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Summary 

 
Malaria is an infectious disease caused by protozoans of the genus 

Plasmodium, which are injected by the bite of an infected female Anopheles 

mosquito during a blood meal. Out of the four species that infect humans, P. 

falciparum is the most important. About 40% of the world’s population is at 

risk and 500 million cases of malaria occur every year, mainly in sub-

Saharan Africa. Due arising resistance of mosquitoes against insecticides, 

the lack of a malaria vaccine, and emerging resistance of parasites against 

established drugs, research into new drugs and vaccine targets is most 

important. 

Morbidity is associated with adherence of infected red blood cells (iRBC) to 

endothelial tissue thereby obstructing the blood flow. The major protein 

conferring this cytoadherence is the P. falciparum erythrocyte membrane 

protein 1 (PfEMP1) anchored in the erythrocyte membrane of infected red 

blood cells (iRBCs). PfEMP1 is encoded by the var gene family that consists 

of approximately 60 members in the haploid genome of the 3D7 strain. var 

genes are expressed mutually exclusive, i.e. only one var gene is expressed 

in a parasite at a time and the rest is silenced. In this thesis we were 

interested in the regulation of expression and silencing of var genes. For this 

purpose we generated transgenic parasite lines that harbored plasmids 

expressing luciferase under the control of various fragments of the var gene 

upstream region. By comparing luciferase activities in the different lines we 

identified the core promoter, two activator-binding sites and a repressor-

binding site. Additionally, we identified a regulatory sequence on the var 

upstream region that interacts with the var intron during silencing. Using 

quantitative RT-PCR with specific primers for every var gene we were unable 

to confirm that the var upstream regions on the transfected plasmids were 

recognized by the machinery that ensures mutually exclusive transcription. 

In the second part of this thesis, we evaluated phosphodiesterase 1 (PDE1) 

as a possible drug target in P. falciparum by creating a knockout parasite 
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line. PDEs are known drug targets in humans where selective PDE inhibitors 

are being used to treat a wide range of diseases. In trypanosomiasis 

research PDE inhibitors are promising drug candidates against sleeping 

sickness, Nagana or Chagas’ disease. Out of the four PDEs described for P. 

falciparum we focused on PfPDE1, which is expressed in blood stage 

parasites and in gametocytes and sporozoites. We observed a slightly faster 

growth of the knockout parasite line compared to the wildtype indicating that 

the knockout parasite had a shorter erythrocytic lifecycle. We found that 

PfPDE1 is responsible for 20% of the total cGMP activity observed in late 

blood stage parasites and that there is no rescue mechanism of the 

remaining PDEs to compensate for the loss of activity. We were not able to 

localize PfPDE1 in the parasite. The fact that we could delete PfPDE1 clearly 

shows that it is not an essential gene in blood stage forms of P. falciparum 

and hence not a good drug target. Nevertheless we created a useful tool to 

investigate the role of PfPDE1 in the development of sexual parasite forms. 
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Zusammenfassung 

 
Malaria ist eine Infektionskrankheit, die von Protozoen der Gattung 

Plasmodium verursacht wird, welche beim Stich einer weiblichen Anopheles 

Mücke übertragen werden. Von den vier Spezies, die den Menschen befallen 

können, ist P. falciparum die Wichtigste. Etwa 40% der Weltbevölkerung 

leben in Risikogebieten und jährlich treten 500 Millionen Krankheitsfälle auf, 

meist südlich der Sahara. Insektizidresistenzen der Mücken, ein fehlender 

Impfstoff, sowie Resistenzbildung des Parasiten gegen vorhandene 

Malariamittel machen die Suche nach Zielstrukturen für neue Malariamittel 

und Impfstoffe dringend. 

Das Anheften der infizierten roten Blutkörperchen (iRBC) an 

Endothelgewebe löst die Krankheit aus unter anderem durch das daraus 

folgendem Verstopfen der Blutkapillaren. P. falciparum erythrocyte 

membrane protein 1 (PfEMP1), das vermeintliche Hauptprotein bei 

Entstehung der sogenannten Cytoadherence, ist in der 

Erythrocytenmembran verankert. PfEMP1 wird von der var Genfamilie 

kodiert, die im haploiden Genom des 3D7 Stamm etwa 60 Mitglieder hat. var 

Gene werden in einer sich gegenseitig ausschließender (mutually exclusive) 

Art exprimiert, d.h. nur ein var Gen ist jeweils in einem Parasiten angestellt 

und der Rest ist abgestellt (silencing). In dieser Doktorarbeit wurden die 

Regulation der Expression und das Silencing von var Genen untersucht. 

Hierfür haben wir transgene Parasiten Linien geschaffen, die mit einem 

Plasmid transformiert wurden, in welchen das Luciferase-Gen unter der 

Kontrolle verschiedener Fragmente der var Gen upstream Region exprimiert 

wurde. Beim Vergleich der Luciferase-Aktivität der verschiedenen Linien 

haben wir den Kern-Promotor, zwei Aktivator Bindungs-Stellen, sowie eine 

Repressor Bindungs-Stelle identifiziert. Zusätzlich konnten wir eine 

Regulierungs-Sequenz auf der var Gen upstream Region identifizieren, 

welche zusammen mit dem var Intron das Ausschalten der var Gene 

verursacht. Mittels quantitativer RT-PCR mit spezifischen Primern für jedes 

einzelne var Gen konnten wir nicht nachweisen, ob die upstream Regionen 
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auf den transfizierten Plasmiden von der Maschinerie zur auscchliesslichen 

Transkription (mutually exclusive Transcription) gewährleistet, erkannt 

werden können. 

Im zweiten Teil dieser Dissertation wurde Phosphodiesterase 1 (PDE1) als 

mögliches Zielmolekül für ein Malariamedikament gegen P. falciparum 

evaluiert. Hierzu wurden eine Knockout Parasiten Linie generiert. PDEs sind 

bekannte Zielmoleküle für Medikamente im Humangebrauch, die durch 

selektive Inhibition der PDEs bei einer Vielzahl von Krankheiten wirken. PDE 

Inhibitoren sind vielversprechende Zielstrukturen in Trypanosomen und 

könnten als Medikamente gegen Schlafkrankheit, Nagana oder Chagas 

Krankheit eingesetzt werden. Von den vier bekannten PDEs in P. falciparum 

haben wir uns auf PfPDE1 konzentriert, welches in Blutstadien aber auch in 

Gametozyten und Sporozoiten exprimiert ist. Die Parasiten Knockout Linie 

wuchs im Vergleich zum Wildtyp schneller, was auf einen verkürzten 

Erythrozytenzyklus des Knockouts Parasitens hinweist. Wir fanden, daß 

PfPDE1 für 20% der gesamten cGMP Aktivität in späten Blutstadien des 

Parasiten verantwortlich ist, und daß die übrigen PDEs den Verlust an 

Aktivität nicht kompensieren können. Wir konnten PfPDE1 im Parasiten nicht 

lokalisieren. Die Tatsache, daß wir PfPDE1 deletieren konnten weist darauf 

hin, daß es kein essentielles Gen in Blutstadien ist und daher als Zielmolekül 

für ein Medikament ungeeignet ist. Dennoch haben wir ein nützliches 

Hilfsmittel geschaffen, das zur Untersuchung der Funktion von Pf PDE1 in 

der Entwicklung von sexuellen Parasiten Formen dienen kann. 
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Chapter 1: Introduction 

 
The introduction of this PhD thesis is composed of three parts. The first part 

focuses on the role of P. falciparum erythrocyte membrane protein 1 (PfEMP1) 

and the regulation of expression of var genes using transfection technology. 

The second part focuses on the generation of a PfPDE1 knockout parasite line 

also using transfection technology, whilst the third part deals with the 

technology itself.  
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Part 1 – PfEMP1 and var gene regulation 

 

1.1 Plasmodium and Malaria 

 

Malaria is caused by infection with a protozoan parasite of the genus 

Plasmodium, which is transmitted by an infectious bite of a female Anopheles 

mosquito. Plasmodia are members of the phylum Apicomplexa, characterized 

by the presence of an apical complex, which contains an apicoplast (a 

structure in juxtaposition to the nucleus and related to the chloroplast), a polar 

ring organizing the microtubules, and vesicles called micronemes, rhoptries 

and dense granules. The genus Plasmodium contains more than 100 species 

of which four infect humans: Plasmodium falciparum, P. vivax, P. ovale, and P. 

malariae. Out of these four species, P. falciparum is the only one where 

severe pathogenesis such as cerebral malaria, severe anaemia, renal failure 

and pulmonary affection are frequently seen. The reason for P. falciparum’s 

virulence originates in the ability to invade red blood cells (RBCs) of all ages 

causing very high parasitaemia, reaching high multiplication rates (up to 24 

merozoites as compared to 8-10 merozoites in P. vivax) and enhanced 

growth, and the capacity to adhere to vascular endothelium through the 

process of sequestration. Every year around 500 million clinical cases occur 

and out of these one million die (Snow et al., 2005). Almost 80% of these 

cases occur in sub-Saharan Africa, where mainly children younger than five 

years and pregnant women are affected. Mortality is not the only problem; 

morbidity leads to major social and economic losses in endemic areas. There 

are multiple channels by which malaria impedes development, including 

effects on fertility, population growth, saving and investment, worker 

productivity, absence, premature mortality and medical costs.  
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1.2 Lifecycle of Plasmodium falciparum  

 
The life cycle of Plasmodium is complex (Figure 1). It involves two hosts, a 

female mosquito of the genus Anopheles and a vertebrate (e.g. a human). The 

cycle can be divided into three consecutive phases of multiplication: Two 

phases of schizogony (asexual multiplication) in the vertebrate host first in 

hepatocytes then in RBCs and one phase of sporogony (sexual multiplication) 

in the mosquito. The vertebrate host gets naturally infected by the bite of a 

mosquito injecting the parasite in the sporozoite form. Sporozoites rapidly 

migrate to the liver via the blood circulation. They invade hepatocytes where 

they develop into hepatic schizonts (reviewed in Baldacci and Menard, 2004; 

Kappe et al., 2004). Every schizont produces up to 10,000 merozoites in a few 

days, which are released into the blood stream where they infect RBCs. In the 

RBC they multiply giving raise to up to 24 merozoites, which are released and 

again invade RBCs thereby maintaining the erythrocytic cycle. In parallel a few 

parasites differentiate into male or female sexual forms called gametocytes. 

Once ingested by a blood sucking mosquito gametocytes give rise to gametes, 

which fuse in the midgut lumen. The zygotes formed by this fertilization 

develop into motile ookinetes, which invade and traverse the midgut 

epithelium. Diploid ookinetes undergo meiosis and, on reaching the basal side 

of the midgut, transform into oocysts, thereby undergoing several rounds of 

mitosis as they mature. Each oocyst releases thousands of haploid 

sporozoites into the mosquito hemocoel, from where they are transported 

through the hemolymph and invade the salivary glands. Sporozoites are finally 

transmitted to a new vertebrate host during an infective bite (reviewed in 

Whitten et al., 2006).  

The life cycle of Plasmodium thus consists of three invasive stages: the 

ookinetes traversing the intestinal cells in the mosquito, the sporozoites 

infecting the mosquito salivary gland, and the vertebrate hepatocytes, and the 

merozoites infecting the vertebrates’ erythrocytes. The sporozoites and the 

hepatic stages are called the pre-erythrocytic stages. The hepatic stage is 

asymptomatic in humans and takes approximately one week in the case of P. 
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falciparum. Clinical symptoms that can be very severe are solely due to the 

erythrocyte stages. Almost all antimalarial drugs currently in use are directed 

against this stage (Fidock et al., 2004). 

 
Figure 1. Life cycle of P. falciparum (Source: Wirth, 2002). 
The life cycle of the Plasmodium parasite is divided between the human 

host where asexual replication takes place (a) and the mosquito where the 

sexual reproduction occurs (b). Details are given in the text.  
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1.3 Cytoadherence and PfEMP1 

 
During the blood stage of infection, the infected RBCs (iRBC) sequester from 

the blood circulation by binding to host endothelium, a process known as 

cytoadherence. One of the main mediators of cytoadherence is the P. 

falciparum erythrocyte membrane protein 1 (PfEMP1) (Leech et al., 1984), 

encoded by the var gene family (Baruch et al., 1995; Smith et al., 1995; Su et 

al., 1995). var genes are large (6-13kb) and have a two-exon structure 

interrupted by a conserved var intron. The first exon encodes an extremely 

diverse extracellular region with different domains that are responsible for 

binding, and a predicted transmembrane domain. The second exon encodes 

for a more conserved cytoplasmic tail (acidic terminal sequence, ATS), 

anchoring the protein to the knob structure on the red RBC surface. The 

exposure on the RBC allows PfEMP1 to interact with host cell receptors 

thereby avoiding clearance in the spleen but at the same time renders the 

parasite vulnerable to the host immune system. To evade an antibody 

response, the PfEMP1 family undergoes clonal antigenic variation (Kyes et al., 

2001). There are approximately 60 var genes per parasite genome but only 

one var gene is transcribed in a single parasite at a time, known as mutually 

exclusive transcription (Chen et al., 1998b; Scherf et al., 1998). The 

extracellular binding domain of PfEMP1 is highly variable, but predominantly 

assembled from four types of building blocks: the semi-conserved N-terminal 

segment (NTS) located at the amino terminus, the Cysteine-rich Interdomain 

Region (CIDR), the Duffy Binding-like (DBL) domain and the C2 domain 

(Figure 2). The original Duffy Binding Protein (DBP) is an important invasion 

ligand for RBC invasion in P. vivax and P. knowlesi (Gaur et al., 2004). 

Another protein family in P. falciparum, the Erythrocyte Binding Antigen (EBA) 

family, is also implied in RBC invasion and contains a DBL domain as well. 

DBL and CIDR domains can be classified into different types (α, β, γ, δ, ε, and 

X) according to their sequence similarity. Different DBL types are associated 

with different binding properties: nearly all CIDR-α type domains bind to CD36, 

whereas CIDR-β domains do not bind to this receptor, many DBLβC2 bind 
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intercellular adhesion molecule-1 (ICAM-1) (reviewed in Kraemer and Smith, 

2006). 

 

 
Figure 2. Plasmodium falciparum erythrocyte membrane protein 1 
(PfEMP1) protein architecture and binding domains.  
(a) The prototypical PfEMP1 extracellular region consists of an NTS and 

DBL1α–CIDR1 ‘semiconserved head structure’ followed by a DBL2δ–

CIDR2 tandem.  

(b) Larger PfEMP1 proteins also include the DBLβ, γ and ε types arrayed 

differently. Mapped binding traits for receptors are indicated with the 

domain that is responsible for binding.  

Abbreviations: ATS, acidic terminal segment; CIDR, cysteine-rich 

interdomain region; CR1, complement receptor 1; DBL, Duffy-binding-like 

domain; ICAM-1, intracellular adhesion molecule-1; NTS, N-terminal 

segment; PfEMP1, P. falciparum erythrocyte membrane protein 1; TM, 

transmembrane domain  

(Source: Smith et al., 2001). 

 

Several other receptors serve as binding partner for iRBCs but often it is 

unknown which PfEMP1 domain or even which protein is responsible for the 

binding (Table 1) (Kyes et al., 2001). Some of the domains that have been 

associated with binding to host receptors are indicated in Figure 2. The 

binding ability of a PfEMP1 variant is due to the composition of its domains, 

which in turn determine its virulence. Generally CD36 binding is common in 

mild infections, whereas ICAM-1 (Smith et al., 2000) and CSA binding (Fried 
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and Duffy, 1996) is more often associated with either cerebral or placental 

malaria, as these receptors are mainly expressed in cerebral blood vessels or 

the placenta, respectively. 

var genes can be further classified into five distinctive types (upsA, upsB, 

upsC, upsD and upsE) according to their promoter sequence, as well as their 

chromosomal localization and orientation, (Gardner et al., 2002). In 3D7, the 

P. falciparum strain that has been sequenced completely, upsC genes are 

localized exclusively in chromosome-central clusters, whereas all but one 

upsB genes are located at the telomere ends, being transcribed towards the 

centromere. The remaining groups are also subtelomeric, but transcribed 

towards the telomere.  The var genes are not the only gene family localized at 

the teleomers. The repetitive interspersed family (rifin) and the subtelomeric 

variable open reading frame family (stevor) are localized adjacent to the var 

genes (Figure 3) (Gardner et al., 2002). Both families show antigenic variation 

and are associated with the RBC membrane (Lavazec et al., 2006) but their 

function is not yet clear. The genomic organization of the distinctive var gene 

types might allow the different groups to recombine more often within rather 

than between different groups. upsA var genes are more closely related to 

each other than to other var genes, all encoding non-CD36-binding type CIDR 

domains. 

 

 

Table 1. Host molecules to which parasitized red blood cells bind. 

Abbreviations: ICAM-1 (intercellular adhesion molecule-1); VCAM-1 

(vascular cell adhesion molecule-1); PECAM-1 (platelet-endothelial cell 

adhesion molecule-1); TSP (thrombospondin); CSA (chondroitin sulfate A); 

CR1 (complement receptor 1); LFA-1 (leukocyte function antigen-1); VLA-

4 (very late antigen 4); PSGL-1 (P-selectin glycoprotein ligand -1; CD62P); 

LDL (low density lipoprotein); GPIIb (glycoprotein IIb). 
bNot an exhaustive or exclusive list. 
cGAGs = some glycosaminoglycans, such as heparin, sulfated glycolipids, 

heparan sulfate proteoglycans.  

(Source: Kyes et al., 2001). 
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Host receptor Normal host 
ligandb 

Parasite ligand Phenotype 
association 

Proportion 
of field 
isolates 

Ig superfamily     
ICAM-1 (Berendt et 
al., 1989) 

LFA-1, MAC-1 PfEMP1(Baruch 
et al., 1996; 
Smith et al., 
2000) 

Endothelial 
binding 

Most 

VCAM-1 
(Ockenhouse et al., 
1992) 

VLA-4 Unknown ? Rare 

PECAM-1 (Treutiger 
et al., 1997) 

CD31 PfEMP1(Chen 
et al., 2000) 

Rosetting? ? 

IgM  Unknown Rosetting Medium 
Other     
CD36 (Barnwell et 
al., 1989) 

TSP, LDL PfEMP1(Baruch 
et al., 1996; 
Baruch et al., 
1997) 

Endothelial 
binding 

Nearly all 

E-selectin 
(Ockenhouse et al., 
1992) 

Sialyl Lewis x & 
a 

Unknown ? Rare 

P-selectin 
(Udomsangpetch et 
al., 1997) 

Sialyl Lewis x, 
PSGL-1 

Unknown ? ? 

TSP (Roberts et al., 
1985) 

CD36, αv β3 

GPIIb/IIIa, 
GAGsc 

Modified band 3 
(Lucas and 
Sherman, 1998) 

? Nearly all 

αv β3 (integrin) 
(Siano et al., 1998) 

Vitronectin 
receptoe, TSP 

Unknown ? ? 

CR1 (Rowe et al., 
1997) 

C3b, C4b PfEMP1 (Rowe 
et al., 1997) 

Rosetting Medium 

Glycosaminoglycans     
CSA (Robert et al., 
1995; Rogerson et 
al., 1999) 

Thromomodulin PfEMP1 (Buffet 
et al., 1999; 
Reeder et al., 
1999; Degen et 
al., 2000) 

Placental 
binding 

Rare 

Heperan sulfate 
(Chen et al., 1998a) 

 PfEMP1 (Chen 
et al., 1998a) 

Rosetting Medium 

Sulfated 
glycoconjugates 
(Xiao et al., 1996) 

 Unknown Rosetting Medium 

Blood group A and 
B (Carlson and 
Wahlgren, 1992) 

 PfEMP1 (Chen 
et al., 2000) 

Rosetting Medium 

Hyaluronic acid 
(Beeson et al., 
2000) 

CD44 Unknown Placental Rare 
binding 

 

Table 1. 
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In contrast, nearly all PfEMP1 proteins in the upsB and upsC groups have 

CD36-binding CIDR domains (Kraemer and Smith, 2006). Even though var 

genes of one single genome are highly diverse, two conserved var genes 

(var1CSA and var2CSA) have been found that also exist in field isolates 

where they are associated with placental malaria (Rowe et al., 2002; Salanti et 

al., 2003). Their conserved sequence structures make a possible vaccine 

target for preventing placental malaria (Rowe and Kyes, 2004).  

 

 
 

Figure 3. Typical arrangement of var, rifin and stevor genes.  
Within the sequenced 3D7 genome, internal chromosomal clusters of var 

genes vary between one and seven copies found on five different 

chromosomes. Subtelomeric regions contain zero to three var genes, 

found in either orientation, the rif and stevor genes can be in either 

orientation in close proximity to var genes. Five types of flanking 

sequences, referred to as upsA, upsB, upsC, upsD and upsE are found 

upstream of var genes depending on their location and orientation. For 

simplicity only the first three types of flanking regions are indicated.  

(Source: Deitsch and Hviid, 2004).  
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1.4 Regulation of var gene expression 

 

Although there are 60 var genes present in the 3D7 Plasmodium strain, only 

one is expressed at a time, resulting in one functional PfEMP1 variant on the 

RBC surface. Mutually exclusive transcription is a common feature in several 

organisms, i.e. VSG expression in African trypanosmes (Borst and Ulbert, 

2001) and the immuno globulin heavy-chain gene expression in humans 

(Corcoran, 2005). In the case of P. falciparum, the switch in var gene 

expression is regulated in situ without any sequence alterations or 

repositioning of the gene in the genome context (Scherf et al., 1998). var gene 

expression in the asexual blood-stage is only found 3 to 18 hours post 

infection (Kyes et al., 2000). Although only a single mRNA will be translated to 

a functional PfEMP1, early transcripts from the 5’ end of most var genes can 

be detected (Chen et al., 1998b; Scherf et al., 1998). The nature of the early 5' 

transcripts is controversial. Comparison of RT-PCR data, using validated 5' 

universal primers with Northern blots, suggests that even in young ring stages, 

only a single full-length transcript exists and that the remaining are terminated 

early (Taylor et al., 2000). It seems possible that shortly after invasion, 

transcriptional initiation is promiscuous, but proper elongation fails to occur 

(Kyes et al., 2001). Another set of non full-length var gene transcripts has 

been described consisting of exon 2 and some var intron sequences (Su et al., 

1995). The relative abundance of these ‘sterile’ transcripts suggests that they 

are derived from several var genes. The function of the sterile transcripts 

remains to be determined. 

Gel mobility shift assays identified protein binding sequences in upsC and 

upsB upstream regions that are bound by unknown nuclear proteins (Voss et 

al., 2003). Transcriptional start point mapping disclosed that var mRNAs 

contain rather long 5’ upstream regions of about 1kb (Deitsch et al., 1999). 

Promoters removed from the chromosomal context and cloned into plasmids 

can drive luciferase or chloramphenicol acetyl transferase expression (Deitsch 

et al., 1999; Voss et al., 2000; Vazquez-Macias et al., 2002). This is surprising 

as the most frequent state of a var promoter in the genome is silent, indicating 
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that a silencing element is missing in the promoter. Deitsch et al., (2001) 

identified the var intron as such a silencing element. They showed that a var 

promoter is only able to drive luciferase expression when it is not paired with a 

var intron. The silencing effect is not dependent on the orientation of the var 

intron but transfected parasites need to pass the S-phase to achieve complete 

silencing. During the S-phase chromatin structures are relaxed to enable 

replication of the whole genomic DNA. After replication, DNA is packed again 

into chromatin and due to rearrangement previously silenced genes can be 

activated. The var intron is composed of a three partite structure, whereby the 

central part contains bidirectional promoter activity and is essential for 

silencing (Calderwood et al., 2003).  

 

Figure 4. The histone acetylation switch.  
 

Targeted histone acetyltransferase 

(HAT) and histone deacetylase 

(HDAC) activities negotiate the 

acetylation status of chromatin. 

Acetylation establishes a structure that 

permits ATP-dependent chromatin 

remodeling factors to open promoters. 

Deacetylation, frequently followed by 

histone methylation, may form a solid 

base for highly repressive structures, 

such as heterochromatin. Acetylated 

histone tails are shown as yellow 

circles. Methylations are indicated as 

gray rectangles. HMT, histone 

methyltransferase; HP1, 

heterochromatin protein 1 (Source: Eberharter and Becker, 2002). 

 

Alteration in chromatin structure goes along with phosphorylation, methylation 

and acetylation of histone proteins, thereby changing the accessibility of 

various DNA sequences to transcription factors (Eissenberg and Wallrath, 
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2003). For illustration see Figure 4. A homologue of the yeast deacetylase 

Silent mating type Information Regulation-2 (Sir2), that mediates 

heterochromatin formation by removing an acetyl group from histone 

molecules, has been identified in P. falciparum and termed PfSir2 (Freitas-

Junior et al., 2005). PfSir2 binds to the subtelomeric region of the 

chromosome, extending into the regulatory sequences of the var genes. PfSir2 

does not bind to the active var gene, but only to silent ones supporting a role 

in the mutually exclusive transcription of the var genes. It has to be noted, that 

PfSir2 is only associated with subtelomeric var genes but not with central 

ones, suggesting a different silencing mechanism for centrally located var 

genes. The same group showed that histone H4 acetylation was associated 

with the active var gene, in agreement with the general notion that histone 

hyperacetylation promotes gene activation while hypoacetylation generates 

repression (Freitas-Junior et al., 2005). Recently, these results have been 

complemented by another group which noticed that trimethylated histone H3 

at lysine-9 (H3K9me3) is significantly enriched at silent var gene loci 

(Chookajorn et al., 2007). These observations are supported by a study from 

(Duraisingh et al., 2005), who inserted a human dihydrofolate reductase 

(hdhfr) gene into the Rep20 locus which is a special element of the telomere 

associated repeat elements (TAREs) that tether chromosome ends into 

clusters. They observed that chromatin packaging is more compact at the 

hdhfr transgene locus when the gene is silenced than when it is active. In 

addition, deletion of PfSir2 resulted in upregulation of a subset of members of 

the var and rifin gene families (Duraisingh et al., 2005). 

Telomeres and the adjacent var genes cluster into clusters of six to eight 

chromosome ends near the periphery of the nucleus, where the 

heterochromatin is in a more condensed form (Freitas-Junior et al., 2000). 

Central var genes have also been localized in the nuclear periphery (Ralph et 

al., 2005) and recently it has been shown that they colocalize with telomeric 

clusters (Voss et al., 2006). Activation of a specific var promoter was 

accompanied by physical repositioning of the chromosome end to a 

hypothetical nuclear domain competent for transcription in the nuclear 

periphery. Such a nuclear body, that allows transcription of a single gene from 

a gene family, is known for the VSG genes of Trypanosoma brucei (Navarro 
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and Gull, 2001). Electron microscopic studies identified a zone of relaxed 

euchromatin within the mostly condensed heterochromatin of the nuclear 

periphery (Ralph et al., 2005), supporting this theory. Generally it has been 

observed that active var promoters colocalize significantly frequent with other 

active promoters in the nuclear periphery (Duraisingh et al., 2005; Ralph et al., 

2005; Voss et al., 2006). A schematic representation of the nuclear 

architecture and the possible localization of active and silent var promoters is 

shown in Figure 5. 

 
 

Figure 5. Model for mono-allelic var gene transcription.  

A simplistic display of a P.falciparum nucleus divided into the 

transcriptionally incompetent nuclear periphery (red) and a 

transcriptionally active central region (yellow) that extends to the nuclear 

membrane at one site. Silent internal upsC var genes (light blue) cluster 

with silent telomeric upsB and upsA var genes (blue and purple, 

respectively) in the transcriptionally incompetent nuclear periphery (Ralph 

et al., 2005). The previously described active perinuclear zone (Duraisingh 

et al., 2005) includes in this figure a telomeric cluster and the proposed 

exclusive var gene transcription site (green). var gene transcription occurs 

only in the var gene transcription site within the active perinuclear zone. 

Figure adapted from Voss et al., 2006) 
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1.5 Objectives 

 
Despite a growing body of knowledge, many questions about the var gene 

regulation remain open and more and more are arising: There are still no 

transcriptional regulation factors for the var genes identified so far, the function 

of the var intron has to be specified, and the role of the nuclear body needs 

further investigation. In my PhD I was mainly interested in the interaction 

between the var intron and the var upstream region. The aim was to identify 

the interaction region of the var intron on the var upstream region. During my 

MSc studies I have already transfected P. falciparum transiently with various 

constructs containing different var upstream region fragments driving 

luciferase expression paired or unpaired with a var intron. Unfortunately, 

luciferase activity was rather weak and varied much between different 

experiments. In the course of my PhD I optimized these experiments by using 

stable instead of transient transfection to reduce variations between different 

experiments. The advantage of stable transfections is that every parasite 

contains the desired plasmid. Thus luciferase expression is stronger making 

comparisons between different plasmid constructs more relevant. 

Another aspect of my PhD thesis was to test whether the mutually exclusive 

transcription machinery needs the var intron to recognize var promoters 

localized episomally on plasmids as suggested by (Frank et al., 2006). For this 

purpose we did quantitative RT-PCR on cDNA from transfected parasites with 

primer pairs for every endogenous var gene as well as for the luciferase gene 

located on the plasmids.  
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Part 2 - PDE knock out 

 

1.6 Signal transduction 

 

Signal transductions are processes where one type of a signal or stimulus is 

changed into another type. Through this transduction the cell is able to adapt 

to actual conditions and needs by regulation of cell-conformation and 

movement as well as metabolism and gene expression. Membrane-bound 

receptors transfer extracellular signals via second messengers that enhance 

the stimulus to signal cascades in the cell. Important features are 

conformational changes of signaling proteins, whereby a protein switches from 

an activated to an inactivated form or vice versa. Protein kinases are well 

known mediators of such conformational changes phosphorylating the 

hydroxyl group in the side chain of Tyrosine, Serine or Threonine of the target 

protein.  
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1.7 Cyclic nucleotide transduction pathway 

 
Cyclic nucleotides have been extensively studied as second messengers of 

intracellular events initiated by activation of many types of hormone and 

neurotransmitter receptors. A general overview is given in Figure 6 with 

explanations in the text below. Receptors that stimulate the conversion of 

adenosine triphosphate (ATP) to cyclic 3’, 5’-adenosine monophosphate 

(cAMP) are associated with G proteins and thus termed G protein coupled 

receptors (GPCR). Binding of the hormone or neurotransmitter to its 

membrane-bound GPCR induces a conformational change in the GPCR that 

leads to activation of the α-subunit of the G protein and subsequent 

dissociation of the α-subunit from the βγ subunit of the G protein. The 

activated α-subunit can either stimulate (Gsα) or inhibit (Giα) an adenylyl 

cyclase (AC). Stimulation of AC catalyzes the conversion of cytoplasmic ATP 

to cAMP. cAMP activates cAMP-dependent protein kinases, including protein 

kinase A (PKA). By catalyzing the phosphorylation (activation or deactivation) 

of intracellular enzymes, cAMP-dependent kinases elicit a wide array of 

metabolic and functional processes. Negative regulation can occur in the 

pathway when PDEs catalyze the hydrolysis of cAMP to adenosine-5’-

monophosphate (5’-AMP).  

Cyclic guanosine monophosphate (cGMP) serves as a second messenger in a 

manner similar to that observed with cAMP.  Peptide hormones, such as the 

natriuretic factors, activate membrane-bound guanylate cyclases (GC) directly 

(Wedel and Garbers, 2001). Receptor activation of GC leads to the conversion 

of guanosine triphosphate (GTP) to cGMP. Nitric oxide (NO) also stimulates 

cGMP production by activating soluble GC, perhaps by binding to the heme 

moiety of the enzyme. Similar to cAMP, cGMP mediates most of its 

intracellular effects through the activation of specific protein kinase G (PKG). 

PDEs act as regulatory switches by catalyzing the degradation of cGMP to 

guanosine-5’-monophosphate (5’-GMP). 
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Figure 6. Cyclic Nucleotide Metabolism.  
The metabolism pathway is indicated on the left hand site for cGMP and 

on the right hand site for cAMP. Detailed explanations are given in the 

text. Abbreviations: 5’-AMP, adenosine-5’-monophosphate; AC, adenylyl 

cyclase; cAMP, cyclic 3’, 5’-adenosine monophosphate; cGMP, cyclic 

guanosine monophosphate; PKG, cGMP dependent protein kinases; 5’-

GMP, guanosine-5’-monophosphate; GC, guanylate cyclase; NO, nitric 

oxide; PDE, phosphodiesterase; PKA, protein kinase A;  

Figure and text adapted from SIGMA-ALDRICH:  
http://www.sigmaaldrich.com/Area_of_Interest/Life_Science/Cell_Signaling/Scientific_Re

sources/Pathway_Slides___Charts/Cyclic_Nucleotide_Metabolism_cAMP.html 
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1.8 Roles of cyclic nucleotides in the parasite 

 

As discussed above, cyclic nucleotides play an important role in gene 

expression and metabolism. In the malaria parasite, evidence suggests that 

cAMP might be involved in promoting differentiation of bloodstream asexual 

parasites into male and female gametocytes, a step that is essential for 

transmission. It has been observed that development of gametocytes in P. 

falciparum blood-stage cultures with high parasitaemia can be triggered either 

by addition of cAMP (Kaushal et al., 1980) or addition of PDE inhibitors 

(Brockelman, 1982; Trager and Gill, 1989). In other instances, cAMP has been 

observed to have an inhibitory effect on gametocyte development (Inselburg, 

1983).  

Not all laboratory strains have the same ability to produce gametocytes. Some 

parasite clones are good gametocyte producers while other clones hardly ever 

produce gametocytes in vitro. Comparison of two parasite clones showed that 

both have similar basal levels of AC activity but the cAMP-dependent PKA 

activity was significantly lower in non-gametocyte producers than in 

gametocyte producer clones (Read and Mikkelsen, 1991). 

A G-protein dependent pathway that takes part in switching to sexual 

development has been suggested for P. falciparum (Dyer and Day, 2000). 

However, in malaria genome project (Gardner et al., 2002) no recognizable 

heterotrimeric G protein homologues was identified nor did a homology search 

based on Hidden Markov Models derived from phylogenetic classified human 

G protein coupled receptors (GPCRs) (Fredriksson and Schioth, 2005). It has 

been proposed that the cAMP signaling pathway of the RBC could play a role 

in malaria infection (Harrison et al., 2003). Host GPCRs and Gα subunits 

appear to be associated with the parasite vacuole and addition of peptides 

blocking interaction between these two, decreased parasitaemia. 

Studies with PDE inhibitors have suggested a role for the cGMP signalling 

pathway in exflagellation (Martin et al., 1978; Kawamoto et al., 1990; 

Kawamoto et al., 1993). This process occurs in the mosquito midgut when 

eight flagellated male gametes emerge from a single infected cell. In vitro, 
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exflagellation can be induced by a decrease in temperature together with a 

rise in pH (Nijhout and Carter, 1978; Sinden, 1983) or by the gametocyte-

activating factor xanthurenic acid (XA) (Billker et al., 1998; Garcia et al., 1998), 

a product of tryptophan catabolism.  
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1.9 Guanylyl cyclases and Adenylyl cyclases in Plasmodium 

falciparum 

Two GCs have been identified in P. falciparum (PfGCα and PfGCβ) (Carucci 

et al., 2000). Peptides and mRNA of both GCs were detected in asexual blood 

stages, gametocytes and sporozoites (Kappe et al., 2001; Bahl et al., 2003). 

Activators of plasmodial cyclases have yet to be identified, as there are no 

obvious G protein homologues identified so far (Bahl et al., 2003; Fredriksson 

and Schioth, 2005).  

Two ACs have been identified in P. falciparum (PfACα and PfACβ) that are not 

very closely related to each other (Muhia et al., 2003). Low levels of PfACα 

mRNA are expressed in gametocytes, sporozoites and asexual blood stages 

(Le Roch et al., 2003). The protein has a single catalytic domain and the six 

membrane helices correspond to transmembrane segments of voltage-

dependent potassium channels (Weber et al., 2004).  21 introns interrupt the 

PfACα gene and there are several splice variants that might correspond to 

different environmental signals each resulting in a defined change in 

intracellular levels of cAMP (Muhia et al., 2003). PfACβ is expressed at high 

levels in schizonts (Le Roch et al., 2003). The protein is related to a small 

class of soluble ACs. The mammalian soluble AC is involved in sperm 

activation; therefore PfACβ could play a role in activation of P. falciparum 

microgametocytes. 

Not only the synthesizer of plasmodial cyclic nucleotides have been identified, 

but also some of their targets. The second messengers cAMP, cGMP, and 

diacyl glycerol (DAG) regulate a PK family consisting of the protein kinase A, 

protein kinase G, and protein kinase C, termed AGC family (Hanks et al., 

1988). Four to five malarial kinases cluster within this group, according to 

genome based clustering of the kinome by two independent research groups 

(Ward et al., 2004; Anamika, 2005). Two AGC kinases have been earlier 

characterized: the cAMP-dependent PfPKA (Syin et al., 2001) and the cGMP-

dependent PfPKG (Deng and Baker, 2002) Another PKA has been previously 

shown to be required for the development of the parasite (Li and Cox, 2000). 
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Protein kinase C (PKC) homologues have not been identified in the parasite 

(Ward et al., 2004; Anamika, 2005). 
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1.10 PDEs in mammals 

 

The importance of phosphodiesterases (PDEs) was for the first time observed 

in 1886 by Henry Hyde Salter.  An asthmatic, he noted that when he drank a 

strong cup of coffee on an empty stomach, his breathing eased, an effect 

attributed to the bronchodilator properties of caffeine. Although the mechanism 

of action at the time was unknown, it has since been shown that caffeine was 

acting as a non-selective, though weak, PDE inhibitor. 

The discovery of cyclic nucleotides occurred not till over half a century later. In 

1958 cAMP was discovered in liver extracts (Sutherland and Rall, 1958) and 

five years later cGMP in rat urine and simultaneously PDE was identified as 

the enzyme capable of inactivating cAMP (Ashman et al., 1963). It was shown 

that this enzyme could be activated by magnesium ions and importantly, could 

be inhibited by caffeine providing a plausible mechanism of action for the 

diverse activities of this drug (Sutherland and Rall, 1958). 

From a very early period, it was hypothesized that there were a number of 

different isoforms of PDE distinguished primarily by their substrate specificity 

and sensitivity to calcium-calmodulin. Diverse isoforms of the PDEs have been 

differentiated in rat and bovine tissue (Beavo et al., 1970) and have been 

further characterized by selective inhibitors (Hidaka and Endo, 1984; 

Nicholson et al., 1991). Even more isoforms of the PDEs have been identified 

and characterized by selective inhibitors over the years (reviewed in Boswell-

Smith et al., 2006). Today 11 isoenzyme groups, encompassing over 50 

isoforms, have been identified in mammals. PDE activity is found in every cell 

in the body, although there is distinct cellular and subcellular distribution. Their 

selectivity for substrate, localization and different inhibition profiles makes 

them good targets for therapeutics (reviewed by Lugnier, 2006). Today 

selective PDE inhibitors are being investigated in a wide range of diseases like 

sepsis, sexual dysfunction in females, cardiovascular disease, pulmonary 

hypertension, asthma, allergic rhinitis, psoriasis, multiple sclerosis, 

depression, Alzheimer’s disease and schizophrenia.  
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1.11 PDEs in Plasmodium 

 

Four putative PfPDE genes have been postulated by in silico analysis of the P. 

falciparum 3D7 genome (Bahl et al., 2003). All these gene products contain a 

sequence consistent with the class I PDE signature sequence HDX2HX4N 

(Beavo and Reifsnyder, 1990). The four putative PfPDEs do not belong to any 

PDE family previously described thus constituting a new family of PDEs. Out 

of these four PDEs the PfPDE1 (PFL_0475w) has been described in more 

detail, whereby several authors found non-identical cDNA sequences. 

PlasmoDB (Bahl et al., 2003) predicts a four exons, three introns structure, the 

same organization, as well as a three exons, two introns structure has been 

found by Wentzinger (personal communication), yet another group identified a 

two exons, one intron structure (Yuasa et al., 2005). Different numbers of 

predicted transmembrane domains, ranging from three to six have been 

identified by the same three groups. A schema for the different RNA 

sequences is shown in Figure 7. Transcription levels of mRNA in blood stage 

parasites were highest in ring stages (Yuasa et al., 2005) or schizonts (Le 

Roch et al., 2003). 

 
Figure 7. Different splice variants of PfPDE1.  
PfPDE1 has been found in three different splice variants consisting of 

different numbers of exons (red bars) and introns (black lines). Initially, 

PlasmoDB postulated variant a) containing three transmembrane (TM) 

domains. Wentzinger found a similar structure to a) but with four predicted 

TM domains and observed a structure with six predicted TM domains b) 

(unpublished data). Variant c) with six TM domains has been found by the 

group of Yuasa et al., (2005).  
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Recombinant PfPDE1 produced in bacteria exhibited enzymatic activity in vitro 

for cGMP but not for cAMP (Yuasa et al., 2005). In vivo, cGMP hydrolytic 

activity in P. falciparum iRBcs was highest in the membrane fraction, while 

uninfected RBCs showed no significant cGMP hydrolytic activity at all (Yuasa 

et al., 2005). Wentzinger has confirmed these results. The three remaining 

PfPDEs do also have predicted transmembrane domains and could 

additionally account for the hydrolytic activity found in the membrane fraction. 

Yuasa et al., (2005) also showed that PDE 1 activity is lost by mutagenesis of 

the conserved Asp762, which is predicted to be involved in the formation of a 

metal-binding pocket essential for class I PDEs. Most likely cGMP-dependent 

protein kinase (PfPKG) is the only effector of cGMP in Plasmodium as there 

are no known parasitic cyclic nucleotide-gated ion channels or cGMP-

regulated PDEs as found in mammals.  
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1.12 Objectives 

 
The potential of PDE inhibitors has long been discovered in human medicine. 

Today a variety of drugs are on the market that target specifically PDE families 

or even PDE isoforms, despite considerable sequence conservation between 

catalytic domains of different isoforms. Among these are PDE inhibitors that 

are used against cardiovascular disease, pulmonary hypertension, asthma, 

allergic rhinitis, multiple sclerosis, depression, Alzheimer’s disease and 

schizophrenia (Lugnier, 2006). Despite the potential of PDE inhibitors as 

chemotherapeutics, little is known about PDEs of parasites.  

Research in the protozoan parasite Trymanosoma brucei, the causative agent 

of sleeping sickness in humans and Nagana in animals, identified the 

presence of two families of PDEs. The TbPDE2 family is essential for 

proliferation of bloodstream form (Zoraghi et al., 2001; Rascon et al., 2002; 

Zoraghi and Seebeck, 2002), whereas the TbPDE1 family does not appear to 

be essential for bloodstream forms (Kunz et al., 2004). Four TbPDE2 inhibitors 

were identified that inhibit proliferation of bloodstream form trypanosomes in 

culture (Zoraghi et al., 2001). Two different PDE families have also been 

identified in T. cruzi, the causative agent of Chagas’ disease that display also 

sensitivity to PDE inhibitors (D'Angelo et al., 2004; Kunz et al., 2005; Alonso et 

al., 2006; Diaz-Benjumea et al., 2006).  

The search for inhibitors that could block the activity of trypanosome PDEs is 

on its way. Meanwhile, little is known about the four identified PDEs in P. 

falciparum although they might present an important target for 

chemotherapeutics. Drug resistance to the commonly used drugs such as 

chloroquine, mefloquine and pyrimethamine makes the development of new 

antimalarial drugs crucial (Cunha-Rodrigues, 2006).  

In this PhD thesis we wanted to created a PfPDE1 knockout parasite line and 

analyse the resulting phenotype to determine its potential as drug target as 

well as gain more information about cyclic nucleotide signalling in P. 

falciparum parasites.  
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Part 3 - Transfection 

 

1.13 Horizontal gene transfer 

 
The first evidence for horizontal gene transfer (HGT) was observed in 

Streprococci pneumoniae by Fred Griffith in the late 1920s. He showed that 

virulence determinants can be transferred between pneumococci in infected 

mice (Griffith, 1928). The causing agent was identified as DNA. These studies, 

together with the model of the structure of DNA (Watson and Crick, 1953) 

hardened the concept of DNA as genetic material. While in prokaryotes, HGT 

has contributed to 10-20% of the genome (Koonin et al., 2001; Lawrence and 

Ochman, 2002), HGT occurred much less frequently in eukaryotes and donors 

were mainly bacteria.  

HGT naturally occurs in bacteria via three different processes: (1) 

transformation, whereby naked extracellular DNA is taken up by competent 

bacteria and integrated into their genome, (2) transduction, in which the donor 

DNA transfer is mediated by a virus, i.e. bacteriophage, and (3) conjugation, in 

which the transfer involves cell-to-cell contact and a conjugative plasmid in the 

donor cell (Figure 8).  
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1.14 Physical Methods for gene transfer 

 

High efficiency natural transformation is found only in few bacteria. In order to 

make Escherichia coli, the most used bacterial strain in the laboratory, 

competent for genetic engineering, empirical studies with variations in culture 

medium, temperature and other factors have been applied. It has been found 

that when E. coli is treated with high concentrations of calcium ions and then 

stored in the cold, it becomes transformable at low efficiency upon short 

exposure to 42°C (heat-shock).  

 

Figure 8. Transformation, transduction and conjugation in bacteria. 
 a) Transformation 

occurs when naked 

DNA is released on lysis 

of an organism and is 

taken up by another 

organism. The antibiotic-

resistance gene can be 

integrated into the 

chromosome or plasmid 

of the recipient cell. b) In 

transduction, antibiotic-

resistance genes are 

transferred from one 

bacterium to another by bacteriophages and can be integrated into the 

chromosome of the recipient cell. c) Conjugation occurs by direct contact 

between two bacteria: plasmids form a mating bridge across the bacteria 

and DNA is exchanged, which can result in acquisition of antibiotic-

resistance genes by the recipient cell. Transposons are sequences of 

DNA that carry their own recombination enzymes that allow for 

transposition from one location to another; transposons can also carry 

antibiotic-resistance genes. (Source: Furuya and Lowy, 2006) 
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A newer method to artificially transform cells is electroporation. This technique 

was first applied by Neumann, who artificially transferred DNA into murine 

cells (Neumann et al., 1982). Many others followed his lead and used 

electoporation as a delivery system for many settings in vitro, as well as in vivo 

(reviewed in Gehl, 2003). During electroporation, the cell membrane is 

exposed to high-intensity electrical pulses that can cause transient and 

localized destabilization of the membrane barrier. Due to this destabilization, 

the cell membrane becomes highly permeable to exogenous molecules 

present in the surrounding media. The extent of permeabilization (area of 

membrane which is permeabilized) can be controlled by pulse amplitude, and 

the degree of permeabliization can be controlled by the pulse duration and 

number (Gabriel and Teissie, 1997). Due to the permeabilization of the 

membrane, DNA is taken up as a result of electrostatic forces that drag the 

negatively charged DNA through pores in the membrane (Sukharev et al., 

1992). The formation of these pores is a very quick event, happening in 

microseconds but the resealing happens over a range of minutes whereby the 

cytoskeleton has an important function (Teissie and Rols, 1994). Direct 

interaction of DNA with the membrane facilitates pore formation (Spassova et 

al., 1994). When DNA is artificially introduced into mammalian cells it is called 

transfection. 

Electroporation is not the only method for artificial transfer of DNA into cells. A 

variety of techniques has been established and applied in various settings. 

Mechanical methods include microinjection of single cells and the gene gun, 

where naked DNA precipitated onto microparticles is propelled at a sufficient 

velocity into the target cell. Naked DNA can be administered successfully to 

muscle and liver cells. To introduce genes into other tissues, the plasmid DNA 

is coated with positively charged lipids. The charge helps the construct, called 

a lipoplex, stick to cell membranes and place genes inside the cell (reviewed 

in Ferber, 2001). Other physical methods include sonoporation whereby cells 

are permeabilized via ultrasound and laser irradiation, and magnetofection, a 

fairly new technique to enhance the introduction of gene vectors into cells. 

Many of these techniques are used in the medical field for immunization and 

cancer treatment. For further information see Mehier-Humbert and Guy (2005) 
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1.15 Transfection in Plasmodium  

 
Goodewardene was the first to transfect malaria parasites in 1993. He 

succeeded in transiently expressing luciferase in P. gallinaecium 

(Goonewardene et al., 1993). The first transfection in P. falciparum was 

achieved two years later (Wu et al., 1995). Unlike P. berghei, P. falciparum 

can only be transfected with circular plasmid DNA and the efficiency of 

transfection is estimated to be 10-6 (O'Donnell et al., 2002). These first 

transfections were only transient with no marker to select for parasites 

harboring the plasmid. The first targeted chromosomal integration was 

performed in the subsequent year using the dihydrofolate reductase-

thymidylate synthase gene (dhfr-ts) from Toxoplasma gondii that confers 

pyrimethamine and cycloguanil resistance (Wu et al., 1996). Today, selection 

cassettes like the dhfr-ts gene from T. gondii are mainly used for transfections 

in P. berghei, while human dhfr (hdhfr) is widely used in P. falciparum. hdhfr 

confers resistance to pyrimethamine or the drug WR99210 (Fidock and 

Wellems, 1997; Zhang and Rathod, 2002). Other markers have also been 

successfully developed. Blasticidin S deaminase (Mamoun et al., 1999), 

neomycin phosphorotransferase (Mamoun et al., 1999) and puromycin-N-

acetyltransferase (de Koning-Ward et al., 2001) confer resistance to blasticidin 

S, geneticin (G418) and puromycin, respectively. With these four positive 

selectable markers it is possible to design plasmids for numerous 

experiments.  

Generic vectors with only one selectable marker can be used for stable 

transgene expression (Crabb et al., 1997b; Frank et al., 2006) in promoter 

studies where a promoter of interest drives a reporter gene like 

chloramphenicol acetyl transferase (CAT) or the Firefly luciferase. Single 

marker vectors have also been used in gene knock-outs (Crabb et al., 1997a), 

whereby the plasmid is integrated via single cross-over into the chromosome 

disrupting the target gene. The implication of a protein in drug susceptibility 

can be studied by over expression of the protein in question and subsequent 

sensitivity tests to the drug compared to the wild type. Transgenic parasites 
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should be less sensitive to the drug than wild type parasites (Gardiner and 

Good, 2006). The fusion of a protein of interest with a green fluorescent 

protein (GFP) reporter gene allows for localization, orientation, and trafficking 

studies (Khattab and Klinkert; Waller et al., 2000; Wickham et al., 2001). 

Franke-Fayard et al., (2004) integrated a GFP gene controlled by a strong 

promoter into the genome of P. berghei. GFP is constitutively expressed in a 

growth responsive manner in the parasites cytoplasm. These parasites can be 

used for drug sensitivity assays (Vennerstrom et al., 2004), the study of host-

parasite interaction by in vivo imaging (Heussler and Doerig, 2006) and 

generally in applications that involve FACS analysis. 

In order to facilitate segregation of vector plasmids between daughter cells the 

Rep20 sequence has been introduced into plasmid constructs (O'Donnell et 

al., 2002). Rep20 belongs to the telomere associated repeat elements 

(TAREs) at the end of each chromosome. Plasmids that contain Rep20 are 

physically tethered to terminal chromosome clusters and thus more efficiently 

segregated.  

The introduction of the herpes simplex virus thymidine kinase (tk) gene makes 

it possible to select for double crossover events (Duraisingh et al., 2002). Tk is 

the key enzyme in the pyrimidine salvage pathway catalyzing the transfer of a 

phosphate from ATP to thymidine to produce thymidine monophosphate. The 

guanosine analog ganciclovir serves as a substrate for tk (Balzarini et al., 

1993). Once phosphorylated, these nucleoside analogs are further 

phosphorylated into nucleoside triphosphates that inhibit DNA synthesis after 

incorporation into nascent DNA (Reardon, 1989). Thus, parasites that express 

the tk gene are sensitive to ganciclovir and the tk gene can be used as a 

negative selection marker (Kokoris and Black, 2002). After positive selection 

for parasites that contain a plasmid, negative selection pressure is put on to 

select for parasites that have integrated the positive selection cassette 

specifically into the chromosome via double crossover and consequently lost 

the negative selectable marker. All parasites that contain the plasmid 

episomally are lost. In order to prove that an observed phenotype of a knock 

out parasite is really due to the loss of the gene, the deleted gene can be 

complemented and the wild type phenotype restored. With the availability of 

numerous positive selectable markers, the deleted gene can be expressed 
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episomally from a plasmid with a different positive selectable marker than the 

one used for the knock out (Maier et al., 2006). Recently an elegant system 

has been developed in P. berghei, where the positive and negative selectable 

marker are combined in a bi-functional protein (Braks et al., 2006). In this 

system the positive-negative selection cassette disrupts the gene under 

investigation and a phenotype is established. In the second step positive 

selection pressure is removed and negative selection pressure is turned on to 

select for the rare event where parasites have undergone a second 

recombination event resulting in the loss of the selection cassette and the 

restoration of the original phenotype. 

The use of RNA interference has been attempted in P. falciparum (Gardiner et 

al., 2000; McRobert and McConkey, 2002) but it is not clear if the observed 

effects are really due to specific RNA interference. So far no plasmodial 

homologues to known proteins from the classical RNAi pathway like Dicer, 

Piwi, PAZ or RdRp have been identified (reviewed in Ullu et al., 2004).  
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1 To optimize transfection efficiency and reduce variability between luciferase 

assays 

2 To characterize the var gene upstream region 

3 To identify the interaction site of the var intron on the var upstream region 

4 To establish knockout-technology by deleting PfPDE1 

5 To establish the phenotype of the PfPDE1 knockout parasite line 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2: Objectives 
 

 34 

 
 
 
 
 
 
 
 
 



Chapter 3: Silencing in Plasmodium falciparum var genes 
 

 35 

 

 

 

 

 

 

 

 

Chapter 3: Silencing in Plasmodium falciparum var 

genes -searching for an interaction site of the var 

intron on the var upstream region



Chapter 3: Silencing in Plasmodium falciparum var genes 
 

 36 

INTRODUCTION 
 
Malaria together with HIV and tuberculosis is one of the most important 

infectious diseases worldwide. Plasmodium falciparum is the most virulent form 

of the four human plasmodia species with an estimated 500 million clinical 

cases every year (Snow et al., 2005). P falciparum expresses variant surface 

antigens on the erythrocyte membrane enabling the parasite to adhere to 

different receptors on host endothelial cells. This so called sequestration helps 

avoiding clearance of the infected red blood cells (iRBC) in the spleen (Miller et 

al., 1994; Kyes et al., 2001). Cytoadhesion of iRBCs is responsible for a 

majority of severe disease symptoms such as cerebral and placental malaria. 

The main protein involved in this cytoadherence is P. falciparum erythrocyte 

membrane protein 1 (PfEMP1) (Leech et al., 1984), which is encoded by the 

var gene family that consists of over 60 members in 3D7 (Baruch et al., 1995; 

Smith et al., 1995; Su et al., 1995; Gardner et al., 2002). In order to evade the 

host immune system, the parasite is able to undergo antigenic variation by 

switching expression from one var gene to another (Biggs et al., 1991; Roberts 

et al., 1992). In this process, the parasite switches the expression of one 

PfEMP1 to another variant, thus avoiding recognition by antibodies induced by 

previously expressed PfEMP1 variants (Kyes et al., 2001). Expression is 

regulated at the level of var gene transcription where only a single var gene out 

of 60 copies per genome is expressed in a single parasite at a time, known as 

mutually exclusive transcription (Chen et al., 1998b; Scherf et al., 1998). The 

switching rate for each var gene seems to be variable (Horrocks et al., 2004) 

and divers virulence and binding properties can be attributed to different 

PfEMP1 variants (Kraemer and Smith, 2006). 

Transcriptional regulation of the var genes is still not fully understood. Changes 

in var gene expression are not due to alterations in the sequence or 

repositioning of the gene in the genome context but occur in situ (Scherf et al., 

1998). Changes in the expression of specific var genes have been linked to 

alterations in chromatin structure implicating an epigenetic mechanism for var 

gene regulation (Deitsch et al., 1999). Studies in other organisms showed that 

in epigenetic gene regulation modification of chromatin structure, in particular 
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histone tail acetylation and methylation, is a common feature. Recently, a 

histone deacetylase homologue to yeast silent information regulator 2 (SIR2) 

has been identified in P. falciparum and its localization has been associated 

with the silencing of telomeric var genes (Duraisingh et al., 2005; Freitas-Junior 

et al., 2005). The position of the var genes in the nucleus is linked to 

expression, as experiments with var2csa revealed (Ralph et al., 2005). Silent 

var genes cluster at the periphery of the nucleus where condensed 

heterochromatin is located, whereas active var genes dissociate from the 

cluster to a discrete region of euchromatin found within the nuclear periphery. 

The condensed heterochromatin structure plays an important role in silencing, 

as silent genes are packed tightly in heterochromatin rendering them 

inaccessible for transcription factors. Chromatin structure rearrangement 

happens during the S-phase of the cell cycle. The importance of the var intron 

in silencing has been established by demonstrating that an episomal var 

promoter is constitutively active unless paired with a var intron in a S-phase 

dependant manner (Deitsch et al., 2001; Calderwood et al., 2003; Gannoun-

Zaki et al., 2005).  Recent work revealed that one var intron can only silence a 

single var promoter at a time and that var promoters unpaired with an intron 

are not recognized by the machinery that maintains mutually exclusive 

transcription (Frank et al., 2006).  

In this study, we wanted to characterize the upstream region of an upsC var 

gene and identify an interaction site of the var intron on the var upstream 

region. For this purpose we stably transfected P. falciparum parasites with 

various constructs containing different var upstream region fragments driving 

luciferase expression in the presence or absence of the var intron. Luciferase 

activity can be used as a direct indication for the transcription efficiency of a 

promoter. Additionally, we were interested if the mutually exclusive expression 

machinery that guarantees the expression of a single var gene in one parasite 

recognizes the active var promoter on our transfection constructs and hence 

silence all endogenous var genes. For this purpose we performed quantitative 

RT-PCR on cDNA from transfected parasite lines with active or silent var 

promoters on plasmids to monitor the transcription levels of every var gene by 

using specific primer pairs for the endogenous var genes (Salanti et al., 2003)
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METHODS 
 
Transfection plasmid constructs for optimization of transfection 
efficiency and reduction of variability between luciferase experiments 
 

To reduce the variability between different luciferase experiments the dual 

reporter assay system from Promega was tested. In this system, two plasmids 

are transfected in parallel: one plasmid expresses Firefly luciferase under the 

promoter of interest while a control plasmid that expresses Renilla luciferase 

under control of a standart promoter (cam) serves to adjust for different 

transfection efficiencies between samples. pGL3-Basic vector and pRL-null 

vector from Promega were used as backbone for cloning. These vectors 

contain either a Firefly luciferase reporter gene (pGL3-Basic) or a Renilla 

luciferase reporter gene (pRL-null) without any regulatory elements. The hrp2 

3’region combined with the var intron was PCR amplified from the pVLH/INT 

vector previously described (Deitsch et al., 2001) using the primers hrp2F-

XbaI (5’-GCTATCTAGAAGATCGCCGTGTAAGCTTATTTA-3’) and hrp2R-

HpaI (5’-GGGCGTTAACAGAATACTCAAGCTATGCATCCAAC-3’). This 

fragment was XbaI and HpaI digested and cloned into XbaI,HpaI-digested 

pGL3-Basic or pRL-null vectors resulting in pGLhrp/int or pRLhrp/int, 

respectively. The calmodulin (cam) promoter sequences were PCR amplified 

from the pHTK vector (Duraisingh et al., 2002) using the primers camF-BglII 

(5’-GGGAAGATCTGAGCTTCTTCTTTGTTAACCATTT-3’) and camR-NcoI 

(5’-GCATGCCATGGTCCTGATATATTTCTATTAGGTATT-3’) for the Firefly 

luciferase construct and primers camF-EcoRI (5’-

GCCGGAATTCTGAGCTTCTTCTTTGTTAACCATTT-3’) and camR-NheI (5’-

GCTAGCTAGCTCCTGATATATTTCTATTAGGTATT-3’) for the Renilla 

luciferase construct. The PCR fragments were either BglII/NcoI or NheI/EcoRI 

digested and cloned into BglII/NcoI digested pGLhrp/int or NheI/EcoRI 

digested pRLhrp/int resulting in pGLcam/int and pRLcam/int, respectively. The 

var intron was removed by PstI-digestion and subsequent ligation resulting in 

pGLcam and pRLcam, respectively. Vector maps are shown in Figure 1. 
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Figure 1. Maps of transfection constructs to optimize transfection 

efficiency. 
The Firefly luciferase vector is on the left, the Renilla luciferase vector on 

the right. Shown are the calmodulin promoter (cam), the luciferase gene, 

the hrp2 3’ region, and the ampiciline resistance gene (amp). The 

restriction sites used for cloning are indicated. Details of cloning are 

explained in the text. 

 
Transfection plasmid construction for var promoter analysis 

 

To identify regulatory sequences and investigate the role of the var intron 

different var promoter constructs were designed. pGL3-Basic vector from 

Promega was used as a template for cloning. This vector contains a Firefly 

luciferase reporter gene without any regulatory elements. The hrp2 3’region 

combined with the var intron was PCR amplified from the pVLH/INT vector 

previously described (Deitsch et al., 2001) using the primers hrp2F-XbaI (5’-

GCTATCTAGAAGATCGCCGTGTAAGCTTATTTA-3’) and hrp2R-HpaI (5’-

GGGCGTTAACAGAATACTCAAGCTATGCATCCAAC-3’). This fragment was 

XbaI and HpaI digested and cloned into XbaI,HpaI-digested pGL3-Basic 

vector resulting in pGLhrp/int. The hdhfr cassette containing a cam promoter, 

the hdhfr gene and the hrp2 3’region was cut out of the pHTK (Duraisingh et 
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al., 2002) vector with HpaI and ClaI, overhangs were filled using Klenow 

Polymerase and ligated into HpaI-digested pGLhrp/int. To reduce background 

of pHTK, the ligation was digested with AatII before electroporation. Due to the 

non-directional cloning, constructs with tail-to-head orientation (with the cam 

promoter next to the var intron, phGLhrp/int-) and with tail-to-tail orientation 

(with the hrp2 3’ region next to the var intron phGLhrp/int+) were obtained.  

phGLhrp/int+ was used as a negative control. phGLhrp/int– was used as 

template for the different var promoter fragments (vector map is shown in 

Figure 2). var upstream sequences were obtained by PCR amplification using 

primers 5B1.F.BamHI (5’-GCGCGGATCCGACTCACTATAGGG-3’) and 

5B1.R.Nco1 (5’-CATGCCATGGCCTTTTGTTTTTTGTTTATCG-3’) on 

pCAT5B1, pCAT5B1Δ, pCAT5B1 1879 and pCAT5B1 1508 (Voss et al., 

2003). The fragments were digested with BamHI and NcoI and cloned into 

NcoI, BglII-digested phGLhrp/int- (to reduce the background ligations were 

digested with BglII prior to electroporation) resulting in phGL-WTint, phGL-

Δint, phGL-18int and phGL-15int respectively. The var intron was removed by 

PstI-digestion and subsequent ligation resulting in phGL-WT, phGL-Δ, phGL-

18 and phGL-15. 

 

Figure 2. Vector map of phGLhrp/int- 
This vector was used as 

template for all transfection 

constructs by inserting 

various var promoter 

fragment upstream of the 

luciferase gene. Shown is the 

Firefly luciferase, the hdhfr 

and the ampiciline gene in 

red, the cam promoter, both 

hrp2 3’ regions and the var 

intron are indicated in blue. 

Restriction sites used for the 

cloning are given. Details of cloning are given in the text.  
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In vitro cultivation of Plasmodium falciparum  
 
All experiments utilized the P. falciparum 3D7 line cultivated at 5% haematocrit 

as described previously (Trager and Jensen, 1976) in RPMI 1640 medium 

supplemented with 25mM HEPES, 0.5% Albumax, 50mg/l hypoxanthine, 

0.25% sodium bicarbonate, and 50 mg/ml neomycin sulphate. Parasites were 

incubated at 37 °C in an atmosphere of 3% oxygen, 5% carbon dioxide, and 

92% nitrogen. 

Growth synchronization was achieved by sorbitol lysis (Lambros and 

Vanderberg, 1979).  
Thin red blood smears were used to examine the parasitaemia and the status 

of the culture throughout culturing. Thin red blood smears were fixed with 

methanol and stained for 15min in Giemsa solution. 

 
Transfection of P. falciparum cultures 

 

For transfection 10ml of cultured 3D7 P. falciparum ring-stage parasites 

(approximately 10% parasitaemia) were washed once in incomplete cytomix 

(120mM KCl, 0.15mM CaCl2, 2mM ethylene glycol tetra-acetic acid, 5mM 

MgCl2, 10mM K2HPO4/KH2PO4 25mM Hepes, PH 7.6) (van den Hoff et al., 

1992) and the pellet was subsequently resuspended in 800µl incomplete 

cytomix containing 40pmol of plasmid DNA and transferred to an 

electroporation cuvette (2mm or 4mm cuvettes, BioRad). Parasites were 

transfected by electroporation using the EasyjecT equipment (Equibio). 

Electroporation with the control plasmid pVLH (Deitsch et al., 2001) to improve 

transfection efficiency was conducted by applying one of the following three 

conditions: low voltage: 310V/960µF (Fidock and Wellems, 1997), high 

voltage: 2500V/25µF (Wu et al., 1995) or by a double impulse: 1500V/25µF 

followed by 310V/1050µF with 0.5s inter-pulse delay (Voss et al., 2000). The 

last electroporation protocol with the 4mm cuvette gave the best results and 

subsequently all other plasmids were transfected according to this protocol. 

For stable transfection, selection with 10nM WR99210 was started eight hours 

post transfection (Fidock and Wellems, 1997). 
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Real-Time PCR for determination of plasmid copy numbers on gDNA 
 

To detect the average number of plasmids in a parasite, we performed 

quantitative RT-PCR on gDNA from transfected parasite lines.  
10ml of late stage parasites were Saponin lysed and washed twice with 

1xPBS. The pellet was resuspended in 500µl TE with 0.8% SDS, 0.01M EDTA 

and 0.2mg/ml Proteinase A (SIGMA) and incubated over night at 60°C. 

Phenol/chloroform extraction was performed twice followed by an additional 

extraction with chloroform only. The aqueous phase was precipitated with 

Sodium acetate and Ethanol and finally resuspended in TE. The quality and 

concentration of the gDNA obtained was checked on an agarose gel.  

Quantitative real-time PCR using Brilliant SYBR Green QRT-PCR master mix 

two step (STRATAGENE) was performed on a TaqMan 7500 (Applied 

Biosystems, ABI) according to provider’s manual, using the seryl-tRNA 

synthetase gene (PF07_0073: primers p90_for 5’-

TCAATTTGATAAAGTGGAACAATTC-3’ and p90_rev 5’-

GCGTTGTTTAAAGCTCCTGA-3’) as endogenous control and the luciferase 

gene (primers Luciferase forward 3 5’-GCTGGGCGTTAATCAGAGAG-3’ and 

Luciferase reverse 3 5’-GTGTTCGTCTTCGTCCCAGT-3’) as estimate for 

plasmid copy number per parasite. PCR conditions were as follows: 10min 

94°C followed by 41 cycles of 30sec at 94°C, 30sec at 58°C, and 35sec at 

70°C. Subsequently the dissociation curve was established. Primers were 

tested on 10-fold dilutions of 3D7 gDNA and plasmid DNA. Primers amplified 

fragments of the expected size and Tm, amplification efficiencies (E) was 4.9 

for the luciferase primers and 5.3 for the p90 primers [E = 10(–1/slope of 10-fold-dilution 

gDNA standard curve)]. Efficiencies of target and reference were approximately 

equal; absolute value of the slope of log input amount verses ΔCT equaled 

1.72 x 10-6. 

To estimate the plasmid copy number, the ΔCT was determined by subtracting 

the CT value for the luciferase gene from the CT value for the control seryl-

tRNA synthetase gene (ABI, User Bulletin 2). ΔCTs were then converted to 

relative copy numbers with the formula 2ΔCt.  
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Luciferase activity detection 
 

Promoter activity was measured by the amount of luciferase produced by each 

transfected parasite population. For luciferase assays, saponin-released 

parasites were lysed in reporter lysis buffer provided with the luciferase assay 

system (E1500, Promega) 20h post erythrocyte infection. The lysate was 

freeze–thawed once. Luciferase activity in parasite lysates was determined 

using the luciferase assay system (E1500, Promega) and the MicroLumat Plus 

LB 96V luminometer from Berthold. Briefly, to 20µl parasite lysate 50µl 

Luciferase assay substrate was added automatically and light emission was 

measured over a period of 10sec. 

For combined detection of Firefly and Renilla luciferase the Dual Luciferase 

Reporter assay system (E1920, Promega) was used. Parasites were prepared 

identical to the luciferase assay alone. To 20µl parasite lysate 50µl LARII 

substrate (Promega) was added and light output was measured over a period 

of 10sec. 50µl Stop & Glo/EReagent (Promega) was added to the tube and 

light emission was measured identical to Firefly luminescence. 

 

Statistics 

 
To ascertain the exact amount of parasites for each luciferase experiment, the 

number of cells (RBCs and iRBCs) to be lysed was estimated in a Neubauer 

chamber and parasitaemia was determined on Giemsa stained thin blood 

smears. Luciferase counts were divided by the number of parasites lysed and 

by the predicted plasmid copy-number for each parasite line resulting in 

luciferase counts per plasmid. 

 

Immuno Fluorescence Assay (IFA) 
 
To determine what proportion of the parasite populations express luciferase, 

we performed IFAs with a rabbit polyclonal α-luciferase antibody (Sigma), a 

monoclonal mouse α-luciferase antibody (Sigma) or monoclonal α-

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Daubenberger et al., 
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2003) antibodies as a positive control. 800µl of parasite culture with 5% mixed 

stages was washed twice with 1ml culture medium. The pellet was afterwards 

resuspended in 375µl culture media, 22.5µl paraformaldehyde, 25µl 10xPBS 

and 2.5µl Triton x-100 in PBS (10%). 40µl parasite mixture were pipetted onto 

each well of a 10 well microscope slide (Erie scientific company) and 

incubated for 30min at room temperature. Parasites were washed 5 times with 

50µl culture media and then blocked with 50µl 1xPBS with 1% BSA (blocking 

buffer) for 15min in a humid chamber. The blocking buffer was replaced by 

30µl blocking buffer containing the primary antibody (α-GAPDH; 1:1,000, or 

mouse or rabbit α-luciferase in dilution series; 1:100, 1:1,000 and 1:10,000) 

and incubated for 1h at room temperature in a humid chamber. Parasites were 

washed 5 times with 50µl blocking buffer and then incubated with 30µl 

secondary antibody (FITC conjugated goat α-mouse IgG, 1:300 or Cy3 

conjugated goat α-rabbit IgG, 1:500 from Sigma) and Hoechst dye (1:100) in 

blocking buffer for 1h at room temperature in a humid chamber. Parasites 

were washed 5 times with 50µl 1xPBS, covered with a glass cover slip and 

sealed.  

Fluorescence microscopy was performed using a Leica DM5000 fluorescent 

microscope and documented with a Leica DC200 digital camera system using 

x100 oil immersion objectives.  

 
Western blot analysis 

 

Western blot analysis was performed to detect the cause of the cross-

reactivity of rabbit α-luciferase antibodies observed in IFAs and test whether 

the monoclonal mouse α-luciferase antibody recognizes luciferase produced 

in transfected P. falciparum lines. 10ml synchronized ring stage P. falciparum-

infected RBCs were lysed in 1.5ml 0.1% saponin in 1xPBS and washed twice 

with 1ml 1xPBS. The parasite pellet was resolved in sample buffer (0.1M 

TrisHCl PH 6.8, 20% glycerol, 2% Sodium dodecyl sulfate (SDS), 0.1M β-

mercapto-methanol, bromphenol-blue). Protein samples were subjected to 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (12% acrylamide), 

transferred to a nitrocellulose membrane (Hybond-C extra; Amersham 
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Biosciences) for 3h using a Trans-Blot semidry electroblotter (Bio-Rad), and 

probed with either antiserum from mice immunized with GAPDH (1:1,000, 

Daubenberger et al., 2003) rabbit α-luciferase antibodies (Sigma) (1:1,000) or 

mouse α-luciferase antibodies (Sigma) (1:1,000) followed by horseradish 

peroxidase-conjugated secondary antibodies (goat α-mouse immunoglobulin 

G (IgG), 1:10,000 or goat α-rabbit IgG, 1:10,000 from Sigma). The membrane 

was developed according to the ECL western blot detection kit manual 

(Amersham).  

 

Southern Blot and detection 
 
Southern blot analyses were performed to check whether the plasmids had 

integrated into the var PFL1960w locus that has the same var promoter 

sequence as the plasmid constructs or into any locus on the chromosome. 

gDNA was either digested with EcoRV, NcoI and PvuII and probed with the 

hdhfr gene or with NotI and EcoRV and probed with the var PFL1960w gene, 

digestion status was monitored on agarose gels. Agarose gel, blot and 

detection followed the protocol of the ECL Direct Nucleic Acid Labelling And 

Detection Systems (Amersham Biosciences). Briefly, 2-10µg of restriction 

enzyme digested gDNA was loaded on a 1% Agarose gel and electrophoreses 

was performed over night in 1x TAE buffer at 1V/cm. The gel was depurinated 

in 200ml 250mM HCl, denatured in 200ml 1.5MNaCl/0.5MNaOH and 

neutralized in 200ml 1.5M NaCl/0.5M Tris-HCl (pH 7.5) before blotting on a 

Hybond N+ membrane over night. The DNA was UV cross-linked to the 

membrane. Horseradish peroxidase was cross-linked with glutaraldehyde to 

100ng probe. Either an amplicon of the PfEMP1 gene or the hdhfr gene was 

used as probes. The hdhfr probe was PCR amplified from the pHTK vector by 

primers hdhfr_forw (5’-GGATCCATGCATGGTTC-3’) and hdhfr_rew (5’-

GGCTGTACAGTGTATAAACC-3’) with following conditions: 20sec 

denaturation at 94°C, 20sec annealing at 54°C, and elongation 1.5min at 

66°C, the cycle was thirty timed repeated. A 735-basepair fragment derived 

from the 5’ end of PFL1960w was PCR amplified from gDNA according to 

(Voss et al., 2006). 
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Hybridization and stringency washes were performed in hybridization tubes in 

an incubator with an integral rotisserie device. After a minimum of 15min 

prehybrization with hybridization buffer the labeled probe was added and 

hybridized over night at 42°C. The blot was washed first with wash buffer 

containing 6M Urea, 0.4%SDS and 0.5x SSC and second with 2x SSC. The 

signal was generated by incubating the blot for 1min with an equal amount of 

detection reagent 1 and 2. A BioMax light film (Kodak) was placed on the blot 

in a film cassette for an appropriate length of time. The film was afterwards 

developed.  

 

Cloning and sequencing of the truncated intron sequence 

 

We detected an unexpected double band in the phGL-18int transfected 

parasite line in Southern blot analysis indicating a deletion. To analyze this 

deletion PCR amplification of the hrp2 3’ region adjacent to the luciferase gene 

and the var intron was performed with primers hrp2F-XbaI (5’-

GCTATCTAGAAGATCGCCGTGTAAGCTTATTTA-3’) and hrp2R-HpaI (5’-

GGGCGTTAACAGAATACTCAAGCTATGCATCCAAC-3’) on gDNA. The 

amplicon was ligated into TOPO cloning vector (Invitrogen) according to 

manufacturer’s protocol. Two clones were sent to Macrogen for sequencing 

with primers M13F and M13R.  
 

RNA isolation and cDNA 
 
cDNA was produced from RNA of transfected parasite cultures to detect the 

levels of var gene RNA transcribed in the population. 

40ml of culture of 5% late ring stage parasites were Saponin lysed and 

washed twice with 1xPBS. The pellet was then resuspended in 2ml Trizol 

(Invitrogen) and RNA was extracted with 0.2ml chloroform and precipitated 

with isopropanol. The extraction was repeated in half of the original volume 

Trizol to reduce contamination with gDNA. Residual gDNA was twice digested 

with RQ 1 DNase (Promega) according to the manufacturer’s protocol in a 

total volume of 50µl. RNA was subsequently extracted with 180µl Trizol and 
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40µl chloroform. Before cDNA synthesis, eventual gDNA contamination was 

tested by PCR. For the PCR 1 µl of RNA was used as template with the primer 

pair DBLα5’ and DBLα3’ that amplified most of the var genes (Kaestli et al., 

2004). As a positive control an additional PCR with the same primers but 

addition of 1µl gDNA from 3D7 to the RNA was performed. PCR conditions 

were as follows: 30sec denaturation at 94°C, 30sec annealing at 54°C, and 

1min elongation at 60°C. The cycle was repeated thirty times.  

cDNA synthesis was performed with M-MuLV Reverse Transcriptase (New 

England BioLabs) with random primers (Invitrogen) as described by the 

manufacturer. cDNA was synthesized from 800ng total RNA in a reaction 

volume of 50µl. For each cDNA synthesis reaction, a control reaction without 

reverse transcriptase was performed with identical amounts of template. 

 
RT PCR on cDNA to detect transcripts of all var genes 
 

Transcript detection for var genes was done in collaboration with R. Dzikowski 

and K. Deitsch from the Department of Microbiology and Immunology, Weill 

Medical College of Cornell University, New York, USA according to their 

previously published method (Dzikowski et al., 2006):  

For realtime quantitative RT-PCR reactions to detect transcription from all var 

genes present in the 3D7 genome, we employed the primer set of (Salanti et 

al., 2003) with the following modifications. We added an additional primer pair 

for PF08_0107: 5′-CCTAAAAAGGACGCAGAAGG-3′ and 5′-

CCAGCAACACTACCACCAGT-3′ and designed separate primer sets for 

PFD1005c: 5′-ACGATTGGTGGGAAACAAAT-3′ and 5′-

CCCCATTCTTTTATCCATCG-3′ and for PFD1015c: 5′-

AAAGGAATTGAGGGGGAAAT-3′ and 5′-TAAACCACGAAACGGACTGA-3′. 

All reactions included the three control genes published by these authors: 

seryl-tRNA synthetase (PF07_0073), fructose biphsphate aldolase 

(PF14_0425), and actin (PFL2215w); however, we added another two control 

sets: arginyl-tRNA synthetase (PFL0900c) using 5′-

AAGAGATGCATGTTGGTC-3′ and 5′-GTACCCCAATCACCTACA-3′ and 
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glutaminyl-tRNA synthetase (PF13_0170) using 5′-

GGCACTTCAAGGGTACCT-3′ and 5′-TAATATAGCCTCACAAGC-3′. 

Amplification efficiency was verified by performing amplifications using 

different concentrations of genomic DNA as templates. Reactions were 

performed at a final primer concentration of 0.5 µM using Biorad ITAQ SYBR 

green Supermix in 20µl reactions on an ABI Prism 7900HT. The Δ Ct for each 

individual primer pair was determined by substracting the measured Ct value 

from the Ct value of the control seryl-tRNA synthetase (User bulletin 2, Applied 

Biosystems, http://www.appliedbiosystems.com). Δ Cts were then converted to 

relative copy numbers with the formula 2 ΔCt. 
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RESULTS 
 
Optimization of the luciferase transfection system 
 

Luciferase expression and subsequent enzyme activity can be used as a 

direct measurement for the activity of a promoter of interest. In previous 

experiments we transiently transfected P. falciparum with plasmids containing 

var promoters driving luciferase expression. We found high variability between 

different experiments making interpretation of the results difficult. To improve 

transfection efficiency and reduce variability between different luciferase 

assays, several options have been tested. 

Electroporation efficiency was estimated to be very low in P. falciparum 

cultures, i.e. only 10-6 (O'Donnell et al., 2002). To improve this various 

electroporation protocols and different cuvettes were tested. A previously 

described plasmid with a var promoter transcribing luciferase (pVLH) (Deitsch 

et al., 2001) was transfected and transiently expressed for 72 hours. 

Electroporation with an exponential impulse was varied in the strength of pulse 

voltage (V) and intensity of the capacity (in microfarad, µF). Parasites were 

electroporated using the following conditions: low voltage; 310V/960µF 

(Fidock and Wellems, 1997), high voltage; 2500V/25µF (Wu et al., 1995) or by 

a double impulse combining both conditions; 1500V/25µF followed by 

310V/1050µF (Voss et al., 2000). The double impulse was found to be the 

most efficient. 2mm and 4mm cuvettes from BioRad were tested, out of which 

the latter have been found to be more suitable as luciferase counts of the 

transiently transfected pVLH were highest in this combination.  

To minimize variability between different luciferase assays the dual-reporter 

assay system from Promega was tested. In this system, two plasmids are 

transfected in parallel: one plasmid expresses Firefly luciferase under the 

promoter of interest while a control plasmid that expresses Renilla luciferase 

serves to adjust for different transfection efficiencies between samples. Firefly 

luciferase is a protein isolated from beetles (Photinus pyralis), while Renilla 

luciferase is a protein from sea pansy (Renilla reniformis). These enzymes 

differ in their substrate and cofactor requirements. Firefly luciferase produces 
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a greenish yellow light in the 550–570nm range, whereas Renilla luciferase 

produces a blue light of 480nm. These enzymes can thus be used in dual-

reporter assays due to their differences in substrate requirements and 

emission. To test this dual-reporter assay system two constructs were 

designed that expressed either Firefly luciferase (pGLcam) or Renilla 

luciferase (pRLcam) under the control of a calmodulin (cam) promoter 

terminated by the histidine-rich protein 2 (hrp2) 3’ region. Equal amounts 

(20pMol) of each plasmid were co-transfected via double impulse and 

analyzed 72 hours later. Both, Firefly and Renilla luciferase activity was 

measured for 10 seconds (Figure 3). Unexpectedly, pGLcam transfected 

parasites did not exhibit any Firefly luciferase activity upon addition of Firefly 

specific substrate, nor did the pRLcam-transfected parasites, as expected. 

Parasites transfected with a control plasmid (pVLH) showed normal Firefly 

luciferase activity. Parasites transfected with Renilla luciferase plasmids 

showed high levels of Renilla luciferase activity when incubated with Renilla 

substrate. Surprisingly, high Renilla luciferase activity was detected also in 

parasites transfected with Firefly luciferase constructs (pGLcam, pVLH). Due 

to the high background as well as large differences between the various 

experiments with Renilla luciferase this approach was abandoned. Instead of 

this co-transfection approach we chose stable transfection of plasmids using a 

positive selectable marker. 

 

Figure 3. Firefly and Renilla luciferase activity in dual-reporter assay 

system.  
Plasmids expressing either 

Firefly luciferase (pGLcam) 

or Renilla luciferase 

(pRLcam) were transfected 

individually or combined 

(R/L). Plasmid pVLH was 

used as a control for 

transfection expressing 

exclusively Firefly luciferase by a var promoter. Means ±SD of four 

experiments are shown.  
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Stable transformation of Plasmodium falciparum with different var 
upstream region constructs and determination of plasmid copy numbers 
 

In order to investigate var promoter activity and interaction with the var intron 

different var 5’ region fragments were cloned upstream of the luciferase gene. 

A 2522bp upstream region of a varC var gene (PFL_1960w) (Voss et al., 

2003) served as full-length reference for transcription activity (phGL-WT). 

Three transfection constructs with truncated forms of the same var upstream 

region were used to identify possible regulatory units: in one construct a 

protein-binding site (chromosome-central var gene promoter element, CPE) 

previously identified (Voss et al., 2003) was deleted (phGL-Δ), whereas in the 

other two constructs different stretches of the 5’ region were removed (phGL-

18 and phGL-15). Details and maps of the constructs are shown in Figure 4. 

To examine the interaction of the var intron with the different var upstream 

region fragments, two transfection constructs variants were designed for each 

fragment, one without var intron (phGL-x) and another one with the var intron 

downstream of the luciferase gene (phGL-xint) (Figure 4).  

For stable transfection of the parasites a selection cassette allowing to screen 

for parasites containing the plasmid was used (Fidock and Wellems, 1997). 

The advantage, compared to transient transfection is that every single parasite 

contains at least one copy of the plasmid consequently increasing the 

sensitivity and reproducibility of luciferase experiments. Parasites were 

transfected with the different plasmids containing a human dihydrofolate 

reductase (hdhfr) selection cassette driven by a cam promoter and put under 

WR99210 selection. 
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Figure 4. Transfection plasmids.  
a) Wildtype (WT) full-length var upstream region indicating the position of 

the transcriptional start point (TSP) and of the central promoter-binding 

element (CPE).  

b) Map of the different transfection constructs. The human dihydrofolate 

reductase (hdhfr) gene is expressed under a calmodulin promoter (cam) 

and terminated by the histidine-rich protein 2 (hrp2) 3’ region (brindled 

boxes), similar to the luciferase gene but in opposite direction. The var 

intron, if present is localized between the two 3’ terminator sequences. The 

different var upstream region fragments are shown seperately. The small 

flag indicates the TSP and the box the CPE. 
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After an average of 6 weeks selection stably transformed parasites were 

detected. To assess plasmid copy number for each parasite line we performed 

quantitative RT-PCR on gDNA for the luciferase gene and the seryl-tRNA 

synthetase control gene. Plasmid copy numbers were determined by the 

formula 2ΔCt. Copy numbers varied between 3.7 and 39,3 plasmids per 

parasite (Table1). Generally, the plasmid copy number was higher in parasite 

lines transfected with constructs containing the var intron.  

 
 WT Δ 18 15 neg 
without intron 13.7 7.7 3.7 5.3 n.a. 

intron 39.3 14.5 9.0 6.5 5.1 

 
Table 1. Average plasmid copy number per parasite. 
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var gene promoter analysis  
 
To gain some information about the function of different sequence sections, 

we mapped the upstream region of a var gene promoter. In addition, we were 

interested in the interaction site of the var intron in the upstream region of the 

var gene. Promoter activity of the phGL-WT construct with the full-length 

upstream region was set as 100% (Figure 2). Plasmid phGL-Δ, where the CPE 

is deleted, showed a reduction of luciferase activity to 34%. Removal of 700bp 

(phGL-18) led to an eightfold increase of promoter activity to 802%. Deletion of 

a further 300bp (phGL-15) reduced the luciferase production to 5%. This weak 

luciferase expression let us hypothesize that region between the 

transcriptional start point (1167bp) and 1508bp upstream of the ATG contains 

the core promoter of the var genes. The negative control with no var upstream 

region shows a background of 0.07% luciferase activity. 

The role of the var intron in var gene silencing was investigated by comparing 

the luciferase activity from the same var upstream region fragment in the 

presence or absence of the var intron. The presence of the var intron reduced 

luciferase activity of the full-length upstream region 10,000 times (Figure 5). 

This result confirms previous work where var promoters were silenced in the 

presence of the var intron in either transient (Deitsch et al., 2001) or stable 

transfected parasites (Calderwood et al., 2003; Frank et al., 2006), as well as 

when integrated (Dzikowski et al., 2006). There was no effect of the var intron 

on the shortest var upstream region construct (phGL-15 and phGL-15int) 

where expression levels were already reduced to basic transcription 

background without intron. Luciferase activity of the constructs phGL-Δ and 

phGL-18 was reduced in the presence of the var intron (3.58 times and 4.05 

times, respectively). Interestingly, luciferase activity of phGL-18int containing 

the var intron was higher than activity of phGL-WT without var intron. 
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Figure 5. Luciferase counts per plasmid. 
Luciferase activity of lysate from late ring stage parasites transfected with 

plasmids phGL-WT, phGL-WTint, phGL-Δ, phGL-Δint, phGL-18, phGL-

18int, phGL-15, phGL-15int or phGL-neg was measured. Luciferase activity 

was adjusted for plasmid copy number. Experiments were done in 

triplicates and the mean ±SD of three experiments is shown in percentage 

of the wildtype promoter without the intron. Constructs without var intron 

are shown in blue and constructs with var intron are shown in red. 

 

phGL-Δ 
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Estimation of the percentage of luciferase producing parasites in a 
parasite line  
 

After transfection and selection with WR99210, each parasite contains at least 

one plasmid copy. This does not necessarily mean that every parasite in the 

population does also express the luciferase gene. Luciferase activity 

measured could be produced by all parasites in the population or by a subset 

of parasites only. To address this question we performed IFAs with polyclonal 

rabbit α-Firefly luciferase antibodies. Every parasite in a transfected culture 

(phGLWT) gave a signal but so did also every non-transfected 3D7 wildtype 

parasite (data not shown). In Western blot analysis it became apparent that 

the rabbit α-Firefly luciferase antibodies recognized an uncharacterized 

parasite protein in addition to luciferase (Figure 6). Experiments were repeated 

with a monoclonal mouse α-Firefly luciferase antibody. With this antibody no 

signal was detected in IFAs although a band specific for luciferase was 

detected in Western blots (Figure 6). No cross-reactivity with parasite proteins 

was detected for this antibody. 

 

Figure 6. Western blot analysis for luciferase expression.  

Recombinant Firefly 

luciferase protein and 

total protein extracts 

from P. falciparum 

parasite lines FCR3, 

3D7 and 3D7 transfected 

with phGL-WT were 

subjected to Western 

blot analysis and probed with rabbit α-Firefly luciferase antibodies (left) or 

mouse α-Firefly luciferase antibodies (right). The predicted size (62kDa) of 

the recombinant Firefly luciferase (rec luc) protein is indicated by an arrow; 

an unknown parasite protein below 50kDa is additionally recognized by the 

rabbit α Firefly luciferase antibodies. 
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Integration of plasmids into the chromosome 
 
Integration of the plasmids into the endogenous var locus could lead to 

complementation of the truncated var upstream region constructs, falsifying 

the obtained results. There are a number of plasmodial sequences on the 

plasmid where integration into the chromosome is possible: The var promoter, 

the cam promoter, and the hrp2 3’ region. In order to test whether one of the 

constructs had integrated into the chromosomes we performed Southern blot 

analysis. The most likely integration locus is the var promoter as it contains the 

longest plasmodial sequence. We performed Southern blot analysis with a 

specific probe for the PFL1960w var gene locus, the origin of our plasmid 

promoter sequence. An additional Southern blot was performed with an hdhfr 

probe to detect free and integrated plasmids into another locus. With the hdhfr 

probe we detected only the plasmids, but no additional band indicating 

integration (Figure 7a). With the probe for the var gene locus, we found that 

the phGL-WTint plasmid had integrated into the chromosome via single 

crossover of the var promoter (Figure 7b).  

 

Figure 7. Southern blot analysis for detection of plasmid integration  

gDNA of parasite lines transfected with plasmid phGL-WTint, phGL-WT, 

phGL-18int or phGL-18 was digested with PvuII, EcoRV and NcoI and 

probed with the hdhfr gene (a) or the gDNA was digested with EcoRV and 

NotI and probed with part of the 5’ end of var gene PFL1960w (b). A 

schematic drawing Southern blot b) is shown in c): plasmid phGL-WTint, 

the endogenous var PFL1960w locus in 3D7 and phGL-WTint integrated 

into the var locus via single cross over at the 5’ region is given. The var 

upstream region is indicated in dashed boxes, the hdhfr cassette in a 

green box, the var intron in blue and the luciferase and the endogenous 

var gene in white boxes. Restriction sites for this Southern blot, predicted 

fragment sizes and probe targets for Southern blot are indicated 

(restriction enzyme sites: NotI (N) and EcoRV (E) dotted line, DBL1α 

probe). Expected plasmid fragment sizes for Southern blot shown in a): 

9920bp for phGL-WT, 10769bp for phGL-WTint, 4285bp for phGL-18 and 

5132bp for phGL-18int.  
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Figure 7. 

c) 
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Unexpectedly, we detected a double band with the hdhfr probe for the phGL-

18int. To identity this additional band, the var intron and the upstream hrp2 3’ 

region of this plasmid (see Figure 4) was PCR amplified on gDNA. Two bands 

were amplified by PCR: one of the expected sizes for the intact intron and a 

smaller one. This suggested the presence of two different plasmids in the 

parasite population. To determine what part of the sequence was missing in 

the smaller PCR product it was cloned into a TOPO vector and sequenced. 

Alignment (ClustalW, (Thompson et al., 1994)) of the obtained sequences with 

the original var intron sequence revealed a 462bp deletion in the phGL-18int 

parasite line. Comparison with a previously reported spontaneous deletion in 

the var intron sequence of a transfection plasmid (Gannoun-Zaki et al., 2005) 

revealed exactly the same sequence deletion in our study with the exception 

of two nucleotides. An alignment of three intron sequences is shown in Figure 

8. 

Alignments of var introns showed a highly conserved structure that consists of 

three discrete regions (1 to 3) with distinct base pair compositions 

(Calderwood et al., 2003). The middle region (region 2) is highly AT-rich, 

displays promoter activity on its own and is sufficient to silence an associated 

var promoter. In our study the complete middle region of the intron was 

deleted except for 40bp. Therefore, it is very likely that the silencing capacity 

of the var intron was lost in parts of the population. 
 

 

 

 

 
 

 

Figure 8. Comparative alignments of the var intron sequences.  
The original var intron, a previously identified truncated intron (INTdel2’ 

(Gannoun-Zaki et al., 2005)) and the sequenced intron from phGL-18int 

transfected parasites (INT18del) were aligned using CLUSTAL W software. 

Regions 1 (yellow) and 3 (green) of the intron are indicated.  
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int_2'          ATTGCTTTTTTATTTTTGAAGGTAATATATATATGTGTGGTATATATGTATATATATATG 60 
int18_          ATTGCTTTTTTATTTTTGAAGGTAATATATATATGTGTGGTATATATGTATATATATATG 60 
intron          ATTGCTTTTTTATTTTTGAAGGTAATATATATATGTGTGGTATATATGTATATATATATG 60 
                ************************************************************ 
 
int_2'          TGTTTCTGTATATATATGTATGTGTGGGTGTGTTTGGATATATATATATGTGTATGTATA 120 
int18_          TGTTTCTGTATATATATGTATGTGTGGGTGTGTTTGGATATATATATATGTGTATGTATA 120 
intron          TGTTTCTGTATATATATGTATGTGTGGGTGTGTTTGGATATATATATATGTGTATGTATA 120 
                ************************************************************ 
 
int_2'          AGTGTTTGTGTATATGTATGTGATTTATATATATTTTATATATATGTATTTATATTGAAA 180 
int18_          AGTGTTTGTGTATATGTATGTGATTTATATATATTTTATATATATGTATTTATATTGAAA 180 
intron          AGTGTTTGTGTATATGTATGTGATTTATATATATTTTATATATATGTATTTATATTGAAA 180 
                ************************************************************ 
 
int_2'          AAGAAAAAAAAAAAAAAAAAAAAAAA---------------------------------- 206 
int18_          AAGAAAAAAAAAAAAAAAAAAAAA------------------------------------ 204 
intron          AAGAAAAAAAAAAAAAAAAAAAAAAAAAAAAATTTATTAAAATAAAAAAAAAAAAAAAAA 240 
                ************************                                     
 
int_2'          ------------------------------------------------------------ 
int18_          ------------------------------------------------------------ 
intron          AAAAGAGAAAGATTTTAAAAATAATAAAAATTATAATAAAAATATAAATTTTGATAGAAT 300 
                                                                             
 
int_2'          ------------------------------------------------------------ 
int18_          ------------------------------------------------------------ 
intron          AAAAAATGAAAAATATTATCAAAAAAAAATTAAAAAAAATTTTATATATAAAAAAAATTT 360 
                                                                             
 
int_2'          ------------------------------------------------------------ 
int18_          ------------------------------------------------------------ 
intron          ATTAGAAATAAAATAAAAACAAAAGAAGAAAAAAAAAACATTAAAAAAAAAAAAAATATA 420 
                                                                             
 
int_2'          ------------------------------------------------------------ 
int18_          ------------------------------------------------------------ 
intron          TATATCATAAAATAAAAAAAAATTAAAAAAATGTTAAAAAAAAAATATATATCATAAAAT 480 
                                                                             
 
int_2'          ------------------------------------------------------------ 
int18_          ------------------------------------------------------------ 
intron          AAAAAAAAAATTAAAAAAATGTTAAAAAAAAATATATATATCATAAAATAAAAAAAAAAT 540 
                                                                             
 
int_2'          ------------------------------------------------------------ 
int18_          ------------------------------------------------------------ 
intron          TAAAAAATTTAATTAAATAAAAAAAAATAATAAATAAAAAAATTTAATTAAATAAAAAAA 600 
                                                                             
 
int_2'          ------------------------------------------------------------ 
int18_          ------------------------------------------------------------ 
intron          AAAAATTAAAAAAAATAAAATAAAAAAAAAAAATAAAAAAATTAAAAAAAAAAAAAAAAA 660 
                                                                             
 
int_2'          ------TATTTTATTCATACACATACATATACACATATATATATACATATATTATATACA 260 
int18_          ------TATTTTATTCATACACATACATATACACATATATATATACATATATTATATACA 258 
intron          AAAAAATATTTTATTCATACACATACATATACACATATATATATACATATATTATATACA 720 
                      ****************************************************** 
 
int_2'          TACACATATACCTACATACATATACAAACCTACTTATACATACATACCTCTTTTATTATT 320 
int18_          TACACATATACCTACATACATATACAAACCTACTTATACATACATACCTCTTTTATTATT 318 
intron          TACACATATACCTACATACATATACAAACCTACTTATACATACATACCTCTTTTATTATT 780 
                ************************************************************ 
 
int_2'          TTAGAAAAAAACTAAACACCCTGTCGACCTTAATCACTAGT 361 
int18_          TTAGAAAAAAACTAAACACCCTGTCGACCTTAATCACTAGT 359 
intron          TTAGAAAAAAACTAAACACCCTGTCGACCTTAATCACTAGT 821 
                ***************************************** 
 

 

Figure 8.  
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Recognition by the var gene machinery  
 
Frank et al., (2006) postulated that the var intron needs to be in close 

proximity of the var promoter in order to be recognized by the var gene 

machinery that ensures mutually exclusive transcription. Their hypothesis is 

based on the finding that an integrated var promoter without a var intron 

continuously expressed luciferase while var gene transcripts from the 

endogenous var genes were still detected by quantitative RT-PCR on cDNA. 

Results by Viebig et al., (2005) support these findings where disruption of the 

var2CSA gene by a selectable marker renders the var promoter constitutively 

active and unrecognized by the mutually exclusive machinery. Construct 

phGL-18int containing a truncated upstream region paired with the var intron, 

expressed luciferase comparable to the wildtype promoter without intron 

(Figure 4). In order to test whether the var gene machinery recognizes 

construct phGL-18int, we did quantitative RT-PCR on cDNA to check for the 

status of every var gene. To compare the mRNA levels directly with the 

luciferase activity, we isolated parasites for both assays from the same culture 

dish at the same time. To assess the plasmid copy number we performed 

quantitative RT-PCR on gDNA for the luciferase gene and on the glutaminyl 

tRNA synthetase gene for each parasite line. Relative plasmid copy numbers 

were determined by the formula 2ΔCt and are indicated in Table 2. RNA levels 

detected by RT-PCR were normalized to the glutaminyl tRNA synthetase 

transcript level and adjusted for the plasmid copy number estimated on gDNA 

to generate the relative transcription level (RTL) for each promoter. The 

luciferase counts were calculated for the number of promoters present in the 

assay. 

 

 WT 18 

without intron 13.1 10.1 

with intron 39. 19.8 

 

Table 2. Relative copy numbers of transfected plasmids 
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Luciferase transcription was highest for the wildtype promoter (almost 6 RTL) 

while the construct with the shortened promoter (phGL-18) showed a RTL of 

2.6 (Figure 9). In the presence of the var intron the transcription level of the 

wildtype promoter (phGL-WT) was 12 times reduced to 0.5 RTL and 

transcription level for the shortened promoter (phGL-18) was almost two times 

reduced to 1.4 RTL. Transcription levels of the endogenous var genes were 

very low (RTL below 0.4) in all transfected parasite lines regardless of the 

state of the episomal var promoter driving luciferase activity. Six var genes 

were always among the 10 most transcribed var genes out of which one 

(PFL1830c) was always dominant (Figure 9).  

 

 
 
Figure 9. Transcription levels for var gene promoters. 

Transcription levels of all var genes were monitored by quantitative RT-

PCR with primers specific for each var gene on cDNA from late ring stages 

of transfected parasite cultures (x-axis). The transcription level is relative to 

the housekeeping gene glutaminyl t-RNA synthetase (y-axis, RTL). Shown 

is the mean of two experiments for the ten highest transcribed var 

promoters. Genes were sorted according to their level of expression (z-

axis) and the seven most frequently transcribed genes are labeled. 
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Luciferase activity was highest in the parasite lines transfected with the 

plasmid containing the wildtype promoter (phGL-WT) and the presence of the 

var intron reduced the luciferase activity to 0.04%. Luciferase activity was 

halved in the parasite lines transfected with the truncated promoter construct 

(phGL-18). The presence of the var intron in this construct (phGL-18int) 

reduced luciferase activity in one experiment but not in the other. Results are 

summarized in Figure 10. 

 
Figure 10. Luciferase activities from of transfected parasite cultures. 
Luciferase activity of lysate from late ring stage parasites transfected with 

plasmids phGL-WT, phGl-WTint, phGL-18 or phGL-18int was measured. 

The luciferase activity per plasmid copy was calculated. The mean ±SD of 

two experiments is shown in percentage of the wildtype promoter (phGL-

WT) without the intron. Constructs without var intron are shown in blue and 

constructs with var intron are shown in red. 
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DISCUSSION 
 
The aim of this part of the thesis was to identify regulatory sequences of 

central var genes and identify an interaction site of the var intron on the var 

upstream region. We mapped the region of the core promoter and found some 

possible repressor and activator sites on the var promoter. In addition, we 

identified a potential interaction site for the var intron on the upstream region 

of the var promoter. We were not able to determine whether the allelic 

exclusion machinery recognizes our transfection constructs. 

 
Improvement of transfection efficiency 
 
Transfection in P. falciparum is still a time-consuming and not very efficient 

method to study plasmodial biology. In previous experiments with transient 

transfection of various luciferase reporter plasmids, we encountered large 

variations in luciferase activity between different experiments. To reduce 

variability we tried to improve transfection efficiency and increase luciferase 

activity. Luciferase expression obtained with the previous expression vectors 

was always low, making examination of differences between transfection 

constructs difficult. To ensure integrity of the used luciferase reporter gene, we 

started cloning with a new vector that contained only the luciferase gene and 

evaluated different transfection setups with this already established plasmid 

(pVLH). In electroporation, the pulse amplitude (voltage) controls what area of 

the membrane is permeabilized and pulse duration and number control the 

degree of permeabilization (Gabriel and Teissie, 1997). In our hands a double 

impulse that combines a pulse with high voltage (1500V/25µF) followed by a 

longer pulse with low voltage (310V/1050µF) worked best (Voss et al., 2000). 

For future experiments transfection efficiency might be further improved by 

varying the proportion of plasmid and parasites transfected and by optimizing 

parasite in vitro culturing conditions after transfection by using erythrocyte 

concentrate instead of full blood (unpublished observation). 
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Minimizing variations between experiments 
 

Even if transfection efficiency is improved, variations between different 

transfections are still possible. To compare transfection efficiency between 

different transfections a control plasmid can be co-transfected with the plasmid 

of interest. We tested such a dual reporter assay system from Promega. In our 

approach, a calmodulin (cam) promoter drove expression of the Renilla 

luciferase gene. The cam promoter is constitutively active and thus a good 

control for co-transfection. The Renilla control plasmid was simultaneously 

transfected with the test plasmid where a promoter of interest drives Firefly 

luciferase expression. Firefly luciferase activity can then be put in relation to 

Renilla luciferase activity to adjust for different transfection efficiencies. We 

encountered high background activity of Renilla luciferase in our experiments, 

making evaluation of the results impossible. This approach was hence 

discarded and we used stable transfection instead. In this setting a positive 

selection cassette (the human dihydrofolate reductase gene, hdhfr) allows for 

selection of parasites that harbor a plasmid of interest. The advantage of this 

system is that every parasite contains at least one plasmid copy and thus 

luciferase activity is much higher. The disadvantage is that establishment of a 

stably transfected parasite line was long, taking between three to eight weeks 

in our hands. Another problem was cloning of the AT-rich constructs in E. coli. 

The introduction of an hdhfr cassette into the plasmid adds 2100bp to the 

already large constructs, which make the plasmids even more difficult to 

transfect. It is also known that AT-rich sequences are difficult to clone in E. 

coli.  

Transfection efficiency is not the only problem encountered with transgenic 

parasites. Due to differences in parasite cultures and in the processing of 

parasite material (e.g protein lysate), variations between experiments are still 

likely to happen. It is therefore important that parasite-derived material is 

always prepared identically for every experiment. Variations in luciferase 

expression between experiments with the same parasite line might also be 

due to the composition of parasite populations expressing luciferase. Parasites 

are not forced to produce luciferase and therefore not necessarily every 

parasite expresses the gene and variations in expression over time in the 
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same population are likely (discussed in more detail later). Measurement of 

luciferase activity is a convenient and fast method but it lacks an internal 

control for the condition of the parasite population and for downstream 

processing of parasite proteins. Hence, Luciferase activity measured is 

absolute and not in relation to a control protein. This is the advantage of 

quantitative RT-PCR where a number of control genes can be used to adjust 

for the amount of parasites lysed and the composition of the population. 

Replacement of the luciferase gene by a positive selectable marker forcing 

activation of all var promoters in a parasite population could be an approach to 

base experiments on RT-PCR results instead of luciferase activity.  

 

Identification of regulatory sequences in a central var gene upstream 
region  
 

To identify regulatory sequences of central var genes, we compared luciferase 

activity driven by different var upstream region fragments in stably transfected 

parasite populations. Promoter activity of the phGL-WT construct with the full-

length upstream region of var gene PFL_1960w was used as a standard 

(100%). Its transcriptional start point (TSP) has been mapped to 1167bp 

upstream of the ATG (Deitsch et al., 1999). The shortest var upstream region 

construct contained the sequence from the ATG to the TSP plus an additional 

340bp (phGL-15). These 340bp were sufficient to drive basic luciferase activity 

(20 times less than the reference) indicating that the core promoter lies within 

this sequence (Figure 11). A protein binding element (central promoter binding 

element, CPE) was previously identified in this sequence (Voss et al., 2003). 

Additional 371bp (phGL-18) increased luciferase activity 147-times compared 

to the core promoter activity. This suggests the presence of an activator 

binding sequence in these additional 371bps. The luciferase activity for the 

1879bp of the phGL-18 upstream region was 8-times higher than for the 

wildtype (phGL-WT) indicating the presence of a repressor binding site 

upstream of 1879bp from the ATG. Deletion of the CPE resulted in a 3-fold 

reduction of luciferase activity compared to the wildtype promoter suggesting 

another activator binding site at the CPE. The activation potential of this CPE 

is smaller than that of the activator between 1879 and 1508. It has to be noted 
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that the repressor-binding site is only present in the CPE deletion construct but 

not in the truncated upstream region constructs, hence the activation potential 

of the CPE might be higher but is abolished by the repressor. It would be 

interesting to test this hypothesis using a construct where the repression site 

as well as the CPE is missing. 

 

 
Figure 11. Model for possible var gene regulation mechanism. 
The full-length var gene upstream region investigated in this thesis is 

shown. Possible proteins that might bind to the DNA are indicated as 

follows: activators in green, a possible repressor in red and the silencer in 

blue. The core promoter is colored in orange. Distances to the ATG are 

indicated in base pairs. 

 

The var intron plays an important role in var gene silencing (Deitsch et al., 

2001). Therefore we wanted to determine what part of the var promoter is 

responsible for the interaction with the var intron. We measured luciferase 

activity for all promoter fragments in the presence and absence of the var 

intron on the plasmid. As expected, the var intron silenced the wildtype 

promoter completely. In the shortest construct no impact of the var intron on 

luciferase expression could be detected. Thus, it is very likely that the intron 

does not interact with the core promoter. Addition of 371bp led to a 4-fold 

reduction of luciferase activity when the var intron was present (phGL-18 

versus phGLint-18). Luciferase activity in the presence of the intron for the 

phGLint-18 construct was still 2-fold higher than the wildtype promoter without 

the intron, which was statistically not significant (two-tailed unpaired t test 

P=0.1). The presence of the var intron did not influence luciferase activity of 

the promoter sequence where the CPE was deleted (3.5-times). 

Consequently, the interaction site for the var intron can be mapped to a 

sequence between 1508bp to 1879bp relative to the ATG (Figure 11). 
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Complete silencing of the luciferase gene by the var intron could only be 

achieved with the wildtype promoter indicating that the complete upstream 

region is involved in the silencing mechanism.  

One of the activator binding sites and the silencer site are locating to the 

same 371bp sequence (Figure 11). It is possible that the two proteins bind to 

different stretches on this sequence or that they compete for the same 

binding site.  

 

Distribution of luciferase expression in the population 
 

As mentioned above the luciferase system raises questions about the 

homogeneity of the transfected parasite lines: Does every parasite in a 

transfected population express an equal amount of luciferase or is it only a 

subset of parasites that produces the luciferase measured in an assay? To 

address this question we performed IFAs and Western blot analysis with the 

transfected parasite lines using anti−luciferase antibodies. We tested two 

different anti-luciferase antibodies: A polyclonal rabbit antibody from Sigma 

(L0159) and a mouse monoclonal antibody from Sigma (L2164). The rabbit 

antibody was cross-reactive with an unidentified parasite protein in IFAs and 

Western blot and the mouse antibody detected only a signal in Western blot. 

The reason why no parasites were detected in IFAs with the mouse antibody 

could be that parasites accumulate luciferase in the food vacuole or vesicles, 

which are not accessible for antibodies with the conditions we used for the 

IFAs. It is also possible that only a minority of the parasites expressed 

luciferase and was therefore not found in IFAs.  

To test whether luciferase activity can be detected by FACS analysis, 

parasites were incubated with luciferin salt and analyzed by FACS for 

luciferase activity. No activity could be detected with this method (data not 

shown). 

Due to the problems outlined above, we were not able to determine what part 

of the population did express luciferase. For all future experiments we 

assumed that the populations were homogenous. Luciferase activity was 

therefore normalized to the plasmid copy number for every construct. With the 

plasmid copy number, the average number of promoters in a single parasite is 
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established. However it is not known whether every single promoter is active 

and shows the same expression level. 

 

Integration of the constructs into the parasite chromosome 
 
To rule out the possibility that one of the transfected plasmids had integrated 

into the complementary var locus on the chromosome and thereby 

complemented the truncated var promoter driving luciferase expression we 

performed Southern blot analysis using the DBL1α domain of the endogenous 

PFL1960w var gene as a probe. None of the truncated promoter fragments 

had integrated and the luciferase counts obtained for the truncated promoters 

(phGL-18, phGL-18int) were thus genuine. However, the phGL-WTint 

construct had integrated into the var locus. As silencing was only complete for 

this construct proper embedding of the var locus in the chromosome might be 

necessary to achieve complete silencing. Although we observed complete 

silencing for a transient plasmid with the same var upstream region and the 

var intron before (data not shown). Southern blot analysis probed with the 

hdhfr gene detected only a single band for episomal plasmids but no additional 

band for an integration event. Due to the multiple plasmid copy numbers the 

intensity of the plasmid bands would be 10 to 40 times stronger than an 

additional band indicating integration. This is probably also the reason why no 

additional band was detected for the phGL-WTint transfected parasite line in 

this Southern blot although a previous Southern blot with the var gene probe 

showed an integration event (Figure 7). To verify that none of the other 

plasmids had integrated into the chromosome, additional Southern blots with 

probes specific for different possible integration loci need to be performed. For 

studies in this thesis integration is most likely not a problem, as long as it does 

not affect the var promoter or the var intron. 

 
Deletion of var intron region 2 in phGL-18int 

 

Southern blot analysis for integration of plasmids into the chromosome 

revealed an unexpected double band for the parasite line transfected with 

phGL-18int. After cloning and sequencing of the var intron region of this 
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plasmid we identified a 462bp deletion in the var intron. The deletion 

corresponds to the middle region (region 2) of the var intron, which is highly 

AT-rich, displays promoter activity on its own and is sufficient to silence an 

associated var promoter (Calderwood et al., 2003). The same deletion has 

been observed in a parasite line transfected with a plasmid where a var 

promoter was driving hdhfr gene expression episomally with a var intron 

located down-stream of the hdhfr gene (Gannoun-Zaki et al., 2005). In 

contrast to this construct in which the var promoter needed to be active to 

survive selection by WR99210, in our study there was no need for an active 

var promoter, as it was only driving luciferase expression. The hdhfr gene was 

under the control of an additional cam promoter. Promoters in close proximity 

can influence the activity of each other (Crabb et al., 1997b). It has been 

demonstrated that an active var promoter enhanced the activity of an adjacent 

heat shock protein 86 (hsp86) promoter driving blasticidin deaminase (bsd) 

expression (Voss et al., 2006). We observed the same effect between the var 

gene and the cam promoter: mRNA levels of the hdhfr for each cam promoter 

were highest where luciferase expression was highest and vice versa (data 

not shown).  

Areas of electron-dense material consistent with heterochromatin and gene 

silencing as well as non-condensed areas allowing transcription are present at 

the nuclear periphery (Ralph et al., 2005). Silenced var genes, regardless if 

subtelomeric or central, are localized to the electron-dense nuclear periphery 

while active var genes seem to locate to a privileged site that is competent for 

transcription (Duraisingh et al., 2005). In order to transcribe the hdhfr gene, 

the transfected plasmids must be in a transcriptional active zone. An active var 

promoter might localize the plasmid to the nuclear periphery where 

transcription is enhanced and thereby increase the expression of the cam 

promoter. Therefore, even if there is no direct selection pressure to express 

luciferase, the activation of the var promoter may possibly benefit the parasite. 

The plasmid copy number estimated for each parasite line gives additional 

support to this theory as parasites with a non-active var promoter (phGL-

WTint) have more plasmid copies than parasites with an active var promoter 

(e.g. phGL-WT). It is also possible that the var promoter on a plasmid benefits 

from the active cam promoter. The plasmids must be in a trancriptionally 
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active compartment to express the hdhfr gene and therefore the chromatin 

structure is relaxed and permits expression of the luciferase gene by the var 

promoter. The presence of the var intron might reduce this effect by working 

as a boundary element that prevents the spreading of euchromatin from the 

active cam promoter.  

The partial loss of the intron discussed above has also an impact on the 

interpretation of the results obtained for the parasite line transfected with 

phGL-18int. Region 2 of the var intron was probably only lost in half of the var 

introns present on the plasmid in the parasite population, as two bands with 

equal intensities have been detected by Southern blot (Figure 7). The 

influence of the intact var intron in construct phGL-18int might hence be 

stronger than measured and luciferase activity might have been reduced even 

more in parasites containing intact var introns. This observation strengthens 

the hypothesis of a possible var intron interaction site located between 1879 

and 1509bp upstream of the ATG. 

The fact that exactly the same sequence deletion in the var intron was found in 

two different studies independently, suggests that it is directed and confers a 

benefit to the transformed parasite. Region 1 and 3 of the var intron contain 

repeat sequences (TGTATGTG, ACATACAC) that are complementary to each 

other (Calderwood et al., 2003). It is therefore possible that region 1 and 3 

form a hairpin facilitating the deletion of region 2. 

 
Mutually exclusive transcription 

 

var genes are expressed in a mutually exclusive manner. Only one var 

promoter is active at one time in a single parasite. We assumed that the var 

promoter on the plasmids is active in every parasite, rising the question what 

the state of the endogenous var genes is. Recent work suggested that the 

machinery that mediates mutually exclusive transcription does not recognize 

active var promoters on a plasmid without the var intron allowing for 

transcription of an endogenous var gene (Gannoun-Zaki et al., 2005; Frank et 

al., 2006). Frank et al., (2006) postulated that the mutually exclusive 

transcription machinery recognizes an active var promoter driving luciferase 

activity only when the var intron is present in the construct. To test if the 
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mutually exclusive transcription machinery recognizes our constructs, we 

performed quantitative RT-PCR on cDNA isolated from ring stage parasites 

with primers specific for each var gene (Salanti et al., 2003). The relative 

transcription level (RTL) of every var gene was calculated in relation to the 

transcription level of the glutaminyl tRNA synthetase control gene. No var 

gene was transcribed higher than the control gene (RTL below 0.4), while 

luciferase transcripts of constructs with active var promoters were higher than 

the control gene (RTL above 1). RTLs of the silent var promoter (phGL-WTint) 

were below 0.5 and consequently in the same range as the endogenous var 

genes. This suggests that the mutually exclusive transcription machinery did 

not recognize the active var promoters on the constructs and transcription of 

endogenous var genes was normal. These results are contradictory to 

previous data where a var promoter driving a selectable marker was able to 

silence all endogenous var genes (Dzikowski et al., 2006; Voss et al., 2006).  

In our study we did not select for a homogeneous population and therefore it is 

possible that we looked at a heterogeneous population as discussed above. 

Active var promoters on the plasmids might thus be recognized and 

endogenous var genes silenced but the transcription of endogenous var genes 

in parasites where the var promoter on the plasmid was silenced falsified the 

analysis. Without the possibility to select for a homogenous population either 

by introduction of an additional positive selectable marker under the control of 

the var gene promoter, or by cloning the parasite lines using limiting dilution or 

by single cell analysis, it is not possible to draw conclusions regarding this 

question. 

RT-PCR analyis of var gene expression showed that var gene PFI1830c was 

predominantly expressed in all parasite lines examined. This finding supports 

data from our group where var gene switching of 3D7 was examined over one 

year in in vitro parasite cultures. This same var gene was dominantly 

expressed throughout the experiment (master thesis K. Wittmer). The question 

arises whether our 3D7 strain displays a normal switching behavior or if there 

is some defect in the var gene switching machinery. In our experiments var 

gene expression detected by quantitative RT-PCR was generally low 

compared to var gene ΔCT values obtained by another group (Dzikowski et 

al., 2006).  
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The detected transcripts of the endogenous var genes might also be none full-

length or a RT-PCR artifact. Early transcripts from the 5’ end of most var 

genes can be detected by quantitative RT-PCR (Chen et al., 1998b; Scherf et 

al., 1998) but comparison of RT-PCR data with Northern blots suggested that 

even in young ring stages, only one single full-length transcript exists and that 

the remaining ones detected by RT-PCR are terminated early (Taylor et al., 

2000).  

 

Differences between results from luciferase assays and quantitative RT-
PCR on cDNA 
 

To compare quantitative RT-PCR and luciferase assays we isolated and 

processed RNA and protein from the same parasite population at the same 

time. We found some quantitative differences between transcription levels and 

protein activity. Still, phGL-WT was most active and phGL-WTint was least 

active in both approaches. While we detected almost no luciferase activity for 

the phGL-WTint transfected parasite lines (2500-fold reduction compared to 

phGL-WT), we still found mRNA transcripts (12-fold reduction compared to 

phGL-WT). mRNA and protein levels need not always be concordant as 

protein expression can also be regulated at a translational level and not only at 

the transcriptional level. We expect that post translational regulation of the 

luciferase reporter gene is the same for all constructs as they all have the 

same sequence downstream of the TSP. 

It is possible that quantitative RT-PCR is much more sensitive than the 

luciferase assay detecting transcripts that are not going to be translated. Some 

bidirectional transcription activity was found in the var intron in an earlier study 

(Calderwood et al., 2003) and part of the luciferase mRNA detected in our 

experiments might be transcribed from the other direction by the var intron. 

 

Determination and influence of the relative copy number on luciferase 
activity  

 

To determine how many plasmids and consequently var promoters are 

present in a parasite, we estimated the relative copy number of each 
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transfected parasite line by quantitative RT-PCR on gDNA. This estimation 

was repeated several times over a two-year period whereby the parasite 

cultures have been frozen and re-established in between. Plasmid copy 

numbers varied between different time points (Tables 1 and 2) but also 

between experiments conducted within two weeks (data not shown). Variation 

is therefore not only a result of changes in the population but also due to 

problems with reproducibility of the RT-PCR results. Estimation of the plasmid 

copy number is very important as luciferase activity as well as RTLs is 

adjusted to this. Luciferase activity was adjusted to the plasmid copy number 

determined by RT-PCR at the same time. Due to discrepancies between the 

estimated plasmid copy numbers (3.7 and 10.1) between different 

experiments, luciferase activity for phGL-18 transfected parasite lines was 

once higher than in the control (phGL-WT) and in the next experiment lower. 

The first data set is more robust as experiments were repeated twice in 

triplicates and not only once like in the second data set. For that reason, we 

think that the proposed regulatory sequences based on the first data set hold 

true. 

Transcription levels detected by quantitative RT-PCR have also been adjusted 

to the copy number estimated for every single var and control gene on gDNA. 

One ΔCT value difference corresponds only to a doubling of the amount of 

template if the amplification efficiencies [E = 10(–1/slope standard curve)] of target and 

reference are approximately equal (ABI, User Bulletin 2). Not all primer pairs 

used for the amplification of the var transcripts, the luciferase gene and the 

control genes have been characterized in the original publication (Salanti et 

al., 2003). Additionally, amplification efficiencies of the same primer pair might 

vary on different substrates (plasmid, cDNA or gDNA). Copy numbers 

estimated for each transfected parasite line must therefore be handled with 

care.  

Another method to establish plasmid copy numbers is Southern blot analysis 

with a probe for the plasmid and a second probe for a control gene on the 

parasite chromosome. The intensities of the resulting bands can then be 

compared. While this method is not as quantitative as RT-PCR it can serve as 

a control. Relative transcription levels could also be assessed by Northern blot 
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analysis similar to Southern blot detection though it is difficult to determine the 

intensity of a band when saturation is reached.  

 

Conclusions  
 
We improved transfection efficiency of P. falciparum cultures and generated 

nine distinctive stable parasite lines expressing luciferase under the control of 

different var gene upstream regions. Thanks to stable transfection technique 

we could reduce the variability between different luciferase assays. By 

comparing the luciferase activities from different parasite lines, we were able 

to identify two possible activator-binding sites and a repressor-binding site on 

a central var upstream region. In addition, we propose an interaction site for 

the var intron between 1879bp and 1508bp upstream of the ATG. We could 

not determine what proportion of the transfected parasite lines did express 

luciferase nor if the mutually exclusive transcription machinery recognized the 

expressed var promoter on the plasmid and consequently silenced all 

endogenous var genes. We learned that it is important to control the 

intactness and location of transfected plasmids in parasites, as deletion and 

integration events are likely to happen. 
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INTRODUCTION 
 

Malaria is still a major health problem with about 500 million new clinical cases 

and at least one million people dying every year (Snow et al., 2005). Human 

malaria is caused by four different Plasmodium species (Plasmodium 

falciparum, P. vivax, P. ovale, and P. malariae) that are transmitted by a 

female anopheles mosquito. Out of these four species, P. falciparum causes 

the most severe form of pathogenesis. A wide range of chemotherapeutics is 

used against all species that display a big spectrum of targets. The most 

frequently used antimalarials are quinolines, antifolate drugs, artemisinins, 

atovaquone, and antibiotics such as tetracyclines (Cunha-Rodrigues et al., 

2006). Quinolines, with its most famous member chloroquine, have been used 

excessively and with great success throughout the 20th century. Quinolines are 

thought to inhibit the dimerization of heme and/or prevent the disposal of 

dimers from the food vacuole to the cytoplasm, where hemozoin is formed 

(Fitch, 2004). The accumulation of free heme in the intra-erythrocytic parasite 

becomes highly toxic. Due to the long and extensive use of chloroquine and 

others, quinolines have lost their efficacy to a large degree and therefore need 

to be replaced. Antifolates inhibit the synthesis of folate cofactors that are 

required for nucleotide synthesis and amino acid metabolism during 

schizogony in RBCs and hepatocytes by acting on dihydrofolate reductase 

(dhfr (Ferone et al., 1969)) or dhihydropteroate synthase (dhps (Zhang and 

Meshnick, 1991)). Antifolates act more slowly against Plasmodium than 

quinolines and are eliminated gradually from the blood circulation allowing 

resistance to develop rapidly by mutating the target enzymes (Dieckmann and 

Jung, 1986). Even though antifolates are mainly used in drug combinations 

(FANSIDAR, MALARONE, LAPDAP), resistance is dramatically emerging 

(Looareesuwan et al., 1992; Wongsrichanalai et al., 2002). Atavaquone 

inhibits electron transport in plasmodial mitochondria (Fry and Beesley, 1991) 

and depolarizes the membranes of plasmodial mitochondria (Srivastava et al., 

1997). Drug resistance arises due to mutations in the cytochrom c reductase 

gene (Looareesuwan et al., 1996; Kessl et al., 2004). Artemisins display 

activity against young rings (Skinner et al., 1996) and gametocytes in blood 
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stage forms (Chen et al., 1994). Parasites are thought to be killed by the 

generation of free radicals through activation of artemisins by ferrous heme or 

exogenous free iron (Meshnick, 2002). Artemisins are the fastest working 

antimalarials with a very short half life (White, 1997) and the only antimalarial 

drugs where no resistance has emerged so far. Although Plasmodium is a 

eukaryote, they carry a plastid, known as apicoplast, which contains elements 

deriving from prokaryotic transcription and translation systems. Thus 

antibiotics can also be used as antimalarials by inhibiting RNA synthesis. 

Because there are no new malaria vaccines to be expected in the near future 

development of new drugs against malaria is crucial (Greenwood et al., 2005).  

Cyclic nucleotide signaling is a common regulatory mechanism and involved in 

a multitude of biological functions. In Plasmodium it has been implicated that 

cyclic nucleotides signaling could be involved in the differentiation of the 

parasite within both the human host and the insect vector. Different stages of 

the signaling cascade could be used as possible drug targets, namely 

cyclases that catalyze the conversion of ATP and GTP to cyclic nucleotides, 

phosphodiesterases (PDEs) that catalyze the hydrolysis of cyclic nucleotides 

to monophosphates, and kinases, the actual targets of the cyclic nucleotides. 

We have focused on the PDEs as possible new drug target. 

Today 11 PDE groups, encompassing 50 isoforms, have been identified in 

humans. They show considerable sequence conversation between catalytic 

domains of different families but vary in their substrate specificity and 

sensitivity to calcium-calmodulin. PDE activity is found in every cell in the 

human body, but there is a distinct cellular and subcellular distribution of the 

11 groups, which provides many possibilities for selective therapeutic targets 

(Lugnier, 2006). PDE inhibitors are widely used in human medicine as they 

can specifically interact with a PDE family or even PDE isoform. Another 

advantage of PDE inhibitors is that they do not have to compete with very high 

levels of endogenous substrate, as cyclic nucleotides are usually low 

concentrated in the cell (Bender and Beavo, 2006). Despite the potential of 

PDE inhibitors as chemotherapeutics, little is known about PDEs of parasites 

as possible drug targets.  

With trypanosomes, the potential of PDE inhibitors as drugs against sleeping 

sickness, Nagana or Chagas’ disease has been tested. Four PDE inhibitors 
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were identified that inhibit proliferation of bloodstream form of Trypanosoma 

brucei in culture (Zoraghi et al., 2001) and two different PDE families have 

been identified in T. cruzi, that also display sensitivity to PDE inhibitors 

(D'Angelo et al., 2004; Kunz et al., 2005; Alonso et al., 2006; Diaz-Benjumea 

et al., 2006).  

In contrast little is known about the four PDEs identified in P. falciparum 

although they might present an important target for chemotherapy. The fact 

that the four PfPDEs show little homology to human PDEs and that they build 

a unique group of PfPDEs suggests that they might become targets for 

inhibitors of PDEs with little side effects on human PDEs.  

As part of this PhD thesis a transgenic P. falciparum parasite was generated 

which has a deletion of PfPDE1. The resulting clone was analyzed for its 

phenotype and PDE activity. This clearly showed that PfPDE1 is not an 

essential gene in the asexual bloodstage form of P. falciparum and no rescue 

or compensation was observed with the remaining three PDEs which 

implicates that the main function of PfPDE1 might not lie in the asexual 

bloodstages.  
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METHODS 
 
Transfection construct for the PfPDE1 knockout 
 
Cloning of the transfection constructs for the PfPDE1 knockout and for GFP 

localization were done by L. Wentzinger in Bern as follows: Based on the 

sequence obtained from plasmoDB (www.plasmodb.org) for the PfPDE1 gene 

PFL0475w, primers were designed to amplify the predicted open reading 

frame: LWPF01F (5’-

CATATGAATGAGTATAATAATGATAATATGGAACAGGAGAA-3’) and LWPF01R 

(5’-GGATCCTTATAATTTTCCATGTTTTATTTCTTCTTTAAAATT-3’);  

The cDNA synthesis is performed as follow: 1 µg of total RNA is denatured at 

65°C for 5 min together with gene specific primers and quickly cooled on ice. A 

mix containing 4µl 5x superscript buffer, 200 U superscript III, 1µl dNTP 

10mM, 1µL DTT 0.1M and 1µL RNase inhibitors (Roche) is added to the 

denatured RNA and incubated 1h at 46°C. PCR amplification was carried out 

in a total volume of 25µl with 0.5µl of the obtained cDNA, 1x PfuUltra PCR 

reaction buffer (Stratagene), 2.5U PfuUltra (Stratagene), 200µM gene specific 

primers (same than those used for reverse transcription step), 300µM dNTPs 

and 3mM Mg2+. PCR conditions for the PDE were the following: 30 cycles of 

denaturation at 94°C for 30s, annealing at 58°C for 30s and extension at 68°C 

for 3min. PCR products were cloned into the TA-TOPO cloning vector 

(Invitrogen) and sequenced. 

The verified 5’ UTR and 3’ UTR from PfPDE1 were PCR amplified from the 

TA-TOPO cloning vectors (PfPDE1_5UTR-f: 5’-

ACTGTAAAAAATATAAAGATTTATACAAAAAAAAAGAACGTAC-3’ and 

PfPDE1_5UTR-r AGATCTTTTATTTTGTTTTTTTACAAATGTTTATGTGTG; 

PfPDE1_3UTR-r: 5’-GAATTCAAATATACAAGGAGAAAAATATATTTGATGATTG-

3’ and PfPDE1_3UTR-r 5’-

CCATGGATATATTATTTGTCCACTTGTTTTATTTTTATATAAGAAG-3’). The PCR 

products for the 5’UTR were digested with SpeI and BglII and for the 3’UTR 

with EcoRI and NcoI and cloned into the adequately digested pHTK vector 

(Duraisingh et al., 2002).  
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For the GFP fusion constructs the pARLmGFPmT vector served as backbone. 

This vector contains the GFP sequence flanked by two multiple cloning sites 

and an hdhfr selection cassette. The PDE sequences were amplified from 

cDNA prepared as described above with following primers: PDE1_GFP.F (5’-

AGATCTTCATGATGGATACAAAAGTAGATCAAAC-3’) and 

PDE1_460_GFP.R (5’- CCTAGG 

TACATATTCATAATATAAAGACATGATAATCTT -3’) for the shorter construct  

(460) and primers: PDE1_GFP.F (5’-

AGATCTTCATGATGGATACAAAAGTAGATCAAAC -3’) and 

PDE1_610_GFP.R (5’- CCTAGGATGCATATTAGAAAAAGAATTAAAAGAT -

3’) for the larger construct (610). PCR products were digested with BglII and 

AvrII and cloned into the adequately digested pARLmGFPmT vector. 

 

In vitro cultivation of Plasmodium falciparum, stable transfection, 
selection for integrants and limiting dilution 

 
All experiments were done with the P. falciparum 3D7 strain cultivated at 5% 

haematocrit as described previously (Trager and Jensen, 1976) in RPMI 1640 

medium supplemented with 25mM HEPES, 0.5% Albumax, 50mg/l 

hypoxanthine, 0.25% sodium bicarbonate, and 50 mg/ml neomycin sulphate. 

Parasites were incubated at 37°C in an atmosphere of 3% oxygen, 5% carbon 

dioxide, and 92% nitrogen. 

Growth synchronization was achieved by sorbitol lysis (Lambros and 

Vanderberg, 1979). Stable transfection of cultured 3D7 P. falciparum ring-

stage parasites with the pHTK vector for PfPDE1 knockout was obtained by 

electroporation as described previously (Voss et al., 2000) and drug selection 

using 10nM WR99210 (Fidock and Wellems, 1997). A population of stable 

transfected parasites was established after 6 weeks.  To enrich the population 

for integrants, three cycles of on/off WR99210 selection was applied.  After the 

last round, ganciclovir was added to the population in a final concentration of 

400nM eliminating parasites that contained the plasmid episomally and only 

parasites with an integrated plasmid survived (Duraisingh et al., 2002). 

Parasites were analyzed by Southern blot to test for integrated plasmids. The 

population consisted of parasites that had either integrated the plasmid by 
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single cross over or by double cross over. To get a homologous population of 

parasites that had integrated the plasmid by double cross over only, parasites 

were diluted to single clones by limiting dilution. Parasites were diluted to 10, 1 

or 0.1 parasites per well in separate 96 well plates for each dilution and 

cultured with a haematocrit of 2.5% in a volume of 200µl culture media. When 

the color of the least diluted plate turned from red to dark red, the status of 

each well for the other dilutions was checked with thick blood smears. The 

content of examined wells that harbored parasites was transferred to 24 well 

plates and cultures with 5% haematorcit in a volume of 2ml culture media. 17 

clones were expanded to 10ml plates and tested for plasmid integration status 

by Southern blot.  

 

Genomic DNA extraction 
 
To gain gDNA from Plasmodium cultures 10ml of late stage parasites were 

saponin lysed and washed twice with 1xPBS. The pellet was resuspended in 

500µl TE with 0.8% SDS, 0.01M EDTA and 0.2mg/ml proteinase A (SIGMA) 

and incubated over night at 60°C. Phenol/chloroform extraction was performed 

twice followed by an additional extraction with chloroform only. The aqueous 

phase was precipitated with sodium acetate and ethanol and finally 

resuspended in TE. The quality and concentration of the obtained gDNA was 

checked on an agarose gel.  

 

Southern Blot and detection 
 
Southern blot analyses were performed to check whether the plasmid had 

integrated correctly into the PfPDE1 locus on the chromosome. gDNA was 

digested with Sau96I and DrdI for 2 to 3 days, digestion status was monitored 

on agarose gels. Agarose gel, blot and detection followed the protocol of the 

ECL Direct Nucleic Acid Labelling And Detection Systems (Amersham 

Biosciences). Briefly, 2-10µg of restriction enzyme digested gDNA was loaded 

on a 1% Agarose gel and electrophoreses was performed over night in 1x TAE 

buffer at 1V/cm. The gel was in depurinated in 200ml 250mM HCl, denatured 

in 200ml 1.5MNaCl/0.5MNaOH and neutralized in 200ml 1.5M NaCl/0.5M Tris-
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HCl (pH 7.5) before blotting on a Hybond N+ membrane over night. The DNA 

was UV cross-linked to the membrane. Horseradish peroxidase was cross-

linked with glutaraldehyde to 100ng probe. Either a 500bp amplicon of the 

PfPDE1 gene or the hdhfr gene was used as probes. The hdhfr probe was 

PCR amplified from the pHTK vector by primers hdhfr_forw (5’-

GGATCCATGCATGGTTC-3’) and hdhfr_rew (5’-

GGCTGTACAGTGTATAAACC-3’) with following conditions: 20sec 

denaturation at 94°C, 20sec annealing at 54°C, and elongation 1.5min at 

66°C, the cycle was thirty timed repeated. The PfPDE1 probe was amplified 

with primer LWPf30f (5’-

GGATCCATGAATAGTCTTAACAGAATATCTTTTAATTC-3’) and LWPf30r (5’-

GCGGCCGCTTATTCAAATTTGATGAGCTCA-3’) with following PCR 

conditions: 30sec at 94°C, 30sec at 50°C, and 1min at 68°C, the cycle was 32 

times repeated. Hybridization and stringency washes were performed in 

hybridization tubes in an incubator with an integral rotisserie device. After a 

minimum of 15min prehybrization with hybridization buffer the labeled probe 

was added and hybridized over night at 42°C. The blot was washed first with 

wash buffer containing 6M Urea, 0.4%SDS and 0.5x SSC and second with 2x 

SSC. The signal was generated by incubating the blot for 1min with an equal 

amount of detection reagent 1 and 2. A BioMax light film (Kodak) was placed 

on the blot in a film cassette for an appropriate length of time, usually 2min. 

The film was afterwards developed.  

 

FACS analysis 
 
FACS analysis was used to monitor the parasite growth over time, as it is a 

convenient method to estimate parasitaemia. Stock solutions (10mg/ml) of 

hydroethidine (HE) in di-methyl sulfoxide (DMSO) was prepared and stored at 

-20°C. 150µl culture was spun and the pellet was resuspended in 150µl HE 

(1/1000 in 1x PBS) and then incubated for 30min at 37°C in the dark. HE is 

taken up by the parasite and metabolized to ethidium, a nucleic acid-binding 

fluorochrome (van der Heyde et al., 1995). 1ml of FACS Flow was mixed with 

the RBCs and out of this 200µl were pipetted to 1ml of FACS Flow in tubes for 

FACS analysis. Flow cytometry data aquisition and analysis were performed 
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on a FACS instrument (FACSScan, Becton-Dickinson). The detectors for 

forward- and side-scatter of the FACS were set to E-01 and 227, respectively; 

and both detectors were set to the logarithmic scale. The FL2 detectors were 

also adjusted to bring events within the detection range of the instrument 

(generally 433 for FL2). First uninfected RBCs were gated to exclude burst 

and dead RBCs, subsequently early and late stages were gated separately. A 

negative control of uninfected RBCs only was used to estimate the number of 

auto-fluorescent RBCs. These cells appeared in the gate for the early stages 

and were thus subtracted from the samples. The parasitaemia and the 

percentage of early and late stages were detected using the CellQuest 

Software (Becton-Dickinson). A total of 100,000 cells were analyzed per 

sample. 

 

Microscopy 
 

Thin red blood smears were used to examine the parasitaemia and the status 

of the culture throughout culturing. Thin red blood smears were fixed with 

methanol and stained for 15min in Giemsa solution. To determine the 

proportion of early stages and late stages in the short time course experiment, 

a minimum of 100 iRBC per slide were examined by microscopy. To ensure 

unbiased counting, slides were blinded and counted after all samples have 

been taken. All slides were counted twice.  

 

Fluorescent microscopy 
 

Parasites transfected with GFP constructs were examined for their production 

and localization of GFP by fluorescent microscopy. Fluorescence microscopy 

was performed using a Leica DM5000 fluorescent microscope and 

documented with a Leica DC200 digital camera system using x100 oil 

immersion objectives. Parasitized RBCs expressing GFP were mounted wet 

on a glass slide, covered by a glass coverslip, sealed, and imaged.  
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Western blot analysis 
 

Western blot analyses were performed to detect recombinant GFP in 

Plasmodium culture lysate transfected with a plasmid expressing recombinant 

GFP. 10ml asynchronous P. falciparum-infected RBCs were lysed in 1.5ml 

0.1% saponin in 1xPBS and washed twice with 1ml 1xPBS. The parasite pellet 

was resolved in sample buffer (0.1M TrisHCl PH 6.8, 20% glycerol, 2% 

Sodium dodecyl sulfate (SDS), 0.1M β-mercapto-methanol, bromphenol-blue). 

Protein samples were subjected to sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (12.5% acrylamide), transferred to a nitrocellulose membrane 

(Hybond-C extra; Amersham Biosciences) for 3h using a Trans-Blot semidry 

electroblotter (Bio-Rad), and probed with antiserum from mice immunized with 

recombinant MAHRP1 (1:1000) to show equal loading of parasite lysate or 

mouse α-GFP (1:1000, Sigma) followed by peroxidase-conjugated goat α-

mouse immunoglobulin G, (1:10,000, Sigma). The membrane was developed 

according to the ECL western blot detection kit manual (Amersham).  

 

RNA isolation and cDNA 
 
RNA was isolated to perform Northern blots and serve as template for the 

synthesis of cDNA to provide a template for quantitative RT-PCR.  

40ml parasite culture containing 5% late ring stage were saponin lysed and 

washed twice with 1xPBS. The pellet was then resuspended in 2ml Trizol 

(Invitrogen) and RNA was extracted with 0.2ml chloroform and precipitated 

with isopropanol. The extraction was repeated in half of the original volume 

Trizol to reduce contamination with gDNA. gDNA was twice digested with RQ 

1 DNase (Promega) according to the manufacturer’s protocol in a total volume 

of 50µl. RNA was subsequently extracted with 180µl Trizol and 40µl 

chloroform. Before cDNA synthesis, eventual gDNA contamination was tested 

by PCR. For the PCR 1 µl of RNA was used as template with the primer pair 

DBLα5’ and DBLα3’ that amplified most of the var genes (Kaestli et al., 2004). 

As a positive control an additional PCR with the same primers but addition of 

1µl gDNA from 3D7 to the RNA was performed. PCR conditions were as 
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follows: 30sec denaturation at 94°C, 30sec annealing at 54°C, and 1min 

elongation at 60°C. The cycle was repeated thirty times. cDNA synthesis was 

performed with M-MuLV Reverse Transcriptase (New England BioLabs) with 

random primers (Invitrogen) as described by the manufacturer. cDNA was 

synthesized from 800ng total RNA in a reaction volume of 50µl. For each 

cDNA synthesis reaction, a control reaction without reverse transcriptase was 

performed with identical amounts of template. 

 
RT-PCR for PDE RNA level determination 
 

Quantitative real-time PCR was used to check for differences in the 

expression levels of every PDE in the knockout compared to the wildtype 

parasite strain. Quantitative real-time PCR using QuanTitect SYBR Green 

PCR master mix (QIAGEN) was performed on a TaqMan 7500 (Applied 

Biosystems, ABI) according to provider’s manual, using the seryl-tRNA 

synthetase gene (PF07_0073) as endogenous control with two different primer 

pairs (primers p90_for 5’-TCAATTTGATAAAGTGGAACAATTC-3’ and 

p90_rev 5’-GCGTTGTTTAAAGCTCCTGA-3’ and primers LWPf26f 5’-

TGCCGAACTTGATGACTTTGAA-3’ and LWPF26r 5’-

GTAGGAGATGTAGATACCTGTTGAGATGA-3’) and specific primers for each 

PDE gene (PDE1: LWPf23f 5’-GTCTCCACGCAGCACAGGTA-3’ and 

LWPf23r 5’-TAAGCAAAATTCGTCAATAGCTGAAA-3’; PDE2: LWPf22f 5’-

TATTCTTTCCCTCACGGACCAA-3’ and LWPf22r 5’-

TTGGCGGAACCTACTAATATGATG-3’; PDE3: LWPf24f 5’-

CGATCCACGCAGCTATGGT-3’ and LWPf24r 5’-

GCACCTAGTTCGTTATCCCTAAGAA-3’; PDE4: LWPf25f 5’-

ATGGTGCTACAGTATGTCACTTATCAAA-3’ and LWPf25r 5’-

TGGATGTCCTACATCATGTGCTATAGAT-3’). PCR was performed on cDNA 

in duplicates for three dilutions (1:2, 1:20, and 1:200) and CT values for the 

seryl-tRNA synthetase varied between 18 (1:2) and 27 (1:200) and for the 

different PDEs between 20 (1:2, PfPDE2) and 34 (1:200, PfPDE3). PCR 

conditions were as follows: 2min at 50°C for activation of the Uracil-DNA 

glycosidase followed by initial denaturation for 10min at 96°C, then followed 41 

cycles of 15sec 95°C and 1min 59°C. The dissociation curve was 
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subsequently established. Undetected PCR products were set to CT 40. To 

estimate the relative copy number, the ΔCT was determined by subtracting the 

CT value for the PDE genes from the CT value for the control seryl-tRNA 

synthetase gene (ABI, User Bulletin 2). ΔCTs were then converted to relative 

copy numbers with the formula 2ΔCt.  

 

Northern Blot and detection 

 
Total RNA was prepared as described above. Equal amounts of RNA were 

loaded on a 0.7% agarose gel and blot and detection were prepared according 

to the ECL Direct Nucleic Acid Labelling And Detection Systems (Amersham 

Biosciences). For details see Southern blot detection. Either the merozoite 

surface protein 2 (msp2) gene or the PDE genes were used as probes. 

Following primer pairs were used to amplify the PDE genes from gDNA: 

PfPDE1: LWPf30f (5’-

GGATCCATGAATAGTCTTAACAGAATATCTTTTAATTC-3’) and LWPf30r (5’-

GCGGCCGCTTATTCAAATTTGATGAGCTCA-3’), PfPDE2: LWPf31f (5’-

GAATTCAAATGAATTGTTTAACATATTTTGATGAATC-3’) and LWPf31r (5’-

GCGGCCGCTTAATCGGAAACATTTTTTATAAA-3’), PfPDE3: LWPf32f (5’- 

GAATTCAAATGATAGATGAAAAATCAAAAATGTATTC -3’) and LWPf32r (5’- 

GCGGCCGCTTATTTTTTTTGTGTTTTGTAAATATTC -3’), and PfPDE4: 

LWPf33r (5’- GCGGCCGCTTATGTCATTTTTTCTGTGTTATAAAAC -3’) and 

LWPf33.a.f (5’- GGATCCAAATGATAGCATACGAAGTTGAAGTATTG -3’) 

with following PCR conditions: 30sec at 94°C, 30sec at 50°C, and 1min at 

68°C, the cycle was 32 times repeated. The probe for the msp2 gene was 

amplified with primer pair S1 and S4 described by (Foley et al., 1992). A 

BioMax light film (Kodak) was placed on the blot in a film cassette for 1min in 

case of the msp2 probe and over night for the PDE probes. 

 

Growth inhibition assay 
 

Increasing concentrations of different PDE inhibitors (zaparinast and BG-1) 

and cyclic nucleotide analogues (8Br-cAMP, cpt-cAMP, 8BR-cGMP and cpt-
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cGMP), dissolved in di-methyl sulfoxide (DMSO), were tested for their 

inhibitory effect on the P. falciparum intraerythrocytic development of wildtype 

(NF54) and PfPDE1 knockout strains (A6 and G5). 

200µl of parasites with an initial parasitaemia of 0.3% and a hematocrit of 

1.25% were allowed to grow at 37°C for 48h in a 96 well plate, then 50µl 3H-

hypoxanthine (0.5 µCi) was added per well. After 24h incubation period, plates 

were harvested on glass fibre filters using a BetaplateTM cell harvester (Wallac, 

Perkin Elmer). 10ml scintillation liquid was added to the dried filters and 

counted in a BetaplateTM liquid scintillation counter (Wallac, Perkin Elmer). 

Growth inhibition in percent was calculated from the parasite-associated 

radioactivity. 100% 3H-hypoxanthine incorporation was determined from a 

control culture grown in the absence of drugs. Values for the IC50 were 

determined in duplicates as described by (Desjardins et al., 1979).  
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RESULTS 
 
Knock out of the PfPDE1 gene by double cross-over 
 

Very little is known about the role of phosphodiesterases (PDE) in P. 

falciparum. In order to describe the function of one of the four predicted PDEs, 

we replaced the endogenous gene coding for PfPDE1 (PFL0475w) with the 

human dihydrofolate reductase gene (hdhfr) conferring resistance to 

WR99210. In a collaboration with the institute of Cell biology, University of 

Bern (T. Seebeck and L. Wentzinger) we constructed a plasmid that contained 

the hdhfr expression cassette flanked by approximately 300bp of the 5’ and 3’ 

untranslated region of the PDE1 gene. In addition to the positive selectable 

marker, the presence of a negative selection cassette allowed for elimination 

of parasites that have not integrated the plasmid into the genome by double 

crossover. The negative selection cassette consisted of the thymidine kinase 

(tk) gene from the herpes simplex virus which phosphorylates the guanosine 

analogue gancyclovir to nucleoside triphosphates that inhibit DNA synthesis 

after incorporation into nascent DNA (Reardon, 1989). The plasmid map and 

chromosomal location of PDE1 in P. falciparum is shown in Figure 1a.  

After transfection of the plasmid into the P. falciparum 3D7 strain, drug 

selection was applied and a population that harbored the plasmid episomally 

was established. Three rounds of on and off drug cycling with WR99210 was 

performed and subsequently gancyclovir pressure was introduced, eliminating 

parasites, which had not integrated the plasmid into the chromosome. 

Southern blot analysis revealed that a heterogeneous population of parasites 

existed that had integrated the plasmid either by double cross over or by 

single cross over at the 5’ end (Figure 1). To select parasites in which a 

double cross over occurred, single-cell cloning was employed and the lines 

were checked for their integration status by Southern blot hybridization (Figure 

1b). Based on this screen, all subsequent experiments were performed with 

the two PDE1 knockout lines A6 and/or G5 that showed identical patterns in 

Southern blots (Figure 1b).  
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Figure 1. 
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Figure 1. Disruption of PfPDE1 gene by double cross over. 
a) Schematic representation of the 3D7 parental locus and the disrupted 

PDE1 loci, for the double cross over (A6/G5) as well as for the 5’ single 

cross over event (G8). The human dihydrofolate reductase gene (hdhfr) 

conferring resistance to WR99210 has been inserted in the PDE1 locus by 

either double cross over, resulting in the parasite lines A6 and G5, or by 5’ 

single cross over (G8). The herpes simplex virus thymidine kinase (tk) 

gene serves as a negative selectable marker. Parasites that have not 

integrated the plasmid (P) into the chromosome are susceptible to the 

guanosine analogue gancyclovir. Restriction sites, predicted fragment 

sizes and probe targets for Southern blot are indicated (restriction enzyme 

sites: D, DrdI; S, Sau96I; solid line, hdhfr probe; dotted line, PDE1 probe).  

b) Southern blot analysis of the parental 3D7 line and the knockout lines 

A6 and G5, as well as the 5’ single cross over line G8. DNA has been 

digested with DrdI and Sau96I and probed with fragments of the hdhfr or 

the PDE1 gene. Predicted sizes with the PDE1 probe: 6.5kb for 3D7; 5.9 

for G8. For the hdhfr probe the predicted size for the plasmid (P) is 3.7kb, 

5.5kb for the knockout lines A6 and G5 and 4.3 for G8. The size of the 

marker is given in base pairs. 
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Characterization of the PfPDE1 knockout line by comparison of its 
growth rate with the 3D7 wildtype.  
 

PfPDE1 is not an essential gene in P. falciparum, as its deletion is not lethal to 

the parasite. No morphological difference between the parental 3D7 line and 

the knockout line was observed by microscopy of Giemsa stained thin blood 

smears (data not shown). Both lines developed an average of 18 merozoites 

per schizont and variations in merozoite-numbers between experiments within 

the same line were larger than between different lines (Figure 2).  

 
Figure 2. Average number (±SD) of merozoites per schizont. 
For each parasite line the number of merozoites from 11 schizonts was 

counted Shown is the mean of four independent experiments. 

 

We used FACS analysis to monitor growth rates of wildtype and knockout 

parasite lines over time. Parasites were stained with hydroethidine (HE) that 

labels the cytosol of the cell and intercalates with DNA. DNA is only present in 

iRBC, as RBCs do not have a nucleus. The life stages of the parasite 

population can be distinguished by the intensity of the HE fluorescence of the 

cells. Early rings are barely distinguishable from RBC, but as the parasite 

grows and replicates, DNA accumulates and fluorescence increases (van der 

Heyde et al., 1995; Jouin et al., 2004). An example for the FACS analysis is 

given in Figure 3. 
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Figure 3. FACS analyses for growth rates of wildtype and knockout. 
Parasites were stained with hydroethidine (HE) and analyzed by FACS 

technology. Shown are dot plots of a) non-infected erythrocytes, b) 3D7 

wildtype strain and c) A6 knockout line. In a) to c), the x-axis corresponds 

to forward scatter (FSC-H) specifying the size of the cells. In the upper 

row, the y-axis corresponds to side scatter (SSC-H) specifying the 

granularity of the cells and in the lower row the y-axis corresponds to HE 

fluorescence (FL2-H). Cells were gated based on the first dot plot in a) 

excluding burst or dead RBCs. To determine the ratio of early parasite 

stages to late stages, the corresponding cells were gated in row two and 

examples for the evaluation of the statistics are shown in Figure 4 and 5. A 

histogram of the distribution of the fluorescent intensity for all three lines 

and the RBC control is shown in d).  
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To compare the growth rate of wildtype and knockout strains, time course 

experiments were conducted. Parasites were synchronized simultaneously 

and diluted to equal parasitaemia. Parasites were then examined at least once 

a day over a time period of several days and the experiment was repeated 

three times over a period of 4 months. We were mainly interested in the 

change in proportion of early stages (rings) and late stages (trophozoites and 

schizonts) and not in the increase of parasitaemia. In two experiments, the 

parasite lines differed significantly 70h after synchronization, once after 90h 

and one culture differed initially after 24h but not after. FACS results of 

parasite stages were confirmed by staining the population on Giemsa stained 

thin blood smears. Two knockout lines were always monitored in parallel (A6 

and G5) and no difference was seen between these two lines. One experiment 

is shown in Figure 4. The first timepoint was taken 22h after synchronization. 

At 0h all three lines were late stages, at 20h all lines have become rings. At 

26h the knockout lines already started to turn into late stages in contrast to the 

wildtype. At 47h, the wildtype line had become late stages while the knockout 

lines completed this life cycle already and had turned into early stages. Thus, 

the lifecycle of the knockout lines seemed to be shorter than the lifecycle of 

the wildtype. 

 
Figure. 4. Percentage of early stage parasites in a FACS time course 

experiment.  
The parental parasite line 

3D7 and the PDE1 

knockout lines A6 and G5 

have been synchronized 

twice (8h interval) and the 

first time-point was taken 

22h after the last 

synchronization. The parasites lines were tested over the next 120h by 

FACS analysis and time-points o sampling are indicated. A background 

resulting from uninfected erythrocytes has been subtracted from the early 

stages. The main difference can be seen at time point 47h, i.e. 69h post 

synchronization.  
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Although a difference between the cycle durations of the parasite lines was 

detected, it was not possible to determine the exact length of the parasite 

cycles by long-time FACS analysis because we could not reproduce the 

results obtained for each experiment. To estimate the difference in the 

duration of the lifecycles between the wildtype and the knockout strains, a 

growth-assay was performed where parasites were monitored every hour.  At 

the same time it was tested whether FACS analysis is less sensitive than 

microscopy by applying both methods in parallel. Parasites were synchronized 

twice and 17h from the last synchronization the monitoring started. The results 

are shown in Figure 5. A clear difference can be seen between the wildtype 

and the knockout parasites regardless of the technique applied. Both knockout 

strains finished their lifecycle about four hours earlier and started to invade 

new RBC before the wildtype parasites.  
In microscopy, ring stage parasites could be detected at the first time point in 

slides of all three parasite lines. The first discrepancy between the wildtype 

and the knockout lines could be seen at 5.5h using microscopy while in FACS 

analysis a difference could be seen only at 8.5h (Figure 5). After this initial 

discrepancy, both techniques showed a similar pattern in detecting ring stage 

parasites. Both techniques showed that the knockout parasites were about 

four hours in advance of the wildtype parasites. However, it must be noted that 

the differences obtained in two other experiments were only two hours and 

even no difference between the strains (Data not shown).  
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Figure 5. Increase of early stages in a time course experiment. 
Parasite populations have been synchronized twice (8h interval) and the 

first timepoint was taken 17h post synchronization. 3D7 is the parental line 

and A6 and G5 are PDE1 knockout lines. Shown is the increase of early 

stages for FACS analysis (A) and for microscopy (B).  

 

A 

B 
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Comparison of PDE mRNA levels between wildtype and knockout 
parasites 
 

Four PDEs have been predicted for P. falciparum (Bahl et al., 2003) with stage 

specific expression patterns for each PDE. PDE3 and PDE4 are predicted to 

be almost exclusively expressed in gametocytes, PDE1 is thought to be 

expressed in late asexual bloodstage forms as well as in gametocytes and 

sporozoites, and PDE2 shows highest expression levels in asexual bloodstage 

forms but also some low level expression in gametocytes and sporozoites (Le 

Roch et al., 2003). Northern blot analysis of late bloodstage parasites with 

specific probes for each PDE did not give any signal, probably due to very low 

expression levels also observed by (Le Roch et al., 2003). One example is 

shown in Figure 6. Because it might be possible that one of the remaining 

three PDEs would compensate the function of the deleted PDE, we isolated 

RNA for quantitative RT-PCR assays of all PDEs. We isolated late stage RNA 

where PDE1 expression is highest during the asexual bloodstage cycle. The 

isolated RNA was reverse transcribed into cDNA and quantitative RT-PCR 

was performed with four primer pairs specific for each PDE and two additional 

primer pairs for the seryl-tRNA synthetase gene as a control. For comparison 

of the different RNA levels, the relative copy number for each gene was 

established. Individual CT values were subtracted from the CT value obtained 

with the P90 primer pair for the seryl-tRNA synthetase gene. ΔCTs were then 

converted to relative copy numbers with the formula 2ΔCt. 

 

Figure 6. Northern blot analysis of PfPDE1 transcripts.  
RNA from late stage P. falciparum 

cultures (3D7 wildtype and A6 and G5 

knockout lines) was probed with either 

phosphodiesterase 1 (PDE1) or 

merozoite surface protein 2 (MSP2). The 

observed band for MSP2 RNA 

corresponds to the expected size (Kyes et al., 2002). 
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The RT-PCR results for the 3D7 wildtype strain confirmed the data from (Le 

Roch et al., 2003). PDE2 was expressed three-times less than the seryl-tRNA 

synthetase control gene, PDE1 was already expressed 20 times less and the 

other two PDEs were barely detectable (100-200 times less expression) 

(Figure 7). As expected, PDE1 was not detected in the knockout. There was 

no marked difference in expression for the three remaining PDEs between the 

wildtype and the knockout strain.  

 
 

Figure 7. Relative RNA levels of the four PDEs for wildtype and 

knockout P. falciparum parasites.  
Wildtype 3D7 parasites are indicated in blue and knockout parasites in red. 

The relative copy numbers are in relation to the expression of the seryl-

tRNA synthetase gene. Shown is the mean of two experiments (±SD) with 

three dilution series each. 

Abbreviations: KO, knockout; PDE, phosphodiesterase; Seryl, seryl-tRNA 

synthetase   
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Growth inhibition assay with PDE inhibitors 
 

Inhibitors for mammalian PDEs are often very specific for a subclass of PDEs 

(Hidaka and Endo, 1984; Nicholson et al., 1991) and are thus commonly used 

as drugs (reviewed in Lugnier, 2006). Different PDE inhibitors and cyclic 

nucleotide analogues were tested on the knockout clones and NF54, the 

parental isolate of 3D7 in parallel to identify possible inhibitors of PfPDE1. The 

experiment was run in duplicates to establish IC50 values and repeated once. 

PfPDE1 is considered to be cGMP substrate specific (Yuasa et al., 2005). 

Zaparianst is a cell-permeable, selective inhibitor of cGMP-specific PDE in 

humans (PDE V; IC50 of 450nM, PDE IX: IC50 of 35µM). Zaparinast did not 

inhibit growth of the parasites at a starting concentration of 50µM, (data not 

shown). This is in contrast to results obtained by Yuasa, who found zaparinast 

to be an effective antagonist of the recombinant PfPDE1 enzyme in vitro (IC50 

of 3.8 ± 0.23µM) and endogenous cGMP PDE activity in P. falciparum in vivo 

(IC50 of 35 ± 4.2µM) (Yuasa et al., 2005). Knockout parasites were less 

tolerant to cAMP analogues (IC50 = 10µM for 8Br cAMP, and IC50 = 35µM for 

4- chlorophenylthio (cpt) cAMP) than the wildtype parasites (IC50 = 19µM for 

8Br cAMP, and IC50 = 49µM for cpt cAMP) (Fig. 8). Although the differences 

between knockout and wildtype parasites were significant (two tailed unpaired 

students t-test: p=0.013 for 8Br cAMP and p=0.0036 for cpt cAMP) the 

statistical relevance is neglectable due to the small sample size. For the cGMP 

analogues we observed the opposite. Wildtype parasites were slightly less 

tolerant to cGMP analogues (IC50 = 9.5µM for 8Br cGMP, and IC50 = 22µM for 

cpt cGMP) than the knockout parasites (IC50 = 16µM for 8Br cGMP, and IC50 = 

28µM for cpt cGMP). The IC50 for the 8Br cGMP from the wildtype parasites is 

in agreement with observations from Yuasa, who estimated the IC50 to be less 

than 10µM (Yuasa et al., 2005). BG-1 inhibits parasite growth equally in all 

three strains with an IC50 of 15µM. BG-1 is a potential cAMP specific PDE 

inhibitor of PDE4 in humans (IC50 = 0.4nM) and PDE2 in T. brucei (IC50 = 

4nM) where it also inhibits bloodstream growth (IC50 = 30nM) (personal 

communication L. Wentzinger) 
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Figure 8. Growth inhibition assay with PDE inhibitors and cyclic 

nucleotide analogues.  
Inhibitors are indicated at the bottom, blue bars indicate the NF54 strain, 

red and yellow bars indicate the PfPDE1 knockout lines A6 and G5. IC50 

values have been calculated from two dilution series. Shown is an IC50 

average of two replicates (±SD) with inhibition concentrations starting at 

50µM. IC50 values are given in µM on the y-axis. Differences between 

knockout and wildtype parasites were significant in a two-tailed unpaired 

students t-test for following inhibitors: 8Br cAMP (p=0.013), 8Br cGMP 

(p=0.0361) and cpt cAMP (p=0.0036) 
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Localization of the PfPDE1 in the parasite 
 

In silico analysis of PfPDE1 predicted six transmembrane α-helices (Bahl et 

al., 2003), suggesting that it is a transmembrane protein. In order to localize 

PfPDE1 in the parasite, L. Wentzinger designed GFP fusion plasmids to 

express PfPDE1-GFP hybrids episomally but stable in the parasite. In one 

construct the catalytic domain where no signal sequences are expected, was 

replaced by GFP (termed 610). In a second construct the catalytic domain and 

150 amino acids in addition were replaced by GFP (termed 460). A control 

plasmid (pARLmGFPmT) that expresses GFP alone, i.e. with no signal 

sequence or transmembrane domains derived from PfPDE1, was also 

transfected (termed GFP). All three transfected parasite lines could be 

established but only in the GFP control line green fluorescent parasites could 

be detected in immuno fluorescence assays (IFAs) using anti-GFP antibodies 

(data not shown). Fluorescence microscopy of non-fixed cells without antibody 

labeling has been used to examine the location of the GFP protein in the 

control line at different stages of growth (Figure 9). In early ring to early 

trophozoite stages GFP is equally distributed throughout the parasite cytosol 

(Figure 9 a to d). In late trophozoites and schizonts a structure around the 

newly synthesized nuclei can be seen (Figure 9 e to h). Not all parasites in the 

population do show fluorescence even though all must have the plasmid. 

Fluorescent and non-fluorescent parasites can invade the same RBC 

simultaneously (Figure 9b). 

 

 

 

Figure 9. Expression of GFP at different stages of the 
intraerythrocytic cycle of P. falciparum.  
Shown are differential interference contrast (DIC) images, DAPI staining of 

the nucleus, green fluorescent protein (GFP), and an overlay of all signals. 
The parasite matures from top to bottom, from ring stages in a) to 

schizonts in h). The intensities of the images were adjusted to optimize the 

fluorescence signal at each parasite stage. 
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Figure 9.  
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To determine if the transfected but non-fluorescent parasite lines do express 

GFP at low levels that could not be detected in IFAs, Western blot analysis 

was performed. In Western blot with parasite lysate from the three different 

transfected lines, αGFP antibodies could only detect a protein in the lysate 

from parasites transfected with the control plasmid (Figure 10). The detected 

protein is 27kDa in size as expected for the GFP tag alone. A loading control 

with a mouse αMAHRP1c antiserum (Spycher et al., 2003) detected equal 

amounts in all three lysates of a protein of approximately 40kDa, 

corresponding to MAHRP1. Thus, the two fusion proteins (610 and 460) were 

not expressed in the transfected P. falciparum lines. Closer examination of the 

cloning strategy applied revealed that the promoter was deleted during the 

cloning procedure.  

 

 
Figure 10. Western blot analysis of parasite proteins showing 
expression of PfPDE1-GFP chimeras.  
Total protein extracts from P. falciparum 3D7 transfected parasite lines 

were subjected to Western blot analysis and probed with α GFP (left) or α 

MAHRP1c mouse serum (right). The faint band in the 460 line probed with 

α GFP is probably due to some carryover from the GFP line as the size 

corresponds to the GFP alone and a bigger band would be expected for 

the fusion protein. 
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DISCUSSION  
 

Although many chemotherapeutics against P. falciparum and other Plasmodii 

are on the market, resistance to almost all of them has already arisen and the 

need for new chemotherapeutics is therefore urgent. The aim of this study was 

to characterize one of the four PDEs postulated for P. falciparum to evaluate 

its potential as an antimalarial chemotherapeutic and gain more insight into the 

signaling process. For PDE it was already shown that PDE inhibitors could act 

on PDE2 in T. brucei. Therefore, in collaboration with T. Seebeck from the 

University of Bern we investigated PDEs in P. falciparum by generating 

knockout parasites. Initially we attempted to disrupt PfPDE4 as well as 

PfPDE1 but abandoned the project because the group of D. Baker already 

disrupted PfPDE4 and PfPDE3. 

 

Growth rate of asexual blood stage parasites 
 

PfPDE1 is not an essential gene in P. falciparum asexual blood stage forms, 

as its deletion is not lethal to the parasite in culture. PfPDE1 knockout 

parasites showed no morphological differences to the wildtype 3D7 strain by 

microscopy of Giemsa stained thin blood smears. The loss of the cGMP 

specific PfPDE1 does not impede the knockout strains, as its growth rate 

occurs to be higher than in the wildtype strain. Faster growth of the knockout 

strains is not due to higher multiplication rate, as single parasites of both 

strains produced comparable numbers of merozoites per schizont. The 

different number of merozoites per schizont was probably more influenced by 

the quality of media and blood, since merozoite numbers increased and 

decreased in the knockout and the wildtype in parallel over time.  

The growth advantage of the knockout parasites compared to the wildtype 

parasites was noted during preparation of synchronized parasite cultures for 

stage specific RNA extraction. Determination of the exact cycle-length of the 

knockout as well as for the wildtype parasites failed. Repetition of experiments 

was not coherent although they mostly showed a trend of the knockout strain 

to grow faster than the wildtype strain. One reason for the different outcomes 
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might be the synchronization of the populations. Synchronization with saponin 

kills parasites older than 20 to 24 hours post infection. To get a good 

synchronization the parasites must be treated twice with saponin, the bigger 

the interval between synchronizations the tighter the synchronization of the 

population. Parasite populations are not homogenous before synchronization 

in terms of proportions of different stages (rings, trophozoites and schizonts) 

and even synchronized populations are never absolutely homogenous. 

Additionally, not every parasite in the population behaves exactly the same 

way in terms of its cycle-length. In the time course experiment analyzed by 

microscopy, the majority of the knockout populations showed a difference in 

cycle-length of four hours compared to the wildtype population (Figure 5). 

However, the first rings appeared at the earliest time-point taken for wildtype 

as well as knockout parasites, indicating that single parasites do have the 

same cycle-length in both lines. In order to determine the exact cycle-length of 

a strain, the synchronization method must be optimized. Magnetic cell 

separation (MACS) allows for selection of trophozoites and schizonts due to 

accumulation of haemozoin in the developing parasite. When schizonts burst 

there are no new RBCs to invade and merozoites can be isolated. Merozoites 

of different strains can thus be added to fresh RBCs at the same time and the 

development of the parasites can be monitored by microscopy. Another 

approach might be time-lapse experiments where single cells can be 

monitored over time. 

Longer time course experiments have been performed by FACS analysis, 

which is a convenient method to estimate parasitaemia because it is possible 

to count a large number of cells in a short time. In addition, intercalation of HE 

with DNA allows differentiation and gating of early stages from late stages by 

their DNA content. Because almost 0.5% of uninfected RBCs is auto-

fluorescent and appears in the gate for the early stages, the parasitaemia of 

the examined parasite population needs to be above 0.5% or must consist of 

late stages only (Figure 3). 

FACS analysis is a suitable method to compare growth rates or monitor the 

ratio of late stages to early stages between different parasite lines over a long 

time-period. The lag in detecting young rings is the same for all populations 

and thus neglectable. FACS analysis is not a suitable method to monitor the 
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length of a single parasite lifecycle and catch the transition from schizonts to 

ring stages, as there will be a delay until ring stages can be detected. Although 

an overall decrease in the older stages was detectable, it did not become 

visible in the ratio between early and late stages because the early stages 

were not detectable. FACS analysis might be improved by additional staining 

of iRBCs with labeled antibodies against P. falciparum to reduce the 

background of uninfected RBCs and become more sensitive.  

 
Biochemical effects of deletion of PfPDE1 
 
The knockout parasite showed evidence of a shorter lifecycle causing faster 

growth. Why would the loss of a PDE increase growth? The acceleration of 

growth observed in the knockout line compared to the wildtype line might 

simply be an artifact. If the growth rate would be truly increased the shortening 

of the lifecycle must be caused by reduction of any of the four phases of the 

cell cycle (G1, S, G2 and M). 

PfPDE1 is cGMP substrate specific. If PfPDE1 is deleted cGMP might be 

accumulated in the cell. cGMP levels have not been measured in this thesis, 

and hence there is no evidence for increased cGMP levels and all of the 

following assumptions are speculative. 

Increase in cGMP levels in the cell is either associated with a delay of the 

G1/S transition in the cell cycle via inhibition of cyclines in vascular smooth 

muscle cells (Fukumoto et al., 1999) or delay in mitosis in Novikoff hepatoma 

cells (Zeilig and Goldberg, 1977) arguing for a delay rather than a shortening 

of the lifecycle. On the other hand, cGMP is likely to be a secondary 

messenger molecule for autocrine signal molecules in the regulation of cell 

survival and promotion of proliferation in Tetrahymena thermophilia 

(Christensen et al., 1996). The role of cyclic nucleotides in the cell cycle of 

Plasmodium has not been investigated so far. 

An increase in cGMP might also lead to an increase in protein kinase G (PKG) 

expression. PKG is involved in motility and invasion in Toxoplasma and 

Eimeria (Wiersma et al., 2004) and the PKG inhibitor staurosporine prevents 

invasion of RBCs by P. falciparum (Miller et al., 1994; Ward et al., 2004). 
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Invasion of RBCs is a very fast event and accelerated invasion by the 

knockout parasites is not very likely to account for a faster live cycle. 

The parasite might prevent an accumulation of cGMP by reducing the number 

of guanylate cyclases (GCs) or another PfPDE might be involved in the 

regulation of cGMP levels in the parasite. The most likely candidate to take 

over PfPDE1 expression would be PfPDE2 which is highest expressed in 

asexual blood-stage parasites in contrast to PfPDE3 and PfPDE4 that are only 

expressed in gametocytes. No such rescue mechanism has been observed, 

as quantitative RT PCR with cDNA revealed no differences in PDE RNA 

expression between the knockout and the wildtype parasite. 

Experiments revealed a 20% reduction in the cGMP hydrolytic activity of 

membrane fractions from knockout parasites compared to wildtype parasites 

(L. Wenzinger, personal communication). This suggests that PfPDE1 is 

responsible for 20% of the cGMP activity in the parasite even though its 

expression is very low. Another PDE, possibly PfPDE2, hydrolyses the major 

part of cGMP in blood-stage parasites. It has to be noted that the mRNA levels 

do not necessarily correlate with the protein levels observed. 

 

Localization of PDEs in P. falciparum 

 

The localization of any of the plasmodial PDEs is unknown. There is strong 

evidence that PfPDE1 is a membrane protein. Three independent groups have 

predicted transmembrane domains although there are discrepancies in the 

number of predicted domains. The reason for the discrepancies lies probably 

in the identification of various splice variants of PfPDE1 and the use of 

different prediction programs by the various groups (Bahl et al., 2003; Yuasa 

et al., 2005; Wentzinger, unpublished data).  

Signaling cascades are possible at different locations in the parasite as a 

stimulus from the outside would have to travel all the way to the nucleus in 

mammalian cells where transcription is regulated. In the case of P. falciparum, 

the signal must thus be transported from the RBC membrane through the RBC 

cytosol, traverse the parasitophorous vacuole thereby crossing two 

membranes and pass through the plasmodial cytosol to reach the nucleus by 

traversing another membrane. Many PDEs show distinct cellular or subcellular 
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distribution in the human host (Bender and Beavo, 2006) and PfPDE1 could 

be localized at any of the previously mentioned membranes. Taking the 

presence of different splice variants into account, PfPDE1 could even be 

localized in different membranes, depending on the isoform.  

The localization of PfPDE1 in the parasite could not be evaluated. IFAs with 

anti-PfPDE1 antibodies could not be performed, as antibody production 

against a recombinant PfPDE1 failed. In a second approach, we fused the N 

terminal PfPDE1 sequence to a GFP tag and expressed the plasmids 

episomally in the parasite. No recombinant protein was expressed because 

the promoter driving expression of the fusion protein was deleted during the 

cloning procedure.  

 

PfPDE1 as drug target 
 

To evaluate the potential for PDEs as drug targets in P. falciparum, different 

known PDE inhibitors were tested for their impact on growth of wildtype and 

knockout parasites. Although significant differences between the knockout and 

the wildtype parasites were identified, the relevance of these findings is minor 

as the experiments were only repeated once. To get statistical relevant results, 

the experiments would need to be repeated more often. Generally, the activity 

of these inhibitors was rather weak compared to known antimalarials such as 

chloroquine (IC50 = 9nM) or artemisin (IC50 = 2nM). Surprisingly, zaparinast did 

not inhibit parasite growth in contrast to results of Yuasa et al., (2005) who 

found an IC50 of 35 ± 4.2µM. Differences might be due to the methods applied. 

We measured the incorporation of 3H-hypoxanthine into the growing parasites 

while the group of Yuasa monitored parasite growth by counting 1000 RBCs in 

Giemsa stained thin blood smears. Knockout parasites were a little more 

tolerant to addition of cGMP analogues. This might be due to the fact that 

cGMP levels are already increased in the knockout parasites and the parasites 

are more used to this state. On the other hand the knockout parasites were 

slightly more sensitive to cAMP analogues. The fact that only minor 

differences between knockout and wildtype parasites were detected might 

imply that none of the tested inhibitors works on PfPDE1 alone. 
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Generally it has to be noted that the expression levels of PfPDE1 are very low 

in the wildtype parasite and that it is hence questionable if PfPDE1 was the 

right choice to be deleted. 

 

Role of PfPDE1 in sexual parasite stages 
 
With the creation of a PfPDE1 knockout we have generated a very useful tool 

to study the function of PfPDE1 in gametocytes or sporozoites, as PfPDE1 

mRNA is also found in these stages. The fact that deletion of PfPDE1 is 

possible in blood-stage parasites strengthens the hypothesis that the main 

function of PfPDE1 is in sexual forms where cyclic nucleotide signaling has 

been indicated. 

Addition of cAMP to parasite cultures with high parasitaemia or addition of 

PDE inhibitors enhances gametocyte formation indicating a role for cAMP 

signaling in gametogenesis but not for cGMP (Kaushal et al., 1980; 

Brockelman, 1982; Trager and Gill, 1989). Yet, the fact that PfPDE1 is cGMP 

specific reduces the chances that it plays a role in gametogenesis.  

Studies with PDE inhibitors have suggested a role for the cGMP signaling 

pathway in exflagellation (Martin et al., 1978; Kawamoto et al., 1990; 

Kawamoto et al., 1993). This process occurs in the mosquito midgut when 

eight flagellated male gametes emerge from a single infected cell. A role of the 

cGMP signaling pathway in exflagellation is supported by investigations of the 

mode of action of xanthurenic acid (XA). XA is a mosquito derived factor that 

can trigger exflagellation (Billker et al., 1998; Garcia et al., 1998). Upon 

administration of XA, membrane associated GC activity increases leading to 

enhanced levels of cGMP (Muhia et al., 2001). A knockout of PfPDE1 might 

therefore enhance exflagellation.  

We have an ongoing collaboration with D. Baker from the London School of 

Tropical Medicine and Hygiene who is interested in the role of cyclic 

nucleotide signaling in sexual parasite stages. They are using the PfPDE1 

knockout strain described in this thesis to gain more information about the 

possible role of PDEs in formation of gametocytes and gametes and the 

further development in the mosquito. 
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General conclusions and outlook 
 

Very likely PfPDE1 plays no important role in asexual blood-stage parasites. 

Deletion of PfPDE3 and PfPDE4 seems also to be possible in blood-stage 

parasites (unpublished data D. Baker). Thus PfPDE2 is most likely the only 

PDE candidate that is essential in blood-stage parasites. Its high expression in 

asexual blood-stage parasites strengthens this hypothesis. A deletion of 

PfPDE2 will reveal if this PDE is essential in P. falciparum. If not, the role of 

PDEs in asexual blood-stage parasites is generally questionable.  

One objective of this thesis was to evaluate the suitability of PfPDE1 as a drug 

target. Because PfPDE1 is not essential in the asexual blood-stage form of P. 

falciparum, it is not a suitable drug target to cure an individual suffering from 

acute malaria. If its function lies in the formation of gametocytes in humans or 

gametes in the mosquito, a drug against PfPDE1 might reduce transmission of 

parasites from human to mosquito by blocking sexual reproduction of the 

parasite. If PfPDE1 is involved in sporozoite invasion it might be used as a 

prophylactic drug only.  

We generated a useful tool to investigate the role of cyclic nucleotides in 

sexual parasite stages and investigation of their role in gametogenesis is 

ongoing.  

Although PfPDE1 mRNA has been found in sporozoites (Bahl et al., 2003), 

nothing is known about signaling processes during this stage. The knockout 

parasites might thus display a defect during the development in the mosquito, 

in the course of invasion of hepatocytes, or during liver-stage development. 

Monitoring the development of these knockout parasites in the mosquito or if 

possible in hepatocytes might give some insight to cGMP signaling in those 

stages. 

The role of PfPDE1 in the cGMP signaling pathway might further be evaluated 

by comparing mRNA levels from kinases and cyclases between the knockout 

and wildtype parasites in different stages. 
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GENERAL DISCUSSION AND CONCLUSIONS 
 
Two examples for the use of transfection technology in Plasmodium 

falciparum have been shown in this PhD thesis. In the first part transfection 

was used to investigate the regulation mechanism of P. falciparum var genes 

by generating transgenic parasites harboring constructs with different var gene 

upstream regions driving luciferase expression. In the second part we 

generated a Phosphodiesterase 1 (PDE1) knockout parasite and 

characterized the resulting phenotype.  

 

Although there is no obvious linkage between the two projects it could be 

speculated that both proteins are implicated in intracellular signaling. PfPDE1 

is involved in the cGMP-signaling pathway and PfEMP1 is located in the 

erythrocyte membrane where it mediates binding to various host cell receptors 

(summarized in Table 1 of the general introduction). It might be speculated 

that PfEMP1 is not only mediating cytoadherence and sequestration but it 

might also serve as a signaling receptor. A potential signal might proceed via 

the cGMP-signaling pathway and might trigger a switch in var gene 

expression. 

Another connection between PDEs and PfEMP1 is their role as a potential 

drug target or vaccine candidate, both urgently needed for the struggle against 

malaria. Although it has been shown that PDEs are potential drug targets in 

Trypanosomes (Zoraghi et al., 2001; D'Angelo et al., 2004; Kunz et al., 2005; 

Alonso et al., 2006; Diaz-Benjumea et al., 2006), we excluded PfPDE1 from 

the list of useful targets in P. falciparum by the simple fact that our knockout 

parasite line had the same phenotype and even a higher growth rate than 

wildtype parasites. It remains to be analyzed if another PDE is a better drug 

target in P. falciparum.  

Sera from malaria endemic areas often recognize PfEMP1 and its variants 

have been associated with either severe or uncomplicated malaria (Kaestli et 

al., 2004). The fact that PfEMP1 variants of the severe subtype tend to be 

more immunogenic and to be better recognized than those of the 

uncomplicated subtype proposes that these PfEMP1 molecules are promising 
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vaccine candidates potentially able to generate protective immunity against 

severe disease (Moll et al., 2007). Once var gene regulation is understood it 

might be possible to prevent var gene expression or to disrupt the switching 

mechanism. If only one variant of PfEMP1 could be expressed by a parasite 

the immune system would have a better chance to produce protective 

antibodies.  

 

Once cloning of transfection constructs in E. coli succeeded, transfection of 

plasmids and creation of stable transfected parasite lines that harbor the 

plasmids episomally was successful throughout and took three to eight weeks. 

Ablation of the PfPDE1 gene took one year from transfection of the plasmid to 

the generation of a clonal population derived from a single ancestor. 

Transfection event as such is a fast and reliable method to transfer a plasmid 

into a parasite but the investments to grow and handle the parasites are 

immense. 

During its lifecycle, P. falciparum infects two different hosts and invades 

various cell types. The parasite has adapted to these numerous surroundings 

by changing from one life stage to another. In our laboratory we only have the 

expertise to study the asexual blood stage cycle of the parasite. This 48h cycle 

consists of the invasive merozoite, the ring, the trophozoite and the schizont 

stage. In order to compare results from different parasite lines the populations 

need to be highly synchronous and at the same stage. Consequently, 

preparation of the parasites for experiments must either be conducted in 

parallel or consistency of parasite handling has to be guaranteed. The cell 

cycle of the 3D7 wildtype parasite is not always consistent when cultured in 

vitro. Addition of different plasmids and selection pressure may change cycle 

duration additionally, making it difficult to treat different parasite lines 

identically over time. During the cultivation process, parasite lines have time to 

mutate. Loss of parts of chromosome 9 has been observed in vitro in isolates 

and clones of P. falciparum (Shirley et al., 1990). During our studies we 

observed a deletion in the var intron of one construct, and integration of one 

plasmid into the chromosome. Parasite populations are thus not static but are 

capable of changing. Transfected parasite lines have hence to be regularly 

monitored for changes that might influence the outcome of experiments. 
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Seeing that the establishment of a transgenic parasite line is very labor 

intensive it is important to thoroughly evaluate targets and carefully design 

constructs. This was not done before generating the PDE1 knockout parasites 

since there was no apparent phenotype to be expected in asexual blood stage 

parasites, as expression levels of PfPDE1 are marginal in blood stage 

parasites. A possible role of PDE1 would rather be probable in sexual blood 

stage parasites or in the mosquito stages where expression levels are higher. 

Moreover, it is important to verify the integrity of constructs before transfection 

of parasites. The GFP fusion construct designed to study localization of 

PfPDE1 was not properly analyzed before transfection and subsequently 

found to lack a promoter driving GFP expression. 

 



References 
 

 117 

REFERENCES 

 

Alonso, G.D., Schoijet, A.C., Torres, H.N., Flawia, M.M., 2006. TcPDE4, a 
novel membrane-associated cAMP-specific phosphodiesterase from 
Trypanosoma cruzi. Mol Biochem Parasitol 145, 40-49. 

Anamika, N.S.A.K., 2005. A genomic perspective of protein kinases in 
Plasmodium falciparum. Proteins: Structure, Function, and 
Bioinformatics 58, 180-189. 

Ashman, D.F., Lipton, R., Melicow, M.M., Price, T.D., 1963. Isolation of 
adenosine 3', 5'-monophosphate and guanosine 3', 5'-monophosphate 
from rat urine. Biochem.Biophys.Res.Commun. 11, 330. 

Bahl, A., Brunk, B., Crabtree, J., Fraunholz, M.J., Gajria, B., Grant, G.R., 
Ginsburg, H., Gupta, D., Kissinger, J.C., Labo, P., Li, L., Mailman, M.D., 
Milgram, A.J., Pearson, D.S., Roos, D.S., Schug, J., Stoeckert, C.J., Jr., 
Whetzel, P., 2003. PlasmoDB: the Plasmodium genome resource. A 
database integrating experimental and computational data. Nucl. Acids 
Res. 31, 212-215. 

Baldacci, P., Menard, R., 2004. The elusive malaria sporozoite in the 
mammalian host. Mol Microbiol 54, 298-306. 

Balzarini, J., Bohman, C., De Clercq, E., 1993. Differential mechanism of 
cytostatic effect of (E)-5-(2-bromovinyl)-2'- deoxyuridine, 9-(1,3-
dihydroxy-2-propoxymethyl)guanine, and other antiherpetic drugs on 
tumor cells transfected by the thymidine kinase gene of herpes simplex 
virus type 1 or type 2. J. Biol. Chem. 268, 6332-6337. 

Barnwell, J.W., Asch, A.S., Nachman, R.L., Yamaya, M., Aikawa, M., 
Ingravallo, P., 1989. A human 88-kD membrane glycoprotein (CD36) 
functions in vitro as a receptor for a cytoadherence ligand on 
Plasmodium falciparum-infected erythrocytes. J Clin Invest 84, 765-
772. 

Baruch, D.I., Pasloske, B.L., Singh, H.B., Bi, X., Ma, X.C., Feldman, M., 
Taraschi, T.F., Howard, R.J., 1995. Cloning the P. falciparum gene 
encoding PfEMP1, a malarial variant antigen and adherence receptor 
on the surface of parasitized human erythrocytes. Cell 82, 77. 

Baruch, D.I., Gormely, J.A., Ma, C., Howard, R.J., Pasloske, B.L., 1996. 
Plasmodium falciparum erythrocyte membrane protein 1 is a parasitized 
erythrocyte receptor for adherence to CD36, thrombospondin, and 
intercellular adhesion molecule 1. Proc.Natl.Acad.Sci.U.S.A 93, 3497. 

Baruch, D.I., Ma, X.C., Singh, H.B., Bi, X., Pasloske, B.L., Howard, R.J., 1997. 
Identification of a Region of PfEMP1 That Mediates Adherence of 
Plasmodium falciparum Infected Erythrocytes to CD36: Conserved 
Function With Variant Sequence. Blood 90, 3766-3775. 

Beavo, J.A., Hardman, J.G., Sutherland, E.W., 1970. Hydrolysis of cyclic 
guanosine and adenosine 3',5'-monophosphates by rat and bovine 
tissues. J.Biol.Chem. 245, 5649. 

Beavo, J.A., Reifsnyder, D.H., 1990. Primary sequence of cyclic nucleotide 
phosphodiesterase isozymes and the design of selective inhibitors. 
Trends Pharmacol.Sci. 11, 150. 



References 
 

 118 

Beeson, J.G., Rogerson, S.J., Cooke, B.M., Reeder, J.C., Chai, W., Lawson, 
A.M., Molyneux, M.E., Brown, G.V., 2000. Adhesion of Plasmodium 
falciparum-infected erythrocytes to hyaluronic acid in placental malaria. 
Nat Med 6, 86. 

Bender, A.T., Beavo, J.A., 2006. Cyclic Nucleotide Phosphodiesterases: 
Molecular Regulation to Clinical Use. Pharmacol Rev 58, 488-520. 

Berendt, A.R., Simmons, D.L., Tansey, J., Newbold, C.I., Marsh, K., 1989. 
Intercellular adhesion molecule-1 is an endothelial cell adhesion 
receptor for Plasmodium falciparum. Nature 341, 57. 

Biggs, B.A., Gooze, L., Wycherley, K., Wollish, W., Southwell, B., Leech, J.H., 
Brown, G.V., 1991. Antigenic variation in Plasmodium falciparum. 
Proc.Natl.Acad.Sci.U.S.A 88, 9171. 

Billker, O., Lindo, V., Panico, M., Etienne, A.E., Paxton, T., Dell, A., Rogers, 
M., Sinden, R.E., Morris, H.R., 1998. Identification of xanthurenic acid 
as the putative inducer of malaria development in the mosquito. Nature 
392, 289. 

Borst, P., Ulbert, S., 2001. Control of VSG gene expression sites. Mol 
Biochem Parasitol 114, 17-27. 

Boswell-Smith, V., Spina, D., Page, C.P., 2006. Phosphodiesterase inhibitors. 
Br.J.Pharmacol. 147 Suppl 1, S252. 

Braks, J.A.M., Franke-Fayard, B., Kroeze, H., Janse, C.J., Waters, A.P., 2006. 
Development and application of a positive-negative selectable marker 
system for use in reverse genetics in Plasmodium. Nucl. Acids Res. 34, 
e39-. 

Brockelman, C.R., 1982. Conditions favoring gametocytogenesis in the 
continuous culture of Plasmodium falciparum. J.Protozool. 29, 454. 

Buffet, P.A., Gamain, B., Scheidig, C., Baruch, D., Smith, J.D., Hernandez-
Rivas, R., Pouvelle, B., Oishi, S., Fujii, N., Fusai, T., Parzy, D., Miller, 
L.H., Gysin, J., Scherf, A., 1999. Plasmodium falciparum domain 
mediating adhesion to chondroitin sulfate A: A receptor for human 
placental infection. PNAS 96, 12743-12748. 

Calderwood, M.S., Gannoun-Zaki, L., Wellems, T.E., Deitsch, K.W., 2003. 
Plasmodium falciparum var Genes Are Regulated by Two Regions with 
Separate Promoters, One Upstream of the Coding Region and a 
Second within the Intron. J. Biol. Chem. 278, 34125-34132. 

Carlson, J., Wahlgren, M., 1992. Plasmodium falciparum erythrocyte rosetting 
is mediated by promiscuous lectin-like interactions. J. Exp. Med. 176, 
1311-1317. 

Carucci, D.J., Witney, A.A., Muhia, D.K., Warhurst, D.C., Schaap, P., Meima, 
M., Li, J.L., Taylor, M.C., Kelly, J.M., Baker, D.A., 2000. Guanylyl 
cyclase activity associated with putative bifunctional integral membrane 
proteins in Plasmodium falciparum. J.Biol.Chem. 275, 22147. 

Chen, P.Q., Li, G.Q., Guo, X.B., He, K.R., Fu, Y.X., Fu, L.C., Song, Y.Z., 1994. 
The infectivity of gametocytes of Plasmodium falciparum from patients 
treated with artemisinin. Chin Med J (Engl) 107, 709-711. 

Chen, Q., Barragan, A., Fernandez, V., Sundstrom, A., Schlichtherle, M., 
Sahlen, A., Carlson, J., Datta, S., Wahlgren, M., 1998a. Identification of 
Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as 
the rosetting ligand of the malaria parasite P. falciparum. J.Exp.Med. 
187, 15. 



References 
 

 119 

Chen, Q., Fernandez, V., Sundstrom, A., Schlichtherle, M., Datta, S., 
Hagblom, P., Wahlgren, M., 1998b. Developmental selection of var 
gene expression in Plasmodium falciparum. Nature 394, 392-395. 

Chen, Q., Heddini, A., Barragan, A., Fernandez, V., Pearce, S.F., Wahlgren, 
M., 2000. The semiconserved head structure of Plasmodium falciparum 
erythrocyte membrane protein 1 mediates binding to multiple 
independent host receptors. J.Exp.Med. 192, 1. 

Chookajorn, T., Dzikowski, R., Frank, M., Li, F., Jiwani, A.Z., Hartl, D.L., 
Deitsch, K.W., 2007. Epigenetic memory at malaria virulence genes. 
PNAS 104, 899-902. 

Christensen, S.T., Kemp, K., Quie, H., Rasmussen, L., 1996. Cell death, 
survival and proliferation in Trtrahymena thermophilia. Effects on 
insulin, sodium nitroprusside, 8-bromo cyclic GMP, NG-methyl-L-
arginine and methylene blue. Cell Biology International 20, 653. 

Corcoran, A.E., 2005. Immunoglobulin locus silencing and allelic exclusion. 
Semin Immunol 17, 141-154. 

Crabb, B.S., Cooke, B.M., Reeder, J.C., Waller, R.F., Caruana, S.R., Davern, 
K.M., Wickham, M.E., Brown, G.V., Coppel, R.L., Cowman, A.F., 
1997a. Targeted gene disruption shows that knobs enable malaria-
infected red cells to cytoadhere under physiological shear stress. Cell 
89, 287-296. 

Crabb, B.S., Triglia, T., Waterkeyn, J.G., Cowman, A.F., 1997b. Stable 
transgene expression in Plasmodium falciparum. Mol Biochem Parasitol 
90, 131-144. 

Cunha-Rodrigues, M., PrudÍncio, M., Mota, M.M., Haas, W., 2006. Antimalarial 
drugs - host targets (re)visited. Biotechnology Journal 1, 321-332. 

D'Angelo, M.A., Sanguineti, S., Reece, J.M., Birnbaumer, L., Torres, H.N., 
Flawia, M.M., 2004. Identification, characterization and subcellular 
localization of TcPDE1, a novel cAMP-specific phosphodiesterase from 
Trypanosoma cruzi. Biochem J 378, 63-72. 

Daubenberger, C.A., Tisdale, E.J., Curcic, M., Diaz, D., Silvie, O., Mazier, D., 
Eling, W., Bohrmann, B., Matile, H., Pluschke, G., 2003. The N'-terminal 
domain of glyceraldehyde-3-phosphate dehydrogenase of the 
apicomplexan Plasmodium falciparum mediates GTPase Rab2-
dependent recruitment to membranes. Biol Chem 384, 1227-1237. 

de Koning-Ward, T.F., Waters, A.P., Crabb, B.S., 2001. Puromycin-N-
acetyltransferase as a selectable marker for use in Plasmodium 
falciparum. Mol Biochem Parasitol 117, 155-160. 

Degen, R., Weiss, N., Beck, H.-P., 2000. Plasmodium falciparum: Cloned and 
Expressed CIDR Domains of PfEMP1 Bind to Chondroitin Sulfate A. 
Experimental Parasitology 95, 113. 

Deitsch, K.W., del Pinal, A., Wellems, T.E., 1999. Intra-cluster recombination 
and var transcription switches in the antigenic variation of Plasmodium 
falciparum. Mol.Biochem.Parasitol. 101, 107. 

Deitsch, K.W., Calderwood, M.S., Wellems, T.E., 2001. Malaria. Cooperative 
silencing elements in var genes. Nature 412, 875. 

Deitsch, K.W., Hviid, L., 2004. Variant surface antigens, virulence genes and 
the pathogenesis of malaria. Trends Parasitol. 20, 562. 



References 
 

 120 

Deng, W., Baker, D.A., 2002. A novel cyclic GMP-dependent protein kinase is 
expressed in the ring stage of the Plasmodium falciparum life cycle. 
Mol.Microbiol. 44, 1141. 

Desjardins, R.E., Canfield, C.J., Haynes, J.D., Chulay, J.D., 1979. Quantitative 
Assessment Of Anti-Malarial Activity Invitro By A Semiautomated 
Microdilution Technique. Antimicrobial Agents And Chemotherapy 16, 
710-718. 

Diaz-Benjumea, R., Laxman, S., Hinds, T.R., Beavo, J.A., Rascon, A., 2006. 
Characterization of a novel cAMP-binding, cAMP-specific cyclic 
nucleotide phosphodiesterase (TcrPDEB1) from Trypanosoma cruzi. 
Biochem J 399, 305-314. 

Dieckmann, A., Jung, A., 1986. The mechanism of pyrimethamine resistance 
in Plasmodium falciparum. Parasitology 93 (Pt 2), 275-278. 

Duraisingh, M.T., Triglia, T., Cowman, A.F., 2002. Negative selection of 
Plasmodium falciparum reveals targeted gene deletion by double 
crossover recombination. Int J Parasitol 32, 81-89. 

Duraisingh, M.T., Voss, T.S., Marty, A.J., Duffy, M.F., Good, R.T., Thompson, 
J.K., Freitas-Junior, L.H., Scherf, A., Crabb, B.S., Cowman, A.F., 2005. 
Heterochromatin Silencing and Locus Repositioning Linked to 
Regulation of Virulence Genes in Plasmodium falciparum. Cell 121, 13. 

Dyer, M., Day, K., 2000. Expression of Plasmodium falciparum trimeric G 
proteins and their involvement in switching to sexual development. 
Mol.Biochem.Parasitol. 110, 437. 

Dzikowski, R., Frank, M., Deitsch, K., 2006. Mutually Exclusive Expression of 
Virulence Genes by Malaria Parasites Is Regulated Independently of 
Antigen Production. PLoS Pathogens 2, e22. 

Eberharter, A., Becker, P.B., 2002. Histone acetylation: a switch between 
repressive and permissive chromatin. Second in review series on 
chromatin dynamics. EMBO Rep 3, 224-229. 

Eissenberg, J.C., Wallrath, L.L., 2003. Heterochromatin, position effects, and 
the genetic dissection of chromatin. Prog Nucleic Acid Res Mol Biol 74, 
275-299. 

Ferber, D., 2001. GENE THERAPY: Safer and Virus-Free? Science 294, 
1638-1642. 

Ferone, R., Burchall, J.J., Hitchings, G.H., 1969. Plasmodium berghei 
dihydrofolate reductase. Isolation, properties, and inhibition by 
antifolates. Mol Pharmacol 5, 49-59. 

Fidock, D.A., Wellems, T.E., 1997. Transformation with human dihydrofolate 
reductase renders malaria parasites insensitive to WR99210 but does 
not affect the intrinsic activity of proguanil. Proc Natl Acad Sci U S A 94, 
10931-10936. 

Fidock, D.A., Rosenthal, P.J., Croft, S.L., Brun, R., Nwaka, S., 2004. 
Antimalarial drug discovery: efficacy models for compound screening. 
Nat Rev Drug Discov 3, 509-520. 

Fitch, C.D., 2004. Ferriprotoporphyrin IX, phospholipids, and the antimalarial 
actions of quinoline drugs. Life Sci 74, 1957-1972. 

Foley, M., Ranford-Cartwright, L.C., Babiker, H.A., 1992. Rapid and simple 
method for isolating malaria DNA from fingerprick samples of blood. 
Mol Biochem Parasitol 53, 241-244. 



References 
 

 121 

Frank, M., Dzikowski, R., Costantini, D., Amulic, B., Berdougo, E., Deitsch, K., 
2006. Strict Pairing of var Promoters and Introns Is Required for var 
Gene Silencing in the Malaria Parasite Plasmodium falciparum. J. Biol. 
Chem. 281, 9942-9952. 

Franke-Fayard, B., Trueman, H., Ramesar, J., Mendoza, J., van der Keur, M., 
van der Linden, R., Sinden, R.E., Waters, A.P., Janse, C.J., 2004. A 
Plasmodium berghei reference line that constitutively expresses GFP at 
a high level throughout the complete life cycle. Molecular and 
Biochemical Parasitology 137, 23. 

Fredriksson, R., Schioth, H.B., 2005. The repertoire of G-protein-coupled 
receptors in fully sequenced genomes. Mol.Pharmacol. 67, 1414. 

Freitas-Junior, L.H., Bottius, E., Pirrit, L.A., Deitsch, K.W., Scheidig, C., 
Guinet, F., Nehrbass, U., Wellems, T.E., Scherf, A., 2000. Frequent 
ectopic recombination of virulence factor genes in telomeric 
chromosome clusters of P. falciparum. Nature 407, 1018. 

Freitas-Junior, L.H., Hernandez-Rivas, R., Ralph, S.A., Montiel-Condado, D., 
Ruvalcaba-Salazar, O.K., Rojas-Meza, A.P., Mancio-Silva, L., Leal-
Silvestre, R.J., Gontijo, A.M., Shorte, S., Scherf, A., 2005. Telomeric 
heterochromatin propagation and histone acetylation control mutually 
exclusive expression of antigenic variation genes in malaria parasites. 
Cell 121, 25. 

Fried, M., Duffy, P., 1996. Adherence of Plasmodium falciparum to chondroitin 
sulfate A in the human placenta. Science 

 272, 1502-1504. 
Fry, M., Beesley, J.E., 1991. Mitochondria of mammalian Plasmodium spp. 

Parasitology 102 Pt 1, 17-26. 
Fukumoto, S., Koyama, H., Hosoi, M., Yamakawa, K., Tanaka, S., Morii, H., 

Nishizawa, Y., 1999. Distinct Role of cAMP and cGMP in the Cell Cycle 
Control of Vascular Smooth Muscle Cells: cGMP Delays Cell Cycle 
Transition Through Suppression of Cyclin D1 and Cyclin-Dependent 
Kinase 4 Activation. Circ Res 85, 985-991. 

Furuya, E.Y., Lowy, F.D., 2006. Antimicrobial-resistant bacteria in the 
community setting. Nat Rev Microbiol 4, 36-45. 

Gabriel, B., Teissie, J., 1997. Direct observation in the millisecond time range 
of fluorescent molecule asymmetrical interaction with the 
electropermeabilized cell membrane. Biophys J 73, 2630-2637. 

Gannoun-Zaki, L., Jost, A., Mu, J., Deitsch, K.W., Wellems, T.E., 2005. A 
Silenced Plasmodium falciparum var Promoter Can Be Activated In 
Vivo through Spontaneous Deletion of a Silencing Element in the Intron. 
Eukaryotic Cell 4, 490-492. 

Garcia, G.E., Wirtz, R.A., Barr, J.R., Woolfitt, A., Rosenberg, R., 1998. 
Xanthurenic acid induces gametogenesis in Plasmodium, the malaria 
parasite. J.Biol.Chem. 273, 12003. 

Gardiner, D.L., Holt, D.C., Thomas, E.A., Kemp, D.J., Trenholme, K.R., 2000. 
Inhibition of Plasmodium falciparum clag9 gene function by antisense 
RNA. Molecular and Biochemical Parasitology 110, 33. 

Gardiner, D.L., Good, M.F., 2006. A case of `hit-and-run' in Plasmodium 
genetics. Trends in Parasitology 22, 493. 

Gardner, M.J., Hall, N., Fung, E., White, O., Berriman, M., Hyman, R.W., 
Carlton, J.M., Pain, A., Nelson, K.E., Bowman, S., Paulsen, I.T., James, 



References 
 

 122 

K., Eisen, J.A., Rutherford, K., Salzberg, S.L., Craig, A., Kyes, S., 
Chan, M.S., Nene, V., Shallom, S.J., Suh, B., Peterson, J., Angiuoli, S., 
Pertea, M., Allen, J., Selengut, J., Haft, D., Mather, M.W., Vaidya, A.B., 
Martin, D.M., Fairlamb, A.H., Fraunholz, M.J., Roos, D.S., Ralph, S.A., 
McFadden, G.I., Cummings, L.M., Subramanian, G.M., Mungall, C., 
Venter, J.C., Carucci, D.J., Hoffman, S.L., Newbold, C., Davis, R.W., 
Fraser, C.M., Barrell, B., 2002. Genome sequence of the human 
malaria parasite Plasmodium falciparum. Nature 419, 498. 

Gaur, D., Mayer, D.C., Miller, L.H., 2004. Parasite ligand-host receptor 
interactions during invasion of erythrocytes by Plasmodium merozoites. 
Int J Parasitol 34, 1413-1429. 

Gehl, J., 2003. Electroporation: theory and methods, perspectives for drug 
delivery, gene therapy and research. Acta Physiologica Scandinavica 
177, 437-447. 

Goonewardene, R., Daily, J., Kaslow, D., Sullivan, T.J., Duffy, P., Carter, R., 
Mendis, K., Wirth, D., 1993. Transfection of the malaria parasite and 
expression of firefly luciferase. Proc Natl Acad Sci U S A 90, 5234-
5236. 

Greenwood, B.M., Bojang, K., Whitty, C.J., Targett, G.A., 2005. Malaria. 
Lancet 365, 1487-1498. 

Griffith, F., 1928. The significance of pneumococcal types. J. Hyg. 27, 113–
159. 

Hanks, S.K., Quinn, A.M., Hunter, T., 1988. The protein kinase family: 
conserved features and deduced phylogeny of the catalytic domains. 
Science 241, 42-52. 

Harrison, T., Samuel, B.U., Akompong, T., Hamm, H., Mohandas, N., 
Lomasney, J.W., Haldar, K., 2003. Erythrocyte G protein-coupled 
receptor signaling in malarial infection. Science 301, 1734. 

Heussler, V., Doerig, C., 2006. In vivo imaging enters parasitology. Trends in 
Parasitology 22, 192. 

Hidaka, H., Endo, T., 1984. Selective inhibitors of three forms of cyclic 
nucleotide phosphodiesterase--basic and potential clinical applications. 
Adv.Cyclic.Nucleotide.Protein Phosphorylation.Res. 16, 245. 

Horrocks, P., Pinches, R., Christodoulou, Z., Kyes, S.A., Newbold, C.I., 2004. 
Variable var transition rates underlie antigenic variation in malaria. 
Proc.Natl.Acad.Sci.U.S.A 101, 11129. 

Inselburg, J., 1983. Stage-specific inhibitory effect of cyclic AMP on asexual 
maturation and gametocyte formation of Plasmodium falciparum. 
J.Parasitol. 69, 592. 

Jouin, H., Daher, W., Khalife, J., Ricard, I., Mercereau Puijalon, O., Capron, 
M., Dive, D., 2004. Double staining of Plasmodium falciparum nucleic 
acids with hydroethidine and thiazole orange for cell cycle stage 
analysis by flow cytometry. Cytometry Part A 57A, 34-38. 

Kaestli, M., Cortes, A., Lagog, M., Ott, M., Beck, H.P., 2004. Longitudinal 
assessment of Plasmodium falciparum var gene transcription in 
naturally infected asymptomatic children in Papua New Guinea. 
J.Infect.Dis. 189, 1942. 

Kappe, S.H., Gardner, M.J., Brown, S.M., Ross, J., Matuschewski, K., Ribeiro, 
J.M., Adams, J.H., Quackenbush, J., Cho, J., Carucci, D.J., Hoffman, 



References 
 

 123 

S.L., Nussenzweig, V., 2001. Exploring the transcriptome of the malaria 
sporozoite stage. Proc.Natl.Acad.Sci.U.S.A 98, 9895. 

Kappe, S.H., Buscaglia, C.A., Nussenzweig, V., 2004. Plasmodium sporozoite 
molecular cell biology. Annu.Rev.Cell Dev.Biol. 20, 29. 

Kaushal, D.C., Carter, R., Miller, L.H., Krishna, G., 1980. Gametocytogenesis 
by malaria parasites in continuous culture. Nature 286, 490. 

Kawamoto, F., Alejo-Blanco, R., Fleck, S.L., Kawamoto, Y., Sinden, R.E., 
1990. Possible roles of Ca2+ and cGMP as mediators of the 
exflagellation of Plasmodium berghei and Plasmodium falciparum. 
Mol.Biochem.Parasitol. 42, 101. 

Kawamoto, F., Fujioka, H., Murakami, R., Syafruddin, Hagiwara, M., Ishikawa, 
T., Hidaka, H., 1993. The roles of Ca2+/calmodulin- and cGMP-
dependent pathways in gametogenesis of a rodent malaria parasite, 
Plasmodium berghei. Eur.J.Cell Biol. 60, 101. 

Kessl, J.J., Hill, P., Lange, B.B., Meshnick, S.R., Meunier, B., Trumpower, 
B.L., 2004. Molecular basis for atovaquone resistance in Pneumocystis 
jirovecii modeled in the cytochrome bc(1) complex of Saccharomyces 
cerevisiae. J Biol Chem 279, 2817-2824. 

Khattab, A., Klinkert, M.-Q., Maurer's Clefts-Restricted Localization, 
Orientation and Export of a Plasmodium falciparum RIFIN. Traffic 0?-? 

Kokoris, M.S., Black, M.E., 2002. Characterization of Herpes Simplex Virus 
type 1 thymidine kinase mutants engineered for improved ganciclovir or 
acyclovir activity. Protein Sci 11, 2267-2272. 

Koonin, E.V., Makarova, K.S., Aravind, L., 2001. Horizontal gene transfer in 
prokaryotes: quantification and classification. Annu Rev Microbiol 55, 
709-742. 

Kraemer, S.M., Smith, J.D., 2006. A family affair: var genes, PfEMP1 binding, 
and malaria disease. Curr Opin Microbiol 9, 374-380. 

Kunz, S., Kloeckner, T., Essen, L.O., Seebeck, T., Boshart, M., 2004. 
TbPDE1, a novel class I phosphodiesterase of Trypanosoma brucei. 
Eur J Biochem 271, 637-647. 

Kunz, S., Oberholzer, M., Seebeck, T., 2005. A FYVE-containing unusual 
cyclic nucleotide phosphodiesterase from Trypanosoma cruzi. Febs J 
272, 6412-6422. 

Kyes, S., Pinches, R., Newbold, C., 2000. A simple RNA analysis method 
shows var and rif multigene family expression patterns in Plasmodium 
falciparum. Mol.Biochem.Parasitol. 105, 311. 

Kyes, S., Horrocks, P., Newbold, C., 2001. Antigenic variation at the infected 
red cell surface in malaria. Annu.Rev.Microbiol. 55, 673. 

Kyes, S., Christodoulou, Z., Pinches, R., Newbold, C., 2002. Stage-specific 
merozoite surface protein 2 antisense transcripts in Plasmodium 
falciparum. Mol.Biochem.Parasitol. 123, 79. 

Lambros, C., Vanderberg, J.P., 1979. Synchronization of Plasmodium 
falciparum erythrocytic stages in culture. J.Parasitol. 65, 418. 

Lavazec, C., Sanyal, S., Templeton, T.J., 2006. Hypervariability within the 
Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum. 
Nucl. Acids Res. 34, 6696-6707. 

Lawrence, J.G., Ochman, H., 2002. Reconciling the many faces of lateral gene 
transfer. Trends Microbiol 10, 1-4. 



References 
 

 124 

Le Roch, K.G., Zhou, Y., Blair, P.L., Grainger, M., Moch, J.K., Haynes, J.D., 
De, L.V., Holder, A.A., Batalov, S., Carucci, D.J., Winzeler, E.A., 2003. 
Discovery of gene function by expression profiling of the malaria 
parasite life cycle. Science 301, 1503. 

Leech, J.H., Barnwell, J.W., Miller, L.H., Howard, R.J., 1984. Identification of a 
strain-specific malarial antigen exposed on the surface of Plasmodium 
falciparum-infected erythrocytes. J.Exp.Med. 159, 1567. 

Li, J., Cox, L.S., 2000. Isolation and characterisation of a cAMP-dependent 
protein kinase catalytic subunit gene from Plasmodium falciparum. Mol 
Biochem Parasitol 109, 157-163. 

Looareesuwan, S., Harinasuta, T., Chongsuphajaisiddhi, T., 1992. Drug 
resistant malaria, with special reference to Thailand. Southeast Asian J 
Trop Med Public Health 23, 621-634. 

Looareesuwan, S., Viravan, C., Webster, H.K., Kyle, D.E., Hutchinson, D.B., 
Canfield, C.J., 1996. Clinical studies of atovaquone, alone or in 
combination with other antimalarial drugs, for treatment of acute 
uncomplicated malaria in Thailand. Am J Trop Med Hyg 54, 62-66. 

Lucas, J.Z., Sherman, I.W., 1998. Plasmodium falciparum:Thrombospondin 
Mediates Parasitized Erythrocyte Band 3-Related Adhesin Binding. 
Experimental Parasitology 89, 78. 

Lugnier, C., 2006. Cyclic nucleotide phosphodiesterase (PDE) superfamily: a 
new target for the development of specific therapeutic agents. 
Pharmacol.Ther. 109, 366. 

Maier, A.G., Rug, M., O'Neill M, T., Beeson, J.G., Marti, M., Reeder, J., 
Cowman, A., 2006. Skeleton Binding Protein 1 functions at the 
parasitophorous vacuole membrane to traffic PfEMP1 to the 
Plasmodium falciparum-infected erythrocyte surface. Blood. 

Mamoun, C.B., Gluzman, I.Y., Goyard, S., Beverley, S.M., Goldberg, D.E., 
1999. A set of independent selectable markers for transfection of the 
human malaria parasite Plasmodium falciparum. Proc Natl Acad Sci U 
S A 96, 8716-8720. 

Margarida Cunha-Rodrigues, M.P.M.M.M.W.H., 2006. Antimalarial drugs - 
host targets (re)visited. Biotechnology Journal 1, 321-332. 

Martin, S.K., Miller, L.H., Nijhout, M.M., Carter, R., 1978. Plasmodium 
gallinaceum: induction of male gametocyte exflagellation by 
phosphodiesterase inhibitors. Exp.Parasitol. 44, 239. 

McRobert, L., McConkey, G.A., 2002. RNA interference (RNAi) inhibits growth 
of Plasmodium falciparum. Molecular and Biochemical Parasitology 
119, 273. 

Mehier-Humbert, S., Guy, R.H., 2005. Physical methods for gene transfer: 
improving the kinetics of gene delivery into cells. Adv Drug Deliv Rev 
57, 733-753. 

Meshnick, S.R., 2002. Artemisinin: mechanisms of action, resistance and 
toxicity. Int J Parasitol 32, 1655-1660. 

Miller, L.H., Good, M.F., Milon, G., 1994. Malaria pathogenesis. Science 264, 
1878. 

Moll, K., Pettersson, F., Vogt, A.M., Jonsson, C., Rasti, N., Ahuja, S., 
Spangberg, M., Mercereau-Puijalon, O., Arnot, D.E., Wahlgren, M., 
Chen, Q., 2007. Generation of cross-protective antibodies against 
Plasmodium falciparum sequestration by immunization with an 



References 
 

 125 

erythrocyte membrane protein 1-duffy binding-like 1 alpha domain. 
Infect Immun 75, 211-219. 

Muhia, D.K., Swales, C.A., Deng, W., Kelly, J.M., Baker, D.A., 2001. The 
gametocyte-activating factor xanthurenic acid stimulates an increase in 
membrane-associated guanylyl cyclase activity in the human malaria 
parasite Plasmodium falciparum. Molecular Microbiology 42, 553-560. 

Muhia, D.K., Swales, C.A., Eckstein-Ludwig, U., Saran, S., Polley, S.D., Kelly, 
J.M., Schaap, P., Krishna, S., Baker, D.A., 2003. Multiple splice 
variants encode a novel adenylyl cyclase of possible plastid origin 
expressed in the sexual stage of the malaria parasite Plasmodium 
falciparum. J.Biol.Chem. 278, 22014. 

Navarro, M., Gull, K., 2001. A pol I transcriptional body associated with VSG 
mono-allelic expression in Trypanosoma brucei. Nature 414, 759. 

Neumann, E., Schaefer-Ridder, M., Wang, Y., Hofschneider, P.H., 1982. Gene 
transfer into mouse lyoma cells by electroporation in high electric fields. 
Embo J 1, 841-845. 

Nicholson, C.D., Challiss, R.A., Shahid, M., 1991. Differential modulation of 
tissue function and therapeutic potential of selective inhibitors of cyclic 
nucleotide phosphodiesterase isoenzymes. Trends Pharmacol.Sci. 12, 
19. 

Nijhout, M.M., Carter, R., 1978. Gamete development in malaria parasites: 
bicarbonate-dependent stimulation by pH in vitro. Parasitology 76, 39. 

O'Donnell, R.A., Freitas-Junior, L.H., Preiser, P.R., Williamson, D.H., 
Duraisingh, M., McElwain, T.F., Scherf, A., Cowman, A.F., Crabb, B.S., 
2002. A genetic screen for improved plasmid segregation reveals a role 
for Rep20 in the interaction of Plasmodium falciparum chromosomes. 
EMBO J. 21, 1231. 

Ockenhouse, C.F., Tegoshi, T., Maeno, Y., Benjamin, C., Ho, M., Kan, K.E., 
Thway, Y., Win, K., Aikawa, M., Lobb, R.R., 1992. Human vascular 
endothelial cell adhesion receptors for Plasmodium falciparum-infected 
erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and 
vascular cell adhesion molecule 1. J. Exp. Med. 176, 1183-1189. 

Ralph, S.A., Scheidig-Benatar, C., Scherf, A., 2005. Antigenic variation in 
Plasmodium falciparum is associated with movement of var loci 
between subnuclear locations. Proc.Natl.Acad.Sci.U.S.A 102, 5414. 

Rascon, A., Soderling, S.H., Schaefer, J.B., Beavo, J.A., 2002. Cloning and 
characterization of a cAMP-specific phosphodiesterase (TbPDE2B) 
from Trypanosoma brucei. Proc Natl Acad Sci U S A 99, 4714-4719. 

Read, L.K., Mikkelsen, R.B., 1991. Comparison of adenylate cyclase and 
cAMP-dependent protein kinase in gametocytogenic and 
nongametocytogenic clones of Plasmodium falciparum. J.Parasitol. 77, 
346. 

Reardon, J.E., 1989. Herpes simplex virus type 1 and human DNA 
polymerase interactions with 2'-deoxyguanosine 5'-triphosphate 
analogues. Kinetics of incorporation into DNA and induction of 
inhibition. J. Biol. Chem. 264, 19039-19044. 

Reeder, J.C., Cowman, A.F., Davern, K.M., Beeson, J.G., Thompson, J.K., 
Rogerson, S.J., Brown, G.V., 1999. The adhesion of Plasmodium 
falciparum-infected erythrocytes to chondroitin sulfate A is mediated by 
P. falciparum erythrocyte membrane protein 1. PNAS 96, 5198-5202. 



References 
 

 126 

Robert, C., Pouvelle, B., Meyer, P., Muanza, K., Fujioka, H., Aikawa, M., 
Scherf, A., Gysin, J., 1995. Chondroitin-4-sulphate (proteoglycan) a 
receptor for Plasmodium falciparum-infected erythrocyte adherence on 
brain microvascular endothelial cells. Research in Immunology 146, 
383. 

Roberts, D.D., Sherwood, J.A., Spitalnik, S.L., Panton, L.J., Howard, R.J., 
Dixit, V.M., Frazier, W.A., Miller, L.H., Ginsburg, V., 1985. 
Thrombospondin binds falciparum malaria parasitized erythrocytes and 
may mediate cytoadherence. Nature 318, 64. 

Roberts, D.J., Craig, A.G., Berendt, A.R., Pinches, R., Nash, G., Marsh, K., 
Newbold, C.I., 1992. Rapid switching to multiple antigenic and adhesive 
phenotypes in malaria. Nature 357, 689. 

Rogerson, S.J., Tembenu, R., Dobano, C., Plitt, S., Taylor, T.E., Molyneux, 
M.E., 1999. Cytoadherence characteristics of Plasmodium falciparum-
infected erythrocytes from Malawian children with severe and 
uncomplicated malaria. Am J Trop Med Hyg 61, 467-472. 

Rowe, J.A., Moulds, J.M., Newbold, C.I., Miller, L.H., 1997. P. falciparum 
rosetting mediated by a parasite-variant erythrocyte membrane protein 
and complement-receptor 1. Nature 388, 292. 

Rowe, J.A., Kyes, S.A., Rogerson, S.J., Babiker, H.A., Raza, A., 2002. 
Identification of a conserved Plasmodium falciparum var gene 
implicated in malaria in pregnancy. J Infect Dis 185, 1207-1211. 

Rowe, J.A., Kyes, S.A., 2004. The role of Plasmodium falciparum var genes in 
malaria in pregnancy. Mol.Microbiol. 53, 1011. 

Salanti, A., Staalsoe, T., Lavstsen, T., Jensen, A.T., Sowa, M.P., Arnot, D.E., 
Hviid, L., Theander, T.G., 2003. Selective upregulation of a single 
distinctly structured var gene in chondroitin sulphate A-adhering 
Plasmodium falciparum involved in pregnancy-associated malaria. Mol 
Microbiol 49, 179-191. 

Scherf, A., Hernandez-Rivas, R., Buffet, P., Bottius, E., Benatar, C., Pouvelle, 
B., Gysin, J., Lanzer, M., 1998. Antigenic variation in malaria: in situ 
switching, relaxed and mutually exclusive transcription of var genes 
during intra-erythrocytic development in Plasmodium falciparum. EMBO 
J. 17, 5418. 

Shirley, M.W., Biggs, B.A., Forsyth, K.P., Brown, H.J., Thompson, J.K., Brown, 
G.V., Kemp, D.J., 1990. Chromosome 9 from independent clones and 
isolates of Plasmodium falciparum undergoes subtelomeric deletions 
with similar breakpoints in vitro. Molecular and Biochemical 
Parasitology 40, 137. 

Siano, J.P., Grady, K.K., Millet, P., Wick, T.M., 1998. Short report: 
Plasmodium falciparum: cytoadherence to alpha(v)beta3 on human 
microvascular endothelial cells. Am J Trop Med Hyg 59, 77-79. 

Sinden, R.E., 1983. Sexual development of malarial parasites. Adv.Parasitol. 
22, 153. 

Skinner, T.S., Manning, L.S., Johnston, W.A., Davis, T.M., 1996. In vitro 
stage-specific sensitivity of Plasmodium falciparum to quinine and 
artemisinin drugs. Int J Parasitol 26, 519-525. 

Smith, J.D., Chitnis, C.E., Craig, A.G., Roberts, D.J., Hudson-Taylor, D.E., 
Peterson, D.S., Pinches, R., Newbold, C.I., Miller, L.H., 1995. Switches 
in expression of Plasmodium falciparum var genes correlate with 



References 
 

 127 

changes in antigenic and cytoadherent phenotypes of infected 
erythrocytes. Cell 82, 101. 

Smith, J.D., Craig, A.G., Kriek, N., Hudson-Taylor, D., Kyes, S., Fagen, T., 
Pinches, R., Baruch, D.I., Newbold, C.I., Miller, L.H., 2000. Identification 
of a Plasmodium falciparum intercellular adhesion molecule-1 binding 
domain: a parasite adhesion trait implicated in cerebral malaria. 
Proc.Natl.Acad.Sci.U.S.A 97, 1766. 

Smith, J.D., Gamain, B., Baruch, D.I., Kyes, S., 2001. Decoding the language 
of var genes and Plasmodium falciparum sequestration. Trends 
Parasitol. 17, 538. 

Snow, R.W., Guerra, C.A., Noor, A.M., Myint, H.Y., Hay, S.I., 2005. The global 
distribution of clinical episodes of Plasmodium falciparum malaria. 
Nature 434, 214-217. 

Spassova, M., Tsoneva, I., Petrov, A.G., Petkova, J.I., Neumann, E., 1994. 
Dip patch clamp currents suggest electrodiffusive transport of the 
polyelectrolyte DNA through lipid bilayers. Biophys Chem 52, 267-274. 

Spycher, C., Klonis, N., Spielmann, T., Kump, E., Steiger, S., Tilley, L., Beck, 
H.-P., 2003. MAHRP-1, a Novel Plasmodium falciparum Histidine-rich 
Protein, Binds Ferriprotoporphyrin IX and Localizes to the Maurer's 
Clefts. J. Biol. Chem. 278, 35373-35383. 

Srivastava, I.K., Rottenberg, H., Vaidya, A.B., 1997. Atovaquone, a broad 
spectrum antiparasitic drug, collapses mitochondrial membrane 
potential in a malarial parasite. J Biol Chem 272, 3961-3966. 

Su, X.Z., Heatwole, V.M., Wertheimer, S.P., Guinet, F., Herrfeldt, J.A., 
Peterson, D.S., Ravetch, J.A., Wellems, T.E., 1995. The large diverse 
gene family var encodes proteins involved in cytoadherence and 
antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 
82, 89. 

Sukharev, S.I., Klenchin, V.A., Serov, S.M., Chernomordik, L.V., Chizmadzhev 
Yu, A., 1992. Electroporation and electrophoretic DNA transfer into 
cells. The effect of DNA interaction with electropores. Biophys J 63, 
1320-1327. 

Sutherland, E.W., Rall, T.W., 1958. Fractionation and characterization of a 
cyclic adenine ribonucleotide formed by tissue particles. J.Biol.Chem. 
232, 1077. 

Syin, C., Parzy, D., Traincard, F., Boccaccio, I., Joshi, M.B., Lin, D.T., Yang, 
X.-M., Assemat, K., Doerig, C., Langsley, G., 2001. The H89 cAMP-
dependent protein kinase inhibitor blocks Plasmodium falciparum 
development in infected erythrocytes. European Journal of 
Biochemistry 268, 4842-4849. 

Taylor, H.M., Kyes, S.A., Harris, D., Kriek, N., Newbold, C.I., 2000. A study of 
var gene transcription in vitro using universal var gene primers. 
Mol.Biochem.Parasitol. 105, 13. 

Teissie, J., Rols, M.P., 1994. Manipulation of cell cytoskeleton affects the 
lifetime of cell membrane electropermeabilization. Ann N Y Acad Sci 
720, 98-110. 

Thompson, J.D., Higgins, D.G., Gibson, T.J., 1994. CLUSTAL W: improving 
the sensitivity of progressive multiple sequence alignment through 
sequence weighting, position-specific gap penalties and weight matrix 
choice. Nucleic Acids Res 22, 4673-4680. 



References 
 

 128 

Trager, W., Jensen, J.B., 1976. Human malaria parasites in continuous 
culture. Science 193, 673. 

Trager, W., Gill, G.S., 1989. Plasmodium falciparum gametocyte formation in 
vitro: its stimulation by phorbol diesters and by 8-bromo cyclic 
adenosine monophosphate. J.Protozool. 36, 451. 

Treutiger, C.J., Heddini, A., Fernandez, V., Muller, W.A., Wahlgren, M., 1997. 
PECAM-1/CDS31, an endothelial receptor for binding Plasmodium 
falciparum-infected erythrocytes. Nat Med 3, 1405. 

Udomsangpetch, R., Reinhardt, P.H., Schollaardt, T., Elliott, J.F., Kubes, P., 
Ho, M., 1997. Promiscuity of clinical Plasmodium falciparum isolates for 
multiple adhesion molecules under flow conditions. J Immunol 158, 
4358-4364. 

Ullu, E., Tschudi, C., Chakraborty, T., 2004. RNA interference in protozoan 
parasites. Cellular Microbiology 6, 509-519. 

van den Hoff, M.J., Moorman, A.F., Lamers, W.H., 1992. Electroporation in 
'intracellular' buffer increases cell survival. Nucleic Acids Res 20, 2902. 

van der Heyde, H.C., Elloso, M.M., vande Waa, J., Schell, K., Weidanz, W.P., 
1995. Use of hydroethidine and flow cytometry to assess the effects of 
leukocytes on the malarial parasite Plasmodium falciparum. Clin Diagn 
Lab Immunol 2, 417-425. 

Vazquez-Macias, A., Martinez-Cruz, P., Castaneda-Patlan, M.C., Scheidig, C., 
Gysin, J., Scherf, A., Hernandez-Rivas, R., 2002. A distinct 5' flanking 
var gene region regulates Plasmodium falciparum variant erythrocyte 
surface antigen expression in placental malaria. Mol.Microbiol. 45, 155. 

Vennerstrom, J.L., Arbe-Barnes, S., Brun, R., Charman, S.A., Chiu, F.C.K., 
Chollet, J., Dong, Y., Dorn, A., Hunziker, D., Matile, H., McIntosh, K., 
Padmanilayam, M., Santo Tomas, J., Scheurer, C., Scorneaux, B., 
Tang, Y., Urwyler, H., Wittlin, S., Charman, W.N., 2004. Identification of 
an antimalarial synthetic trioxolane drug development candidate. Nature 
430, 900. 

Viebig, N.K., Gamain, B., Scheidig, C., Lepolard, C., Przyborski, J., Lanzer, 
M., Gysin, J., Scherf, A., 2005. A single member of the Plasmodium 
falciparum var multigene family determines cytoadhesion to the 
placental receptor chondroitin sulphate A. EMBO Rep 6, 775-781. 

Voss, T.S., Thompson, J.K., Waterkeyn, J., Felger, I., Weiss, N., Cowman, 
A.F., Beck, H.P., 2000. Genomic distribution and functional 
characterisation of two distinct and conserved Plasmodium falciparum 
var gene 5' flanking sequences. Mol.Biochem.Parasitol. 107, 103. 

Voss, T.S., Kaestli, M., Vogel, D., Bopp, S., Beck, H.-P., 2003. Identification of 
nuclear proteins that interact differentially with Plasmodium falciparum 
var gene promoters. Molecular Microbiology 48, 1593-1607. 

Voss, T.S., Healer, J., Marty, A.J., Duffy, M.F., Thompson, J.K., Beeson, J.G., 
Reeder, J.C., Crabb, B.S., Cowman, A.F., 2006. A var gene promoter 
controls allelic exclusion of virulence genes in Plasmodium falciparum 
malaria. Nature 439, 1004-1008. 

Waller, R.F., Reed, M.B., Cowman, A.F., McFadden, G.I., 2000. Protein 
trafficking to the plastid of Plasmodium falciparum is via the secretory 
pathway. Embo J 19, 1794-1802. 



References 
 

 129 

Ward, P., Equinet, L., Packer, J., Doerig, C., 2004. Protein kinases of the 
human malaria parasite Plasmodium falciparum: the kinome of a 
divergent eukaryote. BMC Genomics 5, 79. 

Watson, J.D., Crick, F.H., 1953. Genetical implications of the structure of 
deoxyribonucleic acid. Nature 171, 964-967. 

Weber, J.H., Vishnyakov, A., Hambach, K., Schultz, A., Schultz, J.E., Linder, 
J.U., 2004. Adenylyl cyclases from Plasmodium, Paramecium and 
Tetrahymena are novel ion channel/enzyme fusion proteins. Cell 
Signal. 16, 115. 

Wedel, B., Garbers, D., 2001. The guanylyl cyclase family at Y2K. 
Annu.Rev.Physiol 63, 215. 

White, N.J., 1997. Assessment of the pharmacodynamic properties of 
antimalarial drugs in vivo. Antimicrob. Agents Chemother. 41, 1413-
1422. 

Whitten, M.M.A., Shiao, S.H., Levashina, E.A., 2006. Mosquito midguts and 
malaria: cell biology, compartmentalization and immunology. Parasite 
Immunology 28, 121-130. 

Wickham, M.E., Rug, M., Ralph, S.A., Klonis, N., McFadden, G.I., Tilley, L., 
Cowman, A.F., 2001. Trafficking and assembly of the cytoadherence 
complex in Plasmodium falciparum-infected human erythrocytes. Embo 
J 20, 5636-5649. 

Wiersma, H.I., Galuska, S.E., Tomley, F.M., Sibley, L.D., Liberator, P.A., 
Donald, R.G., 2004. A role for coccidian cGMP-dependent protein 
kinase in motility and invasion. Int J Parasitol 34, 369-380. 

Wirth, D.F., 2002. The parasite genomeBiological revelations. Nature 419, 
495. 

Wongsrichanalai, C., Pickard, A.L., Wernsdorfer, W.H., Meshnick, S.R., 2002. 
Epidemiology of drug-resistant malaria. Lancet Infect Dis 2, 209-218. 

Wu, Y., Sifri, C.D., Lei, H.H., Su, X.Z., Wellems, T.E., 1995. Transfection of 
Plasmodium falciparum within human red blood cells. 
Proc.Natl.Acad.Sci.U.S.A 92, 973. 

Wu, Y., Kirkman, L.A., Wellems, T.E., 1996. Transformation of Plasmodium 
falciparum malaria parasites by homologous integration of plasmids that 
confer resistance to pyrimethamine. Proc.Natl.Acad.Sci.U.S.A 93, 1130. 

Xiao, L., Yang, C., Dorovini-Zis, K., Tandon, N.N., Ades, E.W., Lal, A.A., 
Udhayakumar, V., 1996. Plasmodium falciparum:Involvement of 
Additional Receptors in the Cytoadherence of Infected Erythrocytes to 
Microvascular Endothelial Cells. Experimental Parasitology 84, 42. 

Yuasa, K., Mi-Ichi, F., Kobayashi, T., Yamanouchi, M., Kotera, J., Kita, K., 
Omori, K., 2005. PfPDE1, a novel cGMP-specific phosphodiesterase 
from the human malaria parasite Plasmodium falciparum. Biochem.J. 
392, 221. 

Zeilig, C.E., Goldberg, N.D., 1977. Cell-Cycle-Related Changes of 3':5'-Cyclic 
GMP Levels in Novikoff Hepatoma Cells. PNAS 74, 1052-1056. 

Zhang, K., Rathod, P.K., 2002. Divergent regulation of dihydrofolate reductase 
between malaria parasite and human host. Science 296, 545. 

Zhang, Y., Meshnick, S.R., 1991. Inhibition of Plasmodium falciparum 
dihydropteroate synthetase and growth in vitro by sulfa drugs. 
Antimicrob Agents Chemother 35, 267-271. 



References 
 

 130 

Zoraghi, R., Kunz, S., Gong, K., Seebeck, T., 2001. Characterization of 
TbPDE2A, a Novel Cyclic Nucleotide-specific Phosphodiesterase from 
the Protozoan Parasite Trypanosoma brucei. J. Biol. Chem. 276, 
11559-11566. 

Zoraghi, R., Seebeck, T., 2002. The cAMP-specific phosphodiesterase 
TbPDE2C is an essential enzyme in bloodstream form Trypanosoma 
brucei. Proc Natl Acad Sci U S A 99, 4343-4348. 

 
 
 
 
 
 
 
 
 



Curriculum vitae 
 

 131 

Curriculum vitae 

Name Selina Elisabeth Ruth BOPP 
 

Date and Place 
of Birth 

March 12, 1976 
Basel, Switzerland 
 

Citizenship Swiss 
 

Private 
address 

Giornicostrasse 251  
4059 Basel 
Switzerland 
  

 Phone:  +41 61 361 8923 
 Email: Selina.bopp@gmail.com 
   
Affiliation Swiss Tropical Institute, Socinstr. 57, 4051 Basel, 

Switzerland 
Phone: +41 61 284 8286, Fax: +41 61 284 8101 
Web: www.sti.ch 

Education 
 

 

1997 - 2003 University of Basel, Switzerland, major: molecular 
parasitology 
 

2000 Practical training in insect ecology: The influence of both 
male and female mosquito size of Anopheles gambiae on 
mating success. ICIPE (International Center of Insect 
Physiology and Ecology) Malaria Vector Program, Mbita 
Point Research and Training Centre, Kenya. 
Supervisor:  Dr. Bart Knols 
 

2002-2003 Diploma in molecular parasitology: Silencing in 
Plasmodium falciparum var genes 
Molecular Parasitology, Swiss Tropical Institute, Basel, 
Switzerland. 
Supervisor: Prof. Dr. Hans Peter Beck 
 

2003-2007 PhD in microbiology: Plasmodium falciparum transfection 
technology for the analysis of var gene regulation and 
knockout investigation 
Molecular Parasitology, Swiss Tropical Institute, Basel, 
Switzerland. 
Supervisor: Prof. Dr. Hans Peter Beck 
 

 
 



Curriculum vitae 
 

 132 

Presentations 
 
2002 Annual Congress of the Swiss Society of tropical Medicine and 

Parasitology (SSTMP), Bern, Switzerland 
Talk: Silencing of Plasmodium falciparum var genes.  
 

2003 PhD student meeting of the Swiss Society of Tropical Medicine 
and Parasitology, Munchenwiler, Switzerland. 
Talk: Silencing of Plasmodium falciparum var genes. 
 

2004 Interaction seminar of the evolutionary biology group, Basel, 
Switzerland 
Talk: Progress report of my PhD thesis. 
 

2004 Joint meeting of the ‘Deutsche Gesellschaft für Tropenmedizin 
und Internationale Gesundheit’ and the Swiss Society of 
Tropical Medicine and Parasitology, Wurzburg, Germany. 
Talk: Silencing of Plasmodium falciparum var genes. 
 

2005 Molecular Parasitology Meeting IX, Woods Hole, USA. 
Poster: Silencing in Plasmodium falciparum var genes - 
searching for an interaction site for the var intron in the var 
upstream region. 
 

2005 PhD student meeting of the Swiss Society of Tropical Medicine 
and Parasitology, Ascona, Switzerland. 
Talk: Silencing in Plasmodium falciparum var genes - searching 
for an interaction site for the var intron in the var upstream 
region. 
 

2005 Annual Congress of the Swiss Society of tropical Medicine and 
Parasitology (SSTMP), Ascona, Switzerland 
Poster: Silencing in Plasmodium falciparum var genes - 
searching for an interaction site for the var intron in the var 
upstream region. 
 

2006 Annual workshop of the COST-European Cooperation in the 
field of Scientific and Technical Research, Dresden, Germany.  
Talk: Silencing in Plasmodium falciparum var genes - searching 
for an interaction site for the var intron in the var upstream 
region. 
 

2006 Research seminar, Swiss Tropical Institute, Basel, Switzerland. 
Talk: Silencing in Plasmodium falciparum var genes - searching 
for an interaction site for the var intron in the var upstream 
region 
 

   



Curriculum vitae 
 

 133 

Publications 
 
2003 Voss TS, Kaestli M, Vogel D, Bopp S, Beck HP.  

Identification of nuclear proteins that interact differentially with 
Plasmodium falciparum var gene promoters 
Mol Microbiol. 2003 Jun; 48(6): 1593-607. 
 

2007 Bopp S, Wentzinger L, Beck HP, Seebeck T. 
Characterization of a phosphodiesterase gene deletion in 
Plasmodium falciparum. 
Manuscript in preparation.  
 

2007 Bopp S, Dzikowsky R, Deitsch K, Beck HP. 
Identification of var gene upstream regulation sites 
Manuscript in preparation  
 

Laboratory Skills 
 
Designing and cloning of expression vectors in bacteria and Plasmodium 
Basic immunoassays (Northern, Southern and Western blotting, IFA) 
FACS analysis 
Luciferase assay 
Cultivation and transfection of P. falciparum blood-stage forms 
 
Computer Skills 
 
Mac OS, Windows, MS Office, Adobe Photoshop and Illustrator, 
CloneManager, EndNote 
  
Languages 
 

 

Fluent in German, English and French 
  
References Prof. Dr. Hans Peter Beck 

Swiss Tropical Institute, Switzerland 
Phone: +41 61 284 8116 
Email: hans-peter.beck@unibas.ch 
 

 Prof. Dr. Marcel Tanner 
Director of the Swiss Tropical Institute, Switzerland 
Phone: +41 61 284 8287 
Email: marcel.tanner@unibas.ch 
 

 Prof. Dr. Thomas Seebeck 
Institute of Cell Biology, University of Bern, Switzerland 
Phone: +41 31 631 4616 
Email: thomas.seebeck@izb.unibe.ch 
 



Curriculum vitae 
 

 134 

 Dr David A. Baker 
Department of Infectious and Tropical Diseases, London 
School of Hygiene and Tropical Medicine, London, UK 
Phone: +44 (0)20 7927 2664 or 2326 
Email david.baker@lshtm.ac.uk 
 

  
During my studies I attended lectures by the following lecturers: 
  
 T. Bolliger, C. Körner, J. Stöcklin, H. Schneider, H. Siegel, H. 

Imhof, U. Sequin, H.P. Hauri, U. Jenal, T. Bickle, D. Senn, P. 
Oelhafen, G. Schatz, W. Gehrig, L. Lüdin, L. Jenni, N. 
Weiss, M. Tanner, R. Brun, S. Stearns, D. Ebert, H. 
Burkhart, G. Pluschke, C. Daubenberger, H.P. beck, I. 
Felger, B. Bruderer, A. Ehrhardt. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Appendix 
 

 135 

 

 

 

 

Appendix: Identification of nuclear proteins that 

interact differentially with Plasmodium falciparum var 

gene promoters 

 

Till S. Voss1, Mirjam Kaestli2, Denise Vogel3, Selina Bopp2, and Hans-
Peter Beck2 

 
Affiliation of authors: 

 
1 The Walter and Eliza Hall Institute of Medical Research, Division of Infection 
and Immunity, 1G RoyalParade, Parkville, Victoria 3050, Australia.  
 
2 Swiss Tropical Institute, Department of Medical Parasitology and Infection 

Biology,  

Socinstrasse 57, CH-4051 Basel, Switzerland 

 
3 Institute of Molecular Biology, University of Zurich,  

Winterthurerstrasse 190, 8057 Zurich, Switzerland 

 

 

 

Published in Molecular Microbiology (2003) 48;(6). 1593-1607 

 



Appendix 
 

 136 

 



Appendix 
 

 137 



Appendix 
 

 138 



Appendix 
 

 139 



Appendix 
 

 140 



Appendix 
 

 141 



Appendix 
 

 142 



Appendix 
 

 143 



Appendix 
 

 144 



Appendix 
 

 145 



Appendix 
 

 146 



Appendix 
 

 147 



Appendix 
 

 148 



Appendix 
 

 149 



Appendix 
 

 150 

 

 


