MINIMAL ENERGY PROBLEMS FOR STRONGLY SINGULAR RIESZ
KERNELS
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ABSTRACT. We study minimal energy problems for strongly singular Riesz kernels |x — y|*™",
where n > 2 and a € (—1,1), considered for compact (n — 1)-dimensional C'°°-manifolds I"
immersed into R™. Based on the spatial energy of harmonic double layer potentials, we are
motivated to formulate the natural regularization of such minimization problems by switching
to Hadamard’s partie finie integral operator which defines a strongly elliptic pseudodifferential
operator of order 5 =1 — a on I'. The measures with finite energy are shown to be elements
from the Sobolev space H*B/Q(F), 0 < B8 < 2, and the corresponding minimal energy problem
admits a unique solution. We relate our continuous approach also to the discrete one, which
has been worked out earlier by D.P. Hardin and E.B. Saff.

1. INTRODUCTION

The classical Gauss problem of minimizing the Coulomb energy to solve the problem of Thomson
and its generalization to Riesz potentials together with the discretization is the basic problem of
many applications (in [3] are listed coding theory, cubature formulas, tight frames and packing
problems). In the works [2], [3], [6], [10], and [11], the discretization is obtained by approximating
the minimizing charges by a distribution of finitely many Dirac measures on the given manifold.

If the number of Dirac points tends to infinity, then the minimizing densities approach distri-
butions in the form of Sobolev space elements. Therefore, in [8], [9], [18], the minimizing measures
are considered as distributions in Hilbert spaces of finite Riesz energy. This continuous setting is
simpler and more efficient from the numerical point compared to the discrete approach in [2], [3],
], [10].

For potentials with Riesz kernel |x —y|*~ ", where 1 < o < n, and Borel measures supported on
a given (n — 1)-dimensional manifold I'" immersed into R™, a surface potential is generated, which
on I' defines a boundary integral operator with weakly singular kernel. This boundary integral
operator is a pseudodifferential operator of negative order 8 = 1 — a if I' € C*°. The energy
space of this pseudodifferential operator on T' is thus the Sobolev space H?/?(T) of distributions
and the minimizing measure of finite energy is an element of this Sobolev space. Hence, the
determination of the minimizer is reduced to an optimization problem with a quadratic functional
which is defined in terms of the single layer Riesz potential on I'. The strong ellipticity of the
corresponding pseudodifferential operator in R™ and its trace on I' then provides the coerciveness
of the associated quadratic functional. For a = 2, which corresponds to the Newtonian kernel,
the Riesz energy of the single layer potential is just its Dirichlet integral over R™ \ T

In this paper, however, we consider the Riesz kernels with o € (—1,1). For a = 0, in classical
potential theory, the energy of the harmonic double layer potential in R \ T" now equals the Riesz
energy if we define the latter as to be Hadamard’s partie finie integral of the hypersingular potential
— which is the natural distributional regularization (see Section 2 where T' is a (n—1)-dimensional
planar bounded domain in R™).

Let I' = (U;c; I'i where I';, @ € I, are finitely many compact, connected (n — 1)-dimensional
C*°-manifolds immersed into R™. In Section 3, we then consider the Riesz potential as a pseudo-
differential operator just on I' since we cannot use its extension to R™ (for o # 0, the transmission
conditions [12, Theorem 8.3.11] are not satisfied). We call the bilinear form with the strongly
singular partie finie integral of the Riesz kernel the energy of the Riesz potential. The partie finie
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F1cure 1. Hlustration of the geometrical setting.

integral operator with the hypersingular Riesz kernel defines now a strongly elliptic pseudodiffer-
ential operator V3 of positive order 3 =1—ca on I

In contrast to the analysis of weakly singular Riesz kernels provided earlier by the authors
in [8], [9], in the case under consideration, the trace theorem in H—#/2(I") = VzH?/?(T) is not
valid anymore, because of the negativity of the order —3/2, cf. [1]. Nevertheless, we have succeeded
in overcoming this difficulty, and we have shown that all the Borel measures on I' with finite Riesz
energy whose restriction on any I'; takes sign either +1 or —1 form a certain cone in the Sobolev
space HB/Q(I‘), 0 < B < 2. This is our main result in Section 3, Theorems 3.3 and 3.4. In this
framework, the corresponding Gauss variational problem admits a unique solution which belongs
to HP/2(I'), which is a compact subspace of Ly(I'). These results have again a potential theoretic
meaning in the particular situation o = 0 in relation to the harmonic double layer potential as
explained in Section 5.

In the fundamental work [11] by D.P. Hardin and E.B. Saff, discrete minimal energy problems
have been investigated. There, the discrete Riesz energies are obtained by distributing a finite
number (N) of evenly weighted Dirac measures on a compact (n — 1)-dimensional manifold A
where the set x = y is excluded. Then, the discrete minimal Riesz energy determines an optimal
geometric arrangement of the N distinct Dirac points on A. In [11], three cases are distinguished:
(i) the Riesz kernel is weakly singular, (ii) the case o = 1 (see [14]), and (iii) the hypersingular
case a < 1. For all these three cases, the behavior of the discrete minimal energies for NV tending
to infinity is explicitly determined (see Section 6 below for details). In the works [2], [3], and [4],
these results are generalized to more general Riesz kernels with weights.

During a miniworkshop in August 2012 in Stuttgart with E.B. Saff, D.P. Hardin, and P.D.
Dragnev, we have learned from them that in the hypersingular case the discretized minimal energies
tend to infinity if the number of Dirac basic points approaches infinity and at the same time those
minimizing charges tend to a charge with a constant density. This discussion inspired us to pick
up this topic gratefully in our paper and to analyze also this approach by cutting out the set
|x —y| < of ' xT" where § > 0. We first figure out the idea in Section 6 by studying a perturbed
Riesz energy problem. Then, in Section 7, we perform the computations in detail for the punched
Riesz energy problem and give an asymptotic expansion of the solution in the corresponding family
of finite energy spaces for § — 0. In particular cases (see Corollary 7.5 for details), the minimizers
tend to a constant distribution on I'" while the corresponding minimal energies tend to infinity.

2. MOTIVATION. THE ENERGY OF THE LAPLACIAN’S DOUBLE LAYER POTENTIAL

We shall motivate our approach by an example from potential theory where o = 0, i.e. § = 1.
To this end, let I' C R"~! be a planar bounded domain in R" and x = (x/,2,,) € R" with x € T
when z,, = 0, see Figure 1 for an illustration.
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The double layer potential of the Laplacian with given dipole charge density ¢(y’) is given by

Upls) = ~(Wep) ) == — [ ¢<y'>§—j(<y',o>,x) ay’
Yn=0

(Xf (y’,O)) “€n / /
=—cn | —— ey dy
| e
y'el’
for x € R" with ,, # 0 and ¢,, = = = (2(n— l)ﬁ)fl. The fundamental solution for the Laplacian
is given by
E(x,y) = calx =y’

The vector e, = (0,...,1)" is the n-th basis vector of R” and the unit normal vector on I'. If ¢
is continuous at x’, then there holds the jump relation

T ox— (x,0) :

Up(x) = ﬂF%w(X’) - ((TX(?Y’,O()))N:”

1
ey dy' = ?;p(X’) -0
y'er\ {x'}

since for x € T and y € T'\ {x} the scalar product (x —y) - e, = 0 and, hence, the integral
vanishes. Consequently, the harmonic potential U, (x) solves the transmission problem in R™ \ T

[Ulr = Up(x', =0) = Up (x', +0) = p(x')

where ¢ is a given element of H'/2(T), the closure of Cg°(I') in H/2(R"~1).
The energy of the harmonic field U, is given by its Dirichlet integral, and Green’s theorem
yields

[ 19000 ax

R7\T

_ j/ U¢(xg+0)(5§;U¢(xg+{»)dx'+-u/ U;(xx—o)(5§;U¢(xx-4n)dx/

Rn—1 Rn—1
) (W —0)) i — [ ) (Wi, +0)) dx
7/2“0()()(6,@”( Wo)(x, 0))dx /Q‘P(X)(axn( W@)(X,H))) dx
r r
= 1 ! i (X' —apen —y') -en / / ’
——Cn/{ng(x)axn< / |x' — xne, —y'|” (¢(Y)_90(X ))dy
1 / 2i / (x' —zpen—y')-e, ., ,
+2<P(X) 5$n< X' — 2nen — y'|" dy dx
]Rn—l

1 o2 (x' +znen —y)-en, ., " e
+cn{§<p(x)azn( / |2/ + zpe, — y'|™ (y') —¢(x)) dy)

Rn—

1 n2 9 / (XI+$nen_y/)'en ’ /
- — d dx’.
+ 2(’0(X ) o, ( |x" + zpe, —y'|" Y x
1

Rn—

We can interchange differentiation and integration in this expression by means of Hadamard’s
finite part integral. Namely, due to

/ (X/ + Tnep — y/) *€n

|x' F zne, —y'|?

1
dy/ = :I:iwn

Rn—1
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with the constant w,, = i , it holds

[ 19060 dx = (- 2)c / /|x ¥ () — o)) dy’ dx’

R\
n—2/<p (x)dx’/,
r

Dep(x') :fpfcn/
r

where

2—n / /
- d
bk -y el ) dy
is Hadamard’s finite part integral with x = (x/,0), y = (y’,0) and with the hypersingular kernel
function kp (x,y) = (n — 2)|x" — y'| "¢y, that is

(2.1) / |VU,(x)*dx = (n — 2)cn/ p.f. /|x/ —y'[T"e(x)(y') dx' dy’.
R7\D r r

(For the definition of Hadamard’s partie finie integral operators, see [7] and [12, Chapter 3.2].)

Hence, the finite part integral on the right of (2.1) which has the Riesz kernel |x’ — y’'|~™ for
x',y’ € I C R""! defines the energy of the harmonic double layer potential in R\ T' given by the
Dirichlet integral on the left of (2.1). Since the Riesz kernel is a homogeneous function of degree
—n, it defines on I' C R™~! a strongly elliptic pseudodifferential operator D of order 1 (see [12,
Section 7.1.2]).

3. STRONGLY SINGULAR RIESZ ENERGY ON A MANIFOLD

In all that follows, without stated otherwise, we fix n > 2 and —1 < a < 1, and write 5 := 1 —a.

In R™, consider a strongly singular Riesz kernel |[x —y|*~" and a manifold I" := J,.; I's, where
Ty are finitely many compact, connected, mutually disjoint, boundaryless, (n — 1)-dimensional,
oriented C'°°-manifolds, immersed into R™. Then, the surface measure ds on I' is well defined.

In what follows, (v, ¢)r2(r) will stand for the extension of the L?-scalar product to dualities

as 1 € H-P/2(T") and ¢ € H?/?(T") and also to the applications of distributions 1 on I operating

on p € C=().
We call the strongly singular partie finie integral of the Riesz kernel
1) Vi, 9)rar) = /pf/|x— I p(x)p(y) dsx dsy = Ea(e)

with respect to [x —y| > g9 — 0, g9 > 0, operating on ¢ € C(T'), the energy of the Riesz
potential

Upl) = pt. [ lx= 3" "ply) dsy. xR

generated by the surface charge ¢ (see e.g. [12]). For ¢ € C*°(T"), the Hadamard partie finie
integral operator

Vo) = pi. [ k=¥ () dsy, x€ T,

yer
which underlies (3.1), is for 0 < a < 1 given by
Vie) = b [ eyl ply) - e} dsy + ke ()
yeTAlx—y|>0
where
(3.2) h(x) = p.f. lim / x —y| 7P~V dsy,
6—0

yETAN0<I<|x—Yy]|
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and for —1 < a < 0 by

Vap(x) = p.v. / x =y e(y) — o(x) = (y = x) - Veo(x)} dsy
yEDPA|x—y|>0
+ h(x)e(x) +h(x) - Veo(x),
where
(3.3) h(x) = p.f. lim / Ix —y| P~y — x) dsy.
6—0
yeTA0<I<|x—Yy]|

The abbrevation p.v. stands for the Calderon-Mikhlin principal value integral (see [17]). (See
Appendix A for the explicit computation of the partie finie integrals h(x) and h(x).)

Theorem 3.1 (see [12, Chapter 8]). The partie finie integral operator Vz is a strongly elliptic
pseudodifferential operator of order f =1—«a € (0,2) on T. The principal symbol of this operator
is given by the equivalence class associated with the homogeneous function

34)  a(€) = C(n—1,B)¢]°, where C(n —1,8) = 2775 LG and ¢ e R,

r(=7%)
Vs defines the linear and continuous mapping Vs : H*(T') — H* (') for every s € R. In
particular, for s = /2, V3 maps HP/2(T) into H=P/2(T') and there exist 0 < co < ¢o and ¢; > 0
such that the inequalities

(3.5) coll@lZraraqry — el By < (Vaor @) oy < collllpmage
are satisfied for any ¢ € HP/?(T).

Proof. For justifying the inequalities (3.5), recall that for each of the components of the C*°-
manifolds I'y, ¢ € I, immersed into R™, we may associate a family of finite-dimensional atlases 2(,
(see [13]). Each atlas 2, is a family of local charts (Og,Up,, Xpr), where r ranges through a finite
set Ry. The open sets Oy C I'y define an open covering of I'y, while Xy, is a C*°-diffeomorphism
of Oy, onto Uy, € R, Let {Be}rer, be a C*-partition of unity of I'y which is subordinate to
the atlas 2y. In addition to the partition of unity, let {v¢ }rer, be a second system of functions
Yeor € C§°(Opy) with the properties

~er(x) = 1 for all x € supp B¢ and 0 < 7y,
Thus, it holds that

Yer (X) Ber (X) = Bor(x) and Be (X)ver (X) = Bor(x) for all x € Ty,
With respect to the atlas 2, let X, denote the corresponding pushforwards and A7 the pullbacks.
Then Xy fer € C§° Uy ).
Without loss of generality, the local parametric representations can always be chosen in such a
way that at one point x§,. € Oy, where B¢, (x7,.) = 1 we have Ay, (x§,) = 0 and, moreover, at this
point the tangent bundle

ox

ox _ 8)(@;1 (x)
ox’

o , where x" := X,.(x),

x'=0

x'=0
forms a positively oriented system of n — 1 mutually orthogonal unit vectors. This implies that
the Riemannian tensor of I'y in the local coordinates at the point xjp, is the unity matrix. Hence,
the surface measure satisfies

dse(x) = Jpr(x) dx’ where x" € Uy, and J;,-(0) = 1.
Given an atlas 2, on I'y, define

dy := min diam Uy,.
reRy

Thus, one can choose dy > 0 so that for any given 0 < § < §p there exists a finite-dimensional
atlas 2J satisfying all the above formulated properties and d; = §. Hence, we have a whole family
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of finite atlases 2 with 0 < § < Jp which will be under consideration. (We then shall omit the
index § in the notation.)

Note that the Jacobians Jy,- depend on the geometric properties of I'y only, and J;,. together
with their derivatives are uniformly continuous relative to 6 € (0, dp).

Corresponding to the partition of unity, the pseudodifferential operator V3 on I' can be decom-

posed as
Ve=>_> BuVeve+Z1=>_ > v:VsBer + Z2
el reR; (eI reR,
and
(36) Vﬂ = Z Z ﬂér-)(eﬁnvér)(ér*'}/ér + Zl = Z Z 'YZTXZ;«VZTXZT*ﬂZT + Z2-
Lel reERy el re€Ry

Herein, Zy, Z> are smoothing operators of order —oo in view of [x —y|*™™ € C*°(T', x I'y) for
p # k and supp (1 — ) N supp (Ber) = 0 if x,y € Ty (see also [12, Chapter 8]). Moreover,

3.7 Vae)= pi. /

Uy

120, (x) = X )| ey e (y) dy', ¢ € C5F Uy

are the localized operators in the parametric domains Uy,., defined by the operator Vj.

The inequalities (3.5) now follow locally on each chart of the atlas 24, for the localized operators
Ver in local coordinates in Uy,. With Martensen’s surface polar coordinates ((B.5), (B.9) in
Appendix B), the kernel of V4, admits a pseudohomogeneous asymptotic expansion of the form

k(xla Q) = Qﬁ(nl){l + Z kér,j (X/a Q)}a

Jj=2
where
Koy (X' t0) = t7 kg, (X', 0) for t >0, 0 >0
since |x’ — x{|? satisfies the expansion (B9). Correspondingly, the symbol a(x’, £’) of Vi, has the

asymptotic expansion
a(x', &) = |£’|ﬁ{1 + Za%(xﬁ&’)},

Jj=2

where a(ij(x’,tﬁ’) = t_ja(ij(x',é') with ¢ >0, & # 0.

Then, Fourier transform and Parseval’s theorem yield
(38) (Wrcpa LP)LQ(Z/IM) = / |€/|ﬁ|$(€/)|2 d€/ + (Azi?(pa QO)LQ(UM) + (Rer()O, CP)L2(UE7«))
Rn—1
where Ag;Q is a pseudodifferential operator of order g — 2:
Uie)) = [ X @€Y (<. €)p(E) de
Rn—1 Jj=2
Here, the function ¥y, € C°°(R"1) is arbitrary but fixed such that 0 < ¥,,.(¢’) < 1 and

T, (&) =0for |¢] < % and W, (¢') = 1 for [¢/| > 1.

The remainder operator Ry, (x) = [ Rer(x,y)e(y) dsy is a smoothing operator with the smooth
kernel function Ry, € C*°(T" x T'). Hence, there exists a constant ¢y, > 0 such that

(Ver@: ) Lo ey < Cor / 1L+ €D |@ €)' = cllel oz,
Rn—1

which implies with some constant ¢y > 0 that

(3.9) (Vo @) 1a(r) < c2llllFrarry-



MINIMAL ENERGY PROBLEMS FOR STRONGLY SINGULAR RIESZ KERNELS 7

Vice versa, from

(V59 ) Loip) > / 1+ €))% 1p(€' 1> A’ — ¢}, / (1 +1€')21@(¢) g,
Rn—l ]Rn—l

after summation over ¢ € I, we obtain the Garding inequality
(Va, @) 1oty = colllfraszry — c1llell 2, m)-

The embedding H?/2(I") < Ly(T) is compact since 0 < 8 < 2. For 3 = 1 € Ny the Tricomi
condition needs to be satisfied for Vg being a pseudodifferential operator and reads here as

0% dw(®) =0 for |o/| =1

lo|=1

(see [12, Theorem 7.1.7]). In addition, we have a®(x’, &) = 0. So, Vj is a classical pseudodiffer-
ential operator on I" of order 3 € (0, 2). O

Now, we introduce a set of so-called admissible measures or charges located on I'. Recall that
I' = U Te, where the finitely many T’y are compact, nonintersecting, boundaryless, connected,
(n — 1)-dimensional, orientable C'*°-manifolds, immersed into R™. With each I'; we associate a
prescribed sign oy € {—1,1} where oy = +1for ¢ € [T and ay = —1for £ € I~. Then [ = [T UI~
and IT NI~ =0, I~ = is admitted. Let 9(T") denote the c-algebra of signed Borel measures
v on I equipped with the topology of pointwise convergence on C(T'), the class of all real-valued
continuous functions on I

Next, consider the manifold I" being loaded by charges of the form

(3.10) = o
el

where, for every ¢ € I, u’ is a nonnegative Borel measure on I'y. The convex cone of all signed
measures g of the form (3.10) will be denoted by I+ (T').

The following theorem deals with absolutely continuous 3 € 9™ (T), i.e. d¥ = o ds, with
densities o € K%/2(T),

KA/2(T) = {0' = Z oo, where o' € H?/2(I')) and of > 0}.
lerl

For brevity, we shall often identify an absolutely continuous Borel measure 3 € 9™ (") with o,
its density. Likewise, the cone of all 3 € M* (') with & € K#/2(") will be denoted by KP/2(T),
provided that this will not cause any misunderstanding. Similar to as it has been done in (3.1),
we define the Riesz energy of 3 = o € KP/2(T) by

Eo(X) = (Vgo,0) ) :/ p.f. /|x —y|*T" d3(x) dX(y).
r r

Theorem 3.2. For any ¥ = o € KP/2(T"), the Riesz energy is finite and satisfies the inequalities
(3.11) o 2nrme) < Ba(E) 1= (Voo ) air) < Al 2nrocer

the constants ¢ and c} being strictly positive and independent of 3. This means that Vg is
continuously invertible on KCP/?(T).

Proof. Write

K(T) = {o’ = Z ago’, where of € C*(Ty) and o >0 on Fg}.
ter
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Let (o) be a C§°(R)-function with () = 1 for 0 < p < §, 0 < ¥(p) < 1 and ¢(p) = 0 for
0 > 26 > 0. Having the atlas 2[2 at hand, we use the decomposition (3.6) and the representation
in local coordinates (3.7) to arrive at

(Vero)(x') = pf. / %' — Y’lfﬁf(”*l)lﬂ*(lX’ — ¥ o (y") Jer(y') dy’

Rn—1
b [ Ry e (X - ¥ D)on ) )
Ix'—y’'|>6
where 1, and o, are the pushforwards of ¥ and o, respectively. Summation gives
(0, V30) L,y = Z Z Z / p-f. / |x’ —y/|_ﬂ_(n_1)1/1*(|xl —¥)
liel reRy qERiRn—l Rn—1
0 (y) Jer (') dy' o (x7) Jiq (x") dX/

b [ ey vk - ) () dsy ) ds
Ix—y|=d
Since the localized operators Vj, are all pseudodifferential operators of order 8 with positive

definite principal symbol (3.4), hence strongly elliptic, one finds with Fourier transform and Par-
seval’s theorem the estimate

SYY [ et [ Ky -y

i€l TER qERs Ryl
o (y) e () dy' o, (X) Jig (x7) dx
1
2-p4
with ¢’ > 0 since H/2(T') < Ly(T") compactly and if § > 0 is chosen sufficiently small. The
remaining quadratic form

/ / x =y~ D (1 = ((x - y])) o (y) dsyor(x) dsx

[x—y|>6

/!

= CBH”H?{ﬂ/z(r) - ¢ 52_ﬂ||°’||%2(1‘) z CZ)”HO'”%{BN(F)

has a strictly positive C*°-kernel. Hence the left inequality in (3.11) is satisfied for o € K> (T),
o # 0. Since K®(I") is dense in KP/2(T'), the left inequality in (3.11) also holds for & € K?/?(T),
o % 0 by completion. The right inequality in (3.11) was already shown in (3.9) for o in place
of . This completes the proof. O

We next proceed by defining the notion of the Riesz energy for arbitrary (not necessarily
absolutely continuous) measures 3 € 9™ (I'). Since V3 is a classical pseudodifferential operator
on T', it maps the distribution given by the Radon measure ¥ € 9T (T) to V33X which is a
distribution again, and this linear mapping is continuous in the weak topology of distributions
(see Theorem II.1.5 in [20]). Therefore, the action of the measure VzX on functions ¢ € C*°(I)
is well defined and

(Vﬁzv CP)LZ(F) = (27 Vﬁ‘F)LZ(F)?
since V3 is symmetric.
Let £F(T) consist of all ¥ € 9™ (I") which the property

sup ‘(VBE,QD)LZ(F)’ < 00.
el /20 <1

Hence, for ¥ € £4(T), we can identify V33 with an associated element ¢ € H~#/2(T") satisfying
P ds = dVg3 and
H'IPHH*B/Q(F) = sup ‘(Vﬁza ‘P)LQ(F)|-

el 520y <1
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This leads us to the following theorem.

Theorem 3.3 (see also [8, Theorem 3|). For any ¥ € EF(T') there exists a unique element
o € KP/(T) such that d¥ = o ds and

(3.12) Y(p) = /cpdE = (p,0) () for all p € C(T).
T

Moreover, £ (T) = KP/2(T"), and the Riesz energy Eo(X) of any X € EX(T) is equivalent to the
HP/2(T")-norm of the corresponding o € KP/2(T') in the sense of (3.11).

Proof. Choose an arbitrary ¥ € £F(T'). As has been observed just above, V33 € H=#/2(T") is a
linear functional on C*°(T), and it is bounded on H?/?(T") because of

|Vﬂ2(90)| = |(Vﬁ2, <P)L2(F))| < C”VﬁEHH*ﬁ/Z(F) ||<P||HB/2(F)-

Since C*°(T") is dense in HA/2(T"), according to the Fischer-Riesz lemma on the representation of
bounded linear functionals there exists a unique oo € H?/?(T") with

/VBSOdE = /CdE =3(¢) = /UOCdS = (00,C) o)
T

r r

where ¢ := Vzp. If ¢ traces C®(T), so does ¢; hence, (3.12) holds for o = oo € H?/*(I)
by replacing ¢ by ¢. Since ¥ € M (T), we actually have gy € K?/2(T'), and the inclusion
EH(T) C KA/2(T) follows.

Now, let o € K#/2(TI"). Then ¢ = Vzo € H=#/2(T") and

||¢||H*ﬁ/2(1“) = ||VﬁUHH*B/2(F)

= sup |(Vao, @) L,r)| < cllof| gsr2ry < oo
el 2.y <1

due to the duality H=/2(T') x H%/2(T") of (-,-)r,(r), Vs being a pseudodifferential operator on I'.
Hence, KA/2(T") C £F(T"), which completes the proof. O

Although we have shown that the distributions in K?/2(T) all have finite Riesz energy E, (),
it is not clear yet whether there are no other measures in 9™ (I") whose Riesz energy is finite. To
elaborate on this problem, we employ an idea by J. Deny [5]. A measure on I' can be considered
as a distribution on I' and, hence, can be Fourier transformed. In connection with the localization
of V3 on one chart of the atlas on I', we have relation (3.8) where the pseudodifferential operator
Vi, is defined via Fourier transform.

If ¥ € MH(T) is given, then it becomes via the pushforward Xy, the localized distribution
S i= XppaferE with compact support in Uy, C R™! (see e.g. [8, Lemma 5]), which can be
Fourier transformed to 3,.(€') on R"~!. The measures in 9T () for which

(313) [ 1671 €)P g < o

Rn—1
are precisely all those having finite Riesz energy (cf. (3.8); observe that the first summand on the
left-hand side of (3.8) is the dominant one). Let £X(T') consist of all ¥ € M+ (T") satisfying (3.13).

Theorem 3.4. There holds
EX(T) = KP/A(T).

Proof. Let ¥ = o € KA/2(I'). Then, by Theorem 3.2,

(Vgo,0) 1,y = Ea(o) < 0.
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With (3.8) and Parseval’s identity, together with Xy, € H?/2(Uj,.), we obtain further
JRGICEEIRT
]Rn—l

< ‘(VYZTEZM EZT)LZ(Z/{[T) + ‘(AZ«_QEZN EKT)LQ(LIM)‘ + ’(RZTEZM EZT)LZ(Z/{U)

< cllZerllFre2 s,y + N Bl asrove-e @ 1 Zerl wor2 @)

< C”HZérH?{B/Z(u”) <o

since 2 — 3/2 > /2. Consequently, it holds ¢ = X € £*(T") and thus K?/2(T") C £4(T).
Next, suppose ¥ € &*(I'); then by localization inequality (3.13) holds. Since [&'|%|(1 +
1€'12)78/2 <1 we find

||‘/ZT2€T||§{—L3/2(M€T) = / |€/|2ﬁ(1 + |€/|2)7ﬁ/2|§h(€/)|2 d€/
Rn—1

< / €182, (&) A€’ < oo
]Rn—l

With pullback to ' this implies that
IVeZ | zr-6/2ry < o0

Application of Theorem 3.3 then gives 3 € £F(TI') = KP/2(T"), which in view of the arbitrary
choice of ¥ € £(T) finally yields K%/2(T) = £4(T). O

Theorem 3.5 (see also [8, Theorem 4]). Let 3 € M (') with E,(X) < co. Then there exists
a sequence of absolutely continuous measures X € lCﬂ/2(1"), where dX = Y., aigo}; ds with
@i € O(Ty) N HA2(T,) and ¢i(x) = 0 for x € Ty, such that {Eg}ren converges weakly and
strongly in the Hilbert space HP/2(T') to X, i.e.,

k—o0

k() — () for all ¢ € C(T") and klim 1% — 2kl ger2ry = 0.
—00

Proof. For 3 we have ¥ = o € K?/2(T") due to Theorem 3.3. Hence, since C>®(T") ¢ H?/?(T")
densely, there exists a sequence o = Y, o}, € C°°(T') with |[o — ok || /2y < 7 for all k € N.
We define ), € M+ (T") by

icl

A% =oxds  with &% =Y a5},

il
where 7 (x) := max{0, o} (x)}. Then, 7}, € C(I';) N H?/(T';) since 7, is piecewise smooth and
lo —okllgerw) = llo — ok +or — Tkl garzmr)
<o —okllgsrw) + ok — Tkl gs/2

= |lo = okllmsr2ry + Z il s/ (r,)-
i€l

Herein, it holds ¢} (x) = min{0, o} (x)} < 0 for all x € T;, particularly i € C(I';) N H/2(T;).
From ¢’ > 0, it immediately follows that

Ikl ez, < llo = okl merzr,)
for all 7 € I and therefore
lo —Tkllasrwy < 2llo —ollgermr) <

as desired. 0
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4. THE GAUSS PROBLEM

The Gauss variational problem is the problem of minimizing the Riesz energy for particularly
signed Borel measures on the given (n — 1)-dimensional manifold I' C R™, in the presence of an
external field. Let g be a given continuous, positive function on I and a = (a;);c; a given vector
with a; > 0, i € I. Then, the set of admissible charges for the Gauss problem is defined as

Ea(T,a,g) = {/1, e KA2(1) - /gid;ﬂ =aq; for alli € I}
i
where we set g; := g|r,. Note that the set £,(T',a,g) is convex and weakly and strongly closed in
ICA/2(T).
The Gauss minimal energy problem reads as follows (see [19] and [15]): To given a € IR'_{',

f € CT) and g € C(T') such that g > 0, find the Borel measure pg € &, (T, a,g) which is the
minimizer of

(4.1) inf  Gr(p) = Grlpo) = Ge(T', a,g)
pnela(lia,g)

where the Gauss functional is given by

Ge(p) = Ea(p) — 2/fdu-
T

Since Ge(p) is on E,(T,a,g) strictly convex and weakly and strongly continuous, the Gauss
problem admits a unique solution g € &,(T, a,g).

Based on Theorem 3.2, the minimization problem (4.1) can also be formulated as a variational
problem in H?/2(T"). Namely, minimize the functional

(42) Vf((P) = ((‘0, Vﬁ‘F)LQ(F) - 2(f7 <10)112(1—‘)7 P E HB/Q(F)a
over the affine cone

K(T,a,g):= {so = aig’ where o' € H/*(Ty),
iel
¢" > 0and /gigoids =a; >0forallie I} c KP/2(1) ¢ HP/*(T)
I;
where f € C(T'), g > 0,g € C(T') and a € Rl_il are given. This minimization problem will be
called the dual Gauss problem.

Theorem 4.1. To the unique solution py € E4(T,a,g) of the Gauss problem (4.1), there corre-
sponds a unique element ¢y € K(T',a,g) C Hﬂ/Q(F) with the properties
Ko(p) = (o, @) L,(r) for all p € C(T)
and
Ve(po) = Ge(po) = G¢(I',a, g).
The element g is the minimizer of the functional V¢ over K(T', a,g), i.e.,

(4.3) Ve(po) = min  Ve(p) = Ve(T,a,g).
pek(T,a,g)

Proof. By Theorems 3.2 and 3.3, to any Borel measure p = Zielai/ﬂ € E4(T,a, g), there corre-
sponds a unique element o, = 3, o, € K#/2(I') satisfying both (3.11) and (3.12). Morcover,
since C°°(T") is dense in C(T"), from (3.12) we get
(af“gi)b(pi) = ui(gi) =aq,; forall i€l.
Hence, o, € K(T',a,g).
Applying (3.11), for these p and o, we also obtain

(4.4) Ve(ou) = (Vsou, ou)r2ry — 2(0,f) r2r) = Ea(p) — 2p(f) = Ge ().
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Thus, the correspondence p — o, between &,(I',a,g) and K(T',a,g) is one-to-one and satis-
fies (4.4), which immediately implies

Gf(ra a, g) = Vf(Fv a, g)
If now po is the (unique) solution of the Gauss problem (4.1), then ¢q, the image of po under
this correspondence, is the unique solution of the minimizing problem (4.3), and vice versa. [
5. THE PARTICULAR CASE a = 0

In the following, we will focus on the particular situation o = 0 from the potential theoretic
point of view. The double layer energy Ey of a function ¢ € H/2(I'), = 1 — a = 1, which is
harmonic in Q (see [12, Equation (1.2.17)]) is given by

Eo(¢) := (D, ) Ly(r)
with the hypersingular integral operator D:

Dy(x) = pf. / ko (%, y)e(y) dsy,

M{x}
e R = R

The Hadamard partie finie integral operator is given by the finite part with respect to 0 < § — 0
of

kp(x,y)e(y) dsy

yETA|x—y|>d

- / k(% y){@(y) — p(x)} dsy + / ko (x, y) dsy o(x)

yeETAlx—y|>d yeTAlx—y|>5
if ¢ € C>°(T"). The limit
lim ko () {#(3) ~ w0} dsy = pv. [ hn(xy){ely) — e} dsy
0<0<|x—y]| yer\{x}

exists (as a Cauchy principal value integral), whereas, from f‘
the finite part

—y|>6 kp(x,y) dsy, we have to take

%i_}r% p.f. / kp(x,y)dsy =: h(x).
[x—y|>d

(For the evaluation of h(x), see (A.1).) Hence, we finally arrive at

Do) = pv. [ ol y){ely) - @0} dsy + hxp()
I\ {x}
6. A PERTURBED MINIMAL RIESZ ENERGY PROBLEM

Instead of considering the continuous minimal Riesz energy problem, D.P. Hardin and E.B. Saff

investigate in [11] the discrete Riesz energy problem of minimizing Es(wy), s > d, of the sum
of a finite number N of Dirac measures dx; v, wn = {X1,...,Xn} being a set on a d-rectifiable

[e]
manifold A. The energy Eg(wy) is defined by removing the self-interactions. For the sake of
simplicity, assume that A is compact and has the positive Hausdorff measure H;(A) > 0. Then,

the infimum of E(wy) over all point sets wy C A is attained at some wy, = {x},....xy}. In
particular, it is shown in [11, Theorem 2.4] that

lim B, (wl)N~O+/D = Oy /Ha(A)*/,

N—o0
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where Cyq is a constant independent of A and defined explicitly by the unit cube. Furthermore,
in the weak-star topology of measures we have

L5 Ha()]4

N;6Xi7N—>Hd(A) as N — oo .
If A is a bi-Lipschitz image of a single compact set in R?, then the separation estimate [11, Eq. (16)]
holds for an optimal N point s-energy configuration wy; for A.

Now, for our (n — 1)-dimensional manifold I' = | J,,; I';, every compact smooth T'; immersed
into R™, satisfies all the assumptions on A with s =n—a, -1 <a<1,d =n>d=n-—1.
Following the inspiration of these results, in our continuous setting, this corresponds to integrating
for a small § > 0 over (I' x I') \ {|x — y| < 4}, i.e., by cutting out a set with |x — y| < § near
the singularity. In order to explain the computations in the next section, we shall focus first on
the following perturbation problem which, for 0 < ¢ = €(d) — 0, is essentially the minimization
problem we will finally get.

Theorem 6.1. For e > 0 sufficiently small, consider the minimization problem:

1 .
(6.1) (Vsor, O')LZ(F) + g(a, U)LZ(F) —2(f,0),r) — min
subject to
(6.2) /giai ds=ad', jel
r;

Let the given data satisfy the additional conditions:
(6.3) fe HP/2T), ge H**(T)and0<d' €R, i € I.
Then, the minimizer o € Lo(T') admits the asymptotic expansion
(6.4) ol = 0o +coy + 2oy satisfying |0y, < ¢, j=0,1,2
with a constant ¢ > 0 independent of €, and where
He = {p € HY2(D) with [l = (Vip, @) Loy + Il } € HYA(D).
In particular, with fy. = fir, , it holds

og = (Ozkag)ke[ = (O‘kgkak(gk’gk)gj(l“k))kel’

o1 = (o )per = (akgk(gkagk)Z;(rk)(gka Vgog — fk)Lg(Fk))keI — Vgoo +£.

Proof. The quadratic form in (6.1) induces for € > 0 the e-dependent family of Hilbert spaces H..
Let us denote by H. the dual space to H. whose norm is then defined by

(F, W)L,
£l = sup =2
weHB/2(I)\{0} w2

)

satisfying the estimate

(£, W)L,
(6.5) Il < sup SO g
weHA/2(I)\{0} [Wllro e
since HA/2(I") < Lo(T") densely and the unit ball in H. is contained in the ball [Wllz,m < 1.
The problem (6.1) can also be written as to minimize

1
(o) = 5llolh. — (. o)r.m)
subject to (6.2). It possesses the Lagrangian

1 )
Li(o) == §|||0|||3{€ —e(f,0) L,y + Y i (7 = (95,05)Lar))
jel
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where o0 = > ajaj and ajaj ds = X¥p,. Thus, the necessary conditions at the minimum read as
Jjel
k k
8UkL)\(O'€> = EOsz[gO'E + ago, — EOzkfk — ak)\kgk =0,

or
(6.6) Vo + 0¥ — e f = Mpgr and (gi, o%) =a" kel

. BO¢ e k= AkGk 9k, 0, Ly(Ty) — ’ .

Here, A # 0 since the constraints (6.3) are always active as it follows from (6.5) and will also be
seen below.
For o and A, we insert the expansion (6.4) into (6.6) and obtain the system

eVaok + o —efx + Vot +eot +3Vgoh 4+ %08 = (A& + eAb +e2\5)gx on Ty,
(Gs O8) Lo(r) + E(Qkao'lf>L2(Fk) + EQ(Qk,Ug)LZ(rk) =ad" kel
Equating equal order terms in ¢ yields with )\é > 0:
Order €%: We find
o = g;Ny and (9;,09) Lar;) = (95, 97) 1o r) Ny = @ > 0.

Thus, it follows

. B . _ 3
(6'7) /\jo = (gjagj>L21(pj)a] and O'(])c = gkak(gkvgk)Lzl(pk) S H2ﬁ(rk)-
The assumptions (6.3) imply the properties of > 0. Moreover,
k k
ol < exllodll 3, < c

Order e!: Tt holds
—fr + ot = Ngr — Vsog
and
(V305 9k) La () — (fes 9) 1ty + (085 91) Lo () = AT (ks 1) L (1) -
This yields with (o1, gx)r,(r,) = 0:
AT = (982 98) 1y(r, ) (V396 = fis 98) Lo

(6.8)
ot = gi(9rs 91) Ly vy (VTS — fis k) La(ry) + fi — Vo € HO2(Ty).

Hence,
ot . < 02||U§|\Hﬂ/2(rk) <ec

Order e%: We derive the identities

©9) Vaot + (eVaoh + o) = Msgx,
6.9
e(Vs05, k) rar) + Vot gk) o o) = A5 (9ks 9k) Lo (1)

since (0%, gk) 1, (r,) = 0. Therefore, we conclude
(eVs + I)ir05 = gk(gk,gk)Zj(pk)

(6.10)
’ {E(Vﬂalgagk)Lz(Fk) + (Vﬁalfagk)L2(Fk)} - Vﬂalf € H_ﬂ/2(rk)'

For every fixed e > 0 sufficiently small, the mapping eVz+1I : H, — H_ defines an isomorphism
due to (3.5) and the Lax—Milgram lemma. Therefore, (6.10) amounts to the estimate

lorallae. < el (gx(gr: 98) 30,y (e (V05 90 Lars) + (VBOT, 98) L2 }) ey = VB[l

< C/€<Z(Vﬁ(7§,9k)L2(rk)) + Vsl g-sr2(ry
kel
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with a constant ¢/ depending on I' and g due to (6.5) but not on e. With g € H?(T') and Vj3 being
a pseudodifferential operator of order 5 on I', we further have

Z(Vﬁggagk)Lg(Fk)
kel

< ool Ly lgllzs ),

implying that
loalln. < c"elloallywy + lloill marzm
< "elloalln. + ol marzr).
Consequently, since the constants do not depend on ¢, there exists an g > 0 such that
loallz. < evllotllgsr ) for all 0 < e < eg

and ¢, independent of ¢. , ‘
With f € HP/2(T'), g € H2%(T"), we find o9 € H2?(I') and oy € HP/2(T). Hence, (6.4) is
justified which completes the proof of Theorem 6.1. 0

With the help of the previous theorem, we immediately find the following asymptotic behaviour
of the minimizer o if € tends to zero.

Corollary 6.2. Under the assumptions in Theorem 6.1, we find that
lor —oollL,m) < ce =0

with some constant ¢, independent of o¢ and € > 0, where o is the minimizer (6.4) of (6.1) for
e>0.

Proof. Since o = oy + co1 + €202, with (6.4) we find
loZ = oollLomr) < llof — oo, < (e +¢?) <2

as proposed. O

7. RIESZ MINIMAL ENERGY WITHOUT FINITE PART REDUCTION

We consider next the punched hypersingular Riesz potential which is defined by integrating for
a small § > 0 only over (I' x T') \ {|x —y| < d}, i.e., by cutting out a set with |x —y| < § near the
singularity. Thus, the corresponding Riesz energy is defined as

b= [ eyl ane s duy) -2 [ 60 dux).
I'XxTA0<O<|x—y]|

In view of Theorems 3.3, 3.5 and 4.1, the associated minimal Riesz energy problem is then equiv-
alent to minimizing the punched functional

Js(p) = // Ix — y|7" Po(y)e(x) dsy dsx — 2(F, ) 1, r),
I'xTA0<O<|x—y]|

where m =n—1and 8 =1—«a € (0,2), over the affine cone K(I',a,g). Then, the measures
satisfy dp(x) = ¢(x) ds with ds being the surface measure on I'.

For Js5(¢) one has the following monotonicity property.

Lemma 7.1. Let 0 < 6; < &2 and @}, 5 € K(I',a,g) be the minimizers of J5, and Js,,
respectively. Then, it holds that

(7.1) J5.(05,) = J6,(#5,) = I, (#5,)-
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Proof. Since 01 < do, the minimizer @5 =37, ; ajgogf with gogf > 0 is an admissible element for

minimizing Js,. In particular, it holds

Ja(e},) = / / I — 7Bt ()it () dsy dsx — 2(F, @8 ) a(r)

[x—y|>d1
] b=y, 005, () dsy e 28,65, D) = T ()
[x—y|>d2
We further find
Ts.(},) = inf Ts, (@) = Js, (3,),
as proposed in (7.1). O

[e]

In order to see the relation between J5() and Ve (¢) in (4.2), let us introduce the compensating
quadratic functional

(7.2) Pi(e)i= [ { ot | |xy|mf’sa<y>dsy}so<x>dsx.
r [x—y|<é

Then, we obtain

PS( /{ /|X Y| m— ﬁ(p(y)dsy}cp(x)dsx2(f7<p)L2(F)

= Vs, ‘P)L2 —2(f, )1,y = Ve(o),

and thus

o

Js(p) = Ve(ep) = Ps(p) = (Vap, @) Lor) — 2(F, @) o) — Pslp).

For the corresponding functional Pg, there holds
Lemma 7.2. Let ¢ € K(T',a,g). Then

11

Ps(p) 2—5—5_ ||<P||L2(r + Pj(p),

where P(p) satisfies
P5(0)| < cllelliarnmm

with a constant ¢ independent of 6. Moreover

(7.3) %i_}né P () = 0 for every o € H/2(T).
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Proof. Using Martensen’s coordinates of I' in the vicinity of x € T’ (see Theorem B.2 in Appendix
B), for every ¢ € C°(T"), we have

Ps(p) /{ p.f. / e(x+r0)r P71 dr A dw

r 0<r<SA|®|=1

+ / (x + rO®)a(x, r)r Pt dr A dw}cp(x) dsx

0<r<sA|®|=1

= { p.f. / 1 d7"/\dc.u}/|<,a(x)|2 dsx

0<r<sA|@|=1

+ p.f. / {p(x+1r®) cp(x)}rﬁldr/\dw}cp(x) dsx

0<r<sA|@|=1
+/{p.f.
r

S—
—

e(x + rO®)a(x,r)r Pt dr A dw}cp(x) dsx.

0<r<sA|®|=1
Since

p.f. / r P dr A dw = —%L(Vﬁ

Cm
0<r<sA|@|=1

and Ps(¢) in (7.2) is symmetric, we find

Ps(¢) = —(Bem) 6 |7,y + Pi()-

Herein, Pj(y) is given by

2Pj(p / {e(x) — (X)) + o(y) (e(x) = p(¥)) Hx — |77 dsy dsx
[x—y|<s
- // (e(y) — p(x))aly, r)r " dr A dwep(x) dsx
lx—y|<é

- // > (p(x) = @(y))a(x,r)r P+ dr A dw p(y) dsy

// A dr A dw @(x) dsx

x—y|<d

(7.4) + // e(x)aly,r)r P dr A dwe(y) dsy.

[x—y|<6
We rewrite P(¢) according to

=5 [ 1ot — ek -yl ds, s
|x yl<é

+// b(x,y)p(x)¢(y) dsy dsx + // o(%,y)p(x)” dsy dsx,

[x—y|<s x—y|<8
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where b(x,y) and ¢(x,y) are kernels which posess pseudohomogeneous expansions of degree — 3 —
m + 1. This means that

1
P3(¢)=§/ lp(x) — @(y)*Ix — y| 7P~ dsy dsx

lx—y|<é
+ [Brap) et dse + [ (CoiDp0? ds
T I

with classical pseudodifferential operators Bs_1 and Cg_1 of degree —1 on I'. Since the constant
charge 1 is a smooth function on T and Bg_; : HP/2(T) — H=P/2+1(T) — H=P/2(T) for ¢ €
HP/2(T), we finally arrive at

P5(0)| < cilllliarem) + c2llelz,wy < cllellfaem,

as proposed.’

In order to show (7.3), consider first ¢ € C°°(I") and use Taylor’s expansion about x € I' in
(7.4). Then, all the integrals on the right hand side are weakly singular tending to zero with
§ — 0. For ¢ € HP/?(T') approximate ¢ by @. € C=(T'), satisfying || — Pl o2y < €. Then

LA ACSI
= % / / {le(x) — o)1 — (%) — e (y)[2}x — y| =™ dsy dsx
[x—y|<d
+ ‘(Bﬂ_l(’o’ ®)L,r) — (Bp-1¢e, ‘P&)LZ(F)‘
+H1Cs-11ll o) [Pl L, ) = llopellZ, )|
With
N2y = pelloro ey < 3llepllzraraey e — @ellzrarery

for [l 2y < 210l3sry» one has

P5(0) — Pi(ee)|

3

< —

-2
[x—y|<é

+ ‘(Bﬁfl(()o - @e); ¢)L2(F)’ =+ ’(Bﬁflcpea ((P - 908))L2(F)’
+31Cs-11ll o) el o2 (rylp — Pellmarzry

N

[p(x) = p=(x)||o(¥) — P (¥)|Ix —y[ 7~ dsy dsx} llell 62

<cllellgsrzmylle — @ellmsrz @y < cellellmerzry-

Then
(y_%’PZS(QD)’ < cellpll gsr2ry
for any € > 0 which implies (7.3). O
Since
Bs@) = [ oyl oo dsy dse - 208 @)ra0
(7.5) 0<6% x—y|

1
= EH‘PH%Z(F) + (Ve @) Lory — 2(F, @) Lo ry — Pi(),

where € = f¢,,0° — 0 for § — 0, Lemma 7.1 implies

lFor B=1,Bgisa singular Mikhlin—Calderon integral operator with principal part b(x,x)®(w) which satisfies
the Mikhlin condition b(x, x) f‘@‘:l O(w)dw = 0.
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Corollary 7.3. Let Sy < 2 and 5y > 0 be given. Then, there exist positive constants c,c’ > 0
such that the estimate

° 11
Js(#) = 3 =0 Plelli,my < elellrsrr) + 20l am I ellam) < e

holds uniformly for @ € KP/2(I'), 0 < § < 8y and 0 < 8 < By.

The functional (7.5) coincides with the functional from (6.1) except for the perturbation term
P’ (). Hence, we can proceed in complete analogy to the proof of Theorem 6.1.
The Lagrangian to the punched energy functional reads as

o 1
Ly(o) := 5((5‘/[30' + U),U)L )~ ePs(o) —e(f, o) 1,
+Za] a’ - g]) )LQ(FJ')))

Jjel

where the first order necessary optimality condition is given by

O L (o) = eap Vol + apol — capPiol — cay fr. — ardigr = 0,
(gk,Uf)LZ(Fk) =d" , kel

Again, X # 0 since the constraints (6.3) are active. Here,

Pjot = 0P = [ (oh) - oFe)lx -y ds,
Ix—y|<é
+Bgo10f +Bj_ 08 + 2¢5-1(x)0k (%)
with
o= [ exy)ds,
YETA|x—y|<d
and Bg_; and BZE—I being bounded linear operators:

By 1ok — / b(-ry)ok (y) dsy - HEP(T) = HEA(T),

YETAl-—y|<d

k= [ by k) dsy s HED) o D),
YETAl-—y|<d

Under the assumptions of Theorem 6.1 and as in the proof of Theorem 6.1, we finally obtain
the asymptotic expansion of the minimizer o} as well as of the Lagrangian multipliers:

o = 0o +coy + 2oy satisfying |0l < ¢ j=0,1,2,
and A = Ao + €A1 + €2 Ay where
(gka )LZ(FK) = a k el

It turns out that of and A} are exactly the same as in (6.7). Moreover, we have to replace Vj
by (Vs — P%) in the equations (6.8) and (6.9), (6.10). Note that g € H3#(T') < Hz#(T') and,
hence, P7ok for § — 0 tends to zero in H?/2(T') due to (7.3). (If og,01 € C}(I") for 0 < B < 1 or
09,01 € C*(T) for 1 < B < 2, then PJof and P{ol = O(6'77), respectively O(5>77).)

Collecting these results, we have for the punched energy Riesz minimum problem the following
result:

Theorem 7.4. Under the same assumptions as for Theorem 6.1, the minimization problem

(7.6) 5[] oyt oot dsy dse - [ )00 dse i,

U<5<\x ¥l
x,yel’
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subject to (6.2), has for every § > 0 a unique solution o*. It admits for ¢ = B¢, 67 > 0 the
asymptotic expansion

(7.7) ol = 0o +c0q + 20y satisfying ||loj|la. <, j=0,1

with a constant ¢ independent of €. In particular, with o = (ol + apot + akag)kej there holds

k k -1
6 = gka" (9 1) L, (1)

‘71 = )\19k - (Vs — Pa)Uo + frs

where
A= (g 9) " (Vs = P5)o6 — frs 08) 1 r,
and
of = (I+e(Vs - P})) " { Mg — (Vs — P})ot}
with

A5 = (9 1) oy L (Ve = P ot + (Vs — P}')os + o3 }.
Corollary 7.5. For 6 — 0 and € = Bc,6” one finds

550
lor —oollL,m) < ce =20

*

with some constant c, independent of oo and € > 0, where o

it holds

is the minimizer (7.6). Moreover,

o 1 1 —
(73) 35(07) = (Vs(02),0%) 1, oy = PH2) + 5 6 lot ) " o

Proof. Due to (7.7), we obtain

loz = oollLamy < ot — gl < clloils. +e*loafln. < cle+e?).

The conditions (6.3) imply that of > 0 and, hence, ||o%]/1,o) = %llo0llL,@ > 0 for all € with
0 < e < e1 with some g7 > 0. Thus, there holds

° 11

35(o2) = (Va(02),07) 1y = Pil02) + 5 0 ol
1 — *
> 55 =8 ool — cloz

with uniformly bounded [lo%||3,.. Hence, § — 0 implies (7.8). O

Remark 7.6. For the torus Ty in R3, considered in [6] and [10], where £ € HP/2(T), a' > 0,
g1 = 1, the minimizers o} of the punched minimization problem tend to the constant charge
* — 1.1
oL = 00 = [l
APPENDIX A. EXPLICIT CALCULATION OF PARTICULAR PARTIE FINIE INTEGRALS

In this appendix, we shall compute the partie finie integrals which define the functions h(x)
and h(x) from (3.2) and (3.3), respectively.

Lemma A.1. (i) Let -1 <a <1,T € C® and ¢ € C°(T"). Then, one has

lim pf. / I — ¥[8 D {(y) — p(x)} dsy

6—0
|x—y|>6>0
= b [ ey ply) - o} sy,
\{x}

where p.v. denotes the Mikhlin—Calderon principal value integral.
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(ii) The function h(x) from (3.2) is given by

h(x) = / {|X _ y|fﬁ*(n71) _ T*ﬁ*(nfl)} dsy — (ﬂcn)ilcfﬁ

yETA|x—y|<c

(A1) — p.v. Tﬁﬁf("fl){r"72 drdw — dsy}

yETA|x—y|<c

+ / x —y| A~V ds,,

yETA|x—y|[>c

with any ¢ > 0 sufficiently small.
(iii) For the function h(x) from (3.3), one obtains

h(x) = p.v. / {x—y[7 0 Dy —x) —r 0Dy —x)} dsy
yeETNO< |x—y|<c
(A.2) — p.v. / r_ﬂ_("_l){(y — x)r"_2 drdw — (y — x) dsy}
YELAIx—y|<c
+ / x =y 777 (y = x) dsy

yELAO<|x—y|>c

with any ¢ > 0 sufficiently small.

Proof. (i) Locally on I" one has near x € I":

e(y) = @(x) + (y —x) - Veo(x) + O(?), 7 = |x — y;
O(r,w) := %(y —x)forx,y €eT;
O(r,w) = O(0,w) + O(r), / 00, w)dw =0,

lel=1
dsy = r"2(1 + O(r?)) dr dw.

|©(0,w)| = 1 describes the (n—2)-dimensional unit sphere S"~2 and w is its polar coordinate with
dw its (n — 2)-dimensional surface measure. Consequently, with an appropriate constant ¢ > 0
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depending on I', one has

lim pf. / x =y o(y) — o(x)} dsy
yETNO<I<|x—y]|
_ . —B—(n—1)
g, »f o

yeIN0<o<|x—y|<c

¥ =) Vo) + {e(y) — x) = (y =) - Vip(x)} } dsy

+ / Ix —y| 77D {o(y) — o(x)} dsy

yETA|x—y|>c

= lim pf. / r=Adr / 0 dw(0®) - Ve (x)

6—0+
0<o6<r<c |®|=1
+ p.v.{ / {|xfy|_5_("_1)(yfx)dsyfr_ﬂ_l(yfx)drdw}
0<|x~y|<c

+ / Ix —y| " oly) — p(x) — (y - x)Ve(x) - dsy}}

0<|x—y|<c

+ / I — B D () — ()} dsy.

YELAIx—y[>c

The first integral on the right is zero because of f‘ ol=1 ©® dw = 0. Whereas, the integrand of the
remaining integral has at y = x a weak singularity |y — x|7*! with -1 < =8 + 1 < 1 whose
principal value integral exists. This follows by using e.g. Martensen’s surface polar coordinates,
cf. Theorem B.1 in Appendix B.

(i) For the function

R N (AL ™
0<o<|x—y|AyeD

we find

h(x) = 6113%) pf. / {|x _ y|fﬁ7(n—1) - Tﬁﬁ*(nﬁl)}dsy
0<o<|x—yl|<c

C

+ lim p.f. /riﬁf(”fl)r"72dr / dw
6—0

0<s |®|=1
RT —B=(n-1) f,m—2 _
}13(1) p.f./ / r {7’ dr dw dsy}
0<s |©|=1

+ / x —y| A~V ds,,.

c<[x—y[Ay€el

If we choose Martensen’s surface polar coordinates on I'; then the integrand of the first integral
on the right is identical zero due to |x —y| = r. For the second integral on the right, we have with
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Jioj=1 dw = ;! that
f 1 (67F 1
i p-1 = i — ) _ B0 _ -1.-8
Oilgo p.f. /T dr / dw Oilggo p.f. Cn{ 3 BC } (cnB)” 7P
5 |@|=1
For the third integral, Theorem B.2 in Appendix B implies
"2 drdw — dsy = O(r™) dr dw.

Hence, the integrand is of order O(r~#*1) and the integral exists as a principal value integral.
Collecting these properties proves (A.1).

(#ii) We proceed with respect to the vector-valued function

h(x) = p.f. lim / Ix —y| P~ (y — x)dsy,
0—0
yETANO<I<|x—y]|

in the same manner as for h(x). Inserting (y —x) = r® for Martensen’s surface polar coordinates,
we have:

h(x) = (%i_)mo p.f. / {Ix- y| Py —x) — ANy x)} dsy

0<o<|x—y|<c

(&3
+ lim p.f. / p ===l qp / O dw
6—0
0<6 |®|=1
(&
— lim p.f. et drdw —d
lim p / / r {r rdw sy}
5 |@=1
[ ey - sy,
0<|x—y|Ay€eT
Here, the first integral on the right vanishes if Martensen’s surface polar coordinates are used, and
the second one vanishes because of f\@\:l ® dw = 0. The third integral contains an integrand of

order O(r?*2). Hence, the integrand is bounded and the integral exists. Consequently, also (A.2)
holds. g

APPENDIX B. MARTENSEN’S SURFACE POLAR COORDINATES

For n = 3, surface polar coordinates have been introduced by Martensen in [16, Chapter 2.1].
A graphical illustration of these coordinates are found in Figure 2. We generalize this approach
to arbitrary spatial dimension n > 2.

FI1GURE 2. Illustration of Martensen’s surface polar coordinates.
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The given surface has locally the parametric representation I' : x = x(u) € R", u =
(ul,...,u"t) € R*7! For x = X = x(lol.)7 define the family of (n — 2)-dimensional manifolds
(level sets) as {x € C, C I given by |x —x| = ¢ > 0}, where |x — x| denotes the Euclidian distance
in R™ and p is the radial parameter. Let

then

A*(u) = (x(u) — )oc) - (x(u) — )oc),
where - denotes the Euclidian scalar product in R™. In the local neighborhood of I'; define
x(u) = x + F(u) + G(u)n(u)

with G(u) = (x(u) — >o() -n(u), where n(u) denotes the (exterior) unit normal vector of I' at
x = x(u). Then, on T, the vector F(u) is tangential to " at x(u),

(B.1) F-n=0, F=(x(u) —x) - G(un(u) and A>=F -F+G>.

Forx €T chosen, the surface polar coordinates then locally are given by the family of closed
surfaces C,, i.e., the level sets of the function A(u), and curved radial rays on I" through x which
are perpendicular to C, for constant p. Let us denote such a radial ray curve by ce € I, given
by u = u(s), 0 < s, where the parametric representation x(u(s)) at s = 0 starts in x = x(u)

in the direction of the unit vector e(®) = x|i(101)®i, X|; = 66;, i=1,....,n—1; gjr = X|; - X,

9;:©70"% = 1. Hence, for the curve cg : x = x(u(s)), we require that

o d’ll,j o
x|j(u)E(u) =e(0).
(Note that for n = 3 one usually uses ©; = cos¢ and O = sin(.)

Without restriction of generality, we assume in what follows that at x we have gjk(lol) = 0jk
(the Kronecker tensor). Since the radial ray curves ce € I' are perpendicular to the level sets,

which implicitly are given by A = p = const, they satisfy the ordinary differential equations for
fixed ©:

ace_d_x _X_dij_ Grad A (u)
ds  dslee Yds | Grad A2

(B.2)

where Grad A = gekAMx‘k is the surface gradient and g**g; = ;4. Since (B.1) implies on I that

o Iy 1 1
AAjj=(x—x) -x;; =F; =F -x; and Grad A = geka‘k = ZFkx“C = ZF’
we find
1 1 G?
and the differential equations (B.2) take the form
dx du? Grad A G? -1
B.3 o —x = 7( = )
(B3) B leo = X9 ds ~ [Graa ap\! T~ a2 W

After multiplication with x|, g%*, we thus arrive at

y4 2
By = (-5

1
— Ff(u), F'=g¢"F. =1,...,n—1.
dS A(u) u)) (u)) g X|ka gak ) , T

Theorem B.1. To every x € [ there ezists a neighborhood 0f>o< on T' where the system (B.4)
admits a unique solution

u'(s, @) = s0° + O(s?)



MINIMAL ENERGY PROBLEMS FOR STRONGLY SINGULAR RIESZ KERNELS 25

for s > 0 which is the solution of the Volterra integral equations

(B.5) uil(5,0) =7 150 + O/ {Fz:((uu((:,@?)))) (1 s (U(Z’ ©) )71 - @f} do.

The transformation u +— (0,0) to surface polar coordinates about X is given by u(p, ), i.e.,
s=02>0.

Proof. Since

F=(x—x)— ((x—x) -n)n,

the expansion about X = x(u1) gives on the one hand

ok ok ot ok
o o du i 1(o du du " o d2%u )
S e AT e sl SIS el S O
*ds 21 s ds LIPS
1 dOkdoe dOj dzokdoe dgok
o u u U o u m U
B.6 Lfo ~ du du du AR A L7 U
(B.6) +6{X|k|éljd8 T I TXwegm g Xk s }s +0(s%
On the other hand, with the Gaussian equations
Xj|k :FﬁkXIE‘i‘ijn, {=1,....n—1

and the Weingarten relations

1’1|j = —L;-nX|m,
we obtain
X|jikle = {Tjkpe + Tiele — Ljw L 3Xpm + {Ljkje + D Lreim
where I"fj are the Christoffel symbols of the second kind of I' at x, Ffj‘k = #ﬁkl—‘fj(u), and

L% = g* Ly; with Ly; the second fundamental form of T at x (see e.g. [13, p. 90]). Here and in
what follows, we abbreviate

ok
o o o o du du o

= = d— =—= tc.
X|k X\k(u), X|k|e X\k\é(u) an ds ds (u) ete

We get thus from (B.6)

ok
o 1 o™, ° o kAl o d2u 2
xfx:e(G))eri (Fux‘erLkgn)@ 0" + x| 5

ds?
1 ot om ot o ot ° o o™ o ° .
(B.7) + 6{ ([Cye + Toale = LiwLe|Rpe + [Linie + Ty L | ) 07646
ok ot
ot o ° o d2u o d3U
+ 3(erx‘t + Lkgn) of 152 + Xt 158 }83 + 0(54)

By combining this expansion with

w1 a2
n(w) =i, s g {Reter i, bk 0,
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we arrive at
G = (x—x)-n(u)

oJ
o o om 1o d2
= —X)p X, OFL,; ©7s% + ELM@’“@%Q 2L KON s

1/0 oM o 1 om ol omoe .
+ {g (ijle + ijLmé) 5 (ijrké + Ly +L; Ty, )}9391“9%’3 +0(s")

1o . 1o 1o om 1 X4 om ol .
= 5L 0"07s* + {ELW = 3Limlhe = 5Ly = 51 T }@J@k@fs?’
1 d2o]
Eij@k d;; s5 + 0(sh),
a2 Lo okare | .2 3
F— e(@)er{ ([kaqm +Lun}@ O + Xy ) +5L10"0 n}s +O(s%),
A=s+0(s?)

Hence, we conclude
F G2\ -1
- (1 - F) = e(®) + O(s)

for any C?-curve x(u(s)) through x. Consequently, the kernel function {...} of the Volterra
operator in (B.5) is continuous and there exists a solution u(s,®) for fixed given © in some
vicinity of x on I'. This solution is in C1([0, S]) for some S > 0 and is as many times continuously
differentiable for s > 0 as is the manifold I'.

The equation (B.3) implies

du’ du? du’ du’  dA  dp

Thus, it holds A = s = p and u(p, ®), the solution of (B.5), is the desired transformation
(0,0) — u.

By bootstrapping, it follows from (B.4) that u(p, ®) is higher order differentiable up to ¢ = 0.
To see this, consider the Taylor expansions of the left and the right hand sides of the equations

(B.4) about u up to the order two:

Left hand side of (B.4): (by using (B.3))

Y4 Oe 208 Oe Oj
Q) = 2 %, 4 L, S g, S
12 - dg 12 |ed92 1213 dQ dQ e

Oé Oé Oj Ok; j
+ 1 2 d3u )o( _ du du du +3§( _d2u du
Md 3 |e|J|de do do e|Jdg2 do

ot
(e} o d2 om
= %0 + {xe (rgjxhn +Tym )@ @J}

do?
4
1(o d3U om ol om o om oMo tevi ok
+ — Xlgd 3 (|:F€_]|k —+ Fejrtk LEJL]C :|X|m [Feijk 4+ nglk:| )@ @ @

m d2°€
o o A U
+3<Fégx|m+Llj )@jd—g2 }Q2+O(Q3)
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Right hand side of (B.4): (see (B.7))

1 o 1 o d ’LL
E(xf )*XW@ + = {(Fux|m+Lun)@ of +x|kd }g

1(o dgo om ot om o om oMo
+2 {x|gd3 ([Fepe + ToTox = Les L |Rn + [Ty L + Lo | ) 0070*

202

o™, ° o ~d u 2 3
+3(Fejx\m+Lejn)@Jd—gg }Q + O(¢”),
oJ ol ok olJ
o o du 1(o du du o du 2 3
n(w) =0+ 0y Q+§{n” ddg Mg }9 row)
:l?l—Lj >O(|m®jg

1 om oéom om o . anJ , ,
-3 ( j\kx\erL Fekx|m+L Lmkn)e)ﬁ@ +L d—92 X[y 00>+ O(0),

oJ
1o d%u
~G=-LuO®"0% — ~L;1— ©°
0 5 Lkt =35 gedQQ
1o l1omo lo om R
+ gLej\k* gFeijk 29meLg\k gmeL Iy, p©70%0 0 + O(0?),
1 1 o o™
(EG)n(u) - (EG)( - I @Jx‘mg) +O(o%)
1 oMo 1o dQO]
—n- Lkg(ak@ég—l—ng —§L LX), ©70F0" Q—ELﬂ— 0'ne? + O(%),
G? 1 1
v (EG) = Z(Lké@k(ae) 0> + 0(93)3
G\ 1 1o
(1 _ F) = 1+ £ (Lu®©"0") e + O(¢")
Comparing the coefficients of x|,0 gives:
ot ol
d?u of 1of 1 d2u

lhs: d—92+rjkeﬂ@k and  rhs: §r.k@ﬂek+——.

Consequently, there holds

Next, compare the coefficients of )O{MQ2:

Left hand side of (B.4):

1 d3U 1 oe ot oe o ol m ) 302 d20m
2 4 +§(ij|k+ijFtwLmij)® ©/0" + T, @Jd >
y4
1 d30 1 oe ot oe o ol m i 302 Ot . .
2 g +2<ijlk+rmjrtk LmJLk)® e’e *—F Tem®© ek,
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Right hand side of (B.4):

(lg(x —X)— %Gn) (1 + EQQ(ZMGIC@Z)Z + (9(93))

o 1 ol o
= O'x), — g§rkm9k@mxw

1 d*u 1of 1ot of  10fe I I A I
+{6 7 +(6ij\k 3Fm]1“ ngLkm)G e’e +Z(L’”® e’)’e }xw.

Hence, from equating left hand side and right side, one obtains

B’ . ol of of 1o - .
d_gg (u) = { mj\k 4+ 2Fm]Ftk 4+ Lmij}GWGJ(—') 4(Lk C) @j) @

ol ol
With the expressions for dj;‘z and dds -, we recollect the relations for x — x and find instead of

(B.6):

1 500
(x — x0) = 0e(O®) + §QQnLk¢®k®é

3 1o © ol o ot ° X 4 0 .
+ %{( SXieLms Ly + [2Lmj|k 3Ltjrmk}n)@me)ﬂ@k n g(ij@k@Jf@} +O(oY).

Collecting the first three derivatives of u’ at u implies that the first terms of the transform
(0,0) — u read as

ol 1 of .
(B.8)  u’(0,©)=u + 0% — 5T 070k
1 1 olo o‘e ot ol . 1 o . 2
+ 6{ L;Lim + 20T, — rmjk}efek@mgg’ + g(ijeﬂe’“) 0'0* + 0(oh),
forall ¢ =1,...,n — 1. Whereas, the inverse mapping u — (g, ®) can be obtained from
0= A(u) = |x(u) - x|
and the nonlinear equations for
‘ ¢ ofy L of
O =-(u"—u)+ —Qij@j@
0

1 oéo ol ot ol ] . 1 o ‘ )
_ 692{2L]Lkm 4ol Ty — ijlk}@J@k@ Lp(iaeetyers
forall =1,...,n—1 can, for p > 0 sufficiently small, be solved via successive iteration. O

Theorem B.2. Let I' € C*. Then, the surface measure dsr of I in Martensen’s surface polar
coordinates satisfies

(B.9) dspr = 0" %2do A dw + (Q”a((-)) + O(Q”“)) do A dw

where

n—1 o oJo _o‘e o
= @J{%((th@k@tf + Ly L ©' 676" ) ®JLngk®m®k}

and
n—1 n—1
dw = Z( )J+1®] d(_)l Aé}éj/\ A dO™ 1] Z @]'(_)j -1
Jj=1 —

Here, dw is the surface measure of the unit sphere S"~2 in R*~1.
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Proof. For the surface measure of I', we use the exterior Pfaffian products, defining the exterior
normal vector’s components times dsp (see [21, Chapter 11.4]. Then, we multiply scalarly with

the exterior unit normal n(x) = (n'(x),...,n"(x)) which yields
(B.10) dsr = Z( D7 dat A A dRIA - A da” |0 (x).
j=1

Expansions about X up to the order ¢? give

o om ) 1 om ol om ot om ) o
n(x) =n - oL; x),0’ — §Q2{ij + L;Ty, — T L }@J@kxhn
1 olo . °
— §Q2Lngk@J@kn+O(Q3)
and

. . . 1 1 oJo
dz? = dp®’ + 0d©’ + 59%19 %(th@k@ ) - 5L,CL,m@k@m@’f} + O(0%)

= dp©’ 4 007 + o> doc? (©) + O(o®)
with ‘
. 1 o 1oJo
J(O) = 5{%(th@k@ff - 5L,cht@k(a”l(at}

forj=1,....,n—1and
ol

o . 1 o e}
da" = L;n©'0%0do + 3 (2Lynjik = 3Le,T ) O 070 0 do + O(").

Inserting this into (B.10), yields

dsp = (— )n+1 [dl‘ A A dxnil} (1 — %QQE/j zmk@j@k + 0(93))

n—1

Jrz “dzl A A YA dz"il} /\d:c”}
7j=1
k 1 oJ ol oJ ot oJ k2
(B.11) A e — 5 (Lpic + LD = D Ly ) 070762 + O(e )}

For the first term in (B.11), we obtain (modulo O(o?) terms) with the relations for dz7:
[dz' A Ada" ] = [de®' + 0dO" + p* doc! (©) A de®” + 0dO? + p* doc*(O)
Ao AdeO" !+ 0dO™ ! + p? doc" 1 (O)] = " [dOT A AdO™ T

+ 9"‘2[dgAnZ(—1)j{®j + 0% (©)}[de A ---/\?;@J’/\---Ad(a”—l]}

Since the variables ©7 vary on the (n — 2)-dimensional sphere S"~2, where

n—1
> ()2 =1
j=1

we have
n—1

(B.12) > elde’ =0
j=1

on S"~2. Hence, the differentials d®7 with j = 1,...,n — 1 are linearly dependent and
[dO'A---AdO™ 1] =0.
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Moreover, on S”~2, we have that the exterior unit normal vector v to S"~2 satisfies

n—1
vV, = E Oe;.
j=1

Therefore, it holds

vidw = (~1)*[dO" A --- Aé;@% o Adem] = 07 dw,

and with (B.12) one obtains

n—1

dw = 3" (~1)716/[dO A+ NGO - A dO" .

j=1

For the first term in (B.11), we find therefore

Oé o
dst = (_1)"“{9"—2 + g”( Zcﬂ L Lgk@m@k) +O(p ”*1)} do A dw.

For the remaining terms in (B.ll), we have (modulo O(p?) terms) that

2 1 j n—1 n o , 1, mak
dsrz[[dx Ao NN - Ada }/\dx }(—QL,:@ — 50 {.-1e 9)

[[dg@l +0dO! + 0®doc!(®) A deO? + 0dO? + ¢ doc*(©)

Ao AYEIA - A de?0" ! 4 0dO" ! 4 0? doc 1 (O)]

A (gdgzjk@ij v %Qng{. yereier)|( - ol 0l - %{. . jerer)

n—l o 0d
=3 (-1 (0" + O™ 1)) do A [dO! A - Aé;@% .- AdO" Y] L, 0™ O L, 0!
j=1
n—1
= (-1 ”+1ZL RO™ @kL 0'e7 (0" + O(o")) do A dw.
Jj=1

Consequently, we finally get in (B.11)

dsp = dst + dst = 0" *do A dw + (0"a(®) + O(0")) do A dw

with

oj o 3 oé o
Z @J{ th@k@t) + L, L,0'0mer — GJLmLM@m@k}.

This is the proposed relatlon (B.9) for the surface measure. (]
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