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ABSTRACT

Aims. Hydrodynamical instabilities and shocks are ubiquitous in astrophysical scenarios. Therefore, an accurate numerical simulation
of these phenomena is mandatory to correctly model and understand many astrophysical events, such as supernovas, stellar collisions,
or planetary formation. In this work, we attempt to address many of the problems that a commonly used technique, smoothed particle
hydrodynamics (SPH), has when dealing with subsonic hydrodynamical instabilities or shocks. To that aim we built a new SPH code
named SPHYNX, that includes many of the recent advances in the SPH technique and some other new ones, which we present here.

Methods. SPHYNX is of Newtonian type and grounded in the Euler-Lagrange formulation of the smoothed-particle hydrodynamics
technique. Its distinctive features are: the use of an integral approach to estimating the gradients; the use of a flexible family of
interpolators called sinc kernels, which suppress pairing instability; and the incorporation of a new type of volume element which
provides a better partition of the unity. Unlike other modern formulations, which consider volume elements linked to pressure, our
volume element choice relies on density. SPHYNX is, therefore, a density-based SPH code.

Results. A novel computational hydrodynamic code oriented to Astrophysical applications is described, discussed, and validated
in the following pages. The ensuing code conserves mass, linear and angular momentum, energy, entropy, and preserves kernel
normalization even in strong shocks. In our proposal, the estimation of gradients is enhanced using an integral approach. Additionally,
we introduce a new family of volume elements which reduce the so-called tensile instability. Both features help to suppress the damp
which often prevents the growth of hydrodynamic instabilities in regular SPH codes.

Conclusions. On the whole, SPHYNX has passed the verification tests described below. For identical particle setting and initial
conditions the results were similar (or better in some particular cases) than those obtained with other SPH schemes such as GADGET-
2, PSPH or with the recent density-independent formulation (DISPH) and conservative reproducing kernel (CRKSPH) techniques.

Key words. methods: numerical — hydrodynamics — instabilities

1. Introduction

Many interesting problems in Astrophysics involve the evolution
of fluids and plasmas coupled with complex physics. For exam-
ple, in core collapse supernova, magnetohydrodynamics meets
with general relativity, nuclear processes and radiation transport.
Other scenarios, such as neutron star mergers, Type Ia super-
nova, and planet- or star formation, face similar challenges in
terms of complexity. Besides that, these phenomena often have a
strong dependence on the dimensionality and they must be stud-
ied in three dimensions. This requires accurate numerical tools
which translate to rather sophisticated hydrodynamic codes. Be-
cause of its adaptability to complex geometries and good conser-
vation properties, the Smoothed Particle Hydrodynamics (SPH)
method is a popular alternative to grid-based codes in the as-
trophysics community. SPH is a fully Lagrangian method, born
forty years ago (Lucy 1977; Gingold & Monaghan 1977), that
since then has undergone sustained development (Monaghan
1992, 2005; Rosswog 2015a; Springel 2010b; Price 2012). Re-
cent years have witnessed a large range of improvements spe-
cially aimed at reducing the numerical errors inherent to the
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technique. These errors are known as Ej errors (Read et al.
2010) and mainly appear due to the conversion of the inte-
grals, representing local-averaged magnitudes of the fluid, into
finite summations. The most simple and naive way to get rid
of them would be to work closer to the continuum limit, which
implies working with a number of particles and neighbors as
big as possible (ideally, N — oo and Ny, — o0, see Zhu et al.
2015). Unfortunately, this is not feasible in common applica-
tions of the technique because the total number of particles is
limited by the computing power (both by speed and storage).
Moreover, the number of neighbors of a given particle can-
not be arbitrarily increased without suffering pairing-instability
(Schuessler & Schmitt 1981). This is a numerical instability that
acts as an attractive force which appears at scales slightly shorter
than the smoothing length /, provoking artificial particle clump-
ing and effectively decreasing the quality of the discretization,
which eventually leads to unrealistic results.

In order to reduce the Ej errors, another more practical pos-
sibility has been studied during recent years: finding interpolat-
ing functions that are less prone to particle clustering than the

A78, page 1 of 30


https://doi.org/10.1051/0004-6361/201630208
http://www.aanda.org
http://www.edpsciences.org

A&A 606, A78 (2017)

widely used M, or cubic-spline kernel (Monaghan & Lattanzio
1985). Among the various candidates, the most used (pairing-
resistant) kernels come either from an extension of the M,, family
to higher-order polynomials (Schoenberg 1946) or those based
on the Wendland functions (Wendland 1995). In particular, the
Wendland family is specially suited to cope with pairing insta-
bility (Dehnen & Aly 2012). Another possibility is the sinc fam-
ily of kernels (Cabezén et al. 2008), which are functions of type
S(x) = C(n)(sinx/x)", and add the capability of dynamically
modifying their shape simply by changing the exponent n. That
adaptability of the sinc kernels makes the SPH technique even
more flexible and can be used, in particular, to prevent particle
clustering, as shown in Sect. 2.1.

Historically, the growth of subsonic hydrodynamical insta-
bilities has been problematic for SPH simulations, as they damp
them significantly. The Rayleigh-Taylor (RT) instability is a
ubiquitous phenomenon which serves as a paradigmatic exam-
ple. It appears wherever there is cold and dense fluid on top
of a hot and diluted one in the presence of gravity (or any in-
ertial force, in virtue of the principle of equivalence). The en-
tropy inversion leads to the rapid overturn of the fluid layers.
In the real world, the overturn is triggered by small perturba-
tions at the separation layer between the light and dense fluids.
The RT instability is one of the most important agents driving
the thermonuclear explosion of a white dwarf, which gives rise
to the Type Ia supernova (SNIa) explosions. Their correct nu-
merical description is also crucial to understanding the structure
of the supernova remnants (SNR) and to model core collapse
supernova (CCSN) explosions. Additionally, the RT instability
is also the source of other interesting phenomena such as the
KH instability or turbulence. The numerical simulation of the
Rayleigh-Taylor instability using SPH has traditionally been a
drawback for the technique, especially for low-amplitude initial
perturbations in the presence of a weak gravitational force. At
present, for a similar level of resolution, the best SPH codes can-
not yet compete with the state-of-art grid-based methods. For
example, the finite-volume/difference Godunov methods such as
ATHENA and PLUTO, AMR codes such as FLASH, the Mesh-
less Finite Mass (MFM) and Volume methods (MFV), and es-
pecially the moving mesh methods based on Voronoi tessel-
lations, as in the code AREPO, provide a good approach to
the RT instability. This problem is partially overcome using a
large number of neighbors and by adding an artificial heat dif-
fusion term to the energy equation, as in the PSPH proposal by
Saitoh & Makino (2013) and Hopkins (2013). However, these
problems still persist when either the size of the initial perturba-
tion or the gravity value are reduced (Valdarnini 2012), mean-
ing that they are a symptom of another source of numerical er-
ror in SPH named fensile instability. This is an artificial surface
tension that appears at contact discontinuities because of an in-
sufficient smoothness of pressure between both sides of the dis-
continuity (Monaghan 2000). As a consequence, the integration
of the momentum equation gives incorrect results. An excess
of that tension provokes the damping of fluid instabilities, es-
pecially those with short wavelengths. Several techniques have
been proposed to treat this problem, like averaging the pres-
sure by means of the interpolating kernel itself, scheme PSPH
(Hopkins 2015), volume element estimation bounded to pres-
sure, the density independent scheme (DISPH; Hopkins 2013;
Saitoh & Makino 2013, 2016), or by adding an artificial dif-
fusion of heat to the energy equation, which helps to balance
the pressure across the discontinuity (Price & Monaghan 2007).
They have paved the road that led the SPH technique to a new
standard within the last few years, and have helped to overcome
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this long lasting inconvenience. In particular, it has been proved
that it is fundamental to increase the accuracy of the gradient
estimation across the contact discontinuities via reducing its nu-
merical noise. To achieve that, Garcia-Senz et al. (2012) used an
integral scheme to calculate spatial derivatives, which proved
to be especially efficient at handling fluid instabilities. The va-
lidity of that approach was assessed in subsequent works by
Cabez6n et al. (2012) and Rosswog (2015a). In this last case, the
integral approach to the derivatives (IAD) was used to extend the
SPH scheme to the special-relativistic regime (see also Rosswog
2015b). See also the recent work of Valdarnini (2016), where the
efficiency of the IAD scheme to reduce the Ej errors is studied
in detail.

Finally, a recent breakthrough in SPH was the emergence of
the concept of generalized volume elements (Ritchie & Thomas
2001; Saitoh & Makino 2013; Hopkins 2013). In these works, it
was shown that a clever choice of the volume element (VE) can
reduce the tensile-instability, leading to a better description of
hydrodynamic instabilities. In this paper, we present a novel es-
timator to the VE that preserves the normalization of the kernel.
We show in this work that having a good partition of the unity
is also connected to the tensile-instability problem. The calcu-
lations of the growth of the Kelvin-Helmholtz and Rayleigh-
Taylor instabilities using these new VE are encouraging.

In this work, we also introduce the hydrodynamics code
SPHYNX, that gathers together the latest advances in the SPH
technique, including those new ones presented here. SPHYNX
has already been used in production runs simulating type Ia and
core collapse supernova and is publicly accessible'.

The organization of this paper is as follows. In Sect. 2 we
review the main properties of the sinc kernels as well as the
integral approach to the derivatives, which are at the heart of
SPHYNX. Section 3 is devoted to the choice of the optimal vol-
ume element and to the update of the smoothing-length / and of
the kernel index n. Section 4 describes the structure of the hy-
drodynamics code SPHYNX: moment and energy equations and
included physics. Sections 5 and 6 are devoted to describing
and analyzing a variety of tests carried out in two-dimensions
and three-dimensions, respectively. Finally, we present our main
conclusions and prospects for the future in Sect. 7.

2. Interpolating kernels and gradients evaluation
2.1. The Sinc kernels

Interpolating kernels in SPH must fulfill several basic require-
ments in order to be considered suitable interpolators. Some of
these features are automatically satisfied if the functional form of
the kernel is spherically symmetric and approaches the Dirac—d
in the continuum limit. A functional representation of the Dirac-
d is (Couch 1997)

5= 1imisin(’f)- )

e—0 TX €

Writing € = 271—” the function above becomes

1 |sin (% %) 1 X

s _ L — — incl(Z2
W= Zh[ x| 2n Smc(z h) @
where the magnitude sinc(¢) = %@) is a widely known func-

tion used in signal analysis. Nevertheless, the expression given
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Table 1. Coeflicients for calculating the normalization constant B, in Eq. (4).

Dimensions by by by b3
1D —1.5404568 x 1072 3.6632876 x 107!  —4.6519576 x 10~* 7.3658324 x 1072
2D 5.2245027 x 1072 1.3090245 x 10! 1.9358485 x 1072 —6.1642906 x 1073
3D 27012593 x 1072 2.0410827 x 1072 3.7451957 x 1073 4.7013839 x 1072

by Eq. (2) does not have compact support, limiting its practical
applications as SPH interpolation kernel. Moreover, for x/h > 2,
the sinc function oscillates and eventually produces negative val-
ues. An obvious solution to this problem is to restrict the domain
to |x/h| < 2, but in that case the first derivative of this function
does not go to zero at the limits of the interval. To fix that, we
define the W5 kernel set as:

B,
WS (g, hyn) = h—;’sn(fq) 0<g<2, 3)

2
where S, () = sinc”(-), g = |r|/h, and d is the spatial dimension.
B, is a normalization constant, whereas »n is a real number
with n > 2 to guarantee the nullity of the first derivative at
g = 2. We generically refer to the W5 set as sinc kernels; see
Cabezon et al. (2008; where they were called harmonic kernels)
and Garcia-Senz et al. (2014). These interpolators fulfill the reg-
ular desirable characteristics for SPH interpolators. Namely,
tending to a d-function in the continuum limit, having compact
support, and being spherically symmetric. But they have a num-
ber of interesting additional features: a) they are connected by
definition to the ¢-function; b) they add flexibility to the SPH
calculations as the kernel profile can be changed by varying the
kernel index n; c¢) working with a high index (n > 5) not only
ensures that high-order derivatives are well behaved, but also
overcomes particle clustering (see Sect. 2.1); and d) they tend to
fulfill separability when the index n increases (see Appendix A).

Unfortunately, there is not a general analytic expression for
the normalization constant B, but this small problem can be
circumvented by fitting B,,, numerically calculated for a series
of values of n. A fitting formula for B,, valid in the range
3 < n < 12, was provided in Garcia-Senz et al. (2014). We re-
produce it here for the sake of completeness,

by +b1n1/2 +b2n+b3n_1/2 1D
B,={byg+bn+ bzi’l_l + b3n_2 2D, “)
bo+b1nl/2+b2n+b3n3/2 3D

where the values of coefficients by, by, by, b3 as a function of the
dimensionality are provided in Table 1.

In the limit of large n, the sinc kernels also display an in-
teresting feature: separability, which has not been sufficiently
emphasized in the extant literature concerning SPH. Standard
kernels used in SPH are spherically symmetric functions which
naturally lead to a second-order accurate scheme. Interestingly,
the majority of these kernels do not fulfill the identity:

Wiq(rl, h) = Wig(x, h) - Wia(y, h) - Wia(z, h). Q)

This property guarantees the consistency of simulations involv-
ing planar symmetry, which should render identical results when
calculated in 1D, 2D, or 3D, if the resolution and the interpolat-
ing kernel are the same in all three cases. Exploring in detail the
applications of this property is beyond the scope of this paper.
Nevertheless, we added a short discussion in Appendix A.

Table 2. Values of the exponent n of the sinc kernels that provide the
best match (i.e., minimum metric distance d = ZkN= L IW1=W2;]) to the
profile of known interpolators, such as members of the B-splines, M,,,
and Wendland, C,, families.

Kernel My
n 3.002

Ms Mg C, Ci Cs
3934 485 367 498 6315

Additionally, some particular values of the kernel index n can
mimic the profile of the most notable kernels used in SPH. In
Table 2 we show the correspondence between the sinc and both,
the M, and C,, families of interpolators. The value of n shown
in Table 2 was obtained by minimizing the metric distance d =
Zsz | IW1; — W2,|, where W1 and W2 are the interpolators to be
compared?. It is remarkable that n ~ 5 is able to approach both
the quintic Mg B-spline and the C4 Wendland kernel. Thus, the
choice n = 5 seems a suitable default value when the number
of neighbors is moderate, n, ~ 60-120 in 3D (see f.e. Figs. 4
and 5 of Rosswog 2015a). For n;, > 120 it may be advisable to
raise the index of the sinc kernel to avoid the pairing instability.
Interestingly, the choice n = 6.315 provides a very similar profile
to that of the Wendland Cy kernel. Nevertheless, a similarity in
the real space is not the only characteristic to take into account.
As proved by Dehnen & Aly (2012), having a positive Fourier
transform for a large range of modes is of utmost importance
when dealing with pairing instability (see Sect. 2.1).

It is also worth noting that the W5, n € R(+) family forms a
continuous set, making it possible to locally change the index n
during the runtime of the simulation so that one can, for example,
raise the value of n in presence of sharp density gradients, (see
Sect. 3.2).

Finally, the evaluation of a sinc function is indeed com-
putationally more costly than the regular spline kernels. Nev-
ertheless, it is very easy to circumvent this problem by inter-
polating the value of the sinc function from a relatively small
pre-calculated table. In practical applications, though, the choice
of the kernel has a negligible impact on the computational bur-
den, being completely masked by efficient cache usage and other
sections of the code, as neighbor search or gravity calculation.

Although SPHYNX uses the sinc kernels by default, it also
incorporates the Wendland C,, C4 and Cg kernels which can eas-
ily be selected by the user whenever necessary. On another note,
the impact of the C,, kernels has recently been studied by other
authors (Dehnen & Aly 2012; Rosswog 2015a) so we focus here
almost exclusively on the W5 set. Nevertheless, a comparison
between the performance of the Cg and sinc interpolators is pro-
vided in Sect. 5.5, where the evolution of the Gresho-Chan vor-
tex is simulated and discussed.

2 This is not the only way to compare the kernels as one could, for in-
stance, compare the logarithms of the functions. Alternatively, the min-
imization of the metric distance d between the first derivative of the
kernels can be also of interest. All these procedures lead to only slight
variations of the kernel exponents with respect to those given in Table 2.
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Fig. 1. Fourier transform for the spline kernel B; and Bg (black lines),
the Wendland kernels C, and C¢ (light blue lines), and the sinc kernels
S5, 87, and S 9. Only the positive part of the transform is shown.

Convergence to the continuum limit is only achieved when
h — 0. According to Zhu et al. (2015), it can only be reached
using both a large number of particles N, and a large num-
ber of neighbors n,. The value of N chiefly depends on the
available computer resources and on algorithmic details. How-
ever, working with a large number of neighbors is not only ex-
pensive but it may be totally impractical due to the tendency
of the mass-particles to gather in clusters when n;, is high,
a phenomenon known as pairing instability. A leap forward
to alleviate this problem was the proposal of using Wendland
functions (Wendland 1995) as interpolators by Dehnen & Aly
(2012), which are much less sensitive to this instability than the
low-order members of the M, B-spline family. Another possible
option to avoid particle clustering is to choose a sinc kernel with
a large enough exponent, Garcia-Senz et al. (2014).

As mentioned above, having a Fourier transform with pos-
itive modes is necessary for a kernel to be stable. In Fig. 1
we show the Fourier transform of several B-spline, Wendland,
and sinc kernels. As expected, Wendland kernels show positive
Fourier transform at very large modes. Nevertheless, it is clear
that the sinc family systematically becomes negative at higher
modes and their negative regions decrease in size very quickly
as the exponent n increases. Therefore, particle clustering can
be totally suppressed, in practice, simply by raising n. It is also
worth noting that, in order to improve the performance of Wend-
land kernels, it is advisable to considerably increase the number
of neighbors up to n, =~ 400 in 3D (Valdarnini 2016) which has a
substantial increase on the computational burden of actual simu-
lations®.

We tested the impact of the kernel and the number of neigh-
bors on the emergence of pairing instability in a dynamical sim-
ulation. Results can be found in Sect. 5.1.

3 In fact, much larger than computing high-order kernels like the sinc-
family with large exponents (n ~ 7-10).
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2.2. The integral approach to derivatives

In SPH, gradients are usually calculated simply by applying
the nabla operator to the kernel function (Gingold & Monaghan
1977). Nevertheless, the same procedure is not applied to cal-
culating higher-order derivatives, such as the Laplace operator,
needed, for example, to evaluate the heat transport contribution
to the energy equation. For these cases, an integral approach is
preferred (Brookshaw 1985) because it is less noisy and provides
excellent results. Working in that direction, an integral approach
to calculating first derivatives, called IAD, was recently intro-
duced by Garcia-Senz et al. (2012). The IAD approach provides
a more accurate estimation of the first derivative, thus improv-
ing the overall quality of the simulations. This was demonstrated
through the study of several test cases in 1D, 2D, and 3D by
Cabezo6n et al. (2012), Rosswog (2015a), and Valdarnini (2016),
hence we refer the reader to these papers for technical details
of the method. In Garcia-Senz et al. (2012) it was shown that a
restriction of the full integral approach (called IADy) leads to a
conservative formulation of the SPH equations in the same way
as the standard scheme® does. This, however is not without cost.
Some accuracy is lost in the gradient calculation, which is exact
for linear functions when IAD is used. In his work, Rosswog
(2015a) evaluated this accuracy loss in several tests, and the
outcome was that even if IADy was used, the accuracy loss,
in comparison with TAD, was much smaller than the accuracy
gain when comparing with standard gradient estimators. Further-
more, Valdarnini (2016) presents a series of tests that show the
effectiveness of the IADy method at removing sampling errors
in sub-sonic flows. Additionally, the SPH equations linked to
the TAD( scheme are formally similar to those of the standard
method provided that the kernel gradient is computed as follows
(for the sake of clarity, from now on we drop the dependence of
the kernel on the particle inter-distance, r, — r,),

aWab(ha’ na)

= ﬂi,ab(ha’ na); i= la d9 (6)
axw
where,
d
ﬂi,ab(ha’ na) = Z Cij,a(ha)(xj,b - xj,a)Wab(haa na)’ (7)

J=1

Cijq being the coeflicients of the inverse of matrix 7~ for particle
a, whose elements are,

m ..
Tija = ) —(ip = Xi2)(Xjp = i) Waplhas 1) iy j = 1,d. (8)
5 Pb

In Garcia-Senz et al. (2012), it is shown that for the Gaussian
kernel the IAD, scheme is equivalent to the gradient estimation
with the analytical derivative of the kernel function, this being a
particular case of the integral approach. It was also proven that
IADy, in fact, exactly reproduces the gradient of linear functions
provided that,

(Arya = 3" "2 r, = r)W(he, 1) = 0. ©
5 Pb

Equation (9) is, in general, fulfilled only approximately, and this
is the main difference between IAD and IAD, accuracies. The

4 For this work, we consider the term “standard codes” defined as those
SPH codes fulfilling that: a) they estimate gradients using the analytical
derivative of the kernel; and b) the VE is linked to the local density

value 2.
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best gradient estimation is therefore attained by IAD, only when
(Ary = 0. In this respect, the initial model should be built so
that Eq. (9) is approached as much as possible. As we see in the
following section, it turns out that getting a small (Ar) is closely
related to the choice of the adequate volume element for the inte-
gration. An analytical proof showing that an improvement in the
partition of the unit translates to a better estimation of gradients
within the IAD, paradigm is provided in the Appendix B.

A collateral, albeit positive, feature of IADy is that it hinders
the emergence of the pairing stability. This is shown in Sect. 5.1.

3. Preconditioning the calculation
3.1. The choice of the volume element

A recent breakthrough in SPH has been the development of
a general method to assign the volume element to a particle
(Saitoh & Makino 2013; Hopkins 2013, 2015; Rosswog 2015a).
In SPH, the volume element of particle a has traditionally
been V, = m,/p, but, as noted in the seminal proposal by
Ritchie & Thomas (2001), other options could be more conve-
nient for handling specific problems. SPHYNX makes use of the
scheme developed by Hopkins (2013), where an estimator X, is
introduced so that the particle volume is
Xa

= — 1
Va 20 XoWap (10)
The density of the particle is then calculated as p, = m,/V,.
Current choices for the estimator are X, = 1, m,, and P’; k<1,
where P, is the pressure. Taking X,, = m, leads to the common
choice V, = my,/p,. Actually, the same volume element is ob-
tained with X, = 1 when the mass of the particles is the same.
On the other hand, the choice X, = P¥ helps to suppress the
surface tension that appears at contact discontinuities.

Here we want to discuss another option for X,, not consid-
ered in the aforementioned papers, which could also be of value
for SPH users. We choose

Xo=(ma/pa)”  p<1, 1D

and put it into Eq. (10):

V. (ZL:)F 12)
T2 Wap

which for p = 1 becomes,

T 13
Zh S W, Wa ( )

where the summation underneath is simply the kernel normal-
ization condition for the standard volume choice m,/p,. There-
fore, the volume element V, given by Eq. (13) comes after re-
normalizing m, /p,. We note that if Zb(';i;’)Wab = 1, then Eq. (13)
leads to the identity p, = p,, as expected. Furthermore, one
can take Eq. (12) as a recursive equation, which, jointly with
Pa = my/V,, allows to find the optimal p, leading to an al-
most perfect kernel normalization after several iterations. That
is, starting from an initial guess of the density, for example
Pa = 2 MpW,p, the value of V, is computed in an explicit way
using Eq. (12). This gives a new density p, = m,/V, to be used in
the next integration step, and so on. The consistency and robust-
ness of this procedure has been checked with the tests described
in Sects. 5, 6, and in Appendix C.

The impact of changing the volume element is highlighted in
the hydrostatic square test described by Saitoh & Makino (2013)
and that we reproduce in Sect. 5.2.

3.2. Choosing smoothing length and kernel exponent:
equalization

The use of the sinc kernels allows us to work with continuum
adaptive index n(r, ). Interestingly, the smoothing length h(r, )
and kernel index n(r, t) can be calculated jointly with the density
estimation. Because of the large number of involved variables,
Pa> Mg, Ny, Vy, and Q, this point deserves some discussion.

Firstly, the volume estimator X, is updated only when the
global iteration has finished. Therefore, X, is handled explicitly
so that the coupling with other variables during the current iter-
ation is avoided. Secondly, self-consistent values of h,, n,, pq,,
and €, are simultaneously calculated with a Newton-Raphson
iterative scheme, that we named equalization (because it equal-
izes the resolution at the post-shock tail of shock waves) and is
described in Garcia-Senz et al. (2014). We summarize it here for
the sake of completeness:

1. Choose a trial value of A, as well as the baseline kernel index
n = ny, at the beginning of the integration step.

2. Calculate the density of each particle and its logarithm aver-
age over neighbors: Inp, = N b ‘, Inpy,.

3. Evaluate A,, the ratio between pq and p,, which is taken
as a local indicator of linearity and is quantified with the

following:

Ba)  for Ou = Pa
A, = {(g) Pa=Pa, (14)

() for pu <p,
4. Use A, to assign a new kernel index n, according to:

Ag— 1
ng =no+ An- f(&,), with &y = % >0, (15)
where An is the maximum allowed jump from ng, 4, =~ 11is a
scaling parameter, and f(&):
=1 : (16)
exp(&) + exp(—¢)’
5. Solve Eq. (15) jointly with mass conservation:
th Wap(as 1) = hd, (17)

where C, = p,, Oh is a constant set at the beginning of the sim-
ulation jointly w1th ng, An, and A.. After this process, we obtain
the values of h,, n,, ps, and Q,. Obviously, setting An = 0 turns
the equalization off and the evolution is computed with n, = ny.
Typical values for the simulations presented in the following sec-
tions are ng = 5,0 < An < 5,and 4. = 0.5.

4. The hydrodynamics code SPHYNX

SPHYNX gathers all the advances on the SPH technique that
have been presented in Sects. 2 and 3 and represents our flag-
ship code for astrophysical applications. In the following, we
present the most relevant details on its implementation and item-
ize the mathematical expressions of the SPH equations imple-
mented in the Cartesian version of the code. The precise form of
the equations as well as the notation follows the discussion made
in the preceding sections. They are similar to those presented in
Rosswog (2015b).
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4.1. Work-flow and formulation

First of all, we specify the initial number of neighbors n;, and ker-
nel index variables: ng (baseline value), An (maximum allowed
index jump), and A, (scaling parameter). This is followed by the
choice of the volume estimator X,. Then, the preconditioning
stage starts with the self-consistent calculation of the volume el-
ement V,, smoothing-length %,, kernel index n,, density p,, and
grad-h/n term Q, (see Sect. 3.2).

o Volume element
X,
Va= = (18)

with,

Ka = Z Xp Wap(ha, ny). (19)
b

For the volume elements we use X, = (m,/p,)?. From the
experiments presented below, we saw that taking p ~ 1
leads to the best results in most cases, but it has the disad-
vantage of overshooting density interpolations in contact
discontinuities when p > 0.7. We overcome this problem by
using a SPH-averaged value of the VE estimator, making it
robust and allowing us to safely rise the exponent to p = 1
(see Sect. 5.2 for more details.)

o Density equation
(20)

which we calculate jointly with Q, including both contribu-
tions: the grad-h and grad-n terms (Garcia-Senz et al. 2014),

g

0 Wab (ha s Ny )
6pa

- oh,
(21)
i Z aWab(ha, na) C()na
> ana 6pb

Once the preconditioning is completed, the hydrodynamic
equations are evaluated.

o Momentum equation

np

fam -2 bzlxb(g Ao )+ e ,abmb,nb)) @,
(22)

e FEnergy equation
du &y & du\"
(a) = maQ K2 Z:: Zl(vi,a = vip) (Xp ﬂi,ab(ha’na))"'(a)a ,
(23)

where A; ,, is given by Eq. (7), but with the 7;;, coeflicients
computed using the generalized volume elements, Eq. (18),

X5 ..
Tija = —(xip = X)) (Xp — Xj)Wap(ha,na)s 1, j = 1,d. (24)
5 Kb

The terms with superscript AV refer to the artificial viscosity
acceleration and energy contributions. As detailed in the follow-
ing subsection, we have slightly changed the implementation of
these terms in order to make them fully compatible with the gen-
eralized volume elements.
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4.2. The artificial viscosity

Regarding the inclusion of physics, SPHYNX incorporates, by
default, an artificial viscosity algorithm to handle shocks, as well
as routines for the calculation of the equation of state (EOS)
and gravitational force. Heat transport by conductive and dif-
fusive means is also included as a basic code unit. More specific
routines dealing with nuclear or chemical reactions, ionization
or more complex transport schemes can be modularly added to
the code (see, e.g., the application of SPHYNX to simulate core
collapse supernova, including a spectral neutrino treatment, in
Perego et al. 2016). In the following, we explain with some de-
tail the AV algorithm.

First of all, we take the viscosity I, as in Monaghan (1997):

sig
a Ygp Wab f
—Sa@ = for ry Uy <0
My =9 2 ra ab * Zab , (25)
0 otherwise
where v°% = ¢, + ¢, — 3w is an estimate of the signal velocity

between particles a, b and wyp, = vyp - Fap/|Fapl- It is common to
take pab = 2 (p, + pp)”! but in that case the volume element is
implicitly assumed to be m,/p.,. Thus, the VE of particle a is
not an unequivocally defined magnitude because it also depends
on the density of the neighbor particle b. A more compatible
option between AV and VE, which can be generalized to other
VE, is obtained using p_} = 0.5 (p;' + p;'), which leads to the
following viscous acceleration,

a = - Zmbn{ Araslhasna) + 22 4 i,ab<hb,nb)}, 6)
Pb

where
—a i for ryp - v <0

I, = 2 Uab Wab ab ab 27

ab {O otherwise @7
and f, f; are the Balsara limiters (Balsara 1995):

V-l

= . 28
f |V -v|+ |V x|+ 10* ¢, /h, (28)
Expression (26) can be written as

1 ’
af;/ = _W Z {Va myp Hgb fa Ai,ab(ha, ng)
ap 29)

+ Vo ma Ty, fo Aian(h )},

with V, = my/pa, Vi = mp/pp. Unlike I, the magnitude IT),
is not divided by the density and the viscous force, m, a’* 1s

a °
symmetric with respect to any pair of particles, a,b. We note
that the volume elements are now unequivocally defined when
the mass of the particles is the same. The Balsara limiters work

more efficiently if they are averaged as,

g Jato
fa + 1
because it gives a lower AV than the arithmetic average in re-

gions with strong shear flows. By default SPHYNX sets these
limiters to:

Ja = fp = max(0.05, fu),

which retains a residual viscosity to damp the smallest numer-
ical fluctuations. Equation (31) works remarkably well in re-
gions where strong shocks and instabilities cohabit, such as in

Jab = (30)

€1y
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Fig. 2. Impact of changing the sinc kernel index n and number of neighbors 7, on the pairing-instability during the relaxation towards equilibrium of
a perturbed homogeneous system. In the X-axis the minimum interparticle distance normalized to its initial value is represented. The Y-axis shows
the corresponding percentage of particles at different times. We show the results for n = 3 (red), n = 5 (green), n = 7 (blue) and n = 10 (pink).
Continuum lines are for ¢ = 0.01, dashed lines for # = 0.19 and big dots for t = 1.79. The continuum line in light blue for n, = 100 was calculated

using the Wendland C; interpolator and shows the results at r = 0.19.

the Triple Point test described below. In the case of strong shocks
with no shear, Eq. (30) could be replaced by the standard arith-
metic mean if necessary.

Following Springel (2010b), we used a constant @ = 4/3 so
that IT,, remains close to the classical SPH artificial viscosity
introduced by Monaghan & Gingold (1983). The contribution of
the AV to the energy equation (Eq. (23)) is then,

du AV 1 n, d
(a) =3 Z Z(Ui,a = Vip) GQ(Y-
a b=1 i=1

Additional information on the physics included in SPHYNX,
such as gravity, heat transport or alternative energy equations is
deferred to Appendix D.

(32)

5. Two-dimensional tests

In this section we present the outcome of applying SPHYNX to
several two-dimensional (2D) tests that have traditionally been
problematic for the SPH technique. We show that the sinc ker-
nels help against the appearance of pairing instability, that the
new VE provide a better treatment of discontinuities than the
often-used m/p value, and that, when applied jointly with IADy,
there is an overall improvement in the results of the shock treat-
ment in the Sedov and wall-shock tests, and also in the develop-
ment of subsonic instabilities; in particular, the challenging cases
of Kelvin-Helmholtz with a density jump of 8 and Rayleigh-
Taylor with very weak gravitational field (g = —0.1). We also
found a convergence on the Gresho-Chan test closer to those of
Eulerian codes. Finally, we prove that our implementation sup-
presses the tensile instability, enabling mixing in tests like the
wind-cloud interaction and the triple-point shock test.

Our results below suggest that improving volume conserva-
tion produces better results than using volume elements that do

not ensure volume equipartition. At first glance, it also renders
equalization useless because the advantages of using variable
adaptive kernel indices are apparently obscured by the new VE.
Nevertheless, equalization and volume elements work on dif-
ferent bases. As demonstrated in Garcia-Senz et al. (2014), the
use of a variable kernel index improves the interpolation of non-
linear functions, even when they are estimated using integrals
instead of finite summations. It is therefore expected that the
equalization will be useful when both the number of particles,
N, and neighbors, ny, are high enough so that the error in inter-
polations is dominated by non-linear effects rather than by the
evaluation of integrals as finite summations (see also Sect. 6.2).
For a moderate amount of neighbors the use of the new VE given
by Eq. (12) makes equalization unnecessary. Thus, unless explic-
itly stated, many hydrodynamic tests presented in this work have
been carried out taking An = 0.

5.1. Pairing instability

Here we show a numerical experiment, similar to that described
in Zhu et al. (2015), used to study the relationship between the
kernel index and pairing instability. We set a sample of particles
in a regular 2D lattice leading to a homogeneous density distri-
bution. Then, we seed a random small fluctuation of the internal
energy, taking the system out of mechanical equilibrium. After-
wards, we add a frictional dissipative force proportional to the
velocity in the momentum equation so that the system returns to
equilibrium after a few sound crossing times. The final equilib-
rium distribution is sensitive to the number of neighbors and to
the exponent of the sinc function. This is summarized in Fig. 2,
which depicts the distribution of the minimum inter-particle dis-
tance (g), normalized to its initial value (gg), as a function of
pairs (n,np) at several elapsed times. As we can see, a careful
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Fig. 3. Same as Fig. 2 but using IAD, instead of the standard gradient estimator. In this case, particle distributions peak at higher g/qo ratios
compared to those in Fig. 2, showing more resistance to particle clumping.

choice of the exponent n keeps the distribution of normalized
particle distances closer to 1, making particle clustering difficult,
thus avoiding the pairing-instability even at large n,. For exam-
ple, n = 3 keeps q/qo close to 1 when the number of neighbors is
small (top-left panel of Fig. 2), even at large times, while it com-
pletely fails when n,, increases (top-right panel). Nevertheless,
increasing the exponent n of the sinc kernel suppresses again the
pairing instability. This numerical experiment points to n = 3,
5,7 and n > 10 as indicative values to handle with n, =~ 15,
25, 50, and 100 neighbors, respectively (in 2D). For equivalent
numbers in 3D, for example n;, =~ 60-120, currently used in
SPH calculations, a sinc kernel with n ~ 4-6 will be sufficient
to suppress clustering in many applications (see also Fig. 3 in
Garcia-Senz et al. 2014). We provide a comparison between S,
and the Wendland Cj3 in the bottom-right panel of Fig. 2. As we
can see, the C3 kernel works better than S |y but the difference is
small.

The previous test was done using the standard gradient es-
timator. Figure 3 depicts the results for the same numerical ex-
periment, but carried out with IADy. The comparison between
Figs. 2 (standard gradient estimator) and 3 (IADy) suggests that
the integral scheme also helps with the pairing problem, as it
keeps the particle distribution closer to g/qo = 1.

5.2. Static square of test

We consider a system of two fluids with different density but
identical pressure:

4 025<x<0.75 and 025<y<0.75

= , . (33)
1 otherwise

The system is isobaric with P = 2.5 and the EOS is that of a
perfect gas with y = 5/3.

To carry out the simulations we use Eqgs. (22) and (23) from
Sect. 4, with constant kernel index n = 5, n;, = 40 neighbors,
and a variety of volume elements. We tried two different initial
settings: using particles with the same mass (and uneven spaced
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Fig. 4. The unmixed isobaric two-fluid test at times r = 0, r = 0.4,
t = 1 and ¢t = 2 (columns from left to right) calculated with different
volume elements. The initial model is that of two nested squares with
density contrast of four (the one with higher density being the inner
yellow square). First and second rows use particles with identical mass
but unevenly spaced grid, while the opposite applies for the two last
rows. The first row depicts the evolution with the volume estimator X, =
(’l’%:)" (p = 0.9). The second row is the same, but using either X, = 1,

©
‘®
I,

mg, and PX (k = 0.5) (all three giving similar results). The evolution
shown in the third row was calculated using either X, = 1, P>, and
(;f—j)o'g, while the outcome using X, = m, is shown in the fourth row.

grid), as well as particles with unequal mass spread on a uni-
form lattice. The outcome of the simulations at times ¢t = 0,
0.4, 1, and 2 is depicted in Fig. 4. For equal-mass particles and
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Fig. 5. Impact of X, = (m,/p,)? in both the volume normalization, }, V,W,, = 1, (left) and (Ar) = O condition (right) for different values of the
exponent. The figure depicts the profile of these magnitudes along a 1D cut taken around y = 0.5 in the hydrostatic system shown in Fig. 4. We
notice how the jump at the contact discontinuity is largely reduced in both conditions when p ~ 1.

X, = (my/py)P (with p = 0.9), the code was able to keep the
hydrostatic equilibrium during several crossing times (first row).
The evolution calculated using X, = 1, X, = m,, and X, = P’;
(k = 0.5) (second row) led to the same wrong results in much
shorter times. Rows 3 and 4 in Fig. 4 summarize the evolution
using a homogeneous lattice of particles with different mass.
Hydrostatic equilibrium is very well preserved using X, = 1,
X, = P%, and X, = (m,/p,)*° (third row), while X, = m,

Table 3. Settings of the calculated models in the Sedov test.

(fourth row) does not give a satisfactory result.

In Fig. 5 we show the magnitudes ), V,W,;, (left panel) and
(Ary = X,V (rp — ro)W,y, (right panel) along a 1D cut taken
around y = 0.5, from x = 0.1 to x = 0.5 (center of the system) in
the hydrostatic system described above after 20 integration steps.
As can be seen in the left panel, choosing X, = (m,/p.)” (p = 1)
gives the best results, leading to an almost perfect volume nor-
malization, while the case with p = 0 (equivalent to X, = 1)
shows a large oscillation around the contact discontinuity. The
case with p = 0.9 is also quite satisfactory although, a small os-
cillation is still present. The right panel in Fig. 5 suggests that
an adequate choice of the volume element may improve even
further the accuracy of the IADy method to estimate gradients
because, as we can see, a value of p ~ 1 helps to keep (Ar) ~ 0,
which is the necessary condition for IADy to exactly reproduce
the gradient of linear functions.

Unfortunately, taking p = 1 has the unwanted side effect that
density tends to overshoot close to the contact discontinuity. The
overshooting in density drops the value of the estimator X, =
mgy/pa, SO that in the next integration step the density undergoes a
further overshooting. Occasionally, the feedback between p, and
X, might rise the density to unrealistic values after several time
steps. This problem can be avoided by reducing the value of the
exponent p but in that case the adequate optimal value becomes
problem dependent. For example, p = 0.9 works well in the
hydrostatic test depicted in Fig. 4 but it produces worse results
for the Sedov test described later in Sect. 5. For that test p ~ 0.6—
0.7 was a better choice. A way to circumvent the overshooting
problem is to consider

X, = ((m/p>a)p» (34)

where (m/p), is the SPH average of the standard volume ele-
ment. Although less efficient than X = (m/p)?, this simple recipe
enhances the robustness of the scheme so that the exponent of
the estimator can be safely raised to p ~ 1, independently of the
problem to be simulated. This procedure is especially well suited
to handle contact discontinuities hosting large density contrasts,

Model Dimensions N n) A p ppex
Sq 2D 2562 50 0 0 320
Ss 2D 2562 50 0 0.7 348
S5 2D 2562 50 5 0 3.3
Sy 2D 2562 50 0 1 344
Ss 3D 40° 110 0 0 201
Se 3D 400 110 0 0.7 233
S5 3D 400 110 5 0 206
Sg 3D 40° 110 0 1 232
So 3D 823 220 0 0 245
S1o 3D 823 220 0 0.7 288
S 3D 823 220 5 0 246
S 3D 823 220 5 07 294

Notes. Symbols are, N, total number of particles, ng, initial number of
neighbors, An, linked to variable kernel indices calculated according to
Eq. (15), p, exponent of the volume estimator X, = ('/")—:)” in Eq. (12)
(except models S 4 and Sg which uses X, = ((’p%‘})”), and ppear the max-

imum value of density.

and it has been checked in the blob and Evrard tests described in
Sects. 5.6 and 6.3. A more quantitative discussion on the conver-
gence rate of the estimator X, as a function of p and the density
contrast is given in Appendix C.

5.3. Shocks
5.3.1. Point explosion

The study of the propagation of a point-like explosion in more
than one dimension is of great usefulness for checking hydro-
dynamics codes. We have carried out several simulations with
SPHYNX to explore the impact of different combinations of
volume element and level of equalization on handling shock
waves. The explosion was triggered by depositing a consider-
able amount of energy inside a Gaussian surface of characteristic
width o = 0.05 located at the center of a uniform lattice of size
[0, 1]x[O0, 1]. The initial density profile is p(r, 0) = 1 and the total
injected energy E = 1. All simulations used N = 256 X 256 par-
ticles and the initial number of neighbors was set to n, = 50. The
different parameters used in the simulations are summarized in
Table 3.
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fulfillment of the conditions [{Ar)| = 0 (bottom-left) and }, V,W,, = 1 (bottom-right).

Figure 6 shows the results of the Sedov test for several com-
binations of volume elements V,, and equalization An at ¢t = 0.1.
Models S, S», S3, and S 4 were calculated using X, = (%)p and

different values for the exponent p. All models are quite satisfac-
tory but model S, calculated with p = 0.7 and An = 0, leads to
the best results. The density peak is closer to the analytic value
and the pressure profile close to the origin behaves well. Model
S 4, calculated using X, = ((:’%))P with p = 1, also provides
good results while models S, S3, with the choice p = 0 (stan-
dard VE) lead to lower peak values and oscillating pressure tails
that depart from the analytic result.

The lower panels of Fig. 6 depict the profile of the moduli
KA, = | Xy Vi (rp — r)W(h,, n,)| (left panel) and that of the
normalization condition };, V, W(h,, n,) (right panel). These re-
sults are encouraging because they strongly suggest that the new
volume elements not only enhance volume conservation (lower
right panel of Fig. 6) but also make gradient estimation more ac-
curate, because Eq. (9) is better fulfilled, ensuring that the IAD,
approximation is, in fact, close to the full IAD in terms of accu-
racy (lower left panel of Fig. 6). Again models S, and S 4 lead to
the best results whereas S| and S'3 show worse volume conser-
vation and lower fulfillment of Eq. (9).
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It has been suggested that other choices of VE could be of
interest for handling specific problems. In particular, it has been
claimed that the pressure-based estimator X, = PX (k < 1)
could be well suited to handling contact discontinuities (Hopkins
2013). We carried out one simulation using that estimator, with
the recommended value £ = 0.05 (Rosswog 2015a). We found
that the results with the pressure-based estimator were not as
good as those of models S, and S4 of Table 3. In Fig. 7 we com-
pare the results of using the X, = P estimator with those of S
and S,. In the right panel it is clear that the volume normalization
is not so well preserved as in model S, obtaining values simi-
lar to those of using standard VE (model S |). Moreover, it leads
to a lower peak density value and a spurious precursor shock
is clearly seen ahead of the shock in the left panel. Although
small, such precursor shock is a numerical artifact which was
also reported by other authors (Rosswog 2015a). For that rea-
son, hereafter we have limited the choice of volume elements to
those given by Eq. (12)°.

> We note that the standard V, = m,/p, is a particular case of Eq. (12)
when p = 0 and all particles have the same mass. Therefore, we can use
the same expression to explore the impact of using both the standard
and the new VE.
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Fig. 7. Results for the 2D Sedov test at t = 0.1 taking X, = P*, where P is the pressure and k = 0.05 (black dashed line) compared to models S|
(red) and S, (green). We show here the radial profiles of the density (left panel) and the equipartition condition (right panel). Solid black line is the
analytic solution for the density profile. We note on the left panel that there is a small precursor bump in density for the calculation with X, = P*

which, for models S; and S, is absent.

5.3.2. The wall-shock test

Along with the point explosion (Sedov test), the so called wall-
shock (or Noh) test is also used to check the performance of mul-
tidimensional hydrodynamics codes. Unlike the Sedov test, the
Noh experiment is an implosion towards a geometrical center.
The interaction of the converging inflow of gas with the stag-
nated material at the central volume provokes the formation of a
shock-wave moving outwards. The Noh problem has an analytic
solution (Noh 1987) to compare with. It is, however, not an easy
test owing to the large jump in density across the shock front, 16
in 2D, 64 in 3D, for y = 5/3. SPH codes traditionally had diffi-
culties in handling this test because: a) many particles are needed
to correctly reproduce the shock region (especially in 3D); and
b) close to the center the internal energy shows a pronounced
spike and, consequently, the density abruptly drops to keep the
pressure constant. In fact, both problems are connected to the use
of the AV and it is not clear to what extent a change in the SPH
formalism may alleviate these shortcomings (Brookshaw 2003).

A sample of 2567 equal-mass particles was distributed in
an bcc lattice with circular perimeter. The radius of the initial
configuration is R = 1 and the density is homogeneous with
p = 1 (except at the outer edge of the system). A radial profile
of v, = —1 was imparted to all particles at r = 0, so that the sys-
tem implodes. The evolution was tracked with SPHYNX until
t = 0.5, when a clear steady shock moving outwards is formed.
The results, calculated withn = 5, p = 0, and p = 0.7 for the VE
and n;, = 50, have been compared to both, the analytic predic-
tions and to the output of GADGET-2 for the same initial model.

Table 4 and Figs. 8 and 9 summarize initial parameters of
each simulated model and the main results of the simulations.
The density profiles at + = 0.5 for the three calculated mod-
els, WHS |, WHS ,, WHS g are shown on the leftmost panel of
Fig. 8. A sharp shock, moving towards the right, is clearly seen
at r ~ 0.17. The density jump across the shock front is Ap ~ 16,
hence close to the analytic value. Close to the center of the con-
figuration there is a pronounced dip in density caused, as ex-
pected, by the use of the AV. The SPHYNX calculation with
p = 0.7 (model WHS, with green dots) gives slightly better
results at the shock position than WHS | and WHS g because
the density profile is steeper and the maximum density is closer
to the analytic value of 16. We note that all three calculations

Table 4. List of the calculated models in the wall-shock tests.

Model Name N po Ur P (Ap/p)max
WHS, SPHYNX 2562 1 -1 0 154
WHS, SPHYNX 2562 1 -1 0.7 15.7
WHSs GADGET-2 2562 1 -1 - 154

Notes. Symbols are, N, total number of particles, py, initial density, v,,
initial radial velocity, p, exponent of the volume estimator X, = (%)"
in Eq. (12), and (Ap/p)max the maximum density jump at r = 0.5.

do show density oscillations at the shock front and that the
GADGET-2 simulation is more blurred. The color-maps of den-
sity for models WHS g and WHS ; are also shown in the central
and right panels of Fig. 8. As we can see, the shock region is
sharp and well defined in the SPHYNX calculation whereas the
simulation with GADGET-2 shows stronger oscillations close to
the shock location and an inhomogeneous particle distribution
close to the origin.

Additionally, model WHS, has both a better volume nor-
malization than WHS | (i.e., closer to 1), as shown in Fig. 9 (left
panel) and a better behavior of |Ar| (i.e., closer to 0) at the shock
location (right panel).

5.4. Fluid instabilities

Instabilities play a central role in hydrodynamics because they
are usually connected to shear mixing and turbulence. In the
cosmos, instabilities are especially important because the large
Reynolds numbers involved in astrophysical processes make
these systems prone to turbulence. Particle- and grid-based codes
have been applied with different levels of success to simulate
the evolution of hydrodynamical instabilities such as Kelvin-
Helmholtz (KH) or Rayleigh-Taylor (RT) instabilities. Here we
re-visit them with SPHYNX.

5.4.1. Kelvin-Helmholtz

Grid-based codes are, for the most part, almost free of numeri-
cal viscosity, leading to a good match between simulations and
the analytic predictions during the linear phase of growth of
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as obtained with GADGET-2 whereas the last panel is that of model WHS ;. We note how WHS , achieves lower particle disorder in the central
region, and smaller density oscillations at the shock position than GADGET-2.
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Fig. 9. Two-dimensional wall-shock test. Left: volume normalization at ¢t = 0.5 for model WHS | (red) and WHS , (blue). Right: same but for the
condition, [(Ar)| = 0, among mass points within the kernel range of 2h. WHS , (with new VE) fulfills both conditions better than WHS | (with the

standard VE).

the KH instability (Junk et al. 2010). On the other hand, SPH
codes are Galilean invariant and do not suffer from numerical
diffusion, but intrinsically have more numerical viscosity. It has
been pointed out that SPH may not be appropriate for handling
fluid instabilities across contact discontinuities with large den-
sity jumps (Agertz et al. 2007). Although there have been pro-
posals to enhance the modeling of these systems (Price 2008),
the SPH calculation of shear flows with large density contrast is
still an open question.

We ran two sets of models simulating the growth of the
KH instability around the boundary layer separating two flows
with moderate and large density contrasts, respectively. Each set
was in turn calculated using two values for the volume elements
namely p = 0 and p = 0.7 in Eq. (12). The initial setting was
the same as in McNally et al. (2012), where three stratified fluid
layers inside a 2D box of size [0, 1] x [0, 1] were considered.
The fluid layers span for y < y;, y1 <y < y» and y > y, with
densities p1, p2, and ps, respectively. The adopted values for yy,
Y2, P1, P2, and p3, as well as the number of particles used in the
simulation, are shown in Table 5. Periodic boundary conditions
were implemented at all sides of the box.

A velocity v, = 0.5 is given to the central strip, whereas
the rest of the box moves in the opposite direction with v, =
—0.5. Prior to the calculations, the density and v, distributions
were smoothed following the method described in McNally et al.
(2012; their Egs. (1) and (3)). Thus, the growth-rate of
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Table 5. Settings of the calculated models in the 2D Kelvin-Helmholtz
tests.

Model N my Y Y2 P11 P2 pP3 Xa
KH, 25 C 025 075 1 2 1 1
KH, 25¢* C 025 075 1 2 1 (3%
KHy; 256> V 025 075 1 8 1 1
KHy 256¢* vV 025 075 1 8 1 (3%

Notes. Symbols are N total number of particles; m, the nature of the
mass-particles -constant (C) or variable mass (V); y, y, the location of
the contact layers; pi, 02, p3 the densities at the fluid layers. The last
column shows the estimator X, used to compute the volume elements.

the instability obtained with SPHYNX can be compared to
the templates obtained by McNally and collaborators using
the PENCIL Code®, a state-of-the-art hydrodynamics code of
Eulerian type (Brandenburg & Dobler 2002). The pressure is set
to P = 2.5 everywhere, with y = 5/3. The fluid layer is in almost
vertical equilibrium except for a small seeded perturbation in v,
given by,

vy (x, y) = wp sin(4nx), (35)

6 Available at pencil-code.nordita.org
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Fig. 10. Density color-map depicting the evolution of the Kelvin-Helmholtz instability for models KH, (p = 0, upper panels) and KH, (p = 0.7,
lower panels) of Table 5. Each snapshot gives the density color-map at times ¢ = 1.5 (left) and ¢ = 2.5 (right).

with wy = 0.01. The velocity perturbation has therefore a wave-
length A = 0.5 so that the box hosts two complete waveforms.

Models KH; and K H; in Table 5 were calculated assuming a
density contrast of two, whereas an initial jump of 8 was imposed
to models KH3 and KHj. To build the initial models, a sample of
256 x 256 particles were first spread in a squared lattice and then
stretched in the vertical direction so that the ensuing density pro-
file adapts to that of Eq. (1) in McNally et al. (2012). This setting
naturally leads to a density contrast of two for equal-mass parti-
cles and provides the necessary smoothness around the separa-
tion layers between the fluids. To build the high-density contrast
models, the initial lattice was stretched until the density ratio
was 2 V2. The mass of the particles was then made proportional
to the density of the stretched grid, so that a smooth profile with
a density contrast of 8 was achieved.

The Balsara limiter f, given by Egs. (28), (30), and (31) was
applied to all models to reduce the shear viscosity. For these
initial conditions, previous simulations with the traditional for-
mulation of SPH predict the growth of the KH instability only
for the low-density contrast case (Agertz et al. 2007; Junk et al.
2010). When the density contrast rises well above 2 it is neces-
sary either to add an artificial heat flux to keep isobaricity (Price
2008) or to redefine the volume elements (Saitoh & Makino
2013; Hopkins 2013). In particular, it was shown that the for-
mulation which uses volume elements linked to pressure is able
to reproduce the KH instability across high density jumps. Also,
codes which directly use a smoothed pressure in the SPH equa-
tions, such as the PSPH formulation described in the Appendix
of Hopkins (2015), can also handle with high density contrasts.
Here we show that the IAD approach combined with new volume
elements, which preserve kernel normalization, is also able to
successfully simulate the KH instability with high density jumps.

| |
Reference

0.1

Amplitude

0.01

04 06 038 1 1.2 14
Time (s)

Fig. 11. Amplitude mode growth of models KH; (p = 0) and
KH, (p = 0.7) of Table 5. The solid red line is the refer-
ence solution (McNally et al. 2012) obtained with the PENCIL code
(Brandenburg & Dobler 2002), while the solid green and blue lines
were obtained with SPHYNX for two different values of the p param-
eter. The dashed lines correspond to calculations performed with the
NDSPMHD code (Price 2012) with a resolution of 5122 and kernel B,
(pink) and Bg (light blue). See McNally et al. (2012) for further details.
We also show the L, errors with respect to the reference values for each
calculation.

Figure 10 shows a color-map of density of the evolution of
models KH, and KH, at times ¢t = 1.5 and 2.5. We see that
there is a growth of the instability, qualitatively similar to the
results obtained using other novel formulations of the technique
such as the PSPH scheme with ~200 neighbors (see for example
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Fig. 12. Kernel normalization of models KH, (left) and KH, (right) of Table 5 at r = 2.5. The dispersion of }, V, W,, around unity is shown for
two options of the exponent of the volume estimator, X, = (m,/p,)”, p = 0 (left) and p = 0.7 (right). Solid red lines are maximum and minimum

values to help as a visual aid.

Fig. 19 in Hopkins 2015). The results of SPHYNX are also very
similar to those obtained with the recent CKRSPH formulation
(see for example the upper-row of figure 17 in Frontiere et al.
2017). Model KH,, calculated using the new volume elements,
appears to evolve slightly faster than KH;, computed with the
standard choice, VE = m/p, showing more evolved structures
in the non-linear stage. Unlike the PSPH scheme, our method
does not estimate the pressure by kernel smoothing nor does it
incorporate any artificial flux of heat to smooth the pressure.

Figure 11 depicts the mode-amplitude evolution of v, cal-
culated taking the Fourier transform (FT) of the v, field. The
FT was calculated with the expressions given in McNally et al.
(2012) so that a comparison with the amplitude growth cal-
culated with the PENCIL code (continuum-red line) and the
NDSPMHD code, described in Price (2012), (dashed lines) is
straightforward. The results are encouraging as SPHYNX repro-
duces the KH growth closer to the reference simulation of the
PENCIL code than the NDSPMHD code, the latter even having
a factor 2 higher resolution than our simulations with SPHYNX
(see also Fig. 7 in McNally et al. 2012, and comments therein).
Our results are close to those obtained with the PSPH scheme
with the same resolution. In Fig. 11 we also show the L; errors
of each model with respect to the reference values, calculated
as: Ly = & YN, |Al — A?|, where A" and A® stand for the refer-
ence and simulated amplitudes, respectively. These results are an
indication of the importance of using an accurate gradient evalu-
ation, this being the most relevant difference between SPHYNX
and NDSPMHD.

Model KH,, calculated with p = 0.7, exhibits better vol-
ume normalization than KH,, computed with p = 0, as shown in
Fig. 12. That figure depicts the value of the normalization con-
dition }};, V,W,;, as a function of the density of the particles. For
both runs, most of the particles cluster around the expected value
of 1, but the summation falls below one in the low-density region
and exceeds it in the high-density region. Nevertheless, the dis-
persion around the correct value is considerably lower in the case
with p = 0.7, showing its greater capability to achieve equipar-
tition in disordered particle distributions.

Figure 13 summarizes the simulations with an initial density
ratio po/p; = 8. The upper and lower panels were calculated
with p = 0 and p = 0.7 in Eq. (12), respectively. The snap-
shots correspond to times ¢ = 1.5 and 2.5. First of all, we see
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that despite the large jump in density, the instability is able to
develop in both cases. These results, therefore, suggest that the
use of the IAD scheme to calculate gradients improves by itself
the quality of the simulations of hydrodynamic instabilities. Al-
though the instability evolves slightly faster when p = 0.7, and
shows more structure, it is probably affected by the noise intro-
duced by the VE estimator (1/p)” when the mass of the particles
is not constant. As in the precedent tests, the model calculated
with p = 0.7 has the best kernel normalization properties (not
shown in the figures).

5.4.2. The Rayleigh-Taylor instability

In Garcia-Senz et al. (2012) it was shown that the IAD, scheme
is able to simulate the gross features of the growth of the RT in-
stability for initial perturbations as low as Av, = 0.01 in the ve-
locity field. In this section we present clear proof that SPHYNX
is able to cope with the growth of the RT instability also when
the gravitational force is small.

Our initial model is similar to that described in Springel
(2010a), where the numerical experiment takes place in a box
sizing [0.5 X 1.5]. The lower and upper halves of the box are
filled with equal-mass particles. The particle distribution is then
arranged in the vertical direction so that p, = 2 (upper region)
and p; = 1 (lower region).

The contact discontinuity around the interface was smoothed
using:

_ pa+ puexp(’zt

- (36)
1+ exp(%

with Ay = 0.0083 and yo = 0.75. The integration of the hydro-

static equilibrium equation %‘3—5 = —g, where ¢ is the gravita-

tional acceleration, with an ideal EOS with v = 1.4 gives the

pressure profile in the vertical direction,

- 2
P(y) = Po + pag Ay [y A % +log = ]
] 1+ exp(v

1+ exp(LL
_Ay) , an

+pug Ay log [ 5
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Fig. 13. Density color-map depicting the evolution of the Kelvin-Helmholtz instability for models KH3 (p = O, first row) and KH, (p = 0.7,
second row) of Table 5, corresponding to a density jump of a factor 8, at times ¢ = 1.5, 2.5. We notice that, despite the much larger jump in density,

the KH instability is still able to develop in both cases.

with Py = 2.5. We used 2567 particles and an initial number of
neighbor particles n, = 50. The boundary conditions are peri-
odic at the left and right sides of the box but reflective on the
bottom and the top. The main features of the models used in this
test are summarized in Table 6.

The fluid was initially at rest everywhere, except for a small,
single-mode perturbation applied to the vertical velocity field,

vy(x,y) = wo [1 — cos(4rmx)] [1 — cos(4ny/3)], (38)
where wy = 0.0025. In Fig. 14 we show the density color-map of
the evolution of the instability when g = —0.5 is adopted. As we
can see, the instability grows at a good rate and it enters into the
non-linear regime at ¢ > 3.5. The contact discontinuity between
both fluids is well marked, but not totally sharp, owing to both
the smooth initial conditions and to the spread of the physical
magnitudes over the characteristic smoothing length 4. During
the non-linear stage, the calculation with p = 0.7 (model RT, in
Table 5) displays more structure than that of model RT, calcu-
lated with p = 0. Att = 7.5 the vertical extension of the unstable
region is nearly the same but model RT, shows a richer structure
inside the mushroom-like instability.

The impact caused by the choice of VE is much more marked
when a smaller gravitational force, g = —0.1, is adopted. This
was the case reported in Springel (2010b) concerning the simu-
lations of the RT instability with the AREPO code. As far as we
know, there are no satisfactory calculations on this same scenario
using the SPH technique. The combination of a small initial per-
turbation plus a tiny gravitational force makes the problem diffi-
cult because the Ej errors and the tensile instability conspire to
totally suppress the growth of the instability (Valdarnini 2012).
The upper panels in Fig. 15 depict the evolution of the instability

Table 6. Settings of the calculated models in the 2D Rayleigh-Taylor
tests.

Model N Pu_ Pd Wo g p
RT, 2562 2 1 0.0025 -0.5 0
RT, 2562 2 1 0.0025 -05 0.7
RT3 256> 2 1 0.0025 -0.1 0
RT4 256> 2 1 0.0025 -0.1 0.7
RT;s 256> 2 1 00025 -0.1 1.0

Notes. Symbols are N total number of particles; p,, p, are the densi-
ties at the upper and lower regions; g is the gravitational acceleration
and p is the exponent of the volume estimator X, = ('"—j)” in Eq. (12).
Model RT's uses the averaged version of X, (Eq. (34)).

as simulated by SPHYNX taking standard VE (i.e., p = 0 in
Eq. (13)). As we can see, the instability is able to grow, although
the growth-rate is slow and there is a clear lack of structure dur-
ing the non-linear stage. The lower row of panels in the same
figure depict the evolution when VE are calculated with p = 0.7.
In this case there is a clear boost in the development of the in-
stability as it grows faster and shows a richer structure in the
non-linear regime.

Quantitative numbers on this test can be extracted from the
evolution of the points located on the tip/bottom of the bub-
bles/spikes. Additionally, the numerically inferred terminal ve-
locity of the vertex of the bubble can be compared with the ana-
lytical results by Goncharov (2002). The results are summarized
in the Fig. 16, where the left panel indicates the bubble/spike
evolution of the farthest point achieved by the lighter and heavier
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0.7

Fig. 14. Density color-map depicting the evolution of the Rayleigh-Taylor instability for models RT, (p = 0, first row), and RT, (p = 0.7, second
row) of Table 6 at times t = 1.5, 2.5, 3.5, 5.0, 6.5, and 7.5, respectively. The estimator X, = (;”—:)p was used to compute the volume elements.

fluids (bubble and spike respectively), and the right panel indi-
cates the evolution of the velocity of the bubble. As we can see,
the evolution of the bubble/spike sample is faster when the VE
are calculated with p = 0.7 and p = 1 (in this last case the av-
eraged estimator, Eq. (34), was used). We note that at t ~ 15,
the tip/bottom of the bubble/spike are close to colliding with the
box limits. Consequently the rising velocity of the bubble veloc-
ity was computed in the interval 0 < ¢ < 15. As we can see,
the terminal velocity of the bubble matches well the analytical
estimation by Goncharov (2002),

S 2A, g
term = (1+4) Cgk,

where A; = (02 — p1)/(02 + p1) = 1/3 is the Atwood number,
k = 4r is the wave-number of the applied single perturbation
and C, = 3 in two-dimensions. The terminal velocity calculated
using Eq. (39) (solid pink horizontal line in Fig. 16) is close to
those obtained using SPHYNX.

Although our results are not as good as those obtained with
the code AREPO for the same initial conditions (see Fig. 35
in Springel 2010b, for a comparison), they are encouraging,
as they suggest that the simulation of the RT instability in a
tiny gravitational field is also affordable for SPH codes when
an EO-suppressing technique like TADy is used jointly with
equipartition-preserving volume elements.

(39)

5.5. The Gresho-Chan vortex

The simulation of a stationary vortex that is in stable equilib-
rium is a very demanding test for any hydrodynamics code. This
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is a fundamental test for the accuracy of the numerical scheme,
the preservation of symmetry and the conservation of angular
momentum. The Gresho-Chan vortex has been especially prob-
lematic for SPH, which, in spite of having excellent angular mo-
mentum conservation, shows very poor convergence (Springel
2010b) due to numerical deviations from the initial conditions
that degenerate the stability of the vortex within short timescales.
This is specially relevant in the simulation of self-gravitating
disks, where the centrifugal force and pressure gradient should
be (up to a certain extent) balanced. Therefore, numerical noise
can trigger deviations from this equilibrium configuration that
lead, for example, to an artificial fragmentation of the disk.

Several recent works (Dehnen & Aly 2012; Zhu et al. 2015;
Rosswog 2015a) have managed to keep the vortex in steady
state, with low dispersion, during more than one orbit-cycle. In
his work, Rosswog (2015a) proves that the use of high-order ker-
nels is crucial to obtain accurate results, and in combination with
IADy and an improved artificial viscosity with a noise dissipa-
tion trigger, leads to a roughly linear convergence rate.

In this test, we use the common initial conditions for the az-
imuthal velocity and pressure profile:

7/ fory <=1

ve(r) =vp{2 -y forl <y <=2 (40)
0 l/ff?gl!/>2’ fory <=1
P(r)=Po+4ug{(¥?/8 -y +Iny+1) forl<y<=2 (41)

(In2-1/2) fory > 2,

where = /Ry, Ry = 0.2,v9 = 1, Py = 5, for an ideal gas with
v = 5/3. This setting corresponds to a low Mach number test
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Fig. 15. Same as Fig. 14 but for models RT3 (p = O, first row), and RT4 (p = 0.7, second row) of Table 6 (with a very reduced gravity field of

g = —0.1). Times are t = 5.0, 7.5, 10.0, 12.5, 15.0, and 17.5, respectively.
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Fig. 16. Rayleigh-Taylor test in 2D for models RT3 (p = 0, red lines), RT4 (p = 0.7, green lines), and RTs (p = 1, blue lines). In the left panel
we show the time evolution of the tips of the bubble (solid lines) and the spikes (dashed). From these it is clear that the inclusion of the new VE
elements enhances the growth of the instability in the linear stage. Once the non-linear stage is reached all models grow at similar rates. It is worth
noting here that simulations without IAD, and standard VE (not shown) failed to develop the RT instability. In the panel on the right, we show the
time evolution of the bubble velocity. It can be seen how a plateau is reached by all three models, which is closer to the expected terminal velocity

(pink solid line) for the models using the new volume elements.

with M = 1/4/yPy =~ 0.35. We use N = 256 particles evenly
distributed in a square lattice of size [0, 11X [0, 1] so that the den-
sity is uniform with value p = 1. The artificial viscosity parame-
ter in Eq. (25) is set to the current value @ = 4/3 and the Balsara
coefficients estimated with Egs. (28), (30), and (31). We note
that because the vortex is in steady conditions, the divergence of

the velocity should vanish everywhere and f, ~ 0. As in other
simulations, however, we allow a low level of AV to control the
numerical noise and to reduce the dispersion of the particles. For
this test, the particular choice of the volume element is not rel-
evant because the particle distribution is homogeneous due to
the constant density, hence the kernel is properly normalized at
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Fig. 17. Gresho-Chan vortex test in 2D. Radial profiles of the tangential velocity for several kernel choices and different number of neighbors, at
time ¢ = 1. The interpolators are the sinc (n = 5, 6.315, 7) and the Wendland Cs. The theoretical velocity profile is also shown (black-dashed

line).

all times, independently of the exponent. Therefore, we take the
nominal value of p = 0.7 in Eq. (12) in all calculated models.
We carried out several simulations of the vortex evolution
for different choices of the kernel index » and initial number of
neighbors’, n,(2D). We also calculated models with the Wend-
land C¢ kernel which, according to Dehnen & Aly (2012) and
Rosswog (2015a), was especially suited to handle this test. The
quality of the simulations and convergence rate were checked

7 In a square homogeneous lattice the equivalent number of neighbors
in 1D, 2D, and 3D is related by n,(2D) = nZ(1D)%, n,(3D) = n;(1D)Z,

3
and n,(3D) = n} (2D)3iﬁ.
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with the parameter L; = % ZZ, [v; —v!| where v" and v* stand for
the theoretical and the simulated value of velocity, respectively,
and the summation runs over all particles.

In Fig. 17, we show the profile of the tangential velocity at
time ¢ = 1 (roughly the elapsed time needed by the vortex to
complete one turn) for three kernel choices and different number
of neighbors (n;). Using a low n;, (=30, in 2D) the best results
were obtained with the sinc (n 5) whereas the choice n
6.315 or the Wendland Cg leads to qualitatively similar results.
The situation is reverted when n;, = 50, where the C¢ interpolator
gives a slender velocity profile and the lowest L; value. However,
the sinc (n = 6.315) also shows low dispersion profiles and L,
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Fig. 18. Gresho-Chan vortex test in 2D. Left: value of the magnitude L;, at time ¢ = 1, calculated with the sinc kernels as a function of the kernel
index n and number of neighbors 1, (with constant total number of particles N = 2562). Right: convergence rate of sincs and Wendland Cy kernels

as a function of the number of neighbors.

values. Increasing the number of neighbors to n, = 70 (=500
in 3D) reduces the dispersion, as expected. The C¢ provides the
lowest L; value here but closely followed by the sinc (n = 7).

Figure 18 summarizes the functional dependence of the es-
timator L; with respect to the index n (left panel) and number
of neighbors n;, (right panel). Looking at the left panel we see
that for n;, ~ 20 the sinc (n = 4) (similar to the M5 and C, ker-
nels) gives the best results. Increasing the number of neighbors
moves the minimum value of L; to the right (higher n values).
At np ~ 30, the index n = 5 becomes the optimal choice. Setting
the initial number of neighbors to 70 and 80 demands larger ker-
nel indices (n =~ 7-8) at the position of minimum L;. The right
panel of Fig. 18 explores the convergence rate of the Gresho-
Chan vortex test with respect to the number of neighbors at a
constant total particle number N = 256°. When n, < 30 it
seems that the low-order interpolators with n < 5 give the low-
est L values. Nevertheless, above n, > 40 it is necessary to
raise the index of the sinc kernel, or use the Wendland Cg, to
achieve convergence. The Cg gives the lowest L; values when
np > 40. The curve referred as nmix (dotted black line) is a fit
which takes advantage of the optimal » index at each n,. Both,
the nmix profile and the Cg curve can be used to estimate the
convergence rate in this test. These profiles show a rapid initial
decline: L;(n, < 50) n;l'zs , followed by a more gentle reduc-
tion of the convergence rate L;(n, > 50) oc n,*°.

Figure 19 shows the convergence rate of L; at r = 1 when
the one-dimensional (1D) equivalent number of particles, Nip,
is varied in the range 50 < Nijp < 400. In this study we have
only considered the sinc kernels, but with several exponents. The
convergence rate is explored using the following (n,n;) pairs:
(5,30), (6.315,50), (8,80) and (10, 100). As can be seen, the
high-order sincs with n = 8, n = 10 achieve a linear conver-
gence of L, provided that a sufficient number of neighbors is
taken. Moreover, the convergence rate L; o Nl’]; is larger than

those reported in Springel (2010b) (L o Nl‘87) or in Dehnen
& Aly (2012; Ly o< N;%) and closer to the value obtained with

Eulerian codes, L; « Nl‘é"‘ (Springel 2010a); see also Valdarnini
(2016) where the ability of the IAD, scheme to reduce sampling
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Fig. 19. Gresho-Chan vortex test in 2D. Convergence rate of L; as a
function of the equivalent 1D number of particles, Ny4, at time ¢ = 1,
for different sinc kernels.

errors is proved in a similar subsonic test, but with Mach number
as low as M = 0.02.

5.6. Interaction of a supersonic wind with a cold cloud of gas

Popularly known as the “blob” test (Agertz et al. 2007), this
problem has challenged SPH codes for a long time. The basic
setting of this test gathers many pieces of physics, such as strong
shocks and mixing due to the KH and RT instabilities in a multi-
phase medium with a large density contrast. The initial configu-
ration consists in a dense spherical cloud of cold gas embedded
in a hotter ambient medium. The cloud is initially at rest while
the ambient background (the wind) moves supersonically. The
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Fig. 20. Wind-cloud interaction: density color-map depicting the evolution of the collision and cloud fragmentation at three fiducial times #/fxy =
0.5, 2, and 3. Model W refers to the calculation using GADGET-2. Models W, and W, were calculated with SPHYNX using the standard and the

new VE, respectively.

wind-cloud interaction generates a bow shock and, in short time,
the cloud is fragmented and mixed with the background owing
to the combined effect of ablation and KH and RT instabilities.

Modern grid-based codes are able to handle this scenario and
all of them agree in the gross features of the evolution. Never-
theless, simulations using the SPH technique have historically
had difficulty disrupting the cloud because of the poor develop-
ment of the hydrodynamic instabilities that drive the erosion of
the cloud (Agertz et al. 2007). As a matter of fact, the challenge
introduced by this problem has led to interesting advances of
the SPH technique in recent years, such as the pressure, PSPH,
formulation of the SPH equations by Saitoh & Makino (2013)
and Hopkins (2013), and the conservative reproducing kernel
method, CRKSPH by Frontiere et al. (2017). As shown in these
works, it is feasible to suppress the tensile-instability acting at
the contact discontinuity between the two fluids, leading to a
better agreement between SPH and grid-based codes.

Here we show that the new volume elements given by
Eq. (12) also suppress the tensile-instability at the contact
discontinuity. The code SPHYNX is thus able to cope with
the blob test without leaving the density-formulation of SPH.
Our initial setting is similar to that described in Agertz et al.
(2007), although restricted to two dimensions where the dense
cloud is no longer a sphere but a circle (a cylinder in 3D). The
wind is simulated with Ny, = 2567 particles spread following a
glass-like stable (previously relaxed) distribution in a box siz-
ing [1, 1/4]. The cloud is reproduced with Nc = 682 particles,
spread in a regular square lattice tailored in a circle of radius
Rc = 1/40, and centered at coordinates (1/8,1/8). All parti-
cles have the same mass. The features of the wind and cloud
att = 0 are py = 1, Py l,uy, = 3/2,v, = 2.7 and
pe =10, P, = 1,u. = 3/20, 0. = 0, respectively, where the wind

A78, page 20 of 30

Table 7. Values of the parameter L, for different magnitudes.

Model Exponent p Ly (p) Ly (Vol) Ly ((Ar))
A 0.0 54x10™% 39x10* 14x107
B 0.7 1.2x107% 35x10* 15x107
C -0.7 53x10™% 38x10™* 14x107
D 1.0 45x10% 39x10% 14x107

Notes. Models A, B, and C were calculated with X, = (m,/p.)",
whereas model D uses X, = ({m,/p.))".

velocity vy, is supersonic with Mach number M = 2.7. As the
particles in the cloud are fully ordered we add a small random
initial radial velocity, v, = v? X rand[—1:1] with v(,) = 0.03.

We carried out two calculations of the blob test using
SPHYNX: with the standard VE (model W;) and with the new
VE (model W;), as well as with GADGET-2, (model Wg). Be-
cause of the large density contrast between the wind and the
cloud the model W; was calculated with the averaged estimator
X =({m/p))Y and p = 1.

In Fig. 20 we show several snapshots of the simulations at
normalized times (¢/txky = 0.5,2,3), where gy is the charac-
teristic KH time, as defined in Agertz et al. (2007). As we can
see, the fragmentation and mixing of the cloud is only attained
in model Wi, calculated with p = 1. Models W, and Wg give
worse results, but we note that even in that case SPHYNX with
p = 0 yields a slightly larger fragmentation of the cloud than
GADGET-2 (see Fig. 21). Our results are also in good agree-
ment with those obtained by Frontiere et al. (2017) using the
CRKSPH method (see their Fig. 21). The large suppression of
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Fig. 21. Wind-cloud interaction: evolution of the surviving fraction of
the cloud for the three calculated models. Even though a small remnant
of the cloud is still present at ¢/txy ~ 4 the calculation W, (SPHYNX
with the new VE, that is, p = 1) leads to the best results. The other two
calculations (SPHYNX with standard VE, i.e. p = 0, and GADGET
with standard VE and without IAD,) are more inefficient in diluting the
cloud as between 40-60% of it is still present even at t/txy > 4.

the tensile instability in the W; calculation is the characteristic
that allows the fragmentation of the cloud. This is clearly visible
in the detailed density snapshots shown in Fig. 22. It is therefore
evident that the long-standing tensile instability problem in SPH
is bounded to kernel normalization. Having a good partition of
unity considerably reduces the strength of that instability.

The evolution of the surviving fraction of the cloud as a func-
tion of time is depicted in Fig. 21. The expected outcome is
that the surviving fraction of the cloud reduces to 0 in about
t/tkg ~ 2.5, as obtained by grid codes (see, e.g., Fig. 25 of
Hopkins 2015). As we can see, the W; calculation leads to al-
most complete destruction of the cloud in #/txky =~ 4, while in
the other two calculations hardly 50% of the cloud is mixed.
Nevertheless, unlike in the grid-based calculations, the cloud is
not totally mixed with the ambient gas as ~10% of it remains
unmixed in the W; simulation. The difference may arise from
the different dimensionality of the calculations, because in 2D
the cloud is a cylinder whereas in 3D the shape of the blob is
spherical. However, a calculation of the same model in 3D with
3 x 10° particles led to similar results. Actually, the complete
dissolution of the cloud is only attainable if some heat-transport
is included in the scheme (Hopkins 2015).

5.7. Shock plus vorticity: the triple-point shock test

The similarities among the results obtained by SPHYNX and
the CRKSPH method, as found in the KH and the Blob tests
above, are even more evident when considering the so called
triple-point shock test. This is a shock-tube-like setting where
three materials with different densities and pressures are put into
contact through discontinuity lines. The first region contains a
high-density, high pressure material, located in the vertical band
on the left of the first snapshot in Fig. 23 (see also the sketch by

Frontiere et al. 2017, shown in their Fig. 24). That region is in
contact with two low-pressure horizontal bands, the upper band
being considerably less denser than the lower band. The par-
ticular point where the three discontinuity lines intersect is the
triple point. The vertical high-pressure band on the left launches
a shock through the lower-pressure horizontal bands. Because
of the pronounced difference in the speed of sound, the shock
moves faster in the upper low-density, low-pressure region. As a
consequence, a shear is induced around the line separating both
low-pressure materials, and soon the KH instability develops,
rolling-up the interface between these two regions. At late times,
the reflected shocks at the boundaries of the box also induces the
Richtmyer-Meskhov instability when they cross the interfaces
between the different materials.

Our main aim is to simulate the triple-point shock sce-
nario and to compare the results obtained with SPHYNX to
those given by the CRKSPH method. A comparison among
the performances of CRKSPH, the standard SPH formulation
and the ReALE (Reconnecting arbitrary Lagrangian Eulerian)
method by Loubere et al. (2010) is provided in the work by
Frontiere et al. (2017) and we refer the reader to that paper. Their
results show that for the triple-point shock scenario the CRKSPH
scheme gives the best results.

The setting of the initial model, particle number in each re-
gion and EOS is exactly the same as described in Frontiere et al.
(2017). The evolution of the system with SPHYNX and two
choices for the VE, p = 0 and p = 1 in Eq. (34), was tracked until
t = 8. We show in Fig. 23 the density color-maps for both cases
attimes r = 1, 3, 5, 7. As we can see, the results with SPHYNX
and p = 1 are similar to those obtained with the state-of-the-art
CRKSPH scheme. The main features of the shock wave are well
simulated for both, the p = 0 and p = 1 cases, but the amount of
structure seen in the calculation with p = 1l at¢ =5and ¢ = 7 is
larger than that of the standard VE choice. It is worth noting that
our recipe for implementing the artificial viscosity is relatively
basic and there is still some room for improvement in this area,
such as, for instance, the use of time-dependent AV coeflicients
(Cullen & Dehnen 2010; Rosswog 2015a).

6. Three-dimensional tests

In this section we present three test cases where SPHYNX is ap-
plied to three-dimensional (3D) scenarios. We show here that the
combined use of the new VE, the sinc kernels, and IAD, leads
to better results when trying to obtain an homogeneous density
field, decreasing discretization errors. In the following, we re-
do the Sedov test, now in 3D, where the new VE stand out by
better handling shock-waves and the equalization enhances the
outcome in simulations with high number of neighbors. Finally,
the collapse of an isothermal cloud tests the implementation of
SPHYNX coupled with gravity evaluation. The results show that
the new VE enhance the kernel normalization, and consequently
the overall interpolations, leading to a better shock treatment
when compared with standard implementations.

6.1. Approaching a uniform scalar field

The initial models used in many SPH simulations are often built
so that the density and/or the pressure are as homogeneous as
possible. These systems should ideally remain in equilibrium
during many sound-crossing times. Although very common,
arranging particles in ordered lattices is not the best option be-
cause the particles move off the lattice and introduce noise. In
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Fig. 22. Wind-cloud interaction: impact of the VE choice in the tensile instability. Near the contact discontinuity the standard VE, m/p, produces
the segregation of the two fluids, preventing mixing (leff). Choosing VE, = ((m/p).)" | Xu {m/p)s)’ Wy, where (m/p) is the SPH average of
m/p and p = 1, suppresses the tensile instability leading to mixing of the fluids and the subsequent bubble fragmentation (right).

Fig. 23. Color-map of the mass density in the triple-point shock test. Each row shows a snapshot at a different time, while each column corresponds
to a different VE. The column on the left was calculated with X, = ((m/p),)” and p = 1, while the one on the right corresponds to X, = 1 (i.e.,

standard VE).

this section we discuss the ability of SPHYNX to build a uni-
form density/pressure field, which is obtained after relaxing a
pseudo-ordered initial distribution of particles. Several features
of the resulting glass-like structure are discussed as a function
of the VE choice. To obtain a homogeneous density profile we
follow a similar procedure such as that explained in Rosswog
(2015a).

A78, page 22 of 30

We first spread N = 128000 particles in an ordered 3D
squared bcc lattice. Afterwards, their position is displaced at
random in each direction, with maximum amplitude 40% of
the size of the smoothing length. Then, we allow the sys-
tem to evolve keeping internal energy constant, at uy = 1,
to regain equilibrium. During the relaxation, the velocities are
set to zero but the particles are displaced with the simple
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Fig. 24. Results for the 3D-Sedov test for models S5, S, S7, S of Table 3 and Gadget-2. We show here the radial profiles of density (upper-left),
normalized pressure (upper-right), and the fulfillment of the conditions [(Ar)| = O (bottom-left) and Y, V,W,, = 1 (bottom-right). Solid black lines

are the analytic solutions for density and normalized pressure profiles.

recipe: Ar = 1073 h (a./|ac]) where h is the smoothing-length
and a. stands for the acceleration vector. The value of i was
the same for all particles, so that the number of neighbors is
np =~ 100 with low dispersion. During the evolution, the L; er-
ror estimators were monitored for several magnitudes, such as
density, partition of unity, and (Ar). These are defined as:

1 N
Li(p) = & Zl (1 = pa)l, (42)
1 N
Li(Vol) = > [1 -2 waab] : (43)
a=1 b
1 N
Li(Ar) = D710 = Ay, (44)
a=1

We note that as P = (y — 1)upp, with y = 5/3, the error estimator
Li(p) also provides the dispersion in pressure.

The L; values after 800 iterations are summarized in Table 7.
All settings of the VE lead to stable glass-like structures with
small departures from homogeneity (L;(0) < 107%). Model D,
calculated with X, myloa)); (p 1), displays the
lowest Li(p) values. As expected, the calculation with X, =
(my/, ,oa)o'7 leads to the best partition of unity but, paradoxically,
is the most inhomogeneous of the sample. Model C, calculated
with a negative exponent p = —0.7 is very similar to model A

computed with the standard VE choice (p = 0.0). Because the in-
ternal energy was kept constant during the relaxation, a negative
p value in Eq. (11) is equivalent to taking a VE linked to pres-
sure. We therefore conclude that SPHYNX is able to handle ho-
mogeneous systems in pressure equilibrium for a wide range of
the parameter p. For these systems, the best choice of VE is that
given by Eq. (34) with p =~ 1.

6.2. Point explosion

The description of an explosion in the 3D space is usually a
challenge for any hydrodynamics code. The lower resolution
(in comparison with 2D calculations) makes it difficult to cap-
ture the density, pressure, and velocity at the peak of the blast
and also to correctly reproduce the post-tail values of these vari-
ables. We have investigated the ability of our code to cope with
a point-like explosion in 3D and compared the results with those
obtained using GADGET-2.

We have run two sets of models labeled as {Ss5,S¢,S7,Sg}
and {So, S 10,511,512} in Table 3. The first set consists of low-
resolution calculations whereas the second set of simulations has
not only more resolution, but also uses more neighbors to make
the interpolations.

Figure 24 summarizes the results for the set of low-resolution
models. As in the 2D simulations, models S¢ and Sg in Table 3,
with the new volume elements, lead to the best results. Both
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Fig. 25. Same as Fig. 24 but for models S, S0, S11, S 12, with n, = 220, of Table 3.

models give a higher density peak and a better post-shock evo-
lution of density and pressure. They also exhibit an enhanced
volume normalization and |Ar| has a better behavior across the
wave front. The model calculated with p = 0 and An =5 (S7) is
the third-best case, followed by model S5 (standard VE setting
p = 0,An = 0). Figure 24 also includes the density and pres-
sure profiles (light blue lines) calculated using GADGET-2 for
the same initial setting. Its density profile shows a similar post-
shock tail evolution as model S, but lower peak value and the
post-tail pressure profile diverges considerably from the analyti-
cal curve.

Figure 25 is the same as Fig. 24 but for models
{S9,S510,511,S5 12} calculated with a larger number of particles
and taking two times more neighbors in the summations. There-
fore, these models are characterized by both a higher resolution
and a less noisy estimation of gradients. According to our cal-
culations, model S|, computed using p = 0.7, An = 5 is the
one closer to the analytic expectations. The density peak of the
blast was the highest and at the correct position, while the values
of density and pressure close to the origin behave well. Further,
model S 1, also has the best volume normalization and minimum
|Ar| at the position of the shock front. The profile of the sinc ker-
nel index n of model S, is shown in Fig. 26. We can see that
the highest value of the exponent (n =~ 9.8) is reached at x = 0.3
behind the density peak. These results are closely followed by
model Sjp (p = 0.7 and no equalization), and, in decreasing
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Fig. 26. Radial profiles of the sinc kernel index, n, and density for model
S, of Table 3. We note how the scheme increases the kernel index to
improve the interpolations in the complicated regions of low- or of fast-
changing density.

quality, by S 11 (p = 0 with equalization), and S¢ (p = 0 and no
equalization).
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Fig. 27. Upper panels: density (left) and radial velocity profiles (right) for the collapse of an initially isothermal sphere of gas at t = 0.8. The
solid black line is the 1D-PPM solution. We show the SPHYNX calculations with p = 0 (red) and p = 1 (green) in Eq. (34). Calculations using
GADGET-2 are in blue. Lower panels: profiles of [(Ar)| (left) and Y, V,, W,,, (right) for p = 0 (red) and p = 1 (green).

The results above suggest that: 1) the use of the new volume
elements is beneficial when handling shock-waves; 2) when us-
ing these VE, the equalization algorithm (i.e., considering n(r, t),
variable kernel exponents) is only able to enhance the results
when the number of neighbors is high (as in the cases depicted
in Fig. 25).

6.3. Collapse of an isothermal cloud

A relevant test in Astrophysics is the numerical study of the grav-
itational collapse of a gaseous configuration, also known as the
Evrard test (Evrard 1988). This test includes gravity and has
been used many times to check hydrodynamics codes (see for
example Springel 2010a and references therein).

We used here the initial configuration described in Springel
(2010a) consisting of a sphere of gas with unit radius and mass.
The density profile at t = 0 is

M/(2rR*r) forr <R
pir) = {O otherwise’ )

where R = 1 and M = 1. The initial configuration is assumed
isothermal with uy = 0.05 per unit mass, obeying an ideal EOS
with y = 5/3. All particles are initially at rest. For this choice

the internal energy is much lower than the gravitational energy
(assuming G = 1) and the system collapses.

To build the initial model we have conveniently stretched a
uniform grid with N = 403 particles so that the profile given by
Eq. (45) is obtained. This procedure reproduces well the 1D den-
sity profile, except near the surface layers. We have tracked the
collapse of the sphere for two different values of the parameter
p in both Eq. (11) and in its smoothed counterpart, Eq. (34). The
results at time ¢ = 0.8 are compared in Fig. 27 not only with an
accurate 1D-PPM calculation (Steinmetz & Mueller 1993), but
also with the results obtained using GADGET-2 for the same
initial model.

The evolution of models calculated using Eq. (11) with p =
0.7, and with p = 1 in Eq. (34) were rather similar, so we de-
scribe the collapse of the configuration only for the latter case.
The upper panels of Fig. 27 depict the density and radial veloc-
ity profiles at r = 0.8. We see only minor differences among the
three calculated models. The density profiles are almost indistin-
guishable. Nevertheless, a close inspection of the region around
the shock front (see the zoomed region in Fig. 27) reveals that
the model calculated with p = 1 in Eq. (34) has a slightly better
match to the exact solution than p = 0 and that obtained with
GADGET-2. The profile of the radial velocity is similar in all
three calculations. The evolutions calculated with GADGET-2
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and with SPHYNX with p = 0 were almost identical and some
minor differences may be due to the details in the implementa-
tion of the AV and gravity.

The new volume elements provide a better kernel normal-
ization at the center and front locations (bottom-right panel in
Fig. 27). Nevertheless, unlike in the point explosion tests, we
have not seen a clear enhancement of |Ar| (Eq. (9)) when p ~ 1
is used to compute the volume elements, although, overall, the
profile is smoother (bottom-left panel).

7. Discussion and conclusions

In this paper, we present a new density-based SPH code, named
SPHYNX, and test it in a series of traditionally problematic sim-
ulations for SPH codes in 2D and 3D. In particular, we have
been able to perform a Rayleigh-Taylor simulation in a weak
gravitational field g = 0.1. Additionally, the shock-blob interac-
tion test proved that SPHYNX can efficiently suppress the tensile
instability that prevents the rise of hydrodynamical instabilities
and mixing in many scenarios simulated with SPH. Addition-
ally, the outcome of other tests, such as the hydrostatic square,
Kelvin-Helmholtz instability, Gresho-Chan vortex, Sedov explo-
sion, Noh wall-shock, Evrard collapse and Triple point-shock,
prove that our implementation provides results competitive with
other state-of-the-art calculations. For these problems, SPHYNX
produces better results than many of the extant density-based
SPH codes, being qualitatively similar to those obtained with
the recently developed CRKSPH scheme (Frontiere et al. 2017).
But, unlike the CRKSPH method, our approach ensures the an-
gular momentum conservation from the onset.

To achieve this, SPHYNX benefits from recent advances
in the field and gathers together the latest methodologies
to perform numerical simulations of astrophysical scenarios
via the smoothed particle hydrodynamics technique. These
methodologies include, as a novelty, a new generalized vol-
ume element estimator and a consistent update of the smooth-
ing length and the sharpness of the interpolating kernel along
with the particle density. Additionally, it counts with an integral
approach to calculate gradients and a pairing-resistant family of
interpolators. These features are summarized and discussed in
the following.

The choice of non-standard volume elements to approxi-
mate the Euler integral equations as finite summations has a
significant impact on the simulations. Following the works by
Saitoh & Makino (2013) and Hopkins (2013), who generalized
the VE so that they are not necessarily the trivial m/p choice,
we postulate a new volume element which enhances the nor-
malization of the kernel. As discussed in Sect. 3.1, the VE as-
signed to a particle is V, = X,/ ), Xp Wyp, where X, = (m,/pa)?
is the weighting estimator of the kernel and 0 < p < lisa
parameter chosen by the user. The value p = 0 reduces the
VE to 1/ %, W, which is the standard VE when the mass
of the particles is the same. For p = 1, we have V, =
(ma/pa)! Xp(mp/pp)Wyp which is simply the re-normalized tra-
ditional volume element. As expected, a better kernel normal-
ization (between a factor 2 and a factor 5) is obtained when
these VE are used. A negative feature of the proposed VE is their
tendency to overshoot the density estimation in the presence of
sharp gradients when p =~ 1. Actually, that is the fundamental
reason for not taking p = 1 in the estimator X, = (m,/p,)". The
optimal value of p depends on the particular problem at hand, but
the range 0 < p < 0.7, explored in this work seems to be safe.
Nevertheless, a most robust implementation that allows taking
p = 1 1is to consider X, = ((my/pa))P, where (.) is the SPH
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average of the magnitude. Although this last procedure requires
the computation of the averages (m,/p,), it is the recommended
default choice because of its robustness and ability to keep track
of strong shocks and instabilities in the presence of sharp density
gradients.

Another important feature is the dynamical choice of the in-
terpolating kernel function. A large body of calculations carried
out with SPH in the past made use of the M4 cubic-spline func-
tion to perform interpolations. The M, polynomial has, however,
a serious drawback: it is prone to the pairing-instability when the
number of neighbors increases (e.g., exceeding n, =~ 60 in 3D
calculations which uses the My kernel). This is clearly a limita-
tion, because in practical applications it is advisable to take as
many neighbors as possible to reduce the Ey errors in the SPH
equations. A growing number of kernel candidates has been pro-
posed during the last decade to alleviate this problem. For ex-
ample, one option is to consider the natural extension of the M,
family to higher polynomial degrees, such as the quartic (Ms) or
the quintic (Ms) kernels. More recently, a different family of in-
terpolators has been proposed based on the Wendland functions,
as discussed in Dehnen & Aly (2012), which shows a strong en-
durance against the pairing-instability. A third family of interpo-
lators, called the sinc (harmonic-like) kernels, was introduced by
Cabezon et al. (2008), which are also implemented in SPHYNX.
As mentioned in Sect. 2.1, the definition of the sinc kernels is
directly linked to that of the Dirac-§ function. Unlike the M,
family, which is discrete in the index n € Z(+), the sinc kernels
do form a continuous family, which depends on a leading expo-
nent n € R(+). Actually, the M, family could be considered as
a subset of the sinc family (Garcia-Senz et al. 2014). Using the
sinc family of kernels endows the SPH technique with a flexible
engine, as the shape of the kernel can be dynamically changed,
in a continuous way, during run-time. This feature can be used,
for example, to suppress the pairing instability (see Sect. 5.1)
or to equalize the resolution behind a shock-wave (as shown in
Fig. 26).

Additionally, SPHYNX estimates gradients by an integral
approximation (IADg) which is more accurate than the tradi-
tional procedure based on the analytic derivative of the ker-
nel function, and reduces the EO errors caused by the parti-
cle sampling of the fluid. We fully confirm in this work the
importance of this new approach, especially for handling hy-
drodynamic instabilities, in agreement with previous publica-
tions (Garcia-Senz et al. 2012; Cabezoén et al. 2012; Rosswog
2015a,b; Valdarnini 2016).

SPHYNX has been validated with several standard tests in
two and three dimensions, ranging from strong shocks and sub-
sonic fluid instabilities in boxes, to larger systems where the
gravitational force takes over. From the analysis of these test
cases we summarize the following conclusions.

The use of the Integral Approach to calculate gradients along
with the traditional volume elements, V, = m,/p, (p = 0 in
Eq. (12)) and a sinc kernel with n = 5 improves the simulation
of hydrodynamics instabilities subjected to small initial pertur-
bations with respect the standard SPH. The quantitative ampli-
tude growth-rate of the KH instability is closer to the correct
growth-rate (as computed with state-of-the-art Eulerian codes)
than current density-based SPH codes (with smaller L; errors
by a factor 1.5-4), being similar to the results of the modern
PSPH formulation. It is also able to reproduce the KH instabil-
ity in stratified fluids with high density contrasts (p,/p; =~ 8).
In the case of the RT instability, the scheme is also able to cope
with small perturbations (wy = 0.0025) and tiny gravity values
(g = —0.1), although in the latter case the non-linear evolution
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scarcely shows structure. In shocks, the results are similar to
those provided by the standard method in identical conditions.

When the new VE are switched-on there is, in general, an in-
crease of the quality of the simulations. We have monitored the
volume normalization condition )}, V,W,;, = 1 in all calculated
models and, without exception, it is better fulfilled (usually in the
range of 10-20% closer to unity) with the new volume elements.
This change has an impact on the overall evolution of the simu-
lation, considerably improving the results of the simulations. A
paradigmatic case is the RT instability, where the use of the VE
leads to an increase of the growth-rate of the instability and to a
richer evolution in the linear stage, even for the low-gravity sim-
ulation. In shock-waves, the front of the blast becomes steeper
and the density peak is 10-25% higher, even in 3D. Regarding
the Sedov test, the post-shock evolution of density and pressure
is 5-10% closer to the analytic expectations. It is also worth not-
ing that the VE also improve the condition |Ar| = 0 which, ac-
cording to Eq. (9), is a necessary condition to exactly compute
the gradient of linear functions when the IAD, scheme is used.

During the course of the simulations we did not see any sign
of pairing instability, even when working with ~50 neighbors in
the 2D tests. In any case, to avoid the instability it is enough to
raise the exponent of the sinc kernel above the adopted default
value n = 5. We stress that, unlike other recent SPH schemes, the
simulations of the KH and RT instabilities were carried out with-
out including any artificial flux of heat or any other procedure to
smooth the pressure.

Among the several improvements left for future work, we
plan to improve the calculation of gravity by including a better
treatment of the gravitational softening on short distances. The
best way to do that is to include the gravity into the discretized
SPH Lagrangian as described in Price & Monaghan (2007) and
Springel (2010b). Also, the implementation and validation of
switches to ensure that the AV is only added in regions where
there are shocks (Cullen & Dehnen 2010), as well as noise trig-
gers to control the velocity in subsonic flows (Rosswog 2015a)
could be done with moderate effort. A more ambitious goal
would be to directly calculate the volume elements solving im-
plicitly the equation };;, V,W,;, = 1 on each particle of the sys-
tem. Even though the strong coupling between particles renders
any implicit calculation computationally expensive, it will prob-
ably solve the density overshooting problem seen in our explicit
approach.
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Appendix A: Kernel separability
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Fig. A.1. Value of S,, for indices n = 3, n = 6, and n = 12 (left), and Wendland kernels C, and Cg (right) in 2D (continuum thick lines). We
show in dots the direct product S !4(x) - S M(y) (left) and C4(x) - Cl(y) (right) for the same set of indices. Increasing n, the sinc kernels approach

separability in each spatial direction, while Wendland kernels do not.

Spherically symmetric kernels sacrifice tensorial features in or-
der to preserve the second-order accuracy. The notable excep-
tion is the Gaussian kernel, which is both symmetric and separa-
ble in each axis direction. But, unlike the Gaussian function, the
compact-supported spherically symmetric kernels are not sepa-
rable, hence neither is the sinc kernels (S,,) used in this work.
Nevertheless, the S, family approaches separability as n — oo.
This property is shown in Fig. A.1 (left panel) which depicts the
profiles of W2S (Vx? +y%, h,n) (continuum lines) and that of the
direct product WIS , (X, h,n) - WIS ', (y, h,n) (dotted lines) for n = 3,
n = 6, and n = 12, in green, pink, and black, respectively. As
we can see, the dispersion in the kernels product becomes nar-
rower as the kernel index n increases. As a comparison, we show
the same profiles for some Wendland kernels in Fig. A.1 (right
panel). In this case, it is clear that Wendland kernels are not sep-
arable as the product of the unidimensional components departs
from the direct multidimensional calculation. Furthermore, the
result does not improve as we increase the order of the Wend-
land kernel. The study of the consequences that this property
may have is beyond the scope of this paper, but it is undoubtedly
worthy to explore in future works.

Appendix B: A better partition of unit improves
the estimation of the gradient of a linear function

We consider the following integral in 1D:

I = f ) x W(x, h) dx. (B.1)

Because the integrand is an odd function, Ij is trivially equal to
zero. Nevertheless, approaching [y with finite summations does
not necessarily ensure Iy = 0. We know that a necessary and
sufficient condition to exactly reproduce the gradient of a linear
function in SPH is that Iy = Y}, V), x, W, = 0, (Eq. (9)), where
Vj, is the volume element of particle b.
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Integrating I by parts,

+00

Iy = [xG(x,)]=, — f G(x, h) dx, (B.2)

where G(x,h) is the primitive integral of W(x,h): G(x,h) =
[ W(x, h) dx.

We now consider a very simple kernel W(x, h) whose primi-
tive G(x, h) can be obtained analytically:
W(x, h) = %exp(—lxl/h). (B.3)
This kernel (Fulk & Quinn 1996) is spherically symmetric but
currently it is not the preferred one because it is not a flat-top
kernel. The normalization constant in 1D is C = 0.5. Never-
theless, it is an adequate kernel for this proof, as it admits an
analytical primitive,

Gi(x,h) =Cexp(x/h);x <0

Go(x,h) = =Cexp(—=x/h) ; x = 0. (B4

G(x,h): {
The first term of the RHS of Eq. (B.2) is zero, because G(x, h)
vanishes very quickly when x/h increases. For spherically sym-
metric kernels Iy = 0, thus the integral giving the second term
should also be zero. The integral Iy can be estimated as Iy =
I, + I, where,

0 0
L =—f Gl(x,h)dxz—f Cexp(x/h)dx

o 00

0
:-hf W(x, h) dx, (B.5)
12:—f ooGz(x,h) dxszCeXp(—x/h) dx
0 0
0
:hf W(x,h) dx, (B.6)
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with W(x, h) given by Eq. (B.3). The analytical calculation of

these integrals gives I} = —Ch, I, = +Ch, and Iy = I, +

I, = 0, which is obvious because Eq. (B.1) is an odd function.

Things are different when we approach these integrals by finite

summations:

Iy =) Vo, Wap(xh, ha) = =ha >~ Vi Wa(, ha)
b

b, x<0

thy D ViWap(p, ha).
b, x>0

B.7)

On the other hand, if the V), are well chosen, they should fulfill
the equipartition condition:

Z Ve Wap(xp, h) = 1. (B.8)
b

Now we make the reasonable ansatz that improving Vj, is ac-
tually enhancing each term inside the summation in Eq. (B.8).
Thus,

Z VeWap = Z VeWa = 0.5,

b, x<0 b, x>0

(B.9)

and, according to Eq. (B.7), Iy vanishes (or, in any case, it be-
comes very small) even when it is approached using summa-
tions. We note that this proof is strictly valid only for exponential
kernels. Nevertheless, the main conclusion also holds (at least
qualitatively) for other centrally-peaked, spherically-symmetric
interpolating functions. The positive feedback between IAD,
and the VE is also supported by many of the test cases presented
in this work.

Appendix C: Partition of the unity: convergence
rate of the estimator X = (m/p)?

We discuss here a simple 2D static test which explores the effect
of changing the exponent p of X, = (m,/p,)” into the normal-
ization of the kernel. We considered a shock-tube filled with a
two-density fluid separated by a contact discontinuity. The jump
of the density across the frontier is estimated for several values
of 0 < p < 1. The SPH particles were arranged in an ordered
grid according to the density value at both sides of the discon-
tinuity. The contact between both fluids was not smoothed. We
have considered two density ratios: p;/p, = 2 and p/p2 = 8,
and calculated the magnitude };, V;, W,,;, for different values of p.
The results are depicted in Fig. C.1 which shows the maximum
relative error in the kernel normalization |}, V;,W,, — 1| as a
function of p, the density contrast and the particular procedure
to estimate X,, either X, = (m,/p,)? (continuum red lines) or
X, = ((mgy/pa))? (green dashed lines), where (.) is the SPH av-
erage. The smoothing length was adjusted so that there were
np = 50 neighbors contributing to the summations.

For not too large density ratios, raising the exponent p leads
to a linear improvement in kernel normalization. The conver-
gence rate is slower when X, = ({m,/p.))?, as expected. Things
are different for large density ratios where the convergence rate
follows a parabolic line with a local minimum around p =~ 0.7
(uppermost red line in Fig. C.1). Above that value it seems that
any increase of p makes the convergence worse. The reason is
that, in static configurations with sharp contact discontinuities,
the density under/over-shoots at the two sides of the discontinu-
ity. Taking both a large density ratio and a high p value induces
a catastrophic feedback between the overshooting and X,,. Such

25

X=(m/p)P
X=<(m/p)>P
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Fig. C.1. Static shock-tube problem described in the Appendix C: max-
imum relative error in the partition of unit as a function of the ex-
ponent p used to infer the particle volume. The red solid line is for
X = (m/p)? and the green dashed line is for X = ((m/p))".

behavior is due to the explicit nature of the implementation of
the volume elements in SPH and would probably be overcome
using an implicit approach. A simple recipe to circumvent the
problem is to take X, = ({m,/p,))”, which leads to a slower,
albeit safer, convergence rate (uppermost green line in Fig. C.1).

Appendix D: Included physics and alternative
formulations of the energy equation

Most astrophysical applications need to calculate gravity, and
to that extent SPHYNX incorporates an octal-tree structure
(Hernquist & Katz 1989) with several levels of particle cluster-
ing. When the particle inter-distance r,, is shorter than A, + h;
we apply a simple smoothing to the gravitational force,

mp

—Gmrub. (Dl)

9. =

This softening usually gives satisfactory results but it is not fully
compatible with the Euler-Lagrange derivation of the SPH equa-
tions (Price & Monaghan 2007).

SPHYNX also incorporates a thermal conductive transport
equation compatible with the IAD formulation. That equation
was described and checked in Cabezon et al. (2012) and it is re-
produced here for completeness,

Aty N my (ke + k)T — Ta) ~
T E D e Y (e = ) Ao, (D2)
b=1 Pa Pb Fab i=1

where d is the dimension of the space and the tilde symbol means
the arithmetic average of the magnitude.

In high density plasmas with finite temperature, which char-
acterize compact objects such as white dwarfs and neutron stars,
it is often preferable to directly compute the temperature instead

A78, page 29 of 30


http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201630208&pdf_id=29

A&A 606, A78 (2017)

of the internal energy. SPHYNX can switch the energy equation,
Eq. (23), to the temperature equation,

oP

( ) L?Ii,ab(ha» nu))

dr oy & T,X,X,
Co|l=7| = ia —Vib)| =5 |57
.l np d

+ (D.3)

N

(Via = Vip) A} s
b=1 i=1
where C, is the specific heat. This formulation of the temper-
ature equation also leads to an almost perfect energy conser-
vation. The internal energy can be obtained through the EOS
when necessary. Equation (D.3) was recently used to calculate
explosion models of Type Ia supernova with the SPHYNX code
(Garcia-Senz et al. 2016).
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Also, the energy equation may be substituted without much
effort by an entropy equation which ensures perfect entropy con-
servation in pure adiabatic fluxes (Springel & Hernquist 2002)8.
An isentropic flow is characterized by
oy

uu(pa) =A,—, (D.4)
y-1

where A, is a constant determined by the initial conditions of
the flux. The entropy equation was incorporated as default in the
GADGET-2 code (Springel 2005), bringing excellent results for
ideal EOS. However, it has to be adapted to more complex and
realistic EOS where the adiabatic index y can be time-dependent
and not so straightforward to know.

8 Nevertheless, the energy Eq. (23) also conserves entropy if the
smoothing length is self-consistently calculated with density using
Eq. (17).
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