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Abstract. We study minimal energy problems for strongly singular Riesz kernels |x− y|α−n,
where n ≥ 2 and α ∈ (−1, 1), considered for compact (n − 1)-dimensional C∞-manifolds Γ

immersed into Rn. Based on the spatial energy of harmonic double layer potentials, we are
motivated to formulate the natural regularization of such minimization problems by switching
to Hadamard’s partie finie integral operator which defines a strongly elliptic pseudodifferential
operator of order β = 1 − α on Γ. The measures with finite energy are shown to be elements
from the Sobolev space Hβ/2(Γ), 0 < β < 2, and the corresponding minimal energy problem
admits a unique solution. We relate our continuous approach also to the discrete one, which
has been worked out earlier by D.P. Hardin and E.B. Saff.

1. Introduction

The classical Gauss problem of minimizing the Coulomb energy to solve the problem of Thomson
and its generalization to Riesz potentials together with the discretization is the basic problem of
many applications (in [3] are listed coding theory, cubature formulas, tight frames and packing
problems). In the works [2], [3], [6], [10], and [11], the discretization is obtained by approximating
the minimizing charges by a distribution of finitely many Dirac measures on the given manifold.

If the number of Dirac points tends to infinity, then the minimizing densities approach distri-
butions in the form of Sobolev space elements. Therefore, in [8], [9], [18], the minimizing measures
are considered as distributions in Hilbert spaces of finite Riesz energy. This continuous setting is
simpler and more efficient from the numerical point compared to the discrete approach in [2], [3],
[6], [10].

For potentials with Riesz kernel |x−y|α−n, where 1 < α < n, and Borel measures supported on
a given (n− 1)-dimensional manifold Γ immersed into Rn, a surface potential is generated, which
on Γ defines a boundary integral operator with weakly singular kernel. This boundary integral
operator is a pseudodifferential operator of negative order β = 1 − α if Γ ∈ C∞. The energy
space of this pseudodifferential operator on Γ is thus the Sobolev space Hβ/2(Γ) of distributions
and the minimizing measure of finite energy is an element of this Sobolev space. Hence, the
determination of the minimizer is reduced to an optimization problem with a quadratic functional
which is defined in terms of the single layer Riesz potential on Γ. The strong ellipticity of the
corresponding pseudodifferential operator in Rn and its trace on Γ then provides the coerciveness
of the associated quadratic functional. For α = 2, which corresponds to the Newtonian kernel,
the Riesz energy of the single layer potential is just its Dirichlet integral over Rn \ Γ.

In this paper, however, we consider the Riesz kernels with α ∈ (−1, 1). For α = 0, in classical
potential theory, the energy of the harmonic double layer potential in Rn \Γ now equals the Riesz
energy if we define the latter as to be Hadamard’s partie finie integral of the hypersingular potential
— which is the natural distributional regularization (see Section 2 where Γ is a (n−1)-dimensional
planar bounded domain in Rn).

Let Γ =
⋃

i∈I Γi where Γi, i ∈ I, are finitely many compact, connected (n − 1)-dimensional
C∞-manifolds immersed into Rn. In Section 3, we then consider the Riesz potential as a pseudo-
differential operator just on Γ since we cannot use its extension to Rn (for α 6= 0, the transmission
conditions [12, Theorem 8.3.11] are not satisfied). We call the bilinear form with the strongly
singular partie finie integral of the Riesz kernel the energy of the Riesz potential . The partie finie
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Figure 1. Illustration of the geometrical setting.

integral operator with the hypersingular Riesz kernel defines now a strongly elliptic pseudodiffer-
ential operator Vβ of positive order β = 1− α on Γ.

In contrast to the analysis of weakly singular Riesz kernels provided earlier by the authors
in [8], [9], in the case under consideration, the trace theorem in H−β/2(Γ) = VβH

β/2(Γ) is not
valid anymore, because of the negativity of the order −β/2, cf. [1]. Nevertheless, we have succeeded
in overcoming this difficulty, and we have shown that all the Borel measures on Γ with finite Riesz
energy whose restriction on any Γi takes sign either +1 or −1 form a certain cone in the Sobolev
space Hβ/2(Γ), 0 < β < 2. This is our main result in Section 3, Theorems 3.3 and 3.4. In this
framework, the corresponding Gauss variational problem admits a unique solution which belongs
to Hβ/2(Γ), which is a compact subspace of L2(Γ). These results have again a potential theoretic
meaning in the particular situation α = 0 in relation to the harmonic double layer potential as
explained in Section 5.

In the fundamental work [11] by D.P. Hardin and E.B. Saff, discrete minimal energy problems
have been investigated. There, the discrete Riesz energies are obtained by distributing a finite
number (N) of evenly weighted Dirac measures on a compact (n − 1)-dimensional manifold A
where the set x = y is excluded. Then, the discrete minimal Riesz energy determines an optimal
geometric arrangement of the N distinct Dirac points on A. In [11], three cases are distinguished:
(i) the Riesz kernel is weakly singular, (ii) the case α = 1 (see [14]), and (iii) the hypersingular
case α < 1. For all these three cases, the behavior of the discrete minimal energies for N tending
to infinity is explicitly determined (see Section 6 below for details). In the works [2], [3], and [4],
these results are generalized to more general Riesz kernels with weights.

During a miniworkshop in August 2012 in Stuttgart with E.B. Saff, D.P. Hardin, and P.D.
Dragnev, we have learned from them that in the hypersingular case the discretized minimal energies
tend to infinity if the number of Dirac basic points approaches infinity and at the same time those
minimizing charges tend to a charge with a constant density. This discussion inspired us to pick
up this topic gratefully in our paper and to analyze also this approach by cutting out the set
|x−y| ≤ δ of Γ×Γ where δ > 0. We first figure out the idea in Section 6 by studying a perturbed
Riesz energy problem. Then, in Section 7, we perform the computations in detail for the punched
Riesz energy problem and give an asymptotic expansion of the solution in the corresponding family
of finite energy spaces for δ → 0. In particular cases (see Corollary 7.5 for details), the minimizers
tend to a constant distribution on Γ while the corresponding minimal energies tend to infinity.

2. Motivation. The energy of the Laplacian’s double layer potential

We shall motivate our approach by an example from potential theory where α = 0, i.e. β = 1.
To this end, let Γ ⊂ Rn−1 be a planar bounded domain in Rn and x = (x′, xn) ∈ Rn with x ∈ Γ
when xn = 0, see Figure 1 for an illustration.
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The double layer potential of the Laplacian with given dipole charge density ϕ(y′) is given by

Uϕ(x) := −(Wϕ)(x) := −

∫

yn=0

ϕ(y′)
∂E

∂yn

(
(y′, 0),x

)
dy′

= −cn

∫

y′∈Γ

(
x− (y′, 0)

)
· en

|x− (y′, 0)|n
ϕ(y′) dy′

for x ∈ Rn with xn 6= 0 and cn = 1
ωn

=
(
2(n−1)π

)−1
. The fundamental solution for the Laplacian

is given by

E(x,y) = cn|x− y|2−n.

The vector en = (0, . . . , 1)⊤ is the n-th basis vector of Rn and the unit normal vector on Γ. If ϕ
is continuous at x′, then there holds the jump relation

R
n
± ∋ x → (x′, 0) :

Uϕ(x) → ∓
1

2
ϕ(x′)−

∫

y′∈Γ\{x′}

(
(x− (y′, 0)

)
· en

|x− (y′, 0)|n
ϕ(y′) dy′ = ∓

1

2
ϕ(x′)− 0

since for x ∈ Γ and y ∈ Γ \ {x} the scalar product (x − y) · en = 0 and, hence, the integral
vanishes. Consequently, the harmonic potential Uϕ(x) solves the transmission problem in Rn \ Γ

[U ]Γ := Uϕ(x
′,−0)− Uϕ(x

′,+0) = ϕ(x′)

where ϕ is a given element of H̃1/2(Γ), the closure of C∞
0 (Γ) in H1/2(Rn−1).

The energy of the harmonic field Uϕ is given by its Dirichlet integral, and Green’s theorem
yields

∫

Rn\Γ

|∇Uϕ(x)|
2 dx

= −

∫

Rn−1

Uϕ(x
′,+0)

( ∂

∂xn
Uϕ(x

′,+0)
)
dx′ +

∫

Rn−1

Uϕ(x
′,−0)

( ∂

∂xn
Uϕ(x

′,−0)
)
dx′

=

∫

Γ

1

2
ϕ(x′)

( ∂

∂xn
(−Wϕ)(x′,−0)

)
dx′ −

∫

Γ

1

2
ϕ(x′)

( ∂

∂xn
(−Wϕ)(x′,+0)

)
dx′

= −cn

∫

Γ

{
1

2
ϕ(x′)

∂

∂xn

( ∫

Rn−1

(x′ − xnen − y′) · en
|x′ − xnen − y′|n

(
ϕ(y′)−ϕ(x′)

)
dy′

)

+
1

2
ϕ(x′)2

∂

∂xn

( ∫

Rn−1

(x′ − xnen − y′) · en
|x′ − xnen − y′|n

dy′

)}
dx′

+ cn

{
1

2
ϕ(x′)

∂

∂xn

( ∫

Rn−1

(x′ + xnen − y′) · en
|x′ + xnen − y′|n

(
ϕ(y′)−ϕ(x′)

)
dy′

)

+
1

2
ϕ(x′)2

∂

∂xn

( ∫

Rn−1

(x′ + xnen − y′) · en
|x′ + xnen − y′|n

dy′

)}
dx′.

We can interchange differentiation and integration in this expression by means of Hadamard’s
finite part integral. Namely, due to

∫

Rn−1

(x′ ∓ xnen − y′) · en
|x′ ∓ xnen − y′|n

dy′ = ±
1

2
ωn
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with the constant ωn = 1
cn
, it holds

∫

Rn\Γ

|∇Uϕ(x)|
2 dx = (n− 2)cn

∫

Γ

ϕ(x′)

∫

Γ

|x′ − y′|−n
(
ϕ(y′)−ϕ(x′)

)
dy′ dx′

= (n− 2)

∫

Γ

ϕ(x′)(Dϕ)(x′) dx′,

where

Dϕ(x′) = − p.f. cn

∫

Γ

( ∂

∂xn

∂

∂yn
|x− y|2−n

)
ϕ(y′) dy′

is Hadamard’s finite part integral with x = (x′, 0), y = (y′, 0) and with the hypersingular kernel
function kD(x,y) = (n− 2)|x′ − y′|−ncn, that is

(2.1)

∫

Rn\Γ

|∇Uϕ(x)|
2 dx = (n− 2)cn

∫

Γ

p.f.

∫

Γ

|x′ − y′|−nϕ(x′)ϕ(y′) dx′ dy′.

(For the definition of Hadamard’s partie finie integral operators, see [7] and [12, Chapter 3.2].)
Hence, the finite part integral on the right of (2.1) which has the Riesz kernel |x′ − y′|−n for

x′,y′ ∈ Γ ⊂ Rn−1 defines the energy of the harmonic double layer potential in Rn \Γ given by the
Dirichlet integral on the left of (2.1). Since the Riesz kernel is a homogeneous function of degree
−n, it defines on Γ ⊂ Rn−1 a strongly elliptic pseudodifferential operator D of order 1 (see [12,
Section 7.1.2]).

3. Strongly singular Riesz energy on a manifold

In all that follows, without stated otherwise, we fix n ≥ 2 and −1 < α < 1, and write β := 1−α.
In R

n, consider a strongly singular Riesz kernel |x−y|α−n and a manifold Γ :=
⋃

ℓ∈I Γℓ, where
Γℓ are finitely many compact, connected, mutually disjoint, boundaryless, (n − 1)-dimensional,
oriented C∞-manifolds, immersed into Rn. Then, the surface measure ds on Γ is well defined.

In what follows, (ψ,ϕ)L2(Γ) will stand for the extension of the L2-scalar product to dualities

as ψ ∈ H−β/2(Γ) and ϕ ∈ Hβ/2(Γ) and also to the applications of distributions ψ on Γ operating
on ϕ ∈ C∞(Γ).

We call the strongly singular partie finie integral of the Riesz kernel

(3.1) (Vβϕ,ϕ)L2(Γ) =

∫

Γ

p.f.

∫

Γ

|x− y|α−nϕ(x)ϕ(y) dsx dsy =: Eα(ϕ)

with respect to |x − y| ≥ ε0 → 0, ε0 > 0, operating on ϕ ∈ C∞(Γ), the energy of the Riesz
potential

Uϕ(x) = p.f.

∫

y∈Γ

|x− y|α−nϕ(y) dsy, x ∈ R
n,

generated by the surface charge ϕ (see e.g. [12]). For ϕ ∈ C∞(Γ), the Hadamard partie finie
integral operator

Vβϕ(x) = p.f.

∫

y∈Γ

|x− y|α−nϕ(y) dsy, x ∈ Γ,

which underlies (3.1), is for 0 ≤ α < 1 given by

Vβϕ(x) = p.v.

∫

y∈Γ∧|x−y|>0

|x− y|−β−(n−1)
{
ϕ(y) −ϕ(x)

}
dsy + h(x)ϕ(x),

where

(3.2) h(x) = p.f. lim
δ→0

∫

y∈Γ∧0<δ<|x−y|

|x− y|−β−(n−1) dsy,
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and for −1 < α < 0 by

Vβϕ(x) = p.v.

∫

y∈Γ∧|x−y|>0

|x− y|−β−(n−1)
{
ϕ(y) −ϕ(x)− (y − x) · ∇ϕ(x)

}
dsy

+ h(x)ϕ(x) + h(x) · ∇ϕ(x),

where

(3.3) h(x) = p.f. lim
δ→0

∫

y∈Γ∧0<δ<|x−y|

|x− y|−β−(n−1)(y − x) dsy.

The abbrevation p.v. stands for the Calderon–Mikhlin principal value integral (see [17]). (See
Appendix A for the explicit computation of the partie finie integrals h(x) and h(x).)

Theorem 3.1 (see [12, Chapter 8]). The partie finie integral operator Vβ is a strongly elliptic
pseudodifferential operator of order β = 1−α ∈ (0, 2) on Γ. The principal symbol of this operator
is given by the equivalence class associated with the homogeneous function

(3.4) a(ξ) = C(n− 1, β)|ξ|β , where C(n− 1, β) = 2−βπ
n−1
2

Γ(−β
2 )

Γ(n−α
2 )

and ξ ∈ Rn−1.

Vβ defines the linear and continuous mapping Vβ : Hs(Γ) → Hs−β(Γ) for every s ∈ R. In

particular, for s = β/2, Vβ maps Hβ/2(Γ) into H−β/2(Γ) and there exist 0 < c0 ≤ c2 and c1 ≥ 0
such that the inequalities

(3.5) c0‖ϕ‖
2
Hβ/2(Γ) − c1‖ϕ‖

2
L2(Γ) ≤ (Vβϕ,ϕ)L2(Γ) ≤ c2‖ϕ‖

2
Hβ/2(Γ)

are satisfied for any ϕ ∈ Hβ/2(Γ).

Proof. For justifying the inequalities (3.5), recall that for each of the components of the C∞-
manifolds Γℓ, ℓ ∈ I, immersed into Rn, we may associate a family of finite-dimensional atlases Aℓ

(see [13]). Each atlas Aℓ is a family of local charts (Oℓr,Uℓr,Xℓr), where r ranges through a finite
set Rℓ. The open sets Oℓr ⊂ Γℓ define an open covering of Γℓ, while Xℓr is a C∞-diffeomorphism
of Oℓr onto Uℓr ⊂ Rn−1. Let {βℓr}r∈Rℓ

be a C∞-partition of unity of Γℓ which is subordinate to
the atlas Aℓ. In addition to the partition of unity, let {γℓr}r∈Rℓ

be a second system of functions
γℓr ∈ C∞

0 (Oℓr) with the properties

γℓr(x) = 1 for all x ∈ suppβℓr and 0 ≤ γℓr.

Thus, it holds that

γℓr(x)βℓr(x) = βℓr(x) and βℓr(x)γℓr(x) = βℓr(x) for all x ∈ Γℓ.

With respect to the atlas Aℓ, let Xℓr⋆ denote the corresponding pushforwards and X ⋆
ℓr the pullbacks.

Then Xℓr⋆βℓr ∈ C∞
0 (Uℓr).

Without loss of generality, the local parametric representations can always be chosen in such a
way that at one point x◦

ℓr ∈ Oℓr where βℓr(x
◦
ℓr) = 1 we have Xℓr(x

◦
ℓr) = 0 and, moreover, at this

point the tangent bundle

∂x

∂x′

∣∣∣∣∣
x′=0

=
∂X−1

ℓr (x′)

∂x′

∣∣∣∣∣
x′=0

, where x′ := Xℓr(x),

forms a positively oriented system of n − 1 mutually orthogonal unit vectors. This implies that
the Riemannian tensor of Γℓ in the local coordinates at the point x◦

ℓr is the unity matrix. Hence,
the surface measure satisfies

dsℓ(x) = Jℓr(x
′) dx′ where x′ ∈ Uℓr, and Jℓr(0) = 1.

Given an atlas Aℓ on Γℓ, define

dℓ := min
r∈Rℓ

diam Uℓr.

Thus, one can choose δ0 > 0 so that for any given 0 < δ < δ0 there exists a finite-dimensional
atlas Aδ

ℓ satisfying all the above formulated properties and dℓ = δ. Hence, we have a whole family
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of finite atlases Aδ
ℓ with 0 < δ < δ0 which will be under consideration. (We then shall omit the

index δ in the notation.)
Note that the Jacobians Jℓr depend on the geometric properties of Γℓ only, and Jℓr together

with their derivatives are uniformly continuous relative to δ ∈ (0, δ0).
Corresponding to the partition of unity, the pseudodifferential operator Vβ on Γ can be decom-

posed as

Vβ =
∑

ℓ∈I

∑

r∈Rℓ

βℓrVβγℓr + Z1 =
∑

ℓ∈I

∑

r∈Rℓ

γℓrVββℓr + Z2

and

(3.6) Vβ =
∑

ℓ∈I

∑

r∈Rℓ

βℓrX
⋆
ℓrVℓrXℓr⋆γℓr + Z1 =

∑

ℓ∈I

∑

r∈Rℓ

γℓrX
⋆
ℓrVℓrXℓr⋆βℓr + Z2.

Herein, Z1, Z2 are smoothing operators of order −∞ in view of |x − y|α−n ∈ C∞(Γp × Γk) for
p 6= k and supp (1 − γℓr) ∩ supp (βℓr) = ∅ if x,y ∈ Γℓ (see also [12, Chapter 8]). Moreover,

(3.7) Vℓrϕ(x
′) = p.f.

∫

Uℓr

∣∣X−1
ℓr (x′)−X−1

ℓr (y′)
∣∣α−n

ϕ(y′)Jℓr(y
′) dy′, ϕ ∈ C∞

0 (Uℓr)

are the localized operators in the parametric domains Uℓr, defined by the operator Vβ .
The inequalities (3.5) now follow locally on each chart of the atlas Aℓ for the localized operators

Vℓr in local coordinates in Uℓr. With Martensen’s surface polar coordinates ((B.5), (B.9) in
Appendix B), the kernel of Vℓr admits a pseudohomogeneous asymptotic expansion of the form

k(x′, ̺) = ̺−β−(n−1)

{
1 +

∑

j≥2

kℓr,j(x
′, ̺)

}
,

where

kℓr,j(x
′, t̺) = tjkℓr,j(x

′, ̺) for t > 0, ̺ > 0

since |x′ − x′
0|

2 satisfies the expansion (B9). Correspondingly, the symbol a(x′, ξ′) of Vℓr has the
asymptotic expansion

a(x′, ξ′) = |ξ′|β

{
1 +

∑

j≥2

a0−j(x
′, ξ′)

}
,

where a0−j(x
′, tξ′) = t−ja0−j(x

′, ξ′) with t > 0, ξ′ 6= 0.
Then, Fourier transform and Parseval’s theorem yield

(3.8) (Vℓrϕ,ϕ)L2(Uℓr) =

∫

Rn−1

|ξ′|β |ϕ̂(ξ′)|2 dξ′ + (Aβ−2
ℓr ϕ,ϕ)L2(Uℓr)

+ (Rℓrϕ,ϕ)L2(Uℓr),

where Aβ−2
ℓr is a pseudodifferential operator of order β − 2:

(Aβ−2
ℓr ϕ)(x′) =

∫

Rn−1

eix
′·ξ′

Ψℓr(ξ
′)|ξ′|β

∑

j≥2

a0−j(x
′, ξ′)ϕ̂(ξ′) dξ′.

Here, the function Ψℓr ∈ C∞(Rn−1) is arbitrary but fixed such that 0 ≤ Ψℓr(ξ
′) ≤ 1 and

Ψℓr(ξ
′) = 0 for |ξ′| ≤

1

2
and Ψℓr(ξ

′) = 1 for |ξ′| ≥ 1.

The remainder operator Rℓrϕ(x) =
∫
Γ
Rℓr(x,y)ϕ(y) dsy is a smoothing operator with the smooth

kernel function Rℓr ∈ C∞(Γ× Γ). Hence, there exists a constant cℓr > 0 such that

(Vℓrϕ,ϕ)L2(Uℓr) ≤ cℓr

∫

Rn−1

(1 + |ξ′|)β |ϕ̂(ξ′)|2 dξ′ = c‖ϕ‖2Hβ/2(Uℓr)

which implies with some constant c2 > 0 that

(3.9) (Vβϕ,ϕ)L2(Γ) ≤ c2‖ϕ‖
2
Hβ/2(Γ).
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Vice versa, from

(Vβϕ,ϕ)L2(Uℓr) ≥

∫

Rn−1

(1 + |ξ′|)β |ϕ̂(ξ′|2 dξ′ − c′ℓr

∫

Rn−1

(1 + |ξ′|)β−2|ϕ̂(ξ′)|2 dξ′,

after summation over ℓ ∈ I, we obtain the G̊arding inequality

(Vβϕ,ϕ)L2(Γ) ≥ c0‖ϕ‖
2
Hβ/2(Γ) − c1‖ϕ‖

2
L2(Γ)

.

The embedding Hβ/2(Γ) →֒ L2(Γ) is compact since 0 < β < 2. For β = 1 ∈ N0 the Tricomi
condition needs to be satisfied for Vβ being a pseudodifferential operator and reads here as

∫

|Θ|=1

Θα′

dω(Θ) = 0 for |α′| = 1

(see [12, Theorem 7.1.7]). In addition, we have a0−1(x
′, ξ′) = 0. So, Vβ is a classical pseudodiffer-

ential operator on Γ of order β ∈ (0, 2). �

Now, we introduce a set of so-called admissible measures or charges located on Γ. Recall that
Γ =

⋃
ℓ∈I Γℓ, where the finitely many Γℓ are compact, nonintersecting, boundaryless, connected,

(n − 1)-dimensional, orientable C∞-manifolds, immersed into Rn. With each Γℓ we associate a
prescribed sign αℓ ∈ {−1, 1} where αℓ = +1 for ℓ ∈ I+ and αℓ = −1 for ℓ ∈ I−. Then I = I+∪I−

and I+ ∩ I− = ∅, I− = ∅ is admitted. Let M(Γ) denote the σ-algebra of signed Borel measures
ν on Γ equipped with the topology of pointwise convergence on C(Γ), the class of all real-valued
continuous functions on Γ.

Next, consider the manifold Γ being loaded by charges of the form

(3.10) µ =
∑

ℓ∈I

αℓµ
ℓ

where, for every ℓ ∈ I, µℓ is a nonnegative Borel measure on Γℓ. The convex cone of all signed
measures µ of the form (3.10) will be denoted by M+(Γ).

The following theorem deals with absolutely continuous Σ ∈ M+(Γ), i.e. dΣ = σ ds, with
densities σ ∈ Kβ/2(Γ),

Kβ/2(Γ) :=

{
σ =

∑

ℓ∈I

αℓσ
ℓ, where σℓ ∈ Hβ/2(Γℓ) and σℓ ≥ 0

}
.

For brevity, we shall often identify an absolutely continuous Borel measure Σ ∈ M+(Γ) with σ,
its density. Likewise, the cone of all Σ ∈ M

+(Γ) with σ ∈ Kβ/2(Γ) will be denoted by Kβ/2(Γ),
provided that this will not cause any misunderstanding. Similar to as it has been done in (3.1),
we define the Riesz energy of Σ = σ ∈ Kβ/2(Γ) by

Eα(Σ) := (Vβσ,σ)L2(Γ) =

∫

Γ

p.f.

∫

Γ

|x− y|α−n dΣ(x) dΣ(y).

Theorem 3.2. For any Σ = σ ∈ Kβ/2(Γ), the Riesz energy is finite and satisfies the inequalities

(3.11) c′0‖σ‖
2
Hβ/2(Γ) ≤ Eα(Σ) := (Vβσ,σ)L2(Γ) ≤ c′1‖σ‖

2
Hβ/2(Γ) ,

the constants c′0 and c′1 being strictly positive and independent of Σ. This means that Vβ is

continuously invertible on Kβ/2(Γ).

Proof. Write

K∞(Γ) :=

{
σ =

∑

ℓ∈I

αℓσ
ℓ, where σℓ ∈ C∞(Γℓ) and σℓ ≥ 0 on Γℓ

}
.
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Let ψ(̺) be a C∞
0 (R)-function with ψ(̺) = 1 for 0 ≤ ̺ ≤ δ, 0 ≤ ψ(̺) ≤ 1 and ψ(̺) = 0 for

̺ ≥ 2δ > 0. Having the atlas Aδ
ℓ at hand, we use the decomposition (3.6) and the representation

in local coordinates (3.7) to arrive at

(Vℓrσ)(x
′) = p.f.

∫

Rn−1

|x′ − y′|−β−(n−1)ψ⋆(|x
′ − y′|)σ⋆(y

′)Jℓr(y
′) dy′

+

∫

|x′−y′|≥δ

|x′ − y′|−β−(n−1)
(
1− ψ⋆(|x

′ − y′|)
)
σ⋆(y

′)Jℓr(y
′) dy′,

where ψ⋆ and σ⋆ are the pushforwards of ψ and σ, respectively. Summation gives

(σ, Vβσ)L2(Γ) =
∑

ℓ,i∈I

∑

r∈Rℓ

∑

q∈Ri

∫

Rn−1

p.f.

∫

Rn−1

|x′ − y′|−β−(n−1)ψ⋆(|x
′ − y′|)

· σ⋆(y
′)Jℓr(y

′) dy′σ⋆(x
′)Jiq(x

′) dx′

+

∫∫

|x−y|≥δ

|x− y|−β−(n−1)
(
1− ψ(|x− y|)

)
σ(y) dsyσ(x) dsx.

Since the localized operators Vℓr are all pseudodifferential operators of order β with positive
definite principal symbol (3.4), hence strongly elliptic, one finds with Fourier transform and Par-
seval’s theorem the estimate

∑

ℓ,i∈I

∑

r∈Rℓ

∑

q∈Ri

∫

Rn−1

p.f.

∫

Rn−1

|x′ − y′|−β−(n−1)ψ⋆(|x
′ − y′|)

· σ⋆(y
′)Jℓr(y

′) dy′σ⋆(x
′)Jiq(x

′) dx′

≥ c′0‖σ‖
2
Hβ/2(Γ) − c′′

1

2− β
δ2−β‖σ‖2L2(Γ)

≥ c′′′0 ‖σ‖2Hβ/2(Γ)

with c′′′0 > 0 since Hβ/2(Γ) →֒ L2(Γ) compactly and if δ > 0 is chosen sufficiently small. The
remaining quadratic form

∫∫

|x−y|≥δ

|x− y|−β−(n−1)
(
1− ψ(|x − y|)

)
σ(y) dsyσ(x) dsx

has a strictly positive C∞-kernel. Hence the left inequality in (3.11) is satisfied for σ ∈ K∞(Γ),
σ 6≡ 0. Since K∞(Γ) is dense in Kβ/2(Γ), the left inequality in (3.11) also holds for σ ∈ Kβ/2(Γ),
σ 6≡ 0 by completion. The right inequality in (3.11) was already shown in (3.9) for σ in place
of ϕ. This completes the proof. �

We next proceed by defining the notion of the Riesz energy for arbitrary (not necessarily
absolutely continuous) measures Σ ∈ M+(Γ). Since Vβ is a classical pseudodifferential operator
on Γ, it maps the distribution given by the Radon measure Σ ∈ M+(Γ) to VβΣ which is a
distribution again, and this linear mapping is continuous in the weak topology of distributions
(see Theorem II.1.5 in [20]). Therefore, the action of the measure VβΣ on functions ϕ ∈ C∞(Γ)
is well defined and

(VβΣ,ϕ)L2(Γ) = (Σ, Vβϕ)L2(Γ),

since Vβ is symmetric.
Let E+

α (Γ) consist of all Σ ∈ M
+(Γ) which the property

sup
‖ϕ‖

Hβ/2(Γ)
≤1

∣∣(VβΣ,ϕ)L2(Γ)

∣∣ <∞.

Hence, for Σ ∈ E+
α (Γ), we can identify VβΣ with an associated element ψ ∈ H−β/2(Γ) satisfying

ψ ds = dVβΣ and

‖ψ‖H−β/2(Γ) = sup
‖ϕ‖

Hβ/2(Γ)
≤1

∣∣(VβΣ,ϕ)L2(Γ)

∣∣.
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This leads us to the following theorem.

Theorem 3.3 (see also [8, Theorem 3]). For any Σ ∈ E+
α (Γ) there exists a unique element

σ ∈ Kβ/2(Γ) such that dΣ = σ ds and

(3.12) Σ(ϕ) =

∫

Γ

ϕ dΣ = (ϕ,σ)L2(Γ) for all ϕ ∈ C∞(Γ).

Moreover, E+
α (Γ) = Kβ/2(Γ), and the Riesz energy Eα(Σ) of any Σ ∈ E+

α (Γ) is equivalent to the
Hβ/2(Γ)-norm of the corresponding σ ∈ Kβ/2(Γ) in the sense of (3.11).

Proof. Choose an arbitrary Σ ∈ E+
α (Γ). As has been observed just above, VβΣ ∈ H−β/2(Γ) is a

linear functional on C∞(Γ), and it is bounded on Hβ/2(Γ) because of

|VβΣ(ϕ)| =
∣∣(VβΣ,ϕ)L2(Γ))

∣∣ ≤ c‖VβΣ‖H−β/2(Γ) ‖ϕ‖Hβ/2(Γ).

Since C∞(Γ) is dense in Hβ/2(Γ), according to the Fischer–Riesz lemma on the representation of
bounded linear functionals there exists a unique σ0 ∈ Hβ/2(Γ) with

∫

Γ

Vβϕ dΣ =

∫

Γ

ζ dΣ = Σ(ζ) =

∫

Γ

σ0ζ ds = (σ0, ζ)L2(Γ),

where ζ := Vβϕ. If ϕ traces C∞(Γ), so does ζ; hence, (3.12) holds for σ = σ0 ∈ Hβ/2(Γ)

by replacing ζ by ϕ. Since Σ ∈ M+(Γ), we actually have σ0 ∈ Kβ/2(Γ), and the inclusion
E+
α (Γ) ⊆ Kβ/2(Γ) follows.
Now, let σ ∈ Kβ/2(Γ). Then ψ = Vβσ ∈ H−β/2(Γ) and

‖ψ‖H−β/2(Γ) = ‖Vβσ‖H−β/2(Γ)

= sup
‖ϕ‖

Hβ/2(Γ)
61

∣∣(Vβσ,ϕ)L2(Γ)

∣∣ 6 c‖σ‖Hβ/2(Γ) <∞

due to the duality H−β/2(Γ)×Hβ/2(Γ) of (·, ·)L2(Γ), Vβ being a pseudodifferential operator on Γ.

Hence, Kβ/2(Γ) ⊆ E+
α (Γ), which completes the proof. �

Although we have shown that the distributions in Kβ/2(Γ) all have finite Riesz energy Eα(µ),
it is not clear yet whether there are no other measures in M+(Γ) whose Riesz energy is finite. To
elaborate on this problem, we employ an idea by J. Deny [5]. A measure on Γ can be considered
as a distribution on Γ and, hence, can be Fourier transformed. In connection with the localization
of Vβ on one chart of the atlas on Γ, we have relation (3.8) where the pseudodifferential operator
Vℓr is defined via Fourier transform.

If Σ ∈ M+(Γ) is given, then it becomes via the pushforward Xℓr⋆ the localized distribution
Σℓr := Xℓr⋆βℓrΣ with compact support in Uℓr ⊂ Rn−1 (see e.g. [8, Lemma 5]), which can be

Fourier transformed to Σ̂ℓr(ξ
′) on Rn−1. The measures in M+(Γ) for which

(3.13)

∫

Rn−1

|ξ′|β |Σ̂ℓr(ξ
′)|2 dξ′ <∞

are precisely all those having finite Riesz energy (cf. (3.8); observe that the first summand on the
left-hand side of (3.8) is the dominant one). Let E⋆

α(Γ) consist of all Σ ∈ M+(Γ) satisfying (3.13).

Theorem 3.4. There holds

E⋆
α(Γ) = Kβ/2(Γ).

Proof. Let Σ = σ ∈ Kβ/2(Γ). Then, by Theorem 3.2,

(Vβσ,σ)L2(Γ) = Eα(σ) <∞.
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With (3.8) and Parseval’s identity, together with Σℓr ∈ Hβ/2(Uℓr), we obtain further
∫

Rn−1

|ξ′|β |Σ̂ℓr(ξ
′)|2 dξ′

≤
∣∣(VℓrΣℓr,Σℓr)L2(Uℓr)

∣∣+
∣∣(Aβ−2

ℓr Σℓr,Σℓr)L2(Uℓr)

∣∣+
∣∣(RℓrΣℓr,Σℓr)L2(Uℓr)

∣∣

≤ c‖Σℓr‖
2
Hβ/2(Uℓr)

+ c′‖Σℓr‖Hβ/2+2−β(Uℓr)‖Σℓr‖Hβ/2(Uℓr)

≤ c′′‖Σℓr‖
2
Hβ/2(Uℓr)

<∞

since 2− β/2 ≥ β/2. Consequently, it holds σ = Σ ∈ E⋆
α(Γ) and thus Kβ/2(Γ) ⊆ E⋆

α(Γ).
Next, suppose Σ ∈ E⋆

α(Γ); then by localization inequality (3.13) holds. Since |ξ′|β |(1 +
|ξ′|2)−β/2 ≤ 1 we find

‖VℓrΣℓr‖
2
H−β/2(Uℓr)

=

∫

Rn−1

|ξ′|2β(1 + |ξ′|2)−β/2|Σ̂ℓr(ξ
′)|2 dξ′

≤

∫

Rn−1

|ξ′|β |Σ̂ℓr(ξ
′)|2 dξ′ <∞.

With pullback to Γ this implies that

‖VβΣ‖H−β/2(Γ) <∞.

Application of Theorem 3.3 then gives Σ ∈ E+
α (Γ) = Kβ/2(Γ), which in view of the arbitrary

choice of Σ ∈ E⋆
α(Γ) finally yields Kβ/2(Γ) = E⋆

α(Γ). �

Theorem 3.5 (see also [8, Theorem 4]). Let Σ ∈ M+(Γ) with Eα(Σ) < ∞. Then there exists
a sequence of absolutely continuous measures Σk ∈ Kβ/2(Γ), where dΣk =

∑
i∈I αiϕ

i
k ds with

ϕi
k ∈ C(Γi) ∩ Hβ/2(Γi) and ϕi

k(x) > 0 for x ∈ Γi, such that {Σk}k∈N converges weakly and

strongly in the Hilbert space Hβ/2(Γ) to Σ, i.e.,

Σk(ϕ)
k→∞
−→ Σ(ϕ) for all ϕ ∈ C(Γ) and lim

k→∞
‖Σ−Σk‖Hβ/2(Γ) = 0.

Proof. For Σ we have Σ = σ ∈ Kβ/2(Γ) due to Theorem 3.3. Hence, since C∞(Γ) ⊂ Hβ/2(Γ)
densely, there exists a sequence σk =

∑
i∈I αiσ

i
k ∈ C∞(Γ) with ‖σ−σk‖Hβ/2(Γ) <

1
k for all k ∈ N.

We define Σk ∈ M+(Γ) by

dΣk = σk ds with σk =
∑

i∈I

αiσ
i
k,

where σi
k(x) := max{0, σi

k(x)}. Then, σ
i
k ∈ C(Γi) ∩Hβ/2(Γi) since σ

i
k is piecewise smooth and

‖σ − σk‖Hβ/2(Γ) = ‖σ − σk + σk − σk‖Hβ/2(Γ)

≤ ‖σ − σk‖Hβ/2(Γ) + ‖σk − σk‖Hβ/2(Γ)

= ‖σ − σk‖Hβ/2(Γ) +
∑

i∈I

‖σik‖Hβ/2(Γi).

Herein, it holds σi
k(x) = min{0, σi

k(x)} ≤ 0 for all x ∈ Γi, particularly σ
i
k ∈ C(Γi) ∩ Hβ/2(Γi).

From σi ≥ 0, it immediately follows that

‖σi
k‖Hβ/2(Γi) ≤ ‖σi − σi

k‖Hβ/2(Γi)

for all i ∈ I and therefore

‖σ − σk‖Hβ/2(Γ) ≤ 2‖σ − σk‖Hβ/2(Γ) ≤
2

k

k→∞
−→ 0

as desired. �
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4. The Gauss problem

The Gauss variational problem is the problem of minimizing the Riesz energy for particularly
signed Borel measures on the given (n − 1)-dimensional manifold Γ ⊂ Rn, in the presence of an
external field. Let g be a given continuous, positive function on Γ and a = (ai)i∈I a given vector
with ai > 0, i ∈ I. Then, the set of admissible charges for the Gauss problem is defined as

Eα(Γ, a,g) :=

{
µ ∈ Kβ/2(Γ) :

∫

Γi

gi dµ
i = ai for all i ∈ I

}

where we set gi := g|Γi
. Note that the set Eα(Γ, a,g) is convex and weakly and strongly closed in

Kβ/2(Γ).

The Gauss minimal energy problem reads as follows (see [19] and [15]): To given a ∈ R
|I|
+ ,

f ∈ C(Γ) and g ∈ C(Γ) such that g > 0, find the Borel measure µ0 ∈ Eα(Γ, a,g) which is the
minimizer of

(4.1) inf
µ∈Eα(Γ,a,g)

Gf (µ) = Gf (µ0) =: Gf (Γ, a,g)

where the Gauss functional is given by

Gf (µ) := Eα(µ)− 2

∫

Γ

f dµ.

Since Gf (µ) is on Eα(Γ, a,g) strictly convex and weakly and strongly continuous, the Gauss
problem admits a unique solution µ0 ∈ Eα(Γ, a,g).

Based on Theorem 3.2, the minimization problem (4.1) can also be formulated as a variational
problem in Hβ/2(Γ). Namely, minimize the functional

(4.2) Vf (ϕ) := (ϕ, Vβϕ)L2(Γ) − 2(f ,ϕ)L2(Γ), ϕ ∈ Hβ/2(Γ),

over the affine cone

K(Γ, a,g) :=

{
ϕ =

∑

i∈I

αiϕ
i where ϕi ∈ Hβ/2(Γi),

ϕi ≥ 0 and

∫

Γi

giϕ
i ds = ai > 0 for all i ∈ I

}
⊂ Kβ/2(Γ) ⊂ Hβ/2(Γ)

where f ∈ C(Γ) , g > 0, g ∈ C(Γ) and a ∈ R
|I|
+ are given. This minimization problem will be

called the dual Gauss problem.

Theorem 4.1. To the unique solution µ0 ∈ Eα(Γ, a,g) of the Gauss problem (4.1), there corre-
sponds a unique element ϕ0 ∈ K(Γ, a,g) ⊂ Hβ/2(Γ) with the properties

µ0(ϕ) = (ϕ0,ϕ)L2(Γ) for all ϕ ∈ C∞(Γ)

and
Vf (ϕ0) = Gf (µ0) = Gf (Γ, a,g).

The element ϕ0 is the minimizer of the functional Vf over K(Γ, a,g), i.e.,

(4.3) Vf (ϕ0) = min
ϕ∈K(Γ,a,g)

Vf (ϕ) =: Vf (Γ, a,g).

Proof. By Theorems 3.2 and 3.3, to any Borel measure µ =
∑

i∈Iαiµ
i ∈ Eα(Γ, a,g), there corre-

sponds a unique element σµ =
∑

i∈I αiσ
i
µ ∈ Kβ/2(Γ) satisfying both (3.11) and (3.12). Moreover,

since C∞(Γ) is dense in C(Γ), from (3.12) we get

(σi
µ, gi)L2(Γi) = µi(gi) = ai for all i ∈ I.

Hence, σµ ∈ K(Γ, a,g).
Applying (3.11), for these µ and σµ we also obtain

(4.4) Vf (σµ) = (Vβσµ,σµ)L2(Γ) − 2(σµ, f)L2(Γ) = Eα(µ)− 2µ(f) = Gf (µ).
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Thus, the correspondence µ 7→ σµ between Eα(Γ, a,g) and K(Γ, a,g) is one-to-one and satis-
fies (4.4), which immediately implies

Gf (Γ, a,g) = Vf (Γ, a,g).

If now µ0 is the (unique) solution of the Gauss problem (4.1), then ϕ0, the image of µ0 under
this correspondence, is the unique solution of the minimizing problem (4.3), and vice versa. �

5. The particular case α = 0

In the following, we will focus on the particular situation α = 0 from the potential theoretic
point of view. The double layer energy E0 of a function ϕ ∈ Hβ/2(Γ), β = 1 − α = 1, which is
harmonic in Ω (see [12, Equation (1.2.17)]) is given by

E0(ϕ) := (Dϕ,ϕ)L2(Γ)

with the hypersingular integral operator D:

Dϕ(x) := p.f.

∫

Γ\{x}

kD(x,y)ϕ(y) dsy,

kD(x,y) = kD(y,x) = cn

{
n(x) · n(y)

|x− y|n
+ n

(y − x) · n(y)(x − y) · n(x)

|x− y|n+2

}
.

The Hadamard partie finie integral operator is given by the finite part with respect to 0 < δ → 0
of ∫

y∈Γ∧|x−y|>δ

kD(x,y)ϕ(y) dsy

=

∫

y∈Γ∧|x−y|>δ

kD(x,y)
{
ϕ(y)−ϕ(x)

}
dsy +

∫

y∈Γ∧|x−y|>δ

kD(x,y) dsyϕ(x)

if ϕ ∈ C∞(Γ). The limit

lim
δ→0

∫

0<δ<|x−y|

kD(x,y)
{
ϕ(y) −ϕ(x)

}
dsy = p.v.

∫

y∈Γ\{x}

kD(x,y)
{
ϕ(y) −ϕ(x)

}
dsy

exists (as a Cauchy principal value integral), whereas, from
∫
|x−y|>δ

kD(x,y) dsy, we have to take

the finite part

lim
δ→0

p.f.

∫

|x−y|>δ

kD(x,y) dsy =: h(x).

(For the evaluation of h(x), see (A.1).) Hence, we finally arrive at

Dϕ(x) = p.v.

∫

Γ\{x}

kD(x,y)
{
ϕ(y) −ϕ(x)

}
dsy + h(x)ϕ(x).

6. A perturbed minimal Riesz energy problem

Instead of considering the continuous minimal Riesz energy problem, D.P. Hardin and E.B. Saff

investigate in [11] the discrete Riesz energy problem of minimizing
◦

Es(ωN ), s > d, of the sum
of a finite number N of Dirac measures δxi,N , ωN := {x1, . . . ,xN} being a set on a d-rectifiable

manifold A. The energy
◦

Es(ωN ) is defined by removing the self-interactions. For the sake of
simplicity, assume that A is compact and has the positive Hausdorff measure Hd(A) > 0. Then,

the infimum of
◦

Es(ωN ) over all point sets ωN ⊂ A is attained at some ω⋆
N := {x⋆

1, . . . ,x
⋆
N}. In

particular, it is shown in [11, Theorem 2.4] that

lim
N→∞

◦

Es(ω
⋆
N )N−(1+s/d) = Csd/Hd(A)

s/d,
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where Csd is a constant independent of A and defined explicitly by the unit cube. Furthermore,
in the weak-star topology of measures we have

1

N

N∑

i=1

δxi,N →
Hd(·)|A
Hd(A)

as N → ∞ .

If A is a bi-Lipschitz image of a single compact set in Rd, then the separation estimate [11, Eq. (16)]
holds for an optimal N point s-energy configuration ω⋆

N for A.
Now, for our (n − 1)-dimensional manifold Γ =

⋃
i∈I Γi, every compact smooth Γi immersed

into Rn, satisfies all the assumptions on A with s = n − α, −1 < α < 1, d′ = n > d = n − 1.
Following the inspiration of these results, in our continuous setting, this corresponds to integrating
for a small δ > 0 over (Γ × Γ) \ {|x − y| ≤ δ}, i.e., by cutting out a set with |x − y| ≤ δ near
the singularity. In order to explain the computations in the next section, we shall focus first on
the following perturbation problem which, for 0 < ε = ε(δ) → 0, is essentially the minimization
problem we will finally get.

Theorem 6.1. For ε > 0 sufficiently small, consider the minimization problem:

(6.1)
(
Vβσ,σ

)
L2(Γ)

+
1

ε
(σ,σ

)
L2(Γ)

− 2(f ,σ)L2(Γ) → min

subject to

(6.2)

∫

Γi

giσ
i ds = ai, j ∈ I.

Let the given data satisfy the additional conditions:

(6.3) f ∈ Hβ/2(Γ), g ∈ H
3
2β(Γ) and 0 < ai ∈ R, i ∈ I.

Then, the minimizer σ⋆
ε ∈ L2(Γ) admits the asymptotic expansion

(6.4) σ⋆
ε = σ0 + εσ1 + ε2σ2 satisfying |||σj |||Hε ≤ c, j = 0, 1, 2

with a constant c > 0 independent of ε, and where

Hε :=
{
ϕ ∈ Hβ/2(Γ) with |||ϕ|||2Hε

:= (εVβϕ,ϕ)L2(Γ) + ‖ϕ‖2L2(Γ)

}
⊂ Hβ/2(Γ).

In particular, with fk := f|Γk
, it holds

σ0 = (αkσ
k
0 )k∈I =

(
αkgka

k(gk, gk)
−1
L2(Γk)

)
k∈I

,

σ1 = (αkσ
k
1 )k∈I =

(
αkgk(gk, gk)

−1
L2(Γk)

(gk, Vβσ0 − fk)L2(Γk)

)
k∈I

− Vβσ0 + f .

Proof. The quadratic form in (6.1) induces for ε > 0 the ε-dependent family of Hilbert spaces Hε.
Let us denote by H′

ε the dual space to Hε whose norm is then defined by

|||f |||H′
ε
:= sup

w∈Hβ/2(Γ)\{0}

(f ,w)L2(Γ)

|||w|||Hε

,

satisfying the estimate

(6.5) |||f |||H′
ε
≤ sup

w∈Hβ/2(Γ)\{0}

(f ,w)L2(Γ)

‖w‖L2(Γ)
= ‖f‖L2(Γ)

since Hβ/2(Γ) →֒ L2(Γ) densely and the unit ball in Hε is contained in the ball ‖w‖L2(Γ) ≤ 1.
The problem (6.1) can also be written as to minimize

Jε(σ) :=
1

2
|||σ|||2Hε

− ε(f ,σ)L2(Γ)

subject to (6.2). It possesses the Lagrangian

Lλ(σ) :=
1

2
|||σ|||2Hε

− ε(f ,σ)L2(Γ) +
∑

j∈I

αjλj
(
aj − (gj , σj)L2(Γj)

)
,
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where σ =
∑
j∈I

αjσ
j and αjσ

j ds = Σ|Γj
. Thus, the necessary conditions at the minimum read as

∂σkLλ(σε) = εαkVβσ
k
ε + αkσ

k
ε − εαkfk − αkλkgk = 0,

or

(6.6) εVβσ
k
ε + σk

ε − εfk = λkgk and (gk, σ
k
ε )L2(Γk) = ak, k ∈ I.

Here, λ 6= 0 since the constraints (6.3) are always active as it follows from (6.5) and will also be
seen below.

For σ and λ, we insert the expansion (6.4) into (6.6) and obtain the system

εVβσ
k
0 + σk

0 − εfk + ε2Vβσ
k
1 + εσk

1 + ε3Vβσ
k
2 + ε2σk

2 = (λk0 + ελk1 + ε2λk2)gk on Γk,

(gk, σ
k
0 )L2(Γk) + ε(gk, σ

k
1 )L2(Γk) + ε2(gk, σ

k
2 )L2(Γk) = ak, k ∈ I.

Equating equal order terms in ε yields with λj0 > 0:

Order ε0: We find

σj
0 = gjλ

j
0 and (gj , σ

j
0)L2(Γj) = (gj , gj)L2(Γj)λ

j
0 = aj > 0.

Thus, it follows

(6.7) λj0 = (gj , gj)
−1
L2(Γj)

aj and σk
0 = gka

k(gk, gk)
−1
L2(Γk)

∈ H
3
2β(Γk).

The assumptions (6.3) imply the properties σk
0 > 0. Moreover,

|||σk
0 |||Hε ≤ c1‖σ

k
0‖H

3
2
β(Γk)

≤ c.

Order ε1: It holds

−fk + σk
1 = λk1gk − Vβσ

k
0

and

(Vβσ
k
0 , gk)L2(Γk) − (fk, gk)L2(Γk) + (σk

1 , gk)L2(Γk) = λk1(gk, gk)L2(Γk).

This yields with (σk
1 , gk)L2(Γk) = 0:

(6.8)
λk1 = (gk, gk)

−1
L2(Γk)

(Vβσ
k
0 − fk, gk)L2(Γk),

σk
1 = gk(gk, gk)

−1
L2(Γk)

(Vβσ
k
0 − fk, gk)L2(Γk) + fk − Vβσ

k
0 ∈ Hβ/2(Γk).

Hence,

|||σk
1 |||Hε ≤ c2‖σ

k
0‖Hβ/2(Γk) ≤ c.

Order ε2: We derive the identities

(6.9)
Vβσ

k
1 + (εVβσ

k
2 + σk

2 ) = λk2gk,

ε(Vβσ
k
2 , gk)L2(Γk) + (Vβσ

k
1 , gk)L2(Γk) = λk2(gk, gk)L2(Γk)

since (σk
2 , gk)L2(Γk) = 0. Therefore, we conclude

(6.10)
(εVβ + I)|Γk

σk
2 = gk(gk, gk)

−1
L2(Γk)

·
{
ε(Vβσ

k
2 , gk)L2(Γk) + (Vβσ

k
1 , gk)L2(Γk)

}
− Vβσ

k
1 ∈ H−β/2(Γk).

For every fixed ε > 0 sufficiently small, the mapping εVβ+I : Hε → H′
ε defines an isomorphism

due to (3.5) and the Lax–Milgram lemma. Therefore, (6.10) amounts to the estimate

|||σ2|||Hε ≤ c
∣∣∣∣∣∣(gk(gk, gk)−1

L2(Γk)

{
ε(Vβσ

k
2 , gk)L2(Γk) + (Vβσ

k
1 , gk)L2(Γk)

})
k∈I

− Vβσ1

∣∣∣∣∣∣
H′

ε

≤ c′ε

(∑

k∈I

(Vβσ
k
2 , gk)L2(Γk)

)
+ c′‖Vβσ1‖H−β/2(Γ)
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with a constant c′ depending on Γ and g due to (6.5) but not on ε. With g ∈ Hβ(Γ) and Vβ being
a pseudodifferential operator of order β on Γ, we further have

∣∣∣∣
∑

k∈I

(Vβσ
k
2 , gk)L2(Γk)

∣∣∣∣ ≤ c′′‖σ2‖L2(Γ)‖g‖Hβ(Γ),

implying that

|||σ2|||Hε ≤ c′′′ε‖σ2‖L2(Γ) + c′v‖σ1‖Hβ/2(Γ)

≤ c′′′ε‖σ2‖Hε + c′v‖σ1‖Hβ/2(Γ).

Consequently, since the constants do not depend on ε, there exists an ε0 > 0 such that

|||σ2|||Hε ≤ cv‖σ1‖Hβ/2(Γ) for all 0 < ε < ε0

and cv independent of ε.

With f ∈ Hβ/2(Γ), g ∈ H
3
2β(Γ), we find σ0 ∈ H

3
2β(Γ) and σ1 ∈ Hβ/2(Γ). Hence, (6.4) is

justified which completes the proof of Theorem 6.1. �

With the help of the previous theorem, we immediately find the following asymptotic behaviour
of the minimizer σ⋆

ε if ε tends to zero.

Corollary 6.2. Under the assumptions in Theorem 6.1, we find that

‖σ⋆
ε − σ0‖L2(Γ) ≤ cε

ε→0
−→ 0

with some constant c, independent of σ0 and ε > 0, where σ⋆
ε is the minimizer (6.4) of (6.1) for

ε > 0.

Proof. Since σ⋆
ε = σ0 + εσ1 + ε2σ2, with (6.4) we find

‖σ⋆
ε − σ0‖L2(Γ) ≤ ‖σ⋆

ε − σ0‖Hε ≤ c′(ε+ ε2) ≤ 2c′ε

as proposed. �

7. Riesz minimal energy without finite part reduction

We consider next the punched hypersingular Riesz potential which is defined by integrating for
a small δ > 0 only over (Γ×Γ) \ {|x− y| ≤ δ}, i.e., by cutting out a set with |x− y| ≤ δ near the
singularity. Thus, the corresponding Riesz energy is defined as

◦

Jδ(µ) =

∫∫

Γ×Γ∧0<δ≤|x−y|

|x− y|α−n dµ(x) ⊗ dµ(y)− 2

∫

Γ

f(x) dµ(x).

In view of Theorems 3.3, 3.5 and 4.1, the associated minimal Riesz energy problem is then equiv-
alent to minimizing the punched functional

◦

Jδ(ϕ) =

∫∫

Γ×Γ∧0<δ≤|x−y|

|x− y|−m−βϕ(y)ϕ(x) dsy dsx − 2(f ,ϕ)L2(Γ),

where m = n − 1 and β = 1 − α ∈ (0, 2), over the affine cone K(Γ, a,g). Then, the measures
satisfy dµ(x) = ϕ(x) ds with ds being the surface measure on Γ.

For
◦

Jδ(ϕ) one has the following monotonicity property.

Lemma 7.1. Let 0 < δ1 < δ2 and ϕ⋆
δ1
,ϕ⋆

δ2
∈ K(Γ, a,g) be the minimizers of

◦

Jδ1 and
◦

Jδ2 ,
respectively. Then, it holds that

(7.1)
◦

Jδ1(ϕ
⋆
δ1) ≥

◦

Jδ2(ϕ
⋆
δ1) ≥

◦

Jδ2(ϕ
⋆
δ2 ).
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Proof. Since δ1 < δ2, the minimizer ϕ⋆
δ1

=
∑

j∈I αjϕ
⋆j
δ1

with ϕ⋆j
δ1

≥ 0 is an admissible element for

minimizing
◦

Jδ2 . In particular, it holds

◦

Jδ1(ϕ
⋆
δ1) =

∫∫

|x−y|>δ1

|x− y|−m−βϕ⋆
δ1(x)ϕ

⋆
δ1(y) dsy dsx − 2(f ,ϕ⋆

δ1)L2(Γ)

≥

∫∫

|x−y|>δ2

|x− y|−m−βϕ⋆
δ1(x)ϕ

⋆
δ1(y) dsy dsx − 2(f ,ϕ⋆

δ1)L2(Γ) =
◦

Jδ2(ϕ
⋆
δ1).

We further find

◦

Jδ2(ϕ
⋆
δ1) ≥ inf

◦

Jδ2(ϕ) =
◦

Jδ2(ϕ
⋆
δ2),

as proposed in (7.1). �

In order to see the relation between
◦

Jδ(ϕ) and Vf (ϕ) in (4.2), let us introduce the compensating
quadratic functional

(7.2) Pδ(ϕ) :=

∫

Γ

{
p.f.

∫

|x−y|≤δ

|x− y|−m−βϕ(y) dsy

}
ϕ(x) dsx.

Then, we obtain

Pδ(ϕ) +
◦

Jδ(ϕ) =

∫

Γ

{
p.f.

∫

Γ

|x− y|−m−βϕ(y) dsy

}
ϕ(x) dsx − 2(f ,ϕ)L2(Γ)

= (Vβϕ,ϕ)L2(Γ) − 2(f ,ϕ)L2(Γ) = Vf (ϕ),

and thus

◦

Jδ(ϕ) = Vf (ϕ) −Pδ(ϕ) = (Vβϕ,ϕ)L2(Γ) − 2(f ,ϕ)L2(Γ) −Pδ(ϕ).

For the corresponding functional Pδ, there holds

Lemma 7.2. Let ϕ ∈ K(Γ, a,g). Then

Pδ(ϕ) = −
1

β

1

cm
δ−β‖ϕ‖2L2(Γ)

+P′
δ(ϕ),

where P′
δ(ϕ) satisfies

|P′
δ(ϕ)| ≤ c‖ϕ‖2Hβ/2(Γ)

with a constant c independent of δ. Moreover

(7.3) lim
δ→0

P′
δ(ϕ) = 0 for every ϕ ∈ Hβ/2(Γ).
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Proof. Using Martensen’s coordinates of Γ in the vicinity of x ∈ Γ (see Theorem B.2 in Appendix
B), for every ϕ ∈ C∞(Γ), we have

Pδ(ϕ) =

∫

Γ

{
p.f.

∫

0<r≤δ∧|Θ|=1

ϕ(x+ rΘ)r−β−1 dr ∧ dω

+

∫

0<r≤δ∧|Θ|=1

(x+ rΘ)a(x, r)r−β+1 dr ∧ dω

}
ϕ(x) dsx

=

{
p.f.

∫

0<r≤δ∧|Θ|=1

r−β−1 dr ∧ dω

}∫

Γ

|ϕ(x)|2 dsx

+

∫

Γ

{
p.f.

∫

0<r≤δ∧|Θ|=1

{
ϕ(x + rΘ)−ϕ(x)

}
r−β−1 dr ∧ dω

}
ϕ(x) dsx

+

∫

Γ

{
p.f.

∫

0<r≤δ∧|Θ|=1

ϕ(x+ rΘ)a(x, r)r−β+1 dr ∧ dω

}
ϕ(x) dsx.

Since

p.f.

∫

0<r≤δ∧|Θ|=1

r−β−1 dr ∧ dω = −
1

β

1

cm
δ−β

and Pδ(ϕ) in (7.2) is symmetric, we find

Pδ(ϕ) = −(βcm)−1δ−β‖ϕ‖2L2(Γ)
+P′

δ(ϕ).

Herein, P′
δ(ϕ) is given by

2P′
δ(ϕ) =

∫∫

|x−y|≤δ

{
ϕ(x)

(
ϕ(y) −ϕ(x)

)
+ϕ(y)

(
ϕ(x)−ϕ(y)

)}
|x− y|−β−m dsy dsx

−

∫∫

|x−y|≤δ

(
ϕ(y) −ϕ(x)

)
a(y, r)r−β+1 dr ∧ dωϕ(x) dsx

−

∫∫

|x−y|≤δ

(
ϕ(x) −ϕ(y)

)
a(x, r)r−β+1 dr ∧ dωϕ(y) dsy

+

∫∫

|x−y|≤δ

ϕ(y)a(x, r)r−β+1 dr ∧ dωϕ(x) dsx

+

∫∫

|x−y|≤δ

ϕ(x)a(y, r)r−β+1 dr ∧ dωϕ(y) dsy.(7.4)

We rewrite P′
δ(ϕ) according to

P′
δ(ϕ) =

1

2

∫∫

|x−y|≤δ

|ϕ(x) −ϕ(y)|2|x− y|−β−m dsy dsx

+

∫∫

|x−y|≤δ

b(x,y)ϕ(x)ϕ(y) dsy dsx +

∫∫

|x−y|≤δ

c(x,y)ϕ(x)2 dsy dsx,
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where b(x,y) and c(x,y) are kernels which posess pseudohomogeneous expansions of degree −β−
m+ 1. This means that

P′
δ(ϕ) =

1

2

∫∫

|x−y|≤δ

|ϕ(x)−ϕ(y)|2|x− y|−β−m dsy dsx

+

∫

Γ

(Bβ−1ϕ)(x)ϕ(x) dsx +

∫

Γ

(Cβ−11)ϕ(x)
2 dsx

with classical pseudodifferential operatorsBβ−1 and Cβ−1 of degree β−1 on Γ. Since the constant

charge 1 is a smooth function on Γ and Bβ−1 : Hβ/2(Γ) → H−β/2+1(Γ) →֒ H−β/2(Γ) for ϕ ∈
Hβ/2(Γ), we finally arrive at

∣∣P′
δ(ϕ)

∣∣ ≤ c1‖ϕ‖
2
Hβ/2(Γ) + c2‖ϕ‖

2
L2(Γ)

≤ c‖ϕ‖2Hβ/2(Γ),

as proposed.1

In order to show (7.3), consider first ϕ ∈ C∞(Γ) and use Taylor’s expansion about x ∈ Γ in
(7.4). Then, all the integrals on the right hand side are weakly singular tending to zero with
δ → 0. For ϕ ∈ Hβ/2(Γ) approximate ϕ by ϕε ∈ C∞(Γ), satisfying ‖ϕ−ϕε‖Hβ/2(Γ) < ε. Then

∣∣P′
δ(ϕ)−P′

δ(ϕε)
∣∣

≤
1

2

∫∫

|x−y|≤δ

{
|ϕ(x)−ϕ(y)|2 − |ϕε(x) −ϕε(y)|

2
}
|x− y|−β−m dsy dsx

+
∣∣(Bβ−1ϕ,ϕ)L2(Γ) − (Bβ−1ϕε,ϕε)L2(Γ)

∣∣

+ ‖Cβ−11‖L2(Γ)

∣∣‖ϕ‖2L2(Γ)
− ‖ϕε‖

2
L2(Γ)

∣∣.
With

‖ϕ‖2Hβ/2(Γ) − ‖ϕε‖
2
Hβ/2(Γ) ≤ 3‖ϕ‖Hβ/2(Γ) ‖ϕ−ϕε‖Hβ/2(Γ)

for ‖ϕε‖Hβ/2(Γ) ≤ 2‖ϕ‖2
Hβ/2(Γ)

, one has
∣∣P′

δ(ϕ)−P′
δ(ϕε)

∣∣

≤
3

2

{ ∫∫

|x−y|≤δ

∣∣ϕ(x)−ϕε(x)
∣∣∣∣ϕ(y) −ϕε(y)

∣∣|x− y|−β−m dsy dsx

} 1
2

‖ϕ‖Hβ/2(Γ)

+
∣∣(Bβ−1(ϕ− ϕε),ϕ

)
L2(Γ)

∣∣+
∣∣(Bβ−1ϕε, (ϕ−ϕε)

)
L2(Γ)

∣∣

+ 3‖Cβ−11‖L2(Γ)‖ϕ‖Hβ/2(Γ)‖ϕ−ϕε‖Hβ/2(Γ)

≤ c‖ϕ‖Hβ/2(Γ)‖ϕ−ϕε‖Hβ/2(Γ) ≤ cε‖ϕ‖Hβ/2(Γ).

Then

lim
δ→0

∣∣P′
δ(ϕ)

∣∣ ≤ cε‖ϕ‖Hβ/2(Γ)

for any ε > 0 which implies (7.3). �

Since

(7.5)

◦

Jδ(ϕ) =

∫∫

0<δ≤|x−y|

|x− y|−β−mϕ(y)ϕ(x) dsy dsx − 2(f ,ϕ)L2(Γ)

=
1

ε
‖ϕ‖2L2(Γ)

+ (Vβϕ,ϕ)L2(Γ) − 2(f ,ϕ)L2(Γ) −P′
δ(ϕ),

where ε = βcmδ
β → 0 for δ → 0, Lemma 7.1 implies

1For β = 1, B0 is a singular Mikhlin–Calderon integral operator with principal part b(x,x)Θ(ω) which satisfies
the Mikhlin condition b(x,x)

∫
|Θ|=1

Θ(ω) dω = 0.
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Corollary 7.3. Let β0 < 2 and δ0 > 0 be given. Then, there exist positive constants c, c′ > 0
such that the estimate

◦

Jδ(ϕ)−
1

β

1

cm
δ−β‖ϕ‖2L2(Γ)

≤ c‖ϕ‖2Hβ/2(Γ) + 2‖f‖L2(Γ)‖ϕ‖L2(Γ) ≤ c′

holds uniformly for ϕ ∈ Kβ/2(Γ), 0 < δ ≤ δ0 and 0 ≤ β ≤ β0.

The functional (7.5) coincides with the functional from (6.1) except for the perturbation term
P′

δ(ϕ). Hence, we can proceed in complete analogy to the proof of Theorem 6.1.
The Lagrangian to the punched energy functional reads as

◦

Lλ(σ) :=
1

2

(
(εVβσ + σ),σ

)
L2(Γ)

− εP′
δ(σ)− ε(f ,σ)L2(Γ)

+
∑

j∈I

αjλj
(
aj − (gj , σ

j)L2(Γj)

)
,

where the first order necessary optimality condition is given by

∂σk

◦

Lλ(σ) = εαkVβσ
k
ε + αkσ

k
ε − εαkP

′′
δσ

k
ε − εαkfk − αkλkgk = 0,

(gk, σ
k
ε )L2(Γk) = ak, k ∈ I.

Again, λ 6= 0 since the constraints (6.3) are active. Here,

P′′
δσ

k
ε = ∂σk

ε
P′

δ(σε) =

∫

|x−y|≤δ

(
σk
ε (y)− σk

ε (x)
)
|x− y|−m−β dsy

+Bβ−1σ
k
ε +B⋆

β−1σ
k
ε + 2cβ−1(x)σ

k
ε (x)

with

cβ−1(x) =

∫

y∈Γ∧|x−y|≤δ

c(x,y) dsy

and Bβ−1 and B⋆
β−1 being bounded linear operators:

Bβ−1σ
k
ε =

∫

y∈Γ∧|·−y|≤δ

b(·,y)σk
ε (y) dsy : H

3
2β(Γ) → H

1
2β(Γ),

B⋆
β−1σ

k
ε =

∫

y∈Γ∧|·−y|≤δ

b(y, ·)σk
ε (y) dsy : H

1
2β(Γ) → H− 1

2β(Γ).

Under the assumptions of Theorem 6.1 and as in the proof of Theorem 6.1, we finally obtain
the asymptotic expansion of the minimizer σ⋆

ε as well as of the Lagrangian multipliers:

σ⋆
ε = σ0 + εσ1 + ε2σ2 satisfying |||σj |||Hε ≤ c, j = 0, 1, 2,

and λ = λ0 + ελ1 + ε2λ2 where

(gk, σ
k
ε )L2(Γk) = ak, k ∈ I.

It turns out that σk
0 and λk0 are exactly the same as in (6.7). Moreover, we have to replace Vβ

by (Vβ − P′′
δ ) in the equations (6.8) and (6.9), (6.10). Note that σ0 ∈ H

3
2β(Γ) →֒ H

1
2β(Γ) and,

hence, P′′
δσ

k
0 for δ → 0 tends to zero in Hβ/2(Γ) due to (7.3). (If σ0,σ1 ∈ C1(Γ) for 0 < β < 1 or

σ0,σ1 ∈ C2(Γ) for 1 ≤ β ≤ 2, then P′′
δσ

k
0 and P′′

δσ
k
1 = O(δ1−β), respectively O(δ2−β).)

Collecting these results, we have for the punched energy Riesz minimum problem the following
result:

Theorem 7.4. Under the same assumptions as for Theorem 6.1, the minimization problem

(7.6)
1

2

∫∫

0<δ≤|x−y|

x,y∈Γ

|x− y|α−nσ(y)σ(x) dsy dsx −

∫

Γ

f(x)σ(x) dsx → min,
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subject to (6.2), has for every δ > 0 a unique solution σ⋆
ε . It admits for ε = βcmδ

β > 0 the
asymptotic expansion

(7.7) σ⋆
ε = σ0 + εσ1 + ε2σ2 satisfying |||σj |||Hε ≤ c, j = 0, 1, 2

with a constant c independent of ε. In particular, with σ⋆
ε = (αkσ

k
0 +αkσ

k
1 +αkσ

k
2 )k∈I there holds

σk
0 = gka

k(gk, gk)
−1
L2(Γk)

,

σk
1 = λk1gk − (Vβ −P′′

δ )σ
k
0 + fk,

where

λk1 = (gk, gk)
−1

(
(Vβ −P′′

δ )σ
k
0 − fk, gk

)
L2(Γk)

and

σk
2 =

(
I + ε(Vβ − P ′′

j )
)−1{

λk2gk − (Vβ − P ′′
j )σ

k
1

}

with

λk2 = (gk, gk)
−1
L2(Γk)

{
(Vβ − P ′′

j )σ
k
1 + ε(Vβ − P ′′

j )σ
k
2 + σk

2

}
.

Corollary 7.5. For δ → 0 and ε = βcmδ
β one finds

‖σ⋆
ε − σ0‖L2(Γ) ≤ cε

δ→0
−→ 0

with some constant c, independent of σ0 and ε > 0, where σ⋆
ε is the minimizer (7.6). Moreover,

it holds

(7.8)
◦

Jδ(σ
⋆
ε ) =

(
Vβ(σ

⋆
ε ),σ

⋆
ε

)
L2(Γ)

− P ′
δ(σ

⋆
ε ) +

1

β

1

cm
δ−β‖σ⋆

ε‖
2
L2(Γ)

δ→0
−→ ∞.

Proof. Due to (7.7), we obtain

‖σ⋆
ε − σ0‖L2(Γ) ≤ |||σ⋆

ε − σ⋆
0 |||Hε ≤ ε|||σ1|||Hε + ε2|||σ2|||Hε ≤ c(ε+ ε2).

The conditions (6.3) imply that σk
0 > 0 and, hence, ‖σ⋆

ε‖L2(Γ) ≥ 1
2‖σ0‖L2(Γ) > 0 for all ε with

0 < ε ≤ ε1 with some ε1 > 0. Thus, there holds

◦

Jδ(σ
⋆
ε ) =

(
Vβ(σ

⋆
ε ),σ

⋆
ε

)
L2(Γ)

− P ′
δ(σ

⋆
ε ) +

1

β

1

cm
δ−β‖σ⋆

ε‖
2
L2(Γ)

≥
1

2β

1

cm
δ−β‖σ0‖

2
L2(Γ)

− c|||σ⋆
ε |||

2
Hε

with uniformly bounded |||σ⋆
ε |||

2
Hε

. Hence, δ → 0 implies (7.8). �

Remark 7.6. For the torus Γ1 in R3, considered in [6] and [10], where f ∈ Hβ/2(Γ), a1 > 0,
g1 = 1, the minimizers σ⋆

ε of the punched minimization problem tend to the constant charge
σ⋆
ε → σ0 := 1

|Γ|a
1.

Appendix A. Explicit calculation of particular partie finie integrals

In this appendix, we shall compute the partie finie integrals which define the functions h(x)
and h(x) from (3.2) and (3.3), respectively.

Lemma A.1. (i) Let −1 < α < 1, Γ ∈ C∞ and ϕ ∈ C∞(Γ). Then, one has

lim
δ→0

p.f.

∫

|x−y|>δ>0

|x− y|−β−(n−1)
{
ϕ(y)−ϕ(x)

}
dsy

= p.v.

∫

Γ\{x}

|x− y|−β−(n−1)
{
ϕ(y) −ϕ(x)

}
dsy,

where p.v. denotes the Mikhlin–Calderon principal value integral.
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(ii) The function h(x) from (3.2) is given by

(A.1)

h(x) =

∫

y∈Γ∧|x−y|≤c

{
|x− y|−β−(n−1) − r−β−(n−1)

}
dsy − (βcn)

−1c−β

− p.v.

∫

y∈Γ∧|x−y|≤c

r−β−(n−1)
{
rn−2 dr dω − dsy

}

+

∫

y∈Γ∧|x−y|≥c

|x− y|−β−(n−1) dsy

with any c > 0 sufficiently small.
(iii) For the function h(x) from (3.3), one obtains

(A.2)

h(x) = p.v.

∫

y∈Γ∧0<|x−y|≤c

{
|x− y|−β−(n−1)(y − x)− r−β−(n−1)(y − x)

}
dsy

− p.v.

∫

y∈Γ∧|x−y|≤c

r−β−(n−1)
{
(y − x)rn−2 dr dω − (y − x) dsy

}

+

∫

y∈Γ∧0<|x−y|≥c

|x− y|−β−(n−1)(y − x) dsy

with any c > 0 sufficiently small.

Proof. (i) Locally on Γ one has near x ∈ Γ:

ϕ(y) = ϕ(x) + (y − x) · ∇ϕ(x) +O(r2), r = |x− y|;

Θ(r,ω) :=
1

r
(y − x) for x,y ∈ Γ ;

Θ(r,ω) = Θ(0,ω) +O(r),

∫

|Θ|=1

Θ(0,ω) dω = 0,

dsy = rn−2(1 +O(r2)) dr dω.

|Θ(0,ω)| = 1 describes the (n−2)-dimensional unit sphere Sn−2 and ω is its polar coordinate with
dω its (n − 2)-dimensional surface measure. Consequently, with an appropriate constant c > 0
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depending on Γ, one has

lim
δ→0

p.f.

∫

y∈Γ∧0<δ<|x−y|

|x− y|−β−(n−1)
{
ϕ(y) −ϕ(x)

}
dsy

= lim
δ→0+

p.f.

∫

y∈Γ∧0<δ<|x−y|≤c

|x− y|−β−(n−1)

×
{
(y − x) · ∇ϕ(x) +

{
ϕ(y) −ϕ(x) − (y − x) · ∇ϕ(x)

}}
dsy

+

∫

y∈Γ∧|x−y|≥c

|x− y|−β−(n−1)
{
ϕ(y) −ϕ(x)

}
dsy

= lim
δ→0+

p.f.

∫

0<δ≤r≤c

r−β dr

∫

|Θ|=1

Θdω(Θ) · ∇ϕ(x)

+ p.v.

{ ∫

0<|x−y|≤c

{
|x− y|−β−(n−1)(y − x) dsy − r−β−1(y − x) dr dω

}

+

∫

0<|x−y|≤c

|x− y|−β−(n−1)
{
ϕ(y) −ϕ(x)− (y − x)∇ϕ(x) · dsy

}}

+

∫

y∈Γ∧|x−y|≥c

|x− y|−β−(n−1)
{
ϕ(y) −ϕ(x)

}
dsy.

The first integral on the right is zero because of
∫
|Θ|=1

Θdω = 0. Whereas, the integrand of the

remaining integral has at y = x a weak singularity |y − x|−β+1 with −1 < −β + 1 < 1 whose
principal value integral exists. This follows by using e.g. Martensen’s surface polar coordinates,
cf. Theorem B.1 in Appendix B.

(ii) For the function

h(x) = lim
δ→0

p.f.

∫

0<δ<|x−y|∧y∈Γ

|x− y|−β−(n−1) dsy,

we find

h(x) = lim
δ→0

p.f.

∫

0<δ<|x−y|≤c

{
|x− y|−β−(n−1) − r−β−(n−1)

}
dsy

+ lim
δ→0

p.f.

c∫

0<δ

r−β−(n−1)rn−2 dr

∫

|Θ|=1

dω

− lim
δ→0

p.f.

c∫

0<δ

∫

|Θ|=1

r−β−(n−1)
{
rn−2 dr dω − dsy

}

+

∫

c≤|x−y|∧y∈Γ

|x− y|−β−(n−1) dsy.

If we choose Martensen’s surface polar coordinates on Γ, then the integrand of the first integral
on the right is identical zero due to |x−y| = r. For the second integral on the right, we have with
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∫
|Θ|=1 dω = c−1

n that

lim
0<δ→0

p.f.

c∫

δ

rβ−1 dr

∫

|Θ|=1

dω = lim
0<δ→0

p.f.
1

cn

{
δ−β

β
−

1

β
c−β

}
= −(cnβ)

−1c−β .

For the third integral, Theorem B.2 in Appendix B implies

rn−2 dr dω − dsy = O(rn) dr dω.

Hence, the integrand is of order O(r−β+1) and the integral exists as a principal value integral.
Collecting these properties proves (A.1).

(iii) We proceed with respect to the vector-valued function

h(x) = p.f. lim
δ→0

∫

y∈Γ∧0<δ<|x−y|

|x− y|−β−(n−1)(y − x) dsy,

in the same manner as for h(x). Inserting (y−x) = rΘ for Martensen’s surface polar coordinates,
we have:

h(x) = lim
δ→0

p.f.

∫

0<δ<|x−y|≤c

{
|x− y|−β−(n−1)(y − x)− r−β−(n−1)(y − x)

}
dsy

+ lim
δ→0

p.f.

c∫

0<δ

r−β−(n−1)rn−1 dr

∫

|Θ|=1

Θdω

− lim
δ→0

p.f.

c∫

δ

∫

|Θ|=1

r−β−nΘ
{
rn−2 dr dω − dsy

}

+

∫

0≤|x−y|∧y∈Γ

|x− y|−β−(n−1)(y − x) dsy.

Here, the first integral on the right vanishes if Martensen’s surface polar coordinates are used, and
the second one vanishes because of

∫
|Θ|=1Θdω = 0. The third integral contains an integrand of

order O(rβ+2). Hence, the integrand is bounded and the integral exists. Consequently, also (A.2)
holds. �

Appendix B. Martensen’s surface polar coordinates

For n = 3, surface polar coordinates have been introduced by Martensen in [16, Chapter 2.1].
A graphical illustration of these coordinates are found in Figure 2. We generalize this approach
to arbitrary spatial dimension n ≥ 2.

u1

u2

e3

e1

e2

Γ

Figure 2. Illustration of Martensen’s surface polar coordinates.
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The given surface has locally the parametric representation Γ : x = x(u) ∈ Rn, u =

(u1, . . . , un−1) ∈ R
n−1. For x =

◦
x = x(

◦
u), define the family of (n − 2)-dimensional manifolds

(level sets) as {x ∈ C̺ ⊂ Γ given by |x−
◦
x| = ̺ > 0}, where |x−

◦
x| denotes the Euclidian distance

in Rn and ̺ is the radial parameter. Let

A(u) := |x(u) −
◦
x|,

then

A2(u) =
(
x(u)−

◦
x
)
·
(
x(u)−

◦
x
)
,

where · denotes the Euclidian scalar product in Rn. In the local neighborhood of Γ, define

x(u) =
◦
x+ F(u) +G(u)n(u)

with G(u) =
(
x(u) −

◦
x
)
· n(u), where n(u) denotes the (exterior) unit normal vector of Γ at

x = x(u). Then, on Γ, the vector F(u) is tangential to Γ at x(u),

(B.1) F · n = 0, F =
(
x(u) −

◦
x
)
−G(u)n(u) and A2 = F ·F+G2.

For
◦
x ∈ Γ chosen, the surface polar coordinates then locally are given by the family of closed

surfaces C̺, i.e., the level sets of the function A(u), and curved radial rays on Γ through
◦
x which

are perpendicular to C̺ for constant ̺. Let us denote such a radial ray curve by cΘ ∈ Γ, given

by u = u(s), 0 ≤ s, where the parametric representation x
(
u(s)

)
at s = 0 starts in

◦
x = x(

◦
u)

in the direction of the unit vector e(Θ) = x|i(
◦
u)Θi, x|i =

∂x
∂ui , i = 1, . . . , n − 1 ; gjk = x|j · x|k,

gjkΘ
jΘk = 1. Hence, for the curve cΘ : x = x

(
u(s)

)
, we require that

x|j(
◦
u)

duj

ds
(
◦
u) = e(Θ).

(Note that for n = 3 one usually uses Θ1 = cos ζ and Θ2 = sin ζ.)

Without restriction of generality, we assume in what follows that at
◦
x we have gjk(

◦
u) = δjk

(the Kronecker tensor). Since the radial ray curves cΘ ∈ Γ are perpendicular to the level sets,
which implicitly are given by A = ̺ = const, they satisfy the ordinary differential equations for
fixed Θ:

(B.2)
∂cΘ
∂s

=
dx

ds

∣∣∣
cΘ

= x|j
duj

ds
=

Grad A

|Grad A|2
(u)

where Grad A = gℓkA|ℓx|k is the surface gradient and gℓkgjk = δjℓ. Since (B.1) implies on Γ that

AA|i = (x−
◦
x) · x|i = Fi = F · x|i and Grad A = gℓk

Fℓ

A
x|k =

1

A
F kx|k =

1

A
F,

we find

Grad A ·Grad A =
1

A2
F · F =

1

A2
(A2 −G2) = 1−

G2

A2

and the differential equations (B.2) take the form

(B.3)
dx

ds

∣∣∣
cΘ

= x|j
duj

ds
=

Grad A

|Grad A|2

(
1−

G2

A2
(u)

)−1

.

After multiplication with x|kg
ℓk, we thus arrive at

(B.4)
du

ds

ℓ

=
1

A(u)

(
1−

G2

A2
(u)

)−1

F ℓ(u), F ℓ = gℓkF · x|k, ℓ, k = 1, . . . , n− 1.

Theorem B.1. To every
◦
x ∈ Γ there exists a neighborhood of

◦
x on Γ where the system (B.4)

admits a unique solution

uℓ(s,Θ) = sΘℓ +O(s2)



MINIMAL ENERGY PROBLEMS FOR STRONGLY SINGULAR RIESZ KERNELS 25

for s ≥ 0 which is the solution of the Volterra integral equations

(B.5) uℓ(s,Θ) =
◦
u
ℓ
+ sΘℓ +

s∫

0

{
F ℓ

(
u(σ,Θ)

)

A
(
u(σ,Θ)

)
(
1−

G2
(
u(σ,Θ)

)

A2
(
u(σ,Θ)

)
)−1

−Θℓ

}
dσ.

The transformation u 7→ (̺,Θ) to surface polar coordinates about
◦
x is given by u(̺,Θ), i.e.,

s = ̺ ≥ 0.

Proof. Since

F = (x−
◦
x)−

(
(x−

◦
x) · n

)
n,

the expansion about
◦
x = x(

◦
u) gives on the one hand

x−
◦
x =

◦
x|k

d
◦
u

ds

k

s+
1

2

{
◦
x|k|ℓ

d
◦
u

ds

k
d
◦
u

ds

ℓ

+
◦
x|k

d2
◦
u

ds2

k}
s2

+
1

6

{
◦
x|k|ℓ|j

d
◦
u

ds

k
d
◦
u

ds

ℓ
d
◦
u

ds

j

+ 3
◦
x|k|ℓ

d2
◦
u

ds2

k
d
◦
u

ds

ℓ

+ x|k
d3

◦
u

ds3

k}
s3 +O(s4).(B.6)

On the other hand, with the Gaussian equations

x|j|k = Γℓ
jkx|ℓ + Ljkn, ℓ = 1, . . . , n− 1

and the Weingarten relations

n|j = −Lm
j x|m,

we obtain

x|j|k|ℓ = {Γm
jk|ℓ + Γr

jkΓ
m
rℓ − LjkL

m
ℓ }x|m + {Ljk|ℓ + Γr

jkLrℓ}n

where Γℓ
tj are the Christoffel symbols of the second kind of Γ at x, Γℓ

tj|k = ∂
∂ukΓ

ℓ
tj(u), and

Lℓ
j = gℓkLkj with Lkj the second fundamental form of Γ at x (see e.g. [13, p. 90]). Here and in

what follows, we abbreviate

◦
x|k = x|k(

◦
u),

◦
x|k|ℓ = x|k|ℓ(

◦
u) and

d
◦
u

ds

k

=
du

ds
(
◦
u) etc.

We get thus from (B.6)

x−
◦
x = e(Θ)s+

1

2

{(◦

Γ
m

kℓ

◦
x|m +

◦

Lkℓ
◦
n
)
ΘkΘℓ +

◦
x|k

d2
◦
u
k

ds2

}
s2

+
1

6

{([◦

Γ
t

jk|ℓ +
◦

Γ
m

jk

◦

Γ
t

mℓ −
◦

Ljk

◦

L
t

ℓ

]
◦
x|t +

[ ◦

Ljk|ℓ +
◦

Γ
m

jk

◦

Lmℓ

]
◦
n
)
ΘjΘkΘℓ(B.7)

+ 3
(◦

Γ
t

kℓ

◦
x|t +

◦

Lkℓ
◦
n
)
Θℓ d

2 ◦
u
k

ds2
+

◦
x|t

d3
◦
u
t

ds3

}
s3 +O(s4).

By combining this expansion with

n(u) =
◦
n+

◦
n|j

d
◦
u
j

ds
s+

1

2

{
◦
n|j|kΘ

kΘj +
◦
n|j

d2
◦
u
j

ds2

}
s2 +O(s3),
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we arrive at

G = (x−
◦
x) · n(u)

= −
◦
x|k ·

◦
x|mΘk

◦

L
m

j Θjs2 +
1

2

◦

LkℓΘ
kΘℓs2 −

1

2
LjkΘ

k d
2 ◦
u
j

ds2
s3

+

{
1

6

( ◦

Ljk|ℓ +
◦

Γ
m

jk

◦

Lmℓ

)
−

1

2

( ◦

Ljm

◦

Γ
m

kℓ +
◦

L
ℓ

j|k +
◦

L
m

j

◦

Γ
ℓ

mk

)}
ΘjΘkΘℓs3 +O(s4)

= −
1

2

◦

LkjΘ
kΘjs2 +

{
1

6

◦

Ljk|ℓ −
1

3

◦

Ljm

◦

Γ
m

kℓ −
1

2

◦

L
ℓ

j|k −
1

2

◦

L
m

j

◦

Γ
ℓ

mk

}
ΘjΘkΘℓs3

−
1

2
LjkΘ

k d
2 ◦
u
j

ds2
s3 +O(s4),

F = e(Θ)s+

{
1

2

([◦

Γ
m

kℓ

◦
x|m +

◦

Lkℓ
◦
n
]
ΘkΘℓ +

◦
x|k

d2
◦
u
k

ds2

)
+

1

2

◦

LkℓΘ
kΘℓ ◦n

}
s2 +O(s3),

A = s+O(s2).

Hence, we conclude

F

A

(
1−

G2

A2

)−1

= e(Θ) +O(s)

for any C2-curve x
(
u(s)

)
through

◦
x. Consequently, the kernel function {. . . } of the Volterra

operator in (B.5) is continuous and there exists a solution u(s,Θ) for fixed given Θ in some

vicinity of
◦
x on Γ. This solution is in C1([0, S]) for some S > 0 and is as many times continuously

differentiable for s ≥ 0 as is the manifold Γ.
The equation (B.3) implies

1 = Grad A · x|j
du

ds

j

= gℓkA|kx|ℓ · x|j
du

ds

j

= gℓkgℓjA|k
du

ds

j

= A|j
du

ds

j

=
dA

ds
=

d̺

ds
.

Thus, it holds A = s = ̺ and u(̺,Θ), the solution of (B.5), is the desired transformation
(̺,Θ) 7→ u.

By bootstrapping, it follows from (B.4) that u(̺,Θ) is higher order differentiable up to ̺ = 0.
To see this, consider the Taylor expansions of the left and the right hand sides of the equations

(B.4) about
◦
u up to the order two:

Left hand side of (B.4): (by using (B.3))

du

d̺

ℓ

x|ℓ(u) =
d
◦
u

d̺

ℓ
◦
x|ℓ +

{
◦
x|ℓ

d2
◦
u

d̺2

ℓ

+
◦
x|ℓ|j

d
◦
u

d̺

ℓ
d
◦
u

d̺

j}
̺

+
1

2

{
◦
x|ℓ

d3
◦
u

d̺3

ℓ

+
◦
x|ℓ|j|k

d
◦
u

d̺

ℓ
d
◦
u

d̺

j
d
◦
u

d̺

k

+ 3
◦
xℓ|j

d2 ◦
u

d̺2

ℓ
d
◦
u

d̺

j}
̺2 +O(̺3)

=
◦
x|ℓΘ

ℓ +

{
◦
x|ℓ

d2
◦
u

d̺2

ℓ

+
(◦

Γ
m

ℓj

◦
x|m +

◦

Γℓj
◦
n
)
ΘℓΘj

}
̺

+
1

2

{
◦
x|ℓ

d3
◦
u

d̺3

ℓ

+
([◦

Γ
m

ℓj|k +
◦

Γ
t

ℓj

◦

Γ
m

tk −
◦

Lℓj

◦

L
m

k

]
◦
x|m +

[◦

Γ
m

ℓj

◦

Lmk +
◦

Lℓj|k

]
◦
n
)
ΘℓΘjΘk

+ 3
(◦

Γ
m

ℓj

◦
x|m +

◦

Lℓj
◦
n
)
Θj d

2 ◦
u

d̺2

ℓ}
̺2 +O(̺3).
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Right hand side of (B.4): (see (B.7))

1

̺
(x−

◦
x) =

◦
x|ℓΘ

ℓ +
1

2

{(◦

Γ
m

kℓ

◦
x|m +

◦

Lkℓ
◦
n
)
ΘkΘℓ +

◦
x|k

d2
◦
u

d̺2

k}
̺

+
1

6

{
◦
x|ℓ

d3
◦
u

d̺3

ℓ

+
([◦

Γ
m

ℓj|k +
◦

Γ
t

ℓj

◦

Γ
m

tk −
◦

Lℓj

◦

L
m

k

]
◦
x|m +

[◦

Γ
m

ℓj

◦

Lmk +
◦

Lℓj|k

]
◦
n
)
ΘℓΘjΘk

+ 3
(◦

Γ
m

ℓj

◦
x|m +

◦

Lℓj
◦
n
)
Θj d

2 ◦
u

d̺2

ℓ}
̺2 +O(̺3),

n(u) =
◦
n+

◦
n|j

d
◦
u

d̺

j

̺+
1

2

{
◦
n|j|k

d
◦
u
j

d̺

d
◦
u

d̺

k

+
◦
n|j

d2 ◦
u

d̺2

j}
̺2 +O(̺3)

=
◦
n−

◦

L
m

j

◦
x|mΘj̺

−
1

2

{( ◦

L
m

j|k

◦
x|m +

◦

L
ℓ

j

◦

Γ
m

ℓk

◦
x|m +

◦

L
m

j

◦

Lmk
◦
n
)
ΘjΘk +

◦

L
m

j

d2
◦
u

d̺2

j
◦
x|m

}
̺2 +O(̺3),

1

̺
G =

1

2

◦

LkℓΘ
kΘℓ̺−

1

2

◦

Ljℓ
d2

◦
u

d̺2

j

Θℓ

+

{
1

6

◦

Lℓj|k −
1

3

◦

Γ
m

ℓj

◦

Lmk −
1

2

◦
gmℓ

◦

L
m

j|k −
1

2

◦
gmℓ

◦

L
t

j

◦

Γ
m

tk

}
ΘjΘkΘℓ̺2 +O(̺3),

(1
̺
G
)
n(u) =

(1
̺
G
)(

◦
n−

◦

L
m

j Θj ◦x|m̺
)
+O(̺3)

=
◦
n
1

2

◦

LkℓΘ
kΘℓ̺+

◦
n̺2 −

1

2

◦

L
m

j

◦

Lkℓ
◦
x|mΘjΘkΘℓ̺2 −

1

2

◦

Ljℓ
d2

◦
u

d̺2

j

Θℓ ◦n̺2 +O(̺3),

G2

A2
=

(1
̺
G
)2

=
1

4

( ◦

LkℓΘ
kΘℓ

)2
̺2 +O(̺3),

(
1−

G2

A2

)−1

= 1 +
1

4

( ◦

LkℓΘ
kΘℓ

)2
̺2 +O(̺3).

Comparing the coefficients of x|ℓ̺ gives:

lhs:
d2

◦
u

d̺2

ℓ

+
◦

Γ
ℓ

jkΘ
jΘk and rhs:

1

2

◦

Γ
ℓ

jkΘ
jΘk +

1

2

d2
◦
u

d̺2

ℓ

.

Consequently, there holds

d2
◦
u

d̺2

ℓ

(
◦
u) = −

◦

Γ
ℓ

jkΘ
jΘk.

Next, compare the coefficients of
◦
x|ℓ̺

2:

Left hand side of (B.4):

1

2

d3
◦
u

d̺3

ℓ

+
1

2

(◦

Γ
ℓ

mj|k +
◦

Γ
t

mj

◦

Γ
ℓ

tk −
◦

Lmj

◦

L
ℓ

k

)
ΘmΘjΘk +

3

2

◦

Γ
ℓ

mjΘ
j d

2 ◦
u

d̺2

m

=
1

2

d3
◦
u

d̺3

ℓ

+
1

2

(◦

Γ
ℓ

mj|k +
◦

Γ
t

mj

◦

Γ
ℓ

tk −
◦

Lmj

◦

L
ℓ

k

)
ΘmΘjΘk −

3

2

◦

Γ
ℓ

tj

◦

Γ
t

kmΘmΘjΘk.
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Right hand side of (B.4):

(1
̺
(x −

◦
x)−

1

̺
Gn

)(
1 +

1

4
̺2(

◦

LkℓΘ
kΘℓ)2 +O(̺3)

)

= Θℓ ◦x|ℓ − ̺
1

2

◦

Γ
ℓ

kmΘkΘm ◦
x|ℓ

+

{
1

6

d3
◦
u

d̺3

ℓ

+
(1
6

◦

Γ
ℓ

mj|k −
1

3

◦

Γ
t

mj

◦

Γ
ℓ

tk −
1

3

◦

L
ℓ

j

◦

Lkm

)
ΘmΘjΘk +

1

4

( ◦

LkjΘ
kΘj

)2
Θℓ

}
◦
x|ℓ.

Hence, from equating left hand side and right side, one obtains

d3u

d̺3

ℓ

(
◦
u) =

{
−

◦

Γ
ℓ

mj|k + 2
◦

Γ
t

mj

◦

Γ
ℓ

tk +
1

2

◦

Lmj

◦

L
ℓ

k

}
ΘmΘjΘk +

3

4

( ◦

LkjΘ
kΘj

)2
Θℓ.

With the expressions for d2◦
u
ℓ

ds2 and d3◦
u
ℓ

ds3 , we recollect the relations for x−
◦
x and find instead of

(B.6):

(x− x0) = ̺e(Θ) +
1

2
̺2

◦
n

◦

LkℓΘ
kΘℓ

+
̺3

6

{(
−

1

2

◦
x|ℓ

◦

Lmj

◦

L
ℓ

k +
[
2
◦

Lmj|k − 3
◦

Ltj

◦

Γ
t

mk

]
◦
n
)
ΘmΘjΘk +

4

3

( ◦

LkjΘ
kΘj

)2
Θ

}
+O(̺4).

Collecting the first three derivatives of uℓ at
◦
u implies that the first terms of the transform

(̺,Θ) 7→ u read as

uℓ(̺,Θ) =
◦
u
ℓ
+Θℓ̺−

1

2

◦

Γ
ℓ

jkΘ
jΘk̺2(B.8)

+
1

6

{
1

2

◦

L
ℓ

j

◦

Lkm + 2
◦

Γ
ℓ

tj

◦

Γ
t

km −
◦

Γ
ℓ

mj|k

}
ΘjΘkΘm̺3 +

1

8

( ◦

LjkΘ
jΘk

)2
Θℓ̺3 +O(̺4),

for all ℓ = 1, . . . , n− 1. Whereas, the inverse mapping u 7→ (̺,Θ) can be obtained from

̺ = A(u) = |x(u)−
◦
x|

and the nonlinear equations for

Θℓ =
1

̺

(
uℓ −

◦
u
ℓ)

+
1

2
̺
◦

Γ
ℓ

jkΘ
jΘk

−
1

6
̺2
{
1

2

◦

L
ℓ

j

◦

Lkm + 2
◦

Γ
ℓ

tj

◦

Γ
t

km −
◦

Γ
ℓ

mj|k

}
ΘjΘkΘm −

1

8
̺2
( ◦

LjkΘ
jΘk

)2
Θℓ + . . .

for all ℓ = 1, . . . , n− 1 can, for ̺ > 0 sufficiently small, be solved via successive iteration. �

Theorem B.2. Let Γ ∈ C4. Then, the surface measure dsΓ of Γ in Martensen’s surface polar
coordinates satisfies

(B.9) dsΓ = ̺n−2 d̺ ∧ dω +
(
̺na(Θ) +O(̺n+1)

)
d̺ ∧ dω

where

a(Θ) =

n−1∑

j=1

Θj

{
3

4

(( ◦

LktΘ
kΘt

)2
+

◦

L
j

t

◦

LmkΘ
tΘmΘk

)
−Θj

◦

L
ℓ

m

◦

LℓkΘ
mΘk

}

and

dω =

n−1∑

j=1

(−1)j+1Θj [dΘ1 ∧ · · · ∧
/
dΘj
∖

∧ · · · ∧ dΘn−1],

n−1∑

j=1

ΘjΘj = 1.

Here, dω is the surface measure of the unit sphere Sn−2 in Rn−1.
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Proof. For the surface measure of Γ, we use the exterior Pfaffian products, defining the exterior
normal vector’s components times dsΓ (see [21, Chapter 11.4]. Then, we multiply scalarly with
the exterior unit normal n(x) =

(
n1(x), . . . , nn(x)

)
which yields

(B.10) dsΓ =

n∑

j=1

(−1)j+1
[
dx1 ∧ · · · ∧

/
dxj
∖

∧ · · · ∧ dxn
]
nj(x).

Expansions about
◦
x up to the order ̺2 give

n(x) =
◦
n− ̺

◦

L
m

j

◦
x|mΘj −

1

2
̺2
{

◦

L
m

j|k +
◦

L
ℓ

j

◦

Γ
m

ℓk −
◦

Γ
t

jk

◦

L
m

t

}
ΘjΘk ◦

x|m

−
1

2
̺2

◦

L
ℓ

j

◦

LℓkΘ
jΘk ◦

n+O(̺3)

and

dxj = d̺Θj + ̺ dΘj +
1

2
̺2 d̺

{
3

4

( ◦

LktΘ
kΘt

)2
−

1

2

◦

L
j

k

◦

LmtΘ
kΘmΘt

}
+O(̺3)

= d̺Θj + ̺Θj + ̺2 d̺cj(Θ) +O(̺3)

with

cj(Θ) =
1

2

{
3

4

( ◦

LktΘ
kΘt

)2
−

1

2

◦

L
j

k

◦

LmtΘ
kΘmΘt

}

for j = 1, . . . , n− 1 and

dxn =
◦

LjkΘ
jΘk̺ d̺+

1

2

(
2
◦

Lmj|k − 3
◦

Lℓj

◦

Γ
ℓ

mk

)
ΘmΘjΘk̺2 d̺+O(̺3).

Inserting this into (B.10), yields

dsΓ = (−1)n+1
[
dx1 ∧ · · · ∧ dxn−1

](
1−

1

2
̺2

◦

L
m

j

◦

LmkΘ
jΘk +O(̺3)

)

+

n−1∑

j=1

[[
dx1 ∧ · · · ∧

/
dxj
∖

∧ dxn−1
]
∧ dxn

]

×

{
− ̺

◦

L
j

kΘ
k −

1

2

( ◦

L
j

m|k +
◦

L
ℓ

m

◦

Γ
j

ℓk −
◦

Γ
t

mk

◦

L
j

t

)
ΘmΘk̺2 +O(̺3)

}
.(B.11)

For the first term in (B.11), we obtain (modulo O(̺3) terms) with the relations for dxj :
[
dx1 ∧ · · · ∧ dxn−1

]
=

[
d̺Θ1 + ̺ dΘ1 + ̺2 d̺c1(Θ) ∧ d̺Θ2 + ̺ dΘ2 + ̺2 d̺c2(Θ)

∧ · · · ∧ d̺Θn−1 + ̺ dΘn−1 + ̺2 d̺cn−1(Θ)
]
= ̺n−1

[
dΘ1 ∧ · · · ∧ dΘn−1

]

+ ̺n−2

[
d̺ ∧

n−1∑

j=1

(−1)j
{
Θj + ̺2cj(Θ)

}[
dΘ1 ∧ · · · ∧

/
dΘj
∖

∧ · · · ∧ dΘn−1
]]
.

Since the variables Θj vary on the (n− 2)-dimensional sphere Sn−2, where

n−1∑

j=1

(Θj)2 = 1,

we have

(B.12)

n−1∑

j=1

Θj dΘj = 0

on Sn−2. Hence, the differentials dΘj with j = 1, . . . , n− 1 are linearly dependent and
[
dΘ1 ∧ · · · ∧ dΘn−1

]
= 0.
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Moreover, on Sn−2, we have that the exterior unit normal vector ν to Sn−2 satisfies

νω =

n−1∑

j=1

Θjej .

Therefore, it holds

νj dω = (−1)j+1
[
dΘ1 ∧ · · · ∧

/
dΘj
∖

∧ · · · ∧ dΘn−1
]
= Θj dω,

and with (B.12) one obtains

dω =

n−1∑

j=1

(−1)j+1Θj
[
dΘ1 ∧ · · · ∧

/
dΘj
∖

∧ · · · ∧ dΘn−1
]
.

For the first term in (B.11), we find therefore

ds1Γ = (−1)n+1

{
̺n−2 + ̺n

( n−1∑

j=1

cj(Θ)Θj −
1

2

◦

L
ℓ

m

◦

LℓkΘ
mΘk

)
+O(̺n+1)

}
d̺ ∧ dω.

For the remaining terms in (B.11), we have (modulo O(̺3) terms) that

ds2Γ =
[[

dx1 ∧ · · · ∧
/
dxj
∖

∧ · · · ∧ dxn−1
]
∧ dxn

](
− ̺

◦

L
j

tΘ
t −

1

2
̺2{. . . }ΘmΘk

)

=
[[

d̺Θ1 + ̺ dΘ1 + ̺2 d̺c1(Θ) ∧ d̺Θ2 + ̺ dΘ2 + ̺2 d̺c2(Θ)

∧ · · · ∧
/
dxj
∖

∧ · · · ∧ d̺2Θn−1 + ̺ dΘn−1 + ̺2 d̺cn−1(Θ)
]

∧
(
̺ d̺

◦

LjkΘ
jΘk +

1

2
̺2 d̺{. . . }ΘmΘjΘk

)](
− ̺

◦

L
k

tΘ
t −

1

2
{. . . }ΘmΘk

)

=

n−1∑

j=1

(−1)n+j
(
̺n +O(̺n+1)

)
d̺ ∧

[
dΘ1 ∧ · · · ∧

/
dΘj
∖

∧ · · · ∧ dΘn−1
] ◦
LmkΘ

mΘk
◦

L
j

tΘ
t

= (−1)n+1
n−1∑

j=1

◦

LmkΘ
mΘk

◦

L
j

tΘ
tΘj

(
̺n +O(̺n+1)

)
d̺ ∧ dω.

Consequently, we finally get in (B.11)

dsΓ = ds1Γ + ds2Γ = ̺n−2 d̺ ∧ dω +
(
̺na(Θ) +O(̺n+1)

)
d̺ ∧ dω

with

a(Θ) =

n−1∑

j=1

Θj

{
3

4

( ◦

LktΘ
kΘt

)2
+

◦

L
j

t

◦

LmkΘ
tΘmΘk −Θj

◦

L
ℓ

m

◦

LℓkΘ
mΘk

}
.

This is the proposed relation (B.9) for the surface measure. �
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