

(

Zα

β

)2

(2lf + 1)

∫ ∞

q0

s ds

[

3
∑

k=1

Ak

s2 + α2
k − (βq0)2

]2

×
∑

l

(2l + 1)
[

1 − (−1)l
]

(

lf l li
0 0 0

)2
[

F l
fi

(s

2

)]2

.

(4.15)

Using the completeness of the set of all final states f one can write the total cross
section for excitation and breakup of pionium as

σB
tot,i =

∑

f

∫

σB
fi

= 16π

(

Zα

β

)2 ∫ ∞

q0

s ds

[

3
∑

k=1

Ak

s2 + α2
k − (βq0)2

]2
[

1 − F 0
ii(s)

]2
.

(4.16)
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This result is only approximately true, since we neglected the dependence of q0 =
ω/v by setting q0 instead to an appropriate constant value, e.g., the pionium ground
state binding energy.

4.1.2 Radial form factors

The accurate evaluation of the radial form factors (4.10) is crucial for the calculation
of the cross sections. First we discuss the bound-bound form factors and later on the
bound-free form factors.

4.1.2.1 Bound-bound form factors

The radial part of the wave function of a bound state is given by the spherical
Coulomb wave function

Ri(r) ≡ Rnili(r) = Ni (ζir)
li e−ζir

1F1(−ni
r, 2li + 2, 2ζir) , (4.17)

with the radial quantum number ni
r = ni − li − 1 and ζi = Z/(aπni). aπ is the

Bohr radius of pionium in its ground state, it is smaller by a factor mπ/(2me) than
the Bohr radius of a hydrogen atom, aπ ≈ 387.5 fm. The ground state binding
energy is larger by the same factor than the ground state binding energy of hydrogen,
E0 ≈ 1.856 keV.

The normalization constant Ni is defined as

Ni =
2li+1ζ2

i

(2li + 1)!

[

(ni + li)!

ζi ni
r!ni

]1/2

. (4.18)

Writing the confluent hypergeometric function 1F1 as a Kummer series, one gets

Rnili(r) = Ni (ζir)
li e−ζir

ni
r
∑

ki=0

ciki
(ζir)

ki , (4.19)

with the constant coefficients

ciki
=

(−ni
r)ki

2ki

(2li + 2)ki
ki!
, (4.20)

where (a)ki
denotes the Pochhammer symbol [39].

To evaluate the bound-bound form factor, we insert the expression (4.19) for the
radial wave function of the initial state and the same wave function with the subscript
i replaced by f into (4.10). First, we define new dimensionless variables

x = (ζi + ζf )r, s̃ =
s

ζi + ζf
. (4.21)
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Then one obtains

F l
fi(s) = Nif

ni
r+nf

r
∑

k=0

dif,k g
li+lf+2+k

l (s̃) , (4.22)

with

Nif =
NiNf

(ζi + ζf )3+li+lf
ζ li
i ζ

lf
f (4.23)

and the spherical Hankel transforms

gγ
l (s̃) =

∫ ∞

0

xγ e−x jl(s̃x) dx . (4.24)

These transforms can be calculated by using a stable recurrence relation in l and γ
[40]. The coefficients dif,k, finally, are given by

dif,k =

min(k,nf
r )

∑

kf=max(0,k−ni
r)

cik−kf
ζ

k−kf

i cfkf
ζ

kf

f . (4.25)

4.1.2.2 Bound-free form factors

To calculate the bound-free form factors, we first need to write down the continuum
wave function. The radial part is given by

Rεf lf = N ′
f (qr)lf exp(−iqr) 1F1(lf + 1 + iη, 2lf + 2; 2iqr), (4.26)

where εf and q are the asymptotic kinetic energy and relative momentum, respec-
tively. The Coulomb parameter is defined by η = µZe2/(~2q), where µ = m/2 is
the reduce mass. The normalization constant is [39]

N ′
f =

2lf exp(πη/2) |Γ(lf + 1 + iη)|
(2lf + 1)!

. (4.27)

We introduce new dimensionless variables

x = ζir, q̃ =
q

ζi
, s̃ =

s

ζi
. (4.28)

For small relative momenta in the continuum state, q̃ < 1, the power series expansion
of the Coulomb wave function [39]

Rεf lf = N ′
f

∞
∑

kf=lf+1

A
lf
kf

(q̃x)kf−1 (4.29)

with the coefficients satisfying

A
lf
lf+1 = 1; A

lf
lf+2 = − η

lf+1
;

(k + lf )(k − lf − 1)A
lf
kf

+ 2ηA
lf
kf−1 + A

lf
kf−2 = 0 for kf > lf + 2,

(4.30)
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converges rapidly. The resulting form factor

F l
fi =

NiN
′
f

ζ3
i

ni
r
∑

ki=0

ciki

∞
∑

kf=lf+1

A
lf
kf
q̃kf−1g

li+ki+kf+1

l (s̃) (4.31)

again contains the Hankel transforms (4.24).

For q̃ ≥ 1, the infinite series in (4.31) converges poorly. Inserting the Coulomb wave
function (4.26) into the expression for the form factor (4.10) yields

F l
fi(s) = NiN

′
f

q̃lf

ζ3
i

ni
r
∑

ki=0

ciki
I l
fi,ki

, (4.32)

where the integrals are given by

I l
fi,ki

(s) =

∫ ∞

0

xlif+ki exp[−(1+iq̃)x] jl(s̃x) 1F1(lf+1+iη, 2lf+2; 2iq̃x)dx, (4.33)

with lif = li + lf + 2. Using the trigonometric expansion of the spherical Bessel
function [39], on gets the finite sum

I l
fi,ki

=
l
∑

n=0

(l + n)!

n!(l − n)!

∫ ∞

0

xlif+ki
1

(2s̃x)n+1 1F1(lf + 1 + iη, 2lf + 2; 2iq̃x)

× exp[−(1 + iq̃)x]
(

in−l−1 exp(is̃x) + il+1−n exp(−is̃x)
)

dx .

(4.34)

After performing the Kummer transformation [39] one obtains

I l
fi,ki

=
1

s̃
<

l
∑

n=0

(l + n)!

n!(l − n)!

il+1−n

(2s̃)n

∫ ∞

0

xlif+ki−n−1

× exp[−(1 + i(q̃ + s̃))x] 1F1(lf + 1 + iη, 2lf + 2; 2iq̃x)dx .

(4.35)

The resulting integrals can be expressed as hypergeometric functions 2F1 [40, 41],
and the integrals I l

fi,ki
become

I l
fi,ki

=
1

s̃
<

l
∑

n=0

(l + n)!

n!(l − n)!

il+1−n

(2s̃)n

(lif + ki − n− 1)!

(1 + i(q̃ + s̃))lif+ki−n

× 2F1

(

lif + ki − n, lf + 1 + iη, 2lf + 2;
2iq̃

1 + i(q̃ + s̃)

)

.

(4.36)

Because n ≤ l ≤ li + lf , the Kummer series of the hypergeometric function above
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does not terminate. However, by applying formula 15.3.9 from [39], one gets

2F1

(

lif + ki − n, lf + 1 + iη, 2lf + 2;
2iq̃

1 + i(q̃ + s̃)

)

= (2lf + 1)!

[

Γ(n− 1 − li − ki − iη)

(lf − li − ki + n− 1)! Γ(lf + 1 − iη)

(

2iq̃

1 + i(q̃ + s̃)

)n−ki−lif

× 2F1

(

lif +ki−n, li−lf +ki−n+1, li+ki−n+2+iη;
i(q̃ − s̃) − 1

2iq̃

)

+
Γ(li + ki − n+ 1 + iη)

(li + lf + ki − n+ 1)! Γ(lf + 1 + iη)

(

2iq̃

1 + i(q̃ + s̃)

)li−lf+ki−n

×
(

1 + i(s̃− q̃)

1 + i(s̃+ q̃)

)n−1−li−ki−iη

× 2F1

(

lf−li+ n−ki, n− li−lf−1 −ki, n−li−ki−iη;
i(q̃ − s̃) − 1

2iq̃

)]

.

(4.37)

In this form, the hypergeometric functions can now be written as a sum of polynomi-
als. The first term is a polynomial in [i(q̃− s̃)− 1]/(2iq̃) of order lf − li − ki +n− 1
or zero, and the second term is at most of order li + lf + ki − n+ 1.

4.1.3 Results

In this section we show the main results from [13]. In figure 4.2 the excitation
probability PB

fi(b) as a function of the impact parameter b, is shown for various initial
and final states. The expression (4.14) was evaluated for a Titanium target (Z = 22)
at a projectile energy of 4.7 GeV. One observes, that the excitation probability peaks
near the Bohr radius of the π+π−-atom for transitions with the ground state as the
initial state, and at slightly larger values of the impact parameter for other ground
states. This is in contrast to the size of the charge distribution of the target atoms,
shown in figure 4.3, which is also plotted in terms of the pionium Bohr radius, but on
a logarithmic scale. One sees that most of the atom’s electron cloud lies outside the
relevant range of impact parameters set by the pionium, but the deviation from a bare
Coulomb potential is already noticeable at much smaller scales, around r ≤ 5aπ. The
screening has, therefore, a large effect on the results, but solid state effects can be
ignored.

To calculate the cross section, one could in principle integrate over bP B
fi(b), but as

can be seen in figure 4.2, this integral converges very slowly. In first order Born
approximation it is therefore much more precise and faster to calculate the excitation
and total cross sections from (4.15) and (4.16), respectively.

Figure 4.4 verifies that the SCA approach is suitable for the energy range we are
interested in. The factor 1/β2 in the total cross section (4.16) has been factored out.
The remaining energy dependence originates from the term (βq0)

2 in the denomina-
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Figure 4.2: The excitation probability PB
fi as a function of the impact parameter b (in

pionium Bohr radii aπ), for transitions from the ground state to 2p, 3p, 4p
(solid curves, top to bottom, respectively), and 2s → 3p (broken curve),
2p→ 3s (dotted line), 2p→ 3d (chain curve). The insert shows the same
diagram with a logarithmic scale for the ordinate. The calculations are
for a Ti target and 4.7 GeV projectile energy. (Reproduced from [13].)
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Figure 4.3: The charge distribution determined from the analytical fit to the Dirac-
Hartree-Fock-Slater ground state wave functions for different target ma-
terials, as a function of the radial variable (in pionium’s aπ). (Reproduced
from [13].)
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Figure 4.4: The total inelastic cross section from different initial states i (as indi-
cated in the figure), multiplied with β2, over a wide range of projectile
energies (from 10 keV to 10 GeV). The calculations are for a Ti target.
(Reproduced from [13].)

tor of the screening function. As is seen in figure 4.4, β2σtot,i is essentially constant
in the energy range of interest to the DIRAC experiment, i.e., 2–10 GeV.

4.2 Coherent and incoherent atomic scattering

In the previous section, only transitions between different states of the pionium sys-
tem were taken into account, while the target atom was only providing the Coulomb
potential. The real situation is of course much more complicated as the target atom
can also enter an excited state. In that case the electrons of the target are affected
individually, so that the form-factor for a target-inelastic process takes the form of
an incoherent sum over all electrons, in contrast to the coherent action of the elec-
trons and nucleus of the target-elastic process. From this argument it is clear that
the target-incoherent cross section is proportional to Z while the target-elastic cross
section is proportional to Z2. Since the scattering of the target-electrons increases
the cross section, this effect is also referred to as anti-screening [42, 43]. At large
momentum transfer the anti-screening correction can be estimated by multiplying
the coherent cross section by a factor (1 + 1/Z) [44, 45, 46]. This section closely
follows the work of Heim et al [14].

4.2.1 Formalism

In this section a new formalism to the pionium–atom scattering is introduced. It
is more closely related to standard electron scattering formalism as for example in
[47, 48, 49].

The Feynman diagram showing the general form of the pionium–atom scattering is
shown in figure 4.5. The cross section for this process is given by
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Figure 4.5: The lowest order Feynman diagram for the simultaneous excitation of
projectile (pionium) and target (atom). The atomic momenta are PA and
P ′

A before and after the collision, those of the pionium PΠ and P ′
Π. The

momentum of the exchanged photon is q = P ′
Π − PΠ = −(P ′

A − PA).
(Reproduced from [14].)

σ =
1

4I

1

(2π)2
2MA2MΠ

∫

d4q
(4πe2)2W µν

A WµνΠ

(q2)2
(4.38)

where I is the incoming flux, W µν
A and W µν

Π are the electromagnetic tensors de-
scribing the electromagnetic interaction of the atom and pionium with the photon,
respectively. As we are not interested in the final state of the atom, we can average
over all initial spin states and sum over all final states and directions for a specific
final state momentum P ′. The tensor for the atom is therefore

W µν
A =

1

4πMA

∑

X

〈0, PA|Jµ†|X,P ′
A〉〈X,P ′

A|Jν |0, PA〉(2π)4 δ4(PA−q−P ′
A) (4.39)

and similarly for the pionium if its final state is not resolved either.

It is well known that gauge invariance or current conservation requires that the elec-
tromagnetic tensor can be written in terms of two scalar functions W1 and W2 that
are functions of q and Pq,

W µν =

(

−gµν +
qµqν

q2

)

W1(q
2, P q)+

(

P µ−Pq qµ

q2

)(

P ν−Pq qν

q2

)

W2(q
2, P q)

M2
.

(4.40)

The product of the two tensors in the cross section can be written in terms of W1 and
W2,

W µν
A WµνΠ =3W1,ΠW1,A +

(

−1 +
∆2

q2

)

W1,ΠW2,A +

(

−1 +
ω2

q2

)

W2,ΠW1,A

+

(

γ +
ω∆

q2

)2

W2,ΠW2,A

(4.41)
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where γ is the (relative) Lorentz factor between the atom and pionium. The energy
of the photon in the respective rest frame of the atom (−∆) and pionium (ω) is

∆ = −PAq

MA

, ω =
PΠq

MΠ

. (4.42)

It was argued in section 4.1.1 that the cross section is dominated by the charge op-
erator (there referred to as scalar interaction). Therefore, we neglect the terms con-
taining W1 and only keep the last term of the previous expression

W µν
A WµνΠ ≈ γ2W2,ΠW2,A . (4.43)

This estimate is valid to better than 0.5%, even though the argument needs to be
made more carefully (refer to [14]).

In the application to pionium–atom scattering, the masses MA and MΠ are much
larger than the momentum transfer q of the photon. One can therefore neglect recoil
and identify ∆ and ω with the excitation energy of the atom and pionium in their re-
spective rest frames. This fixes q0 and qz. The spatial parts of the photon momentum
in the pionium rest frame will be denoted by s and in the atom’s rest frame by k. In
the rest frame of the atom we have

q0,A = −∆

qz,A = kz = −∆

β
− ω

γβ

(4.44)

and in the rest frame of pionium

q0,Π = ω

qz,Π = sz = − ∆

γβ
− ω

β

(4.45)

We can write

q2 = −
(

∆2

β2γ2
+

ω2

β2γ2
+

2ω∆

β2γ
+ q2

⊥

)

=: −(q2
l + q2

⊥) . (4.46)

Inserting the above into (4.38) and replacing the integration over d4q =
1

γβ
dωd∆d2q⊥, one obtains

σ =

∫

dω d∆ d2q⊥
4α2

β2

W2,Π(ω, q2)W2,A(∆, q2)

(q2
l + q2

⊥)2
. (4.47)

Since the W2 are scalar functions they can be evaluated in the respective rest frames.
Assuming that the charge operator is the dominant contribution,W2 is related toW 00

A

in the rest frame of the atom by

W2,A =
q4

k4
W 00

rf,A (4.48)
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with k2 = k2 = ∆2 − q2 [50]. From (4.39) we get

W 00
A =

1

4πMA

∑

X

〈0|J0†(q)|X,P ′
A〉〈X,P ′

A|J0(q)|0〉(2π)4δ4(PA−q−P ′
A) . (4.49)

This expression can be rewritten in terms of the (non-relativistic) density operator

W 00
A =

∑

X

〈0|ρ(q)|X,EX〉〈X,EX |ρ(q)|0〉δ(E0,A + ∆ − EX) (4.50)

=
∑

X

|FX0,A(q)|2 δ(E0,A + ∆ − EX) . (4.51)

One can proceed similarly for the pionium in its rest frame and finally obtain

σ =

∫

dω d∆ d2q⊥
4α2

β2

q4

s4k4

[

∑

X

|FX0,A(k)|2 δ(E0,A + ∆ − EX)

]

×
[

∑

X′

|FX′0,Π(s)|2 δ(E0,Π + ω − EX′)

]

.

(4.52)

To simplify the summation over the final states in (4.52), we let ω and ∆ take some
average value ω0 and ∆0. This removes the dependence on those variables from the
sums. We can therefore use the closure relation for the final states, to obtain

σ =

∫

d2q⊥
4α2

β2

q4

s4k4
Sinc,A(k)Sinc,Π(s) (4.53)

where q2, s2 and k2 now use these average values ω0 and ∆0, and

Sinc,A(k) =
∑

X

|FX0,A(k)|2 (4.54)

Sinc,Π(s) =
∑

X′

|FX′0,A(s)|2 (4.55)

4.2.2 Atomic form factors

The pionic form factors have been discussed in section 4.1, therefore, only the atomic
form factors remain to be calculated.

4.2.2.1 Atomic ground state elastic form factors

In the Dirac-Hartree-Fock-Slater theory, the ground state atomic wave function Ψ0

is given by a Slater determinant constructed from the independent particle orbitals,

Ψ0 =
1√
Z!

∑

p

sign(p)Φp(1)(r1) · · ·Φp(Z)(rZ) , (4.56)
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where Z is the number of electrons, p denotes the permutations of the indices and
Φj are single-particle orbitals. The elastic form factor can now be written as

F00(k) = 〈Ψ0|
Z
∑

j=1

exp(ik · rj)|Ψ0〉 . (4.57)

Due to the orthogonality of the orbitals, this reduces to

F00(k) =
Z
∑

j=1

〈Φj(rj)| exp(ik · rj)|Φj(rj)〉 . (4.58)

Expanding the exponential in spherical harmonics and inserting the orbital wave
functions, one obtains

F00(k) =
Z
∑

j=1

(2lj + 1)δχj ,χ′

j

∑

λ,µ

iλ
√

4πY ∗
λµ(k̂)

√
2λ+ 1

(

lj lj λ
0 0 0

)

× (−1)m′

j

(

lj lj λ
mj −mj µ

)

Rλ
jj(k)

(4.59)

with the spin orbitals χj and χj′ . The radial form factor is defined as

Rλ
ij(k) =

∫ ∞

0

dr r2Rnili(r) jλ(kr)Rnj lj(r), (4.60)

where Rnl(r) denote the radial wave functions for the orbitals.

Averaging |F00(k)|2 over all directions q̂ and using the orthogonality relation of the
spherical harmonics yields

|F00(k)|2 =
1

4π

∫

d2k̂ |F00(k)|2

=
∑

λ,µ

(2λ+ 1)

{

Z
∑

j=1

(−1)m′

j(2lj + 1)δχj ,χ′

j

(

lj lj λ
0 0 0

)

×
(

lj lj λ
mj −m′

j µ

)

Rλ
jj(k)

}2

.

(4.61)

Obviously all electrons contribute coherently to the form factor, as expected. Due to
the first 3j-symbol, only even multipoles contribute to the sum.

The form factor F00(k) only describes the contribution by the electrons. To obtain
the complete elastic form factor one needs to add the charge of the nucleus, i.e.,

Fatom(k) = Z − F00(k) . (4.62)
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4.2.2.2 Atomic inelastic scattering functions

The inelastic atomic form factor can be written as

FX0(k) = 〈ΨX |
Z
∑

j=1

exp(ik · rj)|Ψ0〉 . (4.63)

The total inelastic scattering function is the incoherent sum over all states X , other
than the ground state

Sinc(k) =
∑

X 6=0

|FX0(k)|2

=
∑

all X

|FX0(k)|2 − |F00(k)|2

= Z +
Z
∑

i=1

∑

j 6=i

〈Ψ0| exp(ik · [rj − ri])|Ψ0〉 − |F00(k)|2 . (4.64)

In terms of the single-electron orbitals, we can write

Sinc(k) = Z −
Z
∑

i=1

Z
∑

j=1

|〈Φj| exp(ik · r)|Φj〉|2 . (4.65)

To evaluate Sinc we still need the matrix elements

〈Φj| exp(ik · r)|Φj〉 = δχiχj
(−1)mi

√

4π(2li + 1)(2lj + 1)
∑

λ,µ

iλY ∗
λµ(k̂)

√
2λ+ 1

×
(

li lj λ
0 0 0

)(

li lj λ
−mi mj µ

)

Rλ
ij(k) .

(4.66)

Averaging over the direction k̂ yields

Sinc(k) =
1

4π

∫

d2k̂ Sinc(k)

= Z −
Z
∑

i=1

Z
∑

j=1

δχiχj
(2li + 1)(2lj + 1)

∑

λ

(2λ+ 1)

(

li lj λ
0 0 0

)2

×
(

li lj λ
mi −mj mj −mi

)2
[

Rλ
ij(k)

]2
.

(4.67)

4.2.2.3 Comparison with other models

Other ways to model the atomic structure are detailed in [14]. They include the
Thomas-Fermi model using the well-known Moliére parameterization [51] for the
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Figure 4.6: Electronic part F00 of the coherent atomic form factor and incoherent
scattering function Sinc for Ti (Z = 22). The asymptotic behavior is
more easily seen from the log-log diagram on the left. The range of
relevance for the cross section calculations is 0.1 ≤ k ≤ 100 a.u. For an
explanation of the different models, see text. (Reproduced from [14].)

screening function

χ(r) =
3
∑

i=1

Bi exp(−βir/b) (4.68)

with the parameters

B1 = 0.1 B2= 0.55 B3 = 0.35 (4.69)

β1 = 6.0 β2 = 1.2 β3 = 0.3 (4.70)

and b = aBohr(9π
2/128)1/8Z−1/3. The coherent form factor then becomes

F00(k) = Z
3
∑

i=1

Bi

1 + (bk/βi)2
(4.71)

for the electrons, and Fatom(k) = Z − F00(k), as before.

For the inelastic form factors one finds in the non-correlation limit [14]

Sinc(k) = Z − |F00(k)|2/Z . (4.72)

In figure 4.6, the electronic part of the coherent form factor F00,A and the incoherent
scattering function Sinc,A for different models are compared to tabulated values [52,
53]. One can see that the DHFS calculation outlined in the previous section does very
well. The simplified Thomas-Fermi-Moliére model and the non-correlation limits on
the other hand either miss features in the central region of the relevant values of k or
show a wrong asymptotic behavior for either large or small values of k.
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4.2.3 Numerical method and results

The radial form factors for the pionium are calculated as was described in section
4.1.2. For the atom, starting from a simple analytical charge distribution as given,
e.g., by Salvat et al [37] or Moliére [51], one solves the Schrödinger or Dirac equa-
tion for each occupied orbital. The resulting charge distribution is iteratively refined
to obtain improved orbitals until self-consistency is reached. Using these orbitals
one can then evaluate the integrals in (4.61) and in (4.67).

It is interesting to first check the relevant range of q⊥ for the cross sections as given
by (4.47) and (4.52). The differential cross section can be seen to consist of three
parts

dσ

dq⊥
= 2πq⊥

4α2

β
(photon) × (atom) × (pionium) , (4.73)

where the photon, atom and pionium parts are given by

(photon) =
1

q4
=

1

(q2
l + q2

⊥)2
(4.74)

(atom) = W2,A =

{

|F00,A(q)|2 for coherent scattering

(q4/k4)Sinc,A(k) for incoherent scattering
(4.75)

(pionium) = W2,Π = (q4/s4)Sinc,Π(s) . (4.76)

Figure 4.7 shows each contribution and the differential cross section. The full curves
refer to the total cross section for target-elastic scattering off a Ni (Z = 28) target
for pionium in its ground state. The broken curves correspond to target-inelastic
scattering.

The arrows indicate the relevant momentum scales: ql for the photon, kTF =
Z1/3/aBohr for the atom, and kΠ for the pionium. The product of the three fac-
tors shows that the main contribution to the cross section comes from the range of
q⊥ between kTF and kΠ.

Figure 4.8 shows dσinc/d ln q⊥ for a ground state pionium scattering incoherently
off Ti (Z = 22) at 5 GeV projectile energy. The full curve shows the integrand of
(4.52) calculated using the incoherent form factor (4.61). The simple estimation of
scaling the coherent cross section by a factor 1/Z clearly underestimates the correct
result. On the other hand the no-correlation limit using the coherent form factor
(4.61) overestimates the correct result by an even larger amount. Using the simple
1/Z scaling would introduce a considerable error into the inclusive cross sections.
The ratio

σcoh(1 + 1/Z)

σcoh + σinc

amounts to 0.795 (Li), 0.958 (Al), 0.978 (Ti), 0.987 (Ni), 0.991 (Mo), and 0.996
(Pt). Thus only for the heavy targets the required accuracy of 1% can be attained
with such a crude approximation for the incoherent part.
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4.3 Corrections due to the magnetic terms

4.3.1 Corrections from the non-relativistic Hamiltonian

To complete the calculation in first order Born approximation, the evaluation of the
“magnetic” parts of the Hamilton (4.3) is still required. It was shown in (4.5) that
the vector potential is just given by A = βΦẑ for pionium moving past the target
atom at the relativistic velocity v = βc in the z-direction. The first-order transition
amplitude from a pionium state |i〉 to a state |f〉 due to the part of the Hamiltonian
containing one factor A is given by

aB,magn
fi =

1

i~

∫ ∞

−∞

dt eiωt

(

− eβ

2mπc

){

2〈f | [Φ(r/2) + Φ(−r/2)] (−i~)
∂

∂z
|i〉

+ 〈f |(−i~)

(

∂

∂z
[Φ(r/2) + Φ(−r/2)]

)

|i〉
}

.

(4.77)

The derivative only acts on the initial state |i〉 on the right. This is accomplished by
using p · A|i〉 = A · p|i〉 + (p · A)|i〉.
The atomic potential can again be written in momentum space representation and be
boosted to the rest frame of the pionium (cf. (4.5)). Then one obtains

Φ(r/2)+Φ(−r/2) =
2

2π2

∫

d3s
FA

(

√

s2 − (βsz)2
)

s2
e−is·R

(

eis·r/2 + e−is·r/2
)

(4.78)

with the atomic (elastic or inelastic) form factor FA given in the previous section and
in [14]. Inserting R(t) = b+ vtẑ for the straight-line trajectory one can evaluate the
time-integral

∫ ∞

−∞

dt ei(ωt−s·R(t)) = e−iq⊥·b 2π

v
δ(sz − ω/v) . (4.79)

In the second term of (4.77) the z-derivative is applied to [exp(is · r/2) + exp(−is ·
r/2)]. The derivative thus yields a factor (isz/2) and changes the sign between the
two exponentials. The second term, therefore, becomes proportional to the well-
known first-order transition amplitude due to the scalar potential (4.13). The result
is just (−~ω/4mπc

2)aB
fi. Because ~ω is the difference in binding energies of the

initial and final pionium states, this term will be of order of α2 compared to the
scalar part.

The remaining z-derivative is applied to the initial (bound) state of the pionium wave
function. In spherical coordinates, the z-component of the gradient is given by [54,
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Eq. (A37)]

∂

∂z
[g(r)Ylm(θ, φ)] =

√

l2 −m2

(2l + 1)(2l − 1)
Yl−1,m(θ, φ)

{

dg

dr
+
l + 1

r
g

}

+

√

(l + 1)2 −m2

(2l + 1)(2l + 3)
Yl+1,m(θ, φ)

{

dg

dr
− l

r
g

}

.

(4.80)

We can write the hydrogenic wave function of pionium with a Laguerre polynomial
in the radial part. The derivatives applied to the radial part can then be expressed
with the help of the recurrence relations satisfied by the Laguerre polynomials [41]
and one obtains

∂

∂z
[Rnl(r)Ylm(θ, φ)] =

Z

laπ

√

l2 −m2

(2l + 1)(2l − 1)
Yl−1,m(θ, φ)

×
{

Rnl(r) +
√

1 − (l/n)2Rn,l−1(r)
}

− Z

(l + 1)aπ

√

(l + 1)2 −m2

(2l + 1)(2l + 3)
Yl+1,m(θ, φ)

×
{

Rnl(r) +
√

1 − [(l + 1)/n]2Rn,l+1(r)
}

.

(4.81)

One can see that this term, combined with the prefactor from (4.77) scales as

β~

mπcaπ

=
1

2
αβ (4.82)

compared to the amplitude of the scalar term. It therefore dominates the contribution
of the vector-potential to the Hamilton.

Writing the excitation cross section as the integral over q⊥ of (4.73), we obtain

σfi = 4

(

α

β

)2 ∫

d2q⊥
|FA(k)|2

q4
|FΠ(s)|2 , (4.83)

where FA denotes the form factor of the target atom (given in (4.62) for target-elastic
scattering and in (4.67) for target-inelastic scattering) and FΠ the form factors for
pionium. The form factor for the interaction with the scalar part of the interaction
can be written as

F scalar
Π (s) = (−1)mf

√

(2lf + 1)(2li + 1)
∑

l,m

(2l + 1)

√

(l − |m|)!
(l + |m|)!P

|m|
l

( ω

vs

)

e−imφs

×
[

1 − (−1)l
]

(−1)
l−1
2

(

lf l li
0 0 0

)(

lf l li
−mf m mi

)

F l
Ef lf ,nili

(s

2

)

,

(4.84)

with the radial form factor F l
fi for bound-bound or bound-free transitions as (4.10).
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For the terms of the Hamiltonian containing one factor A the pionic form factor with
the use of (4.81) can now be written as

FB,magn
Π (s) = (−1)mf

√

(2lf + 1)(2li + 1)
∑

l,m

(2l + 1)

√

(l − |m|)!
(l + |m|)! P

|m|
l

( ω

vs

)

e−imφs

×
{

~β

mπcaπ

[1 + (−1)l](−1)l/2 1

2li + 1

[

W−
fi(l,m)R−

fi(l, s/2)

−W+
fi(l,m)R+

fi(l, s/2)
]

− ~ω

4mπc2
[

1 − (−1)l
]

(−1)
l−1
2

×
(

lf l li
0 0 0

)(

lf l li
−mf m mi

)

F l
Ef lf ,nili

(s/2)

}

(4.85)

where

W±
fi(l,m) =

√

1 −
(

mi

l±i

)2(
lf l li ± 1
0 0 0

)(

lf l li ± 1
−mf m mi

)

, (4.86)

R±
fi(l, s/2) = F l

Ef lf ,nili
(s/2) +

√

1 −
(

l±i
ni

)2

F l
Ef lf ,nili±1(s/2) , (4.87)

with l±i = max(li, li ± 1) were introduced.

The second term in (4.85) has the same form as the scalar form factor (including the
same selection rules), but is suppressed by the prefactor ~ω/4mπc

2. The first term
satisfies different selection rules. From the 3j-symbols and the term [1 + (−1)l],
one can see that lf − li must be odd, but due to the Legendre polynomial, transitions
with mf −mi even will be favored. This means that this term changes the z-parity
(−1)l+m of the pionium. It turns out that the small z-parity changing amplitude in
the scalar part interferes destructively with this term, making the total amplitude for
the z-parity changing transitions even smaller.

4.4 Conclusions

Pionium interacting with the Coulomb field of a target-atom is fully understood in
first order Born approximation. All transition cross-sections can be calculated for
bound-bound and bound-free transitions as well as the total and ionization cross
sections. The evaluation of the cross sections has reached (at least in first order
perturbation theory) the accuracy of much better than 1%.

The main contribution stems from the interaction with the scalar part of the target-
atoms Coulomb potential. Significant corrections are due to the excitation of the
target atom due to incoherent scattering off the target-electrons (of the order of 1/Z).
The corrections due to the magnetic term linear in the external field amount to less
than 1%.



46 CHAPTER 4. CALCULATIONS IN THE FIRST ORDER BORN APPROXIMATION

The remaining contributions due to relativistic corrections to the pionium Hamilto-
nian and due to the diamagnetic term (A2), as well as a ‘seagull’ contribution, are so
small (contributions of the order 10−10) that we refer to [15] for details.



5 Excitation cross sections in
Glauber approximation

5.1 Introduction

The leading order terms of these cross sections are well known and have been
calculated using different parameterizations of the screened potential of the atom
[13, 14, 15, 18]. Since the π+π−-atoms are highly relativistic, it seems to be a rea-
sonable approach to neglect multiple photon exchange processes, but it has been
found recently that the total cross section calculated in the eikonal approximation
(Glauber-theory) is smaller than the one calculated in the Born approximation by
between 2% (for small nuclear charge number Z) and 14% (for large Z) [16]. In this
chapter we evaluate the partial cross sections in Glauber theory for arbitrary initial
and final bound states of the pionium.

We would like to point out that even though the methods developed in this paper
are motivated by an experiment in high energy physics, they are also of general
interest for the atomic physics community. Similar problems, e.g. projectile electron
excitation and loss in fast collisions with neutral target atoms, have been tackled
recently by Voitkiv et al [55, 56].

The work in this chapter has been published in [17]. It is therefore self-contained and
might repeat some of the information that was already given in the previous chapters.

5.2 The Coulomb interaction between pionium
and the target atoms

In order to describe the excitation of the pionium atoms through the electromagnetic
interaction with the target atoms, we use the semi-classical approximation (SCA).
In the rest-frame of the pionium, the much heavier target atoms move past with
almost the speed of light on a straight-line trajectory, R = {b, 0, vt}, and are treated
classically, while the pionium atom is located at the origin of the coordinate system
and is treated quantum-mechanically (Fig. 5.1).

The non-relativistic Hamiltonian describing the π+π−-system is

H = H0 +Hint . (5.1)

47
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Figure 5.1: An atom is moving past a pionium atom at relativistic speed v ≈ c.

The first part, H0, describes the π+π− pair,

H0 =
p 2

2µ
− e2

r
, (5.2)

where we have introduced the reduced mass µ = mπ/2 and the relative coordinate
and momentum, r = r1 − r2 and p = µṙ = (p1 − p2)/2, respectively. The second
term in (5.1),Hint, describes the interaction between the pionium and the target atom,
which can be split into three terms

Hint = HΦ +H1,A +H2,A , (5.3)

where

HΦ = e [Φ(r/2) − Φ(−r/2)] , (5.4)

H1,A = − e

2mπc
{p · [A(r/2) + A(−r/2)]

+ [A(r/2) + A(−r/2)] · p} , (5.5)

H2,A =
e2

2mπc2
[

A2(r/2) + A2(−r/2)
]

. (5.6)

In the following we will only consider HΦ which yields the main contribution to the
cross-section. The corrections due to the magnetic terms contained in H1,A and H2,A

(and due to the correct relativistic treatment of Hint) have been found to be much
less than 1% [15] (refer also to section 4.3). We also do not consider the case of
target excitations, also referred to as incoherent scattering or anti-screening. This
is expected to contribute of the order of 1/Z to the coherent scattering, i.e., without
target excitation. The exact contributions have been calculated by Heim et al [14] in
first order Born approximation (see also section 4.2). While they are relatively large
for small Z, higher order corrections are most significant for large Z.
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5.2.1 Born approximation

The transition amplitude afi(b) from an initial state i = {ni, li,mi} to a final state
f = {nf , lf ,mf}, where n, l, and m denote the principal, angular, and magnetic
quantum numbers respectively, is given in first order perturbation theory as

aB
fi =

1

i~

∫ ∞

−∞

dt exp(iωt)

∫

d3r ψ∗
f (r)Hint ψi(r) , (5.7)

where ω = (Ef − Ei)/~. For Hint we use only the scalar interaction (5.4) and for
the potential Φ we assume a Moliere-type screened potential with the parameters
tabulated by Salvat et al [37],

Φ(r) =
Ze

r

3
∑

k=1

Ake
−αkr . (5.8)

These parameters have been found by an analytical fitting procedure to Dirac-
Hartree-Fock-Slater (DHFS) data. The excitation cross-section is then calculated
by integrating over the impact parameter

σfi =

∫

d2b |afi(b)|2 . (5.9)

Following the derivation of Halabuka et al [13] (see also section 4.1), we arrive at
the following expression for the cross section (in the Lorentz gauge) summed over
the final and averaged over the initial magnetic quantum numbers.

σB
fi =16π

(

Zα

β

)2

(2lf + 1)

∫ ∞

q0

q dq

(

∑

k

Ak

q2 + α2
k − (βq0)2

)2

×
∑

l

(2l + 1)
[

1 − (−1)l
]

(

lf l li
0 0 0

)2
(

F l
fi (q/2)

)2
, (5.10)

The radial form-factors

F l
fi(q) =

∫ ∞

0

r2 dr Rnf lf (r) jl(qr)Rnili(r) (5.11)

can be evaluated efficiently with the recursion relations derived in [40]. Here, Rnl(r)
is the radial part of a hydrogen-like wave-function and jl denotes the spherical Bessel
function. We have furthermore introduced q0 = ω/v in (5.10).

The total cross section can be found via the closure approximation. For completeness
we just quote the result from Ref. [13].

σB
tot = 16π

(

Zα

β

)2 ∫ ∞

q0

q dq

(

∑

k

Ak

q2 + α2
k − (βq0)2

)2
(

1 − F 0
ii(q)

)

. (5.12)
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5.2.2 Glauber approximation

In the Glauber approximation [32, 33], the transition amplitude is given by (refer to
section 3.4.3)

aG
fi(b) =

∫

d3r ψ∗
f (r) [1 − exp (iχ(b, r))]ψi(r) , (5.13)

with the eikonal function

χ(b, r) = −1

~

∫ ∞

−∞

dtHint (b, r, t) . (5.14)

We may rewrite the eikonal function as χ(b, r) = χ+(b, r) − χ−(b, r), where

χ±(b, r) = − e

~

∫ ∞

−∞

dtΦ(±r/2, t)

= −Ze
2

~

3
∑

k=1

Ak

∫ ∞

−∞

dt
exp (−αk |r/2 ∓ R(t)|)

|r/2 ∓ R(t)|

= −2Zα

β

3
∑

k=1

AkK0

(

αk

√

(x

2
∓ b
)2

+
(y

2

)2
)

. (5.15)

K0 denotes the McDonald function [39, Section 9.6]. The Glauber cross section σG
fi

is then found by inserting aG
fi(b) into (5.9).

One can easily check that the expansion of the Glauber cross section to first order in
χ yields the first-order cross-section (5.10) with q0 = 0 which will be denoted in the
following by

σ
(1)
nf lf ,nili

= σB
nf lf ,nili

∣

∣

∣

q0=0
. (5.16)

As q0 ∼ (Ef −Ei), this just means that we neglect the energy difference between the
final and initial state, which is, in fact, one of the approximations made in Glauber
theory (sudden approximation). We will show in section 5.3.2 that this approxima-
tion is valid here.

Unfortunately, it is not possible to simplify the Glauber cross section further for
arbitrary cases of i and f . For certain transitions, e.g., the 1s–2p transition, and a
bare Coulomb field one can reduce the integration further [57]. We are, however,
interested in reliably calculating the partial cross sections for arbitrary initial and
final states. This problem does not arise in the case of the total cross section, either,
where one can use closure and reduce the problem to a one-dimensional integral
[16], which can be written as

σG
tot = 4π

∫ ∞

0

q dq |f(q)|2
(

1 − F 0
ii(q)

)

, (5.17)

where

f(q) =

∫

d3r [1 − exp(iχ(b, r))] exp(iq · r) . (5.18)
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Figure 5.2: Comparison of the transition probabilities for the transition 1s–2p of the
pionium due to the Coulomb interaction with a Ni (Z = 28) atom. The
slow convergence of 2πb|aG

fi(b)|2 (solid line) is clearly visible, whereas
the higher order terms (difference between first order (Born) and Glauber
approximation, dotted line) are limited to small b. The convergence of
the higher order terms is therefore much faster as can be seen from the
dotted curve which is scaled with a factor 5. Also shown is the relative
difference of the probabilities in first order with or without a finite ω
(dash-dotted line). While this difference increases slightly with b, the
higher order terms are only appreciable for small b, and their relative
contribution remains small compared to the required accuracy.

A further difficulty stems from the fact that the convergence of the b-integration
in (5.9) is very slow, as can be seen in figure 5.2. In first order, one avoids this
by Fourier-transforming the transition amplitudes and performing the b-integration
analytically [13]. The main contribution of the higher order effects are found at
small values of b due to the screening effect; impact parameters b larger than 10 aπ

(the Bohr radius of pionium), contribute very little. Therefore, instead of evaluat-
ing σG

fi directly, we calculate only the difference between the Born- and Glauber-
approximation

∆fi = 2π

∫ ∞

0

b db
(

|a(1)
fi |2 − |aG

fi|2
)

. (5.19)

Figure 5.2 displays the integrand of (5.19) as well as the integrand for the full
Glauber cross section for the 1s–2p transition due to interaction with a Ni target
atom. We can calculate ∆fi numerically and combine it with the accurate results for
σ

(1)
fi from Halabuka et al [13] (with q0 = 0) to finally obtain the full Glauber cross

section

σG
fi = σ

(1)
fi − ∆fi . (5.20)

Since we are mainly interested in the magnitude of the corrections due to multi-
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Figure 5.3: The Z-dependence of the relative correction δfi (defined in (5.21)) to
the excitation cross sections for the three transitions 1s–2p, 2p–3d, and
2s–3p.

photon processes we define relative correction as

δfi = ∆fi/σ
(1)
fi , (5.21)

which is the difference between first order and Glauber cross section normalized to
the first order cross section.

5.3 Results

5.3.1 Relative differences between Glauber and Born
approximation

As was expected from the results for the total cross sections [16], where the differ-
ence between Born and Glauber approximation ranges from 2% to 14%, we found
large relative differences between the Born and Glauber approximation for the exci-
tation cross sections. In figure 5.3, one can see that, for example, for the excitation
of the pionium from the 1s to the 2p-state, δfi (5.21) increases from around 2% for
Ti up to 23% for Pt and similarly for other initial and final states.

At first sight, it might seem that up to 30% relative difference in the excitation cross
sections for heavy target materials is inconsistent with the relative difference for the
total cross sections. However, one has to take into account that multi-photon ex-
change allows for additional transitions that are strongly suppressed in Born approx-
imation and even strictly forbidden in first order sudden approximation. Table 5.1
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shows a comparison of the relative differences. We define

σex(ni, li) =
1

2li + 1

∑

mi

(nf ,lf ,mf )max
∑

(nf ,lf ,mf )

σ(nf ,lf ,mf ),(ni,li,mi) (5.22)

as the sum of the bound-bound excitation cross section over all available final states
(nmax = 8, currently) and averaging over the initial magnetic quantum number mi.
By σex(B) we denote the sum (5.22) restricted to include only final states that can be
reached in the Born approximation. Those final states are determined by the selec-
tion rule evident in (5.10) that demands (li + lf ) to be odd. Table 5.1 shows that the
relative differences for the sums over the states available in first order transitions (col-
umn three) are consistent with the values for Z = 28 in figure 5.3. This is expected,
as the relative differences for excitations from the same initial state are of the same
order of magnitude. However, they deviate significantly from the relative differences
of the total cross sections shown in the fifth column. This discrepancy vanishes if
one compares the relative differences of the sums over all available channels (col-
umn four) with the results for the total cross sections. This is possible because the
Glauber cross sections are smaller than the first order ones. The agreement is best
for ni > 2. For ni ≤ 2 the last column of table 5.1 indicates that a considerable part
of the total cross sections stems from transitions into the continuum. This suggests
that if we were able to take into account the ionization cross sections as well, we
would see the same consistency as for ni > 2 where the ionization is only a minor
contribution to the total cross section.

Another way to attempt a systematic evaluation of the excitation cross sections is
to evaluate the terms of the Glauber series up to the required accuracy. However,
figure 5.4 shows that the two-photon corrections already reach the 1% level at around
Z = 10. For Z up to 30, one can estimate the multi-photon corrections to the cross
section by taking into account only two-photon interactions (dotted curve). But for
larger values of Z the corrections due to three-photon interactions reach the 1% level
(dashed line). For Z larger than 60 even higher order terms need to be calculated as
can be seen from the comparison of the solid (Glauber approximation) and the dash-
dotted (all corrections up to order (Zα)6) curves.

This clearly illustrates that calculations using the Born approximation and even in-
cluding the first few higher order Born terms are not sufficiently accurate for targets
with large Z. Since we try to establish a consistent method of calculating the exci-
tation cross sections for a large variety of targets from Be (Z = 4) to Pt (Z = 78) it
seems best to use the Glauber approximation for all of them.
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Table 5.1: Comparison of the relative differences of the accumulated excitation cross
sections for initial states with principal and angular quantum numbers ni

and li, respectively. The terms σex and σex(B) are defined in (5.22) and
the following text, the superscripts ‘G’ and ‘(1)’ indicate the full Glauber
calculation or only the first order contribution. The total cross sections
σ

(1)
tot and σG

tot are defined in (5.12) taking into account (5.16), and (5.17),
respectively. The relative difference of the sums over excitations allowed
in first order (third column) are much larger than the corresponding values
from the total cross sections (fifth column), while the fourth column, tak-
ing into account all transitions, agrees well with the relative difference of
the total cross sections. The last column indicates the ratio of total bound-
bound excitation cross sections to the total cross sections. The values
given in the table are for a Ni (Z = 28) target.

ni li 1 − σG
ex(B)/σ

(1)
ex 1 − σG

ex/σ
(1)
ex 1 − σG

tot/σ
(1)
tot σG

ex/σ
G
tot

1 0 3.7% 2.0% 1.3% 62.1%
2 0 5.2% 1.6% 1.8% 88.9%
2 1 5.0% 2.2% 1.7% 87.3%
3 0 6.6% 2.1% 2.2% 94.1%
3 1 6.5% 2.0% 2.1% 93.0%
3 2 6.0% 2.3% 2.0% 92.3%
4 0 7.6% 2.4% 2.4% 95.6%
4 1 7.4% 2.3% 2.4% 94.7%
4 2 7.3% 2.3% 2.4% 93.9%
4 3 6.8% 2.5% 2.3% 93.5%
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Figure 5.4: Comparison of the contributions of two- and three-photon exchange pro-
cesses to the relative correction to the excitation cross section for a 1s–2p
transition in Glauber theory. The solid line shows the correction due to
the Glauber approximation. The dotted line shows corrections to the first
order due to terms of order O ((Zα)4), the dashed line shows corrections
due to terms of order O ((Zα)6). The dash-dotted curve shows correc-
tions due to all terms up to O ((Zα)6). It clearly differs from the Glauber
approximation for Z > 60.

5.3.2 Estimation of the accuracy of the Glauber
approximation

To check the validity of the sudden approximation we go back to the definition of
the S-matrix [58, Eq. II.3.17]

S = T exp

(

− i

~

∫

dt H̃int(t)

)

, (5.23)

where H̃int in the interaction picture replaces Hint (as defined in (5.3)), i.e.,

H̃int = eiH0t/~Hinte
−iH0t/~ . (5.24)

In the sudden approximation the exponentials in (5.24) become 1 since it is assumed
that H0t ¿ 1. To get an estimate on the accuracy of the sudden limit, we proceed
similarly to the Born approximation [13] and replace the non-interacting Hamilton
operators by some average energy difference between the initial and final state ω0 =
vq0, i.e.,

eiH0t/~Hinte
−iH0t/~ ' eiω0tHint . (5.25)

Using this approximation, the S-matrix can again be summed to all orders and the
transition amplitude is of the form (5.13) with a modified eikonal function

χ′(b, r) = −1

~

∫ ∞

−∞

dt eiω0tHint (b, r, t) . (5.26)
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Figure 5.5: The higher order corrections to the excitation cross-section ∆fi(ω) nor-
malized to ω = 0 (sudden limit). Shown are the curves for the 1s–2p
transition due to interaction with the Ta, Sn, Ni and Al atoms.

Similarly to (5.15) we get

χ′ ±(b, r) = −2Zα

β

3
∑

k=1

Ak e±iq0z/2K0

(

α′
k

√

(x

2
∓ b
)2

+
(y

2

)2
)

, (5.27)

with

α′
k =

√

α2
k + (q0/γ)2 . (5.28)

The advantage of this approximation is that the expansion of the excitation cross
section with respect to χ′ exactly yields the Born cross section (5.10) as the first
term.

As the replacement of (5.25) is only an approximation, we let ω0 vary between 0
and 2ωfi. Figure 5.5 shows that the higher order contributions to the cross section
calculated with this ω0 and in the sudden approximation, only differ by less than
0.1% in the case of a Ni target and less than 0.15% in the worst case of Ta. It has
already been shown by Heim et al [14] that the cross sections to first order also differ
by less than 1%. In figure 5.2 the dash-dotted line shows the relative difference of
the first order transition probabilities for ω0 = 0 and a finite ω0 as a function of the
impact parameter b. One can see that while the difference increases with b, it is very
small and it should not have a great influence on the higher order corrections as they
are limited to small b. It is therefore expected that the sudden limit should have even
less effect on those corrections than on the first order terms.

5.4 Conclusion

For the success of the DIRAC experiment it is essential that the excitation and ion-
ization cross-sections of the pionium are known to 1% or better. So far, only calcu-
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lations to first order have been available. The results by Afanasyev et al [16] showed
that higher order effects need to be taken into account for an accurate calculation of
the total cross sections of pionium interacting with matter. We have systematically
calculated the bound-bound excitation cross sections for the target elements Be, Al,
Ti, Ni, Mo, Ta, and Pt for all initial and final quantum numbers limited by n ≤ 8.
We have investigated the dependence of the size of the corrections on the charge
number Z of the nucleus of the target material. We have found that only using the
full Glauber cross section one will be able to reach the desired 1% level in accuracy
for Z > 60. For smaller Z one could possibly evaluate systematically higher order
terms of the Born series, but already for Z > 10 the first order is not sufficiently
accurate.

The accuracy of the Glauber approximation itself can only be estimated. We have
shown that the sudden approximation, i.e., neglecting the excitation energy com-
pared to the kinetic energy, is valid and using an average ω0 changes the results very
little. To ultimately check the contributions due to higher order processes, a coupled
channel calculation could be attempted. One should note, however, that since the
higher order contributions are of the order of 10% of the first order result, they need
only be calculated to about 10% to reach an overall accuracy of 1%.
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6 Coupled channel calculation

We would like to use a coupled channel calculation to verify the results of the last
chapter. It was shown that the higher order corrections (multi-photon-exchange)
calculated in the Glauber approximation reduce the excitation cross sections for pio-
nium interacting with the Coulomb field of a target atom by as much as 30%. Since
we want to verify the Glauber approximation, we only use the scalar part of the
interaction Hamiltonian (5.4).

6.1 Theory

The coupled channel approach is a way to solve the Schrödinger equation of pionium
interacting with the target atom in a limited space of basis functions.

We write the wavefunction of an atom in terms of eigenstates (bound or free) ψk(r, t)
of the free Hamiltonian H0 (5.2), i.e.,

ψ(r, t) =
∑

k

ak(t)ψk(r, t) , (6.1)

where ak(t) are the amplitudes and

ψk(r, t) = ϕk(r)e−iEkt/~ (6.2)

are the mutual orthogonal eigenstates.

Inserting (6.1) into the Schrödinger equation
(

−~
2∇2

2m
+ V (r)

)

ψ(r, t) = i~
∂

∂t
ψ(r, t) (6.3)

we immediately find the coupled channel equation for the amplitudes ak

ȧk = − i

~

∑

j

Vkjaj . (6.4)

In order to solve the coupled channel equations, one needs to specify initial condi-
tions. We assume that the pionium is initially in a state i, then

ai(t→ −∞) = 1 ,

aj 6=i(t→ −∞) = 0 .
(6.5)

59
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Because the expansion of the wave function is in terms of mutual orthogonal eigen-
states, the amplitudes ak can be interpreted as occupation amplitudes in the limit
t→ ±∞.

The probability for an excitation from an initial state i to any of the final states k,
taken into account in the calculation, is

Pk(b) = |ak(t→ ∞)|2 . (6.6)

The cross section is then the integral over the impact parameter b

σk = 2π

∫ ∞

0

Pk(b)b db . (6.7)

But, as is well known from section 4.1.3, the integral over the impact parameter
converges very poorly. Since we only want to check the validity of the Glauber
approximation, we will instead compare values of Pk(b) at certain b with the results
from the Born and Glauber approximations.

6.2 Matrix element Vkj for bound-bound
transitions

The main numerical problem is the efficient evaluation of the matrix element Vkj

given by the integral

Vkj =

∫

d3rϕ∗
k(r) [Φ(r/2) − Φ(−r/2)]ϕj(r) eiωkjt , (6.8)

where ωkj = (Ek − Ej)/~. The potential Φ is a screened Coulomb potential of the
target nucleus with parameters Ak and αk taken from [37]. Written in Fourier space
(refer to section 4.1.1), the potential becomes

Φ(r, t) =
Ze2

2π2

∑

k

Ak

∫

d3s
eis·(r−R(t))

s2 + α2
k − (βsz)2

, (6.9)

where R(t) = (b, 0, vt) describes the straight-line trajectory.

We can rewrite (6.8) as

Vkj =
Ze2

2π2
eiωkjt

∑

i

Ai

∫

d3s
e−is·R(t)

s2 + α2
i − (βsz)2

×
∫

d3rϕ∗
k(r)

[

eis·r/2 − e−is·r/2
]

ϕj(r) .

(6.10)

Now we apply the multipole expansion to the exponentials in the second line of
(6.10):

eis·r/2 − e−is·r/2 = 4π
∑

lm

il
[

1 − (−1)l
]

jl(rs/2)

× Y ∗
lm(ŝ)Ylm(r̂) .

(6.11)
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The wave functions ϕk can be split up into radial and angular parts

ϕk(r) = Rnklk(r)Ylkmk
(r̂) , (6.12)

where Rnklk(r) are the hydrogen-like bound or free wave functions.

If we insert (6.11) and (6.12) into (6.10) we obtain

Vkj =
2Ze2

π
eiωkjt

∑

i

Ai

∫

d3s
e−is·R(t)

s2 + α2
i − (βsz)2

∑

lm

il
[

1 − (−1)l
]

Y ∗
lm(ŝ)

×
∫

dr r2Rk(r)jl(rs/2)Rj(r)

∫

d2r̂ Y ∗
lkmk

(r̂)Ylm(r̂)Yljmj
(r̂) .

(6.13)

The integral over r in (6.13) is the radial form factor

F l
kj(s) =

∫

dr r2Rk(r)jl(rs)Rj(r) , (6.14)

which can be evaluated efficiently for bound-bound transitions by a recursion re-
lation given in [40]. For bound-free transitions a method is outlined by Halabuka
et al. [13] (see section 4.1.2).

The angular integral in (6.13) can be evaluated in terms of 3j-symbols

∫

dr̂ Y ∗
lkmk

(r̂)Ylm(r̂)Yljmj
(r̂) = (−1)mj

l̂k l̂l̂j√
4π

(

lk l lj
0 0 0

)(

lk l lj
−mk m mj

)

,

(6.15)

with l̂ =
√

2l + 1.

Now we can insert (6.14) and (6.15) into (6.13) and we obtain

Vkj =
Ze2

π3/2
l̂k l̂j(−1)mkeiωkjt

∑

i

Ai

∫

d3s
e−is·R(t)

s2 + α2
i − (βsz)2

×
∑

lm

il
[

1 − (−1)l
]

l̂

(

lk l lj
0 0 0

)(

lk l lj
−mk m mj

)

Y ∗
lm(ŝ)F l

kj(s/2) .

(6.16)

We proceed by evaluating the angular part of the integral over s as far as possible,

I i
lm(s) = Ai

∫

dŝ
Y ∗

lm(ŝ) e−is·R(t)

s2 + α2
i − (βsz)2

. (6.17)

Firstly, we separate the spherical harmonics into ϑs and ϕs dependent components

Y ∗
lm(ŝ) = Ylm(ϑs, 0)e

−imϕs . (6.18)

Then we write the components of s in terms of the spherical coordinates

sx = s sinϑs cosϕs , (6.19a)

sy = s sinϑs sinϕs , (6.19b)

sz = s cosϑs . (6.19c)
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Thus the scalar product becomes

s · R(t) = bs sinϑs cosϕs + vts cosϑs . (6.20)

Inserting (6.18) and (6.20) into (6.17) we obtain

I i
lm(s) =Ai

∫ π

0

dϑs sinϑs
Ylm(ϑs, 0) e−ivts cos ϑs

s2(1 − β2 cos2 ϑs) + α2
i

×
∫ 2π

0

dϕs e−i(mϕs+bs sin ϑs cos ϕs) ,

(6.21)

where the ϕs-integral is an integral representation of the Bessel function Jm [39]

Jm(x) =
im

2π

∫ 2π

0

dϕs exp[−i(mϕ+ x cosϕs)] . (6.22)

We can write

I i
lm(s) =

2πAi

im

∫ π

0

dϑs sinϑs Jm(bs sinϑs)
Ylm(ϑs, 0) e−ivts cos ϑs

s2(1 − β2 cos2 ϑs) + α2
i

(6.23a)

=
2πAi

im

∫ 1

−1

dx Jm(bs
√

1 − x2)
Ylm(cos−1 x, 0) e−ivtsx

s2(1 − (βx)2) + α2
i

, (6.23b)

where we set x = cosϑs.

To prepare the result for easier numerical implementation, we replace the spherical
harmonics by the associated Legendre polynomials (which are more readily provided
by numerical computation libraries)

Ylm(ϑ, 0) =

√

2l + 1

4π

√

(l −m)!

(l +m)!
Pm

l (cos θ) , (6.24)

to obtain

I i
lm(s) =

√
πl̂Ai

im

√

(l −m)!

(l +m)!

∫ 1

−1

dx
Pm

l (x)Jm(bs
√

1 − x2) e−ivtsx

s2(1 − β2x2) + α2
i

. (6.25)

Looking back to (6.16), we see from the term [1−(−1)l] that l must be odd. We now
rewrite the integral over x in two ways for m odd or m even. We use the symmetry
relation

Pm
l (−x) = (−1)l+mPm

l (x) , (6.26)

and because l is odd we have

Pm
l (−x) = (−1)m+1Pm

l (x) for l odd. (6.27)
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We change the integration over x over the interval [−1, 1] to an interval from [0, 1]
using the symmetry or anti-symmetry of the Legendre polynomials

∫ 1

−1

dx
Pm

l (x)Jm(bs
√

1 − x2)e−ivtsx

s2(1 − β2x2) + α2
i

=

∫ 0

−1

+

∫ 1

0

=

∫ 1

0

dx
(−1)m+1Pm

l (x)Jm(bs
√

1 − x2) eivtsx

s2(1 − β2x2) + α2
i

+

∫ 1

0

dx
Pm

l (x)Jm(bs
√

1 − x2) e−ivtsx

s2(1 − β2x2) + α2
i

(6.28a)

=

∫ 1

0

dx
Pm

l (x)Jm(bs
√

1 − x2)

s2(1 − β2x2) + α2
i

[

(−1)m+1eivtsx + e−ivtsx
]

. (6.28b)

The last term in (6.28b) can be evaluated for the two cases (m odd or even)

[

(−1)m+1eivtsx + e−ivtsx
]

=

{

2 cos(vtsx) if m is odd,

−2i sin(vtsx) if m is even.
(6.29)

So finally, by combining (6.25), (6.28b), and (6.29) we obtain

I i
lm(s) =

2
√
π l̂Ai

im

√

(l −m)!

(l +m)!

∫ 1

0

dx
Pm

l (x)Jm(bs
√

1 − x2) cos(vtsx)

s2(1 − β2x2) + α2
i

(6.30)

for m odd and

I i
lm(s) = − 2

√
π l̂Ai

im−1

√

(l −m)!

(l +m)!

∫ 1

0

dx
Pm

l (x)Jm(bs
√

1 − x2) sin(vtsx)

s2(1 − β2x2) + α2
i

(6.31)

for m even.

One can see that the potential Vkj as written in (6.16) except for the phase exp iωkjt
(which vanishes in the sudden limit) is always real-valued as we have

il−m = (−1)(l−m)/2 for m odd, (6.32)

il−m+1 = (−1)(l−m+1)/2 for m even. (6.33)

The integral I i
lm can be readily evaluated using methods for oscillatory functions. For

example the routine gsl integration qawo from the GNU scientific library
can be used to perform the numerical integration.
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Vkj finally becomes

Vkj(b, t) =
2Ze2

π
l̂k l̂j(−1)mkeiωkjt

∫

ds s2
∑

l
m=mk−mj

(−1)(l−m)/2
[

1 − (−1)l
]

l̂2

×
(

lk l lj
0 0 0

)(

lk l lj
−mk m mj

)

√

(l −m)!

(l +m)!
F l

kj(s/2)

×
∫ 1

0

dx
∑

i

Ai
Pm

l (x)Jm(bs
√

1 − x2) cos(vtsx)

s2(1 − β2x2) + α2
i

for m odd,

(6.34)

Vkj(b, t) = − 2Ze2

π
l̂k l̂j(−1)mkeiωkjt

∫

ds s2
∑

l
m=mk−mj

(−1)(l−m+1)/2
[

1 − (−1)l
]

l̂2

×
(

lk l lj
0 0 0

)(

lk l lj
−mk m mj

)

√

(l −m)!

(l +m)!
F l

kj(s/2)

×
∫ 1

0

dx
∑

i

Ai
Pm

l (x)Jm(bs
√

1 − x2) sin(vtsx)

s2(1 − β2x2) + α2
i

for m even.

(6.35)

In this form, the matrix elements Vkj(b, t) can now be evaluated numerically.

6.3 Solving the coupled channel equation

If one only includes bound states, one can evaluate the matrix elements and solve the
system of differential equation (6.4) using, for example, Gear’s method [59, 60]. By
using tabulated matrix elements for a given impact parameter b with small enough
time-steps, it is possible to solve the system of equations for n ≤ 6 in a few minutes.
(The tabulation of course takes much longer. The advantage is that one can in this
way, rerun the calculation of the evolution with different initial states or step-sizes.)

Figures 6.1 and 6.2 show the evolution of the occupation probabilities (|ak|2) for
the lowest states with n ≤ 3. The target is a Pt-atom (Z = 78) and the system of
base-states is chosen as all bound states with n ≤ 6. One can see that the occupation
probability for states other than the initial state, increases rapidly at close distances
to the target atom and then approaches a constant value.

To confirm that the matrix elements are correct and that the numerical methods work
correctly, we simultaneously solve the set of differential equations

ȧ
(1)
k = − i

~

∑

j

Vkjδji (6.36)

which results in the Born approximation. By plotting both the results of the direct
calculation of the occupation probability in the Born approximation (4.14) and the
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Figure 6.1: Time evolution of the occupation probabilities of pionium states in the
interaction with Pt at impact parameter b = 1 aπ. The insert shows the
same plot on a linear scale without the initial state (1,0,0).
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interaction with Pt at impact parameter b = 3 aπ. The insert shows the
same plot on a linear scale without the initial state (1,0,0).
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Figure 6.3: Comparison of coupled channel calculation for bound states only with
the results from the Born and Glauber approximation. Plotted is the
transition probability from a pionium 1s to a 2p state. The target is Pt
(Z = 78).

asymptotic values of the solution to (6.36) one can compare the results. Figure 6.3
shows the transition probability from a 1s state to a 2p state due to the interaction
with the Coulomb field of a Pt target atom. One can see that the Born approxima-
tion and the direct numerical evaluation of the time-integral agree quite well. The
numerical procedure appears to work. However, the Glauber approximation and the
full coupled channel calculation do not agree at all. For a Ni target (figure 6.4), the
situation is similar, even though the difference between the results are not as large.
For transitions to states with n > 2, shown in figures 6.5 and 6.6, the difference
between the coupled channel and the Glauber results is even more pronounced.

6.4 Continuum states

One can argue that the discrepancy between the coupled channel calculation with
bound states only and the Glauber calculation arises from not taking into account
any continuum states for the pionium system. It was noted in chapter 5, table 5.1,
(also refer to [13]), that for initial states with n ≤ 2 ionization contributes a large
part to the total cross section (up to 30%). Including at least some continuum states
into the calculation should therefore lower the resulting transition probability for the
bound states.

However, the coupling to the continuum is usually the main difficulty in a cou-
pled channel calculation. Since the calculation of matrix elements for continuum-
continuum transitions are numerically hard to do, we will neglect those transitions.
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Figure 6.4: Comparison of a coupled channel calculation for bound states only, with
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Figure 6.6: Comparison of a coupled channel calculation for bound states only, with
the results from the Born and Glauber approximation. Plotted is the tran-
sition probability from a pionium 1s to 3p and 4p states. The target is Ni
(Z = 28).

6.4.1 Rescaling of the amplitudes

One very simple way to couple the pionium moving through the Coulomb field of
the target atom, is not to track the transitions into continuum states at every time-
step, but to simulate such a transition as happening only once at a certain time t0.
This avoids us having to calculate the transition matrix for every bound-continuum
transition at arbitrary times. Instead, we use the ionization probability P ion

k (b) that
was calculated in first Born approximation and rescale all ak(b, t) at time t0 via

ak(b, t0) ⇐
√

1 − P ion
k (b) ak(b, t0) . (6.37)

One can justify this approach, because the ionization probability is usually largest
for small distances to the target-nucleus. Figure 6.7 shows how the transition prob-
abilities for transitions to the 2p, 3p, and 4p state from the pionium ground state
vary with the time t0 when the transition to the continuum is applied. One can com-
pare the result with the ones shown in figures 6.3 and 6.5 at b = 1 aπ, in atomic
units b ≈ 0.007 a.u. The rescaling, if applied before the pionium passes the atom,
does lower the transition probability and the transition probability comes closer to
the result of the Glauber approximation. This is shown in figure 6.8 for a Pt target
and in figure 6.9 for a Ni target. Unfortunately, even thought there is a qualitative
agreement for a 1s–2p transition, for 1s–3p and 1s–4p transitions (not plotted here),
the results do not look convincing. This is not surprising, since the approximation is
very crude. The transition probabilities, however, are suppressed by the right order
of magnitude.
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Figure 6.8: The transition probability from a 1s to a 2p state for pionium interacting
with a Pt target, as a function of the impact parameter b. We show the
Born and Glauber approximation as solid and dashed lines. The × in-
dicates the result from the coupled channel calculation only taking into
account bound states as the basis set, the ∗ indicates the results of a cou-
pled channel calculation with the rescaling as defined in (6.37) applied at
ct0 = 0.02.
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Figure 6.9: The transition probability from a 1s to a 2p state for pionium interacting
with a Ni target, as a function of the impact parameter b. We show the
Born and Glauber approximation as solid and dashed lines. The × in-
dicates the result from the coupled channel calculation only taking into
account bound states as the basis set, the ∗ indicates the results of a cou-
pled channel calculation with the rescaling as defined in (6.37) applied at
ct0 = 0.02.

6.4.2 Weyl wave packets

A more sophisticated method to describe continuum states of pionium is the use of
Weyl wave packets. One needs to split a certain energy range into finite intervals
centered around Ek with a width ∆Ek. If one integrates the exact continuum wave
function φE exp(−iEt/~) over the energy interval, one obtains the Weyl wave pack-
ets

ΨEk
(r, t) =

1√
∆Ek

∫ Ek+∆Ek/2

Ek−∆Ek/2

φE(r)e−i(E−Ek)t/~ dE . (6.38)

Since the continuum wave functions are normalized on the energy and the energy
intervals do not overlap, the Weyl wave packets are orthonormal. One can also use
stationary wave packets, ΨEk

(r, t) = φEk
(r) exp(−iEkt/~), which have the ad-

vantage that the integration over the energy interval does not contain the oscillating
exponential

φEk
(r) =

1√
∆Ek

∫ Ek+∆Ek/2

Ek−∆Ek/2

φE(r) dE . (6.39)

One can insert the wave packet into (6.8) and separate the continuum wave function
into angular and radial parts as before. The calculation of the matrix element is
then analogous to section 6.2, except that one keeps the integral over the energy and
replaces the radial form factor with the bound-free radial form factor discussed in
section 4.1.2.

We have again tabulated the resulting matrix elements, but since the extra energy
integral makes the numerical calculation very time-consuming, only data for a few
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values of b are currently available (b = 1.0, 1.2, 3.0 aπ). The effect of the coupling to
the continuum in this way turns out to be very small. At b = 1.0, e.g., the difference
between the coupled channel calculation using only bound states and the one using
the Weyl wave packets as well, amounts to 0.26%, at b = 3.0 it is 0.14%. We
checked that the new matrix elements do have some effect on the solution of the
coupled channel equations by scaling them with a factor larger than 1. This does
indeed lower the final transition probability and changes in the final result are quite
dramatic for even small changes in the scaling factor. This shows that a very fine
balance is required to get a numerically stable result.

6.5 Conclusion

We have applied the coupled channel formalism to the problem of calculating the
transition probability between two states of the pionium interacting with a target
atom. We would have liked to show unambiguously that the Glauber calculation
gives the correct results for the excitation cross sections. Since the calculations are
very computer intensive, we only evaluate the transition probabilities as a function
of the impact parameter, instead of the cross section.

The matrix elements for transitions between bound states have been tabulated and
were verified by comparing the result of the numerical time-integration to the Born
approximation. The coupled channel equations were solved using Gear’s method.
Taking into account a basis of bound-states up to n = 6, the resulting transition
probabilities are lower than in Born approximation, as expected, but still much larger
than the Glauber approximation.

Since ionization makes a large contribution to the total cross sections for low lying
states, one can assume that including such effects in the coupled channel calculation
will bring the results closer to the Glauber approximation. Using a simple model to
include ionization effects by rescaling the occupation probability at a time when the
pionium just about passes the target atom, gives a fairly reasonable result, close to
the Glauber approximation.

A more sophisticated way of dealing with transitions into the continuum is to use
pseudo states, for example the Weyl wave packets. The matrix elements between
bound and continuum states take considerably more time to evaluate since another
integral (over the energy E) is involved. The results using a limited set of continuum
states do not improve compared to the ones using only bound states.

The coupled channel approach presented here, should in principle lead to a con-
clusive result to determine whether the large difference between Glauber and Born
approximation (especially for heavy targets) is correct. To keep computation time
reasonable, only limited sets of basis states can be included. So far, we can only
verify, that the first order Born approximation does overestimate the true transition
probability, but not whether the Glauber approximation gives a better estimate.
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7 Monte Carlo simulation of the
evolution of pionium

The DIRAC experiment aims to measure the lifetime of pionium. But, as was shown
in chapter 2, it does not detect the decay products of the annihilation, but instead
counts the number of pion pairs resulting from the breakup (ionization) of the π+π−-
atom. Taken together with the pionium production rate (2.8) this leads to an exper-
imental value for the breakup probability. To translate this breakup probability into
a value for the lifetime of pionium, a relationship between the two values needs to
be found. We can arrive at a dependency (depending on the target materials) of the
breakup probability on τ0, by simulating the evolution of pionium in the target using
Monte Carlo methods. As input we use the cross sections calculated with the meth-
ods of chapter 4 (Born approximation) and chapter 5 (Glauber approximation for
higher orders combined with first order Born approximation), as well as the results
in first order sudden approximation of Afanasyev and Santamarina [61]. In this chap-
ter, these cross section sets will be labeled Born2, Glauber, and Born1, respectively
(ref. to section 7.3).

7.1 The simulation

The simulation of pionium starts with its creation according to the production cross
section (2.8) and terminates when the π+π−-atom has been annihilated, broken-up,
or left the target in a bound state. In between we simulate the interaction of the
π+π−-atoms with the target atoms using the cross sections calculated in the previous
chapters.

7.1.1 Pionium production

As it has been shown in section 2.3, pionium is created due to final state Coulomb
interaction of two oppositely charged pions from the decay of short lived hadrons.
Since the cross section describing the creation of pionium is proportional to the
square of the hydrogen-like wavefunction at the origin, i.e. ∼ |ψnlm(0)|2, it is clear
that pionium is produced in an S-wave state, since

|ψnlm(0)|2 =







(αMπ/2)
3

πn3
if l = m = 0 ,

0 if l 6= 0 .

(7.1)
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Figure 7.1: Laboratory momentum magnitude and angular distribution of low rela-
tive momentum π+π−-atoms.

We can therefore set the initial quantum numbers of the π+π−-atoms by drawing n
from a 1/n3 distribution and letting l = m = 0.

The distribution of the initial momentum (magnitude and angular) is somewhat more
complicated to do accurately and depends on experimental data (figure 7.1) Where
available, this information has been used to specify the initial distribution of the
laboratory momentum of the π+π−-atoms, but using simplified initial conditions
(P = Pavg, θ = 0) made very little difference to the final result and made the
simulation much easier to implement.

The final parameter to be specified before starting the simulation is the position of
the pionium production. Since the target width was chosen such that the nuclear in-
teraction length is much larger than the width, π+π−-atoms are generated uniformly
throughout the target. Furthermore, the transverse coordinates are unimportant, as
the atoms travel very close to the beam direction (compare right-hand graph of fig-
ure 7.1) and will therefore only leave through the sides perpendicular to the proton
beam.

7.1.2 Pionium annihilation

Once an atom has been created in its initial state, specified by P , n, l, and m, its
dynamics are those of a free system that can either be annihilated, mainly via the
π+π− → π0π0 channel [21], or be electromagnetically scattered by one of the target
atoms.

The annihilation probability is inversely proportional to the lifetime of the atomic
bound state. The strong interaction decay to two neutral pions dominates the lifetime
and is related to the a0

0 − a2
0 scattering lengths difference and to the wave function at

the origin by

1

τnlm

=
16π

9

√

M2
π −M2

π0 − 1
4
M2

π α
2

Mπ

(

a0
0 − a2

0

)2
(1 + δΓ) |ψnlm(0)|2 , (7.2)

where Mπ and Mπ0 are the masses of the charged and the neutral pion, respectively,
and δΓ is a correction to next-to-leading order (δΓ = 0.058) [62]. Using Chiral Per-
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turbation Theory, Colangelo et al [22] have been able to calculate the most precise
value for the scattering lengths difference to date (a0

0 − a2
0 = 0.265 ± 0.004). Em-

ploying this value in (7.2) yields

τ100 = (2.9 ± 0.1) · 10−15 s. (7.3)

Note, however, that due to (7.1), pionium may only decay from S states. Moreover,
the lifetime of any S state is related to the lifetime of the ground state, by

τn00 = n3τ. (7.4)

For the purpose of simulating pionium in the target, we shall from now on refer to τ
as the pionium lifetime.

Hence, the probability for a π+π−-atom to be annihilated per unit length, after the
Lorentz transformation to the laboratory system, is given by

panh
nlm =

1

λanh
nlm

=







2Mπ

Pn3τ
if l = m = 0,

0 other cases,
(7.5)

where λanh
nlm is the annihilation mean free path.

7.1.3 Electromagnetic interaction of pionium with the
target

The electromagnetic pionium–target scattering of a pionic atom in an initial nlm
bound state can induce a transition to another n′l′m′ bound state. The probability of
such an interaction per unit length is given by

pn′l′m′

nlm =
ρN0

A
σn′l′m′

nlm , (7.6)

where ρ is the target density, A its atomic weight, N0 is the Avogadro number, and
σn′l′m′

nlm are the discrete (bound–bound) transition cross sections.

The breakup mechanism is analogous to the discrete one; the breakup probability per
unit length of an atomic bound state nlm is given by

pbr
nlm =

1

λbr
nlm

=
ρN0

A
σbr

nlm , (7.7)

where σbr
nlm is the breakup (ionization) cross section.

Finally, the total cross section gives the probability of an atom to undergo an elec-
tromagnetic interaction and of course fulfills

σem
nlm =

∑

n′l′m′

σn′l′m′

nlm + σbr
nlm . (7.8)



76 CHAPTER 7. MONTE CARLO SIMULATION

The total probability for a pionic atom to suffer an electromagnetic collision per unit
length is then given by

pem
nlm =

1

λem
nlm

=
ρN0

A
σem

nlm , (7.9)

where λem
nlm is the mean free path before an electromagnetic interaction takes place.

Exploiting the completeness of the eigenstates of the Coulomb Hamiltonian the total
electromagnetic cross sections can be calculated directly and not just via (7.8). In
the previous chapters, the total cross section was usually indicated as σtot, it was
calculated in the Born approximation in section 4 and in the Glauber approximation
in section 5 equation (5.17).

The electromagnetic cross sections have been obtained with different approaches
in [13, 14, 15, 17, 18] (refer also to chapters 4 and 5). We will devote section 7.4 to
discussing the different breakup probabilities they lead to.

To get an insight into the magnitude of these interaction probabilities, we show in
figure 7.2 the average values of the annihilation, ionization, de-excitation, and ex-
citation probabilities per unit length. The average is taken over the even z-parity
states (i.e., l − m even) for fixed n. The atoms are created in even z-parity states
(l = m = 0) and the transitions to odd z-parity states are strongly suppressed.
The figure shows the probabilities using the coherent (interaction with the atom as a
whole) contribution of the Born2 set of cross sections. Any other choice among the
cross section sets described in section 7.3, would lead to very similar results. The
averages are defined as

panh
n =

1

n(n+ 1)/2

∑

lm

panh
nlm , (7.10)

pbr
n =

1

n(n+ 1)/2

∑

lm

pbr
nlm , (7.11)

pn′<n
n =

1

n(n+ 1)/2

∑

lm

∑

n′<n,l′m′

pn′l′m′

nlm , (7.12)

pn′>n
n =

1

n(n+ 1)/2

∑

lm

(

pem
nlm − pbr

nlm −
∑

n′≤n,l′m′

pn′l′m′

nlm

)

, (7.13)

where n(n+ 1)/2 is the number of even z-parity states for a given n.

7.1.4 Pionium evolution in the target

To simulate the evolution of a pionic atom we use, in principle, the following algo-
rithm:

1. We generate a laboratory momentum P , an initial set of quantum numbers,
and an initial position R for the atom as described in subsection 7.1.1.
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Figure 7.2: Annihilation, ionization, de-excitation and excitation probabilities per
unit length according to equations (7.10), (7.11), (7.12), and (7.13).

2. We generate a free path according to:

p(x) dx =
1

λnlm

e−x/λnlm dx (7.14)

where λnlm = λem
nlmλ

anh
nlm/(λ

em
nlm + λanh

nlm) is the mean free path before either an
interaction or the annihilation takes place.

3. We displace the atom by the distance x:

R′ = x
P

P
+ R. (7.15)

4. We determine whether the atom has been annihilated, excited (or de-excited)
in a discrete collision, or broken up. The relative weights of the re-
spective branches of the evolution are given by the probabilities of equa-
tions (7.5), (7.6), and (7.7).

5. If the atom has been scattered and suffered a discrete transition, we return to
step 2 using the new quantum numbers n′, l′ and m′ and the new position R′

as the initial values.

7.2 Breakup probability calculation

In principle, the breakup probability calculation of pionium should be straightfor-
ward once we have established the Monte Carlo model. The rest would be a matter
of generating an atom sample and computing how many of them break up in the
target. However, two main difficulties arise when trying to implement the algorithm.

The first difficulty is due to the presence of an infinite number of atomic bound
states in the calculations. Clearly, only a finite number of states can be taken into
account in the simulation of the evolution of pionium. In our calculations we have
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imposed a cut on the states with n ≤ nmax. This would not pose a serious problem
if the atoms, being created mainly in very low n states, could not get highly excited.
Unfortunately, excitation to ever higher lying bound states constitutes a major branch
in the evolution of pionium. As a consequence we cannot directly calculate the
breakup probability as outlined in the previous paragraph.

The second difficulty arises from the fact that we have not calculated the ionization
cross section σbr

nlm needed in (7.11) for all cross section sets. These cross sections
are only available in first order Born approximation [13, 14, 15]. We therefore need
an indirect way to compute the breakup probability without referring to the breakup
probability per unit length.

We have discussed in the previous section that pionium terminates its evolution in
the target by being either annihilated or broken up. However, the atom can also leave
the target in a bound state. This would happen if one of the generated free paths in
the Monte Carlo procedure carries it to a position outside the target. The breakup
probability (Pbr), the annihilation probability (Panh), and the probability to leave the
target in a discrete state (Pdsc) are related by:

1 = Pbr + Panh + Pdsc . (7.16)

This equation allows us to compute the breakup probability indirectly.

7.2.1 Computational difficulties due to physical
characteristics of the problem

The probability to generate an atom in a specific shell decreases as 1/n3. This means
that the number of atoms created with n ≥ 4 is very small. If the atoms could not get
excited to states with large n, we could safely solve the evolution system by setting
nmax > 4. However, as we saw in figure 7.2, the atoms have a tendency to be excited,
as n increases, rather than being annihilated or ionized.

Hence we expect a significant fraction of atoms excited into n > nmax shells, even
for large values of nmax. The probability of an atom in a nlm state to be excited into
a state beyond the cut, i.e. with n > nmax, is given by

pn′>nmax
nlm = pem

nlm − pbr
nlm −

∑

n′≤nmax, l′m′

pn′l′m′

nlm (7.17)

where we have used (7.6), (7.7) and (7.9). However, once the atom jumps into one
of these states we loose control over it and we have to stop its evolution.

To analyze the change of the Monte Carlo results with nmax we have modeled the
evolution of a sample of atoms by changing nmax from 7 to 9. We observed three
main effects:

• The fraction of annihilated atoms (Panh(n ≤ nmax)) does not change signifi-
cantly.
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Figure 7.3: Probabilities of finishing the evolution in a discrete state (a), by annihi-
lation (b), or by ionization (c) as a function of the parent state’s principal
quantum number. In (d) we show the probability for an atom in a state n
to be excited into a non-controlled state with n > 8. The results are for
pionium in a 95 µm Ni target and the lifetime is assumed to be 3 ·10−15 s.

• The portion of atoms leaving the target in discrete states (Pdsc(n ≤ nmax))
changes only slightly.

• The fraction of dissociated atoms (Pbr(n ≤ nmax)) changes significantly.

This effect can be understood by checking the dependence of the annihilation, the
discrete and the breakup probabilities on n, the principal quantum number of the
state from which the atom was annihilated, broken-up, or in which it left the target.
In figure 7.3 we show the result of the Monte-Carlo simulation with nmax = 8 for
a sample of one million atoms using the Born2 cross section set that also includes
cross sections for the ionization (refer to section 7.3). For the annihilated atoms we
can see that Panh(n) is negligible for values of n & 4. The Pdsc(n) dependence also
shows a fast, but less drastic, decrease with n. Only the solution for the states with
n = nmax − 1 or n = nmax − 2 is unstable under variation of nmax. For nmax = 8
this is a small contribution to the total Pdsc value. Finally, Pbr(n) decreases very
slowly with n, showing that there is a significant fraction of atoms broken up from
states with n > nmax. The probability of an atom to be excited into such a state with
n > nmax is also shown as a function of the principal quantum number of the last
state before the excitation. Obviously, this effect is non-negligible.

For the cross section sets without breakup cross sections, we can only calculate di-
rectly the total probability for all electromagnetic processes and the probabilities for
discrete transitions to states with n′ < nmax. In these cases we cannot, therefore, dis-
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tinguish whether an atom has been broken up or excited into a state with n′ > nmax,
that is, we can only determine the combination of probabilities

pn′>nmax
nlm + pbr

nlm = pem
nlm −

∑

n′≤nmax, l′m′

pn′l′m′

nlm . (7.18)

This is, of course, equivalent to (7.17), but in this case pbr
nlm is unknown. Thus, for

these cross section sets not even the breakup probability for low n states could be
directly calculated and we are forced to use the procedure described below.

7.2.2 Calculation procedure

Based on the fast decrease of Panh and Pdsc as a function of n we can assume that
almost every atom excited to a state n > nmax will eventually be broken up. This is
true even though the excitation probability per unit length of a given bound state is
significantly larger than the breakup probability per unit length. We can explain it as
follows. The mean free path of the excited atoms strongly decreases with increasing
n. For n ∼ 8 the mean free path is . 0.1 µm. An excited atom will thus interact
many times within a very short distance. In every scattering event, the atom will have
some small probability to break up, thereby terminating its evolution. In summary,
the most probable evolution of an atom that has been excited to any state with n & 4
is a sequence of excitations (and less frequent de-excitations) terminated by breakup.

However, while we are neglecting the atomic annihilation from states with n > 8
and thus setting Panh = Panh(n ≤ 8), we can estimate Pdsc(n > 8) by means of a fit
to the Pdsc(n) histogram as recommended in [18]

Pdsc(n > 8) =
a

n3
+

b

n5
. (7.19)

A simplified way to use (7.19) is to solve for the coefficients a and b with the values
of Pdsc(nmax − 1) and Pdsc(nmax − 2) to obtain

a =
(n− 1)5Pdsc(nmax − 1) − (n− 2)5Pdsc(nmax − 2)

2n− 3
, (7.20)

b = (n− 1)5Pdsc(nmax − 1) − a . (7.21)

Now the sum over Pdsc(n > nmax) can be performed and it can be written in terms
of the polygamma function

∞
∑

n=nmax+1

Pdsc(n > nmax) = −0.5aΨ2(nmax + 1)− 1/24bΨ4(nmax + 1) , (7.22)

which is defined as

Ψn(x) =
dn ln(x)

dxn
. (7.23)
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Table 7.1: Results for the different probabilities defined in (7.16), as calculated with
the Born2 cross section set for a sample of ten million pionic atoms in a
95 µm thick Nickel target.

τ [10−15 s] Pbr Panh Pdsc(n ≤ 8) Pdsc(n > 8)

1 0.2976 0.6527 0.0491 0.0006
2 0.3951 0.5287 0.0754 0.0008
3 0.4599 0.4451 0.0941 0.0009
4 0.5062 0.3848 0.1080 0.0010
5 0.5408 0.3392 0.1190 0.0010
6 0.5681 0.3029 0.1279 0.0011
7 0.5901 0.2740 0.1348 0.0011

Hence, taking into account (7.16) we obtain

Pbr = 1 − Pdsc − Panh, (7.24)

where Pdsc consists of two parts,

Pdsc = Pdsc(n ≤ 8) + Pdsc(n > 8), (7.25)

of which Pdsc(n ≤ 8) is computed directly and Pdsc(n > 8) is calculated from (7.19).
In this manner, we can calculate the breakup probability even without ionization
cross sections as input.

In table 7.1 and in figure 7.4 (top left) we show a few results for the probability
for different lifetime values in a 95 µm Ni target. The target choice coincides with
that of the DIRAC experiment. We observe that the result of Pdsc(n > 8) adds
only a small correction. In figure 7.4 we also show the ionization and annihilation
distributions as a function of the target depth, and finally, the creation position for
those atoms that managed to emerge from the target in a bound state. As emphasized
in subsection 7.2.1, with increasing n only the atoms very near the target end will be
able to leave the target in a discrete state.

7.3 Cross section sets

In our calculations of the breakup probability we employed three different sets of
cross sections. The first two have been calculated in the framework of the Born
approximation. We assign the labels Born1 to the calculations made in reference [18]
and Born2 to those of [13, 14, 15]. The two sets differ in four main points:

• The Born1 set neglects the contribution of incoherent scattering (collisions
leading to an excitation of one or several electron(s) of the target atom), thus
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Figure 7.4: Top left: The breakup, annihilation, and discrete probabilities as a func-
tion of lifetime. Top right: Breakup and annihilation position distribu-
tions. Bottom: Creation position of those atoms that leave the target in
a bound state (and contribute to Pdsc). Note that as n increases, only the
atoms very near the target end can escape from it. All three plots refer to
a 95 µm Ni target. In the last two, the lifetime is assumed to be 3·10−15 s.
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considering the coherent contribution only (collisions with the target atom as
a whole), i.e. the leading term. By contrast the Born2 set accounts for target
excitations.

• The Born1 set uses Molière’s parameterization [51] for the Thomas-Fermi
equation solution as the target atom form factor of the pure electric interac-
tion, whereas the Born2 set takes electron orbitals determined numerically
within the Hartree-Fock framework for the same purpose. The Thomas-Fermi-
Molière parameterization of the atomic form factor is accurate for low momen-
tum exchange, but gives a small excess for harder scattering.

• The Born1 set considers the sudden approximation (no recoil energy for the
target and the pionic atom) and neglects the energy difference between the
initial and the final state, while the Born2 set accounts for these two effects.

• Finally, the Born2 set also considers the effect of magnetic and relativistic
terms.

In principle it has been concluded [15] that accounting for second order effects like
the magnetic terms of the Hamiltonian, the recoil energy of the atoms, or the rel-
ativistic terms, generally leads to an overall decrease of the sudden approximation
pure electrostatic coherent cross section value due to destructive interference with the
leading orders. Moreover, employing atomic orbitals obtained in the Hartree-Fock
approach for the form factor used to compute these cross sections leads to lower val-
ues than those of the Born1 set, since the Molière parameterization of the solution
to the Thomas-Fermi equation is excessive for mean and large values of the photon
momentum transfer. This last issue leads to discrepancies that increase for large n
states and decrease for large Z target atoms. The difference appears to be balanced
by neglecting the incoherent contribution to the cross section in the Born1. This re-
sults in a systematically smaller ground state cross section of the Born1 set, whereas
for larger n, the Born1 cross sections are larger (up to ∼ 10% discrepancy) or com-
patible with the Born2 results. We show comparison of the different sets for three
target materials in figure 7.5 and we shall analyze the disagreement in the breakup
probability resulting from this effect.

Finally, we have also used a set of cross sections where the Glauber formalism has
been applied to calculate the coherent contribution to the cross section value. The
details are shown in [17]. This calculation technique accounts for multi-photon ex-
change in the pionium–target atom collision. Contrary to what one would expect, the
consideration of more than one photon being exchanged diminishes the values of the
cross sections due to a destructive interference of the n-photon exchange contribu-
tions (this happened also when accounting for magnetic terms in the Born2 set). The
leading order of the Glauber result matches the sudden approximation of the Born
cross sections (since both neglect the difference between the initial and the final state
energies). However, this cross section set uses a parameterization for the target atom
form factors similar to the ones used in the Born2 set. This explains the disagree-
ment with respect to the Born1 and the agreement with Born2 set for low Z targets,
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Figure 7.5: In the left column we compare the Born1 and Born2 cross section sets.
The middle column shows a comparison of the Born1 and Glauber sets
and finally on the right we compare the Born2 and Glauber sets. The
comparison is made for Titanium (Z = 22), Nickel (Z = 28) and Plat-
inum (Z = 78). The plots refer to total electromagnetic cross sections
averaged over m for even z-parity states.
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as can be seen in figure 7.5. The corrections due to multi-photon exchange are im-
portant for large Z targets [17] and this explains the large discrepancies obtained for
Platinum.

7.4 Results and conclusions

After the discussions of the previous sections, we finally present the results of
the breakup probability calculation. The DIRAC experiment has the possibility of
choosing between several targets. These different targets have been designed to
achieve the maximum breakup probability resolution in different lifetime ranges.
Large Z targets with larger interaction cross sections are better suited for small life-
time values, whereas smaller Z materials are more sensitive to larger lifetime values.
Three of these targets are the Pt 28 µm target, used for lifetime ranges τ < 1·10−15 s,
the Ni 95 µm target1 for τ ∼ 3 · 10−15 s and the Ti 251 µm target for τ ∼ 4 · 10−15 s.
The target thickness was chosen so as to have the same radiation length and hence
equivalent multiple scattering effects for all three targets.

In figure 7.6, the breakup probability curves are shown for these three targets. The
calculation has been carried out for samples of ten million events, with a statistical
error less than 0.08%.

One can clearly see that for the Ti and Ni targets the Glauber and Born2 sets lead
to similar results whereas the Born1 set shows an 8% disagreement. For the large
Z target (Pt) both Born1 and Born2 are biased toward large values. In this case,
the multi-photon contributions to the cross sections are significant. In any case, the
discrepancies between the breakup probability results are at the level of the discrep-
ancies between ground state cross sections and much smaller than the differences
between the cross section sets for medium or highly excited states. We can under-
stand this based on the fact that the probability for transitions to discrete states from
states other than the ground state and maybe the first excited shell Pdsc(n & 2), is
of the order of, or smaller than, 5%. Hence, even large uncertainties in this magni-
tude (up to 10 − 15%) lead to very small changes in the breakup probability result.
Only discrepancies in the ground state population and maybe the first excited shell,
where most of the atoms are created, would lead to significant differences between
the breakup probability results of the different sets.

Graphically we can view the atom as a balloon being inflated in every collision with
the target. The different sets will lead to similar size increase rates as long as the
atom remains in a low excited state. However, as the atom grows (inflates), it will
no longer be able to advance as easily in the target due to its large size and will
finally break up (explode). Large discrepancies in the excitation and breakup rate of
the excited atom will not be important given that the mean free paths for the excited
states are very small compared to the target dimensions.

1The Nickel target constitutes DIRAC’s main target with which 90% of the data have been measured,
as it is optimal for the theoretically predicted lifetime value.



86 CHAPTER 7. MONTE CARLO SIMULATION

Table 7.2: Comparison of the breakup probability results for the Ti 251 µm, the Ni
95 µm and the Pt 28 µm targets. The lifetime value is assumed to be
3 · 10−15 s in the calculations.

Target PBorn1

br PBorn2

br PGlauber

br 1 − PBorn2

br

PBorn1

br

1 − PGlauber

br

PBorn1

br

1 − PGlauber

br

PBorn2

br

Ti 0.3026 0.3249 0.3232 −7.4% −6.8% 0.5%
Ni 0.4425 0.4599 0.4555 −3.9% −2.9% 1.0%
Pt 0.7137 0.7196 0.6924 −0.8% 3.0% 3.8%

In summary, the high precision measurement attempted by the DIRAC collaboration
requires an accuracy to better than 1% in our theoretical breakup probability calcu-
lations. We note that the seemingly large discrepancies among our different cross
section sets particularly for pionium transitions starting from highly excited states,
do not lead to significant differences in the theoretical breakup probabilities. The
discrepancies between breakup probabilities stem almost entirely from differences in
the cross sections for the lowest lying states, where both the atomic structure of the
target and the multi-photon transitions need to be treated as accurately as possible.
This challenge, however, has already been mastered in our previous work [15, 17]
where we showed that the required 1% accuracy can be achieved with our calcu-
lations, albeit only with the Born2 and the Glauber sets for low Z and with the
Glauber set for large Z targets. The important conclusion of the present investiga-
tion is the finding that the (infinitely many!) highly excited states of pionium do
not limit the validity of our approach even though we can explicitly include only a
moderate number of these states in our simulations.
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Figure 7.6: The breakup probability results for the three cross section sets and the
three target materials.
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8 Conclusions and outlook

For the success of the DIRAC experiment, the Coulomb interaction between target-
atoms and pionium needs to be very well understood. The excitation, ionization,
and total cross sections have been calculated in first order Born approximation to
the highest level of accuracy. These calculations, at first, only included the major
contribution due to the scalar potential. They were then extended to include target-
excitations (incoherent scattering), which was seen to contribute quite strongly for
targets with small nuclear charge Z. It was also shown that the corrections due
to incoherent scattering cannot be estimated simply by scaling the coherent cross
section with a factor 1 − 1/Z. The first order Born calculations were completed by
evaluating the terms containing the vector potential A and relativistic corrections.
The corrections due to terms containing one factor of A turned out to be smaller
than 1% and the others even smaller.

Higher order terms were evaluated in Glauber theory. As was known before for
the total cross sections, they contribute significantly to the excitation cross sections,
especially for targets with large Z. In fact, for Pt, e.g., the corrections can be about
24% for the excitation cross sections which is even larger than what had been found
for the total cross sections. We compared the first few terms of the Glauber series
to the full result. For small values of Z < 10 one can use the first order term only,
for values up to Z < 30 including a second order correction is sufficient, and up
to Z < 60 including third order terms is accurate enough. However, this procedure
cannot be easily done for all transitions since second, third, etc., order corrections
are already difficult to calculate for simple transitions. It seems best to do the full
Glauber calculation and evaluate the higher order terms by the subtraction method
that was presented in chapter 5.

Because the difference between first order Born and Glauber approximation is fairly
large, we should be able to show in an independent calculation that the Glauber
approximation indeed gives the correct result. The coupled channel approach was
chosen. Including continuum states into the calculation was a problem that unfor-
tunately could not be solved completely. The results that include only bound states
as the basis for the wave function of pionium, already show that the Born approxi-
mation overestimates the transition probability. Using a rescaling procedure of the
amplitudes lowers the transition probabilities even further so that they almost reach
the Glauber transition probabilities. Including Weyl wave packets for the continuum
basis states did not show any significant effect. From these results it is not conclusive
that the Glauber approximation gives the most accurate values for the cross sections,
but it could be shown that the Born approximation overestimates the correct results.

Finally, we calculated from the different cross sections the resulting relation between

89



90 CHAPTER 8. CONCLUSIONS AND OUTLOOK

the breakup probability and the lifetime, that is needed for the experiment DIRAC.
A Monte Carlo simulation of pionium passing through the target was performed
which shows that the differences between the cross section sets are significant. For
light targets (Ti and Ni), the main contribution is the incoherent scattering, the re-
lation between breakup probability and lifetime shows little effect if one includes
the higher order corrections from the Glauber calculation. For the heavy target Pt,
the main difference is due to the higher order corrections. It has been shown that
the simulation can be performed even without information about the ionization cross
sections. For the most accurate calculation of the relation between the lifetime of
pionium and the breakup probability accessible by experiment, we suggest to use the
very accurate coherent and incoherent first order Born results of [14, 15] together
with the higher order corrections calculated in Glauber theory [17].

Further work should be done to clearly verify (or possibly reject) the Glauber results
by a full coupled channel calculation. The evaluation of all the necessary matrix ele-
ments is very time consuming, however. One could also try to extend the Glauber ap-
proximation to include incoherent scattering and also to include the magnetic terms
of the Hamiltonian. This does seem a formidable task, though, since one does not
have a closed form for the eikonal in those cases. It would also be interesting to see
how the results of the Monte Carlo simulation are affected by changing the cross sec-
tions systematically. This would give clearer information about how accurate they
really need to be calculated. So far it is only stated that they need to be accurate to
1% or better.

It will be interesting to see the outcome of the experiment DIRAC in the next few
years. Due to the experimental difficulties of extracting the pionium signal from the
background, reaching the targeted accuracy of 10% for the lifetime (corresponding
to about 4% for the breakup probability) will be a great achievement.
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Doktorand bei Prof. R.D. Viollier



96 LEBENSLAUF

01/2000–07/2003 Universität Basel, Schweiz,
Fortsetzung der Promotion bei Prof. D. Trautmann
Thema:

”
Excitation and Breakup of π+π−-Atoms at High Ener-

gies“

Anstellungen

04/1994–02/1995 Assistent im Physikpraktikum der Drittsemester und System
Administrator im CIP Pool des Physikinstituts an der TU Claus-
thal
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02/1997–12/1999 Stipendium für ausländische Studenten von der Universität Kap-
stadt

2000 Research Associate an der Universität Kapstadt

seit 01/2000 Stipendium vom Schweizerischen Nationalfond

Fremdsprachen
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