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The Hilbert space dimension of a quantum system is the most basic quantifier of its information content.
Lower bounds on the dimension can be certified in a device-independent way, based only on observed
statistics. We highlight that some such “dimension witnesses” capture only the presence of systems of some
dimension, which in a sense is trivial, not the capacity of performing information processing on them,
which is the point of experimental efforts to control high-dimensional systems. In order to capture this
aspect, we introduce the notion of irreducible dimension of a quantum behavior. This dimension can be
certified, and we provide a witness for irreducible dimension four.
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Introduction.—The Hilbert space dimension of a quan-
tum system limits the amount of information that can be
stored in it. The study of the power of fixed-dimensional
systems is still topical today [1–3], and several experi-
mental groups are implementing high-dimensional encod-
ing and decoding of information [4–6]. Thus, for the
purposes of quantum information processing, a proper
certification of dimension should capture the users’ capac-
ity of exploiting that dimensionality, not just the dimension
that “is there”—after all, the simplest particle or a single
mode of any field are already infinite-dimensional. To put it
with another example: two qubits are a ququart, but merely
using a source of qubits twice does not guarantee the ability
of processing the information of a ququart.
The past decade has seen the rise of device-independent

certification: some important properties of quantum devices
can be assessed by looking only at the observed input-output
statistics. A lower bound on the Hilbert space dimension can
be certified in this way. Such device-independent dimension
witnesses (DIDWs) exist both as prepare-and-measure
schemes [7,8] and as Bell-type schemes [3,9–11]. But which
notion of dimension do they capture?
In this Letter, we first show that some existing DIDWs

unfortunately capture only the dimension that is there. As
such, they can certify high dimension while only sequential
procedures are being implemented, like using a source of
qubits several times and implementing classical feedfor-
ward. Having brought this issue to the fore, we define the
dimension irreducible under sequential operations, or
simply irreducible dimension, that can be inferred from
the available observations. Finally, we introduce a witness
of irreducible dimension four, that can be violated by a pair
of ququarts and suitable measurements. This shows that
one can obtain device-independent bounds for a notion of
dimension more attuned to the needs of quantum informa-
tion processing.

Sequential violation of dimension witnesses.—We focus
on bipartite scenarios involving two noncommuni-
cating parties, Alice and Bob. Alice’s possible measure-
ments are labeled by x ∈ X, and her outcomes a ∈ A.
Bob’s measurements are labeled by y ∈ Y, and his out-
comes b ∈ B. Device-independent statements rely only
on the family of probability distributions (the “behavior”)
P ¼ fPða; bjx; yÞja ∈ A; b ∈ B; x ∈ X ; y ∈ Yg.
As the title of the original Letter goes, the family of

inequalities derived by Collins-Gisin-Linden-Massar-
Popescu (CGLMP) was meant to detect the nonlocality
of high-dimensional quantum systems [12]. These inequal-
ities, that have two inputs and d outputs for both parties
(x; y ∈ f0; 1g, a; b ∈ f0; 1; 2;…; d − 1g), are therefore
natural candidates for dimension witnessing: indeed, the
first example of a DIDW was based on CGLMP3 [9], and
semi-device-independent witnessing of dimensions up to
20 was reported using the CGLMP family [4]. The DIDW
character of CGLMP4 was studied more recently: it was
found that a violation greater than I4 ¼ 0.315 lower bounds
the dimension of the measured system to entangled
ququarts [13].
One of the behaviors that exceeds the latter bound is

PMES4 obtained by taking the maximally entangled state
(MES) of two ququarts jΦ4iAB¼1

2
ðj00iþj11iþj22iþj33iÞ

and performing the local projective measurement on the
bases [14,15]

jaxi ¼
X3

k¼0

ei
π
2
ak

2
eikαx jki; ð1Þ

jbyi ¼
X3

k¼0

e−i
π
2
bk

2
eikβy jki; ð2Þ

with α0 ¼ 0, α1 ¼ ðπ=4Þ, β0 ¼ −ðπ=8Þ, and β1 ¼ ðπ=8Þ.
Indeed, one would find IðPMES4Þ ≈ 0.336 [13].
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Consider now the following encoding of a ququart into
two qubits:

j0i ↦ j0i ⊗ j0i; j1i ↦ j0i ⊗ j1i;
j2i ↦ j1i ⊗ j0i; j3i ↦ j1i ⊗ j1i: ð3Þ

If both Alice and Bob perform this encoding, it is
well known that the MES is mapped to the product of
two two-qubit MESs: jΦ4iAB ↦ jϕþiA1B1

⊗ jϕþiA2B2
,

with jϕþi ¼ ð1= ffiffiffi
2

p Þðj00i þ j11iÞ. But here, also the
optimal measurement bases (1) and (2) factor as sequential
measurements. For Alice’s (Bob’s being analog), it reads

j0xiA ↦ jþ2αxiA1
⊗ jþαxiA2

;

j1xiA ↦ j−2αxiA1
⊗ jþαxþπ

2
i
A2
;

j2xiA ↦ jþ2αxiA1
⊗ j−αxiA2

;

j3xiA ↦ j−2αxiA1
⊗ j−αxþπ

2
i
A2
;

where j�φi ¼ 1ffiffi
2

p ðj0i � eiφj1iÞ are the eigenstates of

σφ ¼ cosφσx þ sinφσy. Explicitly, this means that one
can produce the behavior PMES4 by the following sequen-
tial strategy: (i) The source sends out a pair of maximally
entangled qubits. Given x, Alice measures her qubit in the
basis j�2αxi; given y, Bob measures his qubit in the basis
j�2βyi. (ii) Later, the source sends out a second pair of
qubits. If Alice obtained the outcome þ in her first
measurement, she now measures the second qubit in the
basis j�αxi; if she obtained −, in the basis j�αxþπ

2
i. Bob

follows the analog procedure.
In particular, one ends up certifying dimension four on

both sides, where only a two-qubit source (admittedly used
twice), single-qubit local manipulations, and classical
feedforward were implemented. For a sequential violation
of the CGLMP inequality when the number of outcomes d
that is a power of two, see also [16]. In Supplemental
Material [17], Sec. I, we show that the qutrit dimension
witness based on CGLMP3 [9] may also be violated using
solely two-qubit sources and sequential single-qubit
measurements.
Hoping to better capture the experimental effort in proper

high-dimensional quantum experiments rather than sequen-
tial procedures, we introduce the notion of dimension
irreducible by sequential operations, or simply irreducible
dimension, of a quantum behavior; and we provide an
example of a DIDW that certifies irreducible dimen-
sion four.
Correlations from sequential d-dimensional systems.—

Let us define a sequential d-dimensional model as con-
sisting of (i) d-dimensional sources (dimensionality),
(ii) operations and measurements performed sequentially
on each d-dimensional system, possibly feeding forward

the measurement outcomes (sequentiality), and (iii) arbi-
trary local classical processing and shared randomness.
We then say that a behavior is sequential d-dimensional

compatible if it can be obtained with each involved
party individually following a sequential d-dimensional
model. The set of sequential d-dimensional compatible
behaviors can be seen to be the closure under wiring
[19,20] of the set of d-dimensional quantum correlations
[3,21]. Unfortunately, few explicit sets are known to be
closed under wiring, and in general it is not known how to
characterize the closure under wiring of a given set [19,20].
The smallest d such that the behavior is sequentially d-

compatible is called the dimension irreducible by sequen-
tial operations, or simply the irreducible dimension of the
behavior. Every behavior that can be simulated with
classical resources, including those describing prepare-
and-measure schemes, has irreducible dimension 1. Just
as for entanglement or nonlocality, nontrivial irreducible
dimension must necessarily involve more than one party.
The behavior PMES4 has irreducible dimension 2.
Given the previous example, one may fear that any

probability distribution can be achieved by combining
sufficiently many sequential measurements on qubit sys-
tems, rendering irreducible dimension witnessing a some-
what trivial exercise also in the quantum case. Fortunately,
this is not the case: there exist distributions that lower
bound the dimension of the involved devices to more than
two even when sequential strategies are considered.
A quantum behavior with irreducible dimension four.—

A witness for irreducible dimension four must rule out
sequential measurements on consecutive qubits and qutrits.
We do not know how to express all of these constraints
as a function of the observed probability distributions
Pða; bjx; yÞ in simple terms. In order to construct an
example, we notice that an entangled measurement, one
whose eigenvectors are entangled states, cannot be sequen-
tial, since an entangled measurement cannot be achieved
even with bidirectional classical communication. Besides,
the minimal dimension to have entanglement is d ¼ 4 (two
qubits). Thus, certification of such a measurement guar-
antees that a four-dimensional nonsequential operation is
performed.
The possibility of certifying entangled measurements

was demonstrated in the entanglement-swapping confi-
guration, i.e., in a tripartite scenario, either assuming
knowledge of the dimensions [22] or in the fully device-
independent setting [23]. Exploiting a recent result on self-
testing [24], we construct an explicit behavior for a bipartite
scenario, such that one of Bob’s measurements can be
certified to be entangled.
Our behavior, denoted PBSM ¼ fPða; bjx; yÞ∶a; b;

x ∈ f0; 1; 2; 3g; y ∈ f0; 1; 2; 3; 4gg, uses four measure-
ments for Alice and five measurements for Bob, each
having four possible outcomes. The entangled measure-
ment will be y ¼ 4. We need the other measurements to
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first establish that both Alice’s and Bob’s systems are
composed of two subsystems in a local separable state,
which cannot be assumed a priori in a device-independent
setting.
Let us first leave y ¼ 4 aside. The parties label each of

the four-valued input and outcomes a; b; x; y ∈ f0; 1; 2; 3g
as two bits: c ¼ 2c1 þ c2 → ðc1; c2Þ. If

Pða;bjx;yÞ¼
Y

i¼1;2

P2
ffiffi
2

p ðai;bijxi;yiÞ;x;y∈f0;1;2;3g; ð4Þ

where P2
ffiffi
2

p is the unique probability point that violates
maximally the Clauser-Horne-Shimony-Holt (CHSH)
inequality, then the state shared between Alice and Bob
is self-tested to the product jϕþiA1B1

⊗ jϕþiA2B2
of two

maximally entangled two-qubit states [24]. Thus, (4)
certifies that there are indeed two subsystems in a separable
state, both on Alice’s side (denoted A1 and A2) and on
Bob’s (B1 and B2). In this situation, if A1 and A2 are found
entangled conditioned on the outcome of y ¼ 4, then y ¼ 4
must be an entangled measurement on B1 and B2.
In order to test entanglement on Alice’s side, we need

suitable measurements, local on her subsystems—and we
have got them already. Indeed, it is an important feature of
self-testing that not only the state but also the measure-
ments on the subsystems are self-tested as the optimal
measurements for jϕþi to violate the CHSH inequality
[24]. Thus, we know that Alice’s measurements are
σz ⊗ σz, σx ⊗ σz, σz ⊗ σx, and σx ⊗ σx, up to local
isometries.
Now we have a simple recipe to finish the construction of

PBSM: for the measurement labeled y ¼ 4, we choose the
Bell-state measurement (BSM) on B1 and B2, which
prepares A1 and A2 in states that violate CHSH maximally
for those measurements of Alice. Thus, we will have

Pða; bjx; 4Þ ¼ 1

4
P2

ffiffi
2

p
;bða1; a2jx1; x2Þ; ð5Þ

since, as explained in Supplemental Material, one must use
a different CHSH expression for each value of Bob’s
outcome b. All the details are given in Supplemental
Material [17], Sec. II.
In summary, if one observes PBSM defined by (4) and

(5), then the density matrix and measurement operators are
acting locally on Cd with d ≥ 4, and the statistics cannot be
reproduced by Alice and/or Bob sequentially measuring
several smaller-dimensional (qubit or qutrit) sources in
their respective labs. In short, the behavior PBSM has
irreducible dimension greater than or equal to four.
A witness of irreducible dimension four.—In the pre-

vious section, PBSM is just one behavior, i.e., a single point
in probability space: as such, it will never be observed
exactly. In order to have a robust witness of irreducible
dimension four, we need to demonstrate that, when the

observed probability point is not exactly PBSM, one party is
still performing an entangled measurement.
It is clear that there is a large room for robustness in the

Pða; bjx; 4Þ, i.e., in the choice of the entangled measure-
ment itself: any behavior that shows a violation of CHSH
(not necessarily maximal) for at least one value of b would
do. It is less easy to relax the self-testing part (4), because
one immediately loses the sharp conclusion on the exist-
ence of subsystems. In the absence of well-defined sub-
systems, the notion of entangled measurement becomes
blurred.
In order to estimate the robustness of the criterion, we

presume the existence of subsystems B1 and B2 on Bob’s
side and assume that the projectors of the first four
measurements of Bob are of the form

ΠB
bjy ¼ ΠB1

b1jy1 ⊗ ΠB2

b2jy2 ; ð6Þ

where fΠB1

b1jy1gb1;y1¼0;1 is a two-outcome projective meas-

urement on B1, fΠB2

b2jy2gb2;y2¼0;1 is a two-outcome projec-

tive measurement on B2, and with c ¼ 2c1 þ c2 as before.
Physically, this is equivalent to Bob measuring B1 and B2

independently and concatenating the two outcomes into
one outcome string.
Under this assumption, we now demonstrate the robust-

ness of the certification of entangled measurements and
hence of irreducible dimension. For this, we make use of
the SWAP technique [25,26]. A so-called SWAP operator,
defined in terms of the parties’ measurements, is used to
exchange a particular part of the measured system with an
auxiliary system of trusted dimension. Any linear function
of the resulting quantum state can then be bounded over all
quantum realizations through the Navascués-Pironio-Acín
(NPA) hierarchy of semidefinite programing (SDP) [27].
Here, we thus consider two external qubits registers for

Bob together with two qubit SWAP operators [25], each
operator swapping subsystem B1 (respectively, B2) with
one of the external qubit registers. The resulting double-
SWAP operator on Bob’s system can be expressed in terms
of Bob’s measurement operators ΠB

bjy as

SBB0 ji; jiB0 ¼
X1

k;l¼0

jk; liB0Xk;lΠB
fði;j;k;lÞj0Xi;j; ð7Þ

where fði; j; k; lÞ ¼ 2ði ⊕ kÞ þ ðj ⊕ lÞ, Xi;j ¼P
3
k¼0ð−1Þjkþi⌊k=2⌋ΠB

kj3, and ⊕ is the sum modulo 2
(cf. Supplemental Material [17], Sec. III).
We then estimate whether Bob’s fifth measurement is

entangled by computing

F ¼ 1

4

X3

i¼0

Tr½ΠB
ij4SBB0 ðρAB ⊗ jφiiB0 hφijÞS†

BB0 �; ð8Þ
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where jφii ¼
P

jð−1Þijjji ⊗ j⌊i=2⌋ ⊕ ji are the four Bell
states. This expression can be understood as follows: the
SWAP operator places a maximally entangled state in
B1 ⊗ B2, after which one checks how close ΠB

ij4 is to
jφiihφij. In Supplemental Material [17], Sec. III, we show
that this fidelity is related to the fidelity of an entanglement
swapping protocol that used Bob’s last measurement to
entangle two remote qubits; when F > 1=2, at least one of
Bob’s measurement operators must be entangled. This
conclusion is contingent on the assumption (6) made on
Bob’s system, which ensures that the SWAP operator (7)
factorizes according to S ¼ SI ⊗ SII, where SI acts on B1

and the auxiliary system B0
1 and SII acts on B2 and B0

2. An
example showing the importance of this assumption for the
presented argument is given in Supplemental Material [17],
Sec. III.
To bound the quantity F over all possible quantum

realizations which are compatible with some behavior P,
we constructed an SDP matrix of size 390 × 390 corre-
sponding to a relaxation of the NPA hierarchy [27]. We
then minimized F over all such matrices which are
compatible with the chosen quantum behavior. For the
sake of an example, let us consider the behavior obtained
with a perfect implementation of the measurements on
the tensor product of two two-qubit Werner states
½Vjϕþihϕþj þ ð1 − VÞI=4�⊗2, resulting in a noisy version
ofPBSM.We find F > 1=2 for V ≳ 0.987 (cf. Supplemental
Material [17], Sec. IV). The corresponding dual SDP
program provides a certificate for this conclusion in the
form of a bipartite Bell inequality. This conclusion is
readily confirmed by computing the minimal fidelity F
which is compatible with some violation of the inequality I
(cf. Fig. 1).
Conclusion.—In this Letter, we pointed out that

some device-independent dimension witnesses can be
violated with lower-dimensional systems and sequential

measurements on them. This somehow defeats the opera-
tional goal of these witnesses, which is not simply to prove
that some dimensionality is there but rather to certify that
one can do quantum information processing. The same
concern should be raised also for non-DI dimension
witnesses: for instance, the lower bounds of Ref. [28]
are multiplicative for product correlations, so by just using
a qubit source n times they certify dimension 2n.
Then we showed that this obstacle can be overcome: it is

possible to construct witnesses that capture a more appro-
priate notion of dimension, namely, what we called the
irreducible dimension of a quantum behavior. This solution
was based on an example of entangled measurements
certification. From now onwards, in the presence of a
dimension witness, it will be important to check which
irreducible dimension it certifies.
Some problems remain open. The robustness of our

criterion was proved under some additional assumptions,
because we have not found a way of identifying subsystems
in a device-independent setting. Alternatively, one may
think of approaches that are based on different criteria. It
would also be interesting to investigate the case where the
sequentiality assumption that we used here is removed.
Ruling out that low-dimensional states and operations can
be responsible for some observed behavior independently
of the way in which these resources are combined would
then lead to witnessing behaviors with genuine dimension
d. A similar problem in the context of entanglement
theory with characterized devices was recently considered
by Kraft et al. [29]. In the ideal case, this work can be
made device independent by using self-testing [30].
Independently of these questions, it would also be inter-
esting to obtain a compact characterization of the statistics
achievable with sequential measurements. This might
provide an alternative approach to study the closure-
under-wiring set of correlations.
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