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Introduction

Points on a subvariety X of a semi-abelian variety A that are contained in a sub-
group, let the subgroup be of finite rank or algebraic, are subject to severe restrictions
arithmetical nature.

Finiteness results for intersections of X with subgroups of finite rank have been stud-
ied by Faltings, Hindry, Laurent, McQuillan, Raynaud, Vojta and others. More recently
several authors ([CZ00], [BMZ99], [BMZ03], [BMZ06a], [BMZ06b], [BMZ04],
[Via03], [RV03], [Rém05b], [Rém07], [Pin05b], [Zan00], [Zil02], [Mau06]) have
considered the intersection of X with A[r], the set of complex points in A contained in
an algebraic subgroup of codimension greater or equal to r. If H is a fixed algebraic
subgroup of A with codimension strictly less than dim X, then a dimension counting
argument shows that X∩H is either empty or contains a curve. As we are allowing H to
vary with fixed codimension, the intersection X ∩A[r] may be quite large if r < dim X.
In this thesis we are only interested in the case r ≥ dim X.

If not stated otherwise we will also assume throughout the introduction that all
varieties are defined over Q, the field of algebraic numbers. One can define a height
function on the set of algebraic points of A. Throughout this thesis we work only in
the algebraic torus Gn

m or an abelian variety. So we can take the Weil height or the
Néron-Tate height associated to an ample line bundle.

We will pursue two types of questions. First, for which r does the set X ′(Q) ∩ A[r]

have bounded height and how do these bounds depend on X? Second, for which r is the
set X ′′(Q) ∩ A[r] finite? Here X ′ and X ′′ are obtained from removing from X certain
subvarieties in order to to eliminate trivial counterexamples. For example if X is a
proper algebraic subgroup of Gn

m with positive dimension, then there is no hope for a
boundedness of height or finiteness result for U(Q) ∩ (Gn

m)[r] if r ≤ dim X and if U is
Zariski open and dense in X. In this case X ′ and X ′′ are both empty.

The simplest non-trivial example seems to be the curve defined by x + y = 1 in
G2

m. Here we can take X ′ and X ′′ to equal our curve. Algebraic subgroups of G2
m

can be described by at most two monomial relations xαyβ = 1 with integer exponents
α and β. For subgroups of dimension 1, one non-trivial relation suffices. If (x, y) is
contained in such a subgroup then x and y are called multiplicatively dependent. Hence
the intersection of our curve with the union of all proper algebraic subgroups of G2

m can
be described by the solutions of

(0.0.1) xα(1− x)β = 1.
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This is an equation in three unknowns x, α, and β, so one should not expect finitely
many solutions. Indeed, taking x 6= 1 a root of unity gives infinitely many solutions.

In [CZ00] Cohen and Zannier showed that if H denotes the absolute non-logarithmic
Weil height then (0.0.1) implies the sharp inequality max{H(x),H(1−x)} ≤ 2. In chap-
ter 2 we start off by giving an alternative proof of Cohen and Zannier’s Theorem. We
even show that the possibly larger height H(x, 1−x) is at most 2. In their paper, Cohen
and Zannier also proved that 2 is an isolated point in the range of max{H(x),H(1−x)}.
We make this result explicit in Theorem 2.2, working instead with H(x, 1 − x). The
proof applies Smyth’s Theorem on lower bounds for heights of non-reciprocal algebraic
numbers and a Theorem of Mignotte.

As was already noticed in [CZ00], solutions of (0.0.1) are closely linked to roots of
certain trinomials whose coefficients are roots of unity. In chapter 3 Theorem 3.2 we
follow this avenue by factoring such trinomials over cyclotomic fields. Having essentially
a minimal polynomial in our hands, we obtain a new proof for the boundedness of
H(x, 1 − x) with x as in (0.0.1). More importantly, in Theorem 3.1 we show that not
only is 2 isolated in the range of the height function, but also that H(x, 1−x) converges
to an absolute constant if [Q(x) : Q] goes to infinity. The proof determines the value
of this limit: it is the Mahler measure of the two-variable polynomial X + Y − 1. In a
certain sense this Mahler measure is the height of the curve in our problem.

In Theorem 3.3 we prove a conjecture of Masser stated in [Mas07]: the number
of solutions of (0.0.1) with [Q(x) : Q] ≤ D is asymptotically equal to c0D

3 with c0 =
2.06126 . . . as D →∞. The constant c0 is defined properly in chapter 3 as a converging
series. This counting result is a further application of Theorem 3.2.

In chapter 4 we generalize the method from chapter 2 to bound the height of mul-
tiplicatively dependent solutions of

(0.0.2) x + y = α.

Here α is now any non-zero algebraic number. In [BMZ99] Bombieri, Masser, and
Zannier prove a more general result which also implies boundedness of height in this
case. Their Proposition A leads to an explicit upper bound for the height; the bound
is polynomial in H(α). We are mainly interested in upper bounds for H(x, y) which
have good dependency in H(α). The value H(α) can be regarded as the height of
the defining equation (0.0.2). In Theorems 4.1 and 4.2 we get the bound H(x, y) ≤
2H(α) min{H(α), 7 log(3H(α))}. By Theorem 4.3 the exponent of the logarithm cannot
be less than 1. But in some special cases, e.g. if α is a rational integer, we improve the
upper bound to 2H(α), see Theorem 4.4. In this theorem we also show that if α is a
rational integer then 2H(α) is attained as a height if and only if α is a power of two.
Thus if α is a power of two, then our bound is sharp. For such α and if also α ≥ 2 we
prove in Theorem 4.5 that 2H(α) is isolated in the range of the height.

Starting from chapter 6 we work in an algebraic torus of arbitrary dimension. Alge-
braic subgroups can still be described by a finite set of monomial equations. For example
(x1, . . . , xn) ∈ Gn

m(C) is contained in a proper algebraic subgroup if and only if the xi
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satisfy a non-trivial multiplicative relation. In [BMZ99] Bombieri, Masser, and Zan-
nier proved that if X is an irreducible curve which is not contained in the translate of a
proper algebraic subgroup, then points on X that lie in a proper algebraic subgroup have
bounded height. Moreover, they showed that this statement is false if X is contained in
the translate of a proper algebraic subgroup. The authors also showed that there are
only finitely many points on X that lie in an algebraic subgroup of codimension at least
2. This finiteness result was generalized by the same authors in [BMZ03] to algebraic
curves defined over the field of complex numbers. Hence for curves it makes sense to
take X ′ = X if X is not contained in the translate of a proper algebraic subgroup and
X ′ = ∅ else wise. But X ′′ is more subtle: we take X ′′ = X if X is not contained in a
proper algebraic subgroup and X ′′ = ∅ else wise. The point in making this distinction is
that in [BMZ06a] the authors conjectured that X ′′ contains only finitely many points
in an algebraic subgroup of codimension at least 2. They proved this conjecture for
n ≤ 5. Recently, in [Mau06] Maurin gave a proof for all n.

Let X ⊂ Gn
m be an irreducible subvariety, not necessarily a curve. In the higher

dimensional case we finally need a definition of X ′: we get X ′ by removing from X
all positive dimension subvarieties that show up in an improper component of the in-
tersection of X with the translate of an algebraic subgroup. The definition of X ′′ is
similar but we require the translates of algebraic subgroups to be algebraic subgroups.
In [BMZ06b] Bombieri, Masser, and Zannier showed that X ′ is Zariski open in X.

Let h be the absolute logarithmic Weil height. Our contribution in chapter 6 is
Theorem 6.1 where we give an explicit bound for the height of algebraic points p in X ′

that lie “uniformly close” to an algebraic subgroup of codimension strictly greater than
n− n/ dim X. By uniformly close we mean that there exist an ε > 0, independent of p,
and an a in an algebraic subgroup of said codimension with h(pa−1) ≤ ε. Actually, in
Theorem 6.1 we will use a weaker notion of uniformly close. The terminology comes from
the fact that the map (p, a) 7→ h(pa−1) has similar properties as a distance function.
For example it satisfies the triangle inequality. This notion of distance was considered
by several authors ([Eve02], [Poo99], [Rém03]) in connection with subgroups of finite
rank.

Theorem 6.1 generalizes the Bounded Height Theorem for curves by Bombieri,
Masser, and Zannier. We state our theorem such that it also gives an explicit version
of a Theorem of Bombieri and Zannier in [Zan00] on the intersection of varieties with
one dimensional subgroups. To do this we will need a slightly more general definition
of X ′ which is provided in chapter 6.

The height upper bound in Theorem 6.1 involves, along with n, the degree and
height of the variety X. We define these two notions in chapter 5. In simple terms, the
height of X controls the heights of the coefficients of a certain set of defining equations
for X whereas the degree of X controls their degrees. Just as in the second proof for
height bounds on curves given in [BMZ99], our proof of Theorem 6.1 uses ideas from
the geometry of numbers. Given p ∈ X(Q) uniformly close to an algebraic subgroup we
construct a new algebraic subgroup H of codimension dim X and controlled degree, such
that pH has normalized height small compared to the height of p. We then intersect
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pH with X. The Arithmetic Bézout Theorem bounds the height of isolated points in
this intersection leading to an explicit height bound for p.

Lehmer-type lower bounds for heights in spirit of Dobrowolski’s Theorem and its
generalization to higher dimension provide a method for deducing finiteness results from
height bounds as given in chapter 6. This method was used together with algebraic num-
ber theory in Bombieri, Masser, and Zannier’s article [BMZ99] to prove the finiteness
of the set of points on X ′ in an algebraic subgroup of codimension at least 2 if X is a
curve. Meanwhile, their intricate argument has been simplified in [BMZ04] by apply-
ing a more advanced height lower bound due to Amoroso and David [AD04]. In this
lower bound the degree over Q of a point is essentially replaced by its degree over the
maximal abelian extension of Q. Using this approach we show in Corollary 6.2 that if
X is a surface in G5

m, then there are only finitely many points on X ′ contained in an
algebraic subgroup of codimension at least 3. Thus we have finiteness for the correct
subgroup size at least in an isolated case.

Even in presence of a uniform height bound as in Theorem 6.1, the approaches in
[BMZ99] and [BMZ04] cannot be used to prove the finiteness of the set of p ∈ X ′(Q)
with h(pa−1) small and a contained in an algebraic subgroups of appropriate dimension:
although pa−1 has small height, its degree cannot be controlled. In chapter 7 we pursue
a new approach using a Bogomolov-type height lower bound. This bound was proved by
Amoroso and David in [AD03]; it bounds from below the height of a generic point on a
variety not equal to the translate of an algebraic subgroup. The main result of chapter
7 is Theorem 7.1: we show that for B ∈ R there exists an ε = ε(X, B) > 0 with the
following property: there are only finitely many p ∈ X ′(Q) with h(pa−1) ≤ ε where a is
contained in an algebraic subgroup of dimension strictly less than m(dim X, n). In other
words, there are only finitely many algebraic points on X ′ of bounded height which are
uniformly close to an algebraic subgroup of dimension less than m(dim X, n). Just as
was the case in Theorem 6.1 we actually use a relaxed version of uniformly close in
Theorem 7.1. The somewhat unnatural function m(·, ·) is defined in (7.1.1). At least in
the case of curves we have n − 2 < m(1, n) and so we can take the subgroups to have
the best possible dimension n− 2. Unfortunately this is the only interesting case where
m(r, n) > n− r − 1.

With the height upper bound from chapter 6 we can deduce a corollary to Theorem
7.1 which proves finiteness independently of B and where the subgroup dimension is
strictly less than min{n/ dim X, m(dim X, n)}. Let X be a curve, then this result is
optimal with respect to the subgroup dimension. Let us assume that X is not contained
in the translate of a proper algebraic subgroup, hence X ′ = X. Then our corollary says
that there are only finitely many algebraic points on X that are close to an algebraic
subgroup of codimension at least 2. Moreover, in Corollary 7.2 we use Dobrowolski’s
Theorem to show that if ε in the definition of uniformly close is small enough, then
all points on X close to an algebraic subgroup of codimension at least 2 are actually
contained in such a subgroup.



INTRODUCTION 9

We now shift our focus from the algebraic torus to abelian varieties: we want to study
the intersection X ′(Q)∩A[r] where A is an abelian variety and X is an irreducible closed
subvariety of A. The definitions of X ′ and X ′′ make sense in the abelian setting and
are completely analog to the multiplicative case.

Let X be a curve, then in [Via03] Viada proved that X ′(Q)∩A[1] has bounded height
if A is a power of an elliptic curve. If the elliptic curve has complex multiplication she
also proved that X ′(Q)∩A[2] is finite. Rémond in [Rém05b] generalized Viada’s height
bound to any abelian variety. In [Rém07] Rémond applied a generalization of Vojta’s
inequality which he proved in [Rém05a] and in Theorem 1.2 showed boundedness of
height of (X(Q)\Z(r)

X )∩A[r]. Here X\Z(r)
X ⊂ X is a new deprived subset which depends

on r. In fact his result holds for a set larger than A[r] involving also the division closure
of finitely generated group. If A is isogenous to a product of elliptic curves and if X is a
sufficiently general surface which is not contained in the translate of a proper algebraic
subgroup then X\Z(r)

X is non-empty and Zariski open in X for r ≥ (dim A + 3)/2.
In [RV03], Rémond and Viada proved that if X is a curve then X ′′(Q) ∩ A[2] is

finite if A is a power of an elliptic curve E with complex multiplication. In a recent
preprint, Viada [Via07] announced the finiteness of X ′′(Q) ∩ A[3] for unrestricted E,
the optimal subgroup codimension 2 is thus just missed.

We announce the following result called the Bounded Height Theorem: if A = Eg

is a power of an elliptic curve E and X is an irreducible closed subvariety of arbitrary
dimension, then X ′(Q) ∩ A[dim X] has bounded Néron-Tate height. Also, using a result
from Kirby’s Thesis [Kir06] and ideas from Bombieri, Masser, and Zannier’s [BMZ06b]
one can show that X ′ is Zariski open and give a criterion on X to decide when X ′ is
non-empty. Using height lower bounds on abelian varieties with complex multiplication
due to Ratazzi in [Rat07] we can use the Bounded Height Theorem to show that
X ′(Q)∩A[dim X+1] is finite if E has complex multiplication. For an elliptic curve without
complex multiplication, finiteness of X ′(Q)∩A[r] can also be obtained, using for example
Rémond’s Theorem 2.1 from [Rém05b]. But r is in general sub-optimal for such elliptic
curves.

The essential difference between the Bounded Height Theorem and Theorem 6.1 is
that the subgroups are now allowed to have the best-possible codimension dim X for all
X.

In the future we plan to publish these results.
Pink has stated a general conjecture on mixed Shimura varieties, see [Pin05a] and

[Pin05b]. One special implication is his Conjecture 5.1 from [Pin05b]: if A is a semi-
abelian variety defined over C and if X ⊂ A is a subvariety also defined over C which is
not contained in a proper algebraic subgroup of A, then X(C)∩A[dim X+1] is not Zariski
dense in X. Zilber’s stronger Conjecture 2 in [Zil02] implies the same conclusion. With
the Bounded Height Theorem we can prove this assertion under the following stronger
hypothesis on A and X: A is a power of an elliptic curve E with complex multiplication
and if ϕ : Eg → Edim X is a surjective homomorphism of algebraic groups, then the
restriction ϕ|X : X → Edim X is dominant.
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The proof of the Bounded Height Theorem uses the completeness of A (and X)
in an essential way as it relies on intersection theory. Nevertheless, a proof for the
boundedness of height of X ′(Q)∩A[dim X] for the non-complete X ⊂ A = Gn

m along the
lines of the proof of the Bounded Height Theorem must not be ruled out. For instance
one could compactify Gn

m ↪→ Pn and work in Pn. Still, there seems to be no suitable
Theorem of the Cube for Gn

m. Future research could consist in finding a proof of the
Bounded Height Theorem in the multiplicative case or in abelian varieties other than a
power of an elliptic curve.

In the two appendices we leave the main path of the thesis. Let P be an irreducible
polynomial in two variables with algebraic coefficients. Say x and y are algebraic with
P (x, y) = 0. In appendix A, motivated by Proposition B of [BMZ99], we consider the
problem of bounding |degX(P )h(x)−degY (P )h(y)| explicitly and with good dependency
in h(x), h(y), and P .

For simple examples such as P = Xp − Y q with p and q coprime integers, the
absolute value is zero. But for general and fixed P it may even be unbounded as (x, y)
runs over all algebraic solutions of P . In Theorem A.1 we prove an upper bound which is
of the form cmax{1, hp(P )}1/2 max{1, h(x), h(y)}1/2 where the constant c is completely
explicit and depends only on the partial degrees of P . Here hp(P ) is the projective
logarithmic Weil height of the coefficient vector of P . This type of height inequality is
often referred to as quasi-equivalence of heights.

In appendix B we demonstrate four known results using the Quasi-equivalence The-
orem from appendix A. The first application is the Theorem of Bombieri, Masser, and
Zannier, already discussed above, in the case of curves in G2

m. We then prove a version
of Runge’s Theorem on the finiteness of the number of solutions of certain diophantine
equations. Next we show a result of Skolem from 1929: we first generalize the greatest
common divisor of pairs of integers to pairs of algebraic numbers. We then show that
if x and y are coprime algebraic numbers and P (x, y) = 0 where P is an irreducible
polynomial in Q[X, Y ] without constant term, then x and y have uniformly bounded
height. This result has been proved independently by Abouzaid in [Abo06] who used it
to prove a variant of the Quasi-equivalence Theorem. The fourth and final application
is an explicit version of Sprindzhuk’s Theorem: let P have rational coefficients, again
without constant term and such that not both partial derivatives of P vanish at (0, 0).
Then for a sufficiently large prime l, the polynomial P (l, Y ) ∈ Q[Y ] is irreducible. Since
the Quasi-equivalence Theorem gives explicit bounds, so do its four applications.

Chapters 1 and 5 contain no new results but serve as reference for certain theorems
which we apply in the rest of the thesis. Chapter 1 introduces the Weil height and
related subjects. It is used throughout the thesis. Chapter 5 contains some results from
algebraic geometry and gives a definition for the height of a positive dimensional variety.
These definitions and results will be used in the second part of the thesis, chapters 6
and 7.



CHAPTER 1

A review of heights

Heights play a central role in this thesis. On the one hand they are an important
technical tool to control the “size” of algebraic numbers, often need to prove finiteness
results. On the other hand heights have subtle properties which makes them intrinsically
interesting. We dedicate this first chapter to a short review of the absolute Weil height.
This particular notation of height will be used often, especially in the first part of the
thesis. We present basic functional properties and also some notation which will be freely
used in this work. We will then define the height and Mahler measure of polynomials and
also present some results. Our main reference is Bombieri and Gubler’s book [BG06].
This chapter should be seen mainly as a source of reference for later chapters. There
is not the faintest claim that this chapter gives an complete overview of the topic of
heights. In chapter 5 we will revisit heights, but from a different point of view.

1. The Weil height

Recall that an absolute value |·| on a field K satisfies the triangle inequality |x+y| ≤
|x| + |y| for all x, y ∈ K. The absolute value is called ultrametric if it satisfies the
ultrametric inequality |x + y| ≤ max{|x|, |y|} for all x, y ∈ K.

Let K be a number field with ring of algebraic integers OK . If I ⊂ K is a fractional
ideal, we set N(I) ∈ Q to be its norm. We define MK to be the set of absolute values
of K such that their restriction to Q is the usual p-adic absolute value or the standard
complex absolute value. Elements of MK will be called places of K. Let v ∈ MK extend
w ∈ MQ; we will write v | w. If w is the standard complex absolute value on Q then v
will be called an infinite place, or v | ∞ for short. If w is a p-adic absolute value then
v will be called a finite place, or v - ∞ for short. It is well-known that there are one-
to-one correspondences between infinite places and embeddings K → C up to complex
conjugation on the one hand and between finite places and non-zero prime ideals of OK

on the other hand. We define the local degree dv = [Kv : Qw] where Kv, Qw are the
completions of K, Q with respect to the absolute values. For integers n it is sometimes
useful to define δv(n) = max{1, |n|v}.

If τ ∈ K∗ = K\{0}, then there are at most finitely many v ∈ MK such that |τ |v 6= 1.
We have the product formula (Proposition 1.4.4 [BG06])

(1.1.1)
∏

v∈MK

|τ |dv
v = 1 for any τ ∈ K∗.

11
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Let p = (p1, . . . , pn) ∈ Kn, the absolute Weil height of p is defined as

(1.1.2) H(p) =
∏

v∈MK

max{1, |p1|v, . . . , |pn|v}dv/[K:Q].

This definition is independent of the field K containing the pi ([BG06] Lemma 1.5.2
page 15) and the height function is thus defined on Qn, for Q the algebraic closure of
Q. For the reader’s convenience we review some basic properties of the height function:

Say τ ∈ Q has minimal polynomial adT
d + · · · + a0 ∈ Q[T ] over Q such that the

ai are integers having no common factor and ad 6= 0. We can calculate the height of τ
more directly with the formula

(1.1.3) H(τ)d = |ad|
d∏

i=1

max{1, |τi|}

where τ1, . . . , τd ∈ C are the distinct zeros of P . The equality (1.1.3) follows from
Propositions 1.6.5 and 1.6.6 in [BG06].

Say p ∈ Qn and k ∈ N, then

(1.1.4) H(pk) = H(p)k.

The proof of (1.1.4) follows directly from the definition (1.1.2). If τ ∈ Q∗ we can say
more, in fact for k ∈ Z we have

(1.1.5) H(τk) = H(τ)|k|.

This equality follows from (1.1.1) and (1.1.4) for negative k. If p ∈ (Q∗)n, then in
general only H(p−1) ≤ H(p)n holds.

Say τ ∈ Q, then

H(τ) = 1 if and only if τ is a root of unity or zero.

This is Kronecker’s Theorem, for a proof see Theorem 1.5.9 in [BG06].
The height is invariant under multiplication by a root of unity: if p ∈ Qn and ζ a

root of unity, then H(ζp) = H(p).
For τ, µ ∈ Q we may bound

H(τµ) ≤ H(τ)H(µ).

This inequality follows from max{1, |τµ|} ≤ max{1, |τ |}max{1, |µ|} for any absolute | · |
on a field containing τ and µ. An analogue bound for sums is

(1.1.6) H(τ + µ) ≤ 2H(τ)H(µ),

for τ, µ ∈ Q. Indeed (1.1.6) follows from

max{1, |τ + µ|} ≤ δ max{1, |τ |}max{1, |µ|}
with δ = 1 if | · | satisfies the ultrametric inequality and δ = 2 else wise. If µ = 1 we
have the special case H(1 + τ) ≤ 2H(τ). In general the factor 2 cannot be omitted in
this inequality. But in chapter 2 Lemma 2.4 we will improve 2 to 1.909 . . . for non-zero
τ of small height that are not conjugate to τ−1.
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If a ∈ Z and b ∈ N are coprime, then

H(a/b) = max{|a|, b}.

This equality follows from (1.1.3).
Finally Northcott’s Theorem says that for C,D ∈ R, there are at most finitely many

τ ∈ Q with H(τ) ≤ C and [Q(τ) : Q] ≤ D. For a proof see Theorem 1.6.8 on page 25
in [BG06].

The product formula (1.1.1) enables us to define a height function on the algebraic
points of projective space Pn: say K is still a number field and p = [p0 : · · · : pn] ∈ Pn(Q)
with projective coordinates pi ∈ K, we set

H(p) =
∏

v∈MK

max{|p0|v, . . . , |pn|v}dv/[K:Q].

Because of (1.1.1), another choice of algebraic projective coordinates for p leads to the
same height value. The product formula also implies H(p) ≥ 1.

If p ∈ Qn, then H(p) is often called the affine height and if p ∈ Pn(Q), then H(p)
is called the projective height.

For notational purposes it is sometimes useful to take the logarithm. We define the
absolute logarithmic Weil height h(p) = log H(p) for p ∈ Qn or p ∈ Pn(Q).

If p = (p1, . . . , pn) ∈ Qn, then we have the useful estimates h(p) ≤ h(p1)+· · ·+h(pn)
and max{h(p1), . . . , h(pn)} ≤ h(p) which follow from local considerations.

2. Height and Mahler measure of a polynomial

Keeping track of bounds of the size of a polynomial in integer coefficients is important
in transcendence theory when for example constructing auxiliary functions. “Size” could
mean for example the maximum of the absolute values of the coefficients or the sum over
these values. Of course more intricate definitions which anticipate a common divisor of
the coefficients or which work if the coefficients are in a number fields are possible.

Let K be any field with an absolute value | · |. If f ∈ K[X1, . . . , Xn] is a polynomial
with coefficients fi1...in ∈ K, then we set

|f | = max
i1,...,in

{|fi1...in |}.

If | · | satisfies the ultrametric inequality and g ∈ K[X1, . . . , Xn], then by Gauss’s Lemma
we have |fg| = |f ||g|. In general equality does not hold if | · | does not satisfy the
ultrametric inequality.

Assume now that K is a number field and that f ∈ K[X1, . . . , Xn] is non-zero. Then
we define the height of f as

hp(f) =
1

[K : Q]

∑
v∈MK

dv log |f |v.

Therefore the height of f is just the logarithmic absolute Weil height of the point in
Pn(Q) whose projective coordinates are just the non-zero coefficients of f . By (1.1.1)
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and if λ ∈ Q∗ then hp(λf) = hp(f). We use the subscript p to distinguish hp(·) from
h(·) as there is danger of ambiguity if the polynomial in question is constant.

Let f ∈ C[X±1
1 , . . . , X±1

n ]\{0} and say | · | is now the complex absolute value. The
logarithmic Mahler measure of f is given by

(1.2.1) m(f) =
∫ 1

0
· · ·
∫ 1

0
log |f(e2πit1 , . . . , e2πitn)|dt1 · · · dtn.

It is not immediately clear that this integral converges, as the absolute value in the
logarithm may vanish. For a proof of the existence of m(f) we refer to Lemma 2 page
223 in [Sch00]. We also define M(f) = expm(f) and M(0) = 0. A direct and nice
consequence of (1.2.1) is the that M(fg) = M(f)M(g) for any f, g ∈ C[X±1

1 , . . . , X±1
n ].

The Mahler measure M(f) can be bounded above and below by positive multiples of
|f |. These factors depend only on the partial degrees of f .

If f ∈ C[X] is a polynomial in one variable with f = ad(X − α1) · · · (X − αd) and
αi ∈ C, then by Jensen’s formula we have

(1.2.2) M(f) = |ad|max{1, |α1|} · · ·max{1, |αd|}.

Let τ ∈ Q have minimal polynomial f ∈ Q[X] with coprime integer coefficients, then
by (1.1.3) and (1.2.2) we have

(1.2.3) h(τ) =
1

deg(f)
m(f).

Hence heights and Mahler measures of integer polynomials are closed related.
In general it is non-trivial to calculate the exact value of the Mahler measure of a

polynomial in more than one variable. Smyth’s work [Smy81] contains some explicit
evaluations. For example he calculates the Mahler measure of the two variable polyno-
mial X + Y − 1 in terms of an L-function. We will see more of this number in chapter
3.

Even numerically approximating the integral in (1.2.1) can be tricky because of the
possible singularities in the integrand. In [Boy98] Boyd proposed an effective method
for calculating M(f) up to arbitrary precision avoiding the approximation of an inte-
gral. But he states that his method is impractical from a computational point of view
if f has more than one variable. Nevertheless Boyd’s general approach has an impor-
tant theoretical consequence. The finite dimensional C-vector space of polynomials in
C[X1, . . . , Xn] of degree bounded by some parameter carries a natural topology induced
by the topology on C. Boyd shows that for polynomials of bounded degree M(f) is a
continuous function of f . In the one-variable case this is a classical result going back to
Mahler.

In chapter 3 we will define a family of complex polynomials depending on a real
parameter and study the function which maps this real parameter to the Mahler measure
of the corresponding polynomial. More precisely, we show a uniform bound on the
variation of this function. Unfortunately Boyd or Mahler’s results on continuity do not
suffice in our situation.
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We present two results on bounds for Mahler measures from Schinzel’s book [Sch00]
which will be used in chapter 3.

We begin with an upper bound for the Mahler measure of a complex polynomial
f in terms of the hermitian norm of the coefficient vector of P . Concretely, if P =
fdX

d + · · ·+ f0 with fi ∈ C, then we set |f |2 = (|f0|2 + · · ·+ |fd|2)1/2.

Theorem 1.1 (Gonçalvez). Let f = fdX
d + · · ·+ f0 ∈ C[X] with f0fd 6= 0. Then

M(f)2 + |f0fd|2M(f)−2 ≤ |f |2
with equality if and only if f(X)f(X−1) has just three non-zero coefficients.

Proof. This theorem is a special case of Theorem 40 in [Sch00]. �

The second result needed in chapter 3 is a lower bound for the Mahler measure of
polynomials defined over certain number fields. We need a few definitions first.

Let f ∈ C[X]\{0}, then f is called self-inverse if there exists λ ∈ C∗ with
Xdeg ff(X−1) = λf(X).

Say now f ∈ K[X] where K is a number field. The content of f , denoted by
cont(f), is the fractional ideal in K generated by the coefficients of f . For example if f
has coefficients in OK , then cont(f) is an ideal in OK .

We call a number field K Kroneckerian if K is a either totally real or a totally
complex quadratic extension of a totally real number field.

We may now state Schinzel’s Theorem.

Theorem 1.2 (Schinzel). Let K be a Kroneckerian field and f ∈ K[X]\{0} not
self-inverse with f(0) 6= 0. Then

(1.2.4)
∏
σ

M(σ(f)) ≥

(
1 +

√
5

2

)[K:Q]/2

N(cont(f)),

where the product runs over all embeddings σ : K → C.

Proof. This result is a special case of Theorem 72 in [Sch00]. Schinzel proves this
theorem for Laurent polynomials in any number of variables. �

The upper bound in Theorem 1.1 and the lower bound in 1.2 are so sharp that we
will use them to deduce irreducibility results for certain trinomials arising in chapter 3.

We note that Theorem 1.2 in the case K = Q implies a lower bound as in Smyth’s
paper [Smy71] with a slightly worse constant. The important aspect of Schinzel’s
Theorem is the exponent [K : Q] in (1.2.4).





CHAPTER 2

Multiplicative dependence and isolation I

In [CZ00] Cohen and Zannier proved that if x is algebraic with x and 1 − x mul-
tiplicatively dependent, then max{H(x),H(1− x)} ≤ 2; here H(·) is the absolute Weil
height. This bound is sharp because of the exceptional values x = −1, 1/2, 2. Cohen
and Zannier then used Bilu’s Equidistribution Theorem [Bil97] to prove an isolation
result: they showed that there exists ε > 0 such that if x is as before but not one of
the three exceptional values, then max{H(x),H(1 − x)} ≤ 2 − ε. In this chapter we
give a concise proof of a slight strengthening of the height bound given in [CZ00]. We
also work out an explicit ε. Finally we show that there exists a sequence xn with xn

and 1− xn multiplicatively dependent and such that the height of xn converges to the
Mahler measure of the polynomial X + Y − 1.

The contents of this chapter will appear in the Proceedings of the Pisa research
program “Diophantine Geometry” [Hab07].

1. Height bounds for dependent solutions of x + y = 1

Two elements x, y of a field are called multiplicatively dependent if xy 6= 0 and if
there exist r, s ∈ Z not both zero such that xrys = 1.

We define M to be the set of complex x such that x and 1− x are multiplicatively
dependent. Clearly the elements of M are algebraic. If ζ 6= 1 is a root of unity, then
ζ and 1− ζ are multiplicatively dependent and so ζ ∈ M. Thus M is infinite, a result
which was made quantitative by Masser in Theorem 2 of [Mas07]. If y is also algebraic
then H(x, y) denotes the affine absolute non-logarithmic Weil height, which was defined
in chapter 1. This height function corresponds to the compactification of the algebraic
torus G2

m ↪→ P2. We have:

Theorem 2.1. Let x ∈ M, then H(x, 1 − x) ≤ 2 with equality if and only if x ∈
{−1, 1/2, 2}.

Theorem 2.1 implies Theorem 1 of [CZ00] since max{H(x),H(y)} ≤ H(x, y) for
algebraic x and y. We choose the particular height function H(x, 1 − x) because it is
invariant under the maps x 7→ 1 − x and x 7→ x−1. Incidentally M is stable under
these two maps. Our method of proof for Theorem 2.1 exploits this fact and relies on
elementary local estimates combined with the product formula. The proof of Theorem
2.1 is a warm up for proof of Theorem 4.1 which gives a height bound for dependent x,
y with x + y = α.

Theorem 2.1 makes explicit a special case of

17
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Theorem ([BMZ99] page 1120). Let C be a closed absolutely irreducible curve in
Gn

m, n ≥ 2, defined over Q and not contained in a translate of a proper subtorus of Gn
m.

Then the algebraic points of C which lie in the union of all proper algebraic subgroups
of Gn

m form a set of bounded Weil height.

Indeed x + y = 1 defines a line C in G2
m which is not contained in a translate of

a proper subtorus. And any proper algebraic subgroup of G2
m is contained in some

set defined by xrys = 1. Finally the Weil height used in [BMZ99] was the expression
H(x)H(y) ≥ H(x, y).

To prove the isolation result with explicit ε mentioned above we apply a result of
Mignotte from [Mig89] on the angular distribution of conjugates of an algebraic number
of small height and big degree. Actually, large degree is guaranteed by a theorem of
Smyth [Smy71] on lower bounds for heights of non-reciprocal algebraic numbers.

Theorem 2.2. If x ∈M\{−1, 1/2, 2} then H(x, 1− x) < 1.915.

The element of M\{−1, 1/2, 2} of largest height known to the author is 1−ζ3 where
ζ3 is a primitive 3rd root of unity. In fact H(1 − ζ3) =

√
3. It would be interesting to

know if
√

3 is already the second to largest height value obtained on M. In chapter 3
we will develop an algorithm to decide this question.

If ζ 6= 1 is a root of unity, then 1−ζ ∈M. As the degree of ζ goes to infinity we can
use Bilu’s Equidistribution Theorem (Theorem 1.1, [Bil97]) to show that H(1− ζ, ζ) =
H(1− ζ) converges to

(2.1.1) exp
∫ 1/3

−1/3
log |1 + exp(2πit)|dt = 1.381356...,

Let f be a polynomial in n variables with complex coefficients, the Mahler measure
M(f) of f was defined in chapter 1 (1.2.1). Smyth ([Smy81]) calculated the Mahler
measure of the polynomial X + Y − 1 as

(2.1.2) M(X + Y − 1) = exp(
3
√

3
4π

∑
k≥1

(
k

3

)
1
k2

),

here
(·
·
)

is the Legendre symbol. By Jensen’s formula the Mahler measure in (2.1.2) is
equal to the integral (2.1.1). We immediately obtain:

Proposition 2.1. There exists a sequence xn ∈ M with limn→∞[Q(xn) : Q] = ∞
such that limn→∞ H(xn, 1− xn) = M(X + Y − 1).

In chapter 3 we will prove a much stronger result. In fact H(xn, 1 − xn) converges
to M(X + Y − 1) for any sequence xn ∈M such that [Q(xn) : Q] goes to infinity.

2. Proof of Theorem 2.1

We prove Theorem 2.1 via an elementary estimate which holds for any field K with
any absolute value | · | : K → R.
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Lemma 2.1. Let x ∈ K\{0, 1}, r, t ∈ Z with 0 6= t ≥ r ≥ 0 and xr = (1 − x)t. We
have

(2.2.1) |1− x|−1 max{1, |x|} ≤ δ

where δ = 1 if | · | is ultrametric and δ = 2 otherwise. Furthermore, equality in (2.2.1)
implies δ = 1 or r = 0 or r = t.

Proof. Let q denote the left-hand side of (2.2.1).
First let us assume

(2.2.2) |x| < δ−1 or |x| > δ.

If δ = 1, then |x| 6= 1, so |1−x| = max{1, |x|}, hence q = 1. If δ = 2 we use the triangle
inequality to bound

|1− x| ≥
{
|x| − 1 > |x|δ−1 : if |x| > δ,
1− |x| > δ−1 : if |x| < δ−1

which implies q < δ. So in the case (2.2.2) we have q ≤ δ and furthermore q = δ can
only hold if δ = 1.

Now let us assume δ−1 ≤ |x| ≤ δ. If |x| < 1, then q = |1−x|−1 = |x|−r/t ≤ δr/t ≤ δ,
and if |x| ≥ 1, then q = |x|/|1 − x| = |x|1−r/t ≤ δ1−r/t ≤ δ. It is clear that if we have
the equalities q = δ = 2, then r = 0 or r = t. �

We will see more arguments in this style in chapter 4.

Lemma 2.2. If ζ 6= 1 is a root of unity, then H(1 + ζ) ≤
√

2
√

3 = 1.8612...

Proof. Let K be a number field of degree d containing ζ. We multiply the product
formula

∏
v∈MK

|1− ζ|dv
v = 1 with the definition of the height and note that ζ is an

algebraic integer to get

H(1 + ζ)d ≤ min{
∏
v|∞

max{1, |1 + ζ|v}dv ,
∏
v|∞

max{|1− ζ|v, |1− ζ2|v}dv}.

Let ∆1 be the set of infinite places v with |1 − ζ|v ≥ 1, let ∆2 be all other in-
finite places. Recall that infinite places correspond to embeddings of K into C up
to conjugation. If v ∈ ∆1, then elementary geometry gives |1 + ζ|v ≤

√
3; with

the right-hand side replaced by 2 if we allow v ∈ ∆2. Similarly if v ∈ ∆2, then
max{|1 − ζ|v, |1 − ζ2|v} ≤

√
3; and if

√
3 is replaced by 2, then the inequality holds

for v ∈ ∆1. We define δi =
∑

v∈∆i
dv/d, then δ1 + δ2 = 1 and so

H(1 + ζ) ≤ min{
√

3
δ12δ2 , 2δ1

√
3

δ2} =
√

3(2
√

3
−1

)min{δ1,1−δ1} ≤
√

2
√

3.

�

We note that 1
2 log(2

√
3) is an improvement of the trivial bound h(1 + ζ) ≤ log 2

which holds for any root of unity ζ. In the proof of Theorem 2.1 we need only a weak
form of Lemma 2.2, namely the fact that H(1 + ζ) < 2 is ζ 6= 1 is a root of unity.
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Lemma 2.3. Let x′ ∈ M, then there exist x ∈ M and r, t ∈ Z with 0 6= t ≥ 2r ≥ 0
such that xr = (1− x)t and h(x′, 1− x′) = h(x). Furthermore, if x′ /∈ {−1, 1/2, 2} then
we can choose x such that x /∈ {−1, 1/2, 2}.

Proof. The lemma is simple if x′ is a primitive 6th root of unity, for then 1 − x′

is also a 6th root of unity and we may take x = x′, t = 6, and r = 0. Hence it suffices
to show the lemma for x′ ∈M0 with M0 = M\{e±2πi/6}. For any such x′ there exists
a unique λ(x′) = [r : t] ∈ P1(Q) with r and t coprime integers such that x′r(1 − x′)−t

is a root of unity. The maps φ1(x) = 1/x and φ2(x) = 1 − x are automorphisms of
M0 and generate the symmetric group S3. Thus we get an action of S3 on M0 which
also leaves {−1, 1/2, 2} invariant. By the product formula the height h(x, 1− x) is also
invariant under this action. We check that if λ(x) = [r : t], then λ(φ1(x)) = [t − r : t]
and λ(φ2(x)) = [t : r]. We get an action of S3 on P1(R). Furthermore, any element of
P1(R) lies in the orbit of some element of {[1 : s]; s ≥ 2}∪{[0 : 1]}. The lemma follows
since if xr(1− x)−t is a root of unity with t ≥ 2r ≥ 0, then h(x, 1− x) = h(x). �

Proof of Theorem 2.1: Because of Lemma 2.3 it suffices to show that if x ∈ Q\{0, 1}
with x 6= −1, 1/2, 2 and xr = (1− x)t for integers 0 6= t ≥ 2r ≥ 0, then h(x) < log 2.

If r = 0, then x = 1 + ζ for some root of unity ζ 6= ±1. In this case the theorem
follows from Lemma 2.2.

Let us assume r > 0. We fix a number field K that contains x and apply the product
formula (1.1.1) to 1− x to deduce

[K : Q]h(x) =
∑

v

dv log max{1, |x|v} =
∑

v

dv log
max{1, |x|v}
|1− x|v

,

where dv are the local degrees from chapter 1. Since 0 < r < t we apply Lemma 2.1 to
the local terms in the equality above to see that [K : Q]h(x) <

∑
v infinite[Kv : Qv] log 2.

This inequality completes the proof since the sum is just [K : Q] log 2. �

3. Proof of Theorem 2.2

A non-zero algebraic number α is called reciprocal if α and α−1 are conjugated.
We apply Mignotte’s equidistribution result and Smyth’s Theorem ([Smy71]) on lower
bounds for heights of non-reciprocal algebraic integers to deduce the following lemma.

Lemma 2.4. Let α ∈ Q∗ be non-reciprocal with h(α) ≤ log 2
3·105 , then h(1 + α) ≤

0.933 · log 2 + h(α).

Proof. Let α be as in the hypothesis and d = [Q(α) : Q], furthermore let θ0 > 1
be the unique real that satisfies θ3

0 − θ0 − 1 = 0. If α is an algebraic integer, then
dh(α) ≥ log θ0 by Smyth’s Theorem ([Smy71]). The upper bound for h(α) implies

(2.3.1) d ≥ 121700.

On the other hand, if α is not an algebraic integer, then it is well-known that dh(α) ≥
log 2. Thus (2.3.1) holds in any case.
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We split C∗ up into three sectors

Ck = {r · exp(iφ); r > 0 and
2π

3
(k − 1) ≤ φ <

2π

3
k} for 1 ≤ k ≤ 3

and define the function

m(z) =
max{1, |z + 1|}

max{1, |z|}
=

max{1, (r2 + 2r cos φ + 1)1/2}
max{1, r}

for z = r · exp(iφ) with r > 0 and φ ∈ R. Hence

m(z)2 ≤

{
max{1,r2+2r+1}

max{1,r2} : if −2π/3 ≤φ ≤ 2π/3
max{1,r2−r+1}

max{1,r2} : if 2π/3 ≤φ ≤ 4π/3.

Elementary calculus now leads to

(2.3.2) m|C1∪C3 ≤ 2 and m|C2 ≤ 1.

We fix an embedding of Q into C. Let α1. . . . , αd ∈ C∗ be the conjugates of α.
We set Nk = |{i; αi ∈ Ck}| for 1 ≤ k ≤ 3. For any finite place v of Q(α) we have
max{1, |1 + α|v} = max{1, |α|v} by the ultrametric inequality. Since the infinite places
of Q(α) taken with multiplicities correspond to embeddings of Q(α) into C and because
of (2.3.2) we have

(2.3.3) d(h(1 + α)− h(α)) =
d∑

i=1

log m(αi) ≤ (N1 + N3) log 2.

We set ε = (9
2c2( log(2d+1)

d + h(α)))1/3 with c = 2.62. Since log(2d+1)
d is decreasing

considered as function of d ≥ 1, we use (2.3.1) and our hypothesis on h(α) to conclude
ε < 0.1477. We apply Mignotte’s Theorem (ii) ([Mig89], page 83) to the minimal
polynomial of α and to the closure of our sectors Ck to bound

(2.3.4)
Nk

d
≤ 1

3
+ 2.823(

log(2d + 1)
d

+ h(α))1/3.

Our hypothesis on h(α) and (2.3.1) together with (2.3.4) imply Nk
d < 0.4662. This last

bound applied to (2.3.3) concludes the proof. �

We note that the trivial bound h(1+α) ≤ log 2+h(α) holds for all algebraic α. Thus
Lemma 2.4 gives a slight improvement for non-reciprocal α of small height. Instead of
Smyth’s lower bound for heights we could have used the lower bound by Dobrowolski
which holds for any non-zero algebraic number not a root of unity. This approach
leads to slightly worse numerical constants. By taking sectors with smaller angles in
the proof of Lemma 2.4 the constant 0.933 · log 2 can be replaced by any real number
strictly greater than the logarithm of the number (2.1.1) if the height of α is sufficiently
small but positive. But the bound given in Lemma 2.4 is apt for our application.
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In [CZ00] Cohen and Zannier introduced a function S : (1,∞) → R relevant to our
problem. We briefly recall its definition. Say λ > 1 and let ξ, ξ̃ > 1 be the unique reals
such that ξλ = ξ + 1 and ξ̃λ/(λ−1) = ξ̃ + 1, then

S(λ) =
log(ξ + 1) log(ξ̃ + 1)

log(ξ + 1) + log(ξ̃ + 1)
.

Lemma 1 of [CZ00] implies S < log 2, furthermore if xr = (1 − x)t for integers
t > r > 0, then h(x) ≤ S(t/r). The proof of said lemma also shows that S increases on
[2,∞).
Proof of Theorem 2.2: Because of Lemma 2.3 it suffices to show that if x ∈ Q\{0, 1},
x 6= −1, 1/2, 2 and xr = (1 − x)t for integers 0 6= t ≥ 2r ≥ 0, then h(x) < log 1.915. If
r = 0, then x = 1+ ζ for a root of unity ζ 6= 1. Lemma 2.2 implies h(x) ≤ 1

2 log(2
√

3) <
log 1.915. We now assume r > 0 and define λ = t/r ≥ 2.

If λ < 3 ·105, then we have h(x) ≤ S(3 ·105) by the properties of S(·). A calculation
shows that the right-hand side of the last inequality is strictly less then log 1.915.

Finally we assume λ ≥ 3 · 105. Then h(1 − x) = λ−1h(x) ≤ log 2
3·105 by Theorem 2.1.

Let α = x− 1, we have

(2.3.5) (−1)tαt = (1 + α)r.

Let us assume first that α and α−1 are not conjugated, then h(x) ≤ 0.933 · log 2+ log 2
3·105 <

log 1.915 by Lemma 2.4. If α and α−1 are conjugated, then equality (2.3.5) must hold
with α replaced by α−1. Hence 1 = α2t(1+α−1)2r, or 1 = x2r(1−x)2(t−r) in terms of x.
Since r 6= 0 and r 6= 2t this new dependency relation between x and 1−x is independent
of the original relation 1 = xr(1 − x)−t. We conclude that x is a root of unity and so
h(x) = 0. �



CHAPTER 3

Multiplicative dependence and isolation II

In this chapter we continue the study of multiplicatively dependent solutions x, y
of the equation x + y = 1. We recall that M is the set of x ∈ Q\{0, 1} such that x
and 1 − x are multiplicatively dependent. It was first proved by Cohen and Zannier
in [CZ00] that if x ∈ M, then max{h(x), h(1 − x)} ≤ log 2 with equality if and only
if x ∈ {−1, 1/2, 2}. Furthermore, they showed that log 2 is an isolated point in the
range of this particular height function restricted to M. In chapter 2 we worked with
the possibly larger height h(x, 1 − x) and also got log 2 as an upper bound. We also
showed that if x ∈ M\{−1, 1/2, 2}, then h(x, 1 − x) ≤ log 1.915, thus making Cohen
and Zannier’s isolation result explicit. It is thus natural to ask for the exact value of
the greatest limit point of the height. We will answer this question and even determine
all limit points.

1. Introduction

Let
S0 = m(X + Y − 1) = 0.3230659472194505140936 . . .

where m(·) is the logarithmic Mahler measure of a polynomial in complex coefficients,
see (1.2.1). One may interpret S0 as the logarithmic height of the curve defined by
X + Y = 1 in G2

m. In [Smy81] Smyth expressed S0 in terms of the value of the L-
function associated to χ, the (unique) non-trivial character of conductor 3, at s = 2, cf.
chapter 2 equation (2.1.2).

In this chapter we prove that the set of height values

Σ = {h(x, 1− x); x ∈M}

has exactly one limit point equal to S0. It follows that all points in Σ with at most
one exception are isolated. We cannot discard of this one exception because we cannot
exclude that S0 is itself a height value. In fact it seems to be already unknown if S0 is
the logarithm of an algebraic number or not.

We now state the Limit Point Theorem:

Theorem 3.1. Let ε > 0 there is c(ε) depending only on ε such that if x ∈ M and
D = [Q(x) : Q] then

|h(x, 1− x)− S0| ≤
c(ε)
D

e
(ε+log 2) log D

log log 3D .

23
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The constant c(ε) in Theorem 3.1 is effective, see Proposition 3.1 for an explicit
bound of |h(x, 1− x)− S0|.

Of course the theorem implies the boundedness of h(x, 1−x) for x ∈M, but it does
not give the optimal bound log 2.

We deduce two immediate consequences of the previous theorem and Northcott’s
Theorem.

Corollary 3.1. Let xn ∈ M be a sequence such that each xn occurs only finitely
often, then h(xn, 1− xn) → S0 as n →∞.

Corollary 3.2. The set {h(x, 1− x); x ∈M}\{S0} ⊂ R is discrete.

It seems natural to conjecture that the set {h(x, 1− x); x ∈M} ⊂ R is discrete.
The essential tool used in the proof of the Limit Point Theorem is the following

irreducibility result on certain trinomials which may be of independent interest. We
recall that a number field is called Kroneckerian if it is either totally real or a totally
complex quadratic extension of a totally real number field.

Theorem 3.2. Assume K is a Kroneckerian number field. Let n ≥ m ≥ 0 be
coprime integers, ξ, ζ roots of unity in K, and P = Xn + ξXm + ζ ∈ K[X]. Let
P = AB where A,B ∈ K[X], A /∈ K, and such that the zeros of B are precisely the
roots of unity that are zeros of P . Then deg B ≤ 2, furthermore A is irreducible in
K[X] except if P = X2 + ξX − ξ2 and

√
5 ∈ K.

This theorem may be compared with results obtained independently by Ljunggren
in [Lju60] and by Tverberg in [Tve60]. They give a complete factorization over Q of
trinomials such as in Theorem 3.2 with ξ, ζ ∈ {±1}.

A result related to Theorem 3.2 was proved by Schinzel in Corollary 8 ([Sch00] page
417). As in his proof we prove the irreducibility of A by showing that if g is the number
of irreducible factors of A, then g < 2. This bound for g follows from comparing upper
and lower bounds for the Mahler measure of polynomials with coefficients in K. The
upper bound is due to Gonçalvez (Theorem 1.1) and the lower bound is Theorem 1.2
showed by Schinzel. Our proof of Theorem 3.2 follows Schinzel’s proof of Corollary 8.

Because X2+ξX−ξ2 = (X−ξα)(X−ξβ) for α = (−1+
√

5)/2, β = (−1−
√

5)/2, this
polynomial is reducible over Q(ξ) precisely when this field contains

√
5. Furthermore,

this situation does occur for a root of unity ξ. Indeed since Q(
√

5) is abelian extension
of Q it is contained in a field generated by a root of unity by the Theorem of Kronecker-
Weber. Or by an elementary argument: if ξ is a primitive 5th root of unity, then it is
well-known that (ξ − ξ2 − ξ3 + ξ4)2 = 5.

For example Theorem 3.2 implies that X2007 +X +1 is irreducible in Qab[X], where
Qab is the maximal abelian extension of Q.

We give a short description of the proof of Theorem 3.1: Theorem 3.2 enables us
to express the height of essentially all x ∈ M in terms of the average over the Mahler
measure of the conjugates of a certain trinomial much like the one in Theorem 3.2. We
use Koksma’s inequality to compare this average with a 2-dimensional integral which



3. MULTIPLICATIVE DEPENDENCE AND ISOLATION II 25

equals S0. Two steps are required to get an explicit bound in Koksma’s inequality. First
we apply a classical result of Erdös and Turán to show that roots of unity of fixed order
are sufficiently well distributed around the unit circle. Second we need a uniform bound
for the total variation of a family of functions related to Mahler measures of certain
trinomials. The key estimate in bounding the total variation will be Lemma 3.13 which
follows from a lengthy calculation.

We remark that it is not completely evident that the set of height values Σ is an
infinite set. The infinitude of Σ can be proved by an argument kindly mentioned to me
by Masser and Zannier. In fact if ζ is a primitive pth root of unity and ξ is a primitive
qth root of unity with p and q primes, then h(1−ζ) = h(1−ξ) if and only if p = q. Indeed
let us assume p 6= q and H(1− ζ) = H(1− ξ) where H(·) = exph(·). By the definition
of the height it is clear that H(1 − ζ)2(p−1)(q−1) = H(1 − ξ)2(p−1)(q−1) ∈ Q(ζ) ∩Q(ξ).
These two fields have intersection Q, hence H(1 − ζ)2(p−1)(q−1) is a rational and even
an integer. Since any conjugate of 1 − ζ generates the unique prime ideal above p in
the ring integers of Q(ζ) we conclude that H(1− ζ)2(p−1)(q−1) is a power of p. Similarly
H(1− ζ)2(p−1)(q−1) is a power of q. An easy calculation shows that 1 − ζ is not a root
of unity (cf. the remark at the beginning of section 2). So by Kronecker’s Theorem
H(1− ζ) > 0 and we have a contradiction.

On the other hand, carefully calculating the height shows that h(1 + ζ) < S0 <
h(1 − ζ) if ζ is a primitive pth root of unity for any prime p. We will not show this
inequality here. Together with Theorem 3.1 it gives another proof of the fact that Σ is
infinite. Moreover, we conclude that h(x, 1− x) attains a second, third, etc. maximum
respectively minimum as x runs over M. Since Theorem 3.1 is effective, one could use
a machine to calculate these values.

In [Zag93] Zagier asked the following question on the set of small height values
h(x) + h(1 − x) where x ∈ Q is now unrestricted: does there exist a sequence c1 <
c2 < · · · such that h(x) + h(1 − x) = ci has finitely many algebraic solutions and
h(x) + h(1− x) > lim sup ci for all other x ∈ Q? In this more general setting no answer
is known.

The height used by Cohen and Zannier was max{h(x), h(1 − x)}. With Theorem
3.1 we can determine the limit points of Σ′ = {max{h(x), h(1− x)}; x ∈M}:

Corollary 3.3. The closure of Σ′ ⊂ R is equal to the union of [S0/2, S0] with a
discrete set.

We complete this section by giving a further application to Theorem 3.2. The subset
of elements in M with degree bounded by a parameter is finite by Northcott’s Theorem
and Theorem 2.1. In [Mas07] Masser proposed the problem of counting elements in M
of bounded degree. More precisely, given a real D and

M(D) = {x ∈M; [Q(x) : Q] ≤ D},

can one say something about the asymptotic behavior of the cardinality |M(D)| as D
goes to infinity?
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Let φ be Euler’s totient function and D ≥ 3. Masser proved the bounds

(3.1.1) c0D
3 − 200D2(log D)3 ≤ |M(D)| ≤ 1018D3 (log D)9

(log log D)6

with

c0 =
6
π2

∞∑
k=1

1
φ(k)2

.

Masser obtained the lower bound in (3.1.1) by carefully counting zeros of trinomials.
The upper bound comes from an explicit “relative Lehmer”-type height lower bound
proved by Pontreau in [Pon05]. The intricate definition of c0 has some significance: in
[Mas07] Masser conjectured

(3.1.2) lim
D→∞

|M(D)|
D3

= c0.

With the help of Theorem 3.2 we will prove Masser’s conjecture by improving the
upper bound in (3.1.1). We even give an asymptotic equality.

Theorem 3.3. Let D ≥ 3, then

(3.1.3) c0D
3 − 200D2(log D)3 ≤ |M(D)| ≤ c0D

3 + 1000D2(log D)3.

In particular (3.1.2) holds.

2. Factorizing trinomials over Kroneckerian fields

Let S1 ⊂ C be the unit circle around 0. We will often use the elementary fact that
if x+y = 1 with x, y ∈ S1, then x and y are primitive sixth roots of unity with x = y−1.
In particular there are only two possibilities for (x, y).

Lemma 3.1. Let n > m > 0 be integers, ξ, ζ ∈ S1, and P = Xn + ξXm + ζ ∈ C[X].
Then P has only simple zeros. Furthermore, if z ∈ C∗ with P (z) = P (z−1) = 0, then
zn−2m = ξ2ζ−1.

Proof. We begin by proving the first assertion in the lemma. Let z be a zero of P
with multiplicity > 1. In this case we have zn + ξzm = −ζ and nzn + ξmzm = 0. We
consider the two previous equalities as linear equations in unknowns zn and zm. Since
n 6= m we can solve for zn and zm:

zn =
m

n−m
ζ, zm = − n

n−m

ζ

ξ
.

Taking absolute values and setting µ = m/n gives |zn| = µ/(1−µ) and |zm| = 1/(1−µ).
Hence µµ(1− µ)1−µ = 1, a contradiction since 0 < µ < 1.

The second part of the assertion is very easy. Let z ∈ C∗ with

(3.2.1) zn + ξzm + ζ = 0 and z−n + ξz−m + ζ = 0.

So also zn + ζξzn−m + ζ = 0. We subtract this equality from the first one in (3.2.1) to
see that zn−2m = ξ2ζ−1. �
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Proof of Theorem 3.2: If n = m or m = 0, then the result is immediate as in this case
we have n = 1. So let us also assume n > m > 0, in particular P (0) 6= 0.

Let P = AB be a decomposition as in the statement of Theorem 3.2; we may assume
that A and B are monic. Say B(η) = 0, then η is a root of unity and P (η) = 0. Hence
−ζ−1ηn + (−ζ−1ξηm) = 1. We conclude that −ζ−1ηn = x, −ζ−1ξηm = x−1 where x
is a primitive 6th root of unity. Since n and m are coprime there exist a, b ∈ Z with
am + bn = 1. Hence xb−a = (−1)a+bζ−a−bξaη. Since there are only 2 possibilities for
x, there are at most 2 such η. By Lemma 3.1 we conclude deg B ≤ 2. The first part of
the assertion follows.

Now let A = A1 · · ·Ag where the Ai ∈ K[X] are irreducible and monic. By hypoth-
esis A /∈ K, so g ≥ 1.

We claim that the Ai are not self-inverse, i.e. Xdeg AiAi(X−1)Ai(X)−1 is not a
constant. Indeed let us assume the contrary. If Ai(z) = 0, then z 6= 0 and P (z) =
P (z−1) = 0. By Lemma 3.1 we have zn−2m = ξ2ζ−1. Since z is not a root of unity we
have n = 2m, so n = 2 and m = 1. Hence ξ2 = ζ and so P = X2 + ξX + ξ2. But now
all zeros of P are roots of unity, contradicting our assumption A /∈ K. Therefore none
of the Ai are self-inverse.

By Gauss’s Lemma we have Ai ∈ OK [X], and since the Ai are monic we have
N(cont(Ai)) = 1. By Theorem 1.2 we get the lower bound

∏
σ

M(σ(Ai)) ≥

(√
5 + 1
2

)[K:Q]/2

where the product runs over all embeddings σ : K → C extended to K[X] in the
usual manner. The Mahler measure is multiplicative and we have M(σ(B)) = 1 by
construction, therefore

∏
σ

M(σ(P )) =
g∏

i=1

∏
σ

M(σ(Ai)) ≥

(√
5 + 1
2

)g[K:Q]/2

.(3.2.2)

Let us assume for the moment that P (X)P (X−1) has strictly more than 3 non-zero
terms. Let σ : K → C be an embedding, we will bound M(σ(P )) from above. Since
σ(P ) has three coefficients of modulus 1 Theorem 1.1 in chapter 1 implies M(σ(P )) <√

5+1
2 . If we apply this last inequality to bound the left side of (3.2.2) we conclude g < 2,

hence A = A1 is irreducible.
But what if

P (X)P (X−1)

= ζ−1Xn + ζX−n + ξ−1Xn−m + ξXm−n + ξζ−1Xm + ξ−1ζX−m + 3

has at most 3 non-zero terms? Since n > m > 0 are coprime we must have n = 2,
m = 1, and ξ2 = −ζ. Therefore P = X2 + ξX − ξ2, and this polynomial has no roots
of unity as zeros, so P = A. As already pointed out in section 1 the polynomial A is
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reducible K if and only if
√

5 ∈ K, but this is just the case we are excluding in the
assertion. �

3. A reduction

We define a norm || · || on R2 which will be used in certain places of this chapter.
Let (r, s) ∈ R2, we set

||(r, s)|| =
{
|r|+ |s| if rs ≥ 0,
max{|r|, |s|} if rs < 0.

The following lemma will be helpful throughout the whole chapter, it is similar to
Lemma 2.3.

Lemma 3.2. Let x ∈M. There exist a root of unity ζ, integers k, l,m, n, and α ∈ Q
such that

n ≥ 2m ≥ 0, (n−m)k − nl = 1, h(x, 1− x) = nh(α),

αn−ζ lαm + ζk = 0, and Q(x) = Q(α, ζ).

Furthermore, there exist coprime integers r and s such that xr(1 − x)s = ±ζ and
||(r, s)|| = n.

Proof. The lemma is simple if x and 1− x are both roots of unity. Indeed in this
case x is a primitive 6th root of unity and x + x−1 = 1. We set α = x, ζ = x−1, n = 1,
m = 0, k = 1, l = 0, r = 0, and s = 1.

Let M0 = M\{e±2πi/6}, then for any x ∈M0 there is a unique λ(x) ∈ P1(Q) such
that if λ(x) = [r : s] with r, s ∈ Z coprime then xr(1− x)s is a root of unity. Since the
pair (r, s) is uniquely determined up to sign it makes sense to speak of ||λ(x)||. The
two maps φi : M0 →M0 given by φ1(x) = 1/x, φ2(x) = 1− x generate the symmetric
group S3 which acts on M0. These actions leave h(x, 1 − x) invariant by the product
formula. Furthermore, we have Q(φi(x)) = Q(x). We check that if λ(x) = [r : s] with
coprime r, s ∈ Z, then λ(φ1(x)) = [r + s : −s] and λ(φ2(x)) = [s : r]. So we have an
action of S3 on P1(R). Let w ∈ R\{−1, 0}, then the orbit of [1 : w] equals{

[1 : w], [1 : − w

1 + w
], [1 : −1− 1

w
], [1 : −1− w], [1 : − 1

1 + w
], [1 :

1
w

]
}

.

It is easily verified that

inf
w∈R\{−1,0}

max{w,− w

1 + w
,−1− 1

w
,−1− w,− 1

1 + w
,

1
w
} ≥ 1.

Since the orbit of [0 : 1] contains [1 : −1] and [1 : 0] we conclude that any point in
P1(R) is in the orbit of some element of F = {[1 : w]; w ≥ 1 in R} ∪ {[0 : 1]}. Finally
it is simple to show ||λ(x)|| = ||λ(φi(x))||.

Let x ∈ M0, by letting S3 act on x we assume λ(x) = [r : s] ∈ F with r, s ∈ Z
coprime and r ≥ 0, therefore s ≥ r and s > 0. So xr(1− x)s = ζ for some root of unity
ζ. We choose integers a, b with ar + bs = 1 and set α = xb(1− x)−a. Then αs = xζ−a
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and α−r = ζ−b(1− x). Clearly we have Q(x) = Q(α, ζ) and αr+s − ζ−aαr + ζb−a = 0.
We choose n = r+s, m = r, k = b−a, and l = −a. By definition ||(r, s)|| = r+s = n. It
remains to show the height equality in the assertion. We note h(x, 1−x) = h(x−1, x−1−
1) by the product formula. We have ζx−r−s = (x−1 − 1)s, so by local considerations
h(x−1, x−1 − 1) = h(x−1 − 1) = (1 + r/s)h(x) = (r + s)h(α) = nh(α). �

We apply Theorem 3.2 to study irreducible factors of the trinomial in the previous
lemma. If ζ is a root of unity we let ord ζ denote its order.

Lemma 3.3. Let x ∈ M and h(x, 1 − x) > 0. In the situation of Lemma 3.2 set
K = Q(ζ) and R = Xn − ζ lXm + ζk. There exist A,B ∈ K[X] with A irreducible,
the zeros of B are precisely the roots of unity that are zeros of P , and deg B ≤ 2.
Furthermore, if ord ζ - 6 then B ∈ K.

Proof. Let R = AB where the zeros of B are precisely the roots of unity that are
zeros of R. We would like to apply Theorem 3.2. We first note that A /∈ K since A 6= 0
and A(α) = 0 where α is no root of unity. Next we dismiss the case where R is one
of the exceptions described in the statement of Theorem 3.2. What happens if n = 2,
m = 1, and ζ2l = −ζk? Since (n−m)k− nl = 1 we conclude k− 2l = 1 and so ζ = −1.
But then K = Q. Theorem 3.2 applies in our situation since

√
5 /∈ Q. Hence deg B ≤ 2

and A ∈ K[X] is irreducible.
Let us assume that R has a zero η which is a root of unity. Then −ζ−kηn+ζ l−kηm =

1. Hence (ζ−kηn)6 = (ζ l−kηm)6 = 1. So

1 = (ζ−kηn)−6m(ζ l−kηm)6n = ζ6(km+ln−kn) = ζ−6.

Therefore if ord ζ - 6, then B has no zeros, hence B ∈ K. �

4. Averaging the Mahler measure

Let θ ∈ R and let n ≥ m ≥ 0 be integers with n 6= 0. We introduce the following
notation

P (X, θ) = Pnm(X, θ) = Xn − e−2πiθXm + 1,

Q(X, θ) = Qnm(X, θ) = (Xn − e−2πiθXm + 1)(X−n − e2πiθX−m + 1)(3.4.1)

f(θ) = fnm(θ) =
∫ 1

0
log |Pnm(e2πiu, θ)|du.

Clearly f satisfies f(θ + 1) = f(θ). This function equals log M(Pnm(X, θ)) and
is therefore continuous by a classical result of Mahler. If ζ ∈ S1, then Qnm(ζ, θ) =
|Pnm(ζ, θ)|2 ≥ 0. So for example

(3.4.2) fnm(θ) =
1
2

∫ 1

0
log Qnm(e2πiu, θ)du.

We will often omit the indices n and m to ease notation.
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Lemma 3.4. Let a, d be positive integers and ζ = e2πia/d, furthermore let k, l,m, n
be integers with n ≥ m ≥ 0 and (n−m)k − nl = 1. Then

log M(Xn − ζ lXm + ζk) = fnm(
a

dn
).

Proof. We have

log M(Xn − ζ lXm + ζk) =
∫ 1

0
log |e2πi(nu− ka

d
) − e2πi(mu+a

d
(l−k)) + 1|du.

Of course n > 0, so the change of variables u′ = u− ak
dn leads to

log M(Xn − ζ lXm + ζk) =
∫ 1− ak

dn

− ak
dn

log |e2πinu′ − e2πi(mu′− a
dn

) + 1|du′.

Since the integrand above is invariant under u′ 7→ u′ +1 we may replace the integration
limits by 0 and 1. This completes the proof. �

Lemma 3.5. Let x ∈ M and h(x, 1 − x) > 0. In the situation of Lemma 3.2 and
with d = ord ζ we have

(3.4.3) h(x, 1− x) =
n

[Q(ζ, α) : Q]

∑
1≤a≤d, (a,d)=1

fnm(
a

dn
).

Furthermore, n− 2 ≤ [Q(ζ, α) : Q(ζ)] ≤ n in general and [Q(ζ, α) : Q(ζ)] = n if d - 6.
Finally φ(d) ≤ [Q(x) : Q].

Proof. By Lemma 3.2 it suffices to show that nh(α) is equal to the right side of
(3.4.3). Let R be the polynomial given implicitly in the assertion of Lemma 3.2, i.e.
R = Xn − ζ lXm + ζk ∈ K[X] with K = Q(ζ); we have R(α) = 0. Also n ≥ 2m and so
n > m since n and m cannot be both zero. In particular α is an algebraic integer.

By Lemma 3.3 we may factor R = AB with A,B ∈ K[X], where A is irreducible
and monic, and such that the zeros of B are precisely the roots of unity that are zeros of
R. We note that B is also monic. Since α is not a root of unity we conclude A(α) = 0.
Therefore A is the minimal polynomial of α over K. So A′ =

∏
σ σ(A) is the minimal

polynomial of α over Q, here σ runs over all embeddings K → C. Since A′ is monic
and α is an algebraic integer we conclude A′ ∈ Z[X] and therefore by (1.2.3)

(3.4.4) h(α) =
1

[Q(x) : Q]
log M(A′) =

1
[Q(x) : Q]

∑
σ

log M(σ(A)).

The zeros of the monic polynomial B are roots of unity and the Mahler measure is
multiplicative, so we may replace A by R in (3.4.4).

Equality (3.4.3) follows immediately from (3.4.4), Lemma 3.4, and Q(x) = Q(ζ, α).
The assertions regarding [Q(ζ, α) : Q(ζ)] follow from Lemma 3.3. Since φ(d) = [Q(ζ) :
Q] and Q(ζ) ⊂ Q(x) we conclude φ(d) ≤ [Q(x) : Q]. �
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5. Bounding the variation

Throughout this section we use the notation from Lemma 3.2, i.e. n ≥ 2m ≥ 0 are
coprime integers and (n−m)k − nl = 1 for integers k, l. These properties imply n > 0
so we may define µ = m/n ∈ [0, 1/2]. Furthermore, we keep the notation introduced
around (3.4.1)

We define E = Enm to be the set of all θ ∈ [0, 1] such that Qnm(ζ, θ) = 0 for some
ζ ∈ S1. Equivalently, Enm is the set of θ ∈ [0, 1] with Pnm(ζ, θ) = 0 for some ζ ∈ S1.

Lemma 3.6. The set Enm is finite.

Proof. We assume that ζ ∈ S1 satisfies P (ζ, θ) = 0. Then −ζn + e−2πiθζm = 1
and so

ζ6n = (e−2πiθζm)6 = 1.

We divide the mth power of the first expression by the nth power of the second expression
and conclude e12πiθn = 1. Since n 6= 0 there are only finitely many θ ∈ [0, 1] that satisfy
this last inequality. �

Lemma 3.7. Let θ ∈ [0, 1]\Enm and say m > 0. We consider Qnm(X, θ) as a
Laurent polynomial in X. If z 6= 0 is a zero of Qnm(X, θ), then it is a simple zero, and
furthermore ∂

∂θQnm(z, θ) 6= 0.

Proof. For brevity we set ξ = e−2πiθ with θ ∈ [0, 1]\E. By (3.4.1) we have

Q(X, θ) = P (X, θ)P (X−1,−θ),(3.5.1)
∂

∂X
Q(X, θ) =

∂P

∂X
(X, θ)P (X−1,−θ)− P (X, θ)

1
X2

∂P

∂X
(X−1,−θ).(3.5.2)

We prove the first part by contradiction. So assume z 6= 0 is a zero of Q(X, θ) of
multiplicity > 1, hence z is a zero of both (3.5.1) and (3.5.2). By our hypothesis on θ
we have |z| 6= 1.

Let us assume first that P (z, θ) = 0. By Lemma 3.1 ∂
∂X P (X, θ) is non-zero at z.

We get P (z−1,−θ) = 0 by (3.5.2). We apply the second statement in Lemma 3.1 and
|z| 6= 1 to conclude that n = 2m and ξ2 = 1. Thus z2m− ξzm + ξ2 = 0, hence zm/ξ is a
root of unity, a contradiction.

The case P (z−1,−θ) = 0 is similar and also leads to a contradiction.
We turn to the second part of the lemma. We expand Q and its derivative:

Q = Xn + X−n − ξ−1Xn−m − ξXm−n − ξXm − ξ−1X−m + 3,(3.5.3)
∂Q

∂θ
= 2πi(ξXm−n − ξ−1Xn−m + ξXm − ξ−1X−m).(3.5.4)

If z 6= 0 is a common zero of Q(X, θ) and ∂
∂θQ(X, θ), we will derive a contradiction.

We define a = zn and b = −ξzm. Then by (3.5.3) and (3.5.4) we have the identities
a + a−1 + ab−1 + a−1b + b + b−1 + 3 = 0 and ab−1− a−1b− b + b−1 = 0. We add the two
to obtain

(3.5.5) a + a−1 + 2ab−1 + 2b−1 + 3 = 0.
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By (3.4.1) we have either a + b + 1 = 0 or a−1 + b−1 + 1 = 0. In both cases we can use
(3.5.5) to deduce that a is a root of unity. Therefore so is z, this contradicts our choice
θ /∈ E. �

We define

Tnm(X, θ) = (
∂Qnm

∂θ
/Qnm)(X, θ).

Lemma 3.8. Let θ ∈ [0, 1]\Enm and say m > 0. If Pnm(z, θ) = 0 then z 6= 0,
1 + z−n 6= 0, µ− (1 + z−n)−1 6= 0, and the residue satisfies

resX=z
Tnm(X, θ)

X
= −2πi

n

(
µ− 1

1 + z−n

)−1

.

Proof. Say P (z, θ) = 0, then z 6= 0 since n > m > 0. We set a = zn, ξ = e−2πiθ,
and b = −ξzm, hence a + b = −1. The second non-vanishing statement follows since
1 + z−n = 1 + a−1 = −ba−1.

Lemma 3.7 implies that the non-zero poles of T (X, θ)/X are precisely the zeros of
Q(X, θ) and that these poles are all simple. Thus the residue of T (X, θ)/X at z is given
by

resX=z
T (X, θ)

X
=

1
z

∂
∂θQ(X, θ)
∂

∂X Q(X, θ)
.

With this equality, (3.5.3), and (3.5.4) we evaluate

resX=z
T (X, θ)

X
(3.5.6)

= −2πi
a−1b− ab−1 + b− b−1

na− na−1 + (n−m)ab−1 − (n−m)a−1b + mb−mb−1

= −2πi

n

b2 − a2 + ab2 − a

a2b− b + a2 − a2µ− b2 + b2µ + ab2µ− aµ

= −2πi

n

(a + 1)(a2 + a + 1)
(µ(a + 1)− a)(a2 + a + 1)

= −2πi

n

(
µ− 1

1 + a−1

)−1

,

here the second to last equality follows by using a + b = −1. This calculation also
implies the last non-vanishing statement in the assertion. �

The next Lemma is very similar to Lemma 3.8

Lemma 3.9. Let θ ∈ [0, 1]\Enm and say m > 0. If Pnm(z, θ) = 0 then z 6= 0,
1 + z−n 6= 0, µ− (1 + z−n)−1 6= 0, and the residue satisfies

resX=z−1

Tnm(X, θ)
X

= −2πi

n

(
µ− 1

1 + z−n

)−1

.
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Proof. The proof follows the lines of the proof of Lemma 3.8: we set a = z−n and
b = −e−2πiθz−m. This time the relation is a+ b+ab = 0. The proof follows by applying
this equation to the second to last equality in (3.5.6). �

For each z ∈ C we define a map σz : C → C: if |z| < 1 we set σz(w) = w for all
w ∈ C, if |z| ≥ 1 we set σz(w) = w for all w ∈ C.

Lemma 3.10. The map θ 7→ fnm(θ) is continuous on [0, 1] and differentiable on
[0, 1]\Enm. If θ ∈ [0, 1]\Enm and m > 0 then

(3.5.7) f ′nm(θ) = −πi

n

∑
z, Pnm(z,θ)=0

σz

(
µ− 1

1 + z−n

)−1

.

Proof. The continuity of f was already mentioned at the beginning of section 4.
Now say θ ∈ [0, 1]\E. By Lemma 3.6 Q(e2πiu, θ) > 0 for all u ∈ R. By compactness of
S1 we have Q(e2πiu, θ′) > 0 for all θ′ in some neighborhood of θ and all u ∈ R. Hence
f is differentiable at θ by (3.4.2).

Now let us assume m > 0. By the discussion in the last paragraph we may exchange
integration and differentiation to obtain

df

dθ
=

1
2

d

dθ

∫ 1

0
log Q(e2πiu, θ)du =

1
2

∫ 1

0

∂

∂θ
log Q(e2πiu, θ)du

=
1
2

∫ 1

0
T (e2πiu, θ)du.(3.5.8)

We can rewrite (3.5.8) as a complex integral

(3.5.9)
df

dθ
=

1
4πi

∫
|z|=1

T (z, θ)
z

dz,

the path being understood as counterclockwise. The integrand has no pole on |z| = 1
because θ /∈ E. This meromorphic function also has no pole at z = 0 by (3.5.3), (3.5.4),
and since m ≥ 1.

As already stated in the proof of Lemma 3.8, the non-zero poles of T (X, θ)/X are
precisely the zeros of Q(X, θ). We apply the Residue Theorem to (3.5.9) to get

(3.5.10)
df

dθ
=

1
2

∑
Q(z,θ)=0
0<|z|<1

resX=z
T (X, θ)

X
.

Let us now assume Q(z, θ) = 0 and 0 < |z| < 1. By (3.4.1) either P (z, θ) = 0
or P (z−1,−θ) = 0. These two cases are mutually exclusive since Q has only simple
zeros by Lemma 3.7. We note that in the second case P (z−1, θ) = 0 and |z−1| > 1. To
determine the residue at z we apply Lemma 3.8 or 3.9 depending on whether P (z, θ) = 0
or P (z−1, θ) = 0. Hence each term in (3.5.10) corresponds to exactly one term in the
sum (3.5.7).

On the other hand, if z 6= 0 is a zero of P (X, θ), then Q(z, θ) and Q(z−1, θ) both
vanish. Since θ /∈ E one and only one of the values |z|, |z−1| is strictly less than 1. As
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before any term in (3.5.7) corresponds to exactly one term in (3.5.10) by Lemma 3.8 or
3.9. �

Lemma 3.11. If z ∈ C∗, θ ∈ R, and ηn = 1 with Pnm(z, θ) = Pnm(ηz, θ), then
η = 1.

Proof. Say ξ = e−2πiθ, then zn − ξzm + 1 = zn − ξηmzm + 1. So ηm = 1 and now
n(k − l)−mk = 1 implies η = 1. �

Unfortunately, the absolute value of a term in the sum (3.5.7) cannot in general be
bounded from above independently of n. Nevertheless we prove a vanishing result which
will enable us to get such a bound for |f ′nm(θ)|:

Lemma 3.12. Let θ ∈ [0, 1]\Enm and m > 0, then

(3.5.11)
∑

z, Pnm(z,θ)=0

(
µ− 1

1 + z−n

)−1

= 0.

Proof. By Lemma 3.1 the polynomial P (X, θ) has exactly n distinct zeros for fixed
θ. As z runs over these zeros, the values zn are pairwise distinct by Lemma 3.11 and
thus so are

(3.5.12)
(

µ− 1
1 + z−n

)−1

.

For fixed ξ = e−2πiθ we consider the non-zero polynomial

U = Xn − ξn(µX − 1)m((1− µ)X + 1)n−m ∈ C[X]

of degree at most n. If P (z, θ) = 0, then a calculation using zn + 1 = ξzm shows that
(3.5.12) is a zero of U . Since there are n distinct values (3.5.12), these must be precisely
the zeros of U . In particular U has degree n. It follows that the sum in the assertion is
a multiple of the coefficient of Xn−1 in U . But this coefficient is

−ξn(µm(1− µ)n−m−1(n−m)−mµm−1(1− µ)n−m) = 0

since µ = m/n. �

Lemma 3.13. Let θ ∈ [0, 1]\Enm, then |f ′nm(θ)| < 4π/
√

3.

Proof. We eliminate the case m = 0 first. Indeed then automatically n = 1 and
P = X − e−2πiθ + 1. Thus f(θ) = log max{1, |e−2πiθ − 1|} for all θ. The function f is
differentiable on [0, 1]\{1/6, 5/6}. Using calculus one can show that the derivative of f
is at most

√
3π for 1/6 < θ < 5/6.

Let us move on to the case m > 0. We add πi/n times the expression on the left of
(3.5.11) to f ′(θ) as in Lemma 3.10 to deduce

(3.5.13) f ′(θ) =
πi

n

∑
z, P (z,θ)=0

|z|>1

((
µ− 1

1 + z−n

)−1

−
(

µ− 1
1 + z−n

)−1
)

.
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We continue by bounding the absolute value of (3.5.13) term-wise.
Let P (z, θ) = 0, |z| > 1, and let us define δ = µ− 1

1+z−n . We have zn = µ−δ
1−µ+δ and

zn + 1 = 1
1−µ+δ = ξzm where ξ = e−2πiθ. So |1− µ + δ| < 1 and

(3.5.14) |µ− δ|m = |1− µ + δ|m−n,

thus |µ− δ| > 1. We apply the parallelogram equality |x + y|2 + |x− y|2 = 2|x|2 + 2|y|2
(x, y ∈ C) with x = 1/2 and y = 1/2− µ + δ to obtain

(3.5.15) |1− µ + δ|2 + |µ− δ|2 =
1
2

+ 2
∣∣∣∣12 − µ + δ

∣∣∣∣2 = 1 + 2|µ− δ|2 + 2(Reδ)− 2µ.

We define w0 = |µ − δ|2 > 1. From (3.5.14) we deduce |1 − µ + δ|2 = w
−µ/(1−µ)
0 . We

insert this equality into (3.5.15) to obtain

(3.5.16) 2Reδ = w
−µ/(1−µ)
0 − w0 + 2µ− 1.

On the other hand w0 = |δ|2−2µReδ+µ2, hence together with (3.5.16) we get k(w0) = 0
where

k(w) = µw−µ/(1−µ) + (1− µ)w − |δ|2 + µ2 − µ, w ∈ (0,∞).

Elementary calculus shows that k has a unique minimum at(
µ

1− µ

)2(1−µ)

≤ 1.

Hence k is strictly increasing on [1,∞). Since w0 > 1 we deduce

0 = k(w0) > k(1) = µ2 − µ + 1− |δ|2,

and so |δ|2 > µ2 − µ + 1. But the right-hand side of this inequality is ≥ 3/4 since
µ ∈ (0, 1/2]. We conclude

(3.5.17) |δ| >
√

3/2.

Back to our derivative. Each term in (3.5.13) is of the form δ−1 − δ−1 with δ as in
the last paragraph. Thus we apply the triangle inequality and (3.5.17) to (3.5.13) to
complete the proof. �

Finally we have:

Lemma 3.14. The map θ 7→ fnm(θ/n) is of bounded variation on [0, 1) with total
variation bounded by 4π√

3n
.

Proof. If S is a real interval [a, b] with a finite set of points removed, and F is a
continuous real-valued function on [a, b] and differentiable on S with |F ′| ≤ M , then it
is well-known that the total variation of F is at most M(b − a). So the result follows
from Lemma 3.13 with F (θ) = f(θ/n) and M = 4π√

3n
. �
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6. Bounding the discrepancy

Recall that φ is Euler’s totient function. Let d be a positive integer and let {xk}
denote the sequence of numbers a/d where a runs over the φ(d) integers in [1, d] that are
coprime to d. We set D(d) to be the discrepancy of this sequence as defined in [Har98].
That is

(3.6.1) D(d) = sup
I⊂[0,1)

∣∣∣∣∣∣∣(
∑

1≤a≤d, (a,d)=1
a/d∈I

1)− φ(d)|I|

∣∣∣∣∣∣∣ .
Above I runs over all open, closed, and half-open intervals of length |I|. Let hd =
1 + 1

2 + · · ·+ 1
d be the dth harmonic number and let ω(d) denote the number of distinct

prime factors of d. We use a Theorem of Erdös and Turán to show:

Lemma 3.15. There exists an absolute constant c such that

(3.6.2) D(d) ≤ c
hdφ(d)

d

∏
p|d

prime

(1 +
p

p− 1
) ≤ c2ω(d)hd for all d ≥ 1.

The choice c = 3 + 2/π is possible.

Proof. The second inequality in (3.6.2) follows from

φ(d)
∏
p|d

prime

(1 +
p

p− 1
) = d

∏
p|d

prime

(1 +
p− 1

p
) ≤ d2ω(d).

We proceed to prove the first inequality in (3.6.2). The Erdös-Turán Theorem
(Theorem 5.5 in [Har98] page 129) applied with L = d and N = φ(d) gives the upper
bound

(3.6.3)
D(d)
φ(d)

≤ 1
d + 1

+ 2(1 + 1/π)
d∑

m=1

1
mφ(d)

∣∣∣∣∣∣
φ(d)∑
k=1

exp(2πimxk)

∣∣∣∣∣∣ .
We start by handling the Ramanujan sum

s(m) =
φ(d)∑
k=1

exp(2πimxk) =
∑

1≤a≤d, (a,d)=1

exp(2πima/d).

We use Theorem 272 of [HW05] to evaluate

s(m) =
µ(d/(d, m))
φ(d/(d,m))

φ(d)
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where µ is the Möbius function. We rearrange the second term on the right of (3.6.3)
and obtain

d∑
m=1

1
mφ(d)

∣∣∣∣∣∣
φ(d)∑
k=1

exp(2πimxk)

∣∣∣∣∣∣ =
d∑

m=1

|µ(d/(d, m))|
mφ(d/(d,m))

=
∑
e|d

∑
1≤m≤d
(d,m)=e

|µ(d/e)|
mφ(d/e)

=
∑
e|d

|µ(d/e)|
eφ(d/e)

∑
1≤m≤d

(d,m)=e, m′=m/e

1
m′

≤ hd

∑
e|d

|µ(d/e)|
eφ(d/e)

.

The arithmetic function g(a) =
∑

e|a
|µ(a/e)|
eφ(a/e) is multiplicative. If p is a prime and f is a

positive integer, then g(pf ) = p−f (1 + p/(p− 1)). Hence

g(a) =
1
a

∏
p|a

(1 +
p

p− 1
) ≥ 1

a
.

The lemma now follows easily from D(d)/φ(d) ≤ 1
d+1 + 2(1 + 1/π)g(d)hd. �

It is well-known that 2ω(n) = O(nε) and n = O(φ(n)1+ε) for every ε > 0. Hence the
expression D(d)/φ(d) is O(d−1+ε) and especially D(d)/φ(d) → 0 as d →∞.

7. Proof of Theorem 3.1 and Corollary 3.3

Lemma 3.16. Let m,n be coprime integers with n ≥ 1, we set

N =
[

n 0
m −1/n

]
and let F ⊂ R2 denote the image of [0, 1)2 under N . Then

(i) if x ∈ R2 there exists y ∈ Z2 with x− y ∈ F ,
(ii) if x′, x′′ ∈ F with x′ − x′′ ∈ Z2 then x′ = x′′.

Proof. Let x = (x1, x2)
t ∈ R2. Since m and n are coprime we have

{mk

n
mod 1; 1 ≤ k ≤ n} = {k

n
mod 1; 1 ≤ k ≤ n}.

We may choose an integer k with 1 ≤ k ≤ n such that

(3.7.1) x2 −
m

n
(x1 − [x1])−m +

mk

n
= y2 −

t

n
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for some t ∈ [0, 1) and some y2 ∈ Z. We define s = (x1 − [x1] + n − k)/n and note
s ∈ [0, 1). The left-hand side of (3.7.1) equals x2 −ms. We set y1 = [x1] − n + k and
y = (y1, y2)

t ∈ Z2. Part (i) now follows since x = y + N(s, t)t.
We now prove part (ii). So let x′ and x′′ be as in the hypothesis, i.e. x′−x′′ = Nu ∈

Z2. We may assume u = (s, t)t with 0 ≤ t < 1 and |s| < 1. Now ns and ms − t/n are
both integers. We subtract n times the second expression from m times the first and
conclude t ∈ Z. Hence t = 0 and so ms, ns are integers. There are integers a and b with
am + bn = 1, it follows that s = ams + bns ∈ Z. Hence s = 0; we conclude x′ = x′′. �

The map θ 7→ fnm(θ/n) is continuous on [0, 1], so we may integrate.

Lemma 3.17. Let m,n be coprime integers with 0 6= n ≥ m ≥ 0, then∫ 1

0
fnm(

θ

n
)dθ = S0.

Proof. We have∫ 1

0
f(

θ

n
)dθ =

∫
[0,1]2

log |e2πinu − e2πi(mu−θ/n) + 1|dudθ.

We may replace [0, 1]2 by [0, 1)2 in this equality, indeed the two sets differ by a set of
measure zero. We apply the linear change of coordinates u′ = nu, θ′ = mu − θ/n of
determinant −1 defined in Lemma 3.16. So

(3.7.2)
∫ 1

0
f(

θ

n
)dθ =

∫
F

log |e2πiu′ − e2πiθ′ + 1|dθ′du′

where F ⊂ R2 is as in Lemma 3.16. The integrand in (3.7.2) is invariant under the
action of Z2 on R2. Because of Lemma 3.16 we may replace F in (3.7.2) by [0, 1)2 and
even by [0, 1]2. Therefore

(3.7.3)
∫ 1

0
f(

θ

n
)dθ =

∫
[0,1]2

log |e2πiu′ − e2πiθ′ + 1|dθ′du′.

The translation u′ 7→ u′ + 1/2 shows that (3.7.3) is equal to the logarithmic Mahler
measure of the two variable polynomial X + Y − 1 which is by definition just S0. �

Proposition 3.1. Let x ∈ M with D = [Q(x) : Q]. There exists a positive integer
d with φ(d) ≤ D such that

|h(x, 1− x)− S0| ≤ c(d)D−1

where

c(d) =

{
260 if d|6,

(4π
√

3 + 8√
3
)2ω(d)hd otherwise.

Proof. Let α, ζ, m, n be as in Lemma 3.2, and define d = ord ζ. The proposition is
easy if h(x, 1− x) = 0. Indeed in this case x is a root of unity by Kronecker’s Theorem.
By the discussion in the beginning of section 2, x is a 6th root of unity and we can take
d = 1.
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So we assume h(x, 1 − x) > 0. We set K = Q(ζ) and note φ(d) ≤ D. By Lemmas
3.5 and 3.17 the absolute value |h(x, 1− x)− S0| equals

n

[K(α) : K]

∣∣∣∣∣∣∣
 1

[K : Q]

∑
1≤a≤d
(a,d)=1

f(
a

dn
)

−
∫ 1

0
f(

θ

n
)dθ +

n− [K(α) : K]
n

S0

∣∣∣∣∣∣∣ ,
so

|h(x, 1− x)− S0| ≤
n

[K(α) : K]

∣∣∣∣∣∣∣
 1

φ(d)

∑
1≤a≤d
(a,d)=1

f(
a

dn
)

−
∫ 1

0
f(

θ

n
)dθ

∣∣∣∣∣∣∣(3.7.4)

+
|n− [K(α) : K]|

[K(α) : K]
S0.

Let V be the total variation of the map θ 7→ f(θ/n) over [0, 1). We apply Koksma’s
inequality (Theorem 5.4 [Har98] page 124) to the first term in the upper bound of
(3.7.4) to deduce

|h(x, 1− x)− S0| ≤ V
n

[K(α) : K]
D(d)
φ(d)

+
|n− [K(α) : K]|

[K(α) : K]
S0,

here D(d) is as defined in (3.6.1).
By Lemma 3.14 we have V ≤ 4π√

3n
and by Lemma 3.15 D(d) ≤ (3 + 2/π)2ω(d)hd,

therefore

|h(x, 1− x)− S0| ≤
4π√

3
(3 + 2/π)

2ω(d)hd

[K(α) : K]φ(d)
+
|n− [K(α) : K]|

[K(α) : K]
S0

= (4π
√

3 +
8√
3
)
2ω(d)hd

D
+
|n− [K(α) : K]|

D
φ(d)S0.(3.7.5)

There are two cases.
Let us first assume that d|6. By Lemma 3.5 we have |[K(α) : K]−n| ≤ 2. Therefore

(3.7.5) implies

|h(x, 1− x)− S0| ≤ (4π
√

3 +
8√
3
)
2ω(d)hd

D
+ 2

φ(d)
D

S0

Since d ∈ {1, 2, 3, 6} we easily bound

|h(x, 1− x)− S0| <
260
D

,

and hence the proposition holds for d | 6.
Now let us assume d - 6. Then [K(α) : K] = n by Lemma 3.5. Therefore the

dangerously large term on the very right of (3.7.5) disappears. We have

|h(x, 1− x)− S0| ≤ (4π
√

3 +
8√
3
)
2ω(d)hd

D
,
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which completes the proof. �

The proof of Theorem 3.1 is now a consequence of the previous proposition together
with standard inequalities concerning arithmetic functions.

Let ε > 0 and say x ∈ M with D = [Q(x) : Q]. Let d be as in Proposition 3.1.
By Theorem 317 and §22.13 of [HW05] there exists c1(ε) independent of d such that
ω(d) ≤ (1+ ε) log d

log log(3d) + c1(ε). It is well-known that there exists c2(ε), also independent
of d, such that φ(d) ≥ c2(ε)d1−ε. We also recall the elementary inequality hd ≤ 1+log d.
Hence

2ω(d)hd ≤ c3(ε)e
(ε+log 2)

log φ(d)
log log(3φ(d)) .

for some constant c3(ε) and all d ≥ 1. The theorem follows from the inequality above,
Proposition 3.1, and φ(d) ≤ D. �

Finally we prove Corollary 3.3.
Let x ∈ M with xr(1− x)s = 1 where r, s are integers and not both zero. Then an

easy local calculation gives max{h(x), h(1 − x)} = max{|r|,|s|}
||(r,s)|| h(x, 1 − x). We have the

inequalities 1
2 ||(r, s)|| ≤ max{|r|, |s|} ≤ ||(r, s)|| which together with Theorem 3.1 imply

that any height value not in [S0/2, S0] is isolated. Furthermore, for any β ∈ [1/2, 1]
we may choose two sequences of positive integers rn ≤ sn with (rn, sn) = 1, sn strictly
increasing, and with sn/(rn + sn) → β. Let xn > 1 be a real with xrn

n (1 − xn)sn = 1.
Then the xn must be pairwise different since they are not roots of unity. Because
h(xn) ≤ log 2 we have [Q(xn) : Q] → ∞. By Theorem 3.1 and our choice of rn, sn we
have max{h(xn), h(1− xn)} = sn

rn+sn
h(xn, 1− xn). This sequence converges to βS0. �

8. Counting multiplicative dependent points

We show an easy consequence of Lemmas 3.2 and 3.5.

Lemma 3.18. Let D ≥ 1 and x ∈M(D), there exist coprime integers r, s with r ≥ 0
and a root of unity η of order d such that xr(1− x)s = η and

||(r, s)|| ≤ D

φ(d)
+ 2.

Proof. Let x ∈ M(D). Let k, l, m, n, r, s, α, and ζ be as in Lemma 3.2. Say
R = Xn− ζ lXm + ζk and K = Q(ζ). We may assume r ≥ 0 by replacing ±ζ with ±ζ−1

if necessary.
First say h(x, 1− x) = 0. By Kronecker’s Theorem α is a root of unity and we may

take r = 1, s = 0, and η = x.
Now say h(x, 1 − x) > 0. We set xr(1 − x)s = η. Let d be the order of η, then

[K : Q] = φ(d) since η = ±ζ±1. Lemma 3.2 implies ||(r, s)|| = n. We have R(α) = 0
and α is not a root of unity. Hence by Lemma 3.5 we conclude [K(α) : K] ≥ n− 2. The
lemma now follows from [K(α) : K] = [Q(x) : K] ≤ D/φ(d). �
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Let r, s be coprime integers and η a root of unity. In Lemma 7 of [Mas07] Masser
proved the bound

|{x ∈ Q\{0, 1}; xr(1− x)s = η}| ≤ ||(r, s)||.
This bound together with Lemma 3.18 gives the following upper bound for the cardi-
nality of M(D):

|M(D)| ≤
∑
d≥1

φ(d)≤D

∑
r,s coprime, r≥0

||(r,s)||≤2+ D
φ(d)

∑
η

ord η=d

||(r, s)||(3.8.1)

=
∑
d≥1

φ(d)≤D

φ(d)
∑

r,s coprime, r≥0

||(r,s)||≤2+ D
φ(d)

||(r, s)||.

We follow [Mas07] and define S(X) =
∑

1≤m≤X mφ(m) for real X ≥ 1.

Lemma 3.19. For X ≥ 1 we have

(3.8.2)
∑

r,s coprime, r≥0
||(r,s)||≤X

||(r, s)|| = 3S(X) + 1.

Proof. The proof follows by splitting the sum in (3.8.2) up into three sums over
s ≥ 0, −r ≤ s < 0, and s < −r ≤ 0 respectively. The first sum equals S(X) + 1 and
each of the other two is S(X). �

Lemma 3.20. For X ≥ 1 we have S(X) ≤ 2
π2 X3 + X2 log X + 2X2.

Proof. The proof is similar to the proof of Lemma 8 given in [Mas07] which
provides an analogous lower bound for S(X).

Recall that µ denotes the Möbius function. For Y ≥ 1 we define T (Y ) =
∑

1≤d≤Y d2.
The identity φ(m) =

∑
d|m µ(d)m/d implies

S(X) =
∑

1≤d≤X

µ(d)dT (
X

d
)

after changing the order of summation. Let X ≥ 1, we use
∑∞

d=1 µ(d)d−2 = 6/π2 to
conclude∣∣∣∣S(X)− 2

π2
X3

∣∣∣∣ =
∣∣∣∣∣S(X)− X3

3

∞∑
d=1

µ(d)
d2

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

1≤d≤X

(
µ(d)dT (

X

d
)− X3

3d2
µ(d)

)∣∣∣∣∣∣+ X3

3

∣∣∣∣∣∑
d>X

µ(d)
d2

∣∣∣∣∣
≤

∑
1≤d≤X

d

∣∣∣∣T (
X

d
)− X3

3d3

∣∣∣∣+ X3

3

∑
d>X

1
d2

.
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Elementary calculations give |T (Y )− 1
3Y 3| ≤ Y 2 for Y ≥ 1. We use this inequality and∑

d>X d−2 ≤ 2X−1 to bound∣∣∣∣S(X)− 2
π2

X3

∣∣∣∣ ≤
 ∑

1≤d≤X

X2

d

+
2
3
X2.

The proof follows from the inequality
∑

1≤d≤X d−1 ≤ 1 + log X. �

The proof of Theorem 3.3 is now simple. Certainly the lower bound in (3.1.3) follows
from Theorem 2 in [Mas07]. We proceed to prove the upper bound.

Let D ≥ 3. By (3.8.1) and Lemma 3.19 we have

|M(D)| ≤
∑
d≥1

φ(d)≤D

φ(d)(3S(2 +
D

φ(d)
) + 1).

We apply Lemma 3.20 to this last inequality to obtain

(3.8.3) |M(D)| ≤
∑
d≥1

φ(d)≤D

(
6
π2

D3

φ(d)2
+ c′

D2

φ(d)
log D

)
,

for some absolute constant c′. We may take c′ = 200. Lemma 9 of [Mas07] gives∑
d≥1

φ(d)≤D

1
φ(d)

< 5(log D)2,

the fact that D may not be an integer is not important. We insert this bound into
(3.8.3) to obtain

|M(D)| ≤ 6
π2

D3

 ∑
d≥1

φ(d)≤D

1
φ(d)2

+ 5c′D2(log D)3 ≤ c0D
3 + 1000D2(log D)3.

The proof follows from this last inequality. �



CHAPTER 4

Dependent solutions of x + y = α

This chapter extends some methods used in chapter 2: we give essentially optimal
upper bounds for the height of multiplicatively dependent algebraic solutions of the
inhomogeneous linear equation x+ y = α in two unknowns x and y where α is any non-
zero algebraic number. Furthermore, we will study the case where α ≥ 2 is a rational
power of a non-zero integer and derive a better bound for the height of the solution.
We will also see that this bound is best possible in the case where α ≥ 2 is a rational
power of 2 and even that the maximal height value is isolated if α is also assumed to be
an integer. Moreover, for non-zero rational α we give a bound independent of α for the
number of solutions of x + y = α if the unknowns are algebraic units in the union of all
number fields that have unit group of rank 1.

The content of this chapter has been published in [Hab05].

1. Height bounds for dependent solutions of x + y = α

We recall that H(·) denotes the non-logarithmic absolute Weil height defined in
chapter 1.

Let α be a non-zero algebraic number. In Theorem 4.1 we will show that the heights
of multiplicatively dependent algebraic numbers x, y satisfying

(4.1.1) x + y = α

are effectively bounded in terms of the height of α. More precisely:

Theorem 4.1. Let α be a non-zero algebraic number, and let x, y be non-zero mul-
tiplicatively dependent algebraic numbers with x + y = α. Then

H(x, y) ≤ 2H(α)2,(4.1.2)

min{H(x),H(y)} ≤ 2H(α).(4.1.3)

The general strategy in the proof of Theorem 4.1 is the following: Given non-zero
algebraic numbers x, y, α as in Theorem 4.1, there are integers r, s not both zero such
that xrys = 1. Define the rational function f = T r(T − α)s and let d be the degree
of f . We note that f(x) = ±1. For any algebraic τ not a pole of f we will derive a
lower bound for H(f(τ))H−d in terms of H(α) and d. Here H will be either H(τ) or
H(τ, τ − α) depending on the sign of rs. By substituting τ = x we will get an upper
bound for H(x) independent of r, s, and d. Here it will be essential that the lower bound

43
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has optimal dependency on d; we will achieve this through careful estimates of certain
positive local minima, together with the use of the product formula to avoid zero values.

In the special case α = 1 we get

(4.1.4) H(x, y) ≤ 2,

and recover the height bound from Theorem 2.1. Since max{H(x),H(y)} ≤ H(x, y),
the inequality (4.1.4) also implies Theorem 1 of Cohen and Zannier’s article [CZ00].

The bound (4.1.4) and also the one from [CZ00] are easily seen to be sharp after
setting x = y = 1/2. More generally, pick any φ ∈ Q with φ ≥ 0 and set x = y = 2−φ−1,
α = 2−φ. Then x + y = α. Further, by using the standard properties of the height
function stated in the next section one obtains H(x, y) = 2φ+1 = 2H(α). So an upper
bound for H(x, y) has to be at least linear in H(α) and (4.1.3) is sharp. We ask the
questions: can the bound for the height in (4.1.2) be improved? If so, is the upper
bound linear in H(α)? The next theorem gives a positive answer to the first question.
It is proved using simple ideas from diophantine approximation.

Theorem 4.2. Let α be a non-zero algebraic number, and let x, y be non-zero mul-
tiplicatively dependent algebraic numbers with x + y = α. Then

H(x, y) ≤ 14H(α) log(3H(α)).(4.1.5)

Note that the estimate given in Theorem 4.2 is asymptotically much better for
H(α) → ∞ then the one given in Theorem 4.1, even though it is worse for small
H(α) < 31.

Still the logarithm in (4.1.5) seems a bit disturbing, as it does not answer the second
question posed above. In fact a linear inequality like

H(x, y) ≤ CH(α)

with an absolute constant C is impossible - even if x, y, and α are restricted to Q - as
the following Theorem shows.

Theorem 4.3. For each pair of reals θ, Θ with 0 < θ < 1 and Θ > 1, there are
non-zero α ∈ Q with H(α) > Θ, and non-zero multiplicatively dependent x, y ∈ Q with
x + y = α, such that

max{H(x),H(y)} > θ
H(α) log 3H(α)
(log log 3H(α))2

.

So the bound given in Theorem 4.2 is optimal in the sense that it cannot be replaced
by c(ε)H(α)(log 3H(α))1−ε for some ε > 0 (and similarly the bound given in Theorem
4.3 cannot be replaced by c(ε)H(α)(log 3H(α))1+ε).

Until now we have considered any non-zero algebraic α, but if we restrict α to special
values, then we are able to improve (4.1.5) to a linear bound.

Theorem 4.4. Let α = nφ where n is a positive integer and φ a positive rational,
and suppose that α ≥ 2. Then for all non-zero multiplicatively dependent algebraic
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numbers x, y with x + y = α we have

(4.1.6) H(x, y) ≤ 2H(α)

with equality if and only if α is a rational power of 2 and x = 2α or y = 2α.

We already know that inequality (4.1.6) holds for α = 1 by Theorem 4.1. So (4.1.6)
is valid for every non-zero integer α.

Once we have a sharp upper bound, say B(α) for H(x, y) as in Theorem 4.4, it is an
interesting problem to determine if this upper bound is isolated in the sense that there
exists ε(α) > 0 such that either

(4.1.7) H(x, y) = B(α) or H(x, y) ≤ B(α)− ε(α).

This kind of problem was first studied by Cohen and Zannier ([CZ00] Proposition 1)
who proved isolation for α = 1 with B(α) = 2 and with max{H(x),H(y)} instead of
H(x, y). They used Bilu’s Equidistribution Theorem. In chapter 2 we proved that if
α = 1, then either H(x, y) = 2 or H(x, y) ≤ 1.915. We will now formulate an isolation
result if α = 2φ with φ ∈ N.

Theorem 4.5. Let α = 2φ where φ is a positive integer. Then for all non-zero
multiplicatively dependent algebraic numbers x, y with x + y = α we have either

H(x, y) = 2H(α) or H(x, y) ≤ 1.98H(α).

Theorem 4.5 shows not only that our ε(α) in (4.1.7) can be chosen independent of
α, but that it can even be chosen such that ε(α) →∞ if H(α) →∞.

We move on to an application. Given a subset M ⊂ Q we define SM (α) to be the
set of pairs (x, y) ∈ M2 that satisfy (4.1.1) and where x, y are also required to be units
in the ring of algebraic integers. Equations of this type are called unit equations and
have been studied extensively for example if M = K is a number field. In this case it is
a well-known result that SK(α) is finite and even |SK(α)| ≤ c(K), i.e. the cardinality
is bounded independently of α. For example Evertse showed ([Eve84] Theorem 1)
|SK(α)| ≤ 3 · 72[K:Q]+r where r is the number of real embeddings of K. Further bounds
for |SK(α)| have been obtained by Beukers and Schlickewei ([BS96] Theorem 1.1).

Now let K be a number field with unit group of rank 1 and α ∈ Q∗. If x and y
solve the unit equation, then they are multiplicatively dependent and so by Theorem
4.1 their height is bounded effectively in terms of H(α). Define F to be the union of
all number fields with unit group of rank 1. Then the same argument just given leads
to an effective height bound for x, y with (x, y) ∈ SF (α). In both cases Dirichlet’s Unit
Theorem shows that the degrees of x and y do not exceed 4. So Northcott’s Theorem
implies that SK(α) and SF (α) are finite sets. In fact we will prove a uniform result in
the spirit of Evertse.

Theorem 4.6. Let α be a non-zero rational number and K a number field with unit
group of rank 1 and F as above. Then |SK(α)| ≤ 292 and |SF (α)| ≤ 755 · 106.

The first inequality is merely a numerical improvement of a special case of Evertse’s
bound which leads to |SK(α)| ≤ 3 · 78 = 17294403. The second result is best possible
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in the sense that if F is replaced by F ′, which is the union of all number fields with
unit group of rank 2, then SF ′(α) is infinite. Indeed let a ∈ Z and let x be a zero of the
polynomial T (1 − T )(a − T ) − 1 ∈ Z[T ] which is easily seen to be irreducible. Then x
and 1− x are units. Clearly there are infinitely many such x as a runs over all rational
integers. This is not a contradiction to the Theorem above because for a large enough
x lies in a cubic number field with unit group of rank 2.

In section 2 we introduce notation used throughout the chapter and state the re-
quired results on lower bounds for the height of values of special rational functions. In
section 3 we prove the statements made in section 2. These results are then used in
section 4 to prove Theorems 1 and 2. In section 5 we prove Theorem 3 by construction.
Finally in sections 6, 7, and 8 we prove Theorems 4, 5, and 6 respectively.

2. Notation and auxiliary results on rational functions

Let f = f(T ) be a rational function with algebraic coefficients and let τ ∈ Q. We
are interested in how H(f(τ)) depends on H(τ) and f (provided τ is not a pole of
f). Recall that the degree of f is defined as max{deg(P ),deg(Q)} for any two coprime
polynomials P , Q with f = P/Q. Classically it is known that

(4.2.1) C ≤ H(f(τ))
H(τ)deg(f)

≤ C ′

with positive constants C, C ′ that are independent of τ (for example it follows easily
from Theorem 1.8 page 81 of [Lan83]).

As pointed out in section 1 we are particularly interested in a sharp lower bound of
(4.2.1) for certain rational functions. The first function we will investigate has the form
f = T r(T −α)s with α a non-zero algebraic number. Its degree is |r|+ |s| if rs ≥ 0, and
max{|r|, |s|} if rs < 0.

Proposition 4.1. Let r, s be integers and α a non-zero algebraic number and define
the rational function f = T r(T − α)s. Put

e = e(f) =

 2|s| − |r| (rs < 0, |r| < |s|),
|r| (rs < 0, |r| ≥ |s|),
|r|+ |s| (rs ≥ 0)

and

H =
{

H(τ) rs < 0,
H(τ, τ − α) rs ≥ 0.

Then for all algebraic τ 6= 0, α we have

(4.2.2)
H(f(τ))

Hd
≥ 1

2d

1
H(α)e

≥ 1
2d

1
H(α)2d

.

This exponent e = e(f) in (4.2.2) looks strange, but in fact it is best possible for
each value of r and s 6= 0.

We will also study lower bounds for certain types of polynomials.
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Proposition 4.2. Let m,n be integers with n > m ≥ 0, let β be an algebraic number,
and define the polynomial P = Tn + βTm. Put θ = m/n. Then for all algebraic τ we
have

(4.2.3)
H(P (τ))
H(τ)n

≥ 1− θ

2
1

H(β)1/(1−θ)
≥ 1

2n

1
H(β)n

.

Furthermore, if n = m > 0 and β 6= −1, then

H(P (τ))
H(τ)n

≥ 1
2n

1
H(β)n

.

If β is a root of unity, then Proposition 4.2 reduces to H(P (τ))H(τ)−n ≥ (2n)−1. In
Proposition 4.3 we use diophantine approximation to get a lower bound independent of
n. This improvement comes at a price: the denominator in the left-hand side of (4.2.3)
has to replaced by X

log X for large X = H(τ)n. So strictly speaking we are not in the
situation of (4.2.1) anymore. Nevertheless Proposition 4.3 is essential for the proof of
Theorem 4.2.

Proposition 4.3. Let m,n be integers with n > m ≥ 0, let ζ be a root of unity, and
define the polynomial P = Tn + ζTm. Then for all algebraic τ we have

H(P (τ))
H(τ)n

max{1, log(H(τ)n)} ≥ 1
2e

with e = 2.71828...

Compare this lower bound with the easy upper bound

H(P (τ)) = H(τm(τn−m + ζ)) ≤ 2H(τm)H(τn−m) = 2H(τ)n.

By combining the previous inequality with the inequality from Proposition 4.3, we will
deduce the following amusing consequence for the logarithmic height h(τ) = log H(τ).

Corollary 4.1. For σ ∈ Q and φ ∈ Q with 0 ≤ φ ≤ 1 take any determination of
σφ. Then

|h(σ + σφ)− h(σ)| ≤ 1 + log 2 + log max{1, h(σ)}.

3. Proofs of Propositions 4.1, 4.2, 4.3 and Corollary

Our general strategy in estimating heights H(f(τ)) where f and τ are defined as
in Proposition 4.1 is to consider each local factor separately. In the first step we will
consider the case rs ≥ 0. It will actually suffice to suppose r ≥ 0 and s ≥ 0, so that
f is a polynomial. Because some results proved below remain valid in a more general
context we will work with an arbitrary field K containing α and τ equipped with an
absolute value | · |.

For an absolute value | · | we define

mf (τ) =
max{1, |τ |r|τ − α|s}
max{1, |τ |, |τ − α|}d

(4.3.1)
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with d = deg(f) = r + s. The subscript f will be omitted if it is clear from the context
what function is meant.

Lemma 4.1. Suppose r ≥ 0, s ≥ 0. Let | · | be an ultrametric absolute value on a
field K. Then for any τ ∈ K\{0, α}

mf (τ) ≥ 1
max{1, |α|}d

.

Proof. First assume |τ | ≤ 1, then |τ−α| ≤ max{1, |α|}, so m(τ) ≥ max{1, |τ |, |τ−
α|}−d ≥ max{1, |α|}−d and the lemma follows in this case.

Let us now assume |τ | ≥ 1. We split up into two cases.
The first case is |τ | 6= |α|. This inequality implies |τ − α| = max{|τ |, |α|} so

m(τ) =
max{1, |τ |r+s, |τ |r|α|s}

max{1, |τ |, |α|}d
≥ 1

max{1, |α|}d

since d = r + s and after considering the two possibilities |τ | > |α| and |τ | < |α|. Hence
the lemma holds in this case.

The second case is |τ | = |α|, then

m(τ) ≥ max{1, |α|r|τ − α|s}
max{1, |α|}d

= max{|α|−d,
|τ − α|s

|α|s
} ≥ |α|−d =

1
max{1, |α|}d

.

�

We now treat the case that our absolute value is not ultrametric but satisfies the
weaker triangle inequality. We obtain a slightly worse estimate than in Lemma 4.1.

Lemma 4.2. Suppose r ≥ 0, s ≥ 0. Let | · | be an absolute value on a field K. Then
for any τ ∈ K\{0, α}

mf (τ) ≥ 1
(1 + |α|)d

≥ 1
2d max{1, |α|}d

.(4.3.2)

Proof. The second inequality in (4.3.2) follows from

1 + |α| ≤ 2 max{1, |α|}.

We proceed by proving the first.
First say |τ | ≤ 1, then |τ − α| ≤ |τ |+ |α| ≤ 1 + |α| so m(τ) ≥ max{1, |τ − α|}−d ≥

(1 + |α|)−d and (4.3.2) follows.
Now let us assume |τ | ≥ 1. Say first |τ − α| ≥ |τ |, then

m(τ) =
|τ |r

|τ − α|r
=
∣∣∣1− α

τ

∣∣∣−r
≥
(
1 +

∣∣∣α
τ

∣∣∣)−r
≥ 1

(1 + |α|)r
≥ 1

(1 + |α|)d
,

which implies (4.3.2). Say now |τ − α| ≤ |τ |, then

m(τ) = max{1, |τ |r|τ − α|s|}|τ |−d.
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The lemma follows easily if s = 0, so let us assume s > 0. If |τ | ≤ 1 + |α|; then
m(τ) ≥ |τ |−d ≥ (1 + |α|)−d by the equality for m(τ) above. If on the other hand
|τ | ≥ 1 + |α|, then |τ − α| ≥ |τ | − |α| ≥ 1 and so we have

m(τ)1/s =
∣∣∣∣τ − α

τ

∣∣∣∣ = ∣∣∣1− α

τ

∣∣∣ ≥ 1−
∣∣∣α
τ

∣∣∣ ≥ 1− |α|
1 + |α|

=
1

1 + |α|
,

hence m(τ) ≥ (1 + |α|)−s ≥ (1 + |α|)−d, which concludes the proof. �

We will now cover the non-polynomial case of Proposition 4.1, that is if rs < 0.
Recalling the definition of mf (τ) in (4.3.1) with K = C and with | · | the standard
absolute value. Taking for example r = 2 and s = −1 we obtain

mf (τ) ≤ |τ |2/|τ − α|
|τ |2

= |τ − α|−1,

if |τ | is large. Therefore unfortunately limτ→∞ mf (τ) = 0, so m cannot be bounded
away from 0 as in Lemma 4.2.

So we redefine mf in this case. Our motivation comes from the calculation

H(f(τ))[K:Q] =
∏

v∈MK

|τ − α|−sdv
v

∏
v∈MK

max{1, |τ |rv|τ − α|sv}dv

=
∏

v∈MK

max{|τ |rv, |τ − α|−s
v }dv(4.3.3)

where we have applied the product formula (1.1.1) for the number field K if τ 6= α. The
dv are the local indices defined in chapter 1.

Now if we assume r ≥ 0 and set t = −s ≥ 0, then the new definition

(4.3.4) mf (τ) =
max{|τ |r, |τ − α|t}

max{1, |τ |}d
with d = deg(f) = max{r, t}

will do the trick. We note that this time there is no extra |τ −α| in the denominator of
(4.3.4).

Lemma 4.3. Suppose r > 0 > s = −t and let ε = 1− r/t. Let | · | be an ultrametric
absolute value on a field K. Then for any τ ∈ K\{0, α}

mf (τ) ≥
{

max{1, |α|}−εd : if r < t and |α| = |τ | > 1
max{1, |α|−1}−d : otherwise.

Proof. As in the proof of Lemma 4.1 the proof is just a study of different cases.
Assume |τ | 6= |α|. Then one has |τ − α| = max{|τ |, |α|} and hence

m(τ) =
max{|τ |r, |τ |t, |α|t}

max{1, |τ |d}
.

If |τ | ≥ 1 then clearly m(τ) ≥ 1 so let |τ | < 1. Then

m(τ) ≥ |α|t ≥ 1
max{1, |α|−1}t

≥ 1
max{1, |α|−1}d
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as desired.
Now assume |τ | = |α|. Here

m(τ) ≥ |α|r

max{1, |α|d}
.

If |α| ≤ 1 then

m(τ) ≥ |α|r ≥ 1
max{1, |α|−1}d

as above.
Finally if |α| > 1 then m(τ) ≥ |α|r−d. The assertion is obvious if r = d, so assume

r < d = t; then one has

m(τ) ≥ |α|−εd =
1

max{1, |α|}εd
.

�

Lemma 4.4. Suppose r > 0 > s = −t and let ε = 1 − r/t. Let | · | be an absolute
value on a field K. Then for any τ ∈ K\{0, α}

mf (τ) ≥
{

2−d max{1, |α|−1}−d max{1, |α|}−εd : if r < t
2−d max{1, |α|−1}−d : otherwise.

Proof. We will show the slightly stronger statement

(4.3.5) m(τ) ≥
{

2−d max{1, |α|}−εd : if r < t, 1
2 ≤

∣∣ τ
α

∣∣ ≤ 2, |α| ≥ 1,
2−d max{1, |α|−1}−d : otherwise.

First assume that | τα | <
1
2 or | τα | > 2. Then 1

2 max{|τ |, |α|} ≤ |τ − α|, and therefore

m(τ) ≥ 2−t max{|τ |r, |τ |t, |α|t}
max{1, |τ |d}

.

If |τ | ≥ 1 then m(τ) ≥ 2−t ≥ 2−d and we are done. Assume that |τ | < 1. Then

m(τ) ≥ 2−t|α|t ≥ 2−d max{1, |α|−1}−d

which implies (4.3.5).
Now assume that 1

2 ≤
∣∣ τ
α

∣∣ ≤ 2. If |τ | ≤ |α| then

m(τ) ≥ |τ |r

max{1, |α|d}
≥ 2−r |α|r

max{1, |α|d}
,

and if |τ | > |α| then

m(τ) ≥ 2−d |α|r

max{1, |α|d}
;

so in both cases we have m(τ) ≥ 2−d|α|r max{1, |α|}−d. If |α| < 1 then

m(τ) ≥ 2−d|α|r ≥ 2−d max{1, |α|−1}−d
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as above. Suppose |α| ≥ 1. Then m(τ) ≥ 2−d|α|r−d. If r = d our assertion is obvious.
Finally if r < d then t = d and we have

m(τ) ≥ 2−d|α|−εd = 2−d max{1, |α|}−εd.

�

Proof of Proposition 4.1: One may assume r ≥ 0 and s ≥ 0 if r = 0 (apply property
1.1.5 if necessary). Let K be any number field containing τ and α, and say v ∈ MK .

If rs ≥ 0, then s ≥ 0. Lemmas 4.1 and 4.2 together imply

max{1, |τ |rv|τ − α|sv}
max{1, |τ |v, |τ − α|v}d

≥ 1
δv(2)d max{1, |α|v}d

.

Now the Proposition in the case rs ≥ 0 is proved by raising to the dvth power, taking
the product over all elements of MK and extracting the [K : Q]th root.

If rs < 0, then s < 0. We set t = −s and also ε = 1− r/t; now Lemmas 4.3 and 4.4
together imply

max{|τ |rv, |τ − α|tv}
max{1, |τ |dv}

≥
{

δv(2)−d max{1, |α|v}−εd max{1, |α|−1
v }−d : r < t,

δv(2)−d max{1, |α|−1
v }−d : r ≥ t.

Recall (4.3.3); now the Proposition in the case rs < 0 is proved by raising to the dvth
power, taking the product over all elements of MK and extracting the [K : Q]th root.�

We now turn to the proof of Proposition 4.2. It follows the same idea as the proof
of Proposition 4.1; that is, each factor in the height is estimated separately. Again
the following two lemmas hold in a more general context where K is any field with an
absolute value | · |. For θ ∈ (0, 1) and β, z ∈ K define

(4.3.6) m̂θβ(z) =
max{1, |z|θ/(1−θ)|z + β|}

max{1, |z|1/(1−θ)}
The subscripts θ and β will be omitted if the context makes it clear what is meant.

As in the previous section we shall estimate the finite part of the height function
first.

Lemma 4.5. Let | · | be an ultrametric absolute value on a field K. Then for any
z ∈ K

m̂θβ(z) ≥ 1
max{1, |β|}1/(1−θ)

.

Proof. The case where |z| ≤ 1 is trivial because then m̂(z) ≥ 1. If |z| > 1
we split into three cases. First if |β| < |z| then m̂(z) = 1. Next if |β| = |z| then
m̂(z) = max{|z|−1/(1−θ), |1 + β/z|} ≥ |z|−1/(1−θ) = |β|−1/(1−θ). And finally if |β| > |z|
then m̂(z) = |β|/|z| > 1.

�

Finally we will give an estimate of the factors in the infinite part of the height
function in the next lemma.
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Lemma 4.6. Let | · | be an absolute value on a field K. Then for any z ∈ K

m̂θβ(z) ≥ 1− θ

2
1

max{1, |β|}1/(1−θ)
.

Proof. We split up the proof into two parts the first one being when

(4.3.7)
1− θ

2
|z|1/(1−θ) max{1, |β|}−1/(1−θ) ≤ 1.

But then one has

m̂(z) ≥ 1
max{1, |z|}1/(1−θ)

≥ 1− θ

2
1

max{1, |β|}1/(1−θ)

which is just the assertion. Now assume that (4.3.7) does not hold. This is equivalent
to saying |z| > φµ with

φ =
(

2
1− θ

)1−θ

and µ = max{1, |β|}.

Obviously one has |z| > 1 and therefore

m̂(z) ≥ |z|θ/(1−θ)|z + β|
|z|1/(1−θ)

=
|z + β|
|z|

≥ 1− |β|
|z|

≥ 1− µ

|z|

> 1− 1
φ
≥
(

1− 1
φ

)
1

µ1/(1−θ)
.

The proof of the lemma is complete if the inequality

(4.3.8) 1−
(

1− θ

2

)1−θ

= 1− 1
φ
≥ 1− θ

2

holds. Set ξ = 1− θ then (4.3.8) is equivalent to

(4.3.9) g(ξ) ≤ 1 for all ξ ∈ (0, 1) with g(ξ) =
(

ξ

2

)ξ

+
ξ

2
.

Note that defining g(0) = 1 makes the map continuous on [0, 1] and

d2g

dξ2
=
(

ξ

2

)ξ (
(log(ξ/2) + 1)2 +

1
ξ

)
> 0

for ξ ∈ (0, 1). So g is convex which implies (4.3.9) because g(0) = g(1) = 1. �

Note that Lemma 4.6 is in some cases an improvement of Lemma 4.2. Indeed recall
the definition of f and assume r ≥ 0, s > 0 so d = r+s > 0. Set θ = r/d, ξ = 1−θ = s/d.
Then Lemma 4.6 with β = −α, in conjuction with (4.3.1), (4.3.6) imply

mf (z) = m̂θα(z)d(1−θ) ≥
(

1− θ

2

)d(1−θ) 1
max{1, |α|}d

and the latter is larger the (2 max{1, |α|})−d if and only if (ξ/2)ξ > 1
2 , that is, ξ < 1

2 .
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We now prove Proposition 4.2. Let K be a number field containing β, τ and let
v ∈ MK . The case m = 0 follows directly from property 1.1.6 of the height function so
one may assume θ = m/n > 0. First consider n > m; then

max{1, |τn + βτm|v}
max{1, |τ |nv}

=
max{1, |z|θ/(1−θ)

v |z + β|v}
max{1, |z|1/(1−θ)

v }
for z = τn−m. We apply Lemmas 4.5 and 4.6, raise to the dvth power, take the product
over all elements of MK and then the [K : Q]th root to prove the first inequality of
(4.2.3). The second inequality follows immediately from the fact that 1/(1− θ) ≤ n.

Finally if n = m and β 6= −1 then standard height properties imply
H(P (τ))
H(τ)n

≥ 1
H(1 + β)

≥ 1
2H(β)

.

�

To prove Proposition 4.3 we will apply diophantine approximation to Proposition
4.2. This idea came up in a private correspondence Bombieri-Masser-Zannier June 2002.

Set θ = m/n. The case m = 0 can be dismissed as trivial so we may assume
θ ∈ (0, 1). We would like to apply diophantine approximation to θ to create a new
polynomial with small degree.

Recall that for any Q > 1 there exists a pair p, q ∈ Z such that

|θq − p| ≤ 1
Q

and 0 < q < Q.

For a reference see [Cas57] page 1. Because θ ∈ (0, 1) one has

θq − p ≤ 1
Q

so p ≥ θq − 1
Q

> θq − 1 > −1

thus p ≥ 0; and furthermore

p− qθ ≤ 1
Q

so p ≤ 1
Q

+ qθ < 1 + qθ < 1 + q

which implies p ≤ q.
We choose any u ∈ Q∗ with uq = τn. We set k = mq − np and choose a β ∈ Q∗

with βq = ζτk. Note that (βup)q = βqupq = ζτk+np = ζτmq, so τm = ηβup for some
root of unity η. Now

P (τ) = τn + ζτm = uq + ξβup

for a root of unity ξ = ζη. If p = q and ξβ = −1 then P (τ) = 0 so τn−m = −ζ so τ is a
root of unity and the required result follows trivially. If p < q or ξβ 6= −1 we can apply
Proposition 4.2 to get

H(P (τ))
H(τ)n

=
H(uq + ξβup)

H(u)q
≥ 1

2qH(ξβ)q
≥ 1

2QH(β)q

=
1

2QH(τ)|k|
≥ 1

2QH(τ)n/Q
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because |k| = n|θq − p|. Therefore one has

(4.3.10) H(P (τ)) ≥ H(τn)1−1/Q

2Q

for each Q > 1. Because the lower bound is continuous Q = 1 is also allowable.
Optimization of the right hand side leads to the choice

Q0 = max{1, log H(τn)} ≥ 1.

Inserting Q0 into (4.3.10) gives the bound

H(P (τ)) ≥
{

H(τn)(2e log H(τn))−1 : if H(τn) > e
1/2 : otherwise

≥ H(τn)
2emax{1, log H(τn)}

as desired. �

To prove the Corollary we note that the bound h(σ +σφ)−h(σ) ≤ log 2 has already
been shown in section 2. For the corresponding lower bound we note that the case φ = 1
is covered by elementary height properties; so assume φ < 1. Choose m, n ∈ Z with
φ = m/n; then there is τ ∈ Q∗ and ζ a root of unity with σ = τn and σφ = ζτm. We
apply Proposition 4.3 to get

h(σ + σφ)− h(σ) ≥ −1− log 2− log max{1, h(σ)},
thus concluding the proof. �

4. Proofs of Theorems 4.1 and 4.2

Before we prove Theorems 4.1 and 4.2 we need a simple lemma.

Lemma 4.7. Say x, y ∈ Q∗ with H(x) ≥ H(y) and xrys = 1 for integers r and s
such that rs < 0, then H(x, y) = H(x). Furthermore, if H(y) > 1, then |s| ≥ |r|.

Proof. Let K be a number field containing x and y. If H(y) = 1, then |y|v = 1 for
all v ∈ MK and the lemma follows. From now on we assume H(y) > 1. By inverting
xrys = 1 we may also assume r > 0. Therefore s < 0 and −r/s > 0. By functional
properties of the height function we have H(x) = H(y)−s/r ≥ H(y) and so −s ≥ r
because H(y) > 1. The second assertion of the lemma follows. To prove the first we note
that for any v ∈ MK we have max{1, |x|v, |y|v} = max{1, |x|v, |x|−r/s

v } = max{1, |x|v}
since −r/s ∈ (0, 1]. These local equalities imply H(x, y) = H(x). �

The proof of Theorem 4.1 is a simple task with the help of Proposition 4.1. Let
for example xrys = 1 with r, s ∈ Z not both zero and say H(x) ≥ H(y). We apply
Proposition 4.1 to ±1 = xr(x − α)s using H(±1) = 1. If rs ≥ 0 we have H(y) ≤
H(x, y) ≤ 2H(α), and the theorem follows. So say rs < 0, then H(x, y) = H(x) by
Lemma 4.7 and furthermore H(x) ≤ 2H(α)2 by Proposition 4.1. It remains to show
that H(y) ≤ 2H(α), and for this we may clearly assume H(y) > 1. By Lemma 4.7 we
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conclude |s| ≥ |r|. Finally we apply Proposition 4.1 to ys(y − α)r = ±1 and conclude
H(y) ≤ 2H(α). �

We now prove Theorem 4.2. Let for example xrys = 1 with r, s ∈ Z not both zero
and assume r ≥ 0 and H(x) ≥ H(y). If rs ≥ 0 the same argument as in the proof
of Theorem 4.1 gives H(x, y) ≤ 2H(α), and of course this estimate is better than our
assertion. Hence let us assume rs < 0, which implies H(x, y) = H(x). Hence it suffices
to show (4.1.5) with H(x, y) replaced by H(x).

If H(y) = 1, then H(x) = H(α− y) ≤ 2H(α) by elementary height inequalities. So
say H(y) > 1, then Lemma 4.7 implies |s| ≥ |r|. We may even assume |s| > |r|, for if
equality were to hold, then H(x) = H(y) ≤ 2H(α) by Theorem 4.1. We set n = |s| and
m = r; then there exists τ ∈ Q∗ with x = τn and y = ζτm and for some root of unity
ζ. Hence we have P (τ) = α with P = Tn + ζTm. Now Proposition 4.3 implies

(4.4.1) H(α) ≥ ϕ(H(x)) with ϕ(z) =
z

2emax{1, log z}
,

ϕ being understood as a continuous map on [1,∞). Note that ϕ is increasing which can
be easily verified by restricting it to [1, e] and [e,∞). Theorem 4.2 follows if

(4.4.2) ϕ(z0) ≥ H(α) with z0 = 14H(α) log(3H(α))

holds. Indeed (4.4.1) combined with (4.4.2) leads to ϕ(z0) ≥ ϕ(H(x)) and further to
z0 ≥ H(x) because ϕ is increasing.

Because z0 > e the inequality (4.4.2) is equivalent to

(4.4.3)
7
e

log(3w)− log(14w)− log log(3w) ≥ 0 with w = H(α)

which certainly holds for w = 1. The derivative of the left-hand side of (4.4.3) with
respect to w is

1
w

(
7
e
− 1− 1

log(3w)

)
≥ 1

w

(
7
e
− 2
)

if w ≥ 1. The right-hand side is positive for every w ≥ 1 so we may conclude that
(4.4.3) holds for every α thus completing the proof. �

5. Dependent solutions with large height

Choose a large integer q, and define

x =
(

q

q − 1

)n

, y = −
(

q

q − 1

)n−1

with n = [q log q],

so that H(x) = qn > qn−1 = H(y). Then x + y = α with α = qn−1/(q − 1)n. Now
H(α) = max{qn−1, (q − 1)n} so

(4.5.1) lim
q→∞

log H(α)
n log q

= lim
q→∞

max
{

n− 1
n

,
log(q − 1)

log q

}
= 1
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and one clearly has

(4.5.2) lim
q→∞

n log q

q(log q)2
= 1.

We multiply (4.5.1) and (4.5.2) to get

log H(α) = q(log q)2κ(q) with lim
q→∞

κ(q) = 1.

Taking the logarithm gives log log H(α) = log q + 2 log log q + log κ(q) which leads us to

(4.5.3) lim
q→∞

log log H(α)
log q

= 1.

We want to show that the quotient H(x)/H(α) is large, so we will evaluate the limit of

(4.5.4) q−1 H(x)
H(α)

= min{1, q−1(1− q−1)−n}

for q →∞. Now

log(q−1(1− q−1)−n)

= − log q − n log
(
1− q−1

)
= − log q + n

(
q−1 + O(q−2)

)
= − log q + (q log q + O(1))

(
q−1 + O(q−2)

)
= O

(
log q

q

)
for q →∞. By inserting this expression into (4.5.4) one obtains

(4.5.5) lim
q→∞

q−1 H(x)
H(α)

= 1.

Finally, by combining (4.5.1), (4.5.2), (4.5.3), and (4.5.5) we conclude

lim
q→∞

H(x)
H(α) log H(α)
(log log H(α))2

= 1.

�

6. Proof of Theorem 4.4

The next lemma will take care of some special cases of Theorem 4.4.

Lemma 4.8. Let α = nφ ≥ 2 with n ∈ N, φ a positive rational and x, y ∈ Q∗ and
x + y = α.
(i) If r, s ∈ Z are not both zero with rs ≥ 0 and xrys = 1, then

H(x, y) ≤ 3
2
H(α).

(ii) If y = ζx for some root of unity ζ, then

H(x, y) ≤
√

2
√

3H(α).
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Proof. We can and will assume H(x) ≥ H(y). Let K be a number field containing
x and y. For part (i) we assume r ≥ 0, and if r = 0 also s > 0. Lemmas 4.1 and 4.2
applied to f = T r(T − α)s and τ = x give∏

v∈MK

1
max{1, |x|v, |x− α|}dvd

≥
∏
v|∞

1
(1 + |α|v)dvd

∏
v-∞

1
max{1, |α|v}dvd

with d = r + s. For a finite place v we have |α|v ≤ 1 and therefore H(x, y) ≤ 1 + α ≤
3
2α ≤ 3

2H(α).
Now to part (ii): We note that H(x, y) = H(x) by Lemma 4.7. We have x(1+ζ) = α

and by hypothesis ζ 6= −1; elementary height properties lead to H(x) = H((1+ζ)−1α) ≤
H((1 + ζ)−1)H(α) = H(1 + ζ)H(α) ≤

√
2
√

3H(α) by Lemma 2.2 in chapter 2 if ζ 6= 1.
So now assume ζ = 1, then x = y = α/2 and so

H(x, y)[K:Q] = H(x)[K:Q] =
∏

v∈MK

max{1, |α/2|dv
v }

=
∏
v|∞

|α/2|dv
v

∏
v-∞

max{1, |α/2|dv
v } ≤ (α/2)[K:Q]

∏
v-∞

|2|−dv
v ,

which implies H(x, y) ≤ H(α). �

Lemma 4.9. Let α = nφ ≥ 2 with n ∈ N, φ a positive rational and let x, y ∈ Q∗

with x+y = α and xr = yt where 0 < r < t are rational integers. Define λ = t/r and let
K be a number field containing x, y. Then x is an algebraic integer and furthermore:
(i) If v is a finite place of K with |x|v < 1, then |x|v = |y|λv = |α|λv .
(ii) One has

(4.6.1) H(x) =
∏
v-∞
|x|v<1

max{1, |α|−1
v }dvλ/[K:Q] ≤ αλ.

(iii) Let ε ∈ [0, 1) and δ ∈ (1, 2] be such that

(4.6.2) λ ≥ 1 +
log 2
log α

(1 + ε) and (δ − 1)(1− δ−1)
log α

(1+ε) log 2 α ≥ 1.

Then

(4.6.3) |x|v ≤ δ|α|v for all v | ∞ and H(x) ≤ δH(α).

Proof. Note that x is an algebraic integer. Indeed α is an algebraic integer and x
is a zero of the monic polynomial (−1)t(α− T )t − (−1)tT r ∈ OK [T ].

Let v be as in part (i); then xr = yt implies |y|v > |x|v and so because of x + y = α

we have |α|v = |y|v = |x|r/t
v < 1.

For part (ii) recall the definition (4.3.4) of m = mf with f defined as in Proposition
4.1 with s = −t. For any finite place v ∈ MK one has

(4.6.4) m(x) = max{|x|rv, |x− α|tv} = |x|rv ≤ 1.
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If on the other hand v is an infinite place one has |α|v = |n|φv = α ≥ 2 so clearly |x|v ≥ 1
and therefore

(4.6.5) m(x) = |x|r−t
v .

Using (4.6.4), (4.6.5) and applying the product formula, we conclude

(4.6.6)
∏

v∈MK

m(x)dv =
∏
v-∞

|x|dvr
v

∏
v|∞

|x|dv(r−t)
v =

∏
v-∞

|x|dvt
v =

∏
v-∞
|x|v<1

|x|dvt
v .

Then by applying part (i) to (4.6.6) and using (4.3.3) with f(x) = ±1 we get
1

H(x)[K:Q]t
=
∏

v∈MK

m(x)dv =
∏
v-∞
|x|v<1

|α|dvλt
v =

∏
v-∞
|x|v<1

max{1, |α|−1
v }−dvλt

≥ H(α−1)−[K:Q]λt,

from which (ii) follows at once.
To prove part (iii) assume (4.6.2) holds. Note that the statement on the left-hand

side of (4.6.3) implies the inequality on the right-hand side because x is an algebraic
integer. We will prove the left-hand side of (4.6.3) by contradiction. Assume |x|v > δ|α|v
for some v | ∞. Then |x−α|v > |x|v(1− δ−1), and so |x|rv = |x−α|tv > (|x|v(1− δ−1))t.
The first inequality in (4.6.2) implies

δα < |x|v < (1− δ−1)−
λ

λ−1 ≤ (1− δ−1)−(1+ log α
(1+ε) log 2

)

which contradicts the second inequality in (4.6.2). �

We can now prove Theorem 4.4. Let for example xrys = 1 with r, s ∈ Z not both
zero and assume r ≥ 0,H(x) ≥ H(y). Fix a number field K with x, y ∈ K. We will
begin by proving the inequality (4.1.6). If rs ≥ 0 or r = −s or y is a root of unity,
then Lemma 4.8 implies (4.1.6). So assume rs < 0 and −s 6= r and y not a root of
unity. Then H(x, y) = H(x) and −s > r by Lemma 4.7. Hence it suffices to prove
H(x) ≤ 2H(α).

For brevity we will set t = −s and λ = t/r. If λ ≤ 1 + log 2/ log α then (4.6.1) in
Lemma 4.9 gives

(4.6.7) H(x) ≤ αλ ≤ α1+log 2/ log α = 2H(α).

On the other hand if λ > 1 + log 2/ log α, there exists an ε > 0 such that the first
inequality in (4.6.2) holds. Now the second inequality in (4.6.2) holds strictly when
δ = 2, and so it must continue to hold for some δ < 2. Hence the left-hand side of
(4.6.3) holds with some δ < 2 and therefore H(x) < 2H(α)

Finally we prove that H(x, y) = 2H(α) holds if and only if α is a rational power
of 2 and x = 2α or y = 2α. The “if” part is trivial. For the “only if” part let us
assume H(x, y) = 2H(α) and H(x) ≥ H(y). As above we use Lemma 4.8 to reduce
to the case rs < 0 and t = −s > r. Let again λ = t/r. By Lemma 4.7 we have
H(x, y) = H(x) = 2H(α). We have already showed that λ > 1 + log 2/ log α implies
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H(x) < 2H(α). But if λ < 1 + log 2/ log α then (4.6.7) also implies H(x) < 2H(α). So
we must have

(4.6.8) λ = 1 + log 2/ log α

and thus α is a rational power of 2. Because of (4.6.8) the choice ε = 0, δ = 2 satisfies
the hypothesis of Lemma 4.9(iii). We conclude |x|v ≤ 2|α|v for infinite places v. As α,
x are algebraic integers we even have |x|v = |2α|v for all infinite places v. Note that
(4.6.8) implies

(4.6.9) αλ = 2α.

If v is a finite place with |2|v < 1 then |x|v < 1; indeed we must have equality in (4.6.1).
So Lemma 4.9(i) gives |x|v = |α|λv , and because of (4.6.9) we conclude |x|v = |2α|v. But
this last equation holds for any finite place: indeed if |2|v = 1 then |x|v = |α|v = 1
because of Lemma 4.9(i). Hence |x|v = |2α|v for all places finite or infinite: therefore
x = 2αξ for a root of unity ξ. Let v be a infinite place. Then the equality |x|rv = |x−α|tv
and (4.6.9) imply |2ξ−1|v = 1. For any z, w ∈ K we have the equality |z+w|2v+|z−w|2v =
2|z|2v + 2|w|2v; We take z = ξ − 1 and w = ξ to conclude ξ = 1. Thus x = 2α. �

7. Proof of Theorem 4.5

We will start with a lemma concerning an elementary estimate.

Lemma 4.10. Let φ ∈ N and 1 + 2
3φ−1 ≤ λ ≤ 1 + 4

3φ−1, then

(4.7.1)
1
2

max{1, λ(1 + φ−1)−1} log(22φ+1 + 2 max{1, (λ/2)
1

1−λ }) ≤ log(1.98 · 2φ).

Proof. Let g(λ) denote the left-hand side of (4.7.1). The map λ → (λ/2)1/(1−λ)

decreases for 1 < λ < 4. If φ = 1 the lemma follows easily by considering the cases
λ ≤ 2 and λ > 2. We will therefore assume φ ≥ 2. Since (1 + 1/w)w increases for w ≥ 1
we conclude

(λ/2)
1

1−λ ≤ 23φ/2

(1 + 2
3φ)3φ/2

≤ 33

26
· 23φ/2.

If x and y are positive then log(x + y) ≤ x
y + log y, thus

g(λ) ≤ 1
2

max{1,
λ

1 + φ−1
} log(

33

26
23φ/2+1 + 22φ+1)

≤ max{1,
λ

1 + φ−1
}(3

3

28
+

1
2

log 22φ+1).

If λ ≤ 1 + φ−1, then

g(λ) ≤ 33

28
+

1
2

log 2 + log 2φ
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and we are done. On the other hand if λ > 1 + φ−1, then

g(λ) ≤
φ + 4

3

φ + 1
(
33

28
+

1
2

log 22φ+1) =
φ(5

6 log 2 + 33

28 ) + 32

26 + 2
3 log 2

φ + 1
+ log 2φ

<
5
6

log 2 +
33

28
+ log 2φ.

�

We proceed as follows: let x and y = α − x be multiplicative dependent with
H(y) ≤ H(x) < 2H(α), and let P ∈ Z[T ] be the minimal polynomial of x. Then we
will show P (2α) 6= 0. With the help of the finite places lying above 2 we will even find
a lower bound for |P (2α)| in terms of H(x). More precisely:

Lemma 4.11. Let α = 2φ for φ ∈ N and let x, y ∈ Q∗ with x + y = α and xr = yt

where 0 < r < t are rational integers. Define λ = t/r and k(w) = 2α2 + 2w2/λ − w2. If
H(x) < 2H(α), then

log H(x) ≤ 1
2

max{1, λ(1 + φ−1)−1} log sup
w≥1

k(w).

Proof. Fix a finite galois extension K/Q with galois group G such that x ∈ K.
Let P ∈ Z[T ] be the minimal polynomial of x; then because x is an algebraic integer we
have

(4.7.2) P [K:Q(x)] =
∏
σ∈G

(T − σx).

Let v be any finite place of K extending the 2-adic absolute value i.e. v | 2, then

|P (2α)|[K:Q(x)]
v =

∏
σ∈G

|2α− σx|v ≤
∏
σ∈G

max{|2|1+φ
v , |σx|v}.

Recall from Lemma 4.9(i) that if v′ - ∞ then |x|v′ < 1 implies |x|v′ = |α|λv′ . Let g be
the number of finite places of K lying over 2 and g′ be the number of finite places v′

with |2|v′ , |x|v′ < 1. Now G acts transitively on the set of all finite places lying over 2
(Proposition 11 page 12 of [Lan94]) therefore each stabilizer has cardinality [K : Q]/g,
so

|P (2α)|[K:Q(x)]
v ≤

∏
σ∈G

max{|2|1+φ
σ−1v

, |x|σ−1v} =
∏
v′|2

max{|2|1+φ
v′ , |x|v′}[K:Q]/g

=
∏
v′|2

|x|v′<1

max{|2|1+φ
v′ , |α|λv′}[K:Q]/g = |2|

[K:Q] g′
g

min{1+φ,φλ}
v .

Recall that α ∈ Q, so if P (2α) = 0 then x = 2α. In this case H(x) = 2H(α), which
contradicts our hypothesis. We conclude P (2α) 6= 0. Now P (2α) ∈ Z and the product
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formula imply

|P (2α)|[K:Q] =
∏
v|∞

|P (2α)|dv
v =

∏
v-∞

|P (2α)|−dv
v ≥

∏
v|2

|P (2α)|−dv
v(4.7.3)

≥ 2[K:Q] g′
g

min{1+φ,φλ} deg(P )
.

Because K/Q is galois we have dvg = [K : Q] for any v | 2. So Lemma 4.9(ii) yields

H(x) =
∏
v-∞

|x|v<1,|2|v<1

max{1, |α|−1
v }dvλ/[K:Q] = 2

g′
g

φλ
.

This equation inserted into (4.7.3) gives

(4.7.4) |P (2α)|[K:Q] ≥ H(x)[K:Q]min{1,λ−1(1+φ−1)} deg(P ).

We continue by bounding the left hand side of (4.7.4) from above. Let v be an infinite
place. Recall that for z1, z2 ∈ K we have |z1+z2|2v+|z1−z2|2v = 2|z1|2v+2|z2|2v. Let σ ∈ G,
take z1 = σα, z2 = σα− σx in the previous equation and recall |σα− σx|v = |σx|1/λ

v to
conclude

(4.7.5) |2α− σx|2v = |2σα− σx|2v = 2|σα|2v + 2|σx|2/λ
v − |σx|2v = k(|σx|v).

Note that |σx|v ≥ 1; indeed if |σx|v < 1 then |σy|v = |σx|1/λ
v < 1 and so |α|v < 2, a

contradiction. Apply (4.7.5) to (4.7.2) to get

|P (2α)|[K:Q(x)] =
∏
σ∈G

|2α− σx|v =
∏
σ∈G

k(|σx|v)1/2 ≤ (sup
w≥1

k(w))[K:Q]/2.

We combine the previous upper bound with the lower bound in (4.7.4) to conclude the
proof. �

We can now prove Theorem 4.5. Assume H(x) ≥ H(y) and H(x, y) < 2H(α),
furthermore let r, s ∈ Z not both zero with r ≥ 0 such that xrys = 1. With the help of
Lemma 4.8 we reduce to the case t = −s > r > 0 and H(x, y) = H(x) as we did in the
beginning of the proof of Theorem 4.4. It suffices to show H(x) ≤ 1.98H(α). Define
λ = t/r; we will split up into cases.

The two first cases λ < 1+ 2
3φ−1 and λ > 1+ 4

3φ−1 are effectively covered in Lemma
4.9. Indeed part (ii) applied to the first case gives H(x) ≤ αλ ≤ 22/3H(α). For the
second case set ε = 1/3 and δ = 1.9. This choice clearly satisfies the left-hand side of
(4.6.2). Because

(δ − 1)(1− δ−1)
φ

1+ε α =
9
10

(
2(

9
19

)3/4

)φ

≥ 1

the right-hand side of (4.6.2) holds as well. Thus H(x) ≤ 1.9H(α).
Now assume 1 + 2

3φ−1 ≤ λ ≤ 1 + 4
3φ−1. Let k be the function defined in Lemma

4.11. Elementary calculus yields

sup
w≥1

k(w) = k(w0) with w0 = max{1, (λ/2)
λ

2(1−λ) }.
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Apply the previous inequality to Lemma 4.11 and obtain the bound

log H(x) ≤ 1
2

max{1, λ(1 + φ−1)−1} log k(w0)

≤ 1
2

max{1, λ(1 + φ−1)−1} log(2α2 + 2 max{1, (λ/2)
1

1−λ }).

Now Lemma 4.10 implies H(x) ≤ 1.98H(α). �

8. Proof of Theorem 4.6

The next lemma proves the first inequality in Theorem 4.6.

Lemma 4.12. Let K be a number field with rankO∗
K = 1 and α ∈ Q∗; then |SK(α)| ≤

292.

Proof. If α /∈ Z then SK(α) is empty so assume α ∈ Z \ {0}. Let ω be the number
of roots of unity in K, η a fundamental unit, R the regulator, and D the degree of K.

If (x, y) ∈ SK(α) there exist r, s ∈ Z not both zero such that xrys = 1; we shall
furthermore assume that r ≥ 0 and H(x) ≥ H(y) (so we will have to multiply the
number of solutions under this hypothesis by 2 to get a bound for the total number of
solutions). If H(y) = 1 then y is a root of unity, hence in this case we can choose r = 0,
s > 0. So in all cases one may assume |s| ≥ r.

First assume α 6= ±1. Let ∆ denote the set of all infinite places v for which |x|v ≥ 1
and let δ ∈ [0, 1] with δD =

∑
v∈∆ dv. Note that in the case s < 0 one has δ = 1 because

|α| ≥ 2. Because x is a unit the height is given by

(4.8.1) H(x) =
∏
v∈∆

|x|dv/D
v .

Let v ∈ ∆; if |x|v < |α|v/2, then |x|−r/s
v = |α − x|v ≥ |α|v − |x|v > |x|v which

leads to r/s < −1 so |r/s| > 1 contradicting |r| ≤ |s|. We conclude |x|v ≥ |α|v/2 =
max{1, |α|v}/2 for all v ∈ ∆. So by (4.8.1)

(4.8.2) H(x) ≥ 2−δH(α)δ.

We now deduce a corresponding upper bound for H(x). If s ≥ 0, then Lemma 4.2
with f = T r(T − α)s and τ = x applied to (4.8.1) leads to

(4.8.3) H(x) ≤ 2δH(α)δ.

If on the other hand s < 0, then (4.8.3) also holds because of Theorem 4.4 and δ = 1.
With the bounds (4.8.2) and (4.8.3) we can apply a gap principle. There exists a

unique a ∈ Z and a root of unity ζ such that x = ζηa. We apply height functional
properties (cf. chapter 1) and the bounds to see that |a| lies in an interval of length

δ log 4
log H(η) . Hence there are at most 2(log 4/ log H(η) + 1) possibilities for a. Clearly
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this estimate remains valid for α = ±1 because in this case Theorem 4.1 implies 0 ≤
log H(x) ≤ log 2. We also note that R = D log H(η) and therefore

|SK(α)| ≤ 4ω

(
D log 4

R
+ 1
)

.

Elementary considerations lead to D ≤ 4 and ω ≤ 12. Now a result of Friedman ([Fri89]
Theorem B) which states R/ω ≥ 0.09058 completes the proof. �

To prove Theorem 4.6 let (x, y) ∈ SF (α). The proof splits up into two cases:
(i) There exist n ∈ Z and ζ ∈ F a root of unity such that x = ζyn with−2 ≤ n ≤ 2

or y = ζxn with n = 0,±2.
(ii) Otherwise.

First assume case (i). Elementary arguments show that there are 24 roots of unity
ζ in F . For each such ζ, substituting y = α− x in (i) gives eight polynomial equations
in x of degree at most 3; thus the number of x is at most 24 · 8 · 3 = 576.

Now assume case (i) does not hold. Set K = Q(x) = Q(x, y) and D = [K : Q].
Because x and y are not roots of unity we have rankO∗

K = 1. Let η be a fundamental
unit of K. We claim that H(η)D ≤ 4 will complete the proof. Indeed assuming this
inequality a well-known argument bounds the number of units with degree d and height
at most 41/d by 2d

∏d−1
k=1(2 ·

(
d
k

)
·4+1). Take the sum over this expression for 2 ≤ d ≤ 4;

thus there are at most 430706 possibilities for η. There are 6 roots of unity in F such
that one of these generates the group of roots of unity in K. Let ζ be such a root of
unity, then K = Q(η, ζ). Now the Theorem follows from Lemma 4.12 applied to the
field K.

We will now show H(η)D ≤ 4. There are a, b ∈ Z and roots of unity ζ, ξ such that
x = ζηa and y = ξηb. Let σ1, σ2 be two distinct non-conjugate embeddings of K into
C. These correspond to the two infinite places of K. Define di = 1 if σi(K) ⊂ R and
di = 2 otherwise. We may assume d1 ≥ d2. Now |σi(η)| 6= 1 for i = 1, 2 by Kronecker’s
Theorem, so by replacing η with η−1 if necessary we may assume |σ1(η)| > 1. Let li be
a logarithm of σi(η). Note that D log H(η) = d1 log |σ1(η)| = d1Re(l1), hence it suffices
to show Re(l1) ≤ log 2. The equality |σ1(η)|d1 |σ2(η)|d2 = 1 implies

(4.8.4) d1Re(l1) + d2Re(l2) = 0.

Because α ∈ Q one has σ1(x)− σ2(x) = σ2(y)− σ1(y). Apply (4.8.4) to get

(4.8.5) |eq(a)|a|Re(l1)+γ1i − e−q(−a)|a|Re(l1)+γ2i| = |eq(b)|b|Re(l1)+γ3i − e−q(−b)|b|Re(l1)+γ4i|

where the γi are real numbers and

q(w) =
{

1 : w ≥ 0,
d1
d2

: w < 0

is an integer. Now define k = q(b)|b| − q(a)|a| ∈ Z, then k 6= 0 because otherwise we
would be in case (i). So first assume k ≥ 1. Apply the triangle inequality to (4.8.5) and
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use Re(l1) ≥ 0 to conclude

(4.8.6) eq(a)|a|Re(l1) + 1 ≥ e(q(a)|a|+k)Re(l1) − 1.

Note that we have |a| ≥ 1, or else we would be back in case (i). Now (4.8.6) and q(a) ≥ 1
imply

(4.8.7) eRe(l1) − 2e−Re(l1) − 1 ≤ 0.

The left-hand side of (4.8.7) increases in Re(l1). Substitute log 2 for Re(l1) to get
the bound Re(l1) ≤ log 2. Now assume k ≤ −1; then similar arguments as above
involving the triangle inequality and this time |b| ≥ 1 also lead to (4.8.7) and thus again
Re(l1) ≤ log 2. �



CHAPTER 5

More on heights and some algebraic geometry

The purpose of this chapter is to review some facts from algebraic geometry and
their application to heights. Furthermore, we give a glimpse of some results concerning
heights which will be used in the second part of the thesis. The two subsequent chapters
will make use of the concepts introduced here. Therefore we do not strive for utmost
generality; we present the material in a form useful for our applications. Also, we give
no details of the constructions and almost no proofs.

1. Some preliminaries

By a variety we mean a Zariski open subset of a possibly reducible projective al-
gebraic variety defined over a field K. For simplicity we assume throughout the whole
chapter that K is algebraically closed and of characteristic zero unless stated otherwise.

Throughout this section X and Y will denote irreducible varieties defined over K.
All morphisms are considered to be defined over this field. By abuse of notation we will
often identify varieties with their set of K-rational points.

We start off with the Fibre Dimension Theorem, a result we will often apply in the
next chapters.

Theorem 5.1. Let f : X → Y be a morphism of varieties. Then for p ∈ X all
irreducible components of f−1(f(p)) have dimension greater or equal to dim X −dim Y .
Furthermore, there exists a Zariski open, dense subset V ⊂ Y such that if q ∈ V then
all irreducible components of f−1(q) have dimension dim X − dim Y .

Proof. Follows easily from the first theorem on page 228 of [Dan94]. �

The next results is the Theorem on Semi-continuity of Fibre Dimension; it will be
used in chapter 6.

Theorem 5.2. Let f : X → Y be a morphism of varieties and say k ∈ Z. The set

{p ∈ X; dimp f−1(f(p)) ≥ k}
is Zariski closed in X.

Proof. This is the second theorem on page 228 of [Dan94]. �

The following result will also be useful:

Theorem 5.3. Let f : X → Y be a dominant morphism of varieties. Then f(X)
contains an Zariski open, dense subset of Y .

65
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Proof. Follows from the theorem on page 219 of [Dan94]. �

2. Chow forms and higher dimensional heights

We continue using the notation of the previous section but with the exception that
we now assume X ⊂ Pn to be an irreducible closed projective variety defined over K.

The goal of this section is to define the height of a variety defined over Q. The most
naive approach would be to define this height somehow in terms of the height of defining
equations for X. A hypersurface, i.e. a subvariety of codimension 1, is the zero set of
one homogeneous polynomial unique up to multiplication by a non-zero scalar. Our
naive approach works in this situation because of the product formula. Unfortunately
if 0 ≤ dim X ≤ n − 2 there is no unique system of polynomials which define X. The
solution is to take a suitable height of the Chow form of X. We follow Philippon’s
definition in [Phi95]. We begin by defining the Chow form of X.

Let dim X = r. For 0 ≤ i ≤ r, let Ui = (Ui0, . . . , Uin) where the Uij are inde-
pendent variables. By Proposition 2.2 on page 99 and the discussion on pages 100-101
of [GKZ94] there exist d ∈ N and FX ∈ K[Uij ; 0 ≤ i ≤ r, 0 ≤ j ≤ n] with FX

multi-homogeneous of degree d in each Ui such that

FX(u0, . . . , ur) = 0 if and only if {p ∈ X; u0(p) = · · · = ur(p) = 0} 6= ∅.

Here ui ∈ Kn+1 are identified with homogeneous polynomials of degree 1. The form FX

is called Chow form or sometimes also Cayley form or Elimination form. The integer
d is just the geometric degree deg(X) which equals the cardinality of the intersection
of X with a generic linear subvariety of Pn of dimension n− r. The Chow form FX is
determined uniquely up to multiplication by a non-zero scalar. A converse statement
holds: the Chow form FX determines a set of homogeneous polynomials whose set of
common zeros is precisely X. Indeed, for 0 ≤ i ≤ r let s(i) = (s(i)

jk ) denote skew-

symmetric (n + 1) × (n + 1) matrices with coefficients s
(i)
jk (0 ≤ j, k ≤ n) which are

algebraically independent for j < k. Then

(5.2.1) FX((X0, . . . , Xn)s(0), . . . , (X0, . . . , Xn)s(r))

considered as a polynomial in the variables X0, . . . , Xn and coefficients in the field
K(s(i)

jk ) vanishes precisely on X. Then (5.2.1) provides us with a finite number of
homogeneous polynomials of degree d(r + 1) whose set of common zeros in Pn is X.

For the rest of the section we assume that K = Q. The coefficients of FX are
contained in a number field F . The height of X is essentially the height of the polyno-
mial FX but with a different norm at the infinite places. This deviation is motivated
by Arakelov theory and the definition of the so-called Faltings height in (3.1.2.2) of
[BGS94]. The norms are chosen such that the resulting height equals Philippon’s
height in [Phi95].

More precisely, let v ∈ MF . If v is a finite place, then we set ||FX ||v = |FX |v, where
| · |v is defined as in section 2, chapter 1. If v is an infinite place and f is the image of
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FX under an embedding F → C corresponding to v, we define

log ||FX ||v =
∫

Sr+1

log |f(u)|σr+1 + (r + 1) deg(X)
n∑

i=1

1
2i

,

where S ⊂ Cn+1 is the unit sphere and σ is the rotation invariant measure on S of total
measure 1. We define the height of X as

hV (X) =
1

[F : Q]

∑
v∈MF

dv log ||FX ||v,

where dv are the local degrees defined in chapter 1 section 1. This quantity does not
depend on the number field F containing the coefficients of FX .

At this point we must warn the reader about a possible ambiguity: a point p ∈
Pn(Q) already has a well-defined height from chapter 1 which does not necessarily
equal the height hV ({p}) of the corresponding variety. For this reason, we use two
different symbols to distinguish the two heights.

There is a natural embedding ι : Gn
m ↪→ Pn given by taking a point (p1, . . . , pn)

to [1 : p1 : · · · : pn]. This embedding will be used throughout the rest of the thesis.
Having defined the degree and height of a subvariety of Pn it makes sense to speak of the
degree and height of a subvariety of Gn

m using this embedding. Concretely, if Z ⊂ Gn
m is

Zariski dense in an irreducible subvariety defined over Q, we define hV (Z) = hV (ι(Z))
and deg(Z) = deg(ι(Z)).

Say Y ⊂ Pn is an irreducible projective variety. Bézout’s Theorem provides an upper
bound for the degrees of the irreducible components of the set theoretic intersection
X ∩ Y .

Theorem 5.4. Let Z1, . . . , Zg be the distinct irreducible components of X ∩Y , then
g∑

i=1

deg(Zi) ≤ deg(X) deg(Y ).

Proof. See [Ful84] example 8.4.6 on page 148 or Main Theorem of [Vog84] on
page 60. �

From the point of view of Arakelov theory the height of a variety should be un-
derstood as an arithmetic version of the degree. The arithmetic analog of Bézout’s
Theorem is then naturally called the Arithmetic Bézout Theorem. If Y is defined over
Q it bounds the height of the irreducible components in X ∩ Y from above in terms of
heights and degrees of X and Y :

Theorem 5.5. Let Z1, . . . , Zg be the distinct irreducible components of X ∩Y , then
g∑

i=1

hV (Zi) ≤ deg(X)hV (Y ) + deg(Y )hV (X) + cdeg(X) deg(Y ),

where c is a positive effective constant which depends only on n.
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Proof. See [Phi95] Theorem 3. �

It is clear that Theorems 5.4 and 5.5 hold if X and Y are subvarieties of Gn
m. We will

apply Bézout’s Theorem in chapter 7 and the Arithmetic Bézout Theorem in chapter 6.

3. Normalized height and essential minimum of a variety

All varieties in this section are defined over Q. Let X ⊂ Gn
m denote an irreducible

closed subvariety. We use h to denote the absolute logarithmic Weil height restricted
from Pn(Q) to Gn

m(Q).
In [Phi95] Philippon described how to normalize the height of a subvariety of an

abelian variety. This construction is a generalization to higher dimension of Tate’s
normalization of the height of a point on an abelian variety. In [DP99] David and
Philippon did the same for subvarieties of Gn

m. For an integer m ∈ Z, let [m] : Gn
m →

Gn
m denote the homomorphism which takes p to pm. In [DP99] the authors showed

that the limit

(5.3.1) ĥ(X) = lim
m→∞

hV ([m]X) deg(X)
m deg([m]X)

exists. Its value ĥ(X) is called the normalized height of X. In Proposition 2.1 of [DP99]
it is showed that

(5.3.2) |ĥ(X)− hV (X)| ≤ 7
2
(dim X + 1) deg(X) log(n + 1).

Furthermore, if p ∈ Gn
m(Q), then ĥ({p}) = h(p) where the left-hand side is the absolute

logarithmic Weil height. In view of (5.3.2) we conclude |hV ({p})− h(p)| ≤ 7
2 log(n + 1).

If X is the translate of an algebraic subgroup by a torsion point, then by Proposition
2.1 of [DP99] we have ĥ(X) = 0. We will see a converse statement further down.

We define the essential minimum of X as

µ̂ess(X) = sup
Z(X

inf{h(p); p ∈ (X\Z)(Q)},

here Z runs over all proper Zariski closed subsets of X. Equivalently one could take
the supremum over all Zariski closed subsets of X with codimension 1 in X. Another
equivalent definition is

µ̂ess(X) = inf{δ ∈ R; {p ∈ X(Q); h(p) ≤ δ} is Zariski dense in X}.

For example if X = {p} is a point, then µ̂ess(X) = h(p). The case where X is a curve
is more interesting. Then for any δ < µ̂ess(X) there are at most finitely many points
p ∈ X(Q) with h(p) ≤ δ.

If X is the translate of an algebraic subgroup of Gn
m by a torsion point then

µ̂ess(X) = 0. Hence both normalized height and essential minimum of such an X
vanish. The following theorem of Zhang explains this observation:
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Theorem 5.6 (Zhang). We have the inequality

(5.3.3) µ̂ess(X) ≤ ĥ(X)
deg(X)

≤ (1 + dim X)µ̂ess(X).

Proof. Follows easily from Theorem 5.2 in [Zha95a] and (5.3.1). Compare also
Theorem 1.10 of [Zha95b]. �

In fact Zhang proved a stronger lower bound: the left side of (5.3.3) can be replaced
by the sum of µ̂ess(X) with the higher successive minima. The higher successive minima
are non-negative; we will not define or use them here though.

It is an important problem to determine all X with µ̂ess(X) = 0 or equivalently
ĥ(X) = 0. The Bogomolov Conjecture for Gn

m states that if µ̂ess(X) = 0 then X is the
translate of an algebraic subgroup by a torsion point. Bogomolov originally conjectured
that if C is a non-singular projective curve of genus at least 2 embedded in its Jacobian,
then there exists an ε > 0 such that there are only finitely many points in C(Q) with
Néron-Tate height at most ε. This conjecture was proved by Ullmo in [Ull98] and a
more general version was proved by Zhang in [Zha98].

In Theorem 6.2 of [Zha95a] Zhang proved Bogomolov’s Conjecture in the algebraic
torus. Zhang’s Theorem 6.2 in [Zha95a] together with Theorem 5.6 above can be seen
as a higher dimension generalization of Kronecker’s Theorem. Zhang also showed that
if X∗ is X deprived of all its subvarieties that are translates of algebraic subgroups by
torsion points, then X∗ ⊂ X is Zariski open and infp∈X∗(Q) h(p) > 0. Bombieri and
Zannier gave an elementary and effective proof of these two statements in [BZ95]. They
used a slightly different height in their paper which can easily be compared with our
height. Finding lower bounds for the infimum (if X∗ is non-empty) is often called the
Lehmer Problem. Lower bounds involve the field of definition of X, deg(X), and n. See
for example Corollary 1.3 in [AD01].

If we assume that X is not equal to the translate of a proper algebraic subgroup of
Gn

m, then in [AD03] Amoroso and David proved a lower bound for µ̂ess(X) which only
depends on deg(X) and n but not on the field of definition of X. The dependence in
the degree is best-possible up to a logarithmic factor. Actually, instead of the degree
Amoroso and David used the more subtle obstruction index. If V is a proper subvariety
of Pn the obstruction index is defined as

ω(V ) = inf
V⊂Z(Pn

{deg(Z)},

here Z runs over all Zariski closed subsets of Pn that contain V and whose irreducible
components have dimension n− 1. As Amoroso and David pointed out in their article,
a result of Chardin implies

(5.3.4) ω(V ) ≤ n deg(V )1/ codim V .

Using the embedding ι : Gn
m ↪→ Pn we may consider the obstruction index of

subvarieties X ⊂ Gn
m.
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Theorem 5.7 (Amoroso, David). Assume X ( Gn
m is a proper irreducible closed

subvariety of codimension k defined over Q. If X is not contained in the translate of a
proper algebraic subgroup of Gn

m, then

µ̂ess(X) ≥ c

ω(X)
(log(3ω(X)))−λ(k)

where c > 0 depends only on n and λ(k) = (9(3k)k+1)k.

Proof. This is Theorem 1.4 of [AD03]. �

If X is as in Theorem 5.7 then (5.3.4) implies

(5.3.5) µ̂ess(X) ≥ c′

deg(X)1/ codim X
(log(3 deg(X)))−λ(k),

where c′ > 0 depends only on n.
Theorem 5.7 will be applied in chapter 7 to obtain the following result: if X ⊂ Gn

m

is an irreducible curve not contained in the translate of an algebraic subgroup then there
are at most finitely many points in X(Q) that lie in an algebraic subgroup of dimension
n− 2 “up to an ε”. In the proof of this result it will be essential that the lower bound
in (5.3.5) is best possible up to a power of a logarithm.



CHAPTER 6

Intersecting varieties with small subgroups

Let X ⊂ Gn
m be an irreducible closed subvariety. In this chapter we will bound

the height of algebraic points on X that are in a certain sense close to the union of all
algebraic subgroup of Gn

m of dimension m < n/dim X. These results give a qualitative
generalization of results from previous chapters. The bounds we obtain are effective and
will be expressed as functions of the height of X, the degree of X, and n. We will use
these height bounds to derive finiteness results if the points in question actually lie on
the union of all algebraic subgroup of dimension m. In chapter 7 we will prove finiteness
results for points close to such a subgroup.

1. Introduction

Unless stated otherwise, all varieties in this chapter are assume to be defined over Q.
Fix an irreducible closed subvariety X ⊂ Gn

m. In this chapter and the next a coset is the
translate of an algebraic subgroup of Gn

m. We do not require a coset to be irreducible.
Let H be a subset of Gn

m(Q) and let ε ≥ 0, we define the “cone” around H:

C(H, ε) = {ab; a ∈ H, b ∈ Gn
m(Q), h(b) ≤ ε(1 + h(a))},

here h(·) is the absolute logarithmic Weil height on Gn
m(Q) defined in chapter 1.

Let Xo be the complement in X of the union of all positive dimensional cosets
contained in X. The work of Bombieri and Zannier (Theorem 1, [BZ95]) shows that
Xo is Zariski open in X. Let Γ be a finitely generated subgroup of Gn

m(Q) and let Γ be
the group of p ∈ Gn

m(Q) such that pk ∈ Γ for a positive integer k. Evertse showed in
Theorem 1.7 of [Eve02] that Xo ∩ C(Γ, ε) is finite for some positive ε. The definition
of Xo makes sense if Gn

m is replaced by any semi-abelian variety A. One can define a
reasonable height on A(Q) if A is defined over Q. In this context Poonen ([Poo99])
proved that if A is isogenous to the product of an abelian variety with Gn

m (n = 0 is
allowed) then there exists a positive ε with the following property: there are at most
finitely many points p = ab ∈ Xo where a ∈ Γ and where b has height at most ε. In fact
Poonen’s Corollary 9 is slightly stronger. In [Rém03] Theorem 1.2 Rémond proves the
finiteness of Xo ∩ C(Γ, ε) for any semi-abelian variety A defined over Q and for some
ε > 0.

For ε = 0 we describe a result by Bombieri, Masser, and Zannier in [BMZ99]
which concerns the intersection of X with the union of all algebraic subgroups of fixed
dimension. When 0 ≤ m ≤ n is an integer, we define Hn

m to be the union of all algebraic
subgroups of Gn

m with dimension less or equal to m. If not stated otherwise, we usually
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identify Hn
m with the set of its algebraic points. To avoid trivialities we set Hn

m = ∅
for negative m. In [BMZ99] the authors showed that if X ⊂ Gn

m is an irreducible
algebraic curve not contained in a proper coset, then X ∩Hn

m is a set of bounded height
for m = n− 1 and finite for m = n− 2.

Motivated by the results described in the previous two paragraphs we pose the
problem of finding boundedness of height results for the intersection Xoa∩C(Hn

m, ε) for
a small ε > 0 and appropriate m. Here X is not necessarily a curve and Xoa ⊂ X will
be defined further down.

In some instances height bounds for Xoa ∩C(Hn
m, ε) imply the finiteness of this set

as we will see later on. We will discuss finiteness results with ε = 0 here and with ε > 0
in chapter 7. By Kronecker’s Theorem the set C(Hn

m, 0) equals Hn
m. Hence Bombieri,

Masser, and Zannier’s finiteness result in [BMZ99] covers the case ε = 0 for curves not
contained in a proper coset.

We start off with a short review of what else is known about intersections X ∩
C(Hn

m, ε) from the point of view of boundedness of height and finiteness.
If we have m = 0 thenHn

0 is the set of torsion points of Gn
m by Kronecker’s Theorem.

Certainly the height is bounded on X ∩ Hn
0 , but finiteness questions are already inter-

esting: one is lead to the study of torsion points contained in X. For example, a special
case of a result of Laurent in [Lau84] shows that the intersection X ∩Hn

0 is contained
in a finite union of translates of algebraic subgroups by torsion points. Furthermore,
these translates are contained in X.

Next, if we allow ε to be positive but still with m = 0, then C(Hn
0 , ε) is just the

set of algebraic points Gn
m with height at most ε. So again bounding the height on

X ∩C(Hn
0 , ε) is trivial. Finiteness (and non-density) questions of this set are related to

the Bogomolov Conjecture already discussed to some extent in section 3 of chapter 5.
Up to now most work concerning the intersection of varieties with C(Hn

m, ε) where
positive dimensional algebraic subgroups are involved assumed ε = 0. Hence we continue
our review considering only the case ε = 0.

For X of any dimension, Bombieri and Zannier showed in Theorem 1 ([Zan00] page
524) that Xo∩Hn

1 is a set of bounded height. The subgroup dimension in this theorem is
not believed to be best-possible for dim X ≤ n−2. This belief is supported by [BMZ99]
where the subgroups have dimension n−1, i.e. equal to the codimension of the variety in
question. For 2 ≤ dim X ≤ n− 2 only one boundedness of height result is known where
m > 1: if X is a plane, then in the preprint [BMZ04] Bombieri, Masser, and Zannier
proved that Xoa ∩ Hn

n−2 has bounded height and Xoa ∩ Hn
n−3 is finite. Furthermore,

they proved that for planes, the still undefined set Xoa ⊂ X is Zariski open.
In [BMZ06b] Bombieri, Masser, and Zannier proved that Xta ∩ Hn

1 is finite if
dim X = n− 2 and in this case Xta is Zariski open in X. The definition of Xta will also
be given below.

As already mentioned, if X is a curve which is not contained in a proper coset, then
X ∩ Hn

n−2 is finite. Say now that X is contained in a proper coset, then Bombieri,
Masser, and Zannier showed that the height on X ∩ Hn

n−1 is necessarily unbounded.
Nevertheless it is conjectured in [BMZ99] that X ∩Hn

n−2 is finite if X is allowed to be
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contained in a proper coset but not in a proper algebraic subgroup. Recently, Maurin
has announced a proof of this conjecture in [Mau06].

We will prove the following simple proposition:

Proposition 6.1. Let X ⊂ Gn
m be an irreducible closed subvariety defined over Q

of dimension r with 1 ≤ r ≤ n and let U ⊂ X be Zariski open and dense. Then the set
U ∩Hn

n−r+1 has unbounded height and U ∩Hn
n−r is infinite.

Therefore to prove a reasonable boundedness of height result on intersections of
X with Hn

m one needs to assume m ≤ n − dim X. And to prove finiteness results
one needs m ≤ n − dim X − 1. There is a series of conjectures stated by Bombieri,
Masser, and Zannier which state that one can take m to be equal to these upper bounds
and expect boundedness of height or finiteness respectively, at least when restricting to
geometrically motivated subsets Xoa of X which we now finally define.

An irreducible closed subvariety Y ⊂ X is called X-anomalous if there exists a coset
H ⊂ Gn

m such that Y ⊂ H and

(6.1.1) dim Y ≥ max{1,dim X + dim H − n + 1}.

If Y ⊂ X is X-anomalous and there can be no confusion regarding X we will simply call
Y anomalous. We define Xoa to be X deprived of all its anomalous subvarieties. If H is
an algebraic subgroup we call Y X-torsion anomalous, or just torsion anomalous. We
define Xta to be X deprived of all its torsion anomalous subvarieties. These definitions
continue to make sense when all varieties in question are defined over C.

Informally speaking, a positive dimensional Y ⊂ X is anomalous if it is contained
in a component of the intersection of X with a coset whose dimension is smaller than
expected.

We present some special cases where Xoa and Xta can easily be determined: if X is
a curve, then Xoa = X if X is not contained in a proper coset, and Xoa = ∅ otherwise.
Similarly, Xta = X if X is not contained in a proper algebraic subgroup, and Xta = ∅
otherwise. If X is a hypersurface, i.e. if dim X = n − 1, then it is easy to see that
Xoa = Xo.

Conjecture 6.1. Let X ⊂ Gn
m be an irreducible closed subvariety defined over C.

Then Xoa ⊂ X is Zariski open.

In the work [BMZ06b], Bombieri, Masser, and Zannier proved Conjecture 6.1 and
even a “Structure Theorem” for anomalous subvarieties.

The conjectures of Bombieri, Masser, and Zannier are:

Conjecture 6.2. (Bombieri, Masser, Zannier) Let X ⊂ Gn
m be an irreducible

closed subvariety defined over Q. Then Xoa ∩Hn
n−dim X is a set of bounded height.

Conjecture 6.3. (Bombieri, Masser, Zannier) Let X ⊂ Gn
m be an irreducible

closed subvariety defined over C. Then Xta ⊂ X is Zariski open and furthermore
Xta ∩Hn

n−dim X−1 is finite.
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In Conjecture 6.3 one identifies Hn
m with the set of its complex points.

By the survey of known results above, Conjecture 6.2 has been proved for curves,
hypersurfaces, and planes.

Pink and Zilber independently stated conjectures concerning general semi-abelian
varieties which are related to the conjectures above. In [Pin05b], Pink conjectured:

Conjecture 6.4 (Pink, Zilber). Let A be a semi-abelian variety defined over C and
let X ⊂ A be an irreducible closed subvariety also defined over C which is not contained
in a proper algebraic subgroup of A. Then the set of points in X(C) that are contained
in an algebraic subgroup of A of codimension greater or equal to dim X +1 is not Zariski
dense in X.

In [Zil02] Zilber stated a conjecture which implies Conjecture 6.4.
Theorem 6.1, the main result of this chapter, goes in the direction of Conjecture

6.2 but with positive ε. The drawback is that the subgroups involved have dimension
strictly less than n/ dim X. This strong restriction on the subgroup dimension allows
us to prove Conjecture 6.2 only in some special cases.

To formulate Theorem 6.1 we need a refined version of Xoa: let t be an integer with
0 ≤ t ≤ n, we define Xoa,t to be X deprived of all its closed irreducible subvarieties Y
that are contained in a coset H satisfying (6.1.1) and dim H ≤ t. Clearly we have

(6.1.2) X = Xoa,0 ⊃ Xoa,1 ⊃ · · · ⊃ Xoa,n = Xoa.

And even

(6.1.3) Xoa,n−dimX = Xoa.

Indeed by (6.1.2) it suffices to prove that if p ∈ Y ⊂ pH where Y ⊂ X and H is an
algebraic subgroup satisfying (6.1.1), then p /∈ Xoa,n−dimX . If dim H ≤ n − dim X,
then we are done; hence say dim H > n − dim X. We will see in Proposition 6.2 that
there exist linearly independent u1, . . . , un−dim H ∈ Zn such that H = {x ∈ Gn

m, xu1 =
· · · = xun−dim H = 1}. Here notation introduced in section 2 is used. We may choose
v1, . . . , vdim H+dim X−n ∈ Zn such that the ui, vi are linearly independent. By Proposition
6.2 the vi define an algebraic subgroup H ′ ⊂ Gn

m with dim H ′ = 2n − dim H − dim X
and dim H∩H ′ = n−dim X. Let Y ′ be an irreducible component of Y ∩pH ′ containing
p. By [Ful84] (§8.2, page 137) we have dim Y ′ ≥ dim Y +dim H ′−n and we use (6.1.1)
to conclude dim Y ′ ≥ 1. Furthermore, Y ′ ⊂ p(H ∩H ′) where the right side is a coset of
dimension n− dim X. We conclude p /∈ Xoa,n−dimX . Therefore (6.1.3) is established.

We are now ready to state Theorem 6.1.

Theorem 6.1. Let X ⊂ Gn
m be an irreducible closed subvariety defined over Q. Let

s be an integer with dim X ≤ s ≤ n and let m be an integer with m · s < n. Then there
exists ε > 0 which depends only on deg(X) and n such that if p ∈ Xoa,n−s ∩ C(Hn

m, ε)
then

h(p) ≤ c(n) · deg(X)
ms

n−ms (deg(X) + hV (X)).

The constant c(n) is effective and depends only on n.
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We recall that degrees and heights of subvarieties of Gn
m are defined in chapter 5.

It is tempting to take s = dim X in Theorem 6.1, since then one can take m as large
as possible and also Xoa,n−dimX = Xoa. If X is a curve or a hypersurface, then we
may choose m = n − 1 or m = 1 respectively. In these two cases the theorem implies
Conjecture 6.2 “with an ε” and with explicit height bounds. Although Conjecture 6.2 has
already been proved for such X, no explicit height bounds have appeared in literature.

The proof of Theorem 6.1 does not use the now proven fact (cf. [BMZ06b]) that
Xoa ⊂ X is Zariski open. In fact if s ≥ dim X the proof shows that the height is
bounded above on U ∩ C(Hn

m, ε) for some non-empty Zariski open set U ⊂ X with
Xoa,n−s ⊂ U as soon as the following hypothesis on X is satisfied.

(6.1.4)
For any surjective homomorphism of algebraic groups
ϕ : Gn

m → Gs
m one has dim ϕ(X) = dim X.

In Lemma 6.4 we will show that (6.1.4) follows from Xoa,n−s 6= ∅.
If X 6= Gn

m then taking s = n − 1 also has interesting consequences. Indeed it is
not difficult to see that Xoa,1 = Xo. Now Theorem 6.1 with m = 1 gives an explicit
height bound for the set Xo ∩C(Hn

1 , ε). We have therefore recovered an explicit version
of Bombieri and Zannier’s Theorem ([Zan00] Theorem 1, page 523) mentioned above.
Their theorem also holds for X = Gn

m, but then of course Xo = ∅.
In [BMZ04] Bombieri, Masser, and Zannier show the following theorem:

Theorem 6.2. (Bombieri, Masser, Zannier) Let X ⊂ Gn
m be an irreducible closed

subvariety defined over Q of dimension r. If B ∈ R, then

{p ∈ Xta ∩Hn
n−r−1; h(p) ≤ B}

is finite.

If we combine Bombieri, Masser, and Zannier’s result from [BMZ04] with Theorem
6.1 we get a finiteness result with ε = 0.

Corollary 6.1. Let X ⊂ Gn
m be an irreducible closed subvariety defined over Q of

dimension r ≥ 1 and let m be an integer with m < min{n/r, n− r}. Then Xoa ∩Hn
m is

finite.

The proof is an immediate consequence of Theorems 6.1 (with s = dim X) and 6.2,
and the fact that Xoa ⊂ Xta.

For example, the previous corollary implies the finiteness statement of Conjecture
6.3 in the cases of curves (r = 1), hypersurfaces (r = n − 1), and also r = n − 2 but
always with Xta replaced by Xoa and if everything is defined over Q.

There is one further situation where Corollary 6.1 implies finiteness with the correct
subgroup dimension: namely surfaces in G5

m.

Corollary 6.2. Let X ⊂ G5
m be an irreducible closed algebraic surface defined over

Q. Then Xoa ∩H5
2 is finite.

Of course this corollary follows from Corollary 6.1 by taking n = 5, r = 2, and
m = 2.
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We remark that we are showing the finiteness of Xoa∩H5
2 and not of the potentially

larger set Xta ∩H5
2 which appears in Conjecture 6.3.

As we will see, proving a version of Theorem 6.1 with ε = 0 is not essentially simpler
than the proof of Theorem 6.1 itself. Hence in the problem of bounding the height we
get the ε for free. Unfortunately the same cannot be said about the problem of proving
finiteness in the style of Theorem 6.2. In fact we reserve the whole next chapter to prove
a version of Theorem 6.2 “with an ε”. Although the subgroup dimension m will often
be less than n− r − 1.

2. Algebraic subgroups of Gn
m

We let c1, . . . , c6 denote positive constants which depend only on n.
As all our work is done in the torus Gn

m we introduce some notation which eases
work in this and the next chapter. Let K be a field. Let p = (p1, . . . , pn) ∈ Gn

m(K)
and u = (α1, . . . , αn) ∈ Zn, we set pu = pα1

1 · · · pαn
n . Say u1, . . . , um ∈ Zn. If U is an

n×m matrix with columns u1, . . . , um ∈ Zn then we set pU = (pu1 , . . . , pum) ∈ Gm
m(K).

For q ∈ Gn
m(K) we have (pq)U = pUqU . If V is a matrix with m rows and integer

coefficients, then (pU )V = pUV . If K = R and all pi are positive we will also allow
exponent vectors or matrices with rational numbers as entries.

Let p = (p1, . . . , pn) ∈ Gn
m(Q) and say U is as above. By elementary height inequal-

ities we have

(6.2.1) h(pU ) ≤ m

n∑
j=1

xjh(pj),

where xj is the maximum of the absolute values of the elements of the jth row of U .
Finally we define the morphism of algebraic groups ϕ(u1,...,um) : Gn

m → Gm
m by

sending p to (pu1 , . . . , pum).
For u ∈ Rn |u| will always denote the euclidean norm of u. Furthermore, if L ∈

R[X1, . . . , Xn] is a linear form, then |L| will denote the euclidean norm of the coefficient
vector of L.

Let Λ ⊂ Zn be a subgroup. Then we define

H(Λ) = {p ∈ Gn
m; pu = 1 for all u ∈ Λ}.

It is clear that H(Λ) is an algebraic subgroup of Gn
m. We define detΛ to be the deter-

minant of the subgroup Λ considered as a lattice in Rn.
Algebraic subgroups of Gn

m and subgroups of Zn are closely related:

Proposition 6.2. Let Λ ⊂ Zn be a subgroup of rank r, then dimH(Λ) = n− r and

(6.2.2) deg(H(Λ)) ≤ c1 det Λ.

Furthermore, for any algebraic subgroup H ⊂ Gn
m there exists a subgroup Λ ⊂ Zn with

H = H(Λ).

Proof. The equality dimH(Λ) = n− r follows from Proposition 3.2.7 in [BG06].
The last statement of the assertion is Corollary 3.2.15 of [BG06].
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Inequality (6.2.2) can be proved as follows: by Minkowski’s Second Theorem there
exist linearly independent u1, . . . , ur ∈ Λ with |u1| · · · |ur| ≤ cdet Λ, here c depends
only on n. Say the ui generate the subgroup Λ′ ⊂ Zn. Then by the first part of the
proposition H(Λ) and H(Λ′) have equal dimension. Since H(Λ) ⊂ H(Λ′) the irreducible
components of H(Λ) are irreducible components of H(Λ′). Now xu1 = · · · = xur = 1
are defining equations for H(Λ′). By multiplying these with suitable monomials we get
polynomial equations. Inequality (6.2.2) then follows from Bézout’s Theorem (Theorem
5.4). �

3. Some geometry of numbers

We start off with a result very much in the spirit of an argument given in the
alternative proof of Theorem 1 in [BMZ99].

Lemma 6.1. Let 1 ≤ m ≤ n and let a ∈ Hn
m. Then there exist linear forms

L1, . . . , Lm ∈ R[X1, . . . , Xn] such that |Lj | ≤ 1 and

h(au) ≤ c2 max
1≤j≤m

{|Lj(u)|}h(a)

for all u ∈ Zn.

Proof. Let a = (a1, . . . , an) ∈ Hn
m; then by Proposition 6.2 we may assume that

the ai lie in a finitely generated subgroup of Q∗ of rank m. By a result of Schlickewei
(Theorem 1.1 of [Sch97]) there exist multiplicatively independent elements g1, . . . , gm ∈
Q∗ and roots of unity ζ1, . . . , ζn such that

(6.3.1) ai = ζig
vi1
1 · · · gvim

m for some vij ∈ Z

and

(6.3.2) h(gb1
1 · · · gbm

m ) ≥ c(|b1|h(g1) + · · ·+ |bm|h(gm))

for all (b1, . . . , bm) ∈ Zm; here c > 0 depends only on n.
We define A = maxi,j{|vij |h(gj)}. The assertion of the lemma obviously holds if all

ai are roots of unity. So let us assume that at least one vij is non-zero; then A > 0. For
1 ≤ j ≤ m we define the linear forms

(6.3.3) L̃j = v1jX1 + · · ·+ vnjXn and Lj =
h(gj)√

nA
L̃j .

Clearly we have |Lj | ≤ 1.
Let u ∈ Zn, then (6.3.1) and (6.3.3) imply

au = ξg
L̃1(u)
1 · · · gL̃m(u)

m
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for some root of unity ξ. We apply standard height properties and (6.3.3) to conclude

h(au) = h(gL̃1(u)
1 · · · gL̃m(u)

m )

≤ |L̃1(u)|h(g1) + · · ·+ |L̃m(u)|h(gm)

=
√

nA(|L1(u)|+ · · ·+ |Lm(u)|)
≤ m

√
n max

1≤j≤m
{|Lj(u)|}A.(6.3.4)

We choose i0 and j0 such that A = |vi0j0 |h(gj0). Then (6.3.1) and (6.3.2) imply

h(a) ≥ h(ai0) ≥ c|vi0j0 |h(gj0) = cA.

We insert this inequality into (6.3.4) to complete the proof. �

Now we approximate zeros of linear forms with real coefficients by integral vectors
with controlled coefficients. The next lemma will be used in this chapter and also in
chapter 7. The proof uses Minkowski’s Second Theorem.

Lemma 6.2. Let 1 ≤ m ≤ n and let L1, . . . , Lm ∈ R[X1, . . . , Xn] be linear forms
with |Lj | ≤ 1. If ρ ≥ 1, there exist λ1, . . . , λn with 0 < λ1 ≤ · · · ≤ λn and linearly
independent u1, . . . , un ∈ Zn such that

(6.3.5) |uk| ≤ λk, |Lj(uk)| ≤ ρ−1λk, and λ1 · · ·λn ≤ c3ρ
m.

Proof. We set Λ ⊂ Rm+n to be the rank n lattice generated by the columns of the
(m + n)× n-matrix

A =


ρL1

...
ρLm

E


where E is the n × n unit matrix and the Li are identified with the coefficient vectors
in Rn. By the Cauchy-Binet formula we have det Λ = (detAtA)1/2 = (

∑
A′(detA′)2)1/2

where the sum ranges over all n × n minors A′ of A. By Hadamard’s inequality we
deduce |det A′| ≤ ρm and so

det Λ ≤
(

n + m

n

)1/2

ρm.

Let Q = {x ∈ Rm+n; |x| ≤ 1} be the unit ball and V = Λ ⊗R ⊂ Rm+n. Then V

is an n-dimensional vector space and vol(Q ∩ V ) = πn/2/Γ(1 + n/2). Here vol is the
n-dimensional Lebesgue volume on V and Γ is the usual Gamma function. In particular
vol(Q ∩ V ) depends only on n and not on V .

Let λ1, . . . , λn be the successive minima of Λ with respect to the convex, symmetric,
and compact set Q ∩ V . Minkowski’s Second Theorem implies

(6.3.6) λ1 · · ·λn ≤ 2n det Λ
vol(Q ∩ V )

≤ c3ρ
m
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with c3 = 2n
(

n+m
n

)1/2 Γ(1 + n/2)/πn/2. By definition there exist

(6.3.7) vk ∈ (λkQ) ∩ Λ with v1, . . . , vn linearly independent.

For 1 ≤ k ≤ n there are uk ∈ Zn with

(6.3.8) vk = (ρL1(uk), . . . , ρLm(uk), uk).

Clearly the u1, . . . , un are also linearly independent. The first two inequalities in (6.3.5)
follow from (6.3.7) and (6.3.8). The last one is just (6.3.6). �

Lemma 6.3. Let 1 ≤ m ≤ n and let L1, . . . , Lm ∈ R[X1, . . . , Xn] be linear forms
with |Lj | ≤ 1. If T ≥ 1, then for any integer s with 1 ≤ s ≤ n there exist u1, . . . , us ∈ Zn

linearly independent such that |u1| · · · |us| ≤ T and

|u1| · · · |us|
|Lj(uk)|
|uk|

≤ c4T
1− n

ms for 1 ≤ j ≤ m and 1 ≤ k ≤ s.

Proof. Say c3 is the constant from Lemma 6.2. If T < c
s/n
3 , then c3 ≥ 1 and

T 1− n
sm ≥ T 1−n

s ≥ T−n
s > c−1

3 .

In this case it suffices to take for u1, . . . , us any distinct standard basis elements of Rn

and c4 = c3.
So let us assume that T ≥ c

s/n
3 . We set ρ = c

−1/m
3 Tn/(ms) ≥ 1. Applying Lemma

6.2, we get λk and uk as in (6.3.5). Then

|u1| · · · |us| ≤ λ1 · · ·λs ≤ (λ1 · · ·λn)s/n ≤ c
s/n
3 ρms/n = T.

Furthermore, by (6.3.5) and the inequality above we may estimate

|u1| · · · |us|
|Lj(uk)|
|uk|

≤ ρ−1λ1 · · ·λs ≤ ρ−1T = c
1/m
3 T 1− n

ms

for 1 ≤ j ≤ m and 1 ≤ k ≤ s as desired. �

4. Proof of Theorem 6.1

We start this section by pointing out a simple consequence of the assumption Xoa 6=
∅. This result will not be used in this chapter.

Lemma 6.4. Let X ⊂ Gn
m be an irreducible closed subvariety defined over C with

1 ≤ dim X ≤ s. Let us assume Xoa,n−s 6= ∅. Then for any surjective homomorphism of
algebraic groups ϕ : Gn

m → Gs
m one has dim ϕ(X) = dim X.

Proof. Say dim ϕ(X) < dim X, and let p ∈ X(C). The Fibre Dimension Theorem
implies that each irreducible component of ϕ|−1

X (ϕ|X(p)) has positive dimension. Each
such component is anomalous since it is contained in a coset of dimension n − s ≤
n−dim X. One of these components contains p, therefore p /∈ Xoa,n−s . Hence Xoa,n−s =
∅. �
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We will now show Proposition 6.1.
Proof of Proposition 6.1: Let x1, . . . , xn denote the coordinate functions on X. Since
X has dimension r we may assume without loss of generality that x1, . . . , xr are alge-
braically independent over Q. Let π : Gn

m → Gr
m denote the projection onto the first r

coordinates. Then π(X) is Zariski dense in Gr
m, and so is π(U). By Theorem 5.3 π(U)

contains a Zariski open dense subset V ⊂ Gr
m. The torsion points of Gr

m lie Zariski
dense and hence have infinite intersection with V . Now any point p ∈ U(Q) such that
π(p) is a torsion point already lies in Hn

n−r. Therefore U ∩Hn
n−r is infinite.

Let π′ : Gn
m → Gr−1

m denote the projection onto the first r − 1 coordinates. Again
π′(U) lies Zariski dense and thus contains V ′ 6= ∅ which is Zariski open in Gr−1

m . Now
V ′ must contain a torsion point of Gr−1

m . By the Fibre Dimension Theorem, π′|U has
positive dimensional fibres. By taking the fibre above a torsion point in V ′ we see that
U ∩Hn

n−r+1 has unbounded height. �

Before giving the main argument for the proof of Theorem 6.1 we make some pre-
liminary observations.

Assume for the moment that m is an integer with 0 ≤ m ≤ n. Say p ∈ C(Hn
m, ε) and

ε ≤ (2n)−1. Then p = ab with a ∈ Hn
m and h(b) ≤ ε(1 + h(a)). By elementary height

properties described in chapter 1 we have h(a) = h(pb−1) ≤ h(p)+h(b−1) ≤ h(p)+nh(b).
So h(a) ≤ h(p) + nε(1 + h(a)) ≤ h(p) + 1

2(1 + h(a)). We conclude that

(6.4.1) h(a) ≤ 1 + 2h(p) and h(b) ≤ 2ε(1 + h(p)).

For T ∈ R and an integer s with 1 ≤ s ≤ n we define

Φs(T ) = {ϕ(u1,...,us) : Gn
m → Gs

m;

u1, . . . , us ∈ Zn linearly independent and |u1| · · · |us| ≤ T}.

Clearly Φs(T ) is a finite set.

Lemma 6.5. Let 1 ≤ m ≤ n be an integer, let p ∈ C(Hn
m, ε) with ε ≤ (2n)−1, and let

T ≥ 1. Say s is an integer with 1 ≤ s ≤ n− 1; then there exists a map ϕ ∈ Φs(T ) such
that if H is the irreducible component of ker ϕ containing 1, then the normalized height
satisfies

(6.4.2) ĥ(pH) ≤ c5(T 1− n
ms + Tε)(h(p) + 1) and deg(pH) ≤ c6T.

Proof. In this proof c′1, . . . , c
′
10 will denote constants which depend only on n.

We have p = ab with a ∈ Hn
m and h(b) ≤ ε(1 + h(a)). By Lemmas 6.1 and 6.3 there

exist linearly independent u1, . . . , us ∈ Zn such that |u1| · · · |us| ≤ T and

(6.4.3)
|u1| · · · |us|

|uk|
h(auk) ≤ c′1T

1− n
ms h(a) ≤ 2c′1T

1− n
ms (1 + h(p)) for 1 ≤ k ≤ s.

The second inequality used the first part of (6.4.1). We define ϕ = ϕ(u1,...,us) ∈ Φs(T ).
By elementary height inequalities (cf. chapter 1) we have h(buk) ≤ c′2|uk|h(b), hence
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using the second part of (6.4.1) we get

(6.4.4)
|u1| · · · |us|

|uk|
h(buk) ≤ c′2|u1| · · · |us|h(b) ≤ c′2Th(b) ≤ 2c′2εT (1 + h(p))

for 1 ≤ k ≤ s. By (6.4.3) and (6.4.4), and since h(puk) ≤ h(auk) + h(buk) we conclude

(6.4.5)
|u1| · · · |us|

|uk|
h(puk) ≤ c′3(T

1− n
ms + εT )(1 + h(p)) for 1 ≤ k ≤ s.

Let U be the n× s matrix with columns u1, . . . , us. If we write uk = (u1k, . . . , unk),
we may assume that

U ′ =

 u11 · · · u1s
...

...
us1 · · · uss


is an s× s minor of U with maximal absolute determinant. We set ∆ = detU ′ and let
Λ ⊂ Zn be the rank s subgroup generated by u1, . . . , us. The Cauchy-Binet formula says
that (detΛ)2 is equal to the sum over the squares of the determinants of all s×s-minors
of U . Hence we may bound

(6.4.6) |∆| ≥ c′4 det Λ

for some positive c′4. The lattice Λ defines an algebraic subgroup kerϕ = H(Λ) ⊂ Gn
m

of dimension n− s by Proposition 6.2. We let H ⊂ H(Λ) be the irreducible component
of H(Λ) that contains the unit element. If π : Gn

m → Gn−s
m is the projection onto the

last n− s coordinates, then π(pH) = Gn−s
m because ∆ 6= 0. Since the torsion points of

Gn−s
m lie Zariski dense we conclude that the set V = π|−1

pH(torsion points of Gn−s
m ) lies

Zariski dense in pH.
Let w ∈ V ⊂ pH, then w = ph for some h ∈ H(Q). We define the (n−s)×s-matrix

U ′′ by

U =
[

U ′

U ′′

]
.

Furthermore, let us set w = (w′, w′′) with w′ ∈ Gs
m(Q) and w′′ ∈ Gn−s

m (Q). Then
w′U ′

w′′U ′′
= wU = pUhU = pU . So w′∆ = w′U ′(#U ′) = pU(#U ′)w′′−U ′′(#U ′) where #U ′ is

the adjoint matrix of U ′. Note that the coordinates of w′′ are roots of unity. Elementary
height properties and (6.2.1) provide

|∆|h(w) = |∆|h(w′) ≤ sh(w′∆) = sh(pU(#U ′)) ≤ c′5

s∑
k=1

xkh(puk).

Here xk denotes the maximum of the absolute values of the elements of the kth row of
#U ′. Linear algebra implies xk ≤ c′6

|u1|···|us|
|uk| . Hence with (6.4.5) we get

(6.4.7) h(w) ≤ c′7
|∆|

(T 1− n
ms + εT )(1 + h(p)),

and this inequality holds for all w ∈ V .
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Since V ⊂ pH lies Zariski dense, the right-hand side of (6.4.7) is an upper bound
for µ̂ess(pH). Zhang’s Theorem (Theorem 5.6) implies

(6.4.8) ĥ(pH) ≤ deg(pH)(1 + dim pH)µ̂ess(pH) ≤ c′8
deg(pH)
|∆|

(T 1− n
ms + εT )(1 + h(p)).

We have

(6.4.9) deg(pH) = deg(H) ≤ deg(H(Λ)) ≤ c′9 det Λ,

where the last inequality follows from the bound in (6.2.2). We recall (6.4.6) to deduce
|∆|−1 deg(pH) ≤ c′10 and so (6.4.8) implies the height bound in (6.4.2). The degree
bound in (6.4.2) follows from (6.4.9) and det Λ ≤ |u1| · · · |us| ≤ T . �

We can now prove Theorem 6.1.
Clearly we may assume Xoa,n−s 6= ∅. To avoid trivialities say dim X ≥ 1 and m ≥ 1.
We will assume that T ≥ 1 and ε > 0 are fixed and depend only on deg(X) and

n. At the end of the proof we will see how to choose them appropriately. In this proof
c′1, . . . , c

′
5 will denote constants which depend only on n.

Say ϕ : Gn
m → Gs

m is a surjective homomorphism of algebraic groups. We set

Zϕ = {p ∈ X; p is not an isolated point of ϕ|−1
X (ϕ|X(p))}

Theorem 5.2 with k = 1 implies that Zϕ ⊂ X is Zariski closed. We claim Zϕ ⊂
X\Xoa,n−s . Indeed say p ∈ Zϕ, then p is contained in an irreducible Y ⊂ X of positive
dimension with ϕ(Y ) = ϕ(p). So Y is contained in the coset p ker ϕ of dimension n− s.
Since dim X ≤ s we conclude p /∈ Xoa,n−s . Thus indeed Zϕ ⊂ X\Xoa,n−s . In particular
Zϕ 6= X by our assumption.

We define Z as the union
Z =

⋃
ϕ∈Φs(T )

Zϕ.

Clearly Z ( X is Zariski closed because the union is taken over a finite set. Furthermore,
Xoa,n−s ⊂ X\Z.

We proceed to show that we have bounded height on (X\Z) ∩C(Hn
m, ε). Hence let

us assume p ∈ (X\Z) ∩ C(Hn
m, ε) with m · s < n. We may assume ε ≤ (2n)−1. By

Lemma 6.5 there exists ϕ ∈ Φs(T ) such that if H is the irreducible component of kerϕ
containing 1, then (6.4.2) holds. Since p /∈ Zϕ we conclude that {p} is an irreducible
component of the intersection X ∩pH. The Arithmetic Bézout Theorem (Theorem 5.5)
implies

hV ({p}) ≤ deg(X)hV (pH) + deg(pH)hV (X) + c′1 deg(X) deg(pH).(6.4.10)

We have the bound deg(pH) ≤ c6T . To bound hV (pH) we note that by (5.3.2) in
chapter 5 the inequality |ĥ(pH) − hV (pH)| ≤ c′2 deg(pH) ≤ c′3T holds. By (6.4.2) we
conclude

hV (pH) ≤ c5(T 1− n
ms + εT )(h(p) + 1) + c′3T.
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We insert this inequality and the bound for deg(pH) into (6.4.10) to get

hV ({p}) ≤ c5 deg(X)(T 1− n
ms + εT )(h(p) + 1) + c6ThV (X) + c′4T deg(X).(6.4.11)

The estimate (5.3.2) lets us replace hV ({p}) by h(p) at the cost of replacing c′4 by c′5 in
(6.4.11).

Without loss of generality c5 ≥ max{1, 2n/3}. As n
ms > 1 we choose T ≥ 1 such

that
c5T

1− n
ms deg(X) =

1
3

and then ε > 0 such that
c5Tε deg(X) =

1
3
.

This choice implies ε ≤ (2n)−1. Inequality (6.4.11) concludes the proof after a short
calculation. �





CHAPTER 7

A Bogomolov property modulo algebraic subgroups

Let X ⊂ Gn
m be an irreducible closed subvariety defined over Q which is not con-

tained in the translate of a proper algebraic subgroup of Gn
m. Given a real B we show

that for an appropriate integer m = m(dim X, n) there exists a positive ε with the fol-
lowing property: the set of p ∈ X ∩ C(Hn

m, ε) with h(p) ≤ B is not Zariski dense in X.
A related statement was proved with ε = 0 and optimal m = n−dim X−1 by Bombieri,
Masser, and Zannier in [BMZ04] (cf. Theorem 6.2 in the previous chapter). If X is a
curve, we will show that m = n− 2 suffices. This particular value of m is best possible
for curves. We then continue by applying results from chapter 6 to deduce finiteness
results independent of B.

1. Introduction

In this chapter all varieties are considered to be defined over Q. We will work with
much the same notation as in chapter 6, i.e. the same notion of height and the same
definition for the set Hn

m. We also refer to chapter 6 for the motivation of the problem
considered here.

Let 1 ≤ r ≤ n be real numbers, we define

(7.1.1) m(r, n) = n− 2r + 2−d(r(d + 2)− n) with d =
[
n− 1

r

]
,

here [x] denotes the greatest integer less or equal to x.
We recall that the degree of a subvariety of Gn

m is defined using the embedding
ι : Gn

m ↪→ Pn introduced in chapter 5. Recall also that a coset is the translate of an
algebraic subgroup of Gn

m. The precise definition of the deprived set Xoa can be found
in chapter 6.

The main result of this chapter is:

Theorem 7.1. Let X ⊂ Gn
m be an irreducible closed subvariety of dimension r ≥ 1

defined over Q. Let B ∈ R and let m be an integer with m < m(r, n).

(i) If X is not contained in a proper coset, then there exists an ε > 0 depending
only on B, deg(X), and n such that

{p ∈ X ∩ C(Hn
m, ε); h(p) ≤ B}

is not Zariski dense in X.

85
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(ii) For unrestricted X there exists an ε > 0 such that

{p ∈ Xoa ∩ C(Hn
m, ε); h(p) ≤ B}

is finite.

In Proposition 7.4 we provide a more precise version of part (i) of this theorem.
For integers 1 ≤ r ≤ n we always have

m(r, n) > n− 2r,

hence the choice m = n−2r is always possible. In particular if r = 1, then we may take
m = n− 2 in Theorem 7.1. This value of m is best possible for curves. Unfortunately if
r > n/2, then n− 2r is negative, thus uninteresting as a choice for m. But if we already
have (n− 1)/2 < r ≤ n− 1, then d = 1 in (7.1.1). So

m(r, n) =
n− r

2
if

n− 1
2

< r ≤ n.

In this case any integer m < (n− r)/2 is admissible in Theorem 7.1.
Under what restriction on r = dim X can we derive a non-density statement from

Theorem 7.1(i) if the points in question lie in X ∩ C(Hn
1 , ε), have bounded height, and

ε > 0 is small? Say n ≥ 4 and 1 ≤ r ≤ n − 3, then one can always take m = 1 in
Theorem 7.1. Indeed by Lemma 7.8 we have m(r, n) ≥ m(n− 3, n). If n ≥ 6 then
m(n− 3, n) = 3/2 follows directly from the definition (7.1.1); moreover m(2, 5) = 7/4
and m(1, 4) = 17/8. But as m(n− 2, n) = 1 for all n ≥ 4 we cannot apply Theorem 7.1
in the critical case r = n− 2 and m = 1.

From the definition of m it is not difficult to deduce

m(r, n) ≤ n− r − 1 if 2 ≤ r ≤ n− 2.

This inequality shows that if 2 ≤ r ≤ n− 2 one can never apply Theorem 7.1 with the
critical subgroup dimension n− r − 1.

We recall that Kronecker’s Theorem implies C(Hn
m, 0) = Hn

m; Theorem 7.1(ii) is
therefore already known to hold with the best-possible m = n−r−1 and even with Xoa

replaced by Xta if we allow ε = 0, cf. Theorem 6.2. This result follows from the work of
Bombieri, Masser, and Zannier. Their approach uses a higher dimension Lehmer-type
lower bound for heights relative to the maximal abelian extension of Q due to Amoroso
and David. Unfortunately, no way is known to directly reduce Theorem 7.1 to the
result of Bombieri, Masser, and Zannier. The proof of Theorem 7.1 seems to be a new
approach to this sort of problem since a version of this theorem in the setting of abelian
varieties implies new results. The end of the present contains a discussion of this line of
thought. We will deduce Theorem 7.1 using a Bogomolov type lower bound for heights
given in the work [AD03] of Amoroso and David.

By Theorem 6.1 we know that Xoa ∩ C(Hn
m, ε) has bounded height for small ε if

m < n/r. Hence we have the following corollary:

Corollary 7.1. Let X ⊂ Gn
m be an irreducible closed subvariety defined over Q.
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(i) If X is a curve then there exists ε > 0 depending only on hV (X), deg(X), and
n such that Xoa ∩ C(Hn

n−2, ε) is finite.
(ii) If 1 ≤ r = dim X and if m < min{n/r,m(r, n)} is an integer then there exists

ε > 0 such that Xoa ∩ C(Hn
m, ε) is finite.

(iii) If dim X ≤ n − 3 and n ≥ 4 then there exists ε > 0 such that Xoa ∩ C(Hn
1 , ε)

is finite.

In Corollary 6.2 we showed the finiteness of Xoa∩H5
2 for a surface X in G5

m. In view
of the fact that the height is bounded on Xoa ∩ C(H5

2, ε) for some ε > 0 by Theorem
6.1, it is tempting to try to prove finiteness of this set with a (possibly smaller) positive
ε. Unfortunately as m(2, 5) = 7/4 we cannot take m = 2 in Theorem 7.1(ii). Proving
the finiteness of Xoa ∩ C(H5

2, ε) for some positive ε remains an open problem.
For curves that are not contained in a proper coset Corollary 7.1(i) is a generalization

of Theorem 2 of Bombieri, Masser, and Zannier in [BMZ99], but also a generalization
of the Bogomolov property. Indeed for n ≥ 2 the set C(Hn

n−2, ε) contains all algebraic
points of Gn

m of height ≤ ε. (The Bogomolov property holds for the more general class
of curves which are not the translate of an algebraic subgroups by a torsion point.)
So Corollary 7.1(i) can be viewed as a sort of Bogomolov property for curves modulo
subgroups of dimension n − 2. If n = 2 this corollary follows from the Bogomolov
property since C(H2

0, ε) is precisely the set of points with height ≤ ε; we get nothing
new here.

Let H ⊂ Gn
m(Q) be any subset and ε ≥ 0. In chapter 6 we defined the “cone”

C(H, ε) around H; we now define the “tube” around H:

T (H, ε) = {ab; a ∈ H, b ∈ Gn
m(Q), h(b) ≤ ε}.

Corollary 7.1(i) motivates the following definition: let n ≥ 2 and let X ⊂ Gn
m be an

irreducible algebraic curve, we define

µ̂ess
C (X) = sup{ε ≥ 0; X ∩ C(Hn

n−2, ε) finite}

where by convention sup ∅ = −∞. We also define

µ̂ess
T (X) = sup{ε ≥ 0; X ∩ T (Hn

n−2, ε) finite}.

Then clearly µ̂ess
C (X) ≤ µ̂ess

T (X). We are interested in lower bounds for µ̂ess
C (X) or

µ̂ess
T (X).

In the special situation n = 2 we have µ̂ess
T (X) = µ̂ess

C (X) = µ̂ess(X) where µ̂ess(X) is
the usual essential minimum defined in chapter 5. For example in [Zag93] Zagier gave
an explicit positive lower bound for µ̂ess(X) if X ⊂ G2

m is the line defined by x + y = 1.
Although he worked with the slightly different height h(x) + h(y) ≤ 2h(x, y).

Let us study µ̂ess
C (X) in the so-called geometric case, i.e. if the curve X is not

contained in a proper coset. Corollary 7.1(i) says that µ̂ess
C (X) can be bounded below

in terms of deg(X), hV (X), and n only. If we consider again the case n = 2, the results
of Amoroso and David from [AD03] imply that µ̂ess

C (X) = µ̂ess(X) is bounded below
only in terms of deg(X) and n. We pose the following question.
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Question 1. Let X ⊂ Gn
m be an irreducible curve not contained in a proper coset,

is there a positive lower for µ̂ess
C (X) in terms of deg(X) and n only?

What happens in the arithmetic case, i.e. if we allow the curve X to be contained
in a proper coset but not in a proper algebraic subgroup? As was stated in chapter
6, X ∩ Hn

n−1 does not necessarily have bounded height. Conjecture A of Bombieri,
Masser, and Zannier’s work [BMZ06a] expects that X ∩ Hn

n−2 is finite, or in other
words µ̂ess

C (X) ≥ 0. This conjecture was proved by Maurin in [Mau06]. We consider
an example:

Let X ⊂ Gn
m be contained in a coset of codimension 2. After an automorphism

of Gn
m we may assume X = {(γ1, γ2)} × X ′ where X ′ ⊂ Gn−2

m is a curve. Let ε be a
positive real, then any p ∈ X(Q) can be written as p = ab with a = (1, 1, p′) ∈ Hn

n−2 and
b = (γ1, γ2, 1, . . . , 1). Hence if h(p) is large with respect to ε and h(b) then h(p′) = h(a)
will be large with respect to ε and h(b). Therefore p ∈ C(Hn

n−2, ε) if h(p) is large. So
X ∩ C(Hn

n−2, ε) is infinite for all positive ε. Hence µ̂ess
C (X) ≤ 0 and so µ̂ess

C (X) = 0 by
Maurin’s Theorem.

We note that this example does not imply that µ̂ess
T (X) ≤ 0 if we also assume that

X is not contained in a proper algebraic subgroup. Indeed under this extra hypothesis
γ1 and γ2 cannot be roots of unity. By Kronecker’s Theorem our b above satisfies
h(b) = h(γ1, γ2) > 0. We pose a further question.

Question 2. Let X ⊂ Gn
m be an irreducible curve not contained in a proper algebraic

subgroup, does µ̂ess
T (X) > 0 hold?

We use Dobrowolski’s classical theorem to prove a not completely immediate corol-
lary to Theorem 7.1:

Corollary 7.2. Let X ⊂ Gn
m be an irreducible closed subvariety defined over Q.

(i) If X is a curve then there exists ε > 0 such that Xoa ∩C(Hn
n−2, ε) is finite and

equal to Xoa ∩Hn
n−2.

(ii) If 1 ≤ r = dim X and if m < min{n/r,m(r, n)} is an integer then there exists
ε > 0 such that Xoa ∩ C(Hn

m, ε) is finite and equal to Xoa ∩Hn
1 .

(iii) If dim X ≤ n − 3 and n ≥ 4 then there exists ε > 0 such that Xoa ∩ C(Hn
1 , ε)

is finite and equal to Xoa ∩Hn
1 .

So for small ε there are no points on a curve X that are close to a subgroup of
dimension n− 2 without already lying on a subgroup of dimension n− 2 (if Xoa = X).
In Corollary 7.2(i) the quantity ε may also depend on the field of definition of X, even
when C is replaced by T , as is illustrated by the following simple example.

Let X be the curve defined by x + y = 21/k + 1 with k ∈ N. Then deg(X) = 1 and
hV (X) is bounded independently of k. But X contains the non-torsion point (21/k, 1)
which lies in T (Hn

0 , ε) with ε = (log 2)/k.
We conclude the introduction by discussing the abelian situation. More specifically

we replace Gn
m by En where E is an elliptic curve. The set Hn

m also makes sense in
this setting, as do T (·, ·) and C(·, ·) when using for example the Néron-Tate height
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associated to an ample symmetric line bundle. Let X ⊂ En be an irreducible curve.
Intersections of X with Hn

m have been studied by Viada in [Via03] and Rémond and
Viada in [RV03].

Say X is not contained in the translate of a proper algebraic subgroup of En. If E
does not have complex multiplication, then Viada proves the finiteness of X ∩ Hn

m for
m ≤ n/2− 2. If E has complex multiplication, Viada shows that one has finiteness for
the optimal m = n− 2. In her proof she uses a height upper bound analog to Theorem
6.1 and also a lower bound for the Néron-Tate height on powers of elliptic curves. The
reason for the apparently non-optimal n/2 − 2 in the non-complex multiplication case
comes from the fact that up to now no one can prove essentially best-possible Lehmer-
type height lower bounds here. The problem can be traced back to the fact that on an
arbitrary elliptic curves the Frobenius automorphism cannot in general be lifted from
the reduction modulo a suitable prime.

The work of Amoroso and David in [AD03] on Bogomolov-type lower bounds for
heights in the toric case uses methods from transcendence theory. Their extrapolation
step does not make use of the Frobenius automorphism. Thus there is hope that lower
bounds of the same quality as in [AD03] hold in the case where the torus is replaced
by a power of an elliptic curve. In fact Galateau has recently announced such a result
in the more general case of a product of elliptic curves in [Gal07].

In a preprint [Via07], Viada improved on her result obtained together with Rémond.
She proved that if X is a curve not contained in a proper algebraic subgroup, then
X ∩ Hn

n−3 is finite regardless of C.M. type of the elliptic curve E. The subgroup di-
mension n− 3 is already close to the best-possible value n− 2. Her approach, obtained
independently from ours, is based on Galateau’s Bogomolov-type height lower bound.

Let X be a curve in En not contained in the translate of a proper algebraic subgroup.
Galateau’s result together with the methods presented in this chapter and the previous
one could provide a proof for the finiteness of X∩C(Hn

n−2, ε) for some ε > 0 regardless if
E has complex multiplication or not. Of course such a result would imply the finiteness
of X ∩Hn

n−2, which is still unknown.

2. Auxiliary results

We reuse notation introduced in section 2 of chapter 6. For example | · | denotes the
euclidean norm on Rn and also the euclidean norm of the coefficient vector of a linear
form. Unless otherwise stated the symbols c1, . . . , c14 denote constants which depend
only on n.

We recall two lemmas from chapter 6 section 3 which will also be used in this chapter.

Lemma 7.1. Let 1 ≤ m ≤ n and let a ∈ Hn
m. Then there exist linear forms

L1, . . . , Lm ∈ R[X1, . . . , Xn] such that |Lj | ≤ 1 and

h(au) ≤ c1 max
1≤j≤m

{|Lj(u)|}h(a)

for all u ∈ Zn.
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The second lemma wraps up all the geometry of numbers we will use.

Lemma 7.2. Let 1 ≤ m ≤ n and let L1, . . . , Lm ∈ R[X1, . . . , Xn] be linear forms
with |Lj | ≤ 1. If ρ ≥ 1, there exist λ1, . . . , λn with 0 < λ1 ≤ λ2 ≤ · · · ≤ λn and linearly
independent u1, . . . , un ∈ Zn such that

|uk| ≤ λk, |Lj(uk)| ≤ ρ−1λk, and λ1 · · ·λn ≤ c2ρ
m.

We recall Dobrowolski’s Theorem: if α ∈ Q∗ is not a root of unity and D = [Q(α) :
Q], then

(7.2.1) h(α) ≥ c3
1
D

(
log log 3D

log 2D

)3

where c3 > 0 is an absolute constant.
The geometry of numbers machinery and Dobrowolski’s Theorem give the following

lemma which is the main ingredient in the proof of Corollary 7.2. It can be regarded as
a Dobrowolski type result modulo subgroups.

Lemma 7.3. Let 1 ≤ m ≤ n be an integer, let δ > 0, and let p ∈ C(Hn
m, ε) with

h(p) ≤ B and [Q(p) : Q] ≤ D. If

(7.2.2) ε−1 ≥ c4(1 + B)m+1Dm+1+δ.

then p ∈ Hn
m. Here c4 > 0 depends only on n and δ.

Proof. The symbols c′1, c
′
2, c

′
3 denote constants which depend only on n and δ. We

may assume c4 ≥ 2n; we will see how to choose c4 appropriately further down. We
define ρ ≥ 1 to be the right-hand side of (7.2.2).

We write p = ab with a ∈ Hn
m and h(b) ≤ ε(1 + h(a)). By (6.4.1) we have h(a) ≤

1 + 2B and h(b) ≤ 2ε(1 + B). Let L1, . . . , Lm be the linear forms from Lemma 7.1 and
let λk and uk be from Lemma 7.2 applied to the Lj . We deduce

(7.2.3) h(auk) ≤ c1λkρ
−1h(a) ≤ 2c1λkρ

−1(1 + B).

Furthermore, by elementary height inequalities we have h(buk) ≤
√

n|uk|h(b) ≤
2
√

nλkε(1 + B). We combine this inequality with (7.2.3) and use ε ≤ ρ−1 to get

(7.2.4) h(puk) ≤ h(auk) + h(buk) ≤ c′1λk(ρ−1 + ε)(1 + B) ≤ 2c′1λkρ
−1(1 + B).

Say 1 ≤ k ≤ n−m. By Lemma 7.2 we have λk ≥ |uk| ≥ 1 and

λk ≤ (λn−m · · ·λn)
1

m+1 ≤ (λ1 · · ·λn)
1

m+1 ≤ c′2ρ
m

m+1 .

We apply this inequality to (7.2.4) and use the definition of ρ to get

h(puk) ≤ c′3ρ
− 1

m+1 (1 + B) = c′3c
− 1

m+1

4 D−1− δ
m+1 ,

this inequality holds for all 1 ≤ k ≤ n−m.
Now [Q(puk) : Q] ≤ D, so if c4 is large enough with respect to c′3 and δ we use

Dobrowolski’s Theorem (7.2.1) to deduce that pu1 , . . . , pun−m are roots of unity. Since
u1, . . . , un−m are linearly independent we conclude that p ∈ Hn

m by Proposition 6.2. �
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Say X ⊂ Gn
m is an algebraic curve not contained in a proper coset. Then by Theorem

6.1 chapter 6 there is a B and ε > 0 such that if p ∈ X ∩ C(Hn
n−2, ε) then h(p) ≤ B.

By the lemma above we conclude that p is already contained in a algebraic subgroup of
dimension n−2 if ε is small with respect to B, deg(X), [Q(p) : Q], and n. In this case p
is contained in the set X ∩Hn

n−2, which is finite by the result of Bombieri, Masser, and
Zannier mentioned in the introduction. Of course we cannot conclude the finiteness of

{p ∈ X ∩ C(Hn
n−2, ε); h(p) ≤ B}

for some fixed positive ε since as of yet we know nothing about the degree [Q(p) : Q].
Also, if we already knew that the degrees [Q(p) : Q] were uniformly bounded, then
finiteness would follow from boundedness of height and Northcott’s Theorem.

3. Push-forwards and pull-backs

In this section we prove two lemmas on bounds for degrees of push-forwards and
pull-backs of varieties by a homomorphism of algebraic groups.

Let X ⊂ Gn
m be an irreducible subvariety throughout this section.

Lemma 7.4. Let u1, . . . , ut ∈ Zn with 0 < |u1| ≤ · · · ≤ |ut| and ϕ = ϕ(u1,...,ut) :
Gn

m → Gt
m. If q = dim ϕ(X), then

deg(ϕ(X)) ≤ c5|ut−q+1| · · · |ut|deg(X).

Proof. For brevity we set Y = ϕ(X). By Theorem 5.3 there exists U ⊂ Y
Zariski open and dense with U ⊂ ϕ(X). By a standard Bertini type argument we
may find polynomials li ∈ Q[X1, . . . , Xt] (1 ≤ i ≤ q) of degree 1 such that li−Xt−q+i ∈
Q[X1, . . . , Xt−q] with the following properties: the set

S = {y ∈ Y ; l1(y) = · · · = lq(y) = 0}

is finite of cardinality deg(Y ) and contained in U . We define R = ϕ|−1
X (S). Then

R ⊂ X is Zariski closed and has at least deg(Y ) irreducible components. On the other
hand we have R = {x ∈ X; l1(ϕ(x)) = · · · = lq(ϕ(x)) = 0, }. The exponent vectors
in li ◦ ϕ have norm bounded by |ut−q+i|. Hence Bézout’s Theorem 5.4 implies that the
number of irreducible components of R is bounded above by c5|ut−q+1| · · · |ut|deg(X).
This completes the proof. �

If ϕ = π : Gn
m → Gt

m is the projection onto any set of t coordinates, then proof
above can easily be modified to give deg(π(X)) ≤ deg(X).

Lemma 7.5. Let u1, . . . , un ∈ Zn be linearly independent and ϕ = ϕ(u1,...,un) : Gn
m →

Gn
m. Then there exists an irreducible component W ⊂ ϕ−1(X) such that ϕ(W ) ⊂ X is

Zariski dense,

dim W = dim X, and deg(W ) ≤ c6|u1| · · · |un|deg(X).
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Proof. Let W1, . . . ,Wl be the irreducible components of ϕ−1(X). Since ϕ is sur-
jective ϕ(Wi0) ⊂ X is Zariski dense for some i0. We set W = Wi0 . Because ϕ has finite
fibres we conclude that dim W = dim X by Theorem 5.1.

It remains to prove the upper bound for deg(W ). By Bézout’s Theorem (Theorem
5.4) the irreducible components of

{(p, q) ∈ Gn
m ×Gn

m; ϕ(p) = q} ∩ (Gn
m ×X)

have degree bounded by c6|u1| · · · |un|deg(X). Now W is the projection of such an
irreducible component onto the first factor of Gn

m ×Gn
m. The lemma follows from the

remark after the proof of Lemma 7.4. �

4. A lower bound for the product of heights

In [AD03] Amoroso and David deduced a positive lower bound for the height of a
point on an open subset of certain subvarieties of Gn

m, cf. Theorem 5.7. Their bound
depends only on the degree of the variety and on n. In this section we derive a corollary
of this result by deducing a lower bound for the product over heights of some coordinates
of a generic point on a variety. The lower bounds depends only on the degree of the
variety and n.

Let us consider for the moment the curve X in G3
m defined by p1 + p2 = 1 and

p2 + p3 = 2 (we have Xoa = X). Because of examples like (21/k, 1− 21/k, 1 + 21/k) ∈ X
with k ∈ N the product

(7.4.1) h(p1)h(p2)h(p3)

cannot be bounded below by some positive constant on any Zariski open dense subset
of X. The trick is to forget about the coordinate in (7.4.1) with minimal height, in this
case p1 if k is large. In Proposition 7.1 below we will show that for all p on a open dense
subset X the quantity

max{h(p1)h(p2), h(p1)h(p3), h(p2)h(p3)}

is bounded below by a positive constant.
First we need a preparatory lemma which encapsulates the consequence (5.3.5) of

Amoroso and David’s Theorem (Theorem 5.7).

Lemma 7.6. Let X ( Gn
m be an irreducible closed subvariety that is not contained in

a proper coset. Let u1, . . . , un ∈ Zn be linearly independent and ϕ = ϕ(u1,...,un) : Gn
m →

Gn
m. We set Π = |u1| · · · |un|. There exists a Zariski open dense U ⊂ X such that if

q ∈ Gn
m with ϕ(q) ∈ U , then

h(q) ≥ c7

(Π deg(X))1/ codim X(log(3Π deg(X)))c8

where c7 and c8 are positive and depend only on n.
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Proof. Let W ⊂ ϕ−1(X) be an irreducible component as in Lemma 7.5. Clearly
W is not contained in a proper coset of Gn

m. By (5.3.5), the consequence of Amoroso
and David’s Theorem, we have

µ̂ess(W ) ≥ c

(Π deg(X))1/ codim X(log(3Π deg(X)))c′
> 0,

where c and c′ depend only on n. By definition of the essential minimum there exists
V ⊂ W Zariski open and dense such that if q ∈ V (Q) then h(q) ≥ 1

2 µ̂ess(W ). Finally
by Theorem 5.3 there exists U ⊂ ϕ(V ) such that U ⊂ X is Zariski open and dense. The
lemma follows because if ϕ(q) ∈ U then q = q′ζ for some q′ ∈ V and some torsion point
ζ; thus h(q) = h(q′). �

The following proposition is a geometric analogue of Theorem 1.6 in [AD99].

Proposition 7.1. Let X ⊂ Gn
m be an irreducible closed subvariety that is not con-

tained in a proper coset. There exists U ⊂ X Zariski open and dense such that for each
p = (p1, . . . , pn) ∈ U(Q) there is a subset Σ ⊂ {1, . . . , n} with |Σ| ≥ n− dim X and

(7.4.2)
∏
k∈Σ

h(pk) ≥
c9

deg(X)(log(3 deg(X)))c10

with c9 > 0.

Proof. Throughout the proof c′1, . . . , c
′
6 will denote constants which depend only

on n. For brevity let r = dim X. Clearly we may assume that X 6= Gn
m. We prove the

proposition by contradiction. To do this we assume that there exists V ⊂ X(Q) Zariski
dense such that for all p = (p1, . . . , pn) ∈ V and all Σ ⊂ {1, . . . , n} with |Σ| ≥ n− r we
have

(7.4.3)
∏
j∈Σ

h(pj) <
C

deg(X)(log(3 deg(X)))C′

where C,C ′ > 0 are fixed and depend only on n. We will see how to choose these
constants properly later on.

First we do some reduction steps. By replacing V by a smaller, yet still Zariski
dense subset of X(Q) and after permuting coordinates we may assume that

h(p1) ≤ h(p2) ≤ · · · ≤ h(pn)

for all (p1, . . . , pn) ∈ V . These inequalities will be used freely throughout the proof.
Let us temporarily assume that the set of (p1, . . . , pn) ∈ V with h(pn) > 1 is dense

in X. Let X ′ ⊂ Gn−1
m be the Zariski closure of the projection of X onto the first n− 1

coordinates. Now dim X ′ ≤ r and X ′ has degree at most deg(X) by the remark after
Lemma 7.4. Also, X ′ is not contained in a proper coset. By induction on n and using
(7.4.3) with Σ = {r + 1, . . . , n} we conclude a contradiction if C is small enough and C ′

is big enough. Hence we may suppose that

(7.4.4) max
j
{h(pj)} = h(pn) ≤ 1 for (p1, . . . , pn) ∈ V,
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where V is still Zariski dense in X.
Let p = (p1, . . . , pn) ∈ V be arbitrary for the moment. Let π : Gn

m → Gr+1
m be the

projection onto the first r + 1 coordinates. The variety Y = π(X) is not contained in
a proper coset since X itself is not. We note that deg(Y ) ≤ deg(X) by the comment
after Lemma 7.4 and codim Y ≥ 1. Thus (5.3.5) gives a lower bound for µ̂ess(Y ). So
after replacing V by a smaller, dense subset of X(Q) we may assume that

(r + 1)h(pr+1) = (r + 1) max{h(p1), . . . , h(pr+1)} ≥ h(π(p)) ≥(7.4.5)

≥ c′1
deg(X)(log(3 deg(X)))c′2

.

In particular we have h(pr+1) > 0. For r + 1 ≤ j ≤ n we define

(7.4.6) k1 = k2 = · · · = kr = 1 and kj =
[

h(pj)
h(pr+1)

]
≥ 1.

We note kr+1 = 1. The kj depend on the point p. For r + 1 ≤ j ≤ n we have

(7.4.7)
1
2

h(pj)
h(pr+1)

≤ kj ≤
h(pj)

h(pr+1)

Next we would like to bound the kj from above. For r + 1 ≤ j ≤ n we apply (7.4.4)
and (7.4.5) to deduce

(7.4.8) 1 ≤ kj ≤
1

h(pr+1)
≤ c′3 deg(X)(log(3 deg(X)))c′2 ,

with c′3 ≥ 1. In fact (7.4.8) holds for all 1 ≤ j ≤ n. As an important consequence we
see that the kj are bounded independently of p ∈ V .

Still considering p ∈ V we define a homomorphism ϕ : Gn
m → Gn

m by ϕ(x1, . . . , xn) =
(xk1

1 , . . . , xkn
n ) where the kj are as in (7.4.6). Of course ϕ depends on p. Each such ϕ

gives rise to an open dense Uϕ ⊂ X as in Lemma 7.6. Since the set of possible ϕ, i.e.
with kj satisfying (7.4.8), is finite and independent of p there are only finitely many Uϕ.
Because V ⊂ X is Zariski dense we may pick once and for all a p ∈ V with p ∈ Uϕ for
all ϕ as defined above with kj satisfying (7.4.8).

Let q = (q1, . . . , qn) ∈ Gn
m(Q) with ϕ(q) = p. By our choice of p and Lemma 7.6 we

have the lower bound

(7.4.9) h(q) ≥ c7

(k1 · · · kn deg(X))1/(n−r)(log(3k1 · · · kn deg(X)))c8
.

We have

(7.4.10) h(pr+1) · · ·h(pn) = kr+1 · · · knh(qr+1) · · ·h(qn).

From (7.4.7) we derive

(7.4.11) 1 ≤ h(qj)
h(pr+1)

≤ 2 for r + 1 ≤ j ≤ n.
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We apply the lower bound in (7.4.11) to the right side of (7.4.10) and get

(7.4.12) h(pr+1) · · ·h(pn) ≥ kr+1 · · · knh(pr+1)n−r.

Say 1 ≤ j′ ≤ n with h(qj′) = max{h(q1), . . . , h(qn)}. Now h(qr+1) = h(pr+1) ≥
h(pj) = h(qj) for 1 ≤ j ≤ r, hence we may assume j′ ≥ r + 1. We insert the upper
bound from (7.4.11) with j = j′ into (7.4.12) and use h(qj′) ≥ 1

nh(q) to derive

h(pr+1) · · ·h(pn) ≥ 2−(n−r)kr+1 · · · knh(qj′)n−r ≥ c′4kr+1 · · · knh(q)n−r.

We use the lower bound for h(q) in (7.4.9) to get

h(pr+1) · · ·h(pn) ≥ c′5kr+1 · · · kn

k1 · · · kn deg(X)(log(3k1 · · · kn deg(X)))(n−r)c8

=
c′5

deg(X)(log(3k1 · · · kn deg(X)))(n−r)c8
.

We bound the remaining kj in the logarithm from above with the help of (7.4.8) and
obtain

(7.4.13) h(pr+1) · · ·h(pn) ≥ c′6
deg(X)(log(3 deg(X)))(n−r)c8

.

If we choose C = c′6 and C ′ = (n− r)c8, then (7.4.3) and (7.4.13) contradict. �

It is not too difficult to construct examples of X of arbitrary dimension, as at
the beginning of this section, where one really needs to omit dim X factors in the
product (7.4.2) to obtain a positive lower bound on an open dense set. Furthermore,
the dependency of (7.4.2) on deg(X) is optimal up to the usual log power.

We will prove a variant of Proposition 7.1 where the variety is allowed to be contained
in a proper coset. Let X ⊂ Gn

m, we define

so(X) = inf{dim H; H ⊂ Gn
m a coset with X ⊂ H}.

Proposition 7.1 only holds for varieties X ⊂ Gn
m with so(X) = n. A simple projec-

tion argument shows that in general we have:

Proposition 7.2. Let X ⊂ Gn
m be an irreducible closed subvariety. There exists

U ⊂ X Zariski open and dense such that for each p = (p1, . . . , pn) ∈ U(Q) there is a
subset Σ ⊂ {1, . . . , n} with |Σ| ≥ so(X)− dim X and∏

k∈Σ

h(pk) ≥
c11

deg(X)(log(3 deg(X)))c12

with c11 > 0.

Proof. Let H be a coset with X ⊂ H and so(X) = dim H = n−h. By Proposition
6.2 there are linearly independent u1, . . . , uh ∈ Zn such that xui is constant on H.
We may assume that the h × h matrix whose ith row consists of the first h entries of
ui is non-singular. In this case the projection π : Gn

m → Gn−h
m onto the last n − h

coordinates has finite fibres when restricted to H. Therefore π|X has finite fibres too.
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By Theorem 5.1 we have dim π(X) = dim X. The comment after Lemma 7.4 implies
deg(π(X)) ≤ deg(X). Furthermore, π(X) is not contained in a proper coset, indeed
otherwise X would be contained in a coset of dimension strictly less than n − h. The
proposition now follows from Proposition 7.1 applied to π(X). �

If for example X is itself a coset, then so(X) = dim X; in this case Proposition 7.2
is an empty statement.

5. Proof of Theorem 7.1 and corollaries

We start off with an auxiliary lemma on linear programming. We recall that m(r, s)
was defined in (7.1.1).

Lemma 7.7. Let 1 ≤ r < s ≤ n be integers, let M = (mij) be the n× (s− r) matrix
defined by

mij =

 1 if i + j ≤ n− r + 1,
2 if n− r + 2 ≤ i + j ≤ n + 1,
0 else,

and let w = (w1, . . . , ws−r)
t ∈ Rs−r be the column vector with

wj =
{

2−( j−1
r

+1) if r|(j − 1),
0 else.

Then v = (v1, . . . , vn)t = Mw satisfies vi ≤ 1 and furthermore

(7.5.1)
s−r∑
j=1

(s− r − j + 1)wj = m(r, s).

Proof. The vector w looks like

(7.5.2) w = (
1
2
, 0, . . . , 0,

1
4
, 0, . . . , 0,

1
8
, 0, . . . )

t

with r − 1 zeros between consecutive negative powers of 2 (there are no zeros if r = 1).
When 1 ≤ i ≤ n, the ith row of M starts off with a certain number (possibly zero) of
consecutive ones followed by say N consecutive twos and finally consecutive zeros. By
definition we have N ≤ r, hence by (7.5.2) there is at most one j with mij = 2 and
wj 6= 0. Let N ′ be the number of j with mij = 1 and wj 6= 0, then

vi =
∑

j, mij=1

wj + 2
∑

j, mij=2

wj ≤ (
1
2

+ · · ·+ 1
2N ′ ) + 2

1
2N ′+1

= 1.

This inequality proves the first part of the lemma. The second part, the equality (7.5.1),
follows from an elementary calculation. �

The following proposition will imply part (i) of Theorem 7.1.
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Proposition 7.3. Let X ⊂ Gn
m be an irreducible closed subvariety of dimension

r ≥ 1 and assume that s = so(X) ≥ r + 1. Let m be an integer with 0 ≤ m < m(r, s),
let B ≥ 1, and let δ > 0. Then there exists c13 > 0 which depends only on n and δ such
that if

(7.5.3) ε ≤ c13(Bm+δ(deg(X))1+δ)−
1

m(r,s)−m

the set {p ∈ X ∩ T (Hn
m, ε); h(p) ≤ B} is not Zariski dense in X.

Proof. Throughout the proof c′1, . . . , c
′
12 will denote constants which only depend

on n and δ. We consider c13 ≤ 1 as fixed and depending only on n and δ; we will see how
to choose it later on. We also define ρ ∈ R such that Bρ−1 is equal to the right-hand
side of (7.5.3). We note that ρ ≥ B ≥ 1.

Now say p ∈ X ∩ T (Hn
m, ε) and h(p) ≤ B. We will show that p is contained in some

proper Zariski closed subset of X independent of p.
By definition we may write p = ab with a ∈ Hn

m and h(b) ≤ ε. Elementary height
properties imply h(a) ≤ h(p) + h(b−1) ≤ h(p) + nh(b) ≤ h(p) + nε ≤ 2nB. Let us
assume for the moment that m ≥ 1. By Lemmas 7.1 and 7.2 there exist λ1, . . . , λn with
0 < λ1 ≤ · · · ≤ λn and linearly independent u1, . . . , un ∈ Zn such that for 1 ≤ k ≤ n

(7.5.4) |uk| ≤ λk, h(auk) ≤ c′1h(a)ρ−1λk ≤ c′2Bρ−1λk, and λ1 · · ·λn ≤ c′3ρ
m.

In the case m = 0 the statements in (7.5.4) also hold if we take λk = 1 and uk the
standard basis elements of Rn. Indeed if m = 0, then a is a torsion point and thus has
height 0. Elementary height inequalities give h(buk) ≤

√
nh(b)|uk| ≤

√
nελk, hence

(7.5.5) h(puk) ≤ h(auk) + h(buk) ≤ c′4(Bρ−1 + ε)λk ≤ 2c′4Bρ−1λk,

here we used the bound ε ≤ Bρ−1 in the last inequality.
Let t0 = n−s+r+1, so that r+1 ≤ t0 ≤ n; also let t be an integer with t0 ≤ t ≤ n.

We define the surjective homomorphism of algebraic groups ϕt = ϕ(u1,...,ut) : Gn
m → Gt

m

and the irreducible variety Xt = ϕt(X) ⊂ Gt
m. Both ϕt and variety Xt depend on p.

On the other hand the quantity c′3ρ
m depends only on X, B, and δ but not on the point

p. Since |u1| · · · |ut| ≤ c′3ρ
m by (7.5.4) there are only finitely many possibilities for ϕt.

These morphisms give a finite set of Xt which does not depend on p.
We proceed by bounding so(Xt) from below. To do this let H ⊂ Gt

m be a coset of
dimension so(Xt) that contains Xt. Then dim ϕ−1

t (H) = dim H + (n − t) and ϕ−1
t (H)

is a coset containing X. Hence

(7.5.6) so(Xt) = dim ϕ−1
t (H)− (n− t) ≥ s + t− n ≥ s + t0 − n = r + 1.

In particular Xt has positive dimension.
Lemma 7.4 and (7.5.4) give the upper bound

deg(Xt) ≤ c′5λt−dim Xt+1 · · ·λt deg(X)

since the λk are in ascending order. Furthermore, dim Xt ≤ r and λk ≥ 1, so

(7.5.7) deg(Xt) ≤ c′5λt−r+1 · · ·λt deg(X) for all t0 ≤ t ≤ n.
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Let c11 > 0 and c12 be the constants from Proposition 7.2. Let us assume for the
moment that there exists an integer t with t0 ≤ t ≤ n such that for all Σ ⊂ {1, . . . , t}
with |Σ| ≥ so(Xt)− dim Xt we have the inequality

(7.5.8) c−1
11

(∏
k∈Σ

h(puk)

)
deg(Xt)(log(3 deg(Xt)))c12 < 1.

The product in (7.5.8) is actually a product over heights of certain coordinates of the
point ϕt(p) ∈ Xt. From (7.5.8) and Proposition 7.2 we conclude that ϕt(p) is contained
in Zϕ,t, a proper and Zariski closed subset of Xt. As mentioned above, the set of possible
ϕt and Xt is finite. Finally ϕt|X : X → Xt is by definition a dominant morphism. The
point p is therefore contained in the proper, Zariski closed subset

⋃
ϕ,t ϕt|−1

X (Zϕ,t), where
the union is taken over a finite set independent of p. The proposition follows in this
case.

What if p does not satisfy the property described around (7.5.8)? Then we will
derive a contradiction. Let t0 ≤ t ≤ n and let Σ ⊂ {1, . . . , t}, we define fn−t+1(Σ) ∈ R
to be the expression on the left-hand side of (7.5.8). We are assuming that for all
t0 ≤ t ≤ n there exists a subset Σ(t) ⊂ {1, . . . , t} with |Σ(t)| ≥ so(Xt)− dim Xt and

(7.5.9) fn−t+1(Σ(t)) ≥ 1.

For brevity we set fn−t+1 = fn−t+1(Σ(t)).
We continue by bounding fn−t+1 from above. To do this we apply (7.5.5) to the

definition of fn−t+1 and get

fn−t+1 ≤ c−1
11

 ∏
k∈Σ(t)

(c′6Bρ−1λk)

deg(Xt)(log(3 deg(Xt)))c12 .

Next we bound deg(Xt) for above using (7.5.7):

fn−t+1 ≤ c′7

 ∏
k∈Σ(t)

λk

λt−r+1 · · ·λt(Bρ−1)|Σ(t)| deg(X)(log(3λt deg(X)))c12 .

By (7.5.6) we have |Σ(t)| ≥ so(Xt)−dim Xt ≥ s+t−n−r ≥ 1 where we used dim Xt ≤ r.
Since λk ≥ 1, ρ ≥ B, and

∏
k∈Σ(t) λk ≤ λ1 · · ·λt we deduce

fn−t+1 ≤(7.5.10)

c′7λ1 · · ·λt−r(λt−r+1 · · ·λt)2(Bρ−1)s+t−n−r deg(X)(log(3λt deg(X)))c12 .

And this inequality holds for all t0 ≤ t ≤ n.
Let M , v, w be the matrix respectively vectors from Lemma 7.7. Using notation

from chapter 6, section 2 we define

Λ = (λ1, . . . , λn)M

= (λ1 · · ·λn−r(λn−r+1 · · ·λn)2, . . . , λ1 · · ·λn−s+1(λn−s+2 · · ·λn+r−s+1)2).
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That is, the jth entry of Λ is the main contribution of the λk’s to the bound for fj in
(7.5.10). By Lemma 7.7 and λk ≥ 1 we have

(7.5.11) Λw = (λ1, . . . , λn)Mw = λv1
1 · · ·λvn

n ≤ λ1 · · ·λn.

We define the product

f = (f1, . . . , fs−r)w = fw1
1 · · · fws−r

s−r .

By (7.5.9) and since wj ≥ 0 we conclude

(7.5.12) f ≥ 1.

We bound f from above with the help of (7.5.10) and (7.5.11)

f ≤ c′8Λ
w(Bρ−1)

Ps−r
j=1(s−r−j+1)wj (deg(X)(log(3λn deg(X)))c12)w1+···+ws−r

≤ c′8λ1 · · ·λn(Bρ−1)
Ps−r

j=1(s−r−j+1)wj deg(X)(log(3λn deg(X)))c12 .

We also used w1 + · · ·+ ws−r < 1, which follows easily from the definition of the wj in
Lemma 7.7, cf. (7.5.2). By the same lemma the exponent of Bρ−1 equals m(r, s). We
recall (7.5.4) and observe λn ≤ λ1 · · ·λn ≤ c′3ρ

m to bound

f ≤ c′9ρ
m−m(r,s)Bm(r,s) deg(X)(log(3ρ deg(X)))c12 .(7.5.13)

By the definition of ρ we have

(7.5.14) ρm−m(r,s)Bm(r,s)+δ deg(X)1+δ = c
m(r,s)−m
13

Together with (7.5.13) we get

f ≤ c′9c
m(r,s)−m
13

(log(3ρ deg(X)))c12

Bδ deg(X)δ
.

By (7.5.14) the ρ in the logarithm is bounded above by (Bc−1
13 deg(X))c′10 . Together

with elementary inequalities we get

f ≤ c′11c
m(r,s)−m
13

(log(3Bc−1
13 deg(X)))c12

Bδ deg(X)δ
(7.5.15)

≤ c′12c
m(r,s)−m
13

(Bc−1
13 deg(X))min{m(r,s)−m

2
,δ}

Bδ deg(X)δ

≤ c′12c
m(r,s)−m

2
13 .

Thus we may choose c13 ∈ (0, 1] depending only on n and δ such that (7.5.15) implies
f < 1. But this inequality contradicts (7.5.12). �

For B ≥ 1 we have the following inclusions

{p ∈ T (Hn
m, ε); h(p) ≤ B} ⊂ {p ∈ C(Hn

m, ε); h(p) ≤ B}(7.5.16)

⊂ {p ∈ T (Hn
m, 4εB); h(p) ≤ B},
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if ε ≤ 1
2n . The first inclusion is trivial and holds for unrestricted ε, the second one

follows easily from (6.4.1). Therefore Proposition 7.3 can be reformulated with T (·, ·)
replaced by C(·, ·) and after choosing a possibly smaller ε.

Proposition 7.4. Let X, r, s, m, n,B, and δ be as in Proposition 7.3. Then there
exists c14 > 0 which depends only on n and δ such that if

ε ≤ c14(Bm(r,s)+δ(deg(X))1+δ)−
1

m(r,s)−m

the set {p ∈ X ∩ C(Hn
m, ε); h(p) ≤ B} is not Zariski dense in X.

Proof. The proof follows immediately from the second inclusion in (7.5.16) and
Proposition 7.3. �

Lemma 7.8. Let n, n′, r, r′ be integers with 1 ≤ r ≤ n − 1, 1 ≤ r′ ≤ n′ − 1, r′ ≤ r,
and n− r ≤ n′ − r′, then m(r, n) ≤ m(r′, n′).

Proof. From (7.5.1) and taking j = kr + 1 we get

m(r, n) =
∞∑

k=0

max{0,
n− (k + 1)r

2k+1
}.

As
n− (k + 1)r = (n− r)− kr ≤ (n′ − r′)− kr′ = n′ − (k + 1)r′

for non-negative k, the result follows at once. �

Lemma 7.9. Let X ( Gn
m be an irreducible closed subvariety of dimension r ≥ 1.

Let m be an integer with 0 ≤ m < m(r, n) and let B ≥ 1. Say Z ⊂ X is a closed
irreducible subvariety of positive dimension with Z ∩Xoa 6= ∅. Then there exists ε > 0
such that

{p ∈ Z ∩ C(Hn
m, ε); h(p) ≤ B}

is not Zariski dense in Z.

Proof. The hypothesis Z ∩Xoa 6= ∅ implies that Z is not an anomalous subvariety
of X. Say H ⊂ Gn

m is a coset containing Z with so(Z) = dim H. By hypothesis we have
dim Z ≤ r + dim H − n or

(7.5.17) so(Z)− dim Z ≥ n− r

and in particular so(Z) ≥ dim Z + 1 since X is proper. Inequalities (7.5.17), dim Z ≤
dim X, and Lemma 7.8 imply m(dim Z, so(Z)) ≥ m(r, n) > m. Therefore the lemma
follows from Proposition 7.4 applied to Z. �

Before proving Theorem 7.1 we prove Corollaries 7.1 and 7.2.
We start with Corollary 7.1(i). Let X be as in the hypothesis of part (i). We may

assume Xoa = X, i.e. X is not contained in a proper coset. By Theorem 6.1 with
s = dim X = 1 the set X ∩C(Hn

n−1, ε) has height bounded by B for an ε > 0 such that
B depends only on hV (X), deg(X), and n. Moreover, ε depends only on deg(X) and
n. Since m(1, n) > n− 2 we conclude finiteness of X ∩C(Hn

n−2, ε) from Theorem 7.1(i)
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after choosing a possibly smaller ε > 0 which now depends only on hV (X), deg(X), and
n.

The proof of part (ii) is similar.
For part (iii) we may assume r = dim X ≥ 1. In section 1 we saw that 1 ≤ r ≤ n−3

implies m(r, n) > 1. Hence the proof follows from taking m = 1 in part (ii). �

To prove Corollary 7.2(i) we note that by Corollary 7.1(i) we may choose ε > 0 such
that Xoa ∩ C(Hn

n−2, ε) is finite. Hence the points of this set have height bounded by
some fixed B and degree bounded by some fixed D. The proof now follows easily from
Lemma 7.3 after adjusting ε if necessary.

The proofs of parts (ii) and (iii) are similar. �

Proof of Theorem 7.1: We may assume m ≥ 0, thus X 6= Gn
m since m(n, n) = 0. Part

(i) follows from Proposition 7.4 and so(X) = n, so it remains to prove part (ii). We will
prove the following statement:

Let Z ⊂ X be an irreducible closed subvariety, then there exists ε > 0 such that

(7.5.18) {p ∈ Xoa ∩ Z ∩ C(Hn
m, ε); h(p) ≤ B}

is finite.
Of course the theorem follows by taking Z = X in the statement above. We prove

the statement by induction on dim Z. The case dim Z = 0 being trivial we assume
dim Z ≥ 1 and also Xoa ∩ Z 6= ∅. By Lemma 7.9 there exists an ε > 0 such that

(7.5.19) {p ∈ Xoa ∩ Z ∩ C(Hn
m, ε); h(p) ≤ B} ⊂ Y1 ∪ · · · ∪ Yl

where the Yi ( Z are proper, Zariski closed, and irreducible. As dim Yi ≤ dim Z − 1
we reduce ε if necessary and apply the induction hypothesis to conclude that {p ∈
Xoa ∩ Yi ∩C(Hn

m, ε); h(p) ≤ B} is finite for each i. The statement around (7.5.18) now
follows from (7.5.19). �





APPENDIX A

Quasi-equivalence of heights

Say two algebraic number x and y satisfy a simple equation such as xp +yq = 0 with
p and q positive integers. Then the elementary height properties described in chapter 1
imply that the heights are related as ph(x) = qh(y). Now say P (x, y) = 0 where P is
an irreducible polynomial in two variables with algebraic coefficients and p = degX P ,
q = degY P , then how are h(x) and h(y) related? In this generality the expression
|ph(x) − qh(y)| need not be bounded independently of x and y. Nevertheless in this
appendix we prove an upper bound in terms of max{h(x), h(y)}, hp(P ), p, and q.

1. Introduction

Let C be a smooth projective curve defined over Q. We assume that C is embedded
into projective space Pn. Let f ∈ Q(C) be a non-constant rational function on C. We
consider f as a rational map C → A1. Then f has a well-defined degree deg(f), the
cardinality of f−1(q) for generic q. Let g ∈ Q(C) be a further non-constant rational
function. We would like to compare the heights h(f(p)) and h(g(p)) as p runs over the
algebraic points of C that are not poles of f or g. It was known to Siegel that the
quantities h(f(p))/ deg(f) and h(g(p))/ deg(g) are asymptotically equal. One can even
show

(A.1.1)
∣∣∣∣h(f(p))
deg(f)

− h(g(p))
deg(g)

∣∣∣∣ = O(max{1, h(f(p)), h(g(p))}1/2).

The implied constant may depend on C, f , and g. The inequality (A.1.1) can for
example be proved using the Néron-Tate height on the Jacobian of C if our curve has
positive genus.

As f and g are rational functions on the curve C they are contained in a field of
transcendence degree 1 over Q. Hence f and g satisfy some algebraic relation. That is,
there exists a polynomial P ∈ Q[X, Y ] with P (f, g) = 0 on C. We may assume that P
is irreducible over Q and in this case we have

degX P

degY P
=

deg g

deg f
.

Hence inequality (A.1.1) follows from the following statement:
Let P ∈ Q[X, Y ] be irreducible over Q with p = degX P > 0 and q = degY P > 0.

There exists a constant c1 = c1(P ) such that if x and y are algebraic numbers with

103
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P (x, y) = 0, then

(A.1.2)
∣∣∣∣h(x)

q
− h(y)

p

∣∣∣∣ ≤ c1 max{1, h(x), h(y)}1/2.

The purpose of this appendix is to give a proof of (A.1.2) and to determine a constant
c1 which is completely explicit in terms of P . We will strive for a good dependency in
the height of P and the partial degrees p and q. For example if we assume that hp(P )
is large compared with max{p, q}, then we will show that c1 depends only on hp(P ).

Property (A.1.2) is often referred to as quasi-equivalence of heights. We will now
state the Quasi-equivalence Theorem:

Theorem A.1. Let P ∈ Q[X, Y ] be irreducible with p = degX P > 0 and q =
degY P > 0. If P (x, y) = 0 with x, y ∈ Q, then∣∣∣∣h(x)

q
− h(y)

p

∣∣∣∣ ≤ 51 max{p, q, hp(P )}1/2 max{1, h(x), h(y)}1/2.

In [Abo06] Abouzaid proved a variant of the Quasi-equivalence Theorem. The de-
pendency in hp(P ) and max{h(x), h(y)} is essentially the same in both version. Though
in Abouzaid’s bound, the dependence on the partial degrees is slightly worse.

It is essential that P is irreducible. For example the partial degrees of (X2−Y )(X−
Y 2) are equal to 3, but clearly (A.1.2) cannot hold for this polynomial. Although it is
possible to formulate a version of Theorem A.1 with P ∈ K[X, Y ] where K is a number
field and P is irreducible over K. In this case P is up to a scalar factor the product of
polynomials which are irreducible in Q[X, Y ] and conjugated over K. Thus all factors
have equal partial degrees.

Sometimes it is useful to bound h(y) uniformly in terms of h(x) if the height of x is
large:

Corollary A.1. Let P be as in Theorem A.1. Say P (x, y) = 0 with x, y ∈ Q and

(A.1.3) h(x) ≥ 2.104(deg P )2 max{p, q, hp(P )},
then h(y) ≤ 2p

q h(x).

The proof of Theorem A.1 depends on the Absolute Siegel Lemma by Roy and
Thunder and some elementary theory of algebraic functions. We note that a proof along
the lines of the proof of Theorem A.1 is possible using Bombieri and Vaaler’s classical
version of Siegel’s Lemma. But this comes at the cost of introducing a dependency on
the field of definition of P , more precisely the discriminant of this field, in c1 of (A.1.2).

We give a short sketch of the proof of Theorem A.1. Let m and n be large integers
with n/m approximately equal to p/q. In section 2 we use the Absolute Siegel Lemma to
construct polynomials A and B in two variables with algebraic coefficients of bounded
height such that P divides AY m − B as a polynomial. Furthermore, we require that
degX A,degX B ≤ n and degY A,degY B < degY P . If P (x, y) = 0, then A(x, y)ym =
B(x, y). If we assume for the moment A(x, y) 6= 0, then we may bound the height of y
in terms of the height of x by using the product formula and the fact that m is much
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larger than degY P . In section 3 we show that if A(x, y) = 0 then the order of vanishing
cannot be too large if m and n are well chosen. We then differentiate appropriately
and replace A,B by new polynomials A′, B′ with controlled height and degree such that
A′(x, y)ym = B′(x, y) and A′(x, y) 6= 0. Thus again we get a height bound of y. By
interchanging x and y we can bound the height of x by the height of y and this completes
the proof. We note that the proof does not depend on an explicit version of Eisenstein’s
Theorem.

2. Construction via Siegel’s Lemma

If K is a number field with an absolute value | · | = | · |v (v ∈ MK) and P is a
polynomial with coefficients in K in any number of variables, then, just as in chapter 1,
we define |P | to be the maximum of the absolute values of the coefficients of P . We also
recall that the height hp(P ) was defined in chapter 1. If Q is a further polynomial with
algebraic coefficients it will sometimes be useful to define hp(P,Q) as the projective
height of the vector consisting of the coefficients of P and Q. Finally δv and dv are
defined in chapter 1.

We start off by proving a standard lemma concerning simple properties of absolute
values and heights.

Lemma A.1. Let K be a field and A,B ∈ K[X, Y ].
(i) If K is a number field and v ∈ MK , then

|A + B|v ≤ δv(2)max{|A|v, |B|v},
|AB|v ≤ δv(1 + min{degX A, degY A,degX B,degY B})|A|v|B|v.

(ii) If K = Q and x, y ∈ Q with A(x, y) 6= 0, then

h(B(x, y)/A(x, y)) ≤ hp(A,B) + max{degX A,degX B}h(x)

+ max{degY A,degY B}h(y)

+ log max{(1 + degX A)(1 + degY A), (1 + degX B)(1 + degY B)}

(iii) If K = Q, x, y ∈ Q with A(x, y) = 0 and assume furthermore that A is not
divisible in Q[X, Y ] by X − α for some α ∈ Q, then

(A.2.1) h(y) ≤ (degX A)h(x) + log((1 + degX A) degY A) + hp(A).

Proof. The first inequality in (i) follows directly from the triangle inequality. To
prove the second inequality we write A =

∑
i,j aijX

iY j and B =
∑

i,j bijX
iY j . Then

AB =
∑

i,j cijX
iY j with

cij =
∑

i′+i′′=i,j′+j′′=j

ai′j′bi′′j′′ .

The sum above involves at most 1 + min{degX A,degY A, degX B,degY B} non-zero
terms. Hence the desired inequality follows from the triangle inequality.
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Now to part (ii). We note that the product formula (1.1.1) implies

(A.2.2) h(B(x, y)/A(x, y)) = [F : Q]−1
∑

v∈MF

dv log max{|A(x, y)|v, |B(x, y)|v}

where F is a number field containing x, y and the coefficients of A and B. Note that
the polynomial A involves at most (1+degX A)(1+degY A) non-zero coefficients, hence
the triangle inequality gives

|A(x, y)|v ≤

δv((1 + degX A)(1 + degY A))|A|v max{1, |x|v}degX A max{1, |y|v}degY A

for each v ∈ MF . Of course a similar inequality holds for |B(x, y)|v. These inequalities
inserted into (A.2.2) conclude this part of the lemma.

Our proof for Part (iii) follows the lines of Proposition 5 in [BM06]: say A =
aqY

q + · · · + a0 with ai ∈ Q[X] and aq 6= 0. Because of hypothesis there exists q′ ≥ 1
maximal such that aq′(x) 6= 0. Let F be a number field that contains x, y, and the
coefficients of A. If | · | = | · |v is an absolute value on F , then

|aq′(x)yq′ | ≤ δv(q′) max
0≤k≤q′−1

{|ak(x)|}max{1, |y|}q′−1

and so
max{1, |y|} ≤ δv(q′) max

0≤k≤q′
{|ak(x)|/|aq′(x)|}.

We use the last inequality and the product formula to show

(A.2.3) h(y) ≤ log q + [F : Q]−1
∑

v∈MF

dv log max
0≤k≤q′

{|ak(x)|v}.

By the triangle inequality we have

|ak(x)|v ≤ δv(1 + degX P ) max{1, |x|v}degX P |A|v
for any absolute value on F . We apply this inequality to (A.2.3) to complete the
proof. �

We will often apply property (iii) of the previous lemma to a non-zero A ∈ Q[Y ]
and x = 0. Inequality (A.2.1) then reduces to h(y) ≤ log degY A + hp(A).

We need to introduce a crude notion of a sparsity: if A = (aij) is an M ×N matrix,
then we set

S(A) = max
1≤i≤M

|{j; aij 6= 0}|.

If A has algebraic coefficients and is non-zero we define the height hp(A) as the height
of [aij ; 1 ≤ i ≤ M, 1 ≤ j ≤ N ] ∈ PMN−1(Q).

Next we adapt Roy and Thunder’s Absolute Siegel Lemma from [RT96] to our
notation. But first we remark that a version due to David and Philippon (Lemma 4.7
in [DP99]) which uses Zhang’s Theorem 5.2 from [Zha95a] would also suffice.
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Lemma A.2. Let A = (aij) ∈ MatMN (Q), rankA = M < N . Then there exists
v ∈ PN−1(Q) such that Av = 0 and

h(v) ≤ log 2
2

N

N −M
+

M

N −M
(log S(A) + hp(A)) +

N −M

4
.

Proof. We apply Theorem 1 of [RT99] (cf. [RT96]) which states that there exists
v ∈ PN−1(Q) with Av = 0 and

(A.2.4) h(v) ≤ 1
N −M

log H(V ) +
N −M

4

where V ⊂ QN is the kernel of A and H(V ) is the height of the vector space V as defined
in [RT96]. We note that the (logarithm of the) height used in [RT99] and [RT96] uses
the Euclidean norm at infinite places and is hence at least as big as our notion of height
which uses the infinity norm at all places. By Theorem 1.1 in [RT96] H(V ) is equal to
the height of the vector space W ⊂ QN spanned by the rows of A. Because the rank
of A is M , the rows of A are a basis of W . The height H(W ) is then just the height
of the projective vector composed of the determinants of all M ×M minors of A with
the Euclidean norm taken at the infinite places and maximum norm at the finite places.
A simple application of the triangle inequality and the fact that the expansion of each
determinant in question involves at most S(A)M non-zero terms gives

log H(V ) = log H(W ) ≤ 1
2

log
(

N

M

)
+ M(log S(A) + hp(A)).

The proof follows from this inequality, (A.2.4), and
(

N
M

)
≤ 2N . �

Lemma A.3. Let P ∈ Q[X, Y ] with p = degX P > 0 and q = degY P > 0. Further-
more, let m,n be integers with m ≥ q,n ≥ p and define t = q(n+1)−mp. If t ≥ 1, then
there exist A,B ∈ Q[X, Y ] with

AY m −B ∈ P ·Q[X, Y ]\{0}, degX A, degX B ≤ n, degY A,degY B ≤ q − 1(A.2.5)

and

hp(A,B) ≤ mn

t
(log(

√
8p) + hp(P )) +

nq

2
.

Proof. Let Q =
∑

k,l qklX
kY l ∈ Z[X, Y, qkl] with degX Q = n − p and degY Q =

m− 1. Define the linear forms fij ∈ Q[qkj ] (0 ≤ i ≤ n, 0 ≤ j ≤ m + q − 1) by

PQ =
∑
i,j

fijX
iY j .

We note that fij is a linear form in the qkj such that its non-zero coefficients are
coefficients of P . So

(A.2.6) fij = 0, for 0 ≤ i ≤ n, q ≤ j ≤ m− 1
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is a system of linear equations with rank M in the

N = m(n− p + 1)

variables qij . Clearly one has

(A.2.7) M ≤ (n + 1)(m− q) = N − t.

Because N −M ≥ t ≥ 1 there is a non-trivial solution. Any such solution gives rise to
a non-zero polynomial Q ∈ Q[X, Y ] such that the coefficients of PQ satisfy (A.2.6) and
hence PQ = AY m−B for unique polynomials A,B ∈ Q[X, Y ] with degX A,degX B ≤ n
and degY A,degY B ≤ q − 1.

A peculiarity of Roy and Thunder’s version of Siegel’s Lemma is that the second
term in upper bound (A.2.4) works against us if the rank M is small. We work out a
lower bound for M : a non-trivial linear combination of XiY jP where 0 ≤ i ≤ n − p
and q ≤ j ≤ m− q − 1 is not of the form AY m −B with A and B satisfying the degree
bounds in (A.2.5). Therefore we get a lower bound M ≥ (n− p + 1) max{0,m− 2q}, so

(A.2.8) N −M ≤ (n− p + 1)(m−max{0,m− 2q}) ≤ 2nq.

We will apply Siegel’s lemma to find a solution Q with small height. If M = 0,
nothing has to be done as Q = 1 is possible. So say M ≥ 1. We choose a subset of the
linear forms fij (0 ≤ i ≤ n, q ≤ j < m) with rank M . We use the coefficients of each
such linear form to define a row in the M ×N matrix A. It was noted that the non-zero
entries of A are coefficients of P , hence hp(A) ≤ hp(P ). Furthermore, it is clear from
the definition that each fij involves at most 1+min{p, q} non-zero coefficients and hence
S(A) ≤ 2p. By Lemma A.2 and our discussion above there exists a non-zero solution
Q ∈ Q[X, Y ] of (A.2.6) that satisfies

hp(Q) ≤ log 2
2

N

N −M
+

M

N −M
(log(2p) + hp(P )) +

N −M

4
.

Lemma A.1(i) implies hp(PQ) ≤ log(2p) + hp(P ) + hp(Q). Furthermore, we use the
inequalities (A.2.7) and (A.2.8) to conclude

hp(PQ) ≤ log(2p) + hp(P ) +
log 2

2
N

t
+

M

t
(log(2p) + hp(P )) +

nq

2

≤ M + t

t
log(2p) +

log 2
2

N

t
+

M + t

t
hp(P ) +

nq

2

≤ N

t
(log(

√
8p) + hp(P )) +

nq

2
.

This inequality completes the proof because N ≤ mn. �

Let A, B, and P be as in the lemma above, then P cannot divide A. Indeed
assuming the contrary, then P also divides B. Because degY A, degY B < degY P we
have A = B = 0, a contradiction to AY m − B 6= 0. For similar reasons and since
degX P > 0, P cannot divide B.
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3. Zero bounds

We need only the most basic facts about function fields which we recall here for the
reader’s convenience.

Let F be a field which is an extension of an algebraically closed field L. Assume
that there exists an element t ∈ F transcendental over L such that F is a finite field
extension of L(t). Then F is a function field over L. We define MF to be the set of
the maximal ideals of all the proper valuation rings of F containing L. This set is the
function field analogue of MK for a number field K. We will identify an element of
MF with the valuation function it induces. Hence the elements of MF are surjective
maps v : F ∗ → Z with v(ab) = v(a) + v(b) if a, b ∈ F ∗, v(a + b) ≥ min{v(a), v(b)} if
a, b, a + b ∈ F ∗, and v(λ) = 0 if λ ∈ L∗.

We have the following properties: if a ∈ F ∗ we have v(a) = 0 for all but finitely
many v ∈ MF and ∑

v∈MF

v(a) = 0.

Furthermore, if a ∈ F\L then∑
v∈MF

max{0, v(a)} = [F : L(a)].

For the rest of this section P ∈ Q[X, Y ] will, unless stated otherwise, be a fixed
irreducible polynomial and F will denote the quotient field of the domain Q[X, Y ]/(P );
then F is a function field over L = Q . By abuse of notation we shall consider polyno-
mials in Q[X, Y ] as elements of F via the natural map. Note that any polynomial in
Q[X, Y ] that is not divisible by P maps to F ∗.

Let π = (x, y) ∈ Q2 with P (π) = 0 such that ∂P
∂X , ∂P

∂Y do not both vanish at π, then
we call π a regular zero of P . Let us assume for the moment π = (x, y) and ∂P

∂Y (π) 6= 0,
then there exist a unique vπ ∈ MF with vπ(X −x) = 1 and vπ(Y − y) > 0. There exists
E in Q[[T ]], the ring of formal power series, such that E(0) = 0 and P (x+T, y+E) = 0.
For any A ∈ Q[X, Y ] not divisible by P we have

ordA(x + T, y + E) = vπ(A)

where ord is the usual valuation on Q[[T ]]. Therefore vπ(A) = 0 if and only if A(x, y) 6=
0.

Of course if ∂P
∂X (π) 6= 0 then the results in the last paragraph hold with the roles of

X and Y reversed.
Proofs for these statements can be found in [Che51].
Let A ∈ Q[X, Y ], we define

D(A) =
∂P

∂Y

∂A

∂X
− ∂P

∂X

∂A

∂Y
∈ Q[X, Y ].

We also set D0(A) = A and inductively Ds(A) = D(Ds−1(A)) for a positive integer s.
A formal verification gives D(AB) = D(A)B +AD(B) if B is in Q[X, Y ]. Thus we have
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Leibniz’s rule:

Ds(AB) =
s∑

k=0

( s

k

)
Dk(A)Ds−k(B).

Lemma A.4. Let K be a number field and P ∈ K[X, Y ] with p = degX P > 0 and
q = degY P > 0. Furthermore, assume v ∈ MK and A ∈ K[X, Y ] with degX A ≤ n,
degY A ≤ q. Then for any non-negative s ∈ Z

degX Ds(A) ≤ s(p− 1) + n, degY Ds(A) ≤ s(q − 1) + q,(A.3.1)

and if r = max{p, q} then

|Ds(A)|v ≤ δv(4pq(sr + n))s|P |sv|A|v.(A.3.2)

Proof. We note degX D(A) ≤ p− 1 + degX A and so the first inequality in (A.3.1)
follows by induction on s. The second inequality is proved similarly. We now prove
(A.3.2) by induction on s. The case s = 0 being trivial we assume s ≥ 1. For brevity
set | · | = | · |v. We apply Lemma A.1(i) to show

|Ds(A)| ≤ δv(2(r′ + 1))max{
∣∣∣∣∂P

∂Y

∣∣∣∣ ∣∣∣∣∂Ds−1(A)
∂X

∣∣∣∣ , ∣∣∣∣ ∂P

∂X

∣∣∣∣ ∣∣∣∣∂Ds−1(A)
∂Y

∣∣∣∣}
where r′ = min{p, q}. By bounding the partial derivatives of the polynomials in a usual
way we get

|Ds(A)| ≤ δv(4r′r)|P ||Ds−1(A)|max{δv(degX Ds−1(A)), δv(degY Ds−1(A))}.

We apply r′r = pq and the inequality (A.3.1) to get

|Ds(A)| ≤ δv(4pq max{(s− 1)(p− 1) + n, (s− 1)(q − 1) + q})|P ||Ds−1(A)|.

The expressions inside “max” are bounded above by sr + n. Applying the induction
hypothesis completes the proof. �

Lemma A.5. Let π = (x, y) ∈ Q2 be a regular zero of P and let v = vπ ∈ MF be
the valuation described above. If A ∈ Q[X, Y ] is not divisible by P and A(π) = 0, then
D(A) is not divisible by P and

v(D(A)) = v(A)− 1.

Proof. We shall assume ∂P
∂Y (π) 6= 0, the case ∂P

∂X (π) 6= 0 is similar. There exists
E ∈ TQ[[T ]] such that P (x + T, y + E) = 0 and v(A) = ord A(x + T, y + E) ≥ 1. By
the chain rule we have

(A.3.3) 0 =
d

dT
P (x + T, y + E) =

∂P

∂X
(x + T, y + E) +

dE

dT

∂P

∂Y
(x + T, y + E).
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We use the definition of D and (A.3.3) to obtain

ordD(A)(x + T, y + E) = ord
((

∂P

∂Y

∂A

∂X
− ∂P

∂X

∂A

∂Y

)
(x + T, y + E)

)
= ord

∂P

∂Y
(x + T, y + E) + ord

(
∂A

∂X
(x + T, y + E) +

dE

dT

∂A

∂Y
(x + T, y + E)

)
.

Note that by hypothesis we have

(A.3.4) ord
∂P

∂Y
(x + T, y + E) = 0.

We insert (A.3.4) into the equality above and use the chain law to get

ordD(A)(x + T, y + E) = ord
d

dT
A(x + T, y + E) = ordA(x + T, y + E)− 1

hence v(D(A)) = v(A)− 1. In particular P does not divide D(A). �

Lemma A.6. Let A,B, P, m, p, q, t be as in Lemma A.3. Furthermore, assume P is
irreducible and deg P = p + q. Let π ∈ Q2 be a regular zero of P , then there exists an
integer s with 0 ≤ s ≤ t + pq − p − q such that Ds(A)(π) 6= 0 and Dk(A)(π) = 0 for
0 ≤ k < s.

Proof. For brevity set v = vπ. Clearly X, Y ∈ F\Q since p and q are both positive.
Furthermore, A,B 6= 0 in F by the comment after the proof of Lemma A.3. Finally
v(X), v(Y ) ≥ 0.

We first claim that for any v′ ∈ MF at least one of the two v′(X), v′(Y ) is non-
negative. Indeed we argue by contradiction so let us assume v′(X) < 0 and v′(Y ) < 0.
Then for any integers i, j with 0 ≤ i ≤ p, 0 ≤ j ≤ q and i + j < p + q we have

(A.3.5) iv′(X) + jv′(Y ) > pv′(X) + qv′(Y ).

Now by hypothesis P = αXpY q + P̃ with α 6= 0 and deg P̃ < p + q. We apply the
ultrametric inequality and (A.3.5) to get

pv′(X) + qv′(Y ) ≥ min
0≤i≤p,0≤j≤q

i+j<p+q

{iv′(X) + jv′(Y )} > pv′(X) + qv′(Y ),

a contradiction.
Now assume v′ ∈ MF such that v′(Y ) < 0. Then v′(X) ≥ 0 by the discussion above

and

(A.3.6) v′(A) = v′(Y −mB) = −mv′(Y ) + v′(B).

Now degY B ≤ q − 1 as a polynomial so we apply the ultrametric inequality to get

v′(B) ≥ (q − 1)v′(Y ).

We insert this last inequality into (A.3.6) to find

(A.3.7) v′(A) ≥ (q −m− 1)v′(Y ) ≥ −v′(Y ) > 0
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because q ≤ m. Hence∑
v′∈MF

max{0, v′(A)} ≥ max{0, v(A)}+
∑

v′∈MF ,v′(Y )<0

max{0, v′(A)}

≥ v(A) + (m + 1− q)
∑

v′∈MF ,v′(Y )<0

max{0,−v′(Y )}(A.3.8)

where the last inequality follows from (A.3.7). Next we insert the equality∑
v′∈MF ,v′(Y )<0

max{0, v′(Y −1)} = [F : Q(Y −1)] = [F : Q(Y )] = p

into (A.3.8) to see

(A.3.9)
∑

v′∈MF

max{0, v′(A)} ≥ v(A) + (m + 1− q)p > 0.

In particular A /∈ Q.
We continue by bounding the left-hand side of (A.3.9) from above. If v′ ∈ MF with

v′(X) ≥ 0 and v′(Y ) ≥ 0 then v′(A) ≥ 0 because A is a polynomial in X and Y . Hence∑
v′∈MF

max{0,−v′(A)} ≤
∑

v′∈MF ,v′(X)<0

max{0,−v′(A)}+(A.3.10)

∑
v′∈MF ,v′(Y )<0

max{0,−v′(A)}.

Actually equality holds above because at most one v′(X), v′(Y ) can be negative, but this
is not important here. Around (A.3.7) we showed that if v′(Y ) < 0 then v′(A) > 0, hence
the second term on the right-hand side of (A.3.10) is zero. Now recall that degX A ≤ n;
if v′(X) < 0 then v′(Y ) ≥ 0 and the ultrametric inequality leads us to v′(A) ≥ nv′(X).
If we insert this inequality into (A.3.10) we get∑

v′∈MF

max{0,−v′(A)} ≤ n
∑

v′∈MF
v′(X)<0

max{0,−v′(X)}(A.3.11)

= n[F : Q(X−1)] = n[F : Q(X)] = nq.

The left-hand sides of (A.3.9) and (A.3.11) are both equal to [F : Q(A)], so we get

v(A) ≤ nq −mp + pq − p = t + pq − p− q.

If we set s = v(A), then Lemma A.5 and induction give v(Dk(A)) = v(A) − k for
0 ≤ k ≤ s. Hence Ds(A)(x, y) 6= 0 and Dk(A)(x, y) = 0 for 0 ≤ k < s. �
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4. Completion of proof

Lemma A.7. Let P ∈ Q[X, Y ] be irreducible with p = degX P > 0 and q = degY P .
Then there is a root of unity ξ such that the polynomial P̃ = XpP (X−1 + ξ, Y ) has total
degree p + q, is irreducible in Q[X, Y ], and satisfies

degX P̃ = p, degY P̃ = q, hp(P̃ ) ≤ hp(P ) + p log 2.

Proof. We may write P =
∑

j ajY
j with aj =

∑
i aijX

i ∈ Q[X]. By hypothesis
we have aq 6= 0 and aq has degree at most p as a polynomial in X. We may choose a
root of unity ξ such that aq(ξ) 6= 0. A direct computation shows that P̃ is irreducible.
And by construction degX P̃ ≤ p, degY P̃ ≤ q, therefore deg P̃ ≤ p + q.

Say 0 ≤ i ≤ p and 0 ≤ j ≤ q, then the coefficient of XiY j in P̃ equals

(A.4.1)
p∑

k=p−i

akj

(
k

i− p + k

)
ξi−p+k.

So if i = p and j = q we see that the coefficient of XpY q is non-zero and conclude that
degX P̃ = p, degY P̃ = q, and deg P̃ = p + q.

Now say K is a number field that contains ξ and the coefficients of P . If v ∈ MK ,
then by (A.4.1) and standard facts on binomial coefficients we get

|P̃ |v ≤ δv

 p∑
k=p−i

(
k

i− p + k

) |P |v = δv

((
p + 1

i

))
|P |v ≤ δv(2p)|P |v.

These local bounds complete the proof. �

Lemma A.8. Let P ∈ Q[X, Y ] be irreducible with p = degX P > 0 and q = degY P >

0. If (x, y) ∈ Q2 with P (x, y) = 0 is not a regular zero of P then

h(y) ≤ 2php(P ) + 5p log(2pq).

Proof. Let D ∈ Q[Y ] be the resultant of the two polynomials P, ∂P
∂X ∈ Q(Y )[X]

(cf. [Lan02] page 200). Then D 6= 0 because P is irreducible in Q(Y )[X]. The resultant
D is the determinant of a (2p−1)× (2p−1) matrix whose entries, denoted here by mij ,
are polynomials in Y with degrees bounded by q. Hence deg D ≤ (2p − 1)q ≤ 2pq. If
K is a number field containing the coefficients of the mij and v ∈ MK , then by Lemma
A.1(i)

(A.4.2) |D|v ≤ δv((2p− 1)!)max
σ
{|m1,σ(1) · · ·m2p−1,σ(2p−1)|v}

where σ runs over all permutations of the first 2p−1 positive integers. We apply Lemma
A.1(i) to bound

|m1,σ(1) · · ·m2p−1,σ(2p−1)|v ≤ δv(2q)2p−2|m1,σ|v · · · |m2p−1,σ(2p−1)|v.
This inequality and |mij |v ≤ δv(p)|P |v inserted into (A.4.2) gives

|D|v ≤ δv((2p− 1)!(2pq)2p)|P |2p−1
v ≤ δv(4p2q)2p|P |2p−1

v ≤ δv(2pq)4p|P |2p−1
v .
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Hence hp(D) ≤ 2php(P ) + 4p log(2pq).
Now if (x, y) ∈ Q2 with P (x, y) = 0 is not a regular zero of P , then D(y) = 0. By

Lemma A.1(iii) we can bound h(y) ≤ hp(D) + log deg D ≤ hp(D) + log(2pq). The proof
follows from this inequality together with the bound for hp(D). �

Lemma A.9. Let P ∈ Q[X, Y ] be irreducible with p = degX P > 0, q = degY P > 0,
and deg P = p + q. If (x, y) ∈ Q2 is a regular zero of P and h(x) ≥ hp(P ), then

h(y) ≤ p

q
h(x) + 16p max{log(

√
8p)2, hp(P )}1/2 max{1, h(x)}1/2 + 17p log(3q).

Proof. For brevity we set

h = max{1, hp(P )}1/2, k = max{1, h(x)}1/2.

We note k ≥ h and define

(A.4.3) m = pq2

[
k

h

]
, n = m

p

q
+ p− 1.

Then m and n are integers with m ≥ q, n ≥ p. Let t be as in Lemma A.3, we have
t = pq ≥ 1. Now let A,B ∈ Q[X, Y ] be as in Lemma A.3. Because of Lemma A.6 there
exists an integer s with 0 ≤ s ≤ t + pq− p− q ≤ 2pq− 1 such that Ds(A)(x, y) 6= 0 and
Dk(A)(x, y) = 0 for all 0 ≤ k < s. We apply Leibniz’s rule to Ds(AY m − B) and the
use the fact that AY m −B is divisible by P to conclude

ym =
Ds(B)(x, y)
Ds(A)(x, y)

.

An application of Lemma A.1(ii) gives

mh(y) ≤ hp(Ds(A), Ds(B)) + max{degX Ds(A),degX Ds(B)}h(x)(A.4.4)

+ max{degY Ds(A),degY Ds(B)}h(y)

+ log max{(1 + degX Ds(A))(1 + degY Ds(A)),

(1 + degX Ds(B))(1 + degY Ds(B))}.

Lemma A.4 applied to A and B implies

degX Ds(A),degX Ds(B) ≤ sp + n,

degY Ds(A),degY Ds(B) ≤ q(s + 1), and

hp(Ds(A), Ds(B)) ≤ hp(A,B) + shp(P ) + s log(4pq(n + sr)).

The last line follows from summing up the local bounds in (A.3.2). We insert these
bounds in (A.4.4) to see

mh(y) ≤ hp(A,B) + shp(P ) + s log(4pq(n + sr)) + (sp + n)h(x) + q(s + 1)h(y)

+ log(sp + n + 1)(sq + q + 1).
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Next we use the bound given for hp(A,B) in Lemma A.3 to get

mh(y) ≤ mn

t
(log(

√
8p) + hp(P )) +

nq

2
+ shp(P ) + s log(4pq(n + sr))(A.4.5)

+ (sp + n)h(x) + q(s + 1)h(y) + log(sp + n + 1)(sq + q + 1).

To control h(y) on the right side of (A.4.5) we apply Lemma A.1(iii) to P ; we obtain

h(y) ≤ ph(x) + hp(P ) + log(2pq).

We insert the inequality above into (A.4.5) and see

mh(y) ≤mn

t
(log(

√
8p) + hp(P )) +

nq

2
+ shp(P ) + s log(4pq(n + sr))

+ (sp + n + pq(s + 1))h(x) + q(s + 1)hp(P ) + q(s + 1) log(2pq)

+ log(sp + n + 1)(sq + q + 1).

We recall h(x) ≤ k2 and hp(P ) ≤ h2. By collecting the hp(P )’s, h(x)’s and applying
n
m ≤ p

q + p
m , which holds by (A.4.3), we get

h(y) ≤
(

n

t
+

s + q(s + 1)
m

)
h2 +

p(s + 1) + pq(s + 1)
m

k2 +
p

q
h(x) +

n

t
log(

√
8p)

(A.4.6)

+
nq

2m
+

s

m
log(4pq(n + sr)) +

q(s + 1)
m

log(2pq)

+
1
m

log(sp + n + 1)(sq + q + 1).

We now continue by bounding each term in the right-hand side of inequality (A.4.6).
The elementary inequalities 1

2pq2 k
h ≤ m ≤ pq2 k

h and m ≥ pq2, which hold because of
our assumption k ≥ h, will be used throughout the process.

Our definition in (A.4.3) and t = pq imply

(A.4.7)
n

t
≤ m

q2
+

1
q
.

Furthermore, we use s ≤ 2pq − 1 to obtain a bound for the first term on the right of
(A.4.6) (

n

t
+

s + q(s + 1)
m

)
h2 ≤

(
m

q2
+

1
q

+
4pq2

m

)
h2 ≤ (p

k

h
+

1
q

+ 4)h2 ≤ 6phk.(A.4.8)

The second term in (A.4.6) can bounded as follows

(A.4.9)
p(s + 1) + pq(s + 1)

m
k2 ≤ 4p2q2

m
k2 ≤ 8phk.

We skip the third term, which is the main contribution to the height of y, and bound
the fourth with the help of (A.4.7):

(A.4.10)
n

t
log(

√
8p) ≤ (

m

q2
+

1
q
) log(

√
8p) ≤ (p

k

h
+

1
q
) log(

√
8p) ≤ 2p

k

h
log(

√
8p).
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We use n
m ≤ p

q + p
m again and also m ≥ q to bound the fifth term:

(A.4.11)
nq

2m
≤ q

2
(
p

q
+

p

m
) =

p

2
+

pq

2m
≤ p.

For the sixth term we use n + sr ≤ n + 2pqr ≤ 3p2q2n to get

s

m
log(4pq(n + sr)) ≤ 2

pq

m
log(12p3q3n) = 2

pq

m
log(12p3q3) + 2pq

log n

m
(A.4.12)

≤ 8
log(2pq)

q
+ 2pq

log n

m
.

For positive α and β we have log(α+β) ≤ α
β +log β. So log n ≤ log(mp

q +p) ≤ m
q +log p

with α = mp
q and β = p. Therefore pq log n

m ≤ p + log p. We apply this inequality and
log q

q ≤ 1
e , here e = 2.71828 . . . , to (A.4.12) and get

(A.4.13)
s

m
log(4pq(n + sr)) ≤ 8 log(2p) +

8
e

+ 2p + 2 log p.

The second to last term in (A.4.6) can be bounded as

(A.4.14)
q(s + 1)

m
log(2pq) ≤ 2pq2

m
log(2pq) ≤ 2 log(2pq).

Finally, to tackle the last term we use n ≤ 2pm and p ≤ m which follow from
(A.4.3), so log n

m ≤ log(2pm)
m ≤ log(2p)

p + log m
m ≤ 2

e + 1
e by elementary calculus. Hence with

s ≤ 2pq

1
m

log(sp + n + 1)(sq + q + 1) ≤ 1
m

log(2p2q + n + 1)(2pq2 + q + 1)(A.4.15)

≤ 1
m

log(16p3q3n) ≤ log 16 + 3
log p

p
+ 3

log q

q2
+

log n

m

≤ log 16 +
3
e

+
3
2e

+
3
e

<
28
5

.

In the second to last inequality we used log q
q2 ≤ 1

2e .
The sum of the right-hand sides in (A.4.11), (A.4.13), (A.4.14), and (A.4.15) can be

bounded with elementary calculus and the fact that p ∈ N:

p + 8 log(2p) +
8
e

+ 2p + 2 log p + 2 log(2pq) +
28
5
≤ 13p + 2 log q +

28
5

.

It is easy to show 13p + 2 log q + 28/5 ≤ 17p log(3q) by considering the two cases p = 1
and p ≥ 2 separately.

We use this estimate together with (A.4.8), (A.4.9), and (A.4.10) to bound (A.4.6)
from above as follows:

h(y) ≤ p

q
h(x) + 14phk + 2p

k

h
log(

√
8p) + 17p log(3q).
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If we abbreviate h′ = max{(log(
√

8p))2, hp(P )}1/2 ≥ h, then k
h log(

√
8p) ≤ h′k and so

h(y) ≤ p

q
h(x) + 16ph′k + 17p log(3q)

as required. �

Proposition A.1. Let P ∈ Q[X, Y ] be irreducible with p = degX P > 0 and q =
degY P > 0. If (x, y) ∈ Q2 with P (x, y) = 0, then

h(y) ≤ p

q
h(x) + 28p max{p, hp(P )}1/2 max{1, hp(P ), h(x)}1/2 + 18p log(3q).

Proof. If h(x) < hp(P ) + 2p log 2, then Lemma A.1(iii) applied to P gives

h(y) ≤ ph(x) + log(2pq) + hp(P )

≤ p(hp(P ) + 2p log 2)1/2h(x)1/2 + log(2pq) + hp(P ).

This inequality is clearly stronger than the assertion.
So we will assume

(A.4.16) h(x) ≥ hp(P ) + 2p log 2.

Now if both partial derivatives of P vanish at (x, y), then Lemma A.8 and log p ≤ p1/2

give
h(y) ≤ 2php(P ) + 5p log(2pq) ≤ 2php(P ) + 5p3/2 + 5p log(2q),

which is also stronger than our assertion. From now on we assume that (x, y) is a regular
zero of P .

There exist ξ ∈ Q and P̃ as in Lemma A.7. If x = ξ or x = 0, then h(x) = 0,
but this contradicts (A.4.16). Hence x 6= 0, ξ and ((x− ξ)−1, y) is a zero of P̃ . A short
calculation shows that this zero is regular. The height inequalities

h((x− ξ)−1) = h(x− ξ) ≥ h(x)− h(ξ)− log 2 = h(x)− log 2,

hp(P̃ ) ≤ hp(P ) + p log 2,(A.4.17)

and (A.4.16) imply h((x− ξ)−1) ≥ hp(P̃ ). We may thus apply Lemma A.9 to the point
((x− ξ)−1, y). We use h((x− ξ)−1) ≤ h(x) + log 2 and again (A.4.17) to show

h(y) ≤p

q
h(x) +

p

q
log 2(A.4.18)

+ 16p max{(log(
√

8p))2, hp(P ) + p log 2}1/2 max{1, h(x) + log 2}1/2

+ 17p log(3q).

We note (log(
√

8p))2 ≤ 1.6p ≤ (1 + log 2)p since p ≥ 1 and so

max{(log(
√

8p))2, hp(P ) + p log 2} ≤ (1 + log 2) max{p, hp(P )}.
Furthermore, we have max{1, h(x) + log 2} ≤ (1 + log 2)max{1, h(x)}. The proposition
follows from these last two inequalities, (A.4.18), and p

q log 2 ≤ p log(3q).
�
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Proof of Theorem A.1: For brevity say r = max{p, q}. If max{h(x), h(y)} < hp(P ),
then clearly

|ph(x)− qh(y)| ≤ (p + q) max{h(x), h(y)} ≤ 2pqhp(P )1/2 max{h(x), h(y)}1/2

and the theorem follows in this case.
So let us assume max{h(x), h(y)} ≥ hp(P ). We note that by symmetry Proposition

A.1 implies

|ph(x)− qh(y)| ≤ 28pq max{r, hp(P )}1/2 max{1, h(x), h(y)}1/2 + 18pq log(3r).

The Theorem clearly follows from this inequality and 18 log(3r) ≤ 23r1/2. �

Corollary A.1 is easy to prove with the Quasi-equivalence Theorem.
Say P (x, y) = 0 with x, y ∈ Q, h(y) > 2p

q h(x), and h(x) ≥ 1. If h(x) ≤ h(y), then
by Theorem A.1

1
2
h(y) < h(y)− p

q
h(x) ≤ 51p max{p, q, hp(P )}1/2h(y)1/2.

Hence the height of y is less then the right of (A.1.3) and therefore so is the height of
x. On the other hand if h(y) ≤ h(x) we get

p

q
h(x) < h(y)− p

q
h(x) ≤ 51p max{p, q, hp(P )}1/2h(x)1/2.

The resulting bound for h(x) is less than the right side of (A.1.3). �



APPENDIX B

Applications of the Quasi-equivalence Theorem

In this second appendix we show how to use the Quasi-equivalence Theorem from the
previous appendix to deduce explicit versions of four number theoretic results: Theorems
of Bombieri, Masser, and Zannier, of Runge, of Skolem, and of Sprindzhuk. The goal
is not to get optimal dependency in the various quantities, but rather to show how
Theorem A.1 is connected to these four theorems. All four theorems mentioned are
proved using the same auxiliary function constructed in section 2 of appendix A.

1. On a Theorem of Bombieri, Masser, and Zannier

In this first section we give a completely explicit proof of Theorem 1 of [BMZ99]
in the two dimensional case. The proof uses Theorem A.1 and closely mimics Bombieri,
Masser, and Zannier’s “alternative proof” given in §3 of [BMZ99]. In fact the oc-
currence of a quasi-equivalence of heights statement in [BMZ99] was the main drive
behind proving Theorem A.1.

Bombieri, Masser, and Zannier’s Theorem has already been discussed in chapter 6.

Theorem B.1. Let P ∈ Q[X, Y ] be irreducible with p = degX P , q = degY P , and
not of the form αXpY q−β or αXp−βY q. If P (x, y) = 0 with x, y ∈ Q∗ multiplicatively
dependent, then

max{h(x), h(y)} ≤ 3.105(deg P )3 max{pq, hp(P )}.

We recall that x and y are multiplicatively dependent if and only if (x, y) is contained
in a proper algebraic subgroup of Gn

m.
We need a preparatory lemma.

Lemma B.1. Let P ∈ Q[X, Y ] be irreducible with p = degX P > 0 and q = degY P >
0. If b ∈ N, there exists Q ∈ Q[X, Y ] irreducible with

(B.1.1) 1 ≤ degX Q ≤ bp, 1 ≤ degY Q ≤ q, and hp(Q) ≤ bhp(P ) + 2b(p + q) log 2

such that P divides Q(X, Y b).

Before we prove Lemma B.1 we recall two height inequalities for polynomials: let
f1, . . . , fn ∈ Q[X, Y ] be non-zero with f = f1 · · · fn and d = degX f + degY f , then

(B.1.2) −d log 2 +
n∑

i=1

hp(fi) ≤ hp(f) ≤ d log 2 +
n∑

i=1

hp(fi).

119
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A proof not restricted to the two variable case is given in [BG06] (Theorem 1.6.13 page
28).
Proof of Lemma B.1: Let ζ be a primitive bth root of unity and set A =

∏b
i=1 P (X, ζiY ).

Since A(X, Y ) = A(X, ζY ) we have A(X, Y ) = B(X, Y b) for some B ∈ Q[X, Y ].
Clearly degX B = bp, degY B = q, and hp(B) = hp(A). With (B.1.2) and hp(P ) =
hp(P (X, ζiY )) we may bound

(B.1.3) hp(B) ≤ bhp(P ) + b(p + q) log 2.

Also P divides B(X, Y b) by construction. But our B need not be irreducible, never-
theless B has an irreducible factor Q such that P divides Q(X, Y b). The degree upper
bounds in (B.1.1) hold and so do the lower bounds since pq > 0. Furthermore, the
height bound in (B.1.1) follows from (B.1.2) and (B.1.3). �

Proof of Theorem B.1: Let P be as in the hypothesis, we have p, q > 0. By symmetry
we may assume h(x) ≥ h(y) and without loss of generality also h(x) ≥ 1. There exist
integers r, s not both zero with xrys = 1. We will often use the fact that |r|h(x) = |s|h(y)
which follows from chapter 1. If s = 0, then r 6= 0 and so h(x) = 0, contradicting our
assumption. Hence s 6= 0 and we may find t ∈ Q∗ with x = ts, y = ζt−r for some root
of unity ζ. We define θ = r/s, then |θ| = h(y)/h(x) ≤ 1.

Let B > 1, by [Cas57] page 1, there exist integers a, b with 1 ≤ b < B and
|θb− a| ≤ B−1. We take B = 2q and define γ = xayb = ζbtas−br. Therefore

(B.1.4) h(γ) = |as− br|h(t) = |θb− a|h(x) ≤ h(x)
B

< h(x).

Let Q be the polynomial from Lemma B.1. We set R = Q(X, X−aY )Xw where
w is an integer such that R is a polynomial not divisible by X. We have R(x, γ) =
Q(x, yb) = 0 since P divides Q(X, Y b).

We continue by comparing h(x) and h(γ) with Theorem A.1. It is easy to see that
R is irreducible. We define m = degX R and n = degY R. Bounding n is not difficult:
as n = degY Q we obtain

1 ≤ n ≤ q.

Since |θb − a| ≤ B−1 we have |a| ≤ B−1 + |θ|b ≤ 1 + b < 1 + B = 1 + 2q, so |a| ≤ 2q.
With the bound for degX Q and degY Q in Lemma B.1 we have

m ≤ 2 max{1, |a|}deg Q ≤ 4q(bp + q) ≤ 4q2(2p + 1) ≤ 12pq2.

Finally we show m ≥ 1. Indeed assume m = 0, then R has degree 1 in Y by irreducibility.
Therefore P divides a polynomial of the form αXuY v−β or αXu−βY v. But then P is
also of this form, contradicting the hypothesis. Since R and Q have the same coefficients
we get

(B.1.5) hp(R) = hp(Q) ≤ bhp(P ) + 2b(p + q) log 2 ≤ 2qhp(P ) + 4q(p + q) log 2

by Lemma B.1.
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Having bounded height and partial degrees of R and since R(x, γ) = 0 we apply
Theorem A.1 to deduce

h(x) ≤ n

m
h(γ) + 51n max{m,n, hp(R)}1/2h(x)1/2

≤ q
h(x)
B

+ 51q max{12pq2, 2qhp(P ) + 4q(p + q) log 2}1/2h(x)1/2,

in the second inequality we used (B.1.4) and (B.1.5). Since q
B = 1

2 we conclude
1
2
h(x)1/2 ≤ 51

√
12q3/2 max{pq, hp(P ) + pq}1/2 ≤ 250q3/2 max{pq, hp(P )}1/2.

This inequality completes the proof. �

2. On a Theorem of Runge

In [Run87] Runge proved that P (x, y) = 0 admits only finitely many solutions
x, y ∈ Z if P ∈ Q[X, Y ] is irreducible and satisfies the following condition: we have
degX P = degY P = deg P and the homogeneous part of P with maximal degree is not
a scalar times the power of an irreducible polynomial in Q[X, Y ]. In fact Runge proved
a finiteness result under a weaker hypothesis on P . Runge’s method is effective and
several explicit bounds for max{|x|, |y|} have been determined: for example Hilliker and
Straus in [HS83] or Walsh in [Wal92]. Many approaches use Eisenstein’s Theorem on
bounding the coefficients in power series of algebraic functions.

In this section we will prove a simple, explicit version of Runge’s Theorem using
the Quasi-equivalence Theorem proved in appendix A. We state the main result of the
section:

Theorem B.2. Let P ∈ Z[X, Y ] be irreducible in Q[X, Y ] and assume d = degX P =
degY P = deg P . Furthermore, assume that the homogeneous part of P with degree d
is not a scalar times the power of an irreducible polynomial in Q[X, Y ]. If P (x, y) = 0
with x, y ∈ Z, then

(B.2.1) log max{1, |x|, |y|} ≤ 105d5 max{d, hp(P )}.

A more sophisticated version of Runge’s Theorem, similar to the one of Bombieri
([Bom83] page 304), can also be proved using our Quasi-equivalence Theorem.

For the rest of this section let P =
∑

i,j pijX
iY j ∈ Z[X, Y ] be irreducible in Q[X, Y ]

with d = deg P = degX P = degY P . Furthermore, since Theorem B.2 applies only to
polynomials of degree at least 2, we assume d ≥ 2. We use Pd =

∑
i+j=d pijX

iY j to
denote the homogeneous part of degree d. Finally we can factor Pd as pd0

∏d
s=1(X−tsY )

with ts ∈ Q∗.
For any s, the function X − tsY on the curve defined by P has degree strictly less

than d, the degree of the function X:

Lemma B.2. Say t = ts. We have h(t) ≤ hp(P )+ log d. Furthermore, if Rt(X, Z) =
P (X, t−1(X − Z)) ∈ Q[X, Z], then degZ R = d, degX R ≤ d − 1, and hp(Rt) ≤
d(2hp(P ) + log(2d)).
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Proof. The bound for h(t) follows from Lemma A.1(iii); indeed t is a zero of
Pd(X, 1).

Let i, j ∈ Z, the coefficients of XiZj in Rt is

(−1)j
d−j∑
k=0

(
j + k

k

)
pi−k,j+kt

−j−k.

The coefficient of Zd is nonzero and that of XiZj is zero provided i ≥ d. The lemma
now follows from elementary inequalities as in the proof of Lemma A.7. �

By the previous lemma and the Quasi-equivalence Theorem, the height h(x− ty) is
small compared to h(x). We can say even more:

Lemma B.3. Let P (x, y) = 0 with x, y ∈ Z and

(B.2.2) h(x) ≥ 2.104d2 max{d, hp(P )},

then h(y) ≤ 2h(x). Furthermore, if t = ts for some 1 ≤ s ≤ d, then

log max{1, |x− σ(t)y|} ≤ d− 1
d

log |x|+ 177d3/2 max{d, hp(P )}1/2
√

log |x|

for some embedding σ : Q(t) → C.

Proof. The inequality h(y) ≤ 2h(x) follows from Corollary A.1 in appendix A.
Let R = Rt be as in Lemma B.2, then R is irreducible. Now degX R ≥ 1, indeed

if degX R = 0, then by construction P has degree 1, which contradicts our hypothesis
d ≥ 2. Let z = x− ty, so R(x, z) = 0. Theorem A.1, degX R ≤ d − 1, and degZ R = d
imply

(B.2.3) h(x− ty) = h(z) ≤ d− 1
d

h(x) + 51d max{d, hp(R)}1/2 max{1, h(x), h(z)}1/2.

We have the elementary bound h(z) ≤ log 2 + h(x) + h(y) + h(t) which yields h(z) ≤
log(2d)+hp(P )+h(x)+h(y) ≤ log(2d)+hp(P )+3h(x) by Lemma B.2 and h(y) ≤ 2h(x).
Therefore h(z) ≤ 4h(x), in view of the lower bound (B.2.2). By Lemma B.2 we also
conclude max{d, hp(R)} ≤ 3d max{d, hp(P )}. With (B.2.3) we obtain

h(x− ty) ≤ d− 1
d

h(x) + 177d3/2 max{d, hp(P )}1/2h(x)1/2.

By the definition of the height (cf. chapter 1) there exists an embedding σ : Q(t) → C
with log max{1, |x − σ(t)y|} ≤ h(x − ty). The lemma follows from this statement and
h(x) = log |x|. �

We now prove Theorem B.2:
Let P be as in the hypothesis. By assumption there are non-conjugated t′, t′′ ∈ Q∗

that are zeros of Pd(X, 1). Say x and y are as in the hypothesis and |x| ≥ |y|. We may
assume that x satisfies (B.2.2).
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Let σ′, σ′′ be the embeddings given by Lemma B.3 applied to t′, t′′ respectively, then
σ′(t′) 6= σ′′(t′′). For brevity we define ξ = x− σ′(t′)y and η = x− σ′′(t′′)y; we eliminate
y to get

x =
ξσ′′(t′′)− ησ′(t′)
σ′′(t′′)− σ′(t′)

.

So

(B.2.4) |x| ≤ 2 max{|ξ|, |η|}max{|σ′(t′)|, |σ′′(t′′)|}|σ′(t′)− σ′′(t′′)|−1

for the complex absolute value | · |.
We will bound |ξ| and |η| using Lemma B.3, but first we bound the remaining

absolute values in (B.2.4) using height inequalities: if α ∈ Q, then log max{1, |α|v} ≤
[Q(α) : Q]h(α) for any v ∈ MQ(α). This inequality follows immediately from the
definition of the height. Since for example [Q(t′) : Q] ≤ d and [Q(t′, t′′) : Q] ≤ d2 we
get a bound for (B.2.4):

(B.2.5) log |x| ≤ log 2 + d max{h(t′), h(t′′)}+ d2h(σ′(t′)− σ′′(t′′)) + log max{1, |ξ|, |η|}.
Let h = max{d, hp(P )}. Lemma B.2 implies the upper bounds

max{h(t′), h(t′′)} ≤ hp(P ) + log d.

Next we apply Lemma B.3 to bound |ξ| and |η|. Together with (B.2.5) and standard
height inequalities we have

log |x| ≤ log 2 + d(log d + hp(P )) + d2(log 2 + 2 log d + 2hp(P )) +
d− 1

d
log |x|

+ 177d3/2h1/2
√

log |x|

≤d− 1
d

log |x|+ 8d2h + 177d3/2h1/2
√

log |x|.

Hence
log |x| ≤ 8d3h + 177d5/2h1/2

√
log |x|.

If B,C, T ≥ 0 with T ≤ B
√

T + C, then

(B.2.6) T ≤ (1 +
√

2)2 max{(B/2)2, C} ≤ (1 +
√

2)2((B/2)2 + C).

We use (B.2.6) with B = 177d5/2h1/2, C = 8d3h, and T = log |x| to conclude that
log |x| is at most half the right side of (B.2.1). The upper bound for log |y| follows from
Lemma B.3 which implies log max{1, |y|} ≤ 2 log |x|.

3. On a Theorem of Skolem

In 1929 Skolem showed that if P ∈ Z[X, Y ] is irreducible in Q[X, Y ] and P (0, 0) = 0,
then there are only finitely many coprime x, y ∈ Z with P (x, y) = 0. Of course Siegel’s
Theorem on the finiteness of the integral points on a curve of genus at least 1 super-
sedes this result in many cases. Contrary to Siegel’s Theorem, which remains ineffective,
Skolem’s Theorem is effective. For example in [Wal92] Walsh proved an effective and
explicit version of Skolem’s Theorem. In [Pou04] Poulakis improved on Walsh’s bound
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under some additional restrictions to P . In [Abo06] Abouzaid extended Skolem’s Theo-
rem in two ways: first, he considered polynomials P with algebraic coefficients. Second,
he generalized the definition of the greatest common divisor, or gcd for short, from pairs
of integers to pairs of algebraic numbers. Say P ∈ Q[X, Y ] is irreducible with degY P > 0
such that (0, 0) is a non-singular point on the curve defined by P . If P (x, y) = 0 with
x, y algebraic and not both zero, then Abouzaid proved that log gcd(x, y) is asymptoti-
cally equal to 1

degY P h(x). He also explicitly bounded the difference of these two values.
In Theorem B.3 we give an independent proof of Abouzaid’s result based on the work
in appendix A on quasi-equivalence of heights.

Let x, y ∈ K where K is a number field and assume that x and y are not both zero.
We follow Abouzaid and define

lgcd(x, y) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log min{max{1, |x|−1
v },max{1, |y|−1

v }}.

Here lgcd(x, y) = h(y) if x = 0 and y 6= 0. Just like the height, lgcd(x, y) does not
depend on the field K containing x and y. For a, b ≥ 0 we have the identity

max{min{1, a},min{1, b}} =
max{a, b}

max{1, a, b}
,

and so we may rewrite lgcd(x, y) as

(B.3.1) lgcd(x, y) = h(x, y)− h([x : y]) ≥ 0.

Here (x, y) ∈ Q2 and [x : y] ∈ P1(Q). We recall our notion of height defined in chapter
1 corresponding to these two cases. Finally it is readily checked that lgcd(x, y) =
log gcd(x, y) if x and y are integers.

For any non-zero polynomial P (X, Y ) in two variables we define

e(P ) = max{f ∈ Z; Xf |P (X, XY )} ∈ [0,deg P ].

If P =
∑

i,j pijX
iY j , then e(P ) = min{i + j; pij 6= 0}. Clearly e(P ) is positive if and

only if P (0, 0) = 0. Furthermore, e(P ) = 1 precisely when ∂P
∂X (0, 0) 6= 0 or ∂P

∂Y (0, 0) 6= 0.
That is when (0, 0) is a non-singular point on the curve defined by P .

We will use Theorem A.1 to give an independent proof of Abouzaid’s Theorem
with slightly improved dependency on the degree of P and without the non-singularity
hypothesis. Abouzaid proved his theorem without referring to a quasi-equivalence of
heights result, in fact he uses it to prove variant of our Theorem A.1.

Theorem B.3. Let P ∈ Q[X, Y ] be irreducible with p = degX P > 0, q = degY P >
0, and d = deg P . If P (x, y) = 0 where x and y are non-zero algebraic numbers, then

max{
∣∣∣∣lgcd(x, y)− e(P )

q
h(x)

∣∣∣∣ , ∣∣∣∣lgcd(x, y)− e(P )
p

h(y)
∣∣∣∣}(B.3.2)

≤ 183d max{d, hp(P )}1/2 max{1, h(x), h(y)}1/2.



B. APPLICATIONS OF THE QUASI-EQUIVALENCE THEOREM 125

Deriving a slightly weaker version of Theorem A.1 from inequality (B.3.2) is simple if
P (0, 0) = 0. In this case the difference |h(x)

q − h(y)
p | is at most twice the right-hand side of

(B.3.2). The case P (0, 0) 6= 0 can be handled by replacing P (X, Y ) with P (X +ξ, Y +η)
where P (ξ, η) = 0

As a corollary we get a bound for the heights of x and y in terms of lgcd(x, y) as
soon as P has no constant term.

Corollary B.1. Let P ∈ Q[X, Y ] and d be as in Theorem B.3. We assume e(P ) ≥
1, that is P (0, 0) = 0. If P (x, y) = 0 where x and y are non-zero algebraic numbers,
then

(B.3.3) max{h(x), h(y)} ≤ 6
d

e(P )
lgcd(x, y) + 5.104 d4

e(P )2
max{d, hp(P )}.

In particular h(x) and h(y) are bounded if lgcd(x, y) = 0.
We prove Theorem B.3 in a series of elementary lemmas and then apply Theorem

A.1.
Throughout the remainder of this section P ∈ Q[X, Y ] will be irreducible with

p = degX P > 0, q = degY P > 0, and d = deg P .

Lemma B.4. There exists a root of unity λ such that Q(X, Z) = P (X, Z − λX) is
irreducible and satisfies deg Q = degX Q = d, degZ Q = q, and hp(Q) ≤ hp(P ) + q log 2.

Proof. The proof is very similar to the proof of Lemma A.7, so we omit it. �

Lemma B.5. Let x, y ∈ Q with P (x, y) = 0, then

|qh(x, y)− dh(x)| ≤ 110dq max{d, hp(P )}1/2 max{1, h(x), h(y)}1/2.

Proof. Let λ and Q be as in Lemma B.4. For brevity we define h = max{d, hp(P )}
and k = max{1, h(x), h(y)}. We set z = λx+y and note Q(x, z) = 0. Let K be a number
field containing the coefficients of Q and the algebraic numbers λ, x, and y. Let v ∈ MK ,
the inequality

δv(2)−1 ≤ max{1, |x|v, |y|v}
max{1, |x|v, |z|v}

≤ δv(2)

implies

(B.3.4) |h(x, y)− h(x, z)| ≤ log 2.

We continue by comparing h(x, z) with d
q h(z). Say Q =

∑
i,j qijX

iY j , then qd0 6= 0.
We claim

(B.3.5) |x|v ≤ δv(3d2)
|Q|v
|qd0|v

max{1, |z|v}.

Indeed, let us assume (B.3.5) is false. In particular |x|v > 1. Let i + j ≤ d with i, j
non-negative integers such that (i, j) 6= (d, 0) and qij 6= 0. If j = 0, then d ≥ i + 1 and
so |qd0x

d|v ≥ |qd0x
i|v|x|v > δv(3d2)|Q|v|xi|v by the negation of (B.3.5). If j > 0, then
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|qd0x
d|v ≥ |qd0|v|x|iv|x|

j
v > δv(3d2)|Q|v|x|iv|z|

j
v, again using the negation of (B.3.5). In

any case we have

|qd0x
d|v > δv(3d2)|qijx

izj |v if (i, j) 6= (d, 0).

But since Q(x, z) = 0 and because Q has no more than 1
2(d + 1)(d + 2) ≤ 3d2 non-zero

coefficients we have a contradiction.
Therefore B.3.5 holds for all v ∈ MK , and even with |x|v replaced by the possibly

larger max{1, |x|v, |z|v}. Passing over to heights we have

0 ≤ h(x, z)− h(z) ≤ log(3d2) + hp(Q),
here the lower bounds is obvious. We combine this inequality with (B.3.4) and the
bound for hp(Q) from Lemma B.4 to obtain

(B.3.6) |h(x, y)− h(z)| ≤ log(6d22q) + hp(P ) ≤ log(6d22d) + hp(P ) ≤ 4h.

The last inequality used log(6d22d) ≤ 3d.
We have max{d, hp(Q)} ≤ (1 + log 2)h since hp(Q) ≤ hp(P ) + q log 2. Furthermore,

since h(z) ≤ h(x)+h(y)+log 2 by (1.1.6) in chapter 1 we conclude max{1, h(x), h(z)} ≤
(2 + log 2)k. By Theorem A.1 applied to Q we get |dh(x) − qh(z)| ≤ 109dqh1/2k1/2.
This inequality and (B.3.6) together imply

|qh(x, y)− dh(x)| ≤ 109dq(hk)1/2 + 4qh.

The lemma now follows easily if k ≥ 16h. If k < 16h, then

|qh(x, y)− dh(x)| ≤ 3dk ≤ 12d(hk)1/2

completes the proof. �

Lemma B.6. Let P (x, y) = 0 with x, y ∈ Q not both zero, then

|(d− e(P ))h(x)− qh([x : y])| ≤ 73dq max{d, hp(P )}1/2 max{1, h(x), h(y)}1/2.

Proof. We may assume x 6= 0 and in this case we have h([x : y]) = h(y/x) by
the product formula. Let e = e(P ) ≤ d. If e = d, then by irreducibility P must be
homogeneous of degree 1. The lemma holds in this case as then hp(P ) = h([x : y]) ≤
h(x) + h(y). So let us assume e < d.

We define F (U, V ) = U−eP (U,UV ) ∈ Q[U, V ], then F is irreducible with degU F =
d− e, degV F = q, and hp(F ) = hp(P ). We have F (x, y/x) = 0 and so by Theorem A.1:

|(d− e)h(x)− qh(y/x)| ≤ 51dq max{d, hp(P )}1/2 max{1, h(x), h(y/x)}1/2.

The lemma now follows from h(y/x) ≤ h(x) + h(y). �

Proof of Theorem B.3: Let P (x, y) = 0 with x, y ∈ Q not both zero. As an immediate
consequence of Lemmas B.5, B.6, and (B.3.1) we get

|lgcd(x, y)− e(P )
q

h(x)| ≤ 183d max{d, hp(P )}1/2 max{1, h(x), h(y)}1/2.
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This inequality bounds the first quantity on the left in (B.3.2). The bound for the second
quantity follows by considering Q(X, Y ) = P (Y, X); indeed we have e(P ) = e(Q). �

Proof of Corollary B.1: By symmetry we may assume h(x) ≥ h(y) and by (B.3.3) also
h(x) ≥ 1. Theorem B.3 and q ≤ d imply

h(x) ≤ d

e(P )
lgcd(x, y) + 183

d2

e(P )
max{d, hp(P )}1/2h(x)1/2.

The upper bound for h(x) in (B.3.3) follows from (B.2.6) with T = h(x), B =
183 d2

e(P ) max{d, hp(P )}1/2, and C = d
e(P ) lgcd(x, y). The same upper bound holds for

h(y) since h(y) ≤ h(x). �

4. On a Theorem of Sprindzhuk

Let P ∈ Q[X, Y ] be an irreducible polynomial with degY P > 0. A famous theorem
of Hilbert states that P (x, Y ) ∈ Q[Y ] is irreducible for infinitely many integers x.

In [Spr79b] and [Spr79a] Sprindzhuk proved that if P (0, 0) = 0 and ∂P
∂Y (0, 0) 6= 0

then P (l, Y ) ∈ Q[Y ] is irreducible for a sufficiently large prime l. His Theorem is
effective and even holds if l is allowed to be a prime power. In [BM06] Bilu and Masser
gave a quick proof of a more advanced version of this result, originally also due to
Sprindzhuk.

In this section we prove a quantitative version of Sprindzhuk’s result using our
Quasi-equivalence Theorem and its consequence Theorem B.3.

Theorem B.4. Let P ∈ Q[X, Y ] be irreducible with degY P > 0 and e(P ) = 1. If
d = deg P and l ∈ N is a prime with

(B.4.1) log l ≥ 7.104d6 max{d, hp(P )},
then P (l, Y ) ∈ Q[Y ] is irreducible.

The condition e(P ) = 1 is equivalent to P (0, 0) = 0 and ( ∂P
∂X , ∂P

∂Y )(0, 0) 6= 0. Our
hypothesis is thus slightly weaker than Sprindzhuk’s: he assumes the non-vanishing of
∂P
∂Y at (0, 0).

In the proof of Theorem B.4 we need the following simple remark: let l ∈ N be a
prime and y ∈ Q such that lgcd(l, y) > 0, then

(B.4.2) [K : Q]lgcd(l, y) ≥ log l,

with K = Q(y). Indeed, by definition we have

(B.4.3) [K : Q]lgcd(l, y) =
∑

v∈MK

[Kv : Qv] log
max{1, |l|v, |y|v}
max{|l|v, |y|v}

.

One of the terms on the right side of the expression above must be positive. Therefore
|l|v < 1 and |y|v < 1 for some v ∈ MK . In particular this v is a finite place. Since
[Kv : Qv] is the product of ramification index and rest-class residue of the prime ideal
corresponding to v we have −[Kv : Qv] log max{|l|v, |y|v} ≥ log l. So (B.4.2) follows
since all terms of the sum in (B.4.3) are non-negative.



Proof of Theorem B.4: The assumption e(P ) = 1 and P ∈ Q[X, Y ] irreducible im-
ply that P is irreducible in Q[X, Y ]. Indeed otherwise P would be the product of 2
polynomials both vanishing at (0, 0), therefore ∂P

∂X and ∂P
∂Y would both vanish there too.

Say for brevity p = degX P and q = degY P . Clearly we may assume p > 0. Let l
be as in the hypothesis, we note log l ≥ 1. We first show that P (l, Y ) /∈ Q. Indeed this
follows easily for example by Lemma A.1(iii). We fix y ∈ Q with P (l, y) = 0. We must
show D = [Q(y) : Q] = q. The inequality D ≤ q holds trivially so it suffices to show
D ≥ q.

By Corollary B.1 and the hypothesis (B.4.1) we conclude lgcd(l, y) > 0 and so

(B.4.4) Dlgcd(l, y) ≥ log l

by (B.4.2).
By Theorem B.3 and e(P ) = 1 we obtain

(B.4.5) lgcd(l, y)− 1
q
h(l) ≤ 183d max{d, hp(P )}1/2 max{1, h(l), h(y)}1/2.

Furthermore, h(l) = log l. In (B.4.5) we bound lgcd(l, y) from below with (B.4.4) and
then multiply with Dq ≤ q2 to get

(B.4.6) (q −D) log l ≤ 183dq2 max{d, hp(P )}1/2 max{1, log l, h(y)}1/2.

The proof follows by splitting up into two cases:
First say log l ≥ h(y). Then (B.4.6) implies

(q −D)2 log l ≤ 1832d2q4 max{d, hp(P )}.
This inequality contradicts (B.4.1) if q −D ≥ 1. Hence q ≤ D and we are done in this
case.

Second say log l ≤ h(y). By Corollary A.1 and (B.4.1) we have h(y) ≤ 2p
q log l.

Therefore max{1, log l, h(y)} ≤ 2p
q log l. We insert this inequality in (B.4.6) to conclude

(B.4.7) (q −D)2 log l ≤ 7.104d2pq3 max{d, hp(P )}.
As before, if q−D ≥ 1, then (B.4.7) is incompatible with (B.4.1). We conclude q ≤ D.�
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[Hab05] P. Habegger, The equation x + y = α in multiplicatively dependent unknowns, Acta Arith.

119 (2005), no. 4, 349–372.
[Hab07] , Multiplicative dependence and isolation I, In Diophantine Geometry, Scuola Normale

Superiore. Serie CRM. Vol. 4 (2007), 189–196.
[Har98] Glyn Harman, Metric number theory, Oxford University Press, 1998.
[HS83] David Lee Hilliker and E.G. Strauss, Determination of bounds for the solutions to those

binary Diophantine equations that satisfy the hypotheses of Runge’s theorem, Trans. Amer.
Math. Soc. 280 (1983), no. 2, 637–657.

[HW05] G.H. Hardy and E.M. Wright, An Introduction to the Theory of Numbers, Oxford University
Press, 2005.

[Kir06] J. Kirby, The Theory of Exponential Differential Equations, Ph.D. thesis, 2006.
[Lan83] Serge Lang, Fundamentals of Diophantine Geometry, Springer, 1983.
[Lan94] , Algebraic Number Theory, Springer, 1994.
[Lan02] , Algebra, Springer, 2002.
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