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Introduction 
 

1 Introduction 

1.1 Heme Proteins 

 

All over aerobic life on earth heme proteins play an essential role in accomplishing a vast 

variety of physiological functions. A common feature of all of these proteins is an iron(III) 

protoporphyrin IX cofactor (heme b (figure 1)) in the active site.  
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Figure 1: Iron (III) protoporphyrin IX (heme b) 

 

The iron center of this moiety is coordinated by further ligands from the amino acid backbone 

varying from imidazole of Histidine in proteins such as haemoglobin and myoglobin, 

peroxidases and cytochrome c Oxidase, over tyrosine phenolate in catalase to cystein thiolate 

in cytochromes P450, Chloroperoxidase and Nitric oxide Synthase. In virtue of the nature of 

these additional ligands and the protein residues and architecture in the active site heme 

proteins gain their ability for exceptional diversity in functionality. Within the vast variety of 

enzymes mentioned, this work will mainly focus on the thiolate ligated enzyme family of 

cytochromes P450 participating in oxidative transformation of substrates using molecular 

oxygen. 

 

1.2 The P450 Super-Family 

 

The discovery of cytochromes P450 started in the late 1950s when pigments of liver 

microsomes were isolated that displayed a strong absorption band at λ = 450 nm in the visible 

spectrum for the reduced form in the presence of carbon monoxyde.1,2 This characteristic 

band also gave name to the “P450” and originates from the CO-complex of iron(II)-

protoporphyrin IX in the active site. (figure 2) 
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Figure 2: CO-complex of ferrous thiolate coordinated heme b 

 

Ever since these findings a huge number of different P450 enzymes have been identified 

throughout all lifeforms,3 from mammals, plants and fungi to bacteria, where they catalyse a 

huge variety of transformations. They therein vary strongly in substrate specificity from very 

selective P450s active in the biosynthesis of steroid hormones to P450s with a very broad 

substrate tolerance e.g. catalysing hydroxylation of exogenous substances in liver tissue 

thereby rendering them more water soluble and therefore better excretable.  

P450s can catalyse reactions such as epoxidation of alkenes, heteroatom-dealkylation and -

oxidation, hydrocarbon hydroxylation and carbon-carbon bond cleavage (figure 3).4 
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Figure 3: P450-catalysed reactions 
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In all these transformations, the P450s use molecular oxygen of which they incorporate only 

one oxygen atom into the substrate R (monooxygenase reaction). The required electrons for 

the generation of the active species (outlined in the catalytic cycle later on) are transferred 

from NAD(P)H to get an overall reaction as outlined in equation (1). 

 

R + O2 + NAD(P)H + 2H+   →   R-O + H2O + NAD(P)+       (1) 

 

Cytochrome P450 have initially been classified according to the electron-transfer proteins 

which supply the oxygenase protein with electrons from NAD(P)H.5  

 

Class I: most mitochondrial and bacterial P450s use a three protein arrangement in which 

electrons are transferred from NAD(P)H via a FAD containing flavoprotein reductase and an 

iron-sulfur (Fe2S2) protein to the heme protein (figure 4). One of the best known and most 

studied members of this class is P450cam, a soluble cytosolic P450 isolated from soil 

bacterium Pseudomonas Putida which hydroxylates camphor stereoselectively as a first of 

several steps in energy supply. Being soluble and therefore handled rather easily compared to 

its membrane bound eukaryotic counterparts it has become the very prototype for P450s and 

has played a key role in elucidation of fundamental properties of P450s. It also was the first 

P450 to give a high-resolution X-ray structure.6 

NAD(P)H

NAD(P)+

R + O2 + 2H+

R-O + H2O

P450 
Oxygenase

FAD

FADH2

[Fe-S]red

[Fe-S]ox

iron-sulfur
protein

Flavoprotein 
reductase

 
Figure 4: Electron transport in Class I P450s. 

 

Class II: microsomal P450s are provided with electrons through a FAD-and FMN-containing 

reductase, where electrons from NAD(P)H are first transferred to FAD and afterwards 

consecutively donated to the oxygenase by FMN (figure 5). The first bacterial P450 

characterized to be a class II P450 was P450BM-3
7 isolated from Bacillus megaterium. In this 

enzyme the reductase- and heme-domain are fused as a self sufficient cytosolic fatty acid 
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hydroxylase. Due to similarity in the electron delivery system to mammal P450s, P50BM-3 has 

become a well studied model system.8 
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P450 
Oxygenase
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Figure 5: Electron transport in Class II P450s. 

 

There are two more classes of P450s, Class III and Class IV which do not require any 

additional electron transport system as they react with peroxide-substrates in the first case 

(e.g. allen oxide synthase, thromboxane synthase)9,10 or obtain their electrons from reduced 

pyridine-nucleotides in the latter (e.g. P450nor).11 

 

Nomenclature of P450s was originally organized according to their physiological function. 

E.g. earlier mentioned P450cam, hydroxylating camphor or a P450 involved in the cleavage of 

a side chain in steroid hormone synthesis called P450scc (side chain cleavage).  

Nowadays,12 P450s are classified according to the degree of similarity in their amino acid 

sequences. Going from the super-family (CYP) containing all known P450s, P450s branch 

into families (≥ 40% similarity) and subfamilies (≥ 55% similarity). Leading to systematical 

names such as e.g. CYP 11A1 for P450scc being member 1 of subfamily 11A of family 11. 

 

1.3 The Catalytic Cycle of Cytochromes P450 

 

Spectroscopic and crystallographic investigations on P450s (particularly on P450cam), as well 

as mechanistic studies applying labelled substrates and substrate analogues together with 

appliance of chemical model compounds have led to a consensus mechanism on the catalytic 

cycle of the cytochromes P45013 displayed in scheme 1. Nevertheless several aspects of P450 

mechanisms are still elusive and subject to broad debate. 
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Scheme 1: Catalytic cycle of cytochromes P450 

 

 

The catalytic cycle is entered upon substrate binding to P450. This causes a shift in spin 

equilibrium from predominantly low spin in the resting state (1) to high spin in the substrate 

bound form (2). (The relative energy of orbitals and therefore spin state of the iron center 

atom strongly depends on coordinating ligands; see figure 6 for a schematic illustration of 

possible electron distributions leading to different spin states in iron(III)-porphyrins.)  
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Figure 6: Possible distributions of the five d-electrons in FeIII-porphyrins leading to low spin (LS), intermediate 

spin (IS) or high spin (HS) configuration. 
 

 

This modification in spin state alters the redox potential of the metal center from Eo = -300 to 

-170 mV (vs. SHE), enabling electron transfer from the reductase and thus triggering the 

catalytic cycle. This remarkable tuning of redox potentials prevents entrance into the cycle 

and generation of active species in the absence of substrate. 

In a second step one electron is donated to reduce the iron of the cofactor from the ferric 

(FeIII) to the ferrous (FeII) form (3). Which can coordinate dioxygen to form a dioxygen 

adduct (4). Resonance Raman14 and Mössbauer15 spectroscopy both support the view of this 

intermediate as being a ferric superoxide (FeIII-O2
-●). The next step, donation of a second 

electron, being the rate limiting step in the catalytic cycle, all further intermediates have 

eluded direct detection so far and are hence still subject of debate. Studies on peroxidases 

have identified a green high valent iron oxo species, compound I (CpdI) (5) as the reactive 

species. Studies on P450s with external oxidants using the so-called “shunt pathway” (figure 

7), as well as extensive studies on model compounds and theoretical approaches support a 

similar electrophilic species to be the active species in P450s. The latter is formed via double 

protonation of the intermediately formed iron (III)-peroxo complex (6) to form an iron (III) –

hydroperoxo complex (7), also referred to as compound 0 (Cpd0), after the first protonation, 

and heterolytic cleavage of the O-O bond after second protonation to form water and (5). The 
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so formed reactive species then oxidizes the bound substrate, generating the metabolite and 

the ferric P450 (8) which can coordinate a new substrate and enter a new cycle.  
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Figure 7: The shunt pathway of iron porphyrins applying oxidants such as (a) iodosobenzene or (b) mCPBA  

he nature of the active species CpdI has been thoroughly studied and has been generally 

1.4 Model Compounds 

s adumbrated in the above descriptions the appliance of chemical model compounds has 

 

T

accepted to be an iron(IV)-oxo species having a positive charge (radical cation) on the 

aromatic ring of the porphyrin. Nevertheless CpdI is not the only possible active species and 

e.g. experimental findings16,17 in hydrocarbon hydroxylation reactions, one of the most 

sophisticated and chemically interesting reactions of P450s, have provoked a “two oxidant” 

mechanism, where participation of Cpd0 as second oxidant together with CpdI was claimed to 

explain the obtained results. However further theoretical18,19 as well as model compound 

studies20 have shown that a “two state” mechanism referring to different spin states of CpdI 

can explain the earlier findings. Nevertheless in other P450-catalysed reactions, such as the 

aromatization of steroids by P450aromatase, nucleophilic iron(III)-peroxo species are indeed 

believed to participate in the reaction mechanism. 

 

 

A

been a valuable tool to investigate the properties of the P450s. Omitting the inherent 

complexity and lability of the natural system, these model systems are much more readily 

handled and studied. Therefore a large number of different model compounds have been 

developed over the years addressing different aspects in the field of P450 research (figure 

8).21 
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igure 8: Different types of P450 model compounds. 

hey range from rather simple tetra-aryl- (a) and octa-alkyl-metal-porphyrins (b) to more 

, the fifth ligand then is effectively fixed in the 

 
F

  

T

elaborated models such as tailed (c) or strapped (d) metal-porphyrins. Each of these types of 

model compounds has its advantages and disadvantages, dependent on their field of 

application. The simpler compounds (a) and (b) are much easier obtained in shorter and 

higher yielding synthesis and are therefore often used in the field of catalysis. One of their 

major drawbacks in mimicking the natural system lies in the uncertainty of their axial ligands. 

In the tailed porphyrins, a covalently linked fifth ligand is introduced to ensure confident axial 

ligation; nevertheless these complexes still suffer from so-called “on-off” movement of the 

ligand22 and possible oligomer formation.  

Amending the drawback mentioned before

strapped complexes, where it is forced into coordination via a bridge moiety spanning the 

porphyrin core. These compounds therefore resemble the natural system more closely albeit 

demanding more tedious preparation. The Woggon group has contributed earlier to the field 

of model compounds synthesizing doubly bridged (9)23 and bridged (10)24 iron porphyrins 

(figure 9) carrying a thiolate ligand coordinating to iron (FeIII...S-), thus preventing ligand 

exchange phenomena. For the time being, these active site analogues have been the first 
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complexes to resemble both spectroscopic and chemical features of Chytochromes P450. 

Investigations and optimisation of such model compounds has since then been an integral part 

in the research of the group.  
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igure 9: Earlier model compounds by the Woggon group. 

terestingly, the redox potentials of the above thiolate model compounds are considerably 

ectronic properties in the 

igure 10: H-bonding of cam

his effect has been studied by Nakamura et al26 on free thiolate ligands coordinating to octa-

ethyl porphyrins. In their system, they found the redox potential to shift to more positive 

values upon introduction of motives enabling H-bonding to sulfur (figure 11). 

F

 

In

more negative than that of the natural system (e.g. E0 = -630 mV vs. SCE for 10 versus E0 = -

170 mV vs. SHE, = -411 mV vs. SCE for substrate bound P450cam). 

From X-ray analysis of several P450s (figure 10)25 these modified el

natural system were deduced to result from reduced charge density on the fifth ligand due to 

H-bonding of sulfur to the amino acid backbone. 

 

 

 

 

 

 

 

 

 
F  sulfur to the amino acid backbone in P450 . 

 

T
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Figure 11: Model compounds of Nakamura et al. 

 

Redox potentials in CH2Cl2 shifted from -680 mV (vs. SCE) for (11) to -520 mV after 

her to -350 mV after introduction of a second one 

). Because of the non-covalent attachment of the fifth ligand, these compounds are very 

As implied, the P450s represent quite a variety of enzymes, each displaying its own, unique 

ted P450s will be discussed in closer 

etail in this section.  

eavage in P450scc (CYP 11A1) and P450BioI (CYP107H1) 

A remarkable reaction in the P450 catalogue is the cleavage of nonactivated carbon-carbon 
7 

hich catalyses the first and rate determining step in steroid hormone biosynthesis; the 

introduction of one H-bond (12) and furt

(13

elegant for analytical purposes but are not suitable for catalytic reactions. 

 

1.5 Selected P450s and their Reactivity 

 

properties. Being of central interest in this work, selec

d

 

1.5.1 C-C bond cl

 

bonds. Such reactivity has been observed with P450scc, a mammal adrenal Class I P450,2

w

conversion of cholesterol (14) to pregnenolone (15) (scheme 2). The mechanism by which this 

P450 effects this transformation has been studied extensively. In going from 14 to 15, P450scc 

uses 3 equivalents of NADPH and 3 equivalents of O2.28 Although several possible pathways 

have been suggested,29 a stepwise mechanism has been brought forward to best rationalise the 

experimental findings and has been broadly accepted, where cholesterol is hydroxylated first 

at C22 to form 22(R)-Hydroxycholesterol (16) and second at C20 forming a vicinal diol, 

N
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N
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N
NFeIII

S
N
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20(R),22(R)-dihydroxycholesterol (17). In the last and mechanistically most interesting step, 

this diol is cleaved to form the products pregnenolone (15) and 4-methylpentanal (18).  

 

 
Scheme 2: Transformation of cholesterol to pregnenolone by P450scc. 

 

A more recently discovered enzyme,30,31 P450BioI involved in the biosynthesis of biotin in 

u  to follow a similar mechanism in 

e cleavage of acyl carrier protein (ACP)-coupled or free long chain (C-14 to C-18) fatty 

Bacillus subtilis, has been the first prokaryotic P450 fo nd

th

acids (19) to form pimelic acid (20) via the threo-7,8-diol (21) (the initially produced 

aldehyde (22) observed at short reaction times is converted to the corresponding acid by aerial 

oxidation under enzyme turnover conditions (scheme 3)). 

 
Scheme 3: Fatty acid C-C bond cleavage in P450BioI 
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Despite the fascinating features of this transformation, its complexity renders it almost 

s. As hydroxylation reactions applying model 

l 

cheme 4: Mechanistic proposals for the final step in C-C bond cleavage a) by peroxy-intermediate, b) by H●-

bstraction and c) concerted. 

ol cleavage using metal porphyrins have been brought forward over 

e years.  

impossible to be studied in model system

compounds are very low yielding, a sequence of three consecutive steps cannot be expected to 

be realised. As the first two steps represent “standard” hydrocarbon hydroxylation, the most 

studied P450 transformation, the last step, diol cleavage, captures the main focus of interest.  

For the natural system a number of diol cleavage mechanisms can be proposed (scheme 4). As 

further oxidation of the carbon atoms carrying the alcohol functions (C22 in the cholestero

case) is excluded due to the fact that their hydrogens are retained in the cleavage product, the 

most likely mechanism is one in which the hydroxyl moieties are activated in some fashion, 

followed by decomposition with C-C bond cleavage. This can for example be rationalised by 

formation of a peroxy-intermediate (path a), by H●-abstraction (path b) or in a concerted way 

(path c). 
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Murray and Sligar32 have reported a model system for diol cleavage applying 

chloro(5,10,15,20-tetraphenylporphinato)chromium(III) (Cr(TPP)Cl) (23) and the exogenous 

cheme 5: 

ed a biomimetic approach where they used iron porphyrins in 

resence of an NAD(P)H mimic 1-benzyl-3-carbamoyl-1,4-dihydropyridine (BNAH) (26) 

Scheme 6:

OH

oxidant 4-cyano-N,N-dimethylaniline-N-Oxide (CN-DMANO) (24) in the cleavage of 1-

Phenyl-1,2-ethanediol (25) (scheme 5).  

 

 

 

 

 

 

 
S Diol cleavage by 23. 

 

Okamoto et al33,34 develop

p

and molecular oxygen under the irradiation of visible light to cleave various vicinal diols 

(scheme 6). From kinetic interpretation of product formation together with electrochemical 

experiments35 they brought up a proposed catalytic cycle for their system, where the diol 

coordinates to an iron(IV)-porphyrin obtained upon reduction of the corresponding iron(III)-

porphyrin by BNAH and subsequent reaction with O2. 
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In 1991 Ito36,37 presented purely photochemical cleavage of vicinal diols in the presence of 

ater-soluble Iron porphyrins (e. g. 27, scheme 7). 

 

 

espite these contributions several features of diol cleavage remain elusive. Murray and 

 natural iron center atom and therefore their system 

eviates rather far from the natural system. The same concerns account for the photochemical 

As mentioned earlier P450BM-3 isolated from Bacillus megaterium was the first bacterial P450 

logical function remains 

lusive, the enzyme was shown to catalyse hydroxylation of saturated long chain fatty acids 

 
Scheme 8: Hydroxylation of long chain (n=10-13) fatty acids by P450BM-3. 

w

 

Scheme 7: Photochemical cleavage of diols. 

 

D

Sligar used chromium instead of the

d

diol cleavage. The most elaborated model system, that of Okamoto et al, has given one view 

on how diol cleavage might be performed. Nevertheless, the applied model compounds lack 

appropriate ligation and taken together with the complexity of the system, there are plural 

possible mechanistic pathways deviating from the situation in the enzyme case. As a 

conclusion, further investigations, in particular appliance of simple, reliable model systems on 

diol cleavage would contribute to better understanding of C-C bond cleavage, one of the 

reactions that illustrate best the power of P450 oxidative transformations. 

 

1.5.2 P450BM-3 (CYP 102A1) and enzyme engineering 

 

characterized to be a class II P450. Although its precise physio

e

near their ω–terminus (typically ω-1, to ω-3) (scheme 8). 

N
N N

N
N

N

N

N

FeIII

R2

HO OH

R1
R2

O O

R1
+H H

+

+

+

hν ( > 400 nm)

27

+

O

HO n

P450BM-3

ω

ω-1

ω-2

ω-3 O

HO n

O

HO

OH O

n HO n
OH

OH
+ +

14 



Introduction 
 

 

The reductase domain (BMR) of soluble P450BM-3 is covalently linked to the C-terminus of 

the heme-domain (BMP). Due to its solubility (in contrast to mammal P450s being membrane 

ound) and its single 119-kDa polypeptide structure, it is relatively easily purified, analysed 

.coli as a whole fused protein 

nd as separated BMR and BMP domains. Crystal structures of both substrate free and 

has been employed 

s has been studied with several 

b

and overexpressed.8,38 It has been recombinantly expressed in E

a

substrate bound BMP have been obtained.39,40 Rational mutagenesis has been applied for 

better understanding its catalytic function and electron transfer processes.  

But P450BM-3 is more than just a model for mammal P450s. Having the highest catalytic 

activity determined for any P450 (~17 000 min-1 with arachidonate)41 it is also of great 

biotechnological interest for the production of high-value oxygenated organic molecules. 

Regio- and stereospecific enzyme-mediated transformations are an interesting and clean 

alternative to traditional organic chemistry. Therefore protein engineering 

to alter and improve the properties of P450BM-3 to render it an even more cost-effective and 

attractive catalyst for biotechnological processes. With the field still being in its relative 

infancy, rational mutagenesis, forced evolution and random mutagenesis and functional 

selection have already generated a series of mutants with interesting properties such as 

changed regio- and substrate selectivity,42,43 improved stability in organic solvents44 and 

compatibility to other, cheaper reductants than NAD(P)H.45,46 In this way, newly designed 

enzymes with enhanced properties for short chain alkanoic acid- or even alkane 

hydroxylation47 and selective epoxidation of polyunsaturated hydrocarbons48 have been 

obtained. Furthermore, BMP has been mutated to form a self-sufficient peroxide-driven 

hydroxylase49 and further improved for thermostabilization.50 

All of the above efforts have focused on changes in the architecture of the amino-acid 

backbone surrounding the cofactor. In general further strategies to alter the properties of heme 

proteins are feasible, going from exchange of axial ligands of the cofactor to modifications on 

the cofactor itself, including exchange of the metal center atom and modification of the 

porphyrin moiety surrounding it. The exchange of axial ligand

enzymes51 showing the importance of its properties to behaviour of the whole system and 

enabling conversion of one class of enzymes to behaviour similar to another class (e.g. 

modification of axial Cys in P450cam to His inducing much greater peroxidase activity).  

While modification of the axial ligand might simply be seen as an extension of amino acid 

mutagenesis, modification of the cofactor itself represents an additional new tool to tailor 

enzyme properties. One basic prerequisite for applicability of this tool is the possibility to 

15 
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remove the natural cofactor from the holoenzyme to obtain a cofactor free apoprotein and 

ability of the apoprotein to subsequently properly incorporate the desired new cofactor 

btained after removal and subsequent reincorporation of protoheme have been shown to 

store spectroscopic properties and reactivity identical to the unprocessed system. The same 

P450BM-3.54,55 Incorporation of unnatural cofactors in 

ifferent heme proteins has been used in a series of studies to gain information on the 

(scheme 9). 

 

 

 
Scheme 9: Exchange of cofactor in P450s. 

 

 This basic principle has been shown to work for both P450cam
52 and P450scc,53 where enzymes 

o

re

technique can also be applied to 

d

influence of the peripheral architecture of the porphyrin on heme orientation and 

physiological properties. Simplified detection of dynamics has been achieved by 

incorporation of spectroscopically active species into the cofactor (e.g. fluorine substituents 

for 19F NMR characterisation).56 Stabilisation of active intermediate analogues has been 

accomplished by metal exchange (e.g. Fe vs. Mn)57 to gain closer insight into the catalytic 

cycle and the electron supplying system. All these examples show that cofactor modification 

is a valuable tool in enzyme engineering and together with amino acid mutagenesis a rich 

arsenal for tailoring new P450 based biotechnological catalysts is in principle available and 

applicable to e.g. P450BM-3.  

 

 

 

Fe

Fe M

M

apoproteinholoenzyme reconstituted system
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2 Description of the Aims of this Work 
 

The body of this work is split in two parts accounting for two projects elaborated during its 

development. One concerns the further development of model compounds for cytochromes 

P450 and their appliance in P450-catalysed reactions, the other one investigates modifications 

on the natural cofactor, heme b, for obtaining new cofactors with altered properties in the field 

of enzyme engineering. 

 

2.1 Establishment of a new Class of Model Compounds 

 

As already mentioned, the Woggon group has been contributing to the field of P450 model 

compounds with a notable body of work.58 In this context the synthesis and characterisation of 

members of a new class of model compounds was envisioned, where the thiolate ligand 

(figure 12a) of the bridge moiety in earlier model compounds (e.g. 9 and 10) is exchanged for 

a sulfonate group (figure 12b).  

 

 

 

 

 

 

 

 

 
Figure 12: Thiolate a) vs. sulfonate b) coordination in Fe-porphyrin model compounds. 

 

This change bears technical advantages with the SO3
- group being much more stable towards 

oxidative conditions than the thiolate S-. This makes handling much easier and ensures one 

single coordinating species althrough catalytic reactions using oxidants such as mCPBA. 

More importantly though it was designed to reflect the earlier introduced reduced charge 

density on the fifth ligand in the natural system. 

FeIII

O OS-

FeIII

O O
S

O-O
O

a b
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Distribution of the negative charge over the three oxygens of a sulfonate moiety should result 

in a similar reduction of charge density on the fifth ligand, being predicted to be one of the 

to more positive values than in 

e thiolate model compounds, towards the value for the substrate bound form of P450s and 

2.2 Modification of the Natural Cofactor 

he second project of this work focuses on modifications of the natural cofactor heme b. As 

cheme 10: Modification of the cofactor in meso-position. 

his strategy was chosen in order to retain the possibility for interaction with the amino acid 

ng of the electronic 

nd steric effects of the cofactor by introduction of different substituents (X). Finally, after 

FeIII

N

sulfonate oxygen atoms, and therefore shift the redox potential 

th

H-bonded model compounds (13). 

Having the new model compounds in hand, the goal would then be to investigate their 

reactivity in P450-catalysed reactions with special focus on finding a system for the cleavage 

of vicinal diols and drawing conclusions therefrom on the active species in this reaction. 

 

 

T

has been deduced earlier, such modifications present a valuable tool for tuning the properties 

of enzymes in biotechnology and might help to further elucidate features of P450s. The 

general concept was to retain the original substituents as far as possible and to introduce 

further groups in the originally unsubstituted meso-positions (scheme 10).  

 

 

 

 

 

 

 
S

 

T

backbone via the original substituents and to allow at the same time tuni

a

reconstitution of the enzyme system, the modified cofactors were expected to show behaviour 

different from the unmodified system dependent on the newly introduced substituents (X). 

 

N
N

N

CO2

CO2

-

-

FeIII

N
N

N
N

CO2

CO2

X
X

-

-
X

X
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3 Results and Discussion 
 

3.1 Synthesis of the new Model Compounds 

 

-3.1.1 Support for the SO3  Strategy by DFT Calculations 

 

re applied to gain information on the 

roperties of the conceived system and to address the question of properness of a model 

st of the charge is 

istributed over the two other oxygen atoms.  

urther calculations were performed to compare reactivity of SO3
- vs. S- coordinated models 

in both hydroxylation (left part) and epoxidation (right part) of propene (scheme 11). 

 

In a collaboration with Shaik et al,59 DFT calculations we

p

compound bearing sulfonate coordination instead of a thiolate as in the natural system. 

In these studies it was found that for two CpdI models, MeSO3
- coordinated A and PhSO3

- 

coordinated B (figure 13), the iron center atom coordinated to one of the oxygen atoms indeed 

represents an energetic minimum, in which as anticipated only part of a negative charge (-

0.45 for A, -0.38 for B) is located on the actual fifth ligand, whereas the re

d

 

 

 

 

 

 

 

 

 

        A                 B 

 

Figure 13: Calculation Model compounds A (left) and B (right). 

 

F
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Scheme 11: Superimposed high spin (HS) and low spin (LS) energy profiles for the reaction of SO3

- and S- 

coordinated CpdI models with propene. The reactants are placed in mid-diagram. The energies (in kcal/mol) are 

given relative to the separated reactants. 
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From superimposition of energy profiles for the calculated reaction pathways of both species 

 was deduced that overall the SO3
- coordinated species shows very similar reactivity to the S- 

ase. Closer detailed examination shows a slight increase in preference for hydroxylation 

ersus epoxidation when going from S- to SO3
- and a more concerted pathway for SO3

- 

action especially in the epoxidation case. This should render the new model compounds 

lightly more stereoselective reagents. Other than those differences, the profiles show almost 

erfect superimposition, disclosing the fundamental similarity between the two reagents. 

 

.1.2 Design and Synthetic Strategy 

 the light of the above discussion two members of a new family of model compounds 28 

it

c

v

re

s

p

3

 

In

and 29 (figure 14) were elaborated in our laboratories. 
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Fig d model compounds. 

 

The common features are a tetra-aryl-porphyrin moiety covalently linked to a bridge moiety 

arrying the SO3
- group for ligation to the iron center atom. Aryl substituents in the meso-

osition were chosen because of several advantages of such substitution. A) the free meso-

onditions and therefore improves stability. B) introduction of appropriate substituents on the 

eso-phenyls can be used to influence the reactivity of the models. By introduction of 

Scheme 12: µ-oxo dimer formation. 

he bridge moiety was adopted from earlier design for sulfur ligation in the group61 and 

f this moiety was introduced both for 

ynthetic reasons61 and to increase steric congestion, thereby forcing the sulfonate into 

oordination. 

ure 14: Elaborate

c

p

positions are oxidatively labile and primary site of attack in the destruction of the porphyrin 

moiety. Substitution therefore hampers destruction of the model compounds under oxidative 

c

m

electron-withdrawing or –donating groups the electron density in the aromatic system can be 

altered and thereby the redox potential of the new compounds can be tuned. C) steric demand 

of the aryl moieties prevents undesirable formation of so called µ-oxo dimers60 (scheme 12). 

 

 

 

 

 

 

T

therefore expected to have the correct length for spanning the porphyrin and appropriate 

ligation. The tert-Butyl group on the aromatic ring o

s

c

N
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N
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The two model compounds differ in their substituents on the meso-phenyl moieties. 28 carries 

two mesityl-substituents, representing rather innocent, slightly electron donating alkane 

substituents. In contrast to this, in 29 each of these two phenyl moieties is substituted with 

two chlorines in ortho position, leading to a more electron deficient system. Therefore it was 

predicted, that 29 should display a more positive redox potential than 28 and that the 

corresponding CpdI analogue should therefore display higher reactivity. 

 

Retrosynthetic analysis of the model compounds (scheme 13) implied condensation of a 

ethane 30/31 with the appropriate aldehyde 32 and coupling of a protected bridge 

 33. 

cheme 13: Retrosynthetic analysis of model compounds 28 and 29. 

.1.3 Synthesis 

he synthesis and appliance of the new family of model compounds has been brought 

ith the other group members. 

dipyrrom

moiety

 

 
S

 

3

 

T

together by a couple of members of the group. Model Compound 29 has first been obtained 

by Leifels62 and synthesized and applied both in the work of Sbaragli63 and this work. 28 on 

the other hand was first synthesized and characterized in the present work. Synthetic 

methodology and optimisation was adopted from earlier work in the group and performed in 

collaboration w
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The synthesis was performed in a convergent manner. As outlined in the retrosynthetic 

analysis the target molecule was obtained by assembly of the main components 30 to 33. the 

aldehyde 32 was commercially available, whereas 30/31 and 33 had to be synthesized. The 

following route is described for the mesityl-model 28 but applies to both model compounds. 

 

3.1.3.1
 

 The Dipyrromethane 

scheme 14). This reaction was catalysed by both Brønsted- 

The design and synthesis of the sulfur protected bridge moiety (scheme 15) starting from 

le 4-(tert-butyl)phenol (36) had already been established in the 

roup.65,62 obliged to this, synthesis could be started from intermediate 37 of which larger 

HN

The first building block, the meso-substituted dipyrromethane 30,64 was obtained upon 

reaction of the appropriate benzaldehyde 34 with a 40 to 80 fold excess of freshly distilled 

pyrrole 35 used as the solvent (

(TFA) and Lewis acids (BF3
.Et2O) and the desired dipyrromethane was obtained in similar 

yields for both (30%) upon workup and chromatography. As the product is sensitive to 

daylight, all preparations were performed under the exclution of light.  

 

 

 

 

 

 

 
Scheme 14: Synthesis of dipyrromethane 30 applying a) 0.1 eq. of TFA, b) 0.3 eq. of BF3

. Et2O. 

 

3.1.3.2 The Bridge Moiety 
 

commercially availab

g

quantities were on stock (the earlier steps are therefore not discussed in detail here). 

In a first step a) 37 was converted in 87% to the corresponding alcohol 38 by hydroboration 

using BH3
.SMe2. In a second step b) 38 was then transformed with Methanesulfonylchloride 

(MsCl) to the mesylate 33 in 92%, which represents the desired moiety for coupling to the 

porphyrin. 

 

HN

N
H

O

+
a) or b)

34 35 30
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3

ondensation of the dipyrromethane 30 with the aldehyde 32 (scheme 16) in a MacDonald 

pe 2 + 2 condensation66 was performed according to optimized conditions67 for minimation 

f so called scrambling leading to porphyrin products with different undesired meso-

ubstitution pattern.  

as then oxidized to full conjugation by addition of 2,3-Dichloro-5,6-dicyano-p-

enzoquinone (DDQ) and the change in UV/Vis absorption (from 477 to 418 nm) was 

controlled for complete conversion. The porphyrin 39 was obtained in 27% as a mixture of 

ORRO

S

N

OS

N

OOH
6 steps

a)

 

 

 
Scheme 15: Synthesis of protected bridge 33  by a) hydroboration of 37 (1. BH3

.SMe2 in THF at r.t., 2. NaOH, 

H2O2) and b) mesylation (MsCl, Et N, CH2Cl2) of 38.  
 

3.1.3.3 The Porphyrin 

36 37 38: R=H
b) 33: R=Ms

 

C

ty

o

s

 

 
Scheme 16: Porphyrin condensation: a) TFA, CH2Cl2, then DDQ. 
 

A 1 : 1 ratio of 30 and 32 was condensated by TFA under high dilution (10 mM) at r.t. in 

CH2Cl2. The so obtained porphyrinogenic species (a chlorin) displaying a UV/Vis absorption 

at 477 nm w

b

NHCHO

NH
HN

OHC

HN
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O

32 30
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O

39
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two atropisomers (39αα and 39 αβ in scheme 17) which showed slow interconversion at r.t. 

(as observed from both NMR and TLC experiments).  

 

: The two atropisomers of 39. In the αα-isomer (left), both methoxy groups of the two meso-phenyl 

bstituents are located on the same side of the porphyrin plane. In the αβ-isomer they occupy different sides. 

nly the αα isomer is appropriately oriented for correct coupling of the bridge moiety in a 

gether for further synthesis. 

 

emethylated to the corresponding bisphenol 40 by BBr3
68 (scheme 

8). Here again a mixture of two atropisomers interconverting at r.t. was obtained in 79% 

 
Scheme 18: Demethylation of 39, a) BBr3, CH2Cl2, r.t., only one atropisomer is shown. 

 

or the bridge coupling step (scheme 19) conditions were chosen such that reaction of one 

olecule of 40 with one molecule of the bridge moiety 33 was preferred. This was achieved 

 

 
Scheme 17

su

 

O

later step. But as interconversion was observed even at r.t., the two atropisomers were taken 

to

In the next step, 39 was d

1

yield.  
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by diluted conditions and slow addition of 33 via syringe pump. In addition elevated 

mperatures (80 °C) were applied to ensure interconversion of the atropisomers of 40. Under 

 

 
cheme 19: Bridge coupling to 40 by a) slow addition of 33 at 80 °C in the presence of Cs2CO3 in DMF. 

to 

revent sulfur oxidation. As such oxidation was just the desired reaction in the case of the 

 were obtained when the deprotection was simply run under O2 

tmosphere (scheme 20). Only trace amounts of thiolate product were observed under such 

esired sulfonate 42 by oxidation with Bu4NHSO5,
70 such that 42 could be obtained in 

an overall yield of 55%. 

 

te

such conditions and the addition of Cs2CO3, 75% of 41 were obtained. 

 

 

S

 

From earlier work on thiolate model compounds61,69 it was known that upon deprotection of 

the sulfur moiety the compounds had to be handled under strictly anaerobic conditions 

p

new family of model compounds, no such precautions were necessary in the deprotection 

step. Even more, although different sulfur oxidation procedures were tested before or after 

iron insertion,63 the best results

a

conditions, the main product being sulfonate-porphyrin 42. As a side product, partially 

oxidized SO2-porphyrin 43 was obtained. After separation, the latter could be further oxidized 

to the d

MsO OMs

S

33

N

O
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N
HN

N
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N ONH

N
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Scheme 20: Deprotection of sulfur under aerobic conditions a) KOMe, dioxane, O2-atmosphere, reflux. 
 

The final step towards the model compound was then the insertion of iron. This was 

accomplished by heating a toluene solution of 42 with FeBr2 under addition of 2,6-Lutidine as 

a base (scheme 21). Although an iron(II) salt is used for iron insertion, the product obtained in 

86% is the corresponding more stable iron(III)-porphyrin 28.  

 

 

 

 
Scheme 21: Iron insertion into sulfonate-porphyrin 42: a) FeBr2, 2,6-Lutidine, toluene, reflux. 
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3.2 Characterisation of the new Model Compounds 

3.2.1 Physical and Spectroscopic Properties 

 

With the new model compounds synthesized, their properties were investigated by different 

analytic methods.71 From slow diffusion crystallisation in THF/heptane suitable crystals for 

X-ray analysis could be obtained in both cases.72 The so obtained structures (figure 15) 

validate both the synthetic procedures and the DFT calculation results, as indeed in both cases 

iron is coordinated by one of the oxygens of the SO3
- group. Interestingly, the more electron 

poor 29 has a THF molecule coordinating as a sixth ligand, whereas the structure of 28 

btained under similar conditions shows a five coordinated species. The analysis further 

hows a slightly strained system for both cases with the iron positioned out of plane towards 

 

 

 

 

 

 

 

 

 

 

 

igure 15: ORTEP representation of model compounds 28 (left) and 29 (right) crystallised from THF/heptane 

very well with 

e cw-EPR spectra obtained in toluene at 94K (figure 16) displaying characteristic signals for 

xial high spin iron(III) systems (g = 5.67, 2.03 for 28; 5.51, 2.00 for 2963). 

 

o

s

the SO3
- ligand especially dominant for the five coordinated structure of 28.  

 

 
 

 

 

F

 

The structural properties imply high-spin iron(III) systems, which correlates 

th

a

28 



Results and Discussion
 

 

 
Figure 16: cw-EPR spectrum of 28 in toluene at 94K 
 

The UV/Vis spectra of both compounds in CHCl3 are very similar (figure 17) with a Soret 

band (the most dominant absorption in the electronic spectra of porphyrins) at 416 nm and 

further absorptions at higher wavelengths, the so called Q-bands, at 512, 581 and 670 nm for 

28 and 513, 590 and 656 nm for 29. 

 
Figure 17: UV/Vis spectra of 28 (lower trace) and 29 (upper trace) in CHCl3. 
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-2 -1 0 1-2 0

V
-2 -1 0 1-2 0

V

yclovoltammetry in LiBr saturated DMF (0.1M in LiClO4) gave redox potentials for both 

pounds versus ferrocene as an internal standard. The obtained values showed the 

fluence of the dichloro-phenyl substituents in 29 to indeed cause a shift to more positive 

otential of ~ 80 mV for the (FeIII/FeII) transition compared to mesityl substitution in 28. 

easurements for 29 and its S- analogue in the same solvent system had already implied a 

hift of ~300 mV to more positive values for SO3
- ligation.62 This trend was confirmed by 

lating the obtained potentials vs. ferrocene towards SCE73,74 to obtain values of -290 mV 

n 

e same region as the Eo value of the E.S complex of P450cam (-411 mV) and hydrogen-

eIII/FeIV) for both 

odels (figure 18) which again show a positive shift of ~ 90 mV when going from 28 (920 

mV) to 29 (1010 mV). 

 

 

   Ferrocene   FeIII/FeIV      

                 Ferrocene      FeIII/FeIV

      10 µA  FeIII/FeII   10 µA         FeIII/FeII

 

 

 

 

Figure 18: Cyclovoltammograms of 0.62 mM 28 (left) and 0.59 mM 29 (right) in 0.1 M LiClO4 solution in 

DMF with ferrocene as an internal standard. Scan rate 200 mVs-1. 
 

The positive shift from earlier S- model compounds with Eo more negative than -600 mV (vs. 

SCE) in some cases to the new SO3
- coordinated models with Eo ~ -300 mV (vs. SCE) 

validates the principle of predicted influence of reduced charge density on the fifth ligand in 

the latter case.  

 

C

com

in

p

M

s

calcu

(±20 mV) for 28 and -210 mV ((±20 mV)) for 29. These values, particularly that of 28, are i

th

bonding model compound 13 (-350 mV). Omission of LiBr (used to ensure defined 

coordination of iron) slightly shifted potentials for more negative values: -340 mV for 28 and 

-280 mV for 29 and enabled measurement of the first oxidation potential (F

m
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3.2.2 Iron(II)-state 

 

Treating a degased toluene solution of 28 with an excess (≥ 3 eq.) of KH/18-crown-6 or 

Na2S2O4/15-crown-5 solutions, a shift of the Soret band from 416 to 422 nm and an increase 

in absorption intensity was observed. EPR samples taken from these solutions only showed 

strongly decreased iron(III) high spin signals (probably from traces of nonreduced 28), which 

were completely restored after bubbling with air. These findings suggest the newly formed 

species to be the reduced iron(II) compound (44) of 28 (scheme 22).  
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Scheme 22: Reduction of 28 by KH or Na2S2O4 to obtain iron(II) compound 44. 

THF62) studied by Leifels. 

 

The procedure leading to 44 had to be monitored closely by UV/Vis-spectroscopy because if a 

too large excess of reducing agent was added a further species with λmax = 440 nm was 

observed, the EPR spectrum of which showed a mixture of species, including a sharp g = 2.00 

signal indicating organic radicals.  

Further support for the nature of 44 and correct assignment of electronic spectra was obtained 

by spectrovoltammetric measurements in DMF displaying a shift and increase of the Soret 

band (420 nm to 425 nm) similar to the first species observed by KH reduction (44) when 

applying negative potentials (-500 mV) (see figure 19). 

Saturation of toluene solutions of 44 with CO gas did not cause any further shift of the Soret 

band. The CO-complex of 44, if formed, is thus believed to have the same λmax as 44, which is 

in good agreement with results for a potential iron(II)-CO complex of 29 (λmax = 422 nm in 

31 
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32 

t: 450–750 nm region. 

figure 7, oxidants such as mCPBA or iodosobenzene (PhIO) can be applied to 

btain the oxidation state analogue to the active species in the natural system, CpdI. 

reliminary work on identification of such a species was performed under UV/Vis conditions 

in CH Cl  at -50 °C. Indeed upon addition of 1.5 eq. mCPBA to a precooled solution of 28, a 

sired spectral properties (a blue shifted Soret band at 408 nm of 

duced intensity and a broad absorption at 600-700 nm characteristic of a radical cation on 

(45) and (46) of 28 and 

9 respectively. Mixing acetonitrile solutions of 28 and 29 with an excess of mCPBA at -35 

C resulted in formation of 45 and 46. 

 

0

2 .0

 
Figure 19: Spectra obtained by spectrovoltammetry of 28 in 0.1 M LiClO4 solution in DMF. Dashed line: +400 

mV: iron(III) spectrum; solid line: -500 mV: iron(II) spectrum. Inse

 

3.2.3 CpdI Analogues ((porph●+)FeIV=O)  

 

As displayed in 

o

P

2 2

new species with the de

re

the porphyrin ring) (45) was obtained (figure 20). The so obtained spectrum is in excellent 

agreement with published data for simpler porphyrin systems in the CpdI-state.75,76

More elaborated techniques were applied in a collaboration with van Eldik et al to obtain 

closer insight into formation and reactivity of the iron-oxo species of 28 and 29.77 They 

applied low temperature, rapid scan stopped-flow techniques to obtain spectroscopic and 

kinetic information on the formation of the (porph●+)FeIV=O species 

2
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Figure 20: UV/Vis change after addition of 1.5 eq. of mCPBA to a CH2Cl2 solution (8 µM, -50 °C) of 28. 

dashed line: spectrum 30 sec after addition

4 0 0 6 0 0 8 0 0

, full line: 25 min after addition. Inset: 550-750 nm region. 

ransiently formed and breaks down to 

 

 

 

 

 

 
Scheme 23: Reaction sequence for the formation of (porph●+)FeIV=O species 45 and 46 from 28 and 29. 

 

No indication for a corresponding acylperoxo intermediate (48) could be observed in the 

reaction of 28 which forms 45 directly without rate saturation (figure 21). The formation of an 

intermediate 47 can be attributed to the electron withdrawing properties of the porphyrin 
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For 29, rate saturation for high concentrations of mCPBA was obtained. Detailed spectral 

analysis implied a two step sequence where in a first equilibrium (K1 = 4.4 ±0.5 x 103 M-1) the 

corresponding acylperoxo-iron(III) intermediate (47) is t

form 46 (k2 = 2.4 ±0.1 s-1 at -35 °C) (scheme 23). 
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substituents, stabilising 4778 whereas electron donation in 28 triggers the rate of O-O cleavage 

and therefore reduces the lifetime of a potential intermediate 48.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 21: Rapid-scan spectra recorded for the formation of (porph )Fe =O in the reaction of  29 (left) and 28 
(right) with mCPBA. Experimental conditions: (left) [29] = 4.3 x 10

•+ IV

The obtained results showed that both new model compounds can form a reactive species 

uisite to apply them to P450-catalysed 

actions such as epoxidation of alkenes, hydrocarbon hydroxylation, diol cleavage and 

to catalyse 

um of 29 after an induction period dependent on the 
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-6 M, [mCPBA] = 5.4 x 10-5 M, MeCN, -35 
°C. (right) [28] = 8.7 x 10-6 M, [mCPBA] = 8.7 x 10-5 M, MeCN, -30 °C. 
 

similar to the natural system, this being a prereq

re

demethylation of amines.79 

 

3.3 Epoxidation of Alkenes 

 

As alkene epoxidation is a well-known reaction performed by many P450 analogues, it was 

used to establish the new model compounds as enzyme reaction mimetics. First epoxidation 

experiments applying 29 performed by Leifels62 demonstrated that 29 was capable 

epoxidation of a variety of substrates with high turn over numbers (TON) using PhIO as a 

‘O’-source (e.g. TON = 1810 for the epoxidation of cis-stilbene (49) in scheme 24). This high 

reactivity towards epoxidation was then used in collaboration with van Eldik et al to obtain 

insight into the catalytic cycle (scheme 25) of this reaction.77 Mixing solutions of the 

preformed reactive species 46 at -35 °C with variable amounts of cis-stilbene (49) resulted in 

the regeneration of the original spectr
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amounts of mCPBA and cis-stilbene added. Higher amounts of mCPBA in the mixture 

elongated the induction period, whereas addition of a larger excess of 49 led to a decrease. 

 

 
Scheme 24: Epoxidation of 49 to form a mixture of cis-stilbene epoxide 50, trans-stilbene epoxide 51 and 

deoxybenzoin 52. a) 29/PhIO. 

 

The previous findings imply a catalytic cycle performed during this induction period, where 

46 is reformed after reaction with 49 fast enough to be the dominant spectroscopically 

O

observed species under these conditions (acetonitrile, -35 °C). This was confirmed by control 

experiments in our laboratories, where samples taken during the induction period already 

howed major formation of oxidation products, as assigned by GC-FID analysis. Product 

Scheme 25: Catalytic cycle for the epoxidation of cis-stilbene by 29 in the presence of mCPBA 

s

formation further increased in the course of the reaction to obtain 40-50% of oxidation 

products with respective to applied mCPBA. (control reactions performed under similar 

conditions omitting 29 showed no formation of epoxidation products even after elongated 

reaction times). 
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From spectral changes after the induction period the rate for the epoxidation reaction could be 

determined (k3 = 7.0 ±0.2 M-1 s-1 at -35 °C) which, when extrapolated to 20 °C (~411 M-1 s-1) 

 in the same range as rates obtained for kinetic studies on other model systems,80 ranging 

ew model compounds, particularly 29, as valuable catalysts able to mimic oxygenation 

activity of cytrochromes P450. 

.4 Demethylation of Amines 

ruice et al have established81,82 and thoroughly studied model systems for the amine 

ealkylation reaction of cytrochromes P450 using N-Oxides of aniline derivatives, in 

articular p-cyano-N,N-dimethylaniline N-Oxide (24) as an ‘O’-source for a number of iron 

orphyrins.83-88 The amine 53 arising from O-donation of the N-oxide to the iron porphyrin 

emethylation step (scheme 26).  

intermediates were trapped by either a one electron acceptor trap 2,4,6-tri-tert-butylphenol 

is

from 90 to 320 M-1 s-1. In summary, the above findings in epoxidation reactions establish the 

n

re

 

3

 

B

d

p

p

takes the role of the substrate, being demethylated to p-cyano-N-methylaniline (54) under the 

reaction conditions. The latter can react further to form p-cyano-aniline (55) in a second 

d

 

 

 

 

 

 

 

 
Scheme 26: N-Dealkylation system established by Bruice et al. 
 

Bruice et al have studied this phenomenon in thorough detail. As transfer of oxygen from 24 

to the iron porphyrin was found to be rate-determining, the active species could not 

unambiguously be designated directly. Nevertheless there is a strong indication towards 

intermediate CpdI analogue formation. First, the demethylation of 53 can be catalysed by iron 

porphyrin/PhIO systems to yield the same products. The upper system can further be applied 

to epoxidation of alkenes and even hydrocarbon hydroxylation with yields similar to reactions 

catalysed by ‘O’-donation of PhIO under the same conditions. When the reactive 
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(TBPH) or an “oxene” acceptor 2,3-dimethyl-2-butene the only products formed were 100% 

of 53 and the corresponding oxidized trap (the stable radical TBPH●+ in the first case and the 

poxide in the latter). Also, N-oxide probes have been applied to enzymatic dealkylation 

 b) react

cheme 27: Reaction mechanism of demethylation of 53 in a iron-porphyrin/24 system: a) formation of the 

oxo species by heterolytic cleavage of the N-O bond after coordination of 24 to iron. b) the two 

sible mechanisms of N-dealkylation via single electron transfer (SET) or Hydrogen atom transfer (HAT) 

ading to demethylated product 54. 

or the dealkylation of amines in general two different mechanisms are plausible. The first by 

itial electron abstraction to form the nitrogen radical cation (SET pathway in scheme 27b). 

e

reactions using P450s and therein showed mechanistic similarity to dealkylation reactions on 

the corresponding amines by the natural oxidant system (NAD(P)H, O2) as concluded from 

appliance of isotopically labelled compounds.89,90 All these findings support a mechanistic 

pathway containing formation of a (porph●+)FeIV=O species (scheme 27a).  
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After deprotonation of a vicinal carbon this then results in a carbon radical that combines with 

the iron bound oxygen to give a hemiaminal which forms the demethylated product (e.g. 54 

from 53) and the corresponding aldehyde (e.g. formaldehyde from demethylation). The 

second mechanism (HAT pathway in scheme 27b) is more closely related to the “classical” 

hydrocarbon hydroxylation mechanism, where the iron-oxo species directly abstracts a 

hydrogen atom from the vicinal carbon atom to form the carbon radical, which in analogy to 

e first mechanism recombines with the iron bound oxygen to form the hemiaminal and the 

subsequent demethylated products. Although the first, single electron transfer (SET) 

e is considerable experimental work favouring the 

econd, hydrogen atom transfer (HAT) mechanism.91,92  

observed for the more electron deficient 29 versus more 

lectron rich 28 (table 1). These results can be interpreted in terms of higher reactivity of an 

term 8TPP)FeCl 

nd 29) which is in good agreement with their more positive oxidation potentials. Upon 

rmation of the iron-oxo species the simultaneously formed amine 53 has to be replaced to 

btain demethylation products different from 54 such as 55 resulting from demethylation of 

4 being present in solution. It appears that high reactivity of the iron-oxo species in the more 

lectron poor models admits such exchange to a smaller extend than their more electron rich 

ounterparts.  

model compound 53 (in %) 54 (in %) 55 (in %) 

th

mechanism is more broadly accepted ther

s

Interestingly, Bruice et al found that product distribution depended on the electronic 

properties of the applied porphyrins. The more electron deficient [meso-tetrakis(2,6-

dichlorophenyl)porphyrinato]iron(III)chloride ((Cl8TPP)FeCl)86 gives rise to a larger fraction 

of the mono-demethylated product 54 when compared to the more electron rich [meso-

tetrakis(2,6-dimethylphenyl)porphyrinato]iron(III)chloride ((Me8TPP)FeCl)85 showing more 

diverse product distribution (table 1). When applying their system to our new model 

compounds a similar trend was 

e

in ediately formed iron-oxo species in the more electron poor porphyrins ((Cl

a

fo

o

5

e

c
 

(Cl8TPP)FeCl 40 60 0 

(Me8TPP)FeCl 53 24 3 

29 37 58 5 

28 39 35 10 
 

Table 1: Yields of products in N-dealkylation reactions calculated relative to added N-oxide. 
The same rationale can be applied to the observation that the (Me8TPP)FeCl/24 system 

allowed alkene epoxidation for a variety of substrates, whereas for (Cl8TPP)FeCl/24 the 
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epoxidation yields were lower and only observed for the most competitive substrates. 

Therefore demethylation of 53 provided a good tool to investigate the relative reactivity of 28 

versus 29 under catalytic conditions. 

 

3.5 Cleavage of Diols 

 

As implemented earlier, one goal of this work was to find a suitable system for the 

iomim of appropriate diols. 

iols with aromatic substituents (e.g. 25) used in earlier attempts were discarded, as the 

nhanced reactivity of the benzylic positions in these diols does not correspond properly to 

e diols in nonactivated positions cleaved in the natural systems. To further reduce 

terference of diol substituent functionalities with the desired cleavage reaction a simple long 

8) as it was readily 

btained by osmium-catalysed dihydroxylation93 from commercially available cis-9-

eneicos

ldehydes after cleavage, C-9 pelargonaldehyde (Nonanal) (57) and C-12 laurinaldehyde 

odecanal) (58) both readily analysed by GC-FID and GC-MS. The expected one to one 

ppearance of two products gives more analytical information on the observed reaction than a 

imilar symmetric system. 

cheme 28: Diol cleavage of 9,10-heneicosan-diol 56 under formation of the two aldehydes 57 and 58. 

or diol cleavage model systems the choice of an appropriate oxidant is crucial. For example, 

bserved. Nevertheless addition of iron porphyrin quadrupled the amount of cleavage 

catalytic system. Indeed diol cleavage was observed by appliance of this ‘O’-donor, with 29 

b etic cleavage of vicinal diols. A first starting point was the choice 

D

e

th

in

chain diol, 9,10-heneicosan-diol (56) was chosen as a candidate (scheme 2

o

h en and its unequal lengthed hydrocarbon substituents would lead to two different 

a

(d

a

s

 

 
S

 

F

PhIO which is used for many other catalyses is unsuitable due to intrinsic reactivity of 

hypervalent iodine species towards diols in the absence of any additional catalyst. 

Furthermore, when applying mCPBA to our model system, considerable blank reactions were 

o

products (1.6%) when compared to the blank reaction (0.4%). 

The H2O2-urea adduct is a convenient reagent to introduce non-aqueous H2O2 into the 
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being more reactive than 28 (table 2). Reactivity in the H2O2 system might not only arise from 

CpdI analogues but also from iron-peroxo species (Cpd0). Both blank reaction in absence of 

the catalysts and participation of possible Cpd0 analogues were finally avoided by applying 

the N-Oxide ‘O’-donor system of Bruice et al mentioned earlier. Although for both iron 

porphyrins N-dealkylated compounds remained the major products, yields of diol cleavage 

products could be increased by modification of the N-oxide to its morpholine derivative 59 

(figure 22). Omission of the electron withdrawing p-cyano-substituent on the aromatic ring in 

60 again led to lower yields of diol cleavage, a trend reported by Bruice for epoxidation 

reactions applying dimethylaniline N-oxide versus 24 (demethylation of dimethylaniline N-

oxide is significantly faster than the competing reactions). Both 59 and 60 were synthesized 

via the corresponding tertiary amines 61 and 62 (see exp. part). 

 

 

Figure 22: N-Oxides applied in diol cleavage catalysis 
 

Co-oxidant Model compound 28 Model compound 29 
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Table 2: Di eavage results applying rent co-oxidants. Condit  [porph] = 1.5 x 10-3 M, oxidant] = 
1.5 x 10-2 M ] = 1.5 x 10-2 M in CH2  r.t. a) no detectable co trations of acids were ob ed. b) 
ontrol experiments for acid detection have been omitted. 

ol cl
, [56

diffe ions:
ncen

 [co-
servCl2 at

c
 

For all reactions listed in table 2, omission of either co-oxidant or porphyrin led to no 

detectable formation of diol cleavage products. Unreacted diol could be recovered from the 
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reactions in 85-95% as the corresponding acetal. In analogy to the natural system in case of 

P450BioI, the model reactions aside the aldehydes gave rise to the corresponding acids, which 

were detected as their methylester94 and the yield of which is also given in table 2. both the 

ldehydes and the acids were formed in a one to one ratio of C-9/C-12 products. Increase of 

diol concentration from diol/N-oxide/porphyrin 10/10/1 (as in table 2) to 100/10/1 resulted in 

age product, whereas slower addition of N-oxide over a longer 

eriod had only minor influence on diol cleavage versus dealkylation. Further improvement of 

ould be applied to catalysis unfortunately as synthesis did not result in stable N-oxides for 

wed no 

activity towards the diol cleavage system. Therefore a possible N-oxide with better diol 

reactions, the more reactive 

a

a 1.2 fold increase in diol cleav

p

diol cleavage/dealkylation selectivity could be envisioned by further modification of the 

substituents on the N-oxide to reduce reactivity of the corresponding amine towards the 

reactive iron oxo-species. This might be achieved by either further increase of steric demand 

to aid dissociation after ‘O’-donation (a principle employed in the change of 24 to 59) or by 

stronger electron withdrawing character of the substituents leading to amines with lower 

reactivity (as indicated from 60 vs. 59).  
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Figure 23: Candidates of further optimisation of N-oxide properties for appliance to diol cleavage reactions. 
 

Compounds 63-66 (figure 23) are examples for such strategies employed, none of which 

c

any of them. Aromatic N-oxides such as pyridine N-oxide and its derivatives (67) sho

re

cleavage vs. dealkylation selectivity than 59 to date remains elusive. 

As yields of diol cleavage products strongly depend on the applied N-oxide it is plausible to 

imply a scenario similar to the one discussed earlier for amine dealkylation, where the diol 

and the amine compete for the same reactive species formed from ‘O’-donation of the N-

oxide to the iron porphyrin. This scenario is also supported from differences in cleavage 

product yields comparing 28 and 29. As in dealkylation 

intermediate formed from 29 allows exchange of substrate to a far lower extend and therefore 

results in lower yields of diol cleavage products. Considering all these findings it is persuasive 
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to advance intermediately formed CpdI analogues 45 and 46 as active species responsible not 

only for epoxidation and hydrocarbon hydroxylation but also for cleavage of vicinal diols. A 

similar situation is suggestive in the natural system thereby supporting the unique role of CpdI 

in the field of P450 catalysis. Furthermore the simple catalytic system in hand opens the path 

for future investigations in the field of biomimetic diol cleavage. 

 

3.6 Nitric Oxyde Binding 

 

Nitric oxide (NO) has multiple protective, deleterious and regulatory effects in biology.95 It 

plays a role in trapping of oxidative radical species, in immune response to pathogen invasion 

nd as a neurotransmission regulator. Metal centers, in particular iron are major targets in 

ioreg ir 

reactivity b me 

enzym

 therefore 
97 mpared to interactions with P450cam studied 

arlier by the van Eldik group.  To investigate the influence of the iron coordination sphere, 

studies w ed to be perfo  noncoord ne), 

where the model compound displays a five-coordinate complex resembling the E S complex 

of P450ca eOH, where a s  assumed to o iron, 

forming a six ligand complex 68 (scheme 29), comparable to the P450cam resting state 

(P450camRS).  
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b ulation by NO.96 Interaction of NO with the metal centers of enzymes changes the

y either enhancement or inhibition. In the context of involvement of he

es in the biochemistry of NO, understanding of its interaction with iron porphyrins is of 

profound interest. In collaboration with van Eldik et al model compound 28 was

studied on its behaviour towards NO  and co
98e

ere conceiv rmed in both apolar, inating solvent (tolue
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m, and in M ol e isvent molecul be  t coordinated
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Scheme 29: Coordination of MeOH to 28 as a sixth ligand. 
 

Indeed the UV/Vis spectrum of 28 in MeOH differs drastically from that in toluene (λmax = 

416 nm, 512 nm) showing a split Soret band with λmax = 396 and 416 nm and a Q-band at 532 
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nm. From titrations of toluene solutions of 28 with MeOH (figure 24), the van Eldik group 

was able to obtain the equilibrium constant KMeOH for the coordination of MeOH to 28, which 

is rather small and equals 0.20 ± 0.05 M-1 at 25 °C.  
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2.0

2.5

 
-5Figure 24: Spectral changes recorded during titration of 1.01 x 10  M 28 in toluene with methanol at 25 °C. 

-1 -1

 

700
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Inset: Plot of (ΔAbs)  at 396 nm vs. [MeOH]  to determine the equilibrium constant KMeOH. 

 

cw-EPR investigations in our group showed that upon addition of MeOH to toluene solutions 

of 28 for a MeOH/toluene ratio up to 2/1 the spin state of iron does not change, the only 

changes in the spectrum being a slight broadening and shift of the high spin signal at g = 5.8 

to 5.6. Although the matrix prevented an adequate analysis for pure MeOH, the recorded 

spectrum still adumbrates a high spin iron(III) species. This means MeOH coordination does 

not change the spin state of iron, with 68 still being high spin iron(III). Only when MeOH was 

exchanged for saturated KOMe/MeOH, the spectrum obtained (figure 25) displayed dominant

signals of the low-spin iron(III) methoxylat-complex (g = 2.42, 2.15 and 1.93). Therefore one 

main difference between six-coordinated 68 and the resting state of P450cam is the spin state of 

iron being high spin iron(III) in the former and predominantly low spin iron(III) in the latter.  
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igure 26: Illustratio syl cation b) nitroxyl 

nion case. 

on(III)-porphyrin NO complexes have been analysed by both X-ray crystallography and IR 

pectroscopy. They show an almost linear coordination of NO (Fe-N-O ~175°) and IR signals 

1820-1870 cm-1). Similar IR signals were 

btained from NO-coordinated P450 enzymes; P450nor and P450cam showing νN-O of 1853 and 

 
Figure 25: (left) cw-EPR spectrum of 28 in MeOH/Toluene 2/1 at T = 100 K, (right) cw-EPR spectrum of 28 in 

KOMe-MeOH/Toluene 1/2 at T = 93 K. 

 

Nitric oxide, which has one unpaired electron located in the π* orbital can coordinate to 

metals in a range from that of a nitrosyl cation (NO+, figure 26a) which binds to the metal 

with a M-N-O bond angle of ~180° and where considerable charge transfer to the metal leads 

to a formally reduced Mn-1 state, to that of a nitroxyl anion (NO-, figure 26b), where M is 

formally Mn+1 and for which a M-N-O bond angle of ~120° is expected.95 The nature of 

binding between NO and the metal center is reflected in the IR spectra of the corresponding 

complexes, showing a νN-O of ~1850 cm-1 in the nitrosyl cation case and of ~1670 cm-1 in the 

nitroxyl anion case. Further insight into the electronic structure of metal-NO complexes can 

be obtained by EPR. 
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Saturation of a toluene solution of 28 with NO resulted in UV/Vis changes from 416 nm 

(Soret) and 512 nm (Q-bands) to 432 and 542 nm (figure 27a). 

 
Figure 27: a) (left):Electronic absorption spectra of 28 before (solid line) and after saturation with NO (dashed 

line) in toluene solution at ~ 20 °C. b) (right): Electronic absorption spectra of 68 before (solid line) and after 

saturation with NO (dashed line) in methanol solution at ~ 0 °C. 

 

TIR characterisation revealed a sharp band at 1833 cm-1 in the difference spectrum of 

ith NO showed 

omplete disappearance of the high spin signal at g = 5.8 and appearance of a weaker signal at 
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g = 1.98, which was assigned to originate from excess NO present in solution by comparison 

with a spectrum obtained from NO saturated toluene (figure 28) showing a very similar signal 

at g = 1.99. Therefore the species obtained from NO coordination to 28 appears to be EPR 

silent, which supports indication of a low spin “iron(II)-nitrosyl cation” species in agreement 

with the FTIR results. 

NO ligation appears to be completely reversible, as the original UV/Vis spectrum could be 

regained upon removal of NO under a stream of argon. In a similar experiment, the g = 5.8 

high spin iron(III) EPR signal could be recovered after bubbling argon through a NO-induced 

“EPR silent” sample of 28. 
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Similar behaviour was observed when a methanol solution of 68 was saturated with NO, 

(figure 27b) in a reversible fashion. 

 

ethanol. 

ameters obtained from NO coordination to P450cam (table 3). 

 

UV/Vis maxima shifting from 396/416 (Soret) and 532 nm to 424 and 542 nm for 28(NO) 

 

 
Figure 28: (left) cw-EPR spectrum obtained after saturation of a toluene solution of 28 with NO gas, T = 93 K. 

(right) overlay of the g = 1.98 signal in the sample of 28(NO) on the left (upper trace) with the spectrum 

obtained from a NO saturated solution of toluene at T = 97 K (lower trace). 
 

 

The above findings are consistent with an equilibrium described in equation (2) for toluene 

and equation (3) for m

 

 + NO 28(NO)
kon

koff

KNO
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68 + NO 28(NO) + MeOH

kon
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Van Eldiks group has employed extensive low-temperature stopped-flow and laser flash 

photolysis techniques under variation of NO concentrations, temperature and pressure to 

thoroughly study both equilibria and in that way obtained detailed information on the kinetic 

and thermodynamic parameters of NO coordination. These could then be interpreted and 

compared to the same par
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-7.3 ± 0.2 
35.9 ± 0.1 

 

(0.6 ± 0.05) 10
14 ± 1 

-107 ± 3 
-21 ± 4 
46 ± 1 

 

(3.20 ± 0.02) 10
92 ± 1 

+169 ± 4 
+28 ± 2 
42 ± 1 

 
 
koff (s-1)a

ΔH≠
off (kJ mol-1) 

ΔS≠
off (J mol-1 K-1) 

ΔV≠
off (cm3 mol-1) 

ΔG≠
off (kJ mol-1)a

 

 
(1.25 ± 0.01).104

58 ± 1 
+29 ± 5 
+7 ± 3 
50 ± 1 

 
 
KNO (M-1)a

ΔH° (kJ mol-1) 
ΔS° (J mol-1 K-1) 
ΔV° (cm3 mol-1) 
ΔG° (kJ mol-1)a

 

 
122 ± 10 
-71 ± 3 

-197 ± 10 
-39 ± 2 
-12 ± 3 

 

 
1.93 ± 0.02 
83.8 ± 0.7 
+41 ± 2 
+24 ± 1 

71.6 ± 0.7 
 

 
2249 ± 167 

44 ± 5 
-34 ± 22 
+7 ± 3 
54 ± 5 

 

 
0.35 ± 0.02 

122 ± 4 
+155 ± 15 

+31 ± 1 
76± 4 

 
 

(1.2 ± 0.4).106

-69.7 ± 0.8 
-114 ± 2 

-31.3 ± 1.2 
-35.7 ± 0.7 

 

 
27 ± 3 
-59 ± 4 

-169 ± 13 
-28 ± 1 
-9 ± 4 

 

 
(9.0 ± 0.2).105

-30 ± 5 
+14 ± 19 

+3 ± 3 
-34 ± 4 

 
 
Table 3: Comparison of the rate and equilibrium constants, as well as thermodynamic and kinetic parameters for 

similarity in the mechanism for binding 

f NO to 28 and E.S P450cam, where an encounter complex is formed prior to Fe-NO bond 

 is also reflected in the dramatic decrease of the equilibrium constant 

cam

r coordination of NO. In contrast to the similar behaviour of 28 to 

NO Binding to 28, 68, the E.S complex of P450cam ant the P450cam resting state. a) at 25 °C. 
 

Interpretation of the above parameters suggest a close 

o

formation, according to equation (4). The rate for the ‘on’-reaction is very similar in both 

cases, the mechanism being dominated by Fe-NO-bond formation with a concomitant change 

of iron spin state from high to low spin. 

 

 

 

In contrast to the consistency of kon, the ‘off’-reaction in the model case is a factor of 104 

faster than in the enzyme case (a trend generally observed for binding of NO to model 

compounds),96,99 which

28 + NO { 28 | | NO} (4)28(NO)

KNO for the model and emphasises the unique properties of the enzyme environment to 

stabilise coordination of NO to iron. The reaction towards NO in both the model- and enzyme 

case is slowed down significantly by the presence of a sixth ligand on iron (68/P540 RS) 

which has to be removed fo
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E.S P450cam, the reactions of 68 and P450camRS show completely divergent parameters. For 

68 the obtained values indicate an associative interchange (Ia) mechanism with a relatively 

strong contribution from the entering NO molecule (scheme 30a), whereas the reaction of 

450camRS is dominated by dissociation of a water molecule in a dissociative ligand 

substitution (scheme 30b).  

 

) dissociativ

: Divergent mechanisms for NO coordination to a) 68 or b) P540camRS.  

his disparate mechanistic behaviour of 68 and P450camRS can be explained in terms of the 

ifference in their spin state of iron, being high spin in the earlier and predominantly low spin 

 the latter. Again NO dissociation is much slower in the enzyme case, where the FeII-NO+ 

 to the 

P

 

 
a) associative interchange mechanism pathway for the reaction of NO with 68 

H

 
b

 
e ligand substitution in P450camRS 

Scheme 30

 

T

d

in

complex is more efficiently stabilized by H-bonding and coulomb interactions with the water 

molecules in close vicinity when compared to similar but weaker interactions with less rigidly 

organised solvent molecules in methanol.  

In summary, 28 in aprotic solvents is an appropriate model for NO coordination of substrate 

bound P450cam displaying completely reversible binding of NO in mechanistic analogy

FeIII

O
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S
R
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enzyme case. The appliance of 68 on the other hand indicates the importance of iron spin state 

on the reaction mechanism. Results of both mode s fi

f me pocket in stabilising NO coordination of heme proteins.  

l system nally emphasise the unique role 

o the enzy
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3.7 Modification of the Natural Cofactor 

 

3.7.1 Design and Synthetic Strategy 

 

s 

 

ubstituents (e.g. 2,6-dichloro- or pentafluoro-phenyl) have been further halogenated 

ities of the so obtained 

sts. Furthermore substitution hampers oxidative destruction of the catalysts, 

ariants, these substituents were envisioned to be electron withdrawing such as nitro groups 

2 inciple the substitution strategy could also be 

btained, which might be applied in stabilisation of CpdI in the catalytic cycle of the P450s 

le

 of substituents on their electronic spectra. 

 

As already observed in the case of the new family of model compounds introduced earlier, 

substituents in the meso-positions influence the behaviour of the porphyrin macrocycle. 

Introduction of electron withdrawing substituents both in meso- and β–positions of porphyrin

has been applied to obtain more electron poor and therefore more reactive metal catalysts in

oxidation reactions.100,101 Thus, tetra-phenyl-porphyrins with electron poor meso-phenyl 

s

(perfluoration,-chlorination) in β – positions leading to increased activ

porphyrin cataly

therefore not only enhancing their reactivity but also increasing their stability under catalytic 

conditions.  

When designing new cofactors for P450 enzyme catalysis, one has to find a consensus 

between modification of properties and maintenance of structural similarity to the original 

cofactor. Therefore, as outlined in the aims of this work, the existing substituents in the β – 

positions were planed to be conserved as far as possible and new substituents were intended to 

be introduced in the originally free meso-position (scheme 10). To obtain more reactive 

v

) or halogens (X = F, Cl, Br), but in pr(X = NO

extended towards electron donating groups. In this way more electron rich cofactors would be 

o

and therefore in rendering it spectroscopically analysab .  

Modification of porphyrins in meso-position has already been studied for a rather long time, 

with e.g. Fischer et al102 examining chlorination and bromination of a variety of porphyrins 

(including mesoporphyrin) as early as the beginning of the 20th century. In the 1960s, 

Stephenson et al103 reported on sequently chlorinated derivatives of octa-ethyl-porphyrin (69) 

(70-72, figure 29) and studied the influence
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Figure29: Substitution pattern of different octa-ethyl-porphyrin derivatives by Stephenson and Dolphin. 
 

 

 Soret (nm) Q-bands (nm) 
69 401 499 534 566 618 
70 406 507 540 578 620 
71 411 514 548 586 637 
72 446 550 597 634 712 

a) : electronic spectra of Cl-substituted octa-ethyl-porphyrins in CHCl3 

 

 E1/2 ox (1st) E1/2 red (1st) Soret (nm) Q-bands (nm) 
73 0.87 -1.47 402 490 532 
74 1.01 -1.02 401 497 534 

75/76 1.16 -0.78 404 503 539 
77 1.31 -0.50 413 510 547 
78 1.49 -0.28 426 520 561 

b) : redox potentials and electronic spectra of NO2-substituted Zn-octa-ethyl-porphyrins  

 

 Soret (nm) Q-bands (nm) 
69 401 499 534 566 618 
79 401 498 532 566 621 

80/81 398 497 529 572 627 
82 398 498 529 577 631 
83 400 466/501 531 584 642 

c) : electronic spectra of F-substituted octa-ethyl-porphyrins in CHCl3

 
Table 4 a-c: Influence of the substitution pattern of different octa-ethyl-porphyrin derivatives. 
 

 R1 R2 R3 R4 M 
73 H H H H Zn 
74 NO2 H H H Zn 
75 NO2 NO2 H H Zn 
76 NO2 H NO2 H Zn 
77 NO2 NO2 NO2 H Zn 
78 NO2 NO2 NO2 NO2 Zn 
79 F H H H 2H 
80 F F H H 2H 
81 F H F H 2H 
82 F F F H 2H 
83 F F F F 2H 

 R1 R2 R3 R4 M 
69 H H H H 2H 
70 Cl H H H 2H 
71 Cl H Cl H 2H 
72 Cl Cl Cl Cl 2H 

N
N

N
NM

R1
R2

R4

R3
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 The introduction of chlorines resulted in a bathochromic shift of both the Soret and Q-bands 

(table 4a). A similar trend was observed by Dolphin et al104 in the 1980s for sequential 

orresponding Zn-complexes (73-78, figure 29) and observed a shift to more positive values 

the late 1990s in the Woggon group by 

 compounds. In all these contributions it was 

hown that not only electronic, but also steric factors of the newly introduced substituents 

the above findings, two strategies can be envisioned for the design of the 

 therefore intended to explore a 

s

display 

wer reactivity and therefore lead to one predominant tri-substituted species where this 

osition is still unsubstituted.  

nitration of the same compound. Furthermore he measured the redox potentials of the 

c

upon nitration (table 4b). Nitration was also applied in 

Forrer105 to modify the redox potentials of model

s

influence the behaviour of the new compounds. Upon increase of steric strain the porphyrins 

lose their flat topology and adopt nonplanar conformations. This effect is more strongly 

pronounced in the free bases, whereas coordination of a metal can decrease nonplanarity and 

also reduce the shift in the electronic spectra. It can be deduced that the bathochromic shift 

upon substitution is dominated by nonplanarity and therefrom resulting decrease of the 

HOMO-LUMO gap of the porphyrin.106 Reduction of steric influences was obtained for 

introduction of fluorine,107 showing no bathocromic shift for different substituted derivatives 

of 69 (79-83, table 4c). 

 

Considering 

modified cofactors. Fluorine-substitution would generate derivatives where altered properties 

mainly are resulting from different electronic properties, whereas substitution with other 

larger groups, e.g. chlorine, influences both steric and electronic factors. For a first 

exploration the chlorine-substituted derivatives of protoheme were chosen, particularly under 

considerations of practical advantages over fluorine-substituted derivatives in their synthesis.  

It can be envisioned that steric effects can have both advantageous and disadvantageous 

influences on a future biocatalytic system. An increase of steric demand might e.g. facilitate 

product dissociation from the active site or alter substrate specificity but at the same time can 

prevent appropriate arrangement of substrates or even inhibit incorporation of the new 

cofactor into the apoprotein. In a first construct it was

derivative where only three of the four meso-positions are chlorinated. The latter was 

envisioned to show les  steric strain than its four-substituted counterpart but to still exhibit 

enough electron withdrawing character to enable the desired increased reactivity. In principal 

for a non-completely substituted compound there exist different possible regioisomers. It was 

anticipated though, that the γ-meso-position flanked by the two carboxyl groups might 

lo

p
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3.7.2 d Approaches 

irst chlorination experiments where performed during the diploma thesis of Soydaner108

rotoporphyrin IX (84) (pP-IX, scheme 31). The iron free porphyrin was chosen because iron 

omplicates both behaviour and analysis of the corresponding compounds. Chlorination 

reactions from earlier studies, applying rath r harsh c it e.g c. / 3 2O

AcOH)  in his hands did not lead to any desired chlorination products (path a ch

3 Fur mo eha ur of the free acid functions  was found to be cumbe me

h ling ere e fu r st es w ed o e di 85 nd th i-N

d thy id 6) of pP-IX. In addition their corresponding Zn-complexes where also 

d investigated in the same reactions, the concept being that firstly metal 

tivity of the porphyrin and secondly Zn-insertion is known to 

ixtures. With these approaches, Soydaner reported 

ide (NCS), where a mixture of 

products with different grade of chlorination was obtained (mainly 4 products as 

judged from MALDI-TOF-MS analysis).  

 

cheme 31: First findings and adaptation of strategies in chlorination reactions on pP-IX. 

NH

First Findings and adapte

 

F  on 

p

c

e ond ions ( . con  HCl % H 2 in 
102,103 in s eme 

 of 84 rso  for 1). ther re b vio

and . Th for rthe udi ere perform n th methylester ( ) a e d ,N-

ime l-am e (8

prepared an

coordination should change reac

facilitate separation of obtained product m

his best results for chlorination of 86 using N-chloro-succinim

 Cl3 and Cl
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Taking over from there it was possible to purify several fractions of NCS chlorination 

products to an extent where structural analysis by 1H-NMR was enabled. Unfortunately, 

analysis implied that the vinyl groups were major site of attack, such that these functionalities 

are incompatible even with these rather mild chlorination conditions.  

 

3.7.3 Chlorination of Mesoporhyrin Derivatives 

 

Taking into account the previous results, it was decided to proceed by appliance of the 

mesoporphyrin analogues (87) and (88) of 85 and 86, where the vinyl groups are exchanged 

for ethyls (scheme 32). Utilisation of this subtle difference from the natural cofactor is 

legitimated by the fact that several reports confirm correct incorporation of mesoheme into 

heme-proteins109,110 without major modification of their properties.  

 

 
Scheme 32: Chlorination reactions of mesoporphyrin derivatives 87 and 88. a) NCS 

 

Reaction of 87 and 88 with NCS in CH2Cl2 at r.t. under exclution of light were found to be 

sufficiently slow to allow their tracking with HPLC techniques. Consumption of starting 

material (λmax = 394 nm) was associated with formation of new peaks appearing in 

consecutive order of λmax = 401, 406 and finally 446 nm. This correlates very well with the 

bathochromic shift observed by Stephenson et al for “Cl1-“ 70, “Cl2-“ 71 and “Cl4-“ 72. 

Furthermore semi- and preparative HPLC separation allowed ESI-MS analysis of the λmax = 

406 nm products and supported their Cl2-assignment. Detailed analysis of the final λmax = 446 

nm products (vide infra) confirmed their Cl4-structure. Although in an early attempt the above 

techniques allowed observation of a species with λmax = 432 nm and the appropriate mass 

(ESI-MS analysis) indicative of a Cl3-species as a minor component in a mixture of the earlier 

compounds, multiple repetitions of the experiment did not afford any further observation of a 

a)

NH
N

N
H N

C

C

87: R= OMe
88: R= N(Me)2

O

O

R

R

NH
N

N
H N
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similar product. It seems, that under chlorination conditions the Cl3-product is chlorinated 

further to the final Cl -product rather rapidly, thereby prohibiting accumulation. It was 

cessible Cl4-product, furthermore 

upported by the fact that the assigned Cl3-species also seems to display considerable 

urity from other porphyrinogenic compounds. ESI-

S analysis showed the correct mass (m/z= 731, [M+H]+) with the expected isotopic 

 

 

 

 
Fi ed by 

4

therefore concluded to proceed with the much more ac

s

nonplanarity, as judged from the electronic spectrum. 

Initial experiments were performed on derivative 88, as its amide functions are more resistant 

to experimental conditions than the ester groups of 87. Indeed, the chlorinated product could 

be obtained in good yield, but appliance of several different purification techniques for the 

latter failed to separate the product from impurities evident by 1H-NMR measurements. 

Furthermore, deprotection conditions to obtain the desired free acid seemed to demand 

conditions too harsh for maintaining the integrity of the rest of the molecule both for the free 

base Cl4-89 or the corresponding iron complex 90. It was therefore decided to further 

investigate the chlorination of dimethylester 87, which was found to proceed analogous to the 

amide case, and furthermore allowed better purification due to its more apolar character. In 

that way, a pure tetrachlorinated compound 91 could be obtained, albeit at initially very low 

yield (~ 3%), which could be improved to ~20% by appliance of TMS-diazomethane/MeOH 

upon termination of chlorination. The so obtained compound was thoroughly analysed and 

characterized. HPLC analysis ensured its p

M

distribution for incorporation of four chlorines (calculated by MWC V. 6.3 for Windows).111

gure 30: Comparison of the isotopic distribution of the product peak m/z = 731, [M+H]+ of 91 obtain

ESI-MS measurement (left) with the pattern predicted by calculation (right). 
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Meso-selectivity of chlorination was proven by 1H-NMR characterisation, where no signals 

are observed above 5 ppm for 91, whereas in the corresponding unchlorinated starting 

material 87 the meso-Hs show characteristic signals at 10-11 ppm. All the other proton signals 

of the starting material find their counterparts in the spectrum of the product, therefore 

nsuring exclusive meso-chlorination. The UV/Vis spectrum shows a considerable 

bathochromic shift for the Soret band from 397 nm for 87 to 441 nm for 91 in THF.  

ead to the desired free acid iron 

orphyrin 92 (scheme 33). Either by a) ester hydrolysis followed by iron insertion or b) iron 

 

 

 

 

 

 

ub

quantitatively in THF/1.0 M LiOH solution (2/1) overnight. Purity of 93 and 92 from other 

e

With this chlorinated precursor in hand, two possible routes l

p

insertion first and ester hydrolysis in the last step.  

 

 

 

 

 

 

 

 

 
Scheme 33: The two possible routes to 92 starting from 91, a) by first hydrolysis to 94 and b) by iron insertion to 

obtain 93 and s sequent hydrolysis. 
 

Investigating both routes the latter, where iron insertion is done first, was found to be more 

fruitful, as the ester groups in iron-porphyrin 93 facilitate analysis of the iron complexes and 

because the free base acid 94 was found to be rather unstable and cumbersome to handle. Iron 

insertion was optimised to yield 65% of 93 (originally as its µ-oxo dimer 95, vide infra) by 

appliance of FeCl2 and 2,6-Lutidine in a CH2Cl2/acetonitrile mixture. (the same technique, 

when applied to unchlorinated 87 gave 73% of corresponding [Mesoporphyrin-dimethylester-

iron(III)]Cl (96)) The latter could then finally be hydrolysed to the corresponding diacid 92 
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porphyrinogenic compounds was again ensured by HPLC analysis. After the above procedure 

the newly obtained modified cofactor in principle is ready for incorporation into the 

apoprotein. A complete pathway of the final synthesis of 92 from pP-IX (84) is given in 

scheme 34. 

 

 

 

 

 
Scheme 34: The synthetic route to 92 starting from commerci 2 4, 

) overnight, quant. 

 

 

ally available pP-IX 84: a) TMOF/MeOH/H SO

95% b) Pd/C, H2, CH2Cl2 92% c) 8 eq. NCS, CH2Cl2, r.t., 5d, then TMS-diazomethane/MeOH for 30 min, 20% 

d) FeCl2, 2,6-Lutidine, CH2Cl2/MeCN, 65% e) THF/1.0 M LiOH solution (2/1
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3.8 Characterisation and Application of the modified Cofactor 

3.8.1 Characterisation of Iron Complexes 92 and 93 

 

With the new iron complexes 92 and 93 synthesized, their properties were investigated by 

different analytic methods. It was observed that upon column chromatography (Alox B) 93 

was originally obtained as its µ-oxo dimer 95 (scheme 35), which in further workup treatment 

rted to the desired product 93. The two species are readily 
1 m 

 by shaking a toluene solution of the latter with 20 mM NaOH solution or anew filtration 

possible to obtain a species of desired X--ligation 

95 with a solution of the corresponding acid HX. 

by a) washing with 0.2 M HCl, and of 93 to 95 by b) 20 mM NaOH or 

N

with 0.2 M HCl was finally conve

distinguished by their different UV/Vis and H-NMR spectra. 95 can be easily obtained fro

93

over basic alox. Vice versa it is in principle 

by shaking a solution of 

 
Scheme 35: Conversion of 95 to 93 

xB. Alo

 

Characterisation of 93 and 95 was performed in comparison to analytical characteristics of the 

well-known nonchlorinated counterpart [Mesoporphyrin-dimethylester-iron(III)]Cl (96). The 

UV/Vis shift observed for the free bases upon chlorination is also reflected in the iron 

complexes. 93 shows a broad, split Soret band with λmax = 396, 442 nm in CH2Cl2 compared 

to λmax = 378 nm for 96. The µ-oxo dimer 95 finally shows a broad absorption at λmax = 415 

nm (figure 31). A split Soret band with poorly resolved Q-bands has also been observed for 

other sterically crowded, nonplanar iron(III)-porphyrins.112,113
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gure 31: Electronic spectra of 96 (left), 93 (middle), and 95 (right) in CH2Cl2. 

1H-NMR spectra of both 93 and 96 are characteristic of high spin iron(III) systems 

signals spreading over a large range from 60 to -60 ppm due to the influence of the 

agnetic character of iron(III) (figure 32). Support for preservation of complete 

chlorination upon iron insertion (besides MS analysis) comes from the fact, that the 

resonances for the meso-H at characteristically low ppm values are not observe

spectrum of 93, whereas they can be observed in the otherwise quite similar spectrum of

These resonances as well as those at low field (30 to 60 ppm assigned to the Methyl-Hs of 

Methyl- and the -CH2- of Ethyl-substituents in the β-positions respectively) can be assigne

ing to published spectra of 96.114 In contrast to the earlier two cases, the µ-oxo dim

 does not show any signals in the “paramagnetic” regions at very high or low ppm

signals are all found within the range of “traditional” organic compounds from 0 to 10 ppm

Fi

 

The with 

param meso-

d in the 

 96. 

d 

accord er 

95 . Its 

. 

plies an antiferromagnetic coupling of the two iron atoms in the latter, again an effect 

orphyrin µ-oxo-dimers.115,116 This finding fits well to the EPR silent 

95 observed in low temperature cw-EPR measurements (15K).  

93 in Methanol shows the coordination of MeOH and the isotopic 

ALDI-TOF-

S of 92 shows the corresponding signal [M] at m/z = 791, again displaying the characteristic 

otopic pattern.  
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Figure 33: 8.0 to -1.0 ppm region of the 1H-NMR spectra of 96 (upper), 93 (middle), and 95 (lower) in CDCl3. 
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Figure 32: 80 to -80 ppm region of the 1H-NMR spectra of 96 (upper), 93 (middle), and 95 (lower) in CDCl3. 
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The UV/Vis spectrum of 92 in CH2Cl2 is practically superimposable with that of 93 showing a 

broad, split Soret band with λmax = 395, 443 nm and poorly resolved Q-bands. The 1H-NMR 

shows disappearance of the signals at 4 ppm assigned

occurrence of a new, broad signal at ~14 ppm as

proof for this assignment was obtained by D2

 

 

 

 

 

 

 

 

 

 complexes show 

spectrum of 92 again is affected by huge shifts due to paramagnetic iron (figure 34). Further it 
114 to the ester-methyl groups and 

signed to the carboxylic acid protons. Further 

O exchange, whereupon the signal disappeared.  

 

 

 

 

 

 

 

 

 
Figure 34: 50 to -1.0 ppm region of the 1H-NMR spectra of 93 (upper) and 92 (middle) in CDCl3. The lowest 

trace shows the same sample of 92 after D2O treatment. 
 

The cw-EPR spectra for both 93 and 92 in CH2Cl2 show very broad signals of low intensity 

even at very low temperatures (15K), a feature already observed earlier for Protoheme 

derivatives.117 The spectra obtained could be drastically improved in a CH2Cl2/THF (1/1) 

mixture containing a tenfold excess of Bu4NCl. For this solvent system, both

5 0 4 0 3 0 2 0 1 0 0

p p m

D2O

rhombicly distorted high spin iron(III) spectra (g = 6.20, 5.52 and 1.99 for 93, figure 35). In 

contrast, [Protoporphyrin-dimethylester-iron(III)]Cl was reported to display axial symmetry 

with g = 5.88 and 2.00 under similar conditions.117 
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Figure 35: cw-EPR spectra of 93 5.0 mM in CH2Cl2 (left) and 2.5 mM in CH2Cl2/THF (1/1) with 25 mM 

Bu4NCl (right; g = 6.20, 5.52 and 1.99), T = 15K. 

.8.2 Sulfur Coordination 

me system the modified cofactor is expected to coordinate 

 the thiolate of a cystein, it was of profound interest to know the spectroscopic properties of 

ination. Therefore reaction of 95 with 4-tert-Butyl-thiophenol (97) in analogy to 
118,119 was performed under UV/Vis conditions in 

cheme 36: Thiolate ligation reaction of 95 forming two molecules of 98 and H2O. 
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As in a correctly reconstituted enzy
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reported procedures for thiolate coordination

toluene (scheme 36).  
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The spectral characterisation obtained under these conditions (apolar, noncoordinating 

 

x 

 

roduct was gained from 1H-NMR measurements120 of the same reaction in CDCl3, showing 

 spectrum again strongly resembling that of 93 (figure 32, 33). Additional evidence for 

rmation of a high spin iron(III) species was obtained from EPR measurements upon 

ddition of 97 to an EPR silent solution of 95 in toluene, showing a spectrum of close 

semblance to the spectrum obtained for 93 in CH2Cl2 (figure 35). 

igure 36: UV/Vis changes during 90 min upon addition of 20 µl 97 to 2.0 ml of an 8 µM solution of 95 (dashed 

 

40 0 600 8 00 100 0

0 .0

0 .2

0 .4

0 .6

0 .8

solvent) was intended to reflect the analogous situation in the corresponding E.S complex

after reconstitution.  

Upon addition of an excess of 97 to 95 (λmax = 420 nm), a new species was formed with clear 

isosbestic points within ~50 min (figure 36). The so obtained species was stable for longer 

than 40 min without further changes in its spectrum (λma = 392, 447 nm). The so obtained 

spectrum is similar to that for the Cl -complex 93 in the same solvent (λ-
max = 392, 442 nm), 

indicating a similar coordinated species. Further insight into the nature of the obtained

p

decrease of the signals of 95 with concomitant formation of a high spin iron(III) species with 

a

fo

a

re

A

w a v e le n g th  (n m )

F

line) in toluene. 
 

All these findings together with earlier reports on similar reactions suggest the newly formed 

species to be thiolate ligated 98. This leads to the proposal, that the enzyme system should 

display spectroscopic properties similar to 98 upon reconstitution. 
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amount of products formed increased by a ~2.6 fold

3.8.3 Reactivity 

 

As outlined earlier, the intention regarding the synthesis of the modified cofactor was to 

 of the porphyrin macrocycle. To 

e applied concept, the reactivity of 93 was 

tion. In succession of the earlier 

pound 29 and in allusion to epoxidation reactions 

 the epoxidation reaction of cis-stilbene with PhIO 

odel reaction. As already discussed (scheme 24), cis-

to the corresponding epoxides 50 and 51 and to 

was followed for catalysis of 93 and 96 at similar 

 was found that going from 96 to 93 the 

generate a more reactive species due to electron deficiency

provide evidence for the consistency of th

compared to that of 96 in epoxidation reaction in solu

epoxidation reactions using model com

performed with protoheme derivatives,121

as a ‘O’-source was chosen as a m

stilbene (49) is oxidized by iron porphyrins 

ketone 52. Formation of these products 

conditions (CH2Cl2, r.t.) by GC-FID analysis. It

 (table 5) while ensuring material balance 

very of 49. 

 
) 

 
51 (%) 

 
52(%) 

 
total ox %b

 
TONc

in both cases. Blank reactions omitting the iron porphyrin catalyst resulted in no observable 

formation of products and quantitative reco

 

  
49recovered (%)a 

 
50 (%

       
96 
 

97.6 1.4 0.8 0.1 10.8 1.5 

 
93 
 

 
89.7 

 
4.1 

 
1.5 

 
0.4 

 
28.5 

 
4.0 

 
Table 5: Products obtained after 1 h from epoxidation reactions of 49 by 96 respectively 93 and PhIO. 

 

al

 

 

Conditions: [49]: 226 mM, [PhIO]: 47 mM, [96/93]: 3.4 mM, CH2Cl2, r.t. a) calculated vs. int. standard (C-14

kane). b) calculated vs. [PhIO] c) TON = turn over number. 

This evident increase of potency for biomimetic catalysis supports our concept very clearly 

and lays the basis for employment of 92 in the field of biotechnological enzyme engineering. 
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4 Summary and Conclusions 

reactions including alkene epoxidation, N-, O-, and S-dealkylation, C-C 

 

ng the influence of their different porphyrin substituents upon reactivity. 

ppliance of the upper systems to cleavage of vicinal diols has been accomplished by 

employing N-Oxides as ‘O’-donors. Diol cleavage represents the last step in C-C bond 

cleavage by P450s, one of the reactions that illustrate best the power of P450 oxidative 

 

Cytochromes P450 are heme-thiolate proteins abundant in nature. These monooxygenases 

catalyse a variety of 

bond cleavage and hydrocarbon hydroxylation. This arsenal of interesting transformations, 

together with the importance of their biological functions has rendered them subject of 

intensive studies. In this context, two projects were pursued in the present work. 

 

In a first project, two members of a new family of P450 model compounds, 28 and 29 (figure 

37) were synthesized and characterized. The coordination of SO3
- as a fifth ligand to iron in 

both compounds resembles the reduced charge density on the cystein thiolate coordinating in 

the enzyme case. This concept was confirmed by calculation results and X-ray 

crystallography as well as redox potentials of 28 and 29 and their reactivity in P450-catalysed 

reactions. 

 
Figure 37: The two members of the new family of P450 model compounds 
 

Both model compounds have been shown to generate an analogue of CpdI (the natural active 

species) upon shunt pathway reaction with external oxidant (mCPBA). 

Model compound 29 was studied closely in its alkene epoxidation reaction in collaboration

with van Eldik et al, wherefrom the complete catalytic cycle of this reaction could be 

visualised. Both compounds have been applied to biomimetic demethylation of amines, 

therein showi
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transformations. With the above findings, a simple system for future studies on this interesting 

reaction has been elaborated. Furthermore the findings for this system suggest CpdI as the 

active species in diol cleavage reaction in similarity to alkene epoxidation and hydrocarbon 

ydroxylation, thereby confirming the unique role of this iron-oxo species in the field of P450 

atalysis. 

The field of appliance of the new model compounds has been further expanded in 

 Eldik et al towards studies on binding of nitric oxide (NO). Binding of 

O to 28 in toluene has therein been found to be an appropriate model for NO coordination of 

 

 

 

 

 
Fig  38: The natural cofactor of cy chromes P450 e b (left) and its mo terparts (right) 

nthesized in the present work. 

 strategy by ~2.6 fold increase of product 

rmation for chlorinated 93. With these findings, a new cofactor is available, which has 

N

h

c

collaboration with van

N

substrate bound P450cam studied by the van Eldik group earlier, displaying completely 

reversible binding of NO in mechanistic analogy to the enzyme case. Comparison of 

thermodynamic and kinetic factors for the two cases emphasise the role of the enzyme pocket 

in NO coordination of heme proteins.  

In summary, the obtained results establish 28 and 29 as valuable models for diverse aspects of 

P450 research. 

 

In a second project, modification of the natural cofactor of cytochromes P450 (heme b) was 

investigated. Additional substituents were introduced into the originally free meso-positions to 

alter the properties towards higher reactivity. By this strategy the tetrachlorinated cofactor 92 

and its Dimethylester 93 (figure 38) were obtained and characterized.  

 

 

 

u er to , hem dified coun

sy

 

The reactivity of 93 compared to its nonchlorinated counterpart 96 towards alkene 

epoxidation in solution indeed supported the applied

fo

promising properties for biotechnological applications once successfully incorporated into a 

cofactor free “apoprotein”. 
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5 Experimental Part 
 

5.1 General Remarks 
 

5.1.1 Solvents and Reagents 
 

Reagents were used as  Fluka AG (Buchs, Switzerland), Acros AG (Basel, 

Switzerland), Merck AG (Darmstadt, Germany) and Aldrich (Buchs, Switzerland) unless 

otherwise stated. Chemicals of the quality purum, purum p. a. or >98% were used without 

further purification.  

 received from

2. Et2O, THF and toluene were distilled from Na/benzophenone. Further 

corresponded to the quality puriss p. a., abs., over Molecular 

.1.2 

olvents were removed with a Büchi (Switzerland) rotary evaporator.  

or weighing compounds and reagents Mettler (Switzerland) balances P360 (> 1 g), AE163 

 1 g), and AX205 (< 100 mg) were used. 

 high-vacuum pump RV5 and E2M5 from Edwards (Sussex, England) was used for drying 

ompounds and reagents.  

les of evacuating and flushing with argon.  

eactions requiring strictly anaerobic conditions were carried out in a Labmaster 130 glove 

Solvents for chromatography and extractions were distilled prior to use. Dry CH2Cl2 was 

distilled from CaH

solvents used for reactions 

Sieves from Fluka AG. HPLC-grade solvents were purchased and used for analytical RP-

HPLC. Degassed solvents for reactions under oxygen-free condition (e.g. in the glove box) 

were obtained by at least three freeze-pump-thaw cycles. 

For an inert atmosphere Argon 60  from Carbagas AG (Lenzburg, Switzerland) was used. 

 

5 Materials & Instruments 
 

S

F

(<

A

c

For all non-aqueous reactions glassware was flame dried under vacuum and the atmosphere 

was exchanged by three cyc

R

box (MBRAUN). The levels of oxygen (< 2 ppm) and water (< 0.1 ppm) were measured with a 

combined H2O/O2-analyser (MBRAUN). All solvents and reagents used in the glove box were 

dried and degassed in high-vacuum. 
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Melting points (mp) were determined on an apparatus by the Werkstatt der Organischen 

Chemie der Universität Basel and are uncorrected. For the porphyrins, the melting points are 

> 250° and were not determined.  

 

5.1.3 Chromatographic Methods 
 

Analytical thin layer chromatography (TLC) was performed on precoated glass plates 

(5×10 cm, silica gel 60 F254, Merck AG, Darmstadt, Germany), on precoated glass plates 

(aluminium oxide 60 F254, Merck AG, Darmstadt, Germany), on precoated aluminium plates 

(25×25 cm, aluminium oxide neutral 60 F254, Merck AG, Darmstadt, Germany) or on 

precoated glass plates (5×10 cm, RP-18 F254s, Merck AG, Germany). Compounds were 

detected at 254 nm (UV) or at 366 nm (fluorescence). Description: TLC (solvent): Rf.  

 

Preparative thin layer chromatography was conducted on precoated glass plates (20×20 

cm, silica gel 60 F254, Merck AG, Darmstadt, Germany).  

 

For normal phase column chromatography silica gel 60 from Merck (0.043-0.06 mm, 230-

400 mesh) or Fluka or basic or neutral aluminium oxide from Fluka (activity I, 0.05-0.15 

mm) were used. 

Analytical reversed phase HPLC (RP-HPLC) was performed on LiChrospher® 100 RP-18 

silica gel from Merck (5 µm particle size, 4×250 mm column) or on Eclipse XDB-C8 silica 

gel from Zorbax (4.6x150 mm column) with nanopure water and HPLC-grade solvents. 

HPLC-System: Agilent 1100 Series 1100 HPLC system with Solvent degasser G1322A, Bin 

Pump G1312A, Auto sampler G1313A, Thermostatic column housing G1316A, Diode array 

UV detector G1315B).  

 

Gas chromatography (GC/MS) was performed on a Hewlett Packard 5890 series II using a 

25 m dimethyl silane column coupled with a Hewlett Packard 5971 series mass selective 

detector or a 5%phenyl-methyl silane column coupled with a Hewlett Packard 5970 series 

mass selective detector.  
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Gas chromatography (GC-FID) was performed on a Finnigan Focus using a 15 m 

upelcowax column. 

.1.4 Spectroscopic Methods 

sible absorption spectra (UV/Vis) were recorded on an Agilent 8453 Diode 

eter using optical 110-QS Hellma cuvettes (10 mm light path). 

S

5
 

Ultra violet – vi

Array spectrophotom

Description: UV/Vis (solvent): wavelength of maxima (λmax) in nm (relative extinction 

sh = shoulder. 

perature measurements were conducted using a vacuum-coated coolable Hellma 

JULABO F70 recirculating cooler. 

 

ectra (IR) were measured on a FTIR-8400S from SHIMADZU. Description

coefficient in %). 

Low tem

1X165.190-QS cuvette connected to a 

Infrared sp : IR 

(medium): wave numbers of t sity (s = strong, m = middle, 

w = weak, br = broad). 

 
1H-Nuclear magnetic resonance spectroscopy (1H-NMR) was performed using either a 

Bruker av250 (250 MHz), Bruker DPX-NMR (400 MHz), Bruker DRX-500 (500 MHz) or a 

Bruker DRX-600 (600 MHz) spectrometer. Solvents for NMR were obtained from Dr. Glaser 

AG (Basel, Switzerland) and Cambridge Isotope Laboratories (Andover, MA, USA). CDCl3 

was filtered through basic alumina prior to use. If not otherwise stated all spectra were 

recorded at room temperature. If necessary for the interpretation correlated spectra like 

COSY, TOCSY, NOESY and ROESY were recorded also. The data for all peaks is given as 

observed from spectra and is not corrected for effects caused by higher order systems. 

Description

ransmission maxima in cm-1, inten

: 1H-NMR (frequency, solvent): δH in ppm relative to residual solvent peaks (peak 

multiplicity: s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, sext = sextet, m = 

multiplet, br = broad; coupling constants J in Hertz). 

 
13C-Nuclear magnetic resonance spectra (13C-NMR) were 1H-decoupled and recorded on a 

Bruker DPX-NMR (100 MHz) or Bruker DRX-500 (125 MHz) spectrometer. For the 

assignment of carbons APT, DEPT, HETCOR, HMQC and HMBC experiments were carried 

out if essential. Description: 13C-NMR (frequency, solvent): δC in ppm relative to residual 

solvent peaks. 
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Porphyrin atom numbering for NMR assignment: 

1) model compounds: 

 

 

 

 

2) pP-IX derivatives: 

 

 

 

 

 

 

 

 

 

 

 

Electron impact mass spectra (EI-MS) and fast atom bombardment mass spectra (FAB-

MS) were measured by Dr. H. Nadig on a Varian double focussing VG-70-250 spectrometer 

in the mass spectrometry laboratory of the institute. As matrix for FAB-MS nitrobenzyl 

alcohol was used and if necessary KCl was added. Electron spray ionisation mass spectra 

(ESI-MS) were recorded on a Bruker Esquire 3000plus or a Finnigan Mat LCQ-700. For 

matrix-assisted laser desorption/ionisation mass spectra in conjunction with time of flight 

mass analysis (MALDI-TOF-MS) a Perseptive Biosystems Vestec Mass Spectrometry 

Products Voyager™ Elite Biospectrometry™ Research Station was used. Porphyrin samples 

were prepared as follows: either 1-2 µl of a diluted solution of porphyrin in dichloromethane 
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as mixed with a matrix solution of 4-Nitroaniline in dichloromethane on a 100-wells gold 

coated sample plate and left standing or the diluted porphyrin solution was placed directly on 

hout matrix (LDI-MS). Description

w

the sample plate and measured wit : MS (solvent): mass 

eaks in m/z (relative intensity in %). Peaks with an intensity of less than 5% were not 

 

Continuous wave electron paramagnetic resonance spectroscopy (cw-EPR) was carried 

νmicrowave= 9.485 GHz) spectrometer equipped with a 

 cell and an ER4111VT liquid nitrogen cryostat to assure low temperature during 

p

considered. 

out using a Bruker ESP-300 X-band (

T102

measurement. Sample concentration was typically 4mM and spectra were measured with a 

microwave power of 20 mW, modulation frequency of 100 kHz, and a modulation amplitude 

of 5.2 G. Samples were measured in dry and degassed toluene or dichloromethane 

Description: cw-EPR (solvent, temperature): g-values.  

irsch at the institute with a Perkin-

For more sensitive measurements a Bruker ElexSys E500 X-band (νmicrowave= 9.6 GHz) cw-

spectrometer equipped with a liquid helium cryostat at the EPR labs at the ETHZ was used.  

5.1.5  Elemental Analysis 
 

The elemental analysis (EA) was carried out by Mr. H. K

Elmer 240 Analyser. Description: EA (chemical formula, molecular weight): calculated 

alc.) abundance of C, H, O in %; found abundance of C, H, O in %. 

 

gbert Figgemeier using 

tte, U.S.A.). A three electrode setup was used 

nd a silver wire as a reference electrode. The redox potentials were 

internal standard and 

e as a reference electrode. 

(c

5.1.6 Electrochemical methods

 

Cyclic voltammetry (CV) was carried out in collaboration with Dr. E

a BAS 100 B electrochemical Analyzer controlled and analysed by BAS 100 W V 2.0 from 

Bioanalytical Systems, Inc. (West Lafaye

throughout. As a working electrode a glassy-carbon electrode was used. A platinum net was 

used as counter electrode a

recorded versus ferrocene (FeII/III) as an internal standard. These values might be calculated to 

the values versus SCE by appliance of the redox potential of the 

corrections for solvent changes.  

Spectrovoltammetry was carried out with the above setup placed in a cuvette in an Agilent 

8453 Diode Array spectrophotometer. Platinum net was used both for the working electrode 

and counter electrode and a silver wir
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 Synthesis 

poured 

into a separation funnel with 40 ml of CH2Cl2 and washed consecutive with 40 ml of 0.1 M 

own solid (SiO2, hexane/EtOAc 3/1 

+ 1% Et3N) gave 1.40 g of a brown solid, which was washed three times with hexane to 

H-NMR (400 MHz, CDCl3): 7.97 (br, 2H, NH); 6.90 (s, 2H, Haryl); 6.72-6.68 (m, 2H, 

13

20.8, 20.6. 

lphenyl)-10,20-bis(2-Methoxyphenyl)porphyrin (39) 

CH2Cl2 and 68.5 ml (922 µmol, 1.8 eq.) of TFA were 

added. The reaction mixture was stirred at r.t. for 30 

min and then 228 mg (1.00 mmol, 2.0 eq.) of DDQ 

 

5.2 Syntheses 

 

5.2.1 Porphyrin Model Compound
 

(2,4,6-trimethyl)-bis (2-pyrryl)methane (30) 

 

21.0 ml (302 mmol, 40 eq.) of freshly distilled pyrrole and 1.10 ml (7.59 

mmol, 1.0 eq.) Mesitylaldehyde were mixed and purged with Argon for 15 

min. Then 280 µl (2.28 mmol, 0.3 eq.) BF3
.OEt2 were added. The resulting 

mixture was stirred at r.t. under exclution of light for 1h. Then it was 
HN

NaOH-solution and twice with water. The organic layer was dried over Na2SO4 and the 

solvent was removed. Chromatography of the resulting br

obtain 575 mg (29%) of white crystals. Since the compound was already described 

elsewhere64only selected data is given. 

 

TLC (SiO2; hexane/EtOAc 3:1 + 1%Et3N): Rf = 0.43. 
1

Hpyrrole); 6.21 (q, J = 4.6, 2H, Hpyrrole); 6.10-6.06 (m, 2H, Hpyrrole); 5.96 (s, 1H, CH); 2.32 (s, 

3H, CH3); 2.10 (s, 6H, CH3). 

C-NMR (125 MHz, CDCl3): 137.6, 136.6, 134.5, 131.2, 130.3, 116.1, 108.6, 106.5, 38.3, 

 

5,15-Bis-(2,4,6-trimethy

 

132 mg (499 µmol, 1.0 eq.) (2,4,6-trimethyl)-bis (2-

pyrryl)methane (30) and 68.7 mg (505 µmol, 1.0 eq.) 2-

methoxybenzaldehyde were dissolved in 50 ml of 

HN

NH

N
HN

N

O

O
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ere added and the reaction heated to reflux for 1 h. Upon cooling to r.t. the mixture was 

raphed (SiO2, hexane/CH2Cl2 1/1 +1% Et3N) to yield 52.0 mg (27%) of 

a purple solid as a mixture of two atropisomers. 

t, J = 7.9, 2H, H 4’); 7.36-7.30 (m, 4H, H 

ESI-MS (MeCN): Positive ion mode: 759 (100, [M+H] ); 781 (100, [M+Na]+). Negative 
−

s(2-Hydroxyphenyl)porphyrin (40) 

 

TLC (SiO2; hexane/ CH2Cl2 1:1 + 1% Et3N): Rf = 0.34, Rf = 0.20. 

1

s, 2H, OH)); 2.63 (s, 6H, CH3d); 1,83 (s, 6H, CH3b,f) (resp. 1.86 

s, 3H, CH3b); 1.81 (s, 3H, CH3f)); -2.63 (br, 2H, NH). 

w

filtrated over SiO2 (CH2Cl2 + 1% Et3N) and concentrated to give 70.3 mg of a purple solid 

which was chromatog

 

TLC (SiO2; hexane/ CH2Cl2 1:1 + 1% Et3N): Rf = 0.31, Rf = 0.22. 

UV/Vis (CHCl3): 419 (100, Soret); 514 (5); 550(2); 590 (1). 
1H-NMR (500 MHz, CDCl3): 8.70 (d, J = 4.5, 4H, H 2,8,12,18); 8.62 (d, J = 4.5, 

4H, H 3,7,13,17); 8.01 (d, J = 7.2, 2H, H 6’); 7.76 (

3’,5’); 7.26 (s, 4H, Hc,e); 3.60 (s, 6H, OCH3); 2.62 (s, 6H, CH3d); 1,84 (s, 6H, CH3b,f) (resp. 

1.86 (s, 3H, CH3b); 1.83 (s, 3H, CH3f)); -2.55 (br, 2H, NH). 
+

ion mode: 757 (100, [M-H] ). 

 

5,15-Bis-(2,4,6-trimethylphenyl)-10,20-bi

200 mg (264 µmol, 1.0 eq.) Dimethoxyporphyrin (39) 

were dissolved in 80 ml of CH2Cl2 and cooled to 0 °C. 

850 µl (8.82 mmol, 34 eq.) BBr3 were added via 

syringe. After addition the cooling bath was removed 

and the mixture stirred at r.t. overnight. Then it was 

poured to 150 ml of sat. NaHCO3-solution. The water 

phase was extracted twice with CH2Cl2. The combined organic layers were subsequently 

washed  with sat. NaHCO3-solution and water and then dried over Na2SO4. Chromatography 

(SiO2, hexane/TBME 2/1) gave 153 mg (79%) of a purple solid as a mixture of two 

atropisomers. 

 

UV/Vis (CHCl3): 418 (100, Soret); 514 (5); 549(2); 590 (2), 650 (1). 

H-NMR (500 MHz, CDCl3): 8.83 (d, J = 4.5, 4H, H 2,8,12,18); 8.73 (d, J = 4.5,4H, H 

3,7,13,17); 8.01 (dxd, J = 7.4, J’ = 1.5, 2H, H 6’) (resp. 7.99 (dxd, J = 7.4, J’ = 1.5, 2H, H 6’); 

7.72 (txd, J = 7.4, J’ = 1.5, 2H, H 4’); 7.38-7.31 (m, 4H, H 3’,5’); 7.31- 7.27 (m, 4H, Hc,e); 

4.98 (s, 2H, OH) (resp. 5.05 (

(

NH

N
HN

N
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-H]−). 

S-[ hydroxypropyl)-1-phenyl] N,N-dimethylthiocarbamate (38) 

 

-Butyl)-1-

l 

3
.SMe2 

easing 

10 ml

come lux for 1 

es with 

CH2Cl2

Na2 4 (SiO2, CH2Cl2/MeOH 95/5) gave 2.94 g (87%) of a colourless oil. 

Since the compound was already described elsewhere65 only selected data is given. 

 

LC (SiO2; CH2Cl2

(400 MHz, CDCl3): 7.18 (s, 2H, Haryl);3.63 (t, J = 6.1, 4H); 3.16 (br, 3H); 3.00 (br, 

H); 2.87 (t, J = 7.5, 4H); 1.91-1.83 (m, 6H); 1.29 (s, 9H). 

SI-MS (MeOH): Positive ion mode: 376 (100, [M+Na]+); 392 (11, [M+K]+).  

-[4-(tert-Butyl)-2,6-bis(3-methanesulfonylpropyl)-1-phenyl]N,N-dimethylthiocarbamate 

3) 

769 mg (2.18 mmol, 1.0 eq.) diol (38) and 3.20 ml (22.9 mmol, 

ESI-MS (MeCN): Negative ion mode: 729 (100, [M

 

4-(tert-Butyl)-2,6-bis(3-

3.03 g (9.54 mmol, 1.0 eq.) of  S-[2,6-Diallyl-4-(tert

phenyl] N,N-dimethylthiocarbamate (37) were dissolved in 100 m

of THF and cooled to 0 °C. 3.50 ml (35.0 mmol, 3.7 eq.) BH

were added dropwise over 5 min via syringe pump. After addition, 

the mixture was stirred at r.t. for 3h during which incr

viscosity of the solution made addition of further THF (30 ml) necessary. Upon anew cooling 

 of 3 M NaOH-solution was added slowly and the mixture was afterwards allowed to 

 to r.t., 3.6 ml 30% H2O2-solution was added and the reaction was brought to ref

h. Then it was poured to ice-water and the resultant mixture was extracted three tim

. The combined organic layers were washed with water and brine and dried over 

N

SO . Chromatography 

T /MeOH 95:1 ): Rf = 0.22. 
1H-NMR 

3

E

 

S

(3

 

10 eq.) Et3N were dissolved in 100 ml of CH2Cl2 and the mixture 

was cooled to 0 °C. 1.05 ml (13.5 mmol, 6.2 eq.) 

Methanesulfonyl chloride in 60 ml CH2Cl2 were added dropwise 

within 30 min. Then cooling was removed and the mixture stirred 

at r.t. for 2h. After anew cooling 60 ml 1 N HCl were added. The phases were separated and 

the water phase extracted two times with CH2Cl2. The combined organic layers were washed 

with sat. NaHCO3-solution, water and brine and dried over Na2SO4. Chromatography (SiO2, 

OHHO

S O

OMsMsO

S

N

O
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00 MHz, CDCl3): 7.19 (s, 2H, Haryl); 4.23 (t, J = 6.6, 4H); 3.18 (br, 3H); 2.99 (br, 

9H); 2.89 (t, J = 7.8, 4H); 2.08-2.00 (m, 4H); 1.30 (s, 9H). 

 mmol, 30 eq.) Cs2CO3 (previously 

0 

min 56.1 mg (110 µmol, 1.6 eq.) Dimesylate (33) in 10 

ml DMF were added via syringe pump during 3 h. After 

2Cl2. The combined 

organic layers were washed with sat. NaHCO3-solution, water and brine and dried over 

CH2Cl2 5/1 + 1% Et3N) gave 53.1 mg (75%) of a 

urple solid. 

3.87-3.82 (m, 2H, Hα); 3.73 (txd, J = 8.5, J’ = 2.5, 2H, Hα); 

br, 2H, NH). 

hexane/EtOAc 1/2) gave 1.01 g (92%) of a colourless oil which solidified upon standing at 4 

°C. Since the compound was already described elsewhere65 only selected data is given. 

 

TLC (SiO2; hexane/EtOAc 1:2): Rf = 0.21. 
1H-NMR (4

ESI-MS (MeOH): Positive ion mode: 532 (100, [M+Na]+); 548 (15, [M+K]+).  

 

5,15-({[5-(t-Butyl)-2-(N,N-dimethylcarbamoyl)thio-1,3-phenylene]bis(trimethyleneoxy)}-

di-2,1-phenylene)-10,20-bis(2,4,6-trimethylphenyl) porphyrin (41) 

 

49.6 mg (67.9 µmol, 1.0 eq.) Dihydroxyporphyrin (40) 

and 650 mg (1.98

dried at 100 °C in high vacuum overnight) were 

dissolved in 30 ml DMF and heated to 80 °C. After 3

addition heating was continued for 1h. Then the mixture 

was cooled in an ice bath and 17 ml 1 N HCl was added. After addition of 30 ml CH2Cl2 the 

layers were separated and the water phase was extracted twice with CH

Na2SO4. Chromatography (SiO2, hexane/

p

 

TLC (SiO2; hexane/ CH2Cl2 5:1 + 1% Et3N): Rf = 0.20. 

UV/Vis (CHCl3): 424 (100, Soret); 519 (4); 554(2); 595 (2), 653 (1). 
1H-NMR (500 MHz, CDCl3): 9.00 (d, J = 4.7, 2H, H 2,8); 8.70 (d, J = 4.7, 2H, H 3,7); 8.64 

(dxd, J = 7.3, J’ = 1.7, 2H, H 6’); 8.62 (d, J = 4.7, 2H, H 12,18); 8.40 (d, J = 4.7, 2H, H 

13,17); 7.73 (txd, J = 8.1, J’ = 1.8, 2H, H 4’); 7.51 (txd, J = 7.5, J’ = 1.0, 2H, H 5’); 7.40 (s, 

1H, Hc2); 7.18 (s, 1H, He2); 7.15 (dxd, J = 8.3, J’ = 0.8, 2H, H 3’); 7.09 (s, 1H, Hc1); 7.06 (s, 

1H, He1); 6.55 (s, 2H, H3’’,5’’); 

2.63 (s, 3H, CH3 d2); 2.53 (s, 3H, CH3 d1); 2.45 (s, 3H, CH3 b2); 1.49 (br, 6H, NCH3); 1.42 (s, 

3H, CH3 f2); 1,37 (s, 3H, CH3 f1) ; 1.33-1.25 (m, 2H, Hγ); 1.24 (s, 3H, CH3 b1); 1.14 (s, 9H, 

Htert-butyl); 1.02-0.85 (m, 4H, Hβ,γ); 0.68-0.58 (m, 2H, Hβ); -1.89 (

ONH

N
HN

N

O

O

S

N
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SI-MS (MeCN): Positive ion mode: 1048 (65, [M+H]+); 1070 (100, [M+Na]+); 1086 (16, 

[M+K]+). 

,15-({[5-(t-Butyl)-2-sulfonato-1,3-phenylene]bis(trimethyleneoxy)}-di-2,1-phenylene)-

lution of 10.4 mg (9.92 µmol, 1.0 eq.) 

Thiocarbamoylporphyrin (41) in 2.5 ml of dioxane was 

coo

The

lay

gav

LC (SiO2; hexane/ EtOAc 1:2): Rf = 0.35. 

5 (2). 

= 1. J = 

5’); 7.25 (t, overlaid by solvent, 2H, H 3’);7.25 (s, overlaid by 

 (s, 6H, CH3 f); 1.49 (s, 6H, CH3 b); 0.91 (s, 9H, Htert-butyl); 0.91-0.78 (m, 4H, Hγ); 

.77-0.67 (m, 4H, Hβ). 
+ + 70 (55, [M-

+2Na] ); 1086 (55, [M-H+Na+K] ). Negative ion mode: 1023 (100, [M-H] ). 

 

 

fractions eluting before the SO3-pr

prescription 2)70. 

 

 

E

 

5

10,20-bis(2,4,6-trimethylphenyl) porphyrin (42) 

 

1) A so

saturated with O2 and kept under O2-atmosphere for 5 

min before addition of 40.0 mg (571 µmol, 58 eq.) 

KOMe (previously dried at 100 °C in high vacuum 

overnight). After addition the mixture was heated to 

reflux and stirred at that temperature overnight. After 

ling to r.t., 2.5 ml sat. NH4Cl-solution was added and the mixture poured into CH2Cl2/H2O. 

 layers were separated, the water layer extracted twice with CH2Cl2 and the combined organic 

ers washed with water and dried over Na2SO4. Chromatography (SiO2, hexane/EtOAc 1/2 ) 

e 4.10 mg (40%) of a purple solid. 

 

T

UV/Vis (CHCl3): 424 (100, Soret); 548 (5); 582 (6), 63
1H-NMR (400 MHz, CDCl3): 9.01 (d, J = 4.8, 4H, H 2,8,12,18); 8.75 (d, J = 4.8, 4H, H 

3,7,13,17); 8.44 (dxd, J = 7.3, J’ 5, 2H, H 6’); 7.80 (txd, 8.1, J’ = 1.8, 2H, H 4’); 7.52 

(txd, J = 7.6, J’ = 1.0, 2H, H 

solvent 2H, He); 7.23 (s, 2H, Hc); 6.08 (s, 2H, H3’’,5’’); 3.65 (t, J = 5.6, 4H, Hα); 2.61 (s, 6H, 

CH3 d); 1.79

0

ESI-MS (MeCN): Positive ion mode: 1048 (65, [M+Na] ); 1064 (6, [M+K] ); 10
+ + -H

Products of lower oxidation state on sulfur (obtained in the upper prescription 1) as coloured 

oduct) were converted to the desired product using 

NH

NH
N

HN

O

O

SO3
-

H+
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0, [M+H]+); 999 (69, [M+Na]+); 1015 (4, 

+K]+); 1022 (4, [M-H+2Na]+). Negative ion mode: 975 (100, [M-H]-). 

, 

) SO2-porphyrin (43) were dissolved in 1.5 ml CH2Cl2 and 2.00 

g nBu4NHSO5 ( 5.63 µmol, 1.6 eq.) were added. The mixture was stirred at r.t. overnight 

c 1/1) gave 

.20 mg (60%) of a purple solid 

l

in 40 ml of water and 2.20 g (6.50 m

extracted six times with 100 ml of C

Na2SO4. Removal of solvent gave 2.2

determined to be 81% by iodometric t

66.4 mg (64.8 µmol, 1.0 eq.) SO3-porphyrin (42) were 

ne and 151 µl 2,6-lutidine 

ded. The mixture was 

ave 59,8 mg (86%) of a purple solid. 

SH-product: 

TLC (SiO2; hexane/ EtOAc 4:1): Rf = 0.46. 

UV/Vis (CHCl3): 422 (100, Soret); 517 (4); 551 (2); 595 (2), 650 (1). 

ESI-MS (MeCN): Positive ion mode: 977 (10

[M

 

SO2-product (43): 

TLC (SiO2; hexane/ EtOAc 1:2): Rf = 0.73. 

UV/Vis (CHCl3): 421 (100, Soret); 521 (4); 585 (2). 

ESI-MS (MeCN): Positive ion mode: 1009 (100, [M+H]+); 1031 (70, [M+Na]+); 1047 (3

[M+K]+). Negative ion mode: 1007 (100, [M-H]-). 

 

2) 3.60 mg (3.57 µmol, 1.0 eq.

m

and filtrated over SiO2 eluting with EtOAc. Chromatography (SiO2, hexane/EtOA

2

 

2a) nBu4NHSO5 was obtained as fol ows: 4.02 g (6.50 mmol, 1.0 eq.) Oxon® was dissolved 

mol, 1.0 eq.) nBu4NHSO4 was added. The mixture was 

H2Cl2 and the combined organic layers were dried over 

8 g (99%) of a white solid. The oxidative activity was 

itration. 

 

[5,15-({[5-(t-Butyl)-2-sulfonato-1,3-phenylene]bis(trimethyleneoxy)}-di-2,1-phenylene)-

10,20-bis(2,4,6-trimethylphenyl) porphyrinato]iron (III) (28) 

 

dissolved in 40 ml of tolue

(1.30 mmol, 20 eq.) were ad

heated to reflux for 5 min and upon cooling 143 mg 

FeBr2 ( 663 µmol, 10 eq.) were added and heating was 

continued for 1 h. Upon cooling to r.t. the mixture was 

filtrated through celite and concentrated. 

Chromatography (SiO2, hexane/CH2Cl2/EtOAc 5/5/1) g

N

N
N

N

O

O

SO3
-

FeIII
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V/Vis (CHCl3): 416 (100, Soret); 512 (13); 581 (4), 670 (2). 

7, 

+K]+).  

cw-EPR (toluene, 94 K): 5

0

420 nm, T = 25 °C): Rt = 5

 

Iron(II)-state (44):  

tion. The 

btained solutions of 44 were transferred to EPR-tubes and sealed directly in the glove box. 

 several attempts. 

w-EPR (toluene, 96 K): silent (trace signal of 28 g = 5.94). 

omplex 44(CO): 

UV/Vis cuvette-samples of 

 

 

CpdI analogue 45: 

 

TLC (SiO2; hexane/CH2Cl2/EtOAc 5:5:1): Rf = 0.52. 

U

ESI-MS (MeCN): Positive ion mode: 1078 (42, [M+H]+); 1100 (100, [M+Na]+); 1116 (

[M

.67, 2.03 (axial, high spin). 

 mm, heptane/EtOAc 1/1 for 30 min, flow 1.0 ml/min, DAD (λHPLC (NC-04, 250 x 4. det = 

.2 min. 

 

UV/Vis spectra of 44 were obtained by treating 2.50 ml of a 5.00 µM solution of 28 in 

degassed toluene in a UV/Vis cuvette with aliquots of a KH (15.0 mM) / 18-crown-6 (30.0 

mM) toluene solution under constant control of UV/Vis spectrum changes. 

cw-EPR samples were prepared by treating 500 μl of a 4.00 mM solution of 28 in toluene in a 

glove box with aliquots of a KH (15.0 mM) / 18-crown-6 (30.0 mM) solution under 

continuous control of UV/Vis spectra of samples taken from the reaction solu

o

Purification of 44 via chromatography failed in

 

UV/Vis (toluene): 422 (100, Soret); 579 (8). 

  (DMF, 0.1 M LiClO4): 425 (100, Soret); 526 (5). 

c

 

CO-c

 

44 in toluene obtained above were saturated with CO by bubbling 

the solution. No spectral changes were observed. 

UV/Vis spectra of 45 were obtained by cooling 1.50 ml of a 8.00 µM solution of 28 in 

degassed CH

a stream of CO-gas through

2Cl2 to -50 °C in a a vacuum-coated coolable UV/Vis cuvette and subsequent 

treating with 16 µl (18.6 nmol, 1.5 eq.) of a 1.16 mM solution of mCPBA in CH2Cl2. 

UV/Vis (CH2Cl2): 408 (100, Soret); 664 (7) broad. 
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in 100 μl of degassed toluene in an EPR tube 

gassed MeOH 

nd EPR spectra were measured upon subsequent addition of toluene. 

lv

with a septum and treated with 50 μl o

 

cw-EPR (toluene, 94 K): g = 2.42, 2.1

 

NO by bubbling through a stream of NO for 10 min (NO was cleaned from 

ace amounts of higher nitrogen oxides by passing it through an Ascarite column and a gas 

ain 28 from these solutions after EPR 

 the samples showed the 

 

MeOH-complex 68: 

 

570 µg (529 nmol) of 28 were dissolved 

equipped with a septum and EPR spectra were measured upon subsequent addition of 

degassed MeOH.  

In another experiment, 520 µg (482 nmol) of 28 were dissolved in 100 μl of de

a

 

cw-EPR (toluene, 100 K): 5.57, 2.04 (axial, high spin). 

 

Methylate-complex 28(MeO-): 

 

560 µg (519 nmol) of 28 were disso ed in 100 μl degassed toluene in an EPR tube equipped 

f a sat. KOMe/MeOH solution. 

5, 1.93. 

NO-complex 28(NO): 

 

590 µg (547 nmol) of 28 were dissolved in 120 μl of degassed toluene in an EPR tube. After a 

first EPR measurement displaying the corresponging high spin signals for 28, the solution was 

saturated with 

tr

scrubbing bottle containing 5 M NaOH-solution). To reg

measurements, they were bubbled with argon for 20 min upon which

restored EPR-Signals of 28. 

 

Samples of NO saturated toluene for comparison where obtained by bubbling a stream of NO 

through 200 μl of degassed toluene in an EPR tube equipped with a septum for 10 min (NO 

was cleaned from trace amounts of higher nitrogen oxides by passing it subsequently through 

an Ascarite column and a gas scrubbing bottle containing 5 M NaOH). 
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,6-dichlorophenyl)-10,20-bis(2-Hydroxyphenyl)porphyrin (40b) 

y-

pd. 51 in reference 63) were dissolved in 

200 ml of CH2Cl2 and cooled to 1 °C. Then 2.10 ml 

C

NaHCO3-solution and water. Drying 

(97%) of a purple solid, which was u

the compound was already described e

,15-({[5-(t-Butyl)-2-(N,N-dimethylcarbamoyl)thio-1,3-phenylene]bis(trimethyleneoxy)}-

enyl) porphyrin (41b) 

(33) in 100 ml DMF were added via syringe pump 

 After addition 

f CH2Cl2 the layers were separated and the water phase was extracted twice with CH2Cl2. 

e the compound was already described elsewhere62,63 only selected data is 

iven. 

 

5,15-Bis-(2

 

532 mg (655 µmol, 1.0 eq.) of the Dichloro-dimethox

Porphyrin (C

(21.8 mmol, 33 eq.) BBr3 were added. The mixture was 

allowed to come to r.t. and stirred at r.t. overnight. Then 

it was poured to sat. NaHCO3-solution. The water phase 

lwas extracted two times with CH2 2 and the combined organic layers washed with sat. 

over Na2SO4 and evaporation of solvent gave 496 mg 

sed for the next step without further purification. Since 

lsewhere62,63only selected data is given. 

 

TLC (SiO2; CH2Cl2): Rf = 0.65, Rf = 0.13. 

ESI-MS (MeOH): Positive ion mode: 783 (100, [M+H]+). 

 

5

di-2,1-phenylene)-10,20-bis(2,6-dichloroph

 

489 mg (623 µmol, 1.0 eq.) of crude Dihydroxy-

porphyrin (40b) and 7.50 g (23.0 mmol, 37 eq.) Cs2CO3 

(previously dried at 100 °C in high vacuum overnight) 

were dissolved in 300 ml DMF and heated to 80 °C. 

After 30 min 473 mg (928 µmol, 1.5 eq.) Dimesylate 

during 3 h. After addition heating was continued for 1 

h. Then the mixture was cooled in an ice bath and 200 ml 1 N HCl was added.

o

The combined organic layers were washed with sat. NaHCO3-solution, water and brine and 

dried over Na2SO4. Chromatography (SiO2, CH2Cl2 + 1% Et3N) gave 511 mg (74%) of a 

purple solid. Sinc

g

 

Cl

NH

N
HN

N

OH

HO

Cl

Cl

Cl

O

Cl

NH

N
HN

N

O

O

S

Cl

Cl

N Cl
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H2Cl2 + 1% Et3N): Rf = 0.36. 

28, [M+H]+); 1122 (100, [M+Na]+). Negative ion 

-2,1-phenylene)-

0,20-bis(2,6-dichlorophenyl) porphyrin (42b) 

tion of 473 mg (429 µmol, 1.0 eq.) 

rphyrin (41b) in 100 ml of dioxane was 

ition of 2.00 g (28.6 mmol, 67 eq.) KOMe 

(previously dried at 100 °C in high vacuum overnight). 

xtracted twice with CH2Cl2 and the combined organic layers 

ashed with water and dried over Na2SO4. Chromatography (SiO2, hexane/EtOAc 1/10 to 

0, [M+Na]+); 1123 (79, [M-H+2Na]+).  

a 

TLC (SiO2; C

ESI-MS (MeOH): Positive ion mode: 1100 (

mode: 1098 (100, [M-H]-). 

 

5,15-({[5-(t-Butyl)-2-sulfonato-1,3-phenylene]bis(trimethyleneoxy)}-di

1

 

A solu

Thiocarbamoylpo

saturated with O2 and kept under O2-atmosphere for 10 

min before add

After addition the mixture was heated to reflux and 

stirred at that temperature overnight. After cooling to r.t. 

100 ml sat. NH4Cl-solution was added and the mixture poured into CH2Cl2/H2O.The layers 

were separated, the water layer e

w

EtOAc/MeOH 9/1 ) gave 270 mg (58%) of a crude purple solid. Since the compound was 

already described elsewhere62,63 only selected data is given. 

 

TLC (SiO2; hexane/ EtOAc 1:5): Rf = 0.16. 

ESI-MS (MeOH): Positive ion mode: 1101 (10

 

 [5,15-({[5-(t-Butyl)-2-sulfonato-1,3-phenylene]bis(trimethyleneoxy)}-di-2,1-phenylene)-

10,20-bis(2,6-dichlorophenyl) porphyrinato]iron (III) (29) 

 

265 mg (246 µmol, 1.0 eq.) of crude SO3-porphyrin 

(42b) were dissolved in 170 ml of toluene and 580 µl 

2,6-lutidine (5.00 mmol, 20 eq.) were added. The 

mixture was heated to reflux for 5 min and upon 

cooling 543 mg (2.52 mmol, 10 eq.) FeBr2 were added 

and heating was continued for 1 h. Upon cooling to r.t. 

the mixture was filtrated through celite and 

concentrated. Chromatography (SiO2, hexane/CH2Cl2/EtOAc 5/5/1) gave 60.6 mg (22%) of 

Cl

N

N
N

N

O

O

SO3
-

Cl

Cl

Cl
FeIII

Cl

NH

NH
N

HN

O

O

SO3
-

Cl

Cl

Cl
H+
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ibed elsewhere62,63only selected data is 

; hexane/CH2Cl2/EtOAc 5:5:1): Rf = 0.34. 

56 (2). 

, NH4OAc-buffer (1.0M, pH 4.62) / MeOH 1/3 to pure 

eOH in 25 min, flow 1.0 ml/min, DAD (λdet = 416 nm, T = 25 °C)) : Rt = 18.5 min. 

ixture was stirred at r.t. for 

 d, partially concentrated and acidified with 1 N HCl to pH 2. Two extractions with CH2Cl2 

er Na2SO4 gave 322 mg of crude product, which 

was cry hite solid. 

LC (SiO2; hexane/TBME 1:1): Rf = 0.50. 

R (neat): 3279br, 2957w, 2915s, 2849s, 1467m, 1070m, 1042w. 

(t, J = 6.8, 6H, 

1,21) 

, CDCl3): 75.1, 32.3, 31.6, 30.1, 30.0, 29.8, 29.7, 26.4, 23.1, 14.5. 

I-MS (70 eV): 185 (12); 166 (7); 143 (15); 124 (17); 111 (24); 97 (42); 83 (72); 69 (100); 

 9.74; found: C 76.55, H 13.26, O 9.78. 

purple solid. Since the compound was already descr

given. 

 

TLC (SiO2

UV/Vis (CHCl3): 416 (100, Soret); 513 (11); 590 (2), 6

ESI-MS (MeOH): Positive ion mode: 1152 (100, [M+Na]+).  

HPLC (XDB-C8, 150 x 4.6 mm

M

 

5.2.2 Synthesis of Substrates, Co-oxidants and References for Catalytic 
Experiments 

 

9,10-heneicosan-diol (56) 

 

299 mg (1.02 mmol, 1.0 eq.) of cis-9-heneicosen were dissolved 

in 4 ml of H2O/t-Butanol 1/1. 158 mg (752 µmol, 0.7 eq.) of 

citric acid monohydrate, 3.13 mg (8.50 µmol, 0.8 mol%) of K2OsO2(OH)4 and 152 mg (1.29 

mmol, 1.3 eq.) of NMO were subsequently added. The resulting m

7

and drying of the combined organic layers ov

stallised from EtOAc to yield 274 mg (82%) of a w

 

T

mp: 124-126 °C 

I
1H-NMR (400 MHz, CDCl3): 3.60 (m, 2H, H 9,10); 1.85 (br, 2H, -OH); 1.50 (m, 2H, H 

7,12); 1.43 (q, J = 6.6, 4H, H 8,11); 1.25 (m, 28 H, H 2-7 and 12-20); 0.88 

H
13C-NMR (100 MHz

E

57 (32); 55 (37); 43 (22); 41 (15). 

 FAB-MS: 657 (7); 482 (10); 327 (11, [M-H]); 311 (100, [M-OH]); 293 (9); 111 (14); 97 

(39); 83 (52); 69 (54); 55 (60); 43 (54). 

EA calc. for C21H44O2 (328.58): C 76.76, H 13.50, O

HO

HO



Experimental Part
 

83 

lbenzenamine oxide(24) 

d to -4 °C such that the temperature stayed below 0 °C. After addition the 

as eluted with CH2Cl2. 

lution with CH2Cl2/MeOH 3/1 gave 625 mg of a yellowish solid which was recrystallised 

ss crystals. 

:1): Rf = 0.25. 

p: 146-148 °C 

, 972s, 849s. 

 (400 MHz, CDCl3): 8.17 (d, J = 9.1, 2H, Haryl); 7.80 (d, J = 9.1, 2H, Haryl); 3.60 (s, 

C-NMR (100 MHz, CDCl3): 158.4, 133.7, 121.8, 117.9, 113.8, 63.8. 

7); 145 (100); 131 (22); 119 (39); 102 (34); 90 (11); 75 (11); 64 (8); 

1 (7); 44 (43); 42 (21). 

d 2.60 ml (41.8 mmol, 0.9 eq.) MeI in 15 ml of MeOH were 

dded over 1 h via syringe-pump. The mixture was heated to reflux overnight. Then the 

e (53)(718 mg, 10%); 

-cyano-N-methylbenzenamine (54)(1.66 g, 26 %); 4-aminobenzonitrile (55) (2.49 g, 44%). 

 

4-cyano-N,N-dimethy

 

922 mg (3.74 mmol, 1.1 eq.) mCPBA in 7 ml of CH2Cl2 were added to 502 

mg (3.43 mmol, 1.0 eq.) of 4-cyano-N,N-dimethylbenzenamine (53) in 20 ml 

of CH2Cl2 precoole

cooling bath was removed and the solution was stirred at r.t. for 4 h. The crude reaction 

mixture was poured onto basic alox and remaining starting material w

E

from acetone/hexane to obtain 419 mg (75%) of colourle

 

TLC (Alox B; CH2Cl2/MeOH 20

m

UV/Vis (CH2Cl2): 231 (100); 263 (19); 270 (19); 278 (17). 

IR (neat): 3500-2800 br, 3356w, 3101w, 3024 m, 2978w, 2230s, 1497s
1H-NMR

6H, Hmethyl). 
13

EI-MS (70 eV): 162 (5

5

FAB-MS: 325 (8, [2M+H]); 316 (10); 163 (100, [M+H]); 146 (42). 

 

 

4-cyano-N-methylbenzenamine (54)  

 

5.68 g (48.1 mmol, 1.0 eq.) 4-aminobenzonitrile (55) were dissolved in 15 ml 

of MeOH an
NH

a

solvent was removed and the residuum redissolved in CH2Cl2. two times washing with 1 N 

NaOH-solution and drying over Na2SO4 gave 5.84 g of a yellowish oil which solidified upon 

cooling overnight at 4 °C. Chromatography (Alox B, hexane/CH2Cl2 3/2) of the latter gave 

three products eluting in the order: 4-cyano-N,N-Dimethylbenzenamin

4

NC

NNC
O
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s the title compound was obtained according to earlier prescriptions84, only selected data is 

TLC (Alox B; hexane/ CH2Cl2 3:2): R

4.30 (br, 1H, NH); 2.87 (s, 3H, Hmethy

13C-NMR (100 MHz, CDCl3): 152.6,

 

q.) of mCPBA 

were added and the cooling bath removed to bring the solution to r.t. at which 

n basic alox was run with first CH2Cl2 to remove 

2/MeOH 10/1 gave 533 mg of a 

ellowish solid which was recrystallised from acetone/hexane to yield 298 mg (54%) of 

LC (Alox B; CH2Cl2/MeOH 20:1): Rf = 0.22. 

3

2878w, 2867m, 1490m, 1267m, 1108s
1H-NMR (400 MHz, CDCl3): 8.02 (d

= 7.3, 1H, Haryl); 4.73 (dxt, J = 1.5, J’

H3,5eq); 3.87 (dxt, J = 3.5, J’ = 12.1, 2

A

given. 

 

f = 0.15. 

d, J = 8.8, 2H, H

mp: 89-92 °C 
1H-NMR (400 MHz, CDCl3): 7.42 ( aryl 3,5); 6.55 (d, J = 8.6, 2H, Haryl 2,6); 

l). 

 134.1, 121.0, 112.2, 98.9, 30.4. 

4-phenylmorpholine-4-oxide (60) 

 

502 mg (3.08 mmol, 1.0 eq.) of 4-phenylmorpholine (62) were dissolved in 20 

ml of dry CH2Cl2 and cooled to 3 °C. 910 mg (3.69 mmol, 1.2 eN
O

O

it was stirred overnight. Chromatography o

remaining starting material. Further elution with CH2Cl

y

colourless crystals. 

 

T

mp: 189-192 °C 

UV/Vis (CH2Cl2): 229 (100). 

IR (neat):, 3103w, 3084w, 3048m, 028m, 3000m, 2960w, 2949w, 2939m, 2922m, 2990m, 

, 963s, 850s,755s. 

, J = 7.8, 2H, Haryl); 7.50 (t, J = 8.4, 2H, Haryl); 7.41 (t, J 

 = 11.6, 2H, H2,6axial); 3.94 (dxt, J = 3.5, J’ = 11.6, 2H, 

H, H2,6eq); 3.08 (d, J = 11.4, 2H, H3,5axial). 
13C-NMR (100 MHz, CDCl3): 155.2, 129.7, 129.6, 120.7, 68.1, 62.7.  

EI-MS (70 eV): 163 (36); 161 (14); 132 (5); 122 (17); 105 (100); 91 (13); 86 (99); 77 (73); 

65 (13); 56 (84); 51 (25). 

 FAB-MS: 359 (8, [2M+H]); 333 (5); 180 (100, [M+H]); 163 (45); 105 (7); 86 (13); 77 (7); 63 

(5); 57 (8); 51 (8); 43 (8); 41 (8). 
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.26 mmol, 1.0 eq.) 4-fluorobenzonitrile were dissolved in 14 ml 

DMSO and 1.50 ml (17.2 mmol, 2.1 eq.) morpholine were added via 

nd 

lid occurred which was taken up in TBME. 

he water phase was extracted three more times with TBME and the combined organic layers 

were washed twice with brine, dried

x

 

TLC (SiO2; hexane/EtOAc 1:1): Rf 

mp: 87-89 °C 

UV/Vis (CH2Cl2): 291 (100). 

IR (neat):, 3099w, 2982w, 2832m, 

AB-MS: 189 (100, [M+H]); 188 (100); 187 (39); 130 (14); 77 (7); 57 (5); 51 (5); 41 (5); 39 

 6.54, 

 14.81, O 8.46. 

dissolved in 30 ml o

1.0 eq.) of mCPBA 

5 min the cooling w

it was stirred for 7 h. The crude mix

starting material was eluted with C

yielded 1.07 g (98%) of a white solid. 

4-(4-cyanophenyl)morpholine (61) 

 

1.00 g (8NNC O

syringe. The mixture was heated to 100 °C and stirred for 7 h. Then it was cooled to r.t. a

poured to 50 ml of H2O. Formation of a white so

T

 over Na2SO4 and evaporated to yield 1.44 g of yellowish 

ane/EtOAc yielded 1.44 g (92%) of colourless crystals.  

= 0.46. 

2216s, 1604s, 1515s, 1383s, 1244s, 1180s, 1111s, 927s, 

834s, 815s. 

crystals. Chromatography (SiO2, he

1H-NMR (400 MHz, CDCl3): 7.51 (d, J = 8.8, 2H, Haryl 3,5); 6.86 (d, J = 8.8, 2H, Haryl 2,6); 

3.85 (t, J = 4.8, 4H, H2,6); 3.27 (t, J = 5.0, 4H, H3,5). 
13C-NMR (100 MHz, CDCl3): 153.9, 133.9, 120.3, 114.5, 101.4, 66.9, 47.7.  

EI-MS (70 eV): 188 (71); 130 (100); 129 (29); 102 (16). 

F

(5). 

EA calc. for C11H12N2O (188.23): C 70.19, H 6.43, N 14.88, O 8.50; found: C 70.24, H

N

 

4-(4-cyanophenyl)morpholine-4-oxide (59) 

 

1.01 g (5.32 mmol, 1.0 eq.) of 4-(4-cyanophenyl)morpholine (61) were 

f CH2Cl2 and cooled in an ice bath. 1.31 g (5.32 mmol, 

in 45 ml of CH2Cl2 were added over 5 min. After further 

as removed to let the reaction mixture come to r.t. where 

ture was poured onto basic alox from which remaining 

H2Cl2. Subsequent elution using CH2Cl2/MeOH 3/1 

 

NC

N
O

O



Experimental Part
 

86 

0-182 °C 

V/Vis (CH2Cl2): 230 (100) 262 (20). 

1602m, 1500s, 1115s, 1106s, 1036m, 

 7.83 (d, J = 8.8, 2H, Haryl 2,6); 

C-NMR (100 MHz, CDCl3): 158.7, 133.8, 122.2, 117.9, 114.1, 68.2, 62.6.  

EI-MS (70 eV): 204 (5); 188 (38); 186 (9); 147 (12); 130 (100); 129 (55); 119 (11); 116 (10); 

AB-MS: 409 (9, [2M+H]); 358 (8); 205 (100, [M+H]); 188 (42); 130 (10); 86 (13); 77 (7); 

1); 41 (10). 

 

r the exclution of light. 

fter filtration through silica undecanal was added as a standard and the volume of the 

alysis of the products was performed on GC-FID 

he yields quantified relative to added N-Oxide in reference to the standard.  

D

 5 ml Flask 4.60 μmol (10 eq.) of the oxidant and the diol (56) were added to 460 

n 0 °C. 

 undecanal was added as a standard and the volume of the 

ative to added oxidant in reference to the standard.  

TLC (Alox B; CH2Cl2/MeOH 20:1): Rf = 0.22. 

mp: 18

U

IR (neat):, 3097w, 3023m, 2981m, 2939m, 2226s, 

1014m, 965m, 927m, 902m,865m, 855s, 851s. 
1H-NMR (400 MHz, CDCl3): 8.21 (d, J = 8.8, 2H, Haryl 3,5);

4.76 – 4.66 (m, 2H, H2,6axial); 3.98 – 3.86 (m, 4H, H3,5axial,2,6eq); 3.08 (d, J = 11.1, 2H, 

H3,5eq). 
13

102 (58); 90 (9); 86 (61); 75 (12); 56 (84). 

F

63 (5); 57 (12); 51 (8); 43 (1

 

5.2.3 Catalytic Experiments applying Model Compounds  

N-Dealkylation reactions 

 

In a dry 5 ml Flask 100 µl of a 46 mM solution of N-Oxide (24) was added to 0.46 μmol (0.1 

eq.) of Porphyrin (28 or 29) in 200 µl degassed and anhydrous CH2Cl2 at -50 °C. Then 

cooling was removed and the reaction stirred for 90 min at r.t. unde

A

resulting solution was partially reduced. An

and GC-MS and t

 

iol cleavage reactions 

 

In a dry

mol (1.0 eq.) of Porphyrin (28 or 29) in 300 µl degassed and anhydrous CH2Cl2 at -5

Then cooling was removed and the reaction stirred for 90 min at r.t. under the exclution of 

light. After filtration through silica

resulting solution was partially reduced. Analysis of the products was performed on GC-FID 

and GC-MS and the yields quantified rel
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or determination of potentially formed acids, the reaction mixture was treated with an excess 

ration. 

or determination of unreacted diol, the reaction mixture was treated with p-TsOH and an 

n

 

d to -35 °C (acetone/dry ice bath) in a dry 10 

sk containing a steering bar and a low temperature thermometer. 100 µl of a 

mer for at least 0.5 min 

 observed 

ter additional 1.5, 5 and 20 min. The latter were filtrated through basic alox to 

cted into GC-FID for 

e solutions where chosen such that in the final reaction mixture the 

, 29: 8.6 x 10-6 M. 

dditional experiments were performed under similar conditions, where upon cis-stilbene 

ddition, the complete reaction was quickly brought to r.t. after 5 min and filtrated over basic 

 and injected into GC-FID. Yields where calculated 

erefrom upon addition of known quantities of cis-stilbene. 

m

F

of TMS-CHN2 and MeOH for 20 min prior to filt

F

excess of Aceto e dimethyl acetal for 20 min prior to filtration. 

Control experiments 

Control experiments were performed identical to the catalytic experiments described above 

under omission of either the porphyrin (28/29) or the co-oxidant.  

 

Epoxidation reactions 

 

4.80 ml of a solution of 29 in MeCN were coole

ml two necked fla

mCPBA-solution in MeCN was added and reacted with the for

(changes in optical properties of the reaction solution from brownish to green were

during this period). After that, 3.50 µl of cis-stilbene (49) were added and samples (~1.5 ml) 

were taken af

remove mCPBA, partially concentrated at reduced pressure and inje

analysis. 

The concentrations of th

concentrations were: mCPBA: 1.6 x 10-4 M, cis-stilbene: 4.0 x 10-3 M

A

a

alox, concentrated at reduced pressure

th

 

Control experi ents were performed by cooling 4.90 ml of a solution of mCPBA in MeCN to 

-35 °C (acetone/dry ice bath) in a dry 10 ml two necked flask containing a steering bar and a 

low temperature thermometer. 3.50 µl of cis-stilbene (49) were added and either samples 

(~1.5 ml) were taken after 1.5, 5 and 20 min, or the complete reaction volume was brought to 

r.t. quickly 5 min after addition of cis-stilbene. The so obtained samples were filtrated through 

basic alox to remove mCPBA, partially concentrated at reduced pressure and injected into 

GC-FID for analysis.  
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-4 M, cis-stilbene: 4.0 x 10-3 M) 

hesis 

 

q.) of Protoporphyrin-IX were dissolved 

mg (3.97 mmol, 2.2 eq.) HOBt.H2O were added and the mixture 

ol, 2.8 eq.) of a 2 

M solution of Dimethylamine in THF and 660 µl (3.92 mmol, 

e solvent was rem

20/1) to obtain 942 m

f

3): 10.23 (s, 1H, H5,10,15,20); 10.17 (s, 1H, H5,10,15,20); 10.09 

s, 1H, H5,10,15,20); 10.04 (s, 1H, H5,10,15,20); 8.30 (dxd, J = 17.7, J’ = 11.4, 2H, H 31,81); 
2,82); 4.42 (t, J = 7.8, 4H, H 131,171); 

,71,121,181); 3.71 (s, 3H, H 21,71,121,181); 3.64 (s, 3H, H 21,71,121,181); 3.62 

t, J = 7.8, 4H, H132,172); 2.90 (s, 6H, H 133,173); 2.66 (s, 6H, 

M+H]+); 639 (100, [M+Na]+); 1255 

(26, [2

 

60 ml of CH Cl  and 94.1 mg Pd/C (10%Pd) were added. The 

2

 at r.t. overnight. Filtration over celite and 

chromatography (SiO2, CH2Cl2/MeOH 20/1) gave 860 mg (91%) 

of a purple solid. 

Again the concentrations were chosen to be the same as in the former experiments. (mCPBA: 

1.6 x 10

5.2.4 Protoporphyrin Derivative Synt
 

Protoporphyrin di-(N,N-dimethyl)-amide (86) 

1.00 g (1.78 mmol, 1.0 e

in 180 ml of THF, 759 mg (3.97 mmol, 2.2 eq.) EDCI and 607 

heated to 50 °C for 2 h. Then 2.50 ml (5.00 mm
NH

2.2 eq.) Hünigs-base were added and the mixture stirred at r.t. 

oved and the residue chromatographed (SiOovernight. Th 2, CH2Cl2/MeOH 

g (86%) of a purple solid. 

Since the compound was already described elsewhere108 only selected data is given. 

 

TLC (SiO2 ; CH2Cl2/MeOH 20:1): R  = 0.26. 
1H-NMR (400 MHz, CDCl

(

6.38 (d, J = 17.7, H 32,82); 6.20 (d, J = 11.6, 2H, H 3

3.72 (s, 3H, H 21

(s, 3H, H 21,71,121,181); 3.27 (

H 133,173); -3.71 (s, 2H, NH). 

(CH Cl /MeOH): Positive ion mode: 617 (42, [ESI-MS 2 2

M+Na]+).  

 

Mesoporphyrin di-(N,N-dimethyl)-amide (88) 

940 mg (1.52 mmol, 1.0 eq.) of pP-DMA (86) were dissolved in 

2 2

atmosphere was changed to H  and the mixture stirred 

vigorously

N
N
H N

NO

NO

NH
N

N
H N

NO

NO
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LC (SiO2; CH2Cl2/MeOH 10:1): Rf = 0.41. 

 
1H-NMR (400 MH

PLC (LiChrospher® 100 RP-18 (5 µm particle size, 4×250 mm), H2O/MeOH 1/9 to pure 

 = 400, T = 25 °C)): Rt = 16.4 min. 

rphyrin di-(N,N-dimethyl)-amide (89) 

102 mg (161 µmol, 1.0 eq.) of MP-DMA (88) were dissolved in 

tirred for 5 d at r.t. under the exclution 

s was taken and 

steur pipette. CH2Cl2 was used to 

concentrated in vacuo, redissolved in MeOH and filtrated to be analysed by HPLC: 

 MeOH for 20 min, flow 1.0 ml/min, DAD (λdet = 400,450 nm, T = 25 °C). 

hromatography (SiO2, CH2Cl2/MeOH 20/1) gave 96.0 mg (77%) of a dark green solid. 

 including chromatography and crystallisation 

ould not separate the product from impurities evident by NMR.  

C

UV/Vis (CH2Cl2)
1H-NMR (400 M

 

T

UV/Vis (CH2Cl2): 397 (100, Soret); 498 (8); 531 (6), 566 (5), 620 (3). 

z, CDCl3): 10.11-10.09 (m, 4H, H 5,10,15,20); 4.45 (t, J = 7.4, 4H, H 

131,171); 4.10 (q, J = 7.6, 4H, H 31,81); 3.70-3.58 (m, 12H, H 21,71,121,181); 3.28 (t, J = 7.4, 

4H, H132,172); 2.90 (s, 3H, H 133,173); 2.88 (s, 3H, H 133,173); 2.66 (s, 3H, H 133,173); 2.60 

(s, 3H, H 133,173);1.87 (t, J = 7.6, 6H, H32,82); -3.79 (s, 2H, NH). 

ESI-MS (MeOH): Positive ion mode: 621 (19, [M+H]+); 643 (100, [M+Na]+); 1263 (12, 

[2M+Na]+).  

H

MeOH in 50 min, flow 1.0 ml/min, DAD (λdet

 

5,10,15,20-tetrachloromesopo

 

5 ml of CH2Cl2 and 175 mg (1.31 mmol, 8.1 eq.) NCS were 

added. The mixture was sNH

of light and controlled via HPLC (small aliquot

filtrated over SiO2 in a Pa

remove apolar components and CH2Cl2/MeOH 20/1 eluted the desired porphyrin band, which 

was 

LiChrospher® 100 RP-18 (5 µm particle size, 4×250 mm), H2O/ MeOH 1/9 to pure MeOH in 

50 min, then pure

C

Unfortunately different purification methods

c

 

TLC (SiO2; CH2 l2/MeOH 20:1): Rf = 0.23. 

: 444 (100, Soret); 548 (7), 593 (7), 684 (6). 

Hz, CDCl3): no interpretable spectra were obtained in several attempts. 

ESI-MS (MeOH): Positive ion mode: 757 (100, [M+H]+), 779 (42, [M+Na]+) 787 (24); 809 

(20). 

N
N
H N

Cl
Cl

NO

NOCl

Cl
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le size, 4×250 mm), H2O/MeOH 1/9 to pure 

l/min, DAD (λdet = 450, T = 25 °C)): Rt = 33.9 min (main 

ato di-(N,N-dimethyl)-amide) iron (III) (90) 

were dissolved in 425 ml of toluene and 1.90 ml 2,6-lutidine (16.4 

d to reflux for 5 

ng was continued for 1 h. Upon cooling to r.t. the 

0/1) gave 51.0 mg (10%) of a dark green solid.  

TLC (SiO ; CH Cl /MeOH 10:1): R  = 0.49. 

2 2 nds at 576 (6), 656 

SI-MS (MeOH): Positive ion mode: 810 (100, [M-Cl]+); 841 (15, [M-Cl+MeOH]+); 864 
+

 

cooling to 0 °C 10 ml of conc. H2SO4 was added such that T≤ 5 

°C and the cooling bath was removed afterwards to let the 

reaction come to r.t., where it was stirred for 90 min. Then it was 

TLC (SiO2; CH2Cl2/ MeOH 100:1): Rf = 0.34. 

HPLC (LiChrospher® 100 RP-18 (5 µm partic

MeOH in 50 min, flow 1.0 m

impurities: 22.1, 23.6, 28.1 min). 

 

Chloro(5,10,15,20-tetrachloromesoporphyrin

 

475 mg (max. 627 µmol, 1.0 eq.) of crude Cl4-MP-DMA (89) 

mmol, 26 eq.) were added. The mixture was heateN

min and upon cooling 1.74 g (8.01 mmol, 12 eq.) FeBr2 were 

added and heati

mixture was filtrated through celite and concentrated. 

Chromatography (SiO2, CH2Cl2/MeOH 2

 

2 2 2 f

UV/Vis (CH Cl ): 405 (100, Soret); 433 (95, sh, Soret); poorly resolved ba

(5), 752 (2). 

E

(85, [M-Cl+NaOMe] ) ; 878 (13). 

 

Protoporphyrin dimethyl ester (85) 

 

1.04 g (1.85 mmol, 1.0 eq.) of Protoporphyrin-IX were dissolved 

in 50 ml of MeOH and 50 ml of TMOF were added. After

poured to a water/ice mixture and neutralised with 3 M NaOH after addition of CH2Cl2. the 

water phase was extracted two more times with CH2Cl2 and the combined organic layers were 

dried over Na2SO4 and concentrated in vacuo. Chromatography (SiO2, CH2Cl2 to CH2Cl2/ 

MeOH 97/3) gave 1.03 g (95%) of a brownish solid. Since the compound was already 

described elsewhere108, 122, 123 only selected data is given. 

 

N
N

N

NO

NO

Cl
Cl

Cl

Cl

Fe

Cl

NH
N

N
H N

OO

OO
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dxd, J = 11.6, J’ = 2.0, 1H, H 31,81); 

3H, H 21,71,121,181); 3.68 (s, 

H, H 21,71,121,181); 3.66 (s, 6H, H 133,173); 3.61 (s, 3H, H 21,71,121,181); 3.60 (s, 3H, H 

= 7.8, 4H, H132,172); -3.78 (s, 2H, NH). 

1.06 g (1.79 mmol, 1.0 eq.) of pP-DME (85) were dissolved in 

100 ml of CH2Cl2 and 106 mg Pd/C (10%Pd) were added. The 

(400 MHz, CDCl3): 10.11-10.08 (m, 4H, H5,10,15,20); 4.44 (t, J = 7.6, 4H, H 

,172); 

25 °C)): Rt = 10.1 min. 

filtrated over SiO2 in a Pasteur pipette. CH2Cl2 was used to 

remove polar components and CH2Cl2/MeOH 20/1 eluted the desired porphyrin band, which 

1H-NMR (400 MHz, CDCl3): 10.17 (s, 1H, H5,10,15,20); 10.13 (s, 1H, H5,10,15,20); 10.03 

(s, 1H, H5,10,15,20); 10.00 (s, 1H, H5,10,15,20); 8.29 (

8.24 (dxd, J = 11.4, J’ = 2.0, 1H, H 31,81); 6.37 (dxd, J = 17.9, J’ = 1.5, 2H, H 32,82); 6.18 (d, 

J = 11.6, 2H, H 32,82); 4.39 (t, J = 7.8, 4H, H 131,171); 3.69 (s, 

3

21,71,121,181); 3.27 (t, J 

 

Mesoporphyrin dimethyl ester (87) 

 

atmosphere was changed to H2 and the mixture stirred 

vigorously at r.t. overnight. Filtration over celite and 

chromatography (SiO2, CH2Cl2 to CH2Cl2/ MeOH 97/3) gave 

981 mg (92%) of a purple solid. 

 

TLC (SiO2; hexane/ EtOAc 1:2): Rf = 0.28. 

UV/Vis (THF): 397 (100, Soret); 498 (10); 529 (7), 569 (5), 623 (5). 
1H-NMR 

NH

131,171); 4.09 (q, J = 7.3, 4H, H 31,81); 3.67 (s, 6H, H 21,71,121,181); 3.66 (s, 6H, H 133,173); 

3.64 (s, 3H, H 21,71,121,181); 3.63 (s, 3H, H 21,71,121,181); 3.30 (t, J = 7.6, 4H, H132

1.87 (t, J = 7.6, 6H, H32,82); -3.77 (s, 2H, NH). 

ESI-MS (MeCN): Positive ion mode: 595 (100, [M+H]+); 617 (98, [M+Na]+).  

HPLC (XDB-C8, 150 x 4.6 mm, NH4OAc-buffer (1.0M, pH 4.62) / MeOH 1/4 to pure 

MeOH in 20 min, flow 1.0 ml/min, DAD (λdet = 400 nm, T = 

 

5,10,15,20-tetrachloromesoporphyrin dimethyl ester (91) 

 

1.01 g (1.68 mmol, 1.0 eq.) of MP-DME (87) were dissolved in 

90 ml of CH2Cl2 and 1.82 g (13.6 mmol, 8.1 eq.) NCS were 

added. The mixture was stirred for 6 d at r.t. under the exclution 

of light and controlled via HPLC (small aliquots was taken and 

N
N
H N

OO

OO

NH
N

N
H N

OO

OO

Cl
Cl

Cl

Cl
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C8, 150 x 4.6 mm, NH4OAc-buffer (1.0M, pH 4.62) / 

MeOH 1/4 to pure MeOH in 20 min, flow 1.0 ml/min, DAD (λdet = 400,450 nm, T = 25 °C). 

S-diazomethane in hexane were added 

atography (Alox B, 

2Cl2/EtOAc 12/8/1) gave 252 mg (20%) of a dark green solid. 

 

Cl

UV/Vis (THF): 442 (100, Soret
1H-NMR (400 MHz, CDCl3

3.50 (m, 4H, H 31,81); 3.09 (

3.05 (s, 3H, H 21,71); 3.00-2.92 (

M+H] ). 

in, flow 1.0 ml/min, DAD (λdet = 450 nm, T = 25 °C) : Rt = 15.2 min. 

 extracted three times with CH2Cl2. After acidification 

more with a mixture of CH2Cl2/THF. The combined organic 

 through celite and concentrated in vacuo to 

 different purification methods including 

atography (RP-18, THF/H2O 3/1 to pure THF) could not produce a very pure 

compound, HPLC always showing polar cont

 

TLC (RP-18; THF/H2O 3:1): 

UV/Vis (THF): 441 (100, Soret

was concentrated in vacuo, redissolved in THF/MeOH/ NH4OAc-buffer (1.0M, pH 4.62) and 

filtrated to be analysed by HPLC: XDB-

Upon completion 10 ml of MeOH and 4 ml of 2 N TM

and the stirring continued for 30 min. removal of solvent and chrom

hexane/CH

TLC (Alox B; hexane/CH2 2/EtOAc 12:8:1): Rf = 0.61. 

); 547 (6), 595 (5), 690 (3). 

): 3.93-3.84 (m, 4H, H 13 ,17 ); 3.71 (s, 6H, H 13 ,17 ); 3.59-

s, 3H, H12 ,18 ); 3.08 (s, 3H, H 12 ,18 ); 3.06 (s, 3H, H 2 ,7 ); 

m, 4H, H13 ,17 ); 1.56-1.48 (m, 6H, H3 ,8 ); -1.28 (s, 2H, 

NH). 

ESI-MS (MeCN): Positive ion mode: 731 (100, [ +

1 1 3 3

1 1 1 1 1 1

2 2 2 2

HPLC (XDB-C8, 150 x 4.6 mm, NH4OAc-buffer (1.0M, pH 4.62) / MeOH 1/4 to pure 

MeOH in 20 m

 

5,10,15,20-tetrachloromesoporphyrin (94) 

 

100 mg (137 µmol, 1.0 eq.) of Cl4-MP-DME (91) in 44 ml of 

THF (unstabilized) were added to 44 ml of a 2 N KOH solution 

and stirred at r.t. overnight. The reaction mixture was diluted with 

water and

NH

with 130 ml of 1 M HCl the product was taken up in CH2Cl2 and 

the water phase extracted once 

N
N
H N

OH

OHO

Cl
Cl

Cl

Cl

O

layers were washed with 0.2 M HCl, filtrated

obtain 112 mg of a green solid. Unfortunately

chrom

aminations. Nevertheless purity was good 

ost analytic methods. 

R

enough to obtain reasonable data from m

f = 0.58. 

); 545 (8), 595 (8). 
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(600 MHz, pyridine): 4.14-4.10 (m, 4H, H 131,171); 3.48-3.41 (m, 4H, H 31,81); 
1,181); 3.00 (s, 6H, H 21,71); 1.54-1.49 (m, 6H, 

eq.) of 2,6-

Lutidine were added. 30.0 mg (235 µmol, 3.4 eq.) of FeCl2 were 

 to reflux for 5 min. 

After cooling to r.t. the above obtained porphyrin solution was 

u

and concentrated. After chro

removed and the residue red

obtain 32.2 mg (73%) of a bro

 

PLC (XDB-C8, 150 x 4.6 mm, NH4OAc-buffer (1.0M, pH 4.62) / MeOH 2/3 to 1/19 in 40 

 = 25 °C) : Rt = 26.0 min. 

 

 

N

1H-NMR 

3.29-3.23 (m, 4H, H132,172);3.10 (s, 6H, H12

H32,82); -0.22 (br, 2H, NH). 

ESI-MS (THF): Positive ion mode: 703 (100, [M+H]+). 

HPLC (XDB-C8, 150 x 4.6 mm, NH4OAc-buffer (1.0M, pH 4.62) / MeOH 2/3 to 1/19 in 40 

min, flow 1.0 ml/min, DAD (λdet = 450 nm, T = 25 °C) : Rt = 22 min. 

 

Chloro(mesoporphyrinato dimethyl ester) iron (III) (96) 

 

40.7 mg (68.4 µmol, 1.0 eq.) of MP-DME (87) were dissolved 

in 8.0 ml of CH2Cl2 and 80.0 µl (697 µmol, 10 

dissolved in 8.0 ml acetonitrile by heating

added via syringe. The mixt re was stirred at r.t. for 50 min and then filtered through celite 

matography (Alox N, CH2Cl2/MeOH 191/1) the solvent was 

issolved in CH2Cl2 and washed two times with 0.2 M HCl to 

wn solid. 

TLC (Alox N; CH2Cl2/MeOH 99:1): Rf = 0.66  

UV/Vis (CH2Cl2): 378 (100, Soret); 507 (10), 534 (10), 634 (5). 
1H-NMR (600 MHz, CDCl3): 53.3 (s, 6H, H 21,71); 50.5 (s, 6H, H 121,181); 44.7 (s, 2H, H 

31,81,131,171); 43.6 (s, 1H, H 31,81,131,171); 43.1 (s, 1H, H 31,81,131,171); 41.3-39.4 (m, 4H, H 

31,81,131,171); 6.95 (s, 6H, H 32,82); 6.47 (s, 2H, H 132,172); 6.06 (s, 2H, H 132,172); 3.91 (s, 

3H, H133,173); 3.84 (s, 3H, H133,173); -54.0- -60.0 ( br, 4H, H 5,10,15,20). 

ESI-MS (MeOH/ CH2Cl2): Positive ion mode: 648 (100, [M-Cl]+), 721 (27). 

H

min, flow 1.0 ml/min, DAD (λdet = 400 nm, T

 

 

 

 

N
N

NFe

OO

OO

Cl
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41.5 mg (56.6 µmol, 1.0 eq.) of Cl4-MP-DME (91) were 

2,6-Lutidin were added. 25.3 mg (198 µmol, 3.5 eq.) of FeCl2 

h

celite and concentrated. A

CH2Cl2/EtOAc 1/1) the so

washed two times with 0.2 

LC (Alox N; hexane/CH2Cl2/EtOAc 5:5:1): Rf = 0.65 (µ-oxo dimer). 

 Soret); poorly resolved bands at 527 (13), 568 

6 (98, Soret); 442 (100, Soret); poorly resolved bands at 528 (14), 567 (11), 755 

 (s, 3H, H 21,71 121,181); 48.1 (s, 3H, H 21,71,121,181); 46.6 

, 3H, H 21,71,121,181); 46.1 (s, 3H, H 21,71,121,181); 42.5-40.5 (m, 4H, H 31,81,131,171); 

2 (s, 6H, H 32,82); 5.20-4.80 (m, 4H, H 132,172); 4.08 

(s, 3H, H133,173); 4.04 (s, 3H, H133,173). 

i

MALDI-TOF-MS (4-Nitroa

cw-EPR (25mM Bu4NCl in

rhombic distortion). 

HPLC (XDB-C8, 150 x 4.6

N

 

Chloro(5,10,15,20-tetrachloromesoporphyrinato dimethyl ester) iron (III) (93) 

 

dissolved in 8.0 ml of CH2Cl2 and 65.0 µl (566 µmol, 10 eq.) of 

were dissolved in 8.0 ml acetonitrile by heating to reflux for 5 

min. After cooling to r.t. the above obtained porphyrin solution 

e mixture was stirred at r.t. for 50 min and then filtered through 

fter chromatography (Alox N, hexane/CH

was added via syringe. T

2Cl2/EtOAc 12/8/1 to 

lvent was removed and the residue redissolved in CH2Cl2 and 

M HCl to obtain 30.2 mg (65%) of a dark green solid. 

 

T

UV/Vis (toluene): 392 (84, Soret); 442 (100,

(11), 752 (3). 

(CH2Cl2): 39

(4). 
1H-NMR (600 MHz, CDCl3): 49.0

(s

36.5-34.3 (m, 4H, H 31,81,131,171); 6.5

ESI-MS (MeOH): Positive on mode: 838 (100, [M-Cl+NaOMe]+). 

niline): 784 (100, [M-Cl]); 819 (24, [M]). 

 CH2Cl2/THF 1/1, 15 K): 6.20, 5.52, 1.99 (high spin with slight 

 mm, pure MeOH, flow 0.2 ml/min, DAD (λdet = 450 nm, T = 25 

°C)): Rt = 18.4 min. 

(XDB-C8, 150 x 4.6 mm, Imidazole/HCl-buffer (500 mM, pH 7.00) / MeOH 1/3 for 30 min, 

flow 1.0 ml/min, DAD (λdet = 430 nm, T = 25 °C) : Rt = 10.8 min. 

 

 

 

 

N
N

N

Cl
Cl

OO

OO

Fe

Cl

Cl

Cl



Experimental Part
 

95 

m, 6.90 mg (8.40 µmol, 1.0 

eq.) of Fe(Cl4-MP-DME)Cl (93) were dissolved in 50 ml 

Cl2 and washed with 50 ml of a 20 mM NaOH-solution 

twice. The organic layer was dried over Na2SO4 and 

C

UV/Vis (CH2Cl2): 415 (100, 

.28-5.60 (m, 4H, H 31,81,131,171); 5.05-4.45 (m, 16H, H 
1,31,71,81,121,131,171,181); 3.83 (s, 6H, H 133,173); 2.90 (s, 2H, H 132,172); 2.71 (s, 2H, H 

). 

l (97) to 

.0 ml of a 8.00 µM solution of 95 in toluene in a UV/Vis cuvette. 

mol, 9.5 eq.) of 97 to 2.00 mg (1.26 µmol, 1.0 eq.) of 98 in 500 µl of CDCl3. 

 o

EPR silent sample of 0.82 m

r.t. for 3h. 

 

UV/Vis (toluene): 392 (86, S

N

 

(µ-Oxo)-bis[(5,10,15,20-tetrachloromesoporphyrinato dimethyl ester)iron (III)] (95) 

 

The µ-oxo dimer was obtained in the iron insertion step 

after chromatography. 

To obtain it in a very pure for

CH2

concentrated. Filtration (Alox N, CH2Cl2 to CH2Cl2/EtOAc 

20/1) gave 4.69 mg (70%) of a dark green solid. 

l

 

TLC (Alox N; hexane/CH2 2/EtOAc 5:5:1): Rf = 0.65. 

Soret, broad); 609 (8), 660 (8). 
1H-NMR (600 MHz, CDCl3): 6

2

132,172); 1.56 (s, 6H, H 32,82). 

ESI-MS (CH2Cl2): Positive ion mode: 1588 (100, [M highest isotopic peak]+

MALDI-TOF-MS (4-Nitroaniline): 784 (85, [1/2(M-O)]); 1584 (100, [M]). 

HPLC (XDB-C8, 150 x 4.6 mm, pure MeOH, flow 1.0 ml/min, DAD (λdet = 400 nm, T = 25 

°C)) : Rt = 19.5 min. 

 

Thiolate-Complex 98: 

 

UV/Vis spectra of 98 were obtained by addition of 20.0 µl of 4-tert-butyl-thiopheno

2
1H-NMR tracking of the reaction of 95 to 98 was performed upon addition of 2.00 µl (11.9 

µ

cw-EPR spectra of 98 were btained after addition of 2.00 µl (11.9 µmol, 23 eq.) of 97 to an 

g (514 nmol, 1.0 eq.) of 95 in 200 µl of toluene and standing at 

oret); 447 (100, Soret); very poorly resolved bands at ~530 (19), 

580 (14) and 760 (5). 

N
N

N

O

O

O

O

Cl
Cl

Cl
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 r.t. overnight. Then 

it was poured to 40 ml of CH2Cl2 and 50 ml of 0.2 M HCl. The 

th further 50 ml of 0.2 M HCl and 

 dark green solid. 

R (600 MHz, CDCl3): 48.8 (s, 3H, H 21,71 121,181); 47.9 (s, 3H, H 21,71,121,181); 45.3 

1.8-39.2 (m, 4H, H 31,81,131,171); 

ALDI-TOF-MS (4-Nitroaniline): 756 (100, [M-Cl]); 791 (17, [M]). 

HCl-buffer (500 mM, pH 7.00) / MeOH 1/3 for 

0 min, flow 1.0 ml/min, DAD (λdet = 430 nm, T = 25 °C): Rt = 7.3 min. 

im
 

Epoxidation reactions 

 

re and injected into GC-

ined relative to the internal standard. Product identification was 

pounds. 

itting iron porphyrin catalysts 

(93/96). 

 

Chloro(5,10,15,20-tetrachloromesoporphyrinato) iron (III) (92) 

 

30.2 mg (36.7 µmol, 1.0 eq.) Fe(Cl4-MP-DME)Cl (93) were 

dissolved in 6.0 ml THF and 3.0 ml 1 M LiOH-solution were 

added. The mixture was stirred vigorously atN

organic layer was washed wi

the solvent removed in vacuo to obtain 31.0 mg (quant.) of a

 

UV/Vis (CH2Cl2): 395 (97, Soret); 443 (100, Soret); poorly resolved bands at 534 (14), 582 

(11), 758 (4). 
1H-NM

(s, 3H, H 21,71,121,181); 44.7 (s, 3H, H 21,71,121,181); 4

37.0-33.5 (m, 4H, H 31,81,131,171); 14.4 (br, 2H, H133,173); 6.59 (s, 6H, H 32,82); 5.90-5.10 

(m, 4H, H 132,172). 

M

HPLC (XDB-C8, 150 x 4.6 mm, Imidazole/

2

 

5.2.5 Catalytic Exper ents applying the Modified Cofactor 

5.60 mg (6.81 µmol, 1.0 eq.) of 93 (resp. 4.66 mg of 96) were dissolved in 1 ml of CH2Cl2 

and 10.0 µl (38.4 µmol, 5.6 eq.) of internal standard (C-14 alkane), 80.0 µl (452 µmol, 66 eq.) 

of cis-stilbene (49) and 20.6 mg (93.8 µmol, 13.8 eq.) of PhIO were consecutively added and 

washed down with an additional 1 ml of CH2Cl2. The mixture was vigorously stirred at r.t. 

under the exclution of light and aliquots were consecutively taken. The latter were filtrated 

over silica to separate PhIO, partially evaporated at reduced pressu

FID. Yields were determ

ensured by coinjection of commercially available product com

Blank reactions were performed under identical conditions om

N
N

N

Cl
Cl

Cl

Fe

Cl

OHO

OHCl O
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6.1 Abbreviations 

s 
 

o
Alox N neutral aluminium
BF3

.OEt2 Boron trifluoride 
BH3

.SMe2 Borane dimethyl 
BMP heme domain of soluble P450
BMR reductase domain
BNAH 1,2-benzyl-3-carb
onc. concentrated 
pd0 Compound 0 

n theory 

ethylaminopropyl)-3-ethylcarbodiimide hydrochloride 
on impact 

PR electron paramagnetic resonance 
nts 
 spray ionisation 

t3N Triethylamine 

FT Fourier 

hydrochloric acid 
e 

OMO highest occupied molecular orbital 

ed 

6 Appendix 

 

µg microgram
µl microliters
Alox B basic aluminium xide 

oxide 
diethyl etherate 
sulfide complex 

BM-3
 of soluble P450BM-3
amoyl-1,4-dihydropyridine 

c
C
CpdI Compound I 
CV cyclic voltametry 
cw contiuous wave 
Cys Cystein 
d days 
DDQ 2,3-Dichloro-5,6-dicyano-p-benzoquinone 
DFT Density functio
DMF dimethylformamide 
DMSO Dimethylsulfoxide 
e.g. for example (exempli gratia) 
EA elemental analysis 
EDCI 1-(3-Dim
EI electr
E
eq. equivale
ESI electron
E
EtOAc ethylacetate 
FAD Flavin adenin dinucleotide 
FID Flame ionisation detection 
FMN Flavin mononucleotide 

transformation 
g grams 
GC Gas chromatography 
h hours 
HAT hydrogen atom transfer 
HCl 
His Histidin
H
HPLC high performance liquid chromatography 
HS high spin 
IR Infrar
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 Kelvin 

S low spin 
LUMO lowest unoc

i
mCPBA m-chlorope
MeCN acetonitrile 
MeI Methyliodid
MeOH Methanol 

in minutes 

Methanesulfonylchloride 

N norm

um methoxide 

magnetic resonance 
hIO Iodosobenzene 

pP-IX protoporphyrin IX 

uant. quantitatively 
mperature 
d 

CE standard callomel electrode 

Ultra violet - visible light absorption 
versus 

K
KOMe potassium methoxide 
LDI laser desorption ionisation 
L

cupied molecular orbital 

sted laser desorption ionisation 
rbenzoic acid 

e 

mg milligrams 
MHz Megaherz 

M molar 
MALDI Matrix-ass

m
ml milliliters 
MS Mass spectroscopy 
MsCl 
mV millivolt 

al 
NAD+ Nicotinamide adenine dinucleotide 
NADP+ Nicotinamide adenine dinucleotide phospate 
NaOH Sodium hydroxide 
NaOMe sodi
nBu4NHSO5 Tetra-n-butylammonium-peroxymonosulfate 
NCS N-chlorosuccinimide 
NH4OAc ammoniumacetate 
NMO N-Methyl-morpholine 
NMR nuclear 
P

ppm parts per million 
q
r.t. room te
sat. saturate
S
sec seconds 
SET single electron transfer 
SHE standard hydrogen electrode 
SiO2 silica gel 
T Temperature 
TBPH 2,4,6-tri-tert-butylphenol 
TFA Trifluoroacetic acid 
THF tetrahydrofurane 
TLC thin layer chromatography 
TMOF Trimethyl orthoformate 
TMS trimethylsilyl- 
TOF Time of flight 
TON Turn over number 
UV/Vis 
vs. 
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