
 

 
 
 
Hypoxia-Induced Signaling in Angiogenesis 

Role of mTOR, HIF and Angiotensin II 

 
 
 
 
 
 
 
 
 

Inauguraldissertation  
zur  

Erlangung der Würde eines Doktors der Philosophie 
vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät  
der Universität Basel 

 
 

von 
Marco Renato Petrimpol 

aus Buseno, Schweiz 
Basel, 2007 

 
 
 
 
 
 
 
 



 
 

2 

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von Prof. 
Karl Hofbauer, Prof. Marijke Brink, Prof. Ueli Aebi und Prof. Edouard Battegay. 
 
Basel den 29. Juni 2007 

 
 

Prof. Hans-Peter Hauri 
Dekan der Philosophisch-Naturwissenschaftlichen Fakultät 

 
 



 
 

3 

Table of contents 

 

1. Summary ...................................................................................................................4 

2. Introduction................................................................................................................7 

2.1. Hypoxia..............................................................................................................7 

2.2. The vasculature – vasculogenesis, angiogenesis and arteriogenesis..........8 

2.3. Hypertension – impaired angiogenesis and microvascular rarefaction ....10 

2.4. Anti hypertensive drugs and vascularization –  

the renin-angiotensin-aldosterone system...................................................10 

2.5. Hypoxia inducible factors (HIFs) –  

regulation and implication in angiogenesis..................................................12  

2.6. mTOR signalling – central regulator of cell growth and proliferation.........15 

2.7. mTOR-related disease processes..................................................................20 

3. Rationale and aims ..................................................................................................22 

4. Results .....................................................................................................................25 

4.1. Hypoxia-induced endothelial proliferation requires both mTORC1  

and mTORC2...................................................................................................26 

4.2. Role of mTORC1 and mTORC2 in hypoxia-induced HIF-1α  stabilization and 

endothelial proliferation.................................................................................46 

4.3. Effects of anti-hypertensive drugs on vessel rarefaction ...........................61 

4.4. Angiotensin II induces angiogenesis in the hypoxic adult mouse heart  

in vitro through an AT2-B2 receptor pathway ..............................................75 

5. General discussion..................................................................................................95 

6. Outlook.....................................................................................................................98 

7. Abbreviations...........................................................................................................99 

8. References .............................................................................................................101 

9. Acknowledgements ..............................................................................................107 

10. Curriculum vitae ..................................................................................................108 

 

 
 
 
 
 



 
 

4 

1. Summary 

This thesis includes the work of four different projects I have been following during my 

time as a PhD student; (1) the characterization of mTOR-associated signaling and 

endothelial cell proliferation in response to hypoxia, and (2) identification of signaling 

pathways responsible for HIF stabilization during hypoxia. A side project aimed at (3) 

elucidating mechanisms of angiotensin II-induced angiogenesis. Furthermore, I have 

contributed to a review about antihypertensive drugs and microvascular rarefaction. 

 

Hypoxia is the main stimulus for angiogenesis, the formation of new microvessels from 

pre-existing ones. To maintain adequate metabolism and supply of energy, eukaryotic 

cells adapt when oxygen levels drop. β-Oxidation is switched off while enzymes for 

glycolysis are induced. In most cells, cell cycle is arrested to reduce the number of 

oxygen consuming cells. 

When oxygen levels are low for a longer period, erythropoiesis and angiogenesis are 

induced to increase tissue oxygenation. Specialized cells such as vascular endothelial 

cells (EC) and smooth muscle cells (SMC) are activated and increase proliferation and 

gene expression in response to hypoxia. EC proliferation and angiogenesis in response 

to hypoxia is, amongst others, rapamycin-sensitive. Thus, we hypothesized that 

mammalian target of rapamycin (mTOR) is involved in the response to hypoxia in 

endothelial cells. mTOR is central in regulating cell growth and proliferation, and 

integrates signals from nutrients, growth factors, energy status and stress such as 

hypoxia. Recent studies have identified two structurally distinct mTOR multi protein 

complexes (mTORC1 containing raptor and mTORC2 containing rictor) with individual 

downstream targets. 

 

Study 1: In the first project, we have investigated mTOR-associated signaling 

components under hypoxia and their role in cell proliferation in rat aortic endothelial cells 

(RAECs). By analyzing mTOR and the distinct downstream targets of mTORC1 (S6 

kinase) and mTORC2 (PKB/AKT), we found that hypoxia activates mTOR signaling in a 

timed program, leading to early activation and late inhibition of mTORC1 and a delayed 

but sustained activation of mTORC2. Raptor and rictor knock down demonstrated that 

rictor (mTORC2) is essential for hypoxia-induced endothelial proliferation, whereas 

raptor knock down only partially inhibited increased proliferation.  
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When studying the pathways directing the hypoxic stimulus to mTOR, we found that 

hypoxia-induced cell proliferation is independent of regulation by TSC (tuberous 

sclerosis complex). TSC is upstream of mTORC1 and directs growth factor signals and 

energy and nutrient status into this signaling pathway. Thus, hypoxia impinges on mTOR 

TSC-independently; rapid mTOR phosphorylation under hypoxia rather suggests a direct 

activation step. All together, our data suggest cooperating mechanisms between signals 

from both mTOR complexes in the response to hypoxia in EC.  

 

Study 2: To study potential downstream effectors of mTOR-dependent proliferation in 

response to hypoxia we have focused on Hypoxia inducible factors (HIF). HIFs mainly 

control transcription of genes for angiogenesis, erythropoiesis and glycolysis in response 

to hypoxia. In normoxia HIF-α’s are constantly degraded. Degradation is prevented in 

hypoxia, the HIF-α’s form heterodimers with HIF-β’s, translocate to the nucleus and 

become transcriptionally active. HIF-1α stabilization in hypoxia was shown to be 

rapamycin sensitive, and therefore to potentially require active mTOR signaling. How 

mTORCs stabilize HIF-α’s is unclear. 

In this study we have investigated the regulation and role of HIF1-α in hypoxia-induced 

proliferation of aortic endothelial cells. Hypoxia and growth factor stimulation induced 

stabilization and translocation of HIF-1α to the nucleus. By using siRNA constructs, we 

found that HIF-1α knock down reduces RAEC proliferation in hypoxia. The pathways 

potentially regulating HIF-1α have been investigated by using specific inhibitors of 

signaling relay enzymes. We show that mTOR is required for HIF-1α accumulation 

during hypoxia and growth factor stimulation, and is partially responsible for the 

increased proliferation of RAECs in hypoxia. Inhibition of MEK1/2 signaling only affected 

growth factor-induced HIF-1α stabilization under normoxia and endothelial proliferation 

under normoxia and hypoxia to a similar extent, thus not specifically affecting the 

hypoxic response. Knock down of raptor and rictor should answer the central question, 

which of the two mTORCs is responsible for HIF-1α stabilization in hypoxia. These 

experiments are ongoing. 

 

Review: Hypertension and impaired angiogenesis are intrinsically linked. Angiogenesis 

is impaired in most hypertensive patients, and microvascular rarefaction contributes to 

hypertension-induced end organ damage. In the framework of a review we summarized 
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and discussed the effects of antihypertensive drugs on microvessel structure. Studies 

done with diuretics, α- and β- adrenergic receptor blockers and calcium antagonists are 

inconclusive. Most promising for an induction of angiogenesis or normalization of 

microvessel structure are angiotensin II type1 receptor blockers (AT1 receptor blockers, 

ARBs) and ACE (angiotensin converting ezyme) inhibitors. 

 

Study 3: ARBs and ACE inhibitors both influence the renin-angiotensin-aldosterone 

system (RAAS). RAAS controls blood pressure by regulating vasodilation and 

vasoconstriction. The vasoactive peptide Angiotensin II (Ang II) is generated by cleaving 

Ang I by ACE. Ang II causes vasoconstriction by activating the AT1 receptor. The AT2 

receptor is the other potential binding domain for Ang II and can interact with the 

bradykinin receptor B2 (BK-B2 receptor). Bradykinin binds the BK-B1 and BK-B2 -

receptors to up regulate nitric oxide, growth factors and was shown to induce 

angiogenesis. 

Using an angiogenesis assay in vitro and tissue from left ventricular myocardium of AT1 

and AT2 –knock out and wild type mice, we investigated the mechanism underlying the 

angiogenic effects of angiotensin II. AT1 and AT2 –receptors were expressed in normoxia 

and hypoxia. Ang II induced angiogenesis dose-dependently but only in hypoxia. 

Induction of angiogenesis by Ang II was dependent on the availability of the AT2 and B2 

receptor, as blockade or knock out of AT2 inhibited angiogenesis in vitro. Also, Ang-II-

induced angiogenesis was nitric oxide (NO) dependent. Inhibiting the formation of 

bradykinin with a specific kininogenase inhibitor completely abrogated Ang II-induced 

angiogenesis. Taken together, this study suggests an obligatory role of hypoxia in the 

angiogenic effect of Ang II via the AT2 receptor through a mechanism that involves 

bradykinin, its B2 receptor and NO as a downstream effector. 

 

Angiogenesis occurs in physiological but also in pathological situations and may be 

activated or inhibited in a therapeutic approach: Inhibiting hypoxia-driven tumor 

angiogenesis may reduce cancer growth whereas stimulation of angiogenesis after 

myocardial infarction may speed up tissue regeneration. Induction of microvessel growth 

may also decrease peripheral resistance and thereby reduce hypertension.  

Thus, mechanisms and pathways studied in this thesis are involved in the process of 

angiogenesis and may contribute to the identification of potential targets to develop 

drugs for modulating angiogenesis in patients.  
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2. Introduction  

2.1. Hypoxia 

Oxygen is essential for all eukaryotic organisms to drive oxidative phosphorylation for 

generating energy. Therefore a constant oxygen supply, maintained by the vascular 

system in mammals, is pivotal for most organs. The supply of oxygen to the tissue is 

regulated by the number and function of blood vessels, whereas the number of cells in 

the tissue regulates the demand. Hypoxia emerges when oxygen delivery does not meet 

the demands of the tissue4. This can either occur in rapidly proliferating tissue or as a 

result of occlusion of blood vessels, e.g. during embryonic development, tumor growth, 

wound healing and ischemia (i.e. ventricular hypertrophy)5. 

The physiologic oxygen concentration in different tissues varies from 14% in arterial 

blood, to less than 10% in the myocardium, and to 8-2% in the liver, cartilage or bone 

marrow. Experimental hypoxia (in cell culture) is routinely established by placing the 

cultures to an incubator, containing oxygen concentrations in the gas phase of 0.5-

3.0%4,6.  

When oxygen concentrations drop below their physiological levels, distinct systems 

respond to these environmental conditions. Energy production can be rapidly switched to 

anaerobic glycolysis. Therefore enzymes like phosphofructokinase or glucose 

transporter-1,3 are up-regulated by hypoxia to drive glycolysis7,8. To further correct the 

balance between O2 demand and supply, the cell cycle of most cells is arrested and 

addition of new cells into the tissue stops to reduce the number of oxygen consuming 

cells9,10. Some specialized rescue cells, i.e. vascular endothelial cells (ECs), smooth 

muscle cells (SMCs) and mouse embryonic fibroblasts increase their proliferation in 

response to hypoxia10,11, and participate in the formation of new microvessels to 

increase oxygen concentrations in particular tissues5. Moderate hypoxia is not typically 

toxic when sufficient nutrients and glucose are present. However, if energy is not 

sufficient or even, anoxia occurs, most cells stop proliferation and eventually undergo 

apoptosis12.  

The bad efficiency factor of glycolysis, the accumulation of lactate during glycolysis and 

the need to avoid cell death induces mechanisms to maintain aerobic energy production. 

To increase tissue oxygenation, hypoxia also induces regulation of a very complex 

series of responses necessary to increase the number of red blood cells 

(erythropoiesis), to relax existing- and to generate new blood vessels. Hypoxia induces 

vasodilatory enzymes e.g. inducible nitric oxide synthase (iNOS) and pro-angiogenic 
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factors e.g. vascular endothelial growth factor (VEGF) or placental growth factor (PIGF) 

and represses anti-angiogenic molecules13,14. Most hypoxia-induced genes are regulated 

by hypoxia inducible transcription factors (see 2.5. and 4.2.).  

 

2.2. The vasculature – vasculogenesis, angiogenesis and arteriogenesis 

Hypoxia is the main stimulus to induce angiogenesis and stimulates the expansion and 

remodeling of the existing vasculature to enhance blood flow in oxygen-deprived tissue. 

The vascular network mediates the delivery of oxygen and nutrients to all cells of the 

organism, removes metabolites and carbon dioxide, and maintains an adequate 

hydrostatic pressure2.  

Angiogenesis is a complex morphogenic process, that occurs in a stepwise fashion and 

is primarily induced by hypoxia that induces a variety of positively- and negatively-acting 

growth factors5.  

In early development, oxygenation of a cell aggregate can be maintained by diffusion of 

O2. At a critical tissue size a vascular system has to be developed to keep up O2 supply 

for each cell. The initial embryonal step for vascular development is called 

vasculogenesis, the formation of new blood vessels when there are no pre-existing 

ones. Angioblasts (vascular endothelial cells that have not yet formed a lumen) 

proliferate, migrate and differentiate to subsequently form a primitive blood vessel and 

the primary capillary plexus5,15,16.  

 

After the primary vascular plexus is formed, endothelial cells form new capillaries by 

sprouting or by splitting from their vessel of origin. This process is termed angiogenesis. 

First, blood vessels dilate, partially induced by nitric oxide (NO). NO and VEGF increase 

in vascular permeability, and cause pericytes, surrounding the vessels, to detach. 

Degradation of the extracellular matrix (ECM) by matrix metalloproteinases (MMPs) 

allows ECs to migrate in response to chemotactic growth factors. VEGF and 

angiopoietins, together with fibroblast growth factor (FGF) and platelet-derived growth 

factor (PDGF), guide the migration and proliferation of ECs to form migration columns. 

Behind the migration columns, endothelial cells adhere to each other and create a 

lumen, which is accompanied by basement-membrane formation and pericyte and SMC 

attachment. Finally, blood-vessel sprouts will fuse with other sprouts to build new 

circulatory systems. Non-sprouting angiogenesis occurs predominantly in the lung. 
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Endothelial cells proliferate inside a vessel, producing a wide lumen that can be split by 

transcapillary pillars, or fusion and splitting of capillaries3,5,16.  

 

Arteriogenesis describes the remodeling process of pre-existing arterio-arteriolar 

anastomoses, where an increase in the luminal diameter will form large functional 

arteries. Growth of these collateral arteries is triggered by physical forces, but does not 

require hypoxia as a stimulus. Fluid shear stress or other mechanical forces trigger 

proliferation of SMCs which surround the vessels to increase their stability17,18. 

 
Figure 1. New blood-vessel formation.   Blood vessels arise from pre-existing capillaries or post-
capillary venules in tumours (a). (b) First, pericytes (green) detach and blood vessels dilate 
before the basement membrane and extracellular matrix is degraded. (c) This allows endothelial 
cells (red) to migrate into the perivascular space towards angiogenic stimuli produced by the 
tumour cells or host cells. (d) Endothelial cells proliferate, loosely following each other, and are 
presumably guided by pericytes. (e) Behind the migration columns, endothelial cells adhere to 
each other and create a lumen, which is accompanied by basement-membrane formation and 
pericyte attachment. Finally, blood-vessel sprouts will fuse with other sprouts to build new 
circulatory systems. Little is known about this fusion mechanism. 
Figure by Bergers3. 
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2.3. Hypertension – impaired angiogenesis and microvascular rarefaction  

Arterial hypertension can be primary or secondary. Secondary arterial hypertension 

occurs only in 5-10% of hypertensive patients and can be a consequence e.g. of obesity, 

alcoholism and hormonal disorders. Arterial hypertension can lead to left ventricular 

hypertrophy, arthereosclerosis, myocardial infarction and other endorgan damages19. 

Reasons for primary hypertension are complex and not yet fully understood. 

Interestingly, most forms of arterial hypertension are associated with decreased 

numbers of microvessels. The arteriolar and microvascular circulation is important in 

determining blood pressure. Microvascular rarefaction can further increase peripheral 

resistance, raise blood pressure and therefore worsen hypertension2.  

Rarefaction can be primary or secondary. Decreased capillaryzation antedates the raise 

in blood pressure in primary rarefaction. Impaired angiogenesis, e.g. during 

development, might lead to a reduced vascular system and therefore predispose to high 

blood pressure20. Also, low birth weight can be accompanied with reduced formation of 

microvascular networks and increased tendency towards developing hypertension 21.  

Secondary rarefaction is a consequence of prolonged elevation of blood pressure and 

might be caused by functional shut-off or destruction of existing capillaries22. Increased 

sensitivity to vasoconstrictors could lead to reduced perfusion of microvessels to the 

point of non-perfusion and therefore cause necrosis and apoptosis of these vessels23. 

However, offspring of individuals with high blood pressure have fewer capillaries on the 

dorsum of their fingers before the manifestation of hypertension24. Thus, capillary 

rarefaction might antedate, rather than follow, sustained hypertension and microvascular 

remodeling can be totally or partially blood pressure independent24-27.  

 

2.4. Anti hypertensive drugs and vascularization - the renin-angiotensin-

aldosterone system 

Treatment with anti-hypertensive drugs to avoid multiple consequences of hypertension 

can also normalize the microvascular system. Long-term and effective antihypertensive 

treatment of non-diabetic hypertensive patients increases capillary density compared 

with non-treated patients in a recent study28.  

There is a broad range of different antihypertensive drugs. For most substance classes, 

the influence on the microvasculature is unclear. Diuretics probably negatively influence 

the microvasculature. They attenuate expression of angiogenesis related genes and 

inhibit proliferation of endothelial cells in vitro29-31. Reports on the effects of α- and β-
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adrenergic receptor blockers on microvascular rarefaction are also inconclusive. The β-

blocker nebivolol, but not metoprolol, inhibits endothelial sprout formation in vitro and 

causes apoptosis of aortic and coronary ECs and SMCs (Petrimpol, M., unpublished)32. 

α-Blockers can either inhibit microvascular formation (doxazosin, terazosin) or increase 

total vascular area (prazosin)33-35. Nifedipine, a calcium antagonist can raise VEGF 

levels and induce capillary tube formation whereas an other calcium channel- and a 

chloride channel blocker (mibefradil and NPPB) inhibit tube formation of microvascular 

endothelial cells36,37.  

Influencing the renin-angiotensin-aldosterone system (RAAS) seems to be most 

promising for improving the microvasculature in hypertensive patients2. 

The RAAS is a main regulator for vasodilation, vasoconstriction and blood volume and 

thus blood pressure. In addition, the RAAS affects expression of the angiogenic 

molecules VEGF- and FGF levels and therefore angiogenesis2.   

Renin, a protease, cleaves the protein angiotensinogen to produce the inactive peptide 

angiotensin I (Ang I). Angiotensin-converting enzyme (ACE) cleaves Ang I to produce 

angiotensin II (Ang II), a vasoactive peptide. ACE also catalyses the breakdown of 

bradykinin, a vasodilator that binds to the bradykinin receptors (BK-B1 and BK-B2 -

receptors) to induce NO and vasodilation, and the expression of VEGF and FGF. Ang II 

can either bind the angiotensin II receptor 1 (AT1 receptor) inducing vasoconstriction, 

thus elevating blood pressure, or the angiotensin II receptor 2 (AT2 receptor), inducing 

vasodilation and angiogenesis via bradykinin and by up regulating growth factors2,38. The 

AT1 receptor is ubiquitously expressed whereas the AT2 receptor is expressed early 

during development and after ischemic insult at lower levels in the adult39,40.  

In some older studies ACE inhibition blocked microvessel formation or reduced aortic 

and microvascular growth, suggesting anti-angiogenic properties for ACE inhibitors (or 

pro-angiogenic properties for Ang II, ACE inhibition prevents the formation of Ang II)41-43. 

However the majority of studies support a pro-angiogenic role for ACE inhibitors (ACE-

Is). ACE-Is significantly increase myocardial capillary density and decrease ventricular 

hypertrophy26,44-47. Furthermore, several studies in ischemic hind limbs of mice and 

rabbits suggest a pro-angiogenic role for ACE-Is48,49,45. AT1 receptor blockers (ARBs) 

prevent induction of vasoconstriction by Ang II but still allow activation of the AT2 

receptor. Several reports have demonstrated that ARBs increase capillary density50-52. 

The ARB losartan reversed rarefaction via induction of VEGF and increased 

angiogenesis in a NO and bradykinin (B2 receptor) dependent manner50,53. In an earlier 
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study in 70 hypertensive patients, losartan reduced vascular hypertrophy and rarefaction 

after three years of randomized, blinded treatment54. Thus, activation of AT1 receptor 

may be antiangiogenic, or, ARBs may reveal a proangiogenic role of the AT2 receptor2. 

 
Figure 2. Angiotensin and bradykinin interact to induce angiogenesis. Bradykinin (BK), a potent 
vasodilator involved in regulation of blood pressure, induces angiogenesis. BK upregulates 
angiogenic molecules such as basic fibroblast growth factor (bFGF), via the BK B1 receptor and, 
or VEGF and NO, via the BK B2 receptor. The BK B2 receptor can also activate the VEGF 
receptor on endothelial cells. ACE inhibition results in BK accumulation and promotion of 
neovascularization. Moreover, angiotensin II activates the AT2 receptor during AT1 receptor 
blockade, thereby upregulating BK and contributing to an angiogenic response. ATR, angiotensin 
receptor. Figure by Battegay2 
 

2.5. Hypoxia inducible factors (HIFs) - regulation and implication in angiogenesis  

Hypoxia inducible factors (HIFs) are master regulators of O2 homeostasis. The induction 

of the hypoxia inducible factor family of transcription regulators is a primary effect of the 

adaptive response to hypoxia in mammals. As mentioned in 2.1, these proteins activate 

the expression of a broad range of genes, that mediate many of the responses to 

decreased oxygen concentration: enhanced glucose uptake by up-regulation of glucose 

transporter- and phosphofructokinase gene, increase in red blood cell production by 

erythropoietin and the production of new blood vessels via angiogenesis (e.g. 

VEGF)5,7,8,55,56. Beside hypoxia, growth factors, Ang II, thrombin and other hormones, 

can induce HIF proteins57-59. The hypoxic response and the HIF pathway are conserved 

from C. elegans and Drosophila to mice and man5. 

HIF proteins are members of a larger group of proteins known as bHLH-PAS (basic loop 

helix-Per ARNT Sim) proteins. Per, ARNT (aryl hydrocarbon nuclear translocator) and 

Sim were the three first proteins identified with such domains. Each member of this 

family contains an N-terminal bHLH domain that mediates binding to consensus DNA 

sequences, e.g. to the hypoxia response element (HRE), in the promoters of target 
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genes5. HIF proteins heterodimerize via their HLH and PAS domains in the center of 

each protein to form functionally active transcription factors60. 

The HIF family is comprised of three α subunits that are encoded in three different genes 

(HIF1A, EPAS1, HIF3A)61: HIF-1α, also known as MOP1/PAS1, HIF-2α also known as 

EPAS1 (endothelial PAS 1), MOP2 or HLF (HIF-1α-like factor), and HIF-3α also known 

as MOP3 or IPAS (inhibitory PAS). There are also three β subunits: HIF-1β or ARNT, 

ARNT2 and ARNT3. HIF-proteins form heterodimers of α and β subunits5. HIF-1α/ARNT 

and HIF-2α/ARNT complexes have been shown to be primarily responsible for the 

hypoxic induction of angiogenesis62,63. 

Expression of HIF-1α is ubiquitous in humans and mice whereas HIF-2α is 

predominantly expressed in the endothelium, lung and highly vascularized organs61,64. 

Knockout studies in mice demonstrate that HIF-1α and HIF-2α play nonredundant roles. 

This may result, in part, from differences in tissue-specificity and temporal patterns of 

induction of each isoform1. HIF-3α is also expressed in a variety of tissues and can also 

dimerize with ARNT and bind to HREs65. A splice variant of HIF-3α, called IPAS 

(inhibitory PAS), interacts with HIF-1α to prevent its DNA binding. HIF-3α in this way can 

act as a negative regulator to transcriptional responses to hypoxia66,67.  

HIF-1α is constitutively transcribed and constantly degraded with a half-life of only 5 

min68. Under hypoxia or through other stimuli, HIF-1α degradation is prevented, the 

protein is stabilized and translocates from the cytoplasm to the nucleus, dimerizes with 

HIF-1β and binds to an HRE-domain; the formed HIF complex becomes transcriptionally 

active.  

In normoxic conditions, two proline residues, located in the ODDD (oxygen dependent 

degradation domain) of HIF-1α are hydroxylated by a prolyl hydroxylase (PHD). The 

hydroxylated protein is now a target for the pVHL (van Hippel-Lindau) /E3 ubiquitin 

ligase complex, ubiquitinated and rapidly degraded by the proteasome. The prolyl 

residues targeted by the PHD are conserved in HIF-2α and HIF-3α. Oxygen and iron 

ions (Fe2+) are absolutely required cofactors for PHD. In the absence of oxygen PHD is 

inactive and HIF-1α cannot be hydroxylated and thus not be bound by pVHL and its 

degradation is prevented5,69. PHDs might therefore act as direct oxygen sensors within 

the cells70.  

Stabilization alone is not sufficient for full transcriptional activation of HIF-1. The second 

major mechanism controlling HIF activity is through recruitment of transcriptional co-
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activators (e.g. CBP and p300) to HIFs’ C and N –terminal transactivation domains (C-

TAD, N-TAD). Under normoxia, a dioxygenase (factor inhibiting HIF-1 (FIH)) 

hydroxylates asparagine residues within HIFs’ TADs and prevents binding of the 

coactivators. Since FIH requires oxygen for catalytic activity, HIFs’ TADs remain 

unmodified under hypoxia and can interact with its cofactors to activate transcription of 

its target genes. HIF is also modified by phosphorylation, acetylation, s-nitrosylatin and 

sumoylation71. The function of these modifications is not fully understood yet.  

 
Ang II and hormones induce HIF-1α through the production of reactive oxygen species 

(ROS)57,58. ROS can influence Fe2+ availability and thereby PHD and FIH activity72.  

Expression of HIF-1β is constitutive and not influenced by hypoxia; protein and mRNA 

levels are maintained at constant levels73. 

Also active mTOR (mammalian target of rapamycin) signaling has been shown to be 

necessary to stabilize HIF-1α under hypoxia (HIF-1α carries a potential phosphorylation 

site for mTOR)74,75.  

 

Figure 3. HIF activity under 
hypoxic and normoxic 
conditions.  
In normoxia, hydroxylation at 
2 proline residues promotes 
HIF-α association with pVHL 
and HIF-α destruction via the 
ubiquitin/proteasome 
pathway, while hydroxylation 
of an asparagine residue 
blocks association with 
coactivators.  
In hypoxia, these processes 
are suppressed, allowing 
HIF-α subunits (both HIF-1α 
and HIF-2α) to escape 
proteolysis, dimerize with 
HIF-1β, recruit coactivators, 
and activate transcription via 
HREs. N, asparagine; P, 
proline; OH, hydroxyl group; 
Ub, ubiquitin. Figure by 
Ratcliffe1 
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2.6. mTOR signaling – central regulator of cell growth and proliferation 

Control of cell growth and proliferation in yeast, plants or humans and in any 

physiological context seems always to involve the same protein – the evolutionarily 

conserved serine/threonine kinase mammalian target of rapamycin (mTOR, also known 

as FRAP or RAFT) - and its signaling network (for reviews, see Harris and Lawrence, 

200376 and Jacinto and Hall, 200377). mTOR was discovered as the target for its specific 

inhibitor78, rapamycin, an immnuesuppressant and antibiotic, which was isolated from 

the bacteria streptomyces hygroscopicus, from a soil sample of Rapa Nui (Easter 

Island)79.  

 

Two mTOR complexes  

RNAi-technology brought evidence that rapamycin does not affect all mTOR functions, 

suggesting mTOR may be present in different (iso)forms or complexes. Indeed, two TOR 

complexes, (m)TORC1 and (m)TORC2, have been identified in yeast and later in a 

variety of eukaryotes80-82.  

mTOR complex 1 (mTORC1) is rapidly and specifically inhibited by FKBP12-bound 

rapamycin. mTOR complex 2 (mTORC2) is not acutely rapamycin-sensitive. However, 

long-term treatment with rapamycin can avoid the formation of complex 2 in some cell 

types, e.g., in endothelial cells83. The newly synthesized mTOR-protein immediately 

forms a complex with FKBP12-rapamycin, which prevents association with rictor83.  

mTOR complex composition defines their function and identity. mTOR, Regulatory 

associated protein of mTOR (Raptor, 150 kDa) and PRAS40 are functional parts of 

TORC1. mLST8 is also present in mTORC1, but is probably not required for all of 

mTORC1’s functions80,84-87. Formation of mTORC2 requires mTOR to assemble the 

rapamycin-insensitive companion of mTOR (Rictor) and mSIN1 (mammalian stress-

activated protein kinase [SAPK]-interacting protein). In mTORC2, mLST8 is a 

functionally and structurally required component. The mTOR regulatory protein rictor 

(also known as mAVO3) is a large protein (200 kDa) and contains no obvious catalytic 

motifs, but repetitive domains, similar to mSIN180,84,88,89.  

 

Upstream Regulators of the TOR Signaling Network  

mTOR integrates various signals to regulate cell growth. Four major inputs have been 

implicated in TOR signaling: growth factors, nutrients, energy, and stress90. 
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Growth Factors  

The mTOR pathway responds to growth factors via the PI3K pathway (Figure 4). Binding 

of insulin or insulin-like growth factors (IGFs) to their receptors leads to recruitment and 

phosphorylation of the insulin receptor substrate (IRS), and subsequent recruitment of 

PI3K. PI3K bound to IRS converts phosphatidylinositol-4,5-phosphate (PIP2) in the cell 

membrane to phosphatidylinositol-3,4,5-phosphate (PIP3). PIP3 accumulation is 

antagonized by the lipid phosphatase PTEN. PIP3 co-recruits PDK1 and Akt to the 

membrane, resulting in the phosphorylation and activation of Akt by PDK1. mTOR is 

wired to the PI3K pathway through the tuberous sclerosis proteins TSC1 (hamartin) and 

TSC2 (tuberin). TSC1 and TSC2 act as a heterodimer that negatively regulates mTOR 

signaling. TSC2 is phosphorylated and functionally inactivated by Akt in response to 

insulin (reviewed in Manning, 200491).  

 

TSC1-TSC2 regulation of mTORC1  

TSC2 acts as a GAP (GTPase-activating protein) for the small GTPase Rheb (reviewed 

in Li et al., 200493). Rheb binds directly to the kinase domain in mTOR and activates 

mTOR in a GTP-dependent manner94. Long et al. suggest that GTP loading of Rheb, 

rather than mediating mTORC1 recruitment, enables Rheb to induce a conformational 

change in mTORC1 leading to mTORC1 activation and phosphorylation of downstream 

targets.  

However, the significance of TSC2 phosphorylation by Akt may vary depending on 

physiological context. Recently, PRAS40 was identified as a raptor binding protein that 

potently inhibits mTORC1 kinase activity in vitro and mTORC1 signaling within cells. 

Insulin-stimulated phosphorylation of PRAS40 by Akt suppresses its mTORC1 inhibitory 

activity. It has been suggested that insulin activates mTORC1 through the coordinated 

regulation of rheb, an mTORC1 activator, and PRAS40, an mTORC1 inhibitor87,92. 

 

Nutrients 

Nutrients, especially amino acids, regulate mTORC1 signaling. Amino acid starvation, in 

particular the absence of leucine, results in a rapid dephosphorylation of the mTORC1 

effectors S6K1 and 4E-BP1, whereas readdition of amino acids restores S6K1 and 4E-

BP1 phosphorylation in an mTORC1-dependent manner95. The mechanism(s) by which 

nutrient status is communicated to mTORC1 requires further study. Amino acids have 

been shown to activate mTORC1 via inhibition of TSC1-TSC2 or, alternatively, via 
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stimulation of Rheb. Gao et al. (2002)96 have demonstrated that inactivation of TSC2 

renders cells resistant to amino acid withdrawal, suggesting that the amino acids signal 

via TSC1-TSC2. Other studies have proposed a model in which amino acids signal to 

mTORC1 independently of TSC2. Amino acid withdrawal still downregulates mTORC1 

signaling in TSC2-deficient cells97. 

 

Energy 

Cell growth (the accumulation of cell mass) depends on a high rate of protein synthesis 

and consequently requires a high level of cellular energy. mTORC1 senses the energy 

status of a cell through AMP-activated protein kinase (AMPK). AMPK is activated in 

response to low cellular energy (high AMP/ATP ratio). Activated AMPK downregulates 

energetically demanding processes like protein synthesis and stimulates ATP-generating 

processes. The tumor suppressor LKB1 has been identified as an upstream kinase for 

AMPK, suggesting that LKB1 is linked to the TSC-mTORC1 signaling pathway98,99. 

Thus, upon energy deprivation LKB1 in conjunction with AMP activates AMPK, which in 

turn phosphorylates and activates TSC2, resulting in the inhibition of mTORC1. 

 

Stress and Hypoxia  

Cells respond to environmental stress, such as hypoxia, or low energy by 

downregulating energy-demanding processes and arresting growth. TOR has been 

demonstrated to play a role in the response to stress. Upon hypoxia, TOR signaling is 

inhibited and protein synthesis is thereby downregulated. Hypoxia is transduced to 

mTORC1 via the two homologous proteins REDD1 and REDD2. The expression of 

REDD is upregulated upon hypoxia by the transcription factor hypoxia-inducible factor 1 

(HIF-1)100. 

However, stabilization of HIF-1α under hypoxia has been shown to depend on active 

mTOR-signaling suggesting that hypoxia activates mTOR signaling74. Furthermore, 

hypoxia has been shown to increase proliferation of lung adventitial fibroblasts, 

endothelial cells and of angiogenesis in vitro in a mTOR dependent way10,101. 

It is therefore unclear how hypoxia can inhibit mTOR signaling in some processes and 

activate it in others.  

 

In summary, several upstream signaling cues, growth factors, energy, stress, and 

possibly amino acids converge on TSC1-TSC2 to regulate mTORC1 signaling. The 
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recent identification of mTORC2 raises the question of how mTORC2 is regulated. It has 

been shown that unlike mTORC1, mTORC2 does not function downstream of Rheb102. 

Therefore one might assume that TSC1/TSC2 does not regulate mTORC2, although this 

has not be firmly established and a role for TSC1/TSC2 in the regulation of mTORC2 

cannot be completely excluded103. 

Figure 4. mTOR can be activated by growth factors, nutrients, energy and hypoxia. mTORC1 
contains raptor, PRAS40 and mLST8. Downstream targets of mTORC1 are amongst others S6K 
and 4E-BP1. MTORC2 contains rictor, mSIN1 and mLST8. Downstream target of mTORC2 
amongst others is PKB104. 
 

Downstream effectors and functions  

mTORC1 is highly rapamycin-sensitive and is essential for regulating cell growth in 

response to both nutrients and growth factors. Signaling through mTORC1 promotes 

protein synthesis through the inactivation of the translation repressor 4E-BP1 and 

through the activation of S6 kinase (S6K1, phosphorylation at Thr389) (for review, see 

Hay and Sonenberg, 200495). Raptor, a positive regulator of mTOR, appears to serve as 
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an adaptor protein that recruits mTOR substrates105-108. Raptor ko mice fail to increase 

inner cell mass and die on around day E7 of embryonal development85. 

mTORC2. Until recently, our knowledge of the functions of mTORC2 lagged behind that 

of mTORC1. Rictor knock out mice first develop normally, then exhibit growth arrest and 

die as embryos around E11. Rictor knock out embryos show multiple defects in fetal 

vascular system development. Rictor deficient MEFs have a reduced proliferation rate. 

Thus mTORC2 function may be generally associated with cell proliferation and cell 

viability85,109.  

Several studies have shown that mTORC2 can regulate the organization of the actin 

cytoskeleton, but the results are divergent. Rictor or mSIN1 knockdown in HeLa leads to 

an increase of actin fibers in the cytoplasm whereas rictor knockdown in NIH 3T3 

decreases actin fibers in the cytoplasm81,82,110. In rictor and mLST8 knockout MEFs 

finally, actin distribution is not affected at all85,109. 

The demonstration that mTORC2 phosphorylates Akt/protein kinase B (PKB) on Ser473 

in a growth factor-dependent manner suggests that this complex may have some vitally 

important functions111,112. siRNA mediated knock down of rictor strongly decreases Akt 

phosphorylation at Ser473 in adipocytes111. Akt Ser473 phosphorylation is also strongly 

reduced in rictor and mSIN1 knockout MEFs.  

Akt, which is activated in a phosphatidylinositol 3-kinase (PI3K)-dependent manner, is a 

key intracellular mediator of diverse cellular processes, including metabolism, gene 

expression, cell migration, angiogenesis, proliferation, and cell survival113,114. Full 

activation of Akt requires phosphorylation at both Thr308 of the activation loop by 

phosphoinositide-dependent kinase 1 (PDK1) and Ser473 in the hydrophobic motif (HM) 

of the C-terminal tail by another kinase(s) tentatively named HM kinase or PDK2115. 

Since mTORC1 is a downstream target of Akt, the finding that mTORC2 has HM kinase 

activity suggests that the functional interactions between mTOR and the PI3K-Akt 

pathway are both more significant and complex than previously thought. Different 

degrees of Ser473 and Thr308 phosphorylation correlate with different degrees of 

enzyme activity and thereby enable a fine-tuned response. This could explain that only 

some downstream targets of Akt, such as FoxO but not GSK3 or TSC2 exhibit 

decreased phosphorylation after rictor silencing85,88. 
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2.7. mTOR-related disease processes 

Signaling through mTOR is essential for cell growth. It is not surprising that alteration of 

many upstream and downstream components of mTOR-signaling result in 

developmental diseases, tumor formation and cardiovascular diseases.  

 

When tumors reach a critical volume and mass, nutrient and oxygen supply can no more 

be maintained by diffusion, and a vascular supply has to be generated by switching on 

the process of angiogenesis. Rapamycin has been shown earlier to inhibit angiogenesis 

and endothelial cell proliferation, whereas mTOR overexpression increased endothelial 

proliferation under hypoxia10. Clinical trials have demonstrated that mTOR inhibitors can 

reduce tumor vascularisation and inhibit growth of many different tumor types. Moreover, 

rapamycin is generally well-tolerated117.  

Unfortunately, some cell types, such as HeLa increase Akt-Ser473 phosphorylation (Akt 

activity) after rapamycin treatment83. This is due to the disruption of a feedback loop in 

which components downstream of mTORC1 and S6K1 (including IRS, see figure 4) 

block further activation of the PI3K-pathway118,119. In situations were Akt-Ser473 

phosphorylation upregulates, rapamycin-treatment shoud be prevented or combined with 

other drugs, because administration of rapamycin in combination with other drugs (e.g. 

Akt-inhibitors, cis platin or VEGF blockers (Avastin)), leads to promising results in 

treating multiple types of human cancers120. 

HIF is a central regulator for angiogenesis and also depends on mTOR activity (see 2.2., 

2.5.). Van Hippel-Lindau disease includes mutation of the VHL/E3 complex, thus 

preventing degradation of HIF-1α and leading to malignant tumor formation121. HIF-1 

inhibitors like YC-1 or PX-478 could effectively stop tumor growth in von Hippel-Lindau 

syndrome patients and could potentially be interesting for a variety of angiogenesis- 

related disease122. 

Cardiovascular disease is a leading killer in the western world. Athereosclerosis 

(narrowing of arteries) is a multifactorial disease and can result from dyslipidemia, 

smoking or obesity. Arterial occlusions can be treated by stenting, i.e., opening and 

supporting narrowed vessels. Although stenting brings long-term benefits to a majority of 

patients, a substantial number of patients experience overgrowth of smooth muscle cells 

surrounding the stent, i.e., restenosis, similar to scar tissue. Inhibition of SMC and EC 

growth with mTOR inhibition by rapamycin-coated stents has been very effective in 

preventing restenosis in humans123. 
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Left ventricular hypertrophy of the heart is one of the main risk factors for cardiac 

morbidity and mortality, and there is strong evidence that hyperactivation of the PI3K-

mTOR pathway is one cause of cardiac hypertrophy. Recent studies have demonstrated 

that rapamycin may be a therapeutic agent for established cardiac hypertrophy124. 
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3. Rationale & Aims 

Hypoxia-induced endothelial proliferation 

When oxygen levels are low for a longer period, erythropoiesis and angiogenesis are 

induced to increase tissue oxygenation69. In contrast to e.g. cardiomyocytes, specialized 

cells such as vascular endothelial cells (EC) and smooth muscle cells (SMC) are 

activated and increase proliferation and gene expression in response to hypoxia in order 

to form new vessels which supply oxygen to tissues10. EC proliferation in response to 

hypoxia was shown to be rapamycin-sensitive. Thus, we hypothesized that mammalian 

target of rapamycin (mTOR) is involved in the response to hypoxia in endothelial cells10.  

mTOR is central in regulating cell growth and proliferation and integrates signals from 

nutrients, growth factors, energy status and stress. Recent studies have identified two 

structurally distinct mTOR multi protein complexes (mTORC1 containing raptor and 

mTORC2 containing rictor) with individual downstream targets. Reports on the effect of 

hypoxia on mTOR are contradictive. On the one hand, hypoxia activates mTOR 

signalling to enhance angiogenesis125. On the other hand, hypoxia inhibits mTOR 

signalling to prevent protein synthesis100. Further, it is unclear which of the distinct 

mTOR complex-activities are affected by hypoxia 

The major aim for this thesis was to elucidate the impact of hypoxia on mTOR signalling 

and its contribution to increased proliferation of endothelial cells.  

Therefore we specifically assessed:   

1. mTOR phosphorylation (at Ser 2448 and Ser2481) in dependence of oxygen 

concentration. 

2.  Time course of the levels of phosphorylation of mTOR and of mTORC1- and 

mTORC2 specific downstream targets, S6K and Akt, in dependence of the time of 

exposure to hypoxia. 

3. Pathways involved in directing the hypoxia signal to mTOR.  

4. The mTOR complex responsible for transducing hypoxic activation to increased EC 

proliferation.  

 

Signaling in Hypoxia-Inducible Factor stabilization 

Hypoxia inducible factors (HIFs) regulate the majority of hypoxia-induced genes. HIF-1α 

and HIF-2α are constantly degraded in normoxia. Degradation is prevented in hypoxia, 

thus the HIF-α’s can form heterodimers with HIF-1β, translocate to the nucleus and 

induce transcription. Stabilization of HIF-1 in hypoxia was shown to be rapamycin 
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sensitive, and overexpression of mTOR enhanced HIF-1α-dependent gene 

transcription74. In the previous study we have shown that the inhibition of mTOR inhibits 

angiogenesis in vitro, and that mTORC1 and mTORC2 are required for hypoxia-

mediated proliferation of endothelial cells. Further we have shown that mTOR-stabilized 

HIF-1α partially contributes to proliferation of mouse embryonic fibroblasts (MEFs) under 

hypoxia11. How mTORCs contribute to the stabilization of HIF-α’s is unclear. 

The major aim for this project was to assess the regulation and role of HIF-α in hypoxia-

induced proliferation of aortic endothelial cells. Specifically we assessed whether: 

1. HIF-α is stabilized in EC and whether this stabilization contributes to endothelial 

proliferation in response to hypoxia.  

2. Signalling through mTORC1, mTORC2, MEK1/2, Jun kinase or p38 are necessary to 

stabilize HIF-1α and whether inhibition of these pathways affects proliferation of 

endothelial cells in response to hypoxia. 

 

The Renin-Angiotensin Aldosteron System (RAAS) in Angiogenesis  

Impaired angiogenesis can result in microvascular rarefaction that may be accompanied 

by arterial hypertension. The microvasculature supplies nutrients and oxygen to tissues, 

removes metabolites and carbon dioxide, and maintains an adequate hydrostatic 

pressure in tissue. Recent clinical studies with angiotensin-converting enzyme inhibitors 

(ACE inhibitors) and angiotensin II receptor 1 (ARBs) blockers demonstrate that long-

term antihypertensive treatment increases capillary density in the skin of hypertensive 

patients28. The stimulatory effect on angiogenesis of these drugs can be mediated by 

activation of bradykinin pathways, resulting in the generation of vascular endothelial 

growth factor and nitric oxide. 

The impact of antihypertensive drugs on microvessel structure were summarized and 

discussed in form of a review entitled Effects of anti-hypertensive drugs on vessel 

rarefaction2, included in this thesis. We discuss the theories behind the mechanisms of 

primary or secondary microvascular rarefaction in hypertensive patients. Further, we 

discuss the potential of different antihypertensive drugs (diuretics, α- and β-adrenergic 

receptor blockers, ARBs, ACE inhibitors) to induce or block angiogenesis, with a main 

focus on ARBs and ACE inhibitors, also with respect to tumor angiogenesis.  
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The Role of Angiotensin II in Angiogenesis in vitro of the heart 

The vasoactive peptide Angiotensin II (Ang II) is a key regulator of blood pressure. Two 

major subtypes of Ang II receptors are expressed in the myocardium: Ang II type 1 (AT1) 

and Ang II type 2 (AT2) receptors. Most of the effects of Ang II on the cardiovascular 

system, for example, vasoconstriction, are attributed to AT1. AT1 is ubiquitously 

expressed, whereas the AT2 receptor is highly expressed early in development and at 

lower levels in the adult39,40. Interestingly, the AT2 receptor is upregulated in response to 

ischemia and inflammation suggesting a potential role in myocardial angiogenesis126,127. 

Previous studies have shown that the AT2 receptor may interact with the bradykinin 

receptor, the B2 kinin receptor (BK2), during signalling128. 

In this in vitro study, using an angiogenesis assay from left ventricular myocardium of 

AT1 and AT2 –knock out and wild type mice, we aimed at investigating the mechanism 

underlying the angiogenic effects of angiotensin II. Specifically we aimed at:  

1. Studying the angiogenic potential of Ang II.  

2. Investigating expression of AT1- and AT2 receptors.  

3. Studying the angiogenic role of AT1-, AT2- and bradykinin receptors  

4. Assessing whether nitric oxide is a downstream effectors of Ang II-induced 

angiogenesis.  
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4. Results 

4.1. Hypoxia-Induced endothelial proliferation requires both mTORC1 and 

mTORC2 

Weimin Li,* Marco Petrimpol,* Klaus D. Molle, Michael N. Hall, Edouard J. Battegay, Rok 
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4.4. Angiotensin II induces angiogenesis in the  hypoxic adult mouse heart  in 

vitro through an AT2-B2 receptor pathway  

Veronica C. Munk, Lourdes Sanchez de Miguel, Marco Petrimpol, Nicole Butz, Andrea 

Banfi, Urs Eriksson, Lutz Hein, Rok Humar, Edouard J. Battegay; (Hypertension. 
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Abstract 

A central regulator of cell growth that has been implicated in responses to stress such as 

hypoxia is mTOR (mammalian Target Of Rapamycin). We have shown previously that 

mTOR is required for angiogenesis in vitro and endothelial cell proliferation in response 

to hypoxia. Here we have investigated mTOR-associated signaling components under 

hypoxia and their effects on cell proliferation in rat aortic endothelial cells (RAECs). 

Hypoxia (1% O2) rapidly (30 minutes) and in a concentration-dependent manner 

promoted rapamycin-sensitive and sustained phosphorylation of mTOR-Ser2448 

followed by nuclear translocation in RAECs. Similarly, hypoxia induced phosphorylation 

of the mTORC2 substrate Akt-Ser473 (3 to 6 hours at 1% O2) and a brief 

phosphorylation peak of the mTORC1 substrate S6 kinase–Thr389 (10 to 60 minutes). 

Phosphorylation of Akt was inhibited by mTOR knockdown and partially with rapamycin. 

mTOR knockdown, rapamycin, or Akt inhibition specifically and significantly inhibited 

proliferation of serum-starved RAECs under hypoxia (P0.05; n4). Similarly, hypoxia 

induced Akt-dependent and rapamycin-sensitive proliferation in mouse embryonic 

fibroblasts. This response was partially blunted by hypoxia-inducible factor-1 knockdown 

and not affected by TSC2 knockout. Finally, mTORC2 inhibition by rictor silencing, 

especially (P0.001; n7), and mTORC1 inhibition by raptor silencing, partially (P0.05; n7), 

inhibited hypoxia-induced RAEC proliferation. Thus, mTOR mediates an early response 

to hypoxia via mTORC1 followed by mTORC2, promoting endothelial proliferation mainly 

via Akt signaling. mTORC1 and especially mTORC2 might therefore play important roles 

in diseases associated with hypoxia and altered angiogenesis. 

 

Introduction 

Hypoxia is associated with angina pectoris, myocardial infarction, heart failure, and 

peripheral artery disease. Hypoxia and tissue ischemia are caused by either arterial 

obstruction or functional and anatomical capillary rarefaction resulting from 

hypertension1. Hypoxia occurs during rapid tissue growth, in organ and in tumor 

development, and during chronic inflammation or exposure to high altitude1. Diminished 

oxygen concentration induces programmed responses, such as endothelial 

proliferation2,3 and angiogenesis, that ultimately relieve tissue hypoxia and contribute to 

wound healing4.  

We have reported that hypoxia requires mTOR (mammalian Target Of Rapamycin) to 

induce angiogenesis and cell proliferation of the vascular wall in response to hypoxia5. 
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The mTOR pathway is a key regulator of cell growth and proliferation, and increasing 

evidence suggests that its dysregulation is associated with human diseases, including 

cancer, diabetes, and cardiovascular disease6. The mTOR pathway integrates signals 

from nutrients, energy status, and growth factors to regulate many processes, including 

autophagy, ribosome biogenesis, and metabolism6. Recent work identified 2 structurally 

and functionally distinct mTOR-containing multiprotein complexes7,8. The first complex, 

mTORC1, harbors raptor, is highly rapamycin sensitive9 –13, and specifically activates 

protein synthesis via S6 kinase (S6K). The second complex, mTORC213–15, is associated 

with rictor and phosphorylates Akt on Ser47316,17. mTORC2 phosphorylates and 

activates Akt/protein kinase B, which promotes signaling pathways that ensure cell 

survival and induce cell proliferation18.  

Reports on the effects of hypoxia on mTOR are contradicting. On the one hand, hypoxia 

activates mTOR signaling to enhance angiogenesis19, cellular proliferation of lung 

adventitial fibroblasts20 and aortic wall cells5, or protein levels and activity of hypoxia-

inducible factor (HIF)-1α, a major transcription factor for hypoxia-inducible genes21. On 

the other hand, hypoxia has also been reported to inhibit mTOR signaling in mouse 

embryonic fibroblasts (MEFs), a process that dephosphorylates S6K1 and 

downregulates protein synthesis22–24. It is unclear how hypoxia can elicit both activation 

and inhibition of mTOR signaling and how these signals contribute to increased 

proliferation; Furthermore, it is currently not known whether hypoxia affects mTORC2 

and mTOR-dependent Akt phosphorylation. This study further assesses the effects of 

hypoxia on mTOR signaling in endothelial cells5. Here we examine activities of mTOR 

under hypoxia in detail and translation of this signal into endothelial cell proliferation. 

 

Results and Figures 

Hypoxia Rapidly and Concentration-Dependently Promotes Phosphorylation of 

mTOR-Ser2448 and mTOR Nuclear Translocation 

To investigate direct effects of hypoxia on mTOR activity, we performed time-course 

experiments in serum-deprived cultured aortic endothelial cells, in the absence of growth  

factors. We determined phosphorylation of mTOR at Ser2448 and Ser2481 in the 

presence and absence of rapamycin. As shown in Figure 1A, phosphorylation of 

Ser2448 rapidly increased after exposure to hypoxia (1% O2), peaked after 

approximately 3 hours of hypoxia, and remained at high levels during the period 

investigated (24 hours). The effect of hypoxia on Ser2448 phosphorylation was reduced 
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by rapamycin (Figure 1A). In contrast, phosphorylation of mTOR Ser2481 increased only 

slightly during hypoxic exposure and declined toward 24 hours of incubation. mTOR 

protein levels were not affected by hypoxia (Figure 1A).  

In mammalian organs, O2 concentration ranges from 14% to 0.5%, with 14% O2 in 

arterial blood and 10% in the myocardium. During mild hypoxia, myocardial O2 drops to 

1% to 3% or lower.28 To account for varying oxygen concentrations in the body, we 

investigated the effect of different oxygen saturations on mTOR Ser2448 

phosphorylation. Quiescent RAECs were separately incubated under decreasing oxygen 

saturations (20%, 11%, 6%, 3%, and 1% O2) for 12 hours. At normoxia (21% O2), faint 

phosphorylation of mTOR Ser2448 was detected, which increased when O2 

concentration was lowered to 11% to 6% and augmented further with a maximum at 1% 

to 3% O2 (Figure 1B). mTOR protein as well as -actin protein levels were not affected by  

oxygen saturation. HIF-1α protein levels were used as a positive control for hypoxia and 

increased linearly, peaking at 1% to 3% of O2 saturation (Figure 1B). Thus, mTOR 

phosphorylation on Ser2448 is modulated in the pathophysiological O2 concentration 

range.  

An additional regulatory mechanism of mTOR signaling may occur via 

cytoplasmic/nuclear shuttling29. We examined whether severe hypoxia (1% O2) 

influences cellular localization of mTOR and mTOR–P-Ser2448. Under all tested 

conditions, mTOR was localized predominantly in the cytosol, as shown by 

immunostaining in Figure 1C. However, after quiescent RAECs were cultured in hypoxia 

for 6 hours, mTOR protein also appeared in the nucleus and rapamycin treatment 

inhibited nuclear localization (Figure 1C). Interestingly, mTOR–P-Ser2448 was only 

detected in distinct nuclear structures after 6 hours of exposure to hypoxia. 

Phosphorylation of mTOR Ser2448 was not detected under normoxia and only a very 

faint signal was detected under conditions of hypoxia with rapamycin treatment (Figure 

1C). Similar results were obtained when assessing protein levels of mTOR and mTOR–

P-Ser2448 by Western blotting. Serumdeprived RAECs were exposed to hypoxia (1% 

O2) for different periods of time (2 to 24 hours). At normoxia (time point, 0) basal levels 

of HIF-1α were detected in nuclear extracts, whereas the levels of mTOR and mTOR–P-

Ser2448 were nearly undetectable (Figure 1D). mTOR and mTOR–P- Ser2448 protein 

levels appeared in the endothelial nuclear fraction after 2 hours of incubation under 1% 

O2, increased slightly with time and were maximal after 24 hours of incubation under 1% 

O2 (Figure 1D). Thus, hypoxia rapidly and dose-dependently promotes phosphorylation 
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of mTOR- Ser2448 in a rapamycin-sensitive way and causes nuclear translocation of 

phosphorylated mTOR.  

 

Hypoxia Induces Rapid, but Short-Term, mTOR-Dependent Phosphorylation of 

S6K1-Thr389 and Sustained Phosphorylation of Akt-Ser473  

mTOR is present in 2 complexes, mTORC1 and mTORC2. mTORC1 activity can be 

measured by analyzing the phosphorylation of the direct downstream target S6K1 on 

Thr389 or phosphorylation of ribosomal subunit S630,31. mTORC2 phosphorylates Akt on 

the primary phosphorylation site Ser47316,17. We therefore performed time-course 

experiments, in which quiescent RAECs were exposed to hypoxia (1% O2) for short (10 

minutes) to long (24 hours) term, and we analyzed phosphorylation of S6K1-Thr389 and 

Akt- Ser374. As shown representatively in Figure 2A (first 3 panels), and as averaged 

densitometric quantification of cumulative experiments in Figure 2B (top graph), S6K1 

was highly phosphorylated at Thr389 between 10 minutes and 1 hour of hypoxic 

exposure but dropped to undetectable levels after more than 3 hours of culture under 

hypoxia. This phosphorylation step is highly rapamycin sensitive. Akt phosphorylation at 

Ser473 slightly increased after 10 minutes but reached maximal levels after 3 hours of 

hypoxic exposure before staying at a steady level for up to 24 hours. Total Akt levels 

remained unchanged under hypoxia (Figure 2A, middle 4 panels). Phosphorylation of 

Akt at Ser473 peaked after 3 hours of exposure to hypoxia as shown in Figure 2B (lower 

graph), representing the ratio of Akt–P-Ser473 to total Akt. Akt phosphorylation was 

partially inhibited by rapamycin, however, the effect of rapamycin increased with longer 

incubation (averaged densitometric quantification of cumulative experiments in Figure 

2B, bottom graph).  

Akt phosphorylates Ser21 in Glycogen synthase kinase-3 (GSK3) α and Ser9 in GSK3β 

and thereby inactivates GSK3 function32,33. Furthermore Akt and GSK3 are implicated in 

the regulation of cell cycle regulators Cyclin D1 and p21.33 Similar to Akt 

phosphorylation, GSK3β was phosphorylated after 60 minutes of exposure to hypoxia as 

shown by Western blots of nuclear extracts in Figure 2A. Cyclin D1 protein gradually 

accumulated after 30 minutes of hypoxia in the nuclear fraction, whereas cell cycle 

inhibitor p21 protein levels decrease and totally disappear after 24 hours of RAEC 

cultivation under hypoxia (Figure 2B).  

To further examine the role of mTOR on Akt–P-Ser473 under hypoxia, mTOR protein 

expression was silenced by mTOR-specific siRNAs that were nucleofected into RAECs 
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before starvation and exposure to hypoxia. Quiescent RAECs were then again exposed 

to hypoxia (1% O2) for short (10 minutes) to long (24 hours) term and Akt-Ser374 

phosphorylation was analyzed by Western blotting. mTOR silencing, as shown by the 

Western blots in Figure 2C and averaged densitometric quantification of cumulative data 

in Figure 2D, effectively blunted hypoxia-induced Akt-Ser374 phosphorylation. 

Thus, hypoxia induces sustained phosphorylation of Akt-Ser473, peaking at 

approximately 3 to 6 hours of hypoxia, that is blunted by rapamycin or mTOR silencing. 

On the other hand, rapamycin-sensitive S6K1 phosphorylation on Thr389 peaks 

between 10 minutes to 1 hour of exposure to hypoxia, but quickly drops to undetectable 

levels with further culture under hypoxia.  
 
Hypoxia-Enhanced Endothelial Proliferation Is mTORC1 and mTORC2 Dependent  

We compared our previous findings5 in rat aortic angiogenesis with an angiogenesis 

assay of endothelial spheroids and endothelial proliferation assays using RAECs at 

severe hypoxia (1% O2). Endothelial sprout formation under 1% Owas more than twice 

as high when compared with the response under 21% O2 (Figure 3A). Rapamycin 

selectively inhibited additional sprout formation observed under 1% O2 at a low 

concentration (2 nmol/L) (Figure 3A). We have shown previously that hypoxia-enhanced 

angiogenesis in vitro is mainly attributable to enhanced proliferation5. A similar response 

was observed for RAEC proliferation under 1% O2. Hypoxia alone increased RAEC 

proliferation when compared with diluent normoxic control to approximately 1.5-fold 

(Figure 3B). Low concentrations of rapamycin (2 nmol/L) inhibited 

proliferationspecifically under hypoxia (Figure 3B, top graph). Akt inhibition by Akt IV 

inhibitor lowered overall proliferation at higher concentrations (Figure 3B, bottom graph). 

Akt inhibitor was used within concentrations at which cytotoxicity was absent, as shown 

by cytotoxicity test performed in RAECs (see the Figure in the online data supplement, 

available at http://circres.ahajournals.org).  

To further assess the role of mTOR in transducing hypoxia into endothelial proliferation, 

we analyzed endothelial (RAEC) proliferation and mTOR-associated signaling after 

mTOR silencing. mTOR protein was consistently knocked down or reduced (up to 95%) 

by mTOR siRNA, whereas control siRNA had no effect on mTOR protein, as shown by 

Western blotting (Figure 2C). After silencing, quiescent endothelial cells were cultured 

for 30 hours under 1% O2 and 21% O2 and proliferation was measured. mTOR silencing 

significantly (P0.05, n4) decreased the proliferation response to hypoxia compared to 



 
 

32 

transfection with control siRNA, whereas mTOR silencing had no significant (P0.05, n4) 

effects on proliferation under normoxia when compared with proliferation in endothelial 

cells that were transfected with control siRNA (Figure 3C).  

To assess whether a specific mTOR complex is responsible for transducing hypoxia into 

endothelial proliferation, we knocked down raptor, specific for mTORC1, or rictor, 

specific for mTORC214, by nucleofection of RAECs with vectors containing specific 

shRNAs. As shown in the top part of Figure 3D, shRNA silencing effectively inhibited 

expression of raptor or rictor proteins as compared with negative control transfection.  

Rictor but not raptor silencing also clearly decreased phosphorylation of mTORC2 

downstream substrate Akt-Ser473 after 6 hours of incubation under hypoxia (Figure 3D). 

At these time points, S6K1 phosphorylation at Thr389 is repressed (Figure 3D). 

Importantly, inhibition of mTORC2 by rictor silencing effectively blunted hypoxia-induced 

endothelial proliferation, with no effect on proliferation under normoxia (P0.001, n5). Also 

raptor silencing decreased hypoxia-induced proliferation significantly (P0.05, n3), 

however, not to the extent of rictor silencing. Thus, both mTORC1 and especially 

mTORC2 silencing significantly reduce hypoxia-induced endothelial proliferation.  
 
Tsc2 Knockout Does Not Blunt Hypoxia-Induced Proliferation in MEFs  

To extend the validity of our data to other cell types that are commonly used in molecular 

biology research, we have assessed MEF cells for their proliferative response under 

hypoxia. The broad availability of transgene MEFs allows for rapid and easy 

determination of the role of a specific gene.  

Tsc2 has been implicated to regulate proliferation under hypoxia in MEFs24. Tsc1 and 

Tsc2 proteins form a physical and functional complex in vivo and inhibit mTOR. Tsc2 is 

inactivated by Akt-dependent phosphorylation or nutrient availability, which destabilizes 

Tsc2 and disrupts its interaction with Tsc134,35. We therefore investigated whether a 

disrupted Tsc1/ Tsc2 complex in Tsc2-defective MEFs affects hypoxia-induced cell 

proliferation when compared with wild-type MEFs or Tsc2-mutated MEFs with a 

reintroduced Tsc2 wild-type gene. As shown in Figure 4A, proliferation was clearly 

increased in TSC2/ MEFs (top), both under normoxia and hypoxia. Hypoxia-induced 

proliferation was decreased by rapamycin and the Akt inhibitor, as demonstrated for 

endothelial cells (Figure 4A, top). Importantly, proliferation in TSC2-defective MEFs was 

enhanced under hypoxia to a ratio comparable to intact MEFs. No significant decrease 

(P0.05, n3) was observed when comparing the ratio of proliferation indices under 
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hypoxia to that under normoxia (Figure 4A, bottom graphs). These results suggest that 

loss of Tsc2 generally increases proliferation but does not regulate the specific activating 

effects of hypoxia on mTOR-mediated proliferation in MEFs.  
 
mTOR Induces HIF-1α–Dependent and –Independent Ways to Promote MEF 

Proliferation Under Hypoxia  

mTOR was shown to contribute to the stabilization of HIF-1α protein in cells exposed to 

hypoxia and is thus a positive regulator of HIF-1– dependent gene transcription21,36,37. 

We therefore asked whether HIF-1α, downstream of mTOR, is pivotal for increased cell 

proliferation under hypoxia. For this purpose, we measured proliferation of wild-type 

MEFs and those lacking the HIF-1α gene. As shown in Figure 4B, hypoxia-induced 

proliferation was only partially, though significantly (P0.05, n5), inhibited in HIF-1α-/- cells 

(open squares) as compared with wild-type cells under hypoxia (open circles). Both wild-

type (filled circles) and HIF-1α-/- (filled squares) cells did not increase proliferation under 

normoxia. Increased proliferation under hypoxia was rapamycin sensitive both in HIF-1α-

/- cells and wild-type MEFs. To further assess whether mTOR requires HIF-1α to induce 

proliferation under hypoxia, we overexpressed mTOR in wild-type and HIF-1α-/- cells 

(Figure 4C, top) and measured proliferation (Figure 4C, bottom left). mTOR 

overexpression increased overall proliferation in all conditions to approximately the same 

levels when compared with corresponding mock-transfected cells; the ratios (Figure 4C, 

bottom right) between proliferation under hypoxia and under normoxia were the same in 

wild-type and in HIF-1α knockout MEFs. These results suggest that HIF-1α is a partial 

but not crucial effector of mTOR-dependent, hypoxia-induced proliferation in MEFs.  
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Figure 1 
 

 
 
Hypoxia (1% O2) mediates rapid, dose-dependent, sustained phosphorylation of mTOR Ser 
2448 and translocation to the nucleus in RAECs. A, Western blot (top) showing total cell lysates 
of serum-deprived RAECs exposed to increasing duration of hypoxia (10 minutes to 24 hours) 
and probed for phosphorylated Ser2448, phosphorylated Ser2481, and total mTOR in the 
presence or absence of rapamycin (20 nmol/L). Averaged densitometric quantification (bottom) 
shows rapid, sustained, and rapamycin-sensitive phosphorylation on Ser2448 relative to total 
mTOR protein that was statistically significant after 30 minutes of hypoxia (P<0.001, n=4). Data 
are given as mean±SEM. B, Quiescent primary RAECs were cultured for 12 hours under 
normoxia (21% O2) and decreasing oxygen saturations (11%, 6%, 3%, 1% O2). Total cell lysates 
were subjected to SDS-PAGE and protein levels of mTOR, mTOR Ser2448, HIF-1α hypoxia (B), 
and hypoxia together with 20 nmol/L rapamycin (C). Cells were fixed and immunostained with 
anti-mTOR (fluorescein iso-thiocyanate; green stain) and anti-mTOR phospho-Ser2448 
antibodies (Cy3, red stain) and nuclear compartment (DAPI, blue stain). Rapamycin was included 
during serum deprivation (24 hours). D, Western blot showing nuclear cell lysates of serum-
deprived RAECs exposed to increasing periods of hypoxia (2 to 24 hours) and probed for 
phosphorylated Ser2448, HIF-1α, and total mTOR.  
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Figure 2 

Hypoxia increases transient or prolonged activity of distinct mTOR downstream targets. A, 
Western blots showing total cell lysates of serum-deprived RAECs exposed to increasing duration 
of hypoxia (10 minutes to 24 hours) and probed for (numbering from top to bottom) (1) 
phosphorylated S6K-Thr389, (2) phosphorylated S6K-Thr389 in the presence of 20 nmol/L 
rapamycin, (3) total S6K, (4) phosphorylated Akt-Ser473, (5) total Akt, (6) phosphorylated Akt-
Ser473, and (7) total Akt in the presence of 20 nmol/L rapamycin. Nuclear extracts probed for (8) 
phosphorylated GSK3-Ser21/9 and (9) total GSK3, (10) cyclin D1, and (11) p21. B, Top graph 
represents ratios of S6K–P-Thr389 to total S6K protein levels with and without rapamycin. 
Significant phosphorylation on S6K-Thr389 occurred within time points 10 to 180 minutes of 
hypoxia (P<0.05, n=3). Bottom graph represents ratios of Akt–P-Ser473 to total Akt protein levels 
with and without rapamycin as calculated from compiled densitometric quantification. Akt-Ser473 
phosphorylation was significant after 30 minutes of hypoxia (P<0.01, n=3). Rapamycin treatment 
resulted in significant reduction of phosphorylation after 180 minutes of hypoxia (P<0.05, n=3). 
Data are given as mean±SEM. C, Western blots showing total cell lysates of serum-deprived 
RAECs transfected with negative control siRNA (+si-control) or siRNA directed against mTOR 
(+si-mTOR) exposed to increasing duration of hypoxia (10 minutes to 24 hours) and probed for 
(numbering from top to bottom) (1) total mTOR, (2) phosphorylated mTOR-Ser2448, (3) total Akt, 
and (4) phosphorylated Akt-Ser473. D, Graphs represent ratios of Akt–P-Ser473 to total Akt 
protein levels as calculated from compiled densitometric quantification. Phosphorylation on Akt 
Ser473 was significant after 30 minutes of hypoxia (P<0.001, n=4). mTOR silencing significantly 
inhibited Akt–P-Ser473 after 30 minutes of hypoxia (P<0.05, n=4). Data are given as mean±SEM. 
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Figure 3 

 
mTOR and downstream targets are required for hypoxia-induced endothelial cell 
proliferation. A, Typical micrographs (×10) of rat aortic endothelial spheroids (2000 cells) 
embedded in a fibrin gel after a 24-hour incubation under normoxia (21% O2) and hypoxia (1% 
O2), normoxia (21% O2) with 20 nmol/L rapamycin, and hypoxia (1% O2) with 20 nmol/L 
rapamycin. An additional panel shows a ×40 magnification of endothelial sprouts emerging into 
the fibrin gel under hypoxia. B, Cell numbers of serum-deprived (for 30 hours) RAECs were 
determined after 24-hour culturing under normoxia (21% O2) or hypoxia (1% O2) with inclusion of 
the indicated concentrations of Akt IV Inhibitor and rapamycin. Y-axis represents the mean of cell 
number, compiled from 3 experiments with octuplicate samples. Data are given as mean±SD 
(n=3). C, RAECs were nucleofected with control siRNA (si control) (filled columns) and siRNA 
directed against rat mTOR (si mTOR) (hatched columns). Quiescent cells were exposed to 
hypoxia for 30 hours, and proliferation was measured. Significance was calculated by repeated 
ANOVA followed by pairwise comparison with the Bonferroni post test (ns indicates not 
significant, P>0.05; *P<0.05; n=4). D, RAECs were nucleofected with control siRNA (c and black 
columns) and vectors containing shRNA directed against raptor (rap) (lightly shaded columns) or 
rictor (ric) (hatched columns). Western blots (top display) show efficiency of silencing and effects 
on Akt-Ser473 and S6K-Thr389 phosphorylation after 6-hour incubation under hypoxia. 
Quiescent cells were exposed to hypoxia for 30 hours, and proliferation was measured (bottom 
display). Significance was calculated by repeated ANOVA followed by pairwise comparison with 
the Bonferroni post test (*P<0.05, **P<0.001; n=5). 
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Figure 4 

 
Hypoxia-induced proliferation in MEFs via mTOR does not depend on TSC2 and only 
partially on HIF-1α . A, Cell numbers of serum-starved TSC2 knockout (TSC2-/-) and wild-type 
(top) MEFs were determined after 30 hours of incubation under normoxia and hypoxia. 
Rapamycin or Akt inhibitor was included 30 minutes before incubation under hypoxia (top 
graphs). Bottom graph shows proliferation of wild-type, TSC2 mutated MEFs with a reintroduced 
TSC2 wild-type gene (TSC2mt-wt-intro), and TSC2-mutated (TSC2mt) MEFs as ratio of 
proliferation under hypoxia divided by proliferation under normoxia (ns indicates not significant, 
P>0.05; n=3). B, Cell numbers of serum-starved HIF-1α knockout (squares) and wild-type 
(circles) MEFs were determined after 30 hours of incubation under normoxia (filled symbols) and 
hypoxia (open symbols). Rapamycin (2 to 200 nmol/L) was included 30 minutes before incubation 
under hypoxia. Significance was calculated by 1-way ANOVA, followed by multiple comparison 
with the Bonferroni post test (***P<0.001, **P<0.01, *P<0.01; n=7). C, HIF-1α knockout and wild-
type MEFs were transfected with mock and HA-tagged wild-type mTOR and expression verified 
by Western blot (top). Cell numbers of serum-starved, mock-transfected (filled columns) and 
mTOR-transfected (open columns) MEFs were determined after 30 hours of incubation under 
normoxia and hypoxia. The ratios between proliferation under normoxia and hypoxia were 
compared, and no statistical difference among all groups was observed as calculated by 1-way 
ANOVA followed by multiple comparison with the Bonferroni post test (ns indicates not significant, 
P>0.05; n=3). 
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Figure 5 
 
 
 
 
 

 
 
 
 
Scheme representing summary of most important results. 
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Discussion  

In this report, we have investigated the mechanisms responsible for hypoxia-induced 

proliferation of serum- and growth factor– deprived endothelial cells and found that 

mTORC1 and mTORC2, i.e., the large multidomain kinase mTOR and its regulator-

associated proteins raptor and rictor, mediate an early response to hypoxia promoting 

endothelial proliferation via Akt signaling. Our results also clarify the apparent 

contradiction in the mTOR field, arising from earlier observations that hypoxia activates 

mTOR signaling38, resulting in angiogenesis19, proliferation5,20, and HIF-1α stabilization21 

and at the same time appears to inhibit mTOR signaling, as seen by deactivation of 

mTORC1 substrate S6K1, 4E binding protein 1, and protein synthesis22–24. Our data 

suggest that both mTORC1 and mTORC2 participate in the response to hypoxia in a 

cooperative and timed program that allows an early activation and late inhibition of 

mTORC1 and delayed and maintained activation of mTORC2 (Figure 5).  

We demonstrate that hypoxia (1% O2) induces phosphorylation of mTORC2 

downstream target Akt-Ser473 (3 to 6 hours) and a short phosphorylation peak at 

mTORC1 substrate S6K-Thr389 (10 to 60 minutes). Thus, hypoxia activates mTOR, 

S6K1, and Akt in different ways. mTORC1 signaling appears to be activated only at a 

very early stage and is inhibited with prolonged (3 hours) exposure to hypoxia. In 

contrast, mTORC2 signaling is maintained; Akt-Ser473 phosphorylation increased under 

hypoxia at more than 3 hours and was sustained in 1% O. Importantly, phosphorylation 

of Akt was partially inhibited by rapamycin and strongly by mTOR silencing. It has 

initially been reported that mTORC2, ie, the rictor/mTOR complex, is rapamycin 

insensitive14,15 However, later studies have shown that prolonged rapamycin treatment 

inhibits mTORC2 assembly and, as a consequence, Akt/protein kinase B in certain cell 

types, including endothelial cells (HUVECs) in particular39.  

In line with these phosphorylation studies, mTOR silencing, rapamycin, and Akt inhibition 

all specifically and significantly inhibited proliferation of serum-starved RAECs under 

hypoxia, and rapamycin also decreased endothelial sprout formation in endothelial 

spheroids under hypoxia alone. Finally, rictor knock-down, and therefore inhibition of 

mTORC2 signaling, clearly decreased hypoxia-induced phosphorylation on Akt-Ser473 

and totally blunted hypoxia-induced endothelial proliferation. On the other hand, raptor 

silencing, and therefore inhibition of mTORC1, did not affect Akt phosphorylation and 

partially, although significantly, reduced hypoxia-induced endothelial proliferation.  

The differences of hypoxic activation of mTOR1 and mTORC2 hypothetically may 
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involve distinct effects of hypoxia-induced phosphorylation of mTOR at Ser2448. We 

show that hypoxia rapidly (10 minutes) and concentration-dependently promotes 

rapamycin-sensitive and sustained phosphorylation of mTOR-Ser2448 and mTOR 

nuclear translocation in RAECs. Phosphorylation of mTOR-Ser2448 was modulated in 

the physiological oxygen saturation range (1% to 11% O2) also covering moderate 

hypoxic conditions. This is consistent with other responses to hypoxia to prevent or 

delay the onset of more severe hypoxia40. However, the functional significance of the 

mTOR phosphorylation site in Ser2448 is still unknown. Phosphorylation of this site has 

been suggested to be part of a feedback mechanism regulating mTOR activity41. 

However, it is still unclear whether this feedback loop is positive or negative and whether 

it affects mTORC1 or mTORC2 to the same extent7,41. Further investigations assessing 

whether hypoxia-induced nuclear mTOR-Ser2448 phosphorylation is associated with a 

specific mTOR complex or function will therefore be necessary. As shown by 

immunofluorescence, mTOR-Ser2448 phosphorylation is localized to subnuclear 

macromolecular structures resembling promyelocytic leukemia (PML) nuclear bodies. 

These PML bodies represent distinct yet dynamic intranuclear structures involved in 

apoptosis, proliferation, and senescence and also associate with nuclear phosphorylated  

Akt.42 Indeed, very recently, PML was shown to be a novel suppressor of mTOR and 

neoangiogenesis during ischemia19.  

Hypoxia also induces proliferation in lung adventitial fibroblasts20, cardiac fibroblasts28, 

and MEFs24. To extend the validity of our data to other cell types, we have assessed 

how MEF cells increase proliferation under hypoxia. In MEFs, a loss of Tsc2 confers a 

growth advantage to hypoxic cells24, suggesting that hypoxia inhibits mTOR via the 

tuberous sclerosis complex (TSC). TSC, consisting of Tsc1 and Tsc2, is the main 

upstream inhibitor of mTOR activity. The disruption of the complex by Tsc2 

phosphorylation results in mTOR activation38. Indeed, we confirm that disrupting the 

Tsc2 gene increases proliferation under hypoxia. However, the same advantage is 

present in wild-type MEFs or Tsc2-mutated MEFs with a reintroduced Tsc2 wild-type 

gene. Increased proliferation to hypoxia, however, was specifically decreased by 

rapamycin and Akt inhibitor. Based on these experiments, we conclude that mTOR 

mediates hypoxia-induced cell proliferation independent of regulation by TSC. An 

autonomous role of mTOR, in sensing and transducing oxygen saturation, was 

suggested by recent work revealing that a redox-sensitive switch may contribute to the 

regulatory mechanism that controls the mTOR pathway43,44. Furthermore, oxidative 
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capacity as displayed by mitochondrial activity was shown to regulate mTORC1 

assembly45.  

The proliferation studies in HIF-1α knockout MEFs suggest that HIF-1α is a partial 

downstream effector of mTOR- dependent proliferation under hypoxia. However, mTOR 

can promote hypoxia-induced proliferation also in the absence of HIF-1α, as shown by 

overexpression of mTOR in HIF-1α knockout MEFs. Still, further studies will have to 

assess the role of HIF-1α in mTOR-dependent proliferation in endothelial cells46, as well 

as the contribution of mTORC1 and mTORC2 complexes to HIF-1α stability but also to 

the activity of cell cycle regulators such as cyclin D1 and p21. 

In conclusion (see Figure 5), hypoxia-induced proliferation in endothelial cells requires 

signaling from both mTOR complexes, mTORC1 and mTORC2. mTOR activation by 

hypoxia is monitored by an early and sustained rapamycin-sensitive phosphorylation and 

nuclear translocation of mTOR, specifically phosphorylated at Ser2448. Activation of 

mTORC2 is monitored by a sustained phosphorylation of Akt-Ser473, which is 

decreased by mTOR and mTORC2 silencing and partially by prolonged rapamycin 

treatment. On the other hand, mTORC1 (rapamycin)-dependent S6K1 phosphorylation 

at early time points (3 hours) is likely involved in the early events that lead to hypoxia-

mediated endothelial proliferation, whereas at later time points (3 hours), mTORC1 

signaling is repressed as seen by complete dephosphorylation of S6K-Thr389. Blunting 

of hypoxia-induced endothelial proliferation by siRNA-mediated knockdown of raptor or 

rictor demonstrates the importance of mTORC1 and especially mTORC2, respectively. 

This indicates cooperating mechanisms between signals from both mTOR complexes in 

the response to hypoxia in endothelial cells. Thus, mTORC1 and specifically mTORC2 

may be interesting novel targets to regulate hypoxia-induced endothelial cell proliferation 

and angiogenesis for inhibition of tumor vascularization and potential induction of 

reparative angiogenesis during ischemic cardiovascular disease.  

 

Materials and Methods  

Rat aortic endothelial cells (RAECs) were prepared, cultured, and characterized as 

described previously5. Tsc2-defective MEFs were obtained from Michael Hall (Biocenter, 

Basel, Switzerland), HIF-1α knockouts from Max Gassmann (University of Zürich, 

Switzerland). Endothelial cell spheroids were generated as described elsewhere25. 

Predesigned short interfering RNAs (siRNAs) against rat mTOR (frap1_3 siRNA) were 

purchased from Qiagen. Short hairpin RNAs (shRNAs) containing vectors against raptor 
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and rictor are pKDM- 132, a pSuper.gfp/neo-based siRNA-expressing plasmid targeting 

ctgtgaactagcacttcag in rictor mRNA; and pKDM-162, a pSuper.gfp/ neo-based plasmid 

targeting ggacaacggccacaagtac in raptor mRNA. RAECs were transfected with 

si/shRNA by AMAXA nucleofection. Cell numbers were assessed using Cell Proliferation 

Reagent WST-1 (Roche Molecular Biochemicals) according to the specifications of the 

manufacturer.  

Cell lysis was prepared as described previously5 and as described elsewhere26. Primary 

chicken polyclonal anti–HIF-1α antibodies were provided by Max Gassmann (University 

of Zürich, Switzerland), polyclonal anti-raptor and anti-rictor antibodies were generated 

by Markus A. Rüegg (Biocenter Basel, Switzerland). All other antibodies were 

commercially available. Protein bands were analyzed by densitometric quantification by 

ImageJ 1.31v software (Wayne Rasband, NIH). Immunostaining was performed as 

described previously27.  

Data (meanSEM) were analyzed for normal distribution (1-way or repeated-measures 

ANOVA), followed by multiple or pairwise comparison with the Bonferroni post test using 

the GraphPad software Prism. The number of single experiments compiled is indicated 

by n. A value of P0.05 was considered as significant.  
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Abstract 

Hypoxia prevents degradation of hypoxia-inducible factor (HIF) α subunits, and therefore 

facilitates heterodimerization with HIF-β subunits. HIF controls the adaptive response to 

hypoxia by driving expression of genes for angiogenesis, erythropoiesis and glycolysis. 

HIF-1α stabilization under hypoxia has previously been shown to be disturbed by 

rapamycin suggesting requirement of active mTOR signaling. 

Here we have investigated the regulation and role of HIF-1α and mTOR signaling in 

hypoxia-induced proliferation of aortic endothelial cells (RAEC). As shown before in 

other cell types, hypoxia and growth factor stimulation with PDGF-BB induces 

stabilization and translocation of HIF-1α to the endothelial nucleus. Moreover, HIF-1α 

knock down reduces RAEC proliferation in hypoxia. To investigate pathways potentially 

regulating HIF-1α stabilization we used specific inhibitors of signaling relay enzymes 

mTOR, MEK1/2, JunK and p38, that are involved in stress responses. mTOR inhibition 

with rapamycin significantly reduced HIF-1α accumulation in response to hypoxia and 

PDGF-BB stimulation, whereas MEK1/2 inhibition reduced HIF-1α accumulation only 

during PDGF-BB stimulation under normoxia. Rapamycin dose dependently reduced 

proliferation of RAEC during PDGF-BB stimulation under hypoxia and hypoxia alone. 

MEK1/2 inhibition reduced proliferation under normoxia and hypoxia to similar extents, 

thus not specifically affecting the hypoxic response. Inhibition of JunK and p38 did not 

affect HIF-1α accumulation and RAEC proliferation in the tested conditions.  

Here we demonstrate that mTOR signaling under hypoxia is partially required to stabilize 

HIF-1α, and that HIF-1α is a co-effector of mTOR-dependent, hypoxia-induced 

endothelial proliferation. HIF-1α stabilization and RAEC proliferation under hypoxia does 

not depend on signaling by MEK1/2, Jun kinase and p38. Recent studies have identified 

two structurally und functionally distinct mTOR multi protein complexes. Further ongoing 

studies will determine the individual or cooperative contribution of the two mTORCs in 

hypoxia-mediated stabilization of HIF-1α.  

 

Introduction 

Cellular hypoxia occurs when the demand for molecular oxygen necessary to generate 

ATP levels sufficient to sustain cell function exceed the vascular supply. Hypoxia can 

occur during development, is associated with various cardiovascular diseases such as 

peripheral artery disease, myocardial infarction, and heart failure, and also with tumor 
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growth or wound healing1,2. As part of an adaptive response, cells and tissues react to 

hypoxia and induce transcriptional changes that may lead to induction of genes that 

improve tissue perfusion (i.e. in angiogenesis and vasodilation), a switch to anaerobic 

energy winning in glycolysis, or to an increase in erythocyte count3. This is initiated in 

part by upregulation of transcription factors such as the well-studied hypoxia-inducible 

factors HIF-1 and HIF-2.  

The HIF-1 nuclear transcription complex is ubiquitously expressed and consists of a 

stably expressed component HIF-1β (ARNT) and a hypoxia inducible protein HIF-1α. 

Under normoxic conditions HIF-1α subunits are hydroxylated by prolyl hydroxylase 

domain containing proteins (PHDs), polybiquinated in a von Hippel-Lindau protein 

(pVHL) dependent way and constitutively degraded by the proteasome3-5. Hypoxia 

prevents activity of the prolyl hydroxlases and thereby inhibits HIF-1α degradation. 

We have shown previously that rapamycin, the inhibitor of mammalian target of 

rapamycin (mTOR) inhibits angiogenesis in vitro, and that mTOR complex 1 (mTORC1) 

and -complex 2 (mTORC2) are required for hypoxia-mediated proliferation of endothelial 

cells6,7. Active mTOR signaling has been shown to stabilize HIF-1α under hypoxia8,9. 

Moreover, mTOR-stabilized HIF-1α partially contributes to proliferation of mouse 

embryonic fibroblasts (MEFs) under hypoxia7. mTORC1 is highly rapamycin sensitive 

and is a key controler of cell growth and size by its capacity to control protein synthesis 

via S6K1/2 and 4E-BP110. The function of mTORC2 is less clear, but involves regulation 

of cell proliferation and phenotype modulation13,14. mTORC2 was also proposed to play 

an important role in the formation of the vasculature13,14, similarly as HIF-1α and VEGF5. 

In this study we investigated whether signaling through mTORC1, mTORC2, MEK1/2, 

Jun kinase and p38 are necessary to stabilize HIF-1α and whether the inhibition of these 

pathways affects proliferation of endothelial cells in response to hypoxia.  
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Results and Figures 

Hypoxia and growth factor stimulation results in nuclear accumulation of HIF-1α  

protein. 

To determine the effect of hypoxia and growth factor stimulation on HIF-1α, primary rat 

aortic endothelial cells (RAECs) were stimulated with or without PDGF-BB for 4.5 h 

under 21 % and 1 % O2 (normoxia and hypoxia) and analyzed for HIF-1α protein 

expression by immunofluorescence confocal microscopy (Fig 1A) and westernblot 

analysis with consecutive densitometric quantification (Fig 1B). HIF-1α was almost 

undetectable under normoxia, whereas stimulation with PDGF-BB and hypoxia and the 

combination of both led to HIF-1α stabilization and nuclear accumulation (Fig 1A). 

Stimulation by PDGF-BB under conditions of normoxia induced HIF-1α to 4.2 fold, and 

hypoxic stimulation alone to 5.2 fold compared to normoxic controls. Stimulation of 

RAEC by PDGF-BB under hypoxia boosted HIF-1α protein levesl to 11.9 fold compared 

to normoxia (Fig. 1B), suggesting a slight synergistic effect of growth factor stimulation 

and hypoxia.  

 

HIF-1α silencing reduces hypoxia-induced proliferation of RAECs. 

Angiogenesis depends on the coordination of several independent but temporally 

orchestrated processes, which includes endothelial cell proliferation as a crucial 

component4. We have shown previously that hypoxia increases proliferation in RAEC6. 

In order to investigate the role of HIF-1α in RAEC proliferation in response to hypoxia, 

HIF-1α protein was knocked down by siRNA silencing. HIF-1α protein was silenced to 

more than 90 % (Fig. 2A). Hypoxia increased proliferation of RAEC significantly 

compared to culturing under normoxia. Increased proliferation in response to hypoxia 

was significantly reduced with HIF-1α knock down (Fig. 2B). 

 

Nuclear HIF-1α accumulation and hypoxia-induced RAEC proliferation is sensitive 

to rapamycin-mediated mTOR inhibition.  

In PC-3 prostate cancer cells, rapamycin, the specific inhibitor of mTORC1, was shown 

to decrease HIF-1α stabilization8, MEK1/2, Jun kinase and p38 were also reported to 

contribute to the stability of HIF-1α3,15,16. We investigated whether mTOR, MEK1/2, Jun 

Kinase or p38 contribute to the stabilization of HIF-1α in response to hypoxia and PDGF-

BB stimulation in RAEC. Starved RAECs were treated with rapamycin (5 – 500 nM), 
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PD98059 (5 – 80 µM), JNK-Inhibitor-II (5 – 200 nM) and SB203580 (0.1 – 3 µM) prior to 

PDGF stimulation and incubation in normoxia and hypoxia for 4.5 h. Rapamycin 

significantly, albeit incompletely reduced nuclear HIF-1α protein levels induced by 

hypoxia and PDGF-BB stimulation to a similar degree at all rapamycin concentrations 

tested.  Inhibition of MEK1/2 by PD98059 reduced PDGF–BB-induced HIF-1α protein 

levels under normoxia only and did not affect HIF-1α stabilization under hypoxia. 

Inhibition of Jun Kinase with JNK-Inhibitor-II and inhibition of p38 with SB203580 had no 

effect on HIF-1α protein accumulation in any tested condition (Fig. 3A). 

To investigate whether HIF-1α-dependent, hypoxia-induced RAEC proliferation requires 

mTOR, MEK1/2, JunK or p38, we pretreated the starved cells with the inhibitors 

rapamycin, PD98059, SB203580 or JNK-inhibitor-II respectively, and incubated RAECs 

under normoxia and hypoxia for 28 h. As shown previously7 hypoxia induced a 

significant increase in proliferation of RAEC compared to normoxia. In the absence of 

growth factor stimulation, rapamycin reduced RAEC proliferation with increasing dose, 

and significantly at a concentration of 200 nM and higher (Fig 3B) under hypoxia only. 

The MEK1/2 inhibitor dose dependently and significantly lowered hypoxia-induced 

RAEC proliferation at a concentration of 20 µM, but also lowered proliferation under 

normoxia to a similar degree. JunK and p38 -inhibition did not affect RAEC proliferation 

(Fig 3B).  

Similar results were obtained when including PDGF-BB together with hypoxia to 

stimulate RAEC, which significantly increased proliferation when compared to normoxia 

plus PDGF-BB as shown earlier6. Under hypoxia, rapamycin significantly blunted RAEC 

proliferation already at a concentration of 20 nM to levels when stimulated with PDGF-

BB only. Inhibition of MEK1/2, JNK and p38 had no significant effect on proliferation of 

RAECs in response to PDGF-BB (Fig. 3B). 

Thus, rapamycin-mediated reduction of HIF-1α levels is in parallel to rapamycin- and 

HIF-1α knockdown-mediated reduction of RAEC proliferation in response to hypoxia 

and/or growth factors. MEK1/2 mediated RAEC proliferation and contribution to HIF-1α 

stabilization occurs only under conditions of normoxia with PDGF-BB stimulation. 
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Figure 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Hypoxia and growth factors induce nuclear accumulation of HIF-1α protein. A. Confocal 
fluorescence image of RAEC, immune stained for HIF-1α, nucleus stained with Hoechst. Cells 
were plated on cover slips, serum deprived, stimulated with or without PDGF-BB (10 ng/ml) and 
incubated for 4.5 h in 21%- or 1% O2. B. Densitometric quantification of nuclear HIF-1α protein 
levels detected by Western blot analysis. RAEC were serum starved, stimulated with or without 
PDGF-BB (10 ng/ml) and incubated in 21%- or 1% O2 for 4.5 h. 

A 
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Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
HIF-1α silencing reduces proliferation of RAEC. Serum starved RAEC were nucleofected with 
HIF-1α siRNA or control siRNA and incubated for 30h in 1%- or 21% O2. Proliferation was 
determined using WST-1 cell proliferation reagent.  
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Figure 3A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mTOR inhibition prevents nuclear accumulation of HIF-1α protein under hypoxia and 
normoxia whereas inhibiton of MEK 1/2 only prevents an accumulation under normoxia. 
Western blot analysis of nuclear HIF-1α protein. Serum deprived RAEC were treated with mTOR 
inhibitor (Rapamycin, 5 – 500 nM), MEK 1/2 inhibitor (PD98059, 5 – 80 µM), jun kinase inhibitor 
(JNK-I-2, 5 – 200 nM), p38 inhibitor (SB203580, 0.1 – 3 µM) and incubated for 4.5 h in 21%- or 
1% O2 in the presence or absence of PDGF-BB (10 ng/ml).  
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Figure 3B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
mTOR inhibition lowers proliferation of RAEC under hypoxia whereas MEK 1/2 inhibition 
reduces RAEC proliferation under normoxia. Serum starved RAEC were treated with inhibitors 
similar to the cells in Figure 2. Proliferation rates were determined using WST-1 cell proliferation 
reagent, after 30 h of incubation in 1%- or 21% O2,  
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Discussion 

In this study we have investigated the signaling pathways mTOR, MEK1/2, JNK and p38 

– pathways reported to respond to stress3,15,16 – for their contribution to HIF-1α 

stabilization and RAEC proliferation under hypoxia and growth factor (PDGF-BB) 

stimulation.  

We have confirmed, that hypoxia and PDGF-BB–stimulation induce nuclear 

accumulation of HIF-1α (reviewed in Ke and Costa, 20063)18,19. Greater than additive 

amounts of nuclear HIF-1α were observed when stimulating with PDGF-BB under 

hypoxia, suggesting a synergistic effect of hypoxia and PDGF-BB in HIF-1α stabilization.  

Inhibition of mTOR by rapamycin significantly reduced nuclear HIF-1α levels under 

hypoxia alone or when stimulating with PDGF-BB under hypoxia. In parallel, rapamycin 

specifically reduced hypoxia-induced proliferation in RAECs but did not affect 

proliferation under normoxia. Thus, HIF-1α stabilization under hypoxia is not only 

negatively regulated by PHD but also positively by mTOR. PDGF-BB induced HIF-1α 

stabilization under normoxia was rapamycin sensitive as well, suggesting that mTOR 

signalling is also essential for growth factor-induced HIF-1α stabilization under normoxia. 

Thus, mTOR signalling activated by growth factors or hypoxia is required for HIF-1α 

stabilization.  

In contrast MEK1/2 inhibition reduced HIF-1α levels when RAECs were stimulated with 

PDGF-BB under normoxia and did not affect HIF-1α stabilization in hypoxic conditions. 

MEK1/2 inhibition reduced proliferation of RAECs under normoxia and hypoxia to a 

similar extent. Thus, we suggest that MEK1/2 is critical for HIF-1α stabilization and is 

involved in regulating default proliferation of RAEC only by growth factor stimulation 

under normoxia. The pharmacologic inhibition of JNK- and p38-signaling neither affected 

HIF-1α stabilization nor proliferation of RAEC in response to hypoxia or growth factor 

stimulation. 

mTOR-signaling is required for hypoxic and PDGF-BB mediated proliferation of RAECs 

and HIF-1α stabilization. In agreement, knock down of HIF-1α in RAECs inhibited 

proliferation under hypoxia. This partial inhibition may be due to an incomplete knock 

down of HIF-1α. However, MEFs completely lacking the HIF-1α gene reduced 

proliferation under hypoxia also to a similar degree7, thus, not completely. We therefore 

speculate, that HIF-1α is a co-effector of mTOR-dependent, hypoxic proliferation of 

endothelial cells. 
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mTORC1 is rapamycin-sensitive, and rapamycin destabilizes HIF-1α under hypoxia. Is 

mTORC1 therefore the pivotal mTOR complex for hypoxia- or growth factor mediated 

HIF-1α stabilization? In endothelial cells, prolonged (~24 hr) treatment of rapamycin can 

also prevent formation of mTORC2. We have also shown that both mTORCs are 

required to promote proliferation of RAECs under hypoxia7. It remains therefore to be 

elucidated which of the two mTOR complexes is responsible for HIF-α accumulation. 

Multiple pathways for HIF-1α regulation under hypoxia could potentially integrate 

different regulatory signals for different conditions and ensure that HIF-1α is only up-

regulated if all criteria for e.g. cell growth were fulfilled. mTOR as an integrator of stress, 

energy, nutrient and growth factor signals and major controller of cell growth therefore 

absolutely copes with this concept. Interestingly, HIF-1α carries a potential 

phosphorylation site for mTOR8, thus further studies are required to determine whether 

hypoxia-activated mTOR could serve as a directly acting kinase for HIF-1α 

phosphorylation and stabilization. 

Thus, HIF-1α is a major and directly oxygen-sensing factor in determining the cellular 

response to hypoxia. A significant number of secondary pathways such as mTOR-

signaling may additionally modulate HIF-1α but also other cellular effectors and 

transcriptional responses.  

 



 
 

57 

MATERIALS & METHODS 

Cells & culture conditions 

Rat aortic endothelial cells (RAEC) were derived from adult male Sprague-Dawley rat 

(Charles River Laboratories, France) or WISTAR rats (RCC Ltd, Itingen) and 

characterized as described previously6. RAECs were cultured in DMEM (Oxoid AG, 

Basel, Switzerland) complemented with 10% fetal calf serum (FCS, Oxoid AG), 1% 

sodium pyruvate (Oxoid AG), 1% non-essential amino acids (Oxoid AG), 1% penicillin-

streptomycin (GIBCOTM, Invitrogen AG, Basel, Switzerland). At 70% confluence, cells 

were washed twice in PBS (Oxoid AG) and starved in serum-free DMEM for 30 h.  

 

Reagents, Antibodies and Plasmids 

Inhibitors of cell signaling used were: Rapamycin 5 mM stock, PD98059 10 mM stock, 

JNK-Inhibitor II 10 mM stock, SB203580 10 mM stock, all inhibitors were dissolved in 

DMSO (Calbiochem, Läufelfingen, Switzerland). PDGF-BB was from R&D systems 

Europe Ltd., Abingdon, UK. 

Following primary antibodies for western blotting were used: chicken polyclonal anti-HIF-

1α (kindly provided by M. Gassmann, Clinic for Small Animal Internal Medicine, 

University of Zürich, Switzerland). Secondary antibodies were HRP-conjugated anti 

chicken (Transduction Laboratories, San Diego, CA). Antibodies used for for immune 

fluorescence (confocal microscopy) were goat polyclonal IgG against HIF-1α (Santa 

Cruz, California, USA), anti-goat Cy2-conjugated IgG (LabForce AG, Nunningen, 

Switzerland). Nuclei were stained with TOTO-3 (Juro Supply GmbH, Lucerne 

Switzerland). 

 

Angiogenesis assay in vitro of endothelial spheroids 

Endothelial cell spheroids of defined cell number were generated as described 

elsewhere 20. The spheroid containing fibrin bilayer was overlaid with serum-free DMEM 

and stimulated according to experimental protocol for 24 h. Sprouts emerging from 

spheroids were analyzed and quantified as described elsewhere21,22. 
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Cell proliferation assay 

To determine proliferation rate, 5500 cells/well (if transfected 11000 cells/well) were 

seeded into 96-well plates, after 24 h the normal culture medium was replaced with 

serum-free DMEM for 30 h. In all experiments using inhibitors and PDGF-BB, inhibitors 

were added 30 min, PDGF-BB 5 min before incubation for 28 h at 21% O2 and at 1% O2. 

Each condition was tested in octuplicates. Cell numbers were assessed using Cell 

Proliferation Reagent WST-1 (Roche Molecular Biochemicals, Rotkreuz, Switzerland) 

according to the manufacturer’s specifications. 

 

Immunoblotting and transfections 

Cells were seeded in a confluency of ~70 % and after 24 h starved in serum free  DMEM 

for 30 h. Inhibitors were added 30 min, growthfactors 5 min prior to incubation at 1% O2. 

Cells were lysed with RIPA lysis buffer. To obtain nuclear extracts for HIF-1α protein 

alnalysis cells were lysed with high and low -salt buffer as described elsewhere23.  15 µg, 

for HIF-1α blots 20 µg –protein respectively were subjected to SDS-gel electrophoresis 

and blotted on nitrocellulose membrane (Schleicher & Schuell GmbH, Dassel, 

Germany). 5 % skim milk /TBST was used for blocking. Antibodies were diluted in 5 % 

skim milk/TBST or according to manufacturers protocol. Protein bands appearing on X-

ray films were quantified by Image J software (Wayne Rasband, NIH, USA). 

 

Immunofluorescence microscopy 

RAECs were seeded on cover slips at a density of 4.0 x 104/well in 24 well tissue culture 

plates. At 70% confluence, cells were starved in serum-free DMEM for 30 h. After 4.5 h 

of culturing in different conditions (± 10 ng/ml PDGF-BB under 21% O2 or 1% O2) cells 

were rinsed and fixed with 4% Paraformaldehyde for 15 min at RT. Samples were 

blocked with goat serum (Fluka Chemie GmbH, Buchs, Switzerland) in PBS with 0.25% 

BSA. Fixed cells were probed with primary goat polyclonal IgG against HIF-1α and 

secondary anti-goat Cy2-conjugated. TOTO-3 was used for nuclear DNA staining. Cover 

slips with cells were embedded on microscope slides with FluorSave reagent 

(Calbiochem, Läufelfingen, Switzerland) and analyzed by confocal laser scanning 

microscopy (LSM 510, Carl Zeiss AG, Feldbach, Switzerland). 
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Statistical analysis 

Data (mean ± SD) were analyzed for normal distribution (one-way ANOVA), followed by 

Bonferroni posttest with multiple or pair wise comparison using GraphPad Prism 4.0a 

software (GraphPad Software Inc., San Diego, USA). 
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Summary 

The microcirculation largely determines peripheral vascular resistance and substantially 

contributes to arterial hypertension. In both human arterial hypertension and animal 

models of hypertension, genetic, fetal and other mechanisms associated with 

hypertension can reduce the formation and number of microvessels (i.e. parallel-

connected arterioles and capillaries). Impaired formation of microvessels (impaired 

angiogenesis) and microvascular rarefaction can, on the other hand, contribute to 

increased peripheral resistance and raise blood pressure. Interestingly, drugs targeting 

the renin-angiotensin-aldosterone system (i.e. angiotensin-converting enzyme inhibitors 

and AT1 receptor blockers) induce angiogenesis in vivo in the majority of animal studies. 

Furthermore, recent clinical studies demonstrate that long-term antihypertensive 

treatment increases capillary density in the skin of hypertensive patients without 

diabetes. These effects of angiotensin-converting enzyme inhibitors and AT1 receptor 

blockers can be mediated by activation of bradykinin pathways, resulting in the 

generation of vascular endothelial growth factor, nitric oxide and, consequently, 

angiogenesis. In conclusion, specific antihypertensive drugs can induce angiogenesis 

and reduce or even reverse microvascular rarefaction. This might improve target organ 

damage in, and slow the development of, hypertension.  

 

Introduction 

The microvasculature supplies nutrients and oxygen to tissues, removes metabolites 

and carbon dioxide, and maintains an adequate hydrostatic pressure in tissues. The 

microcirculation is extremely important in determining blood pressure via peripheral 

resistance, vasoconstriction and vasodilatation. Hydrostatic pressure drops largely in this 

microcirculation, sinking gradually from small arteries to capillaries without a specific, 

single site of resistance control. Capillaries further contribute to resistance because of 

their narrow caliber and their contractility. The number of capillaries, and therefore their 

combined luminal area, also affects peripheral resistance. Stressors such as hypoxia 

and inflammation can induce microvessels to dynamically form and, after reversal of the 

stressors, to functionally or anatomically disappear. Similarly, factors associated with 

vasodilatation and vasoconstriction can affect the formation of microvessels (i.e. 

angiogenesis). Most forms of human and experimental arterial hypertension are 

associated with decreased numbers or densities of microvessels. This microvascular 

rarefaction can further increase peripheral resistance, raise blood pressure and therefore 
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aggravate hypertension and hypertension-induced target organ damage (Figure 1).  

This review aims to explore the role of angiogenesis and its mechanisms in relation to 

arterial hypertension. It also describes the effects of antihypertensive drugs on 

angiogenesis and microvascular rarefaction in hypertension. 

Figure 1. Microvascular rarefaction contributes to increased peripheral resistance and high blood 
pressure. In most studies of human hypertensives and in animal studies of hypertension, there 
are less microvessels in hypertensives versus normotensives. Microvascular rarefaction can be 
caused by either predisposition or an impaired angiogenic reponse. The reduction in total luminal 
microvascular diameter results in increased peripheral resistance and could contribute to 
elevated blood pressure in essential hypertension. 
 

 

Microvascular rarefaction in hypertension 

Several theories explain microvascular rarefaction in hypertension. Rarefaction can be 

either primary (i.e. it antedates the onset of hypertension) or secondary (i.e. it occurs as 

a consequence of prolonged elevation of blood pressure). Secondary rarefaction might 

be caused by functional shut-off or destruction of existing capillaries Primary rarefaction, 

by contrast, might result from impaired angiogenesis and microvascular network 

formation1. In patients with essential hypertension, anatomic rather than functional 

rarefaction reduces the density of capillaries in the skin of the dorsum of the fingers1,2. 

Increased blood pressure can also lead to microvascular rarefaction (for review, see4); 

however, resistance vessel and microvascular remodeling can be totally5,6 or partially7 

blood pressure independent. Patients with borderline essential hypertension have skin 

capillary densities that are as equally low as, or even lower than, patients with 

established hypertension, and capillary density does not correlate with blood pressure8. 

Moreover, impaired microvascular vasodilatation and capillary rarefaction are associated 
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with a familial predisposition to essential hypertension9. Offspring of individuals with high 

blood pressure have fewer capillaries on the dorsum of their fingers before the onset of 

definitive hypertension10. Thus, capillary rarefaction might antedate, rather than follow, 

sustained hypertension10. Therefore, impaired angiogenesis during development or early 

in life might predispose to high blood pressure9. In addition, deficient embryonic vascular 

development, low birth weight and impaired postembryonic vascular growth could 

impede the formation of microvascular networks11. 

 
Mechanisms of formation and upkeep of new microvessels 

During fetal growth, the vascular bed expands by sprouting and matures into a network 

of stable vessels. When tissues grow beyond the limit of oxygen diffusion, hypoxia can 

lead to the formation of new vessels in every mature tissue, triggering vessel growth by 

signaling through hypoxia-inducible transcription factors12. These factors upregulate 

several angiogenic genes, such as the gene encoding vascular endothelial growth factor 

(VEGF); VEGF stimulates physiological and pathological angiogenesis12. A hypoxic 

microenvironment also controls many other factors and modulates signaling pathways to 

promote angiogenesis12-14. Endogenous VEGF upholds vascular homeostasis, and 

insufficient VEGF levels initiate apoptotic pathways in mouse skeletal muscle15. 

 

Effects of antihypertensive drugs in human clinical studies 

Clinical studies in hypertensive patients have focused on lowering blood pressure, 

vasodilation and vasoconstriction, vascular rheology, vascular stiffness and reversal of 

target organ damage in the heart, kidney, brain and arteries. Only very few studies have 

explored the effects of antihypertensive drugs on the microvasculature. Interestingly, 

long-term and effective antihypertensive treatment of non-diabetic hypertensive patients 

increased capillary density compared with non-treated patients in a recent study16. In an 

earlier study in 70 hypertensives, losartan reduced vascular hypertrophy and rarefaction 

after three years of randomized, blinded treatment when compared with atenolol17. 

However, further clinical prospective studies are needed to explore the anatomical 

effects of anti-hypertensive treatment on the microvasculature. 
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Effects of antihypertensive drugs in animals or in vitro 

Angiotensin-converting enzyme inhibitors 

Angiotensin-converting enzyme inhibitors (ACE-Is) lower blood pressure and reduce the 

media-to-lumen ratio of big arteries by blocking the conversion of angiotensin I to the 

vasoconstrictive and trophic decapeptide angiotensin II, and by blocking the breakdown 

of the vasodilator peptide bradykinin. In addition, ACE-Is substantially change 

microvessel structure and density18-20. In some studies, ACE-Is blocked microvessel 

formation: captopril reduced aortic and microvascular growth in hypertensive and 

normotensive rats21 and the capillary-fiber ratio in ischemic hind limbs of rats22. The 

ACE-I benazepril reduced both arteriolar density and small venule density in dorsal 

microcirculatory chambers of spontaneously hypertensive rats (SHRs)23. In these 

studies, suppression of the renin-angiotensin system promoted microvascular 

rarefaction, suggesting that angiotensin II might powerfully induce angiogenesis21,24. 

Conversely, ACE-Is significantly have been shown to increase myocardial capillary 

density in several studies. This effect correlates with the decrease in ventricular 

hypertrophy seen after treatment of SHRs and Wistar-Kyoto rats with captopril25. 

Moreover, ACE-Is increased myocardial capillary density in SHRs6, in in vivo models of 

hind limb ischemia of the rabbit26, in stroke-prone SHRs27, and in different rat models of 

obesity28. Furthermore, several studies designed to investigate the induction of 

angiogenesis in ischemic hind limbs of mice29,30 and rabbits26 suggest a pro-angiogenic 

role for ACE-Is. 

However, although the majority of studies supports a pro-angiogenic role for ACE-Is, it is 

not entirely clear why the results from some studies, mentioned earlier, contradict this 

viewpoint. It is possible that captopril, with its reactive sulfhydryl group, exerts additional 

anti-angiogenic effects in studies that depend upon inhibition of metalloproteinases 

rather than ACE-Is31. Most other ACE-Is, which differ from captopril chemically, might 

not possess these specific anti-angiogenic properties. Furthermore, ACE-Is might exert 

distinct effects depending upon the specific tissue and model investigated (see below). 

Inhibition of the breakdown of bradykinin, rather than angiotensin-II-mediated effects, 

most likely accounts for the pro-angiogenic effects of ACE-Is32. Knockout of the 

bradykinin B2 receptor blunted ACE-I-induced vascularization of mouse ischemic legs29. 

In a model of myocardial infarction-induced heart failure, icatibant, an antagonist of the 

B2 receptor, prevented the increase in heart vessel density that had been induced by 

both high and low doses of an ACE-I6,33. Interestingly, icatibant itself did not show any 
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effect on angiogenesis6,33. It is possible that kinin levels are too low to affect vessel 

density without ACE-Is, or that blockade of the renin-angiotensin system is necessary for 

kinins to affect vessel density33. Bradykinin per se also required the B2 receptor pathway, 

as shown both by our own studies in an in vitro model of angiogenesis in the heart and 

by the use of corresponding knockout animals (Sanchez de Miguel L et al., abstract in 

Microcirculation 2006, 13:145,). Thus, ACE inhibition leads to angiogenesis via the 

bradykinin B2 receptor pathway (Figure 2). 

Figure 2. Angiotensin and bradykinin interact to induce angiogenesis. Bradykinin (BK), a potent 
vasodilator involved in regulation of blood pressure, induces angiogenesis. BK upregulates 
angiogenic molecules such as basic fibroblast growth factor (bFGF), via the BK B1 receptor70,71, 
or VEGF and NO, via the BK B2 receptor72. The BK B2 receptor can also activate the VEGF 
receptor on endothelial cells73. ACE inhibition results in BK accumulation and promotion of 
neovascularization26,29,30,35. Moreover, angiotensin II activates the AT2 receptor during AT1 
receptor blockade, thereby upregulating BK and contributing to an angiogenic response (Munk et 
al., unpublished)74,75. ATR, angiotensin receptor. 
 

The pro-angiogenic effect of bradykinin on vessel density might also require nitric oxide 

(NO) and VEGF and/or prostaglandins34. Myocardial capillary rarefaction in obese rats 

was accompanied by decreased expression of VEGF and endothelial NO synthase35. 

Similarly, increased microvascular density in ischemic rat hind limbs after treatment with 

ACE-Is was associated with upregulation of endothelial NO synthase29. Decreased NO 

bioavailability also contributed to microvessel rarefaction in skeletal muscle of obese 

Zucker rats, a model of the metabolic syndrome36. In a rat model of secondary 

hypertension with inhibition of NO biosynthesis, the development of vascular connective 

tissue was substantially reduced; however, this effect was not seen in a different model 

with a NO-independent mechanism of secondary hypertension37. 
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Angiotensin II receptor blockers 

Angiotensin II type 1 receptor blockers (ARBs) block the effects of angiotensin II at the 

AT1 receptor and thus decrease blood pressure and many of the other damaging trophic 

effects of angiotensin II on target organs. Several reports have demonstrated that ARBs 

increase capillary density38-40. When ARBs block AT1 receptors, angiotensin II can still 

exert effects via AT2 receptors. Plasma renin and angiotensin II levels also increase 

when the AT1 receptor is blocked41; therefore, the effects of angiotensin II on the AT2 

receptor might include the release of kinins and NO42 — molecules that mediate 

angiogenesis. 

Both the AT1 and the AT2 receptor subtypes have been implicated in angiogenesis; in a 

model of renal peritubular capillary rarefaction in Sprague-Dawley rats, the ARB losartan 

reversed rarefaction via induction of VEGF expression, and the AT2 blocker PD123319 

increased capillary density via upregulation of the VEGF receptor, as well as 

angiopoietin and its receptor Tie-138. The ARB losartan completely attenuated the 

decrease in rat coronary capillary density seen during angiotensin-II-induced 

hypertrophy39. By contrast, the ARB valsartan had no effect on the microcirculation of 

the cutaneous maximus muscle of young SHRs23. 

 

Diuretics 

The few studies performed with diuretics do not allow us to draw a conclusion on their 

effects on the microcirculation. A randomized clinical trial in 40 hypertensive patients 

showed that hydrochlorothiazide did not affect indices of endothelial damage/dysfunction 

and angiogenesis43. In vitro, furosemide, a loop diuretic, attenuated expression of 

angiogenesis-related genes in the ischemic rat kidney44. Spironolactone, a potassium-

sparing diuretic that antagonizes the mineralocorticoid aldosterone, inhibited proliferation 

of endothelial cells45 and basic fibroblast growth factor-induced angiogenesis in the 

rabbit corneal assay46. 

 

α- and β-adrenergic receptor blockers 

Reports on the effects of α- and β-adrenergic receptor blockers on microvascular 

rarefaction are inconclusive. Nebivolol, a β-blocker that also induces release of NO, 

reduced proliferation and caused apoptosis of aortic and coronary endothelial cells47. 

Similarly, nebivolol (but not metoprolol) inhibited endothelial sprout formation of the heart 

in vitro (Petrimpol, unpublished). 
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The α1-adrenergic receptor doxazosin inhibited human vascular endothelial cell 

adhesion, migration and invasion48, whereas terazosin inhibited the proliferation and 

tube formation of endothelial cells49. However, the α1-adrenergic receptor blocker 

prazosin increased total vascular area and capillary density both in the rabbit ear 

chamber model50 and in a rat hindlimb model of ischemia51. 

 

Calcium antagonists 

Reports on the effects of calcium antagonists on microvascular rarefaction are again 

inconclusive. Nifedipine and amlodipine raised VEGF levels and thereby induced 

capillary tube formation of human coronary artery endothelial cells in vitro52 and 

increased total capillary density in the dilated cardiomyopathic hamster heart53. 

Mibefradil and the chloride channel blocker NPPB [5-nitro 2-(3-phenylpropylamino) 

benzoate] inhibited tube formation of rat microvascular endothelial cells54. 

 

Angiogenesis and hypertension in human clinical studies 

Increased VEGF levels during hypertension 

In early hypertension, myocardial microvascular remodeling is accompanied by 

increased oxidative stress, inflammation and VEGF expression55,56. Plasma levels of 

VEGF are increased in hypertensive patients when compared with normotensives (for 

review, see57). Raised VEGF levels would imply that angiogenesis is stimulated in these 

hypertensive patients. Additionally, these findings might question whether capillary 

rarefaction is associated with hypertension58. Alternatively, functional rarefaction (i.e. 

vasoconstriction) and anatomical microvascular rarefaction might lead to an increase in 

shear stress of microvessels and the subsequent activation of angiogenic pathways (for 

review, see59). Furthermore, hypertensive subjects might not respond adequately to 

angiogenic growth factors, displaying defects in VEGF-associated signaling 

cascades60,61 and endothelial dysfunction of newly formed microvessels55,56. Moreover, 

in a mouse ear model of angiogenesis, a defined dose of VEGF in the presence of 

platelet-derived growth factor-B dimer (PDGF-BB) induced stable, non-leaky, pericyte-

covered normal capillaries. Conversely, the same does of VEGF in the absence of 

PDGF-BB induced aberrant vascular structures that developed into hemangiomas62. 

Thus, increased plasma VEGF levels, induced by endothelial dysfunction, shear stress 

or local hypoxia, might not necessarily lead to a denser or functional parallel-connected 

capillary network. 
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ACE inhibition and tumor angiogenesis 

ACE-Is and their associated potential pro-angiogenic effects have raised concerns about 

a possible increased risk of cancer. Theoretically, induction of angiogenesis by ACE-Is 

to reverse microvascular vascular rarefaction in hypertension might stimulate growth of 

dormant non-vascularized tumors63,64. Reassuringly, neither data in animal tumor models 

in vivo31,65,66 nor a retrospective cohort study based on the records of 5207 patients67, 

nor post-marketing surveillance, suggests tumorigenicity for ACE-Is or other 

antihypertensive drugs. Potentially, the local microenvironment could influence the final 

biological response; however, distinct effects of ACE-Is on reparative angiogenesis in 

the heart versus tumor angiogenesis have yet to be fully elucidated. 

 

Anti-VEGF anti-angiogenic tumor therapy and hypertension 

Fascinatingly, new anti-angiogenic therapies to treat cancer using an anti-VEGF 

antibody (bevacizumab; Avastin®) result in hypertension in a significant proportion of 

patients68,69, possibly resulting from the blockage of vasodilation induced by VEGF. 

Hypothetically, use of anti-VEGF antibodies might also reduce microvascular networks in 

hypertension. However, this still needs to be investigated. 

 

Conclusions 

Recent clinical studies have shown that long-term antihypertensive treatment can 

prevent microvascular rarefaction in hypertensive patients. ACE inhibition increases 

microvascular density in many animal models of hypertension; this effect is mostly 

mediated by activation of bradykinin pathways, resulting in stimulation of VEGF 

formation and increased NO bioavailability. In animal models of hypertension and tissue 

ischemia, these molecules act locally to enable the formation of stabilized and perfused 

microvessels. 

It will be important to better understand the mechanisms of microvascular rarefaction 

and, generally, to prospectively investigate the impact of antihypertensive therapy on 

microvascular rarefaction in clinical studies. Drugs with a potent anti-remodeling effect or 

the potential to induce new microvessels might be more desirable if structural rarefaction 

precedes the onset of hypertension or is found in hypertension-induced target organ 

damage. By preventing microvascular rarefaction, hypertension and/or hypertension-

induced target organ damage might be reversed. Further studies on the genetics of 
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impaired angiogenesis during development should add to our understanding of the 

predisposition to hypertension. 
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Abstract  

Angiotensin II is a vasoactive peptide that may affect vascularization of the ischemic 

heart via angiogenesis. In this study we aimed at studying the mechanisms underlying 

the angiogenic effects of AngII under hypoxia in the mouse heart in vitro. 

Endothelial sprout formation from pieces of mouse hearts was assessed under normoxia 

(21% O2) and hypoxia (1% O2) during a 7-day period of in vitro culture. Only under 

hypoxia, angiotensin II dose-dependently induced endothelial sprout formation, peaking 

at 10-7 mol/L of angiotensin II. AT1 receptor blockade by losartan did not affect 

angiotensin II-induced sprouting in wild-type mice. Conversely, the AT2 receptor 

antagonist PD 123319 blocked this response. In hearts from AT1
-/- mice, angiotensin II-

elicited sprouting was preserved but blocked again by AT2 receptor antagonism. In 

contrast, no angiotensin II-induced sprouting was found in preparations from hearts of 

AT2
-/- mice. Angiotensin II-mediated angiogenesis was also abolished by a specific 

inhibitor of the B2 kinin receptor in both wild type and AT1
-/- mice. Furthermore, 

angiotensin II failed to induce endothelial sprout formation in hearts from B2-/- mice. 

Finally, nitric oxide inhibition completely blunted sprouting in hearts from wild type mice, 

while nitric oxide-donors could restore sprouting in AT2
-/- and B2-/- hearts. This in vitro 

study suggests the obligatory role of hypoxia in the angiogenic effect of angiotensin II in 

the mouse heart via the AT2 receptor through a mechanism that involves bradykinin, its 

B2 receptor and nitric oxide as a downstream effector.  

 

Introduction 

Ischemic heart disease and left ventricular hypertrophy are characterized by impaired 

cardiac function caused, amongst others, by inadequate blood supply to the 

myocardium. In order to relieve this condition, blood flow to the myocardium needs to be 

restored by remodeling of pre-existing unused collateral blood vessels (arteriogenesis) 

and by the growth of new microvessels (angiogenesis). This process may also prevent 

the death and promote regeneration of damaged myocardial tissue.  

Angiogenic stimuli are generated by hypoxia through activation of endothelial cell 

signalling1 and gene transcription of key angiogenic molecules such as Vascular 

Endothelial Growth Factor (VEGF)2. In mice, activation of pre-existing collateral 

vascularization that restores blood flow to the acutely ischemic heart was shown to be 

induced by Angiotensin II (Ang II)3, a key regulator of blood pressure and the main 

effector of the renin angiotensin aldosterone system (RAAS)4. During ischemia or 
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cancer, Ang II was shown to induce angiogenesis5. Two major subtypes of Ang II 

receptors are expressed in the myocardium6, AT1 and AT2 receptors7,8. Most of the Ang 

II cardiovascular effects, e.g. vasoconstriction, are attributed to AT1
9. AT1 is an 

ubiquitous receptor which presents two subtypes in rodents of a high homology (AT1a 

and AT1b)10. On the other hand, AT2 receptor is highly expressed early in development 

and at lower levels in the adult9. Interestingly, AT2 receptor is upregulated in response to 

ischemia and inflammation suggesting a potential role in myocardial angiogenesis11. 

Previous studies have shown that the AT2 receptor may interact with the bradykinin 

receptor, the B2 kinin receptor (B2) during signalling12. 

In the present study we have investigated the mechanism of angiogenesis in response 

to Ang II in an in vitro model of sprout formation in the mouse heart under conditions of 

normoxia (21% O2) and severe hypoxia (1% O2) by dissecting the role of AT receptor 

subtypes and identifying the downstream effectors. 

 

Results and Figures 

Ang II induces vascular sprouting of the adult mouse heart under hypoxia.  

We analyzed the effect of Ang II in an in vitro model of angiogenesis of the heart14 both 

under normoxia (21% O2) and hypoxia (1% O2). Under normoxia neither Ang II, nor the 

angiogenic growth factor VEGF16 that was used as positive control elicited an angiogenic 

response (Figure 1A and 1B) in the mouse heart. However, under hypoxia Ang II, 

bradykinin and VEGF elicited a significant angiogenic response (Figure 1A and 1B) of a 

similar magnitude (2.2-, 1.9- and 2.4-fold increase respectively, compared to negative 

control p<0.05). Staining with fluorescently-labelled antibodies (Figure 1C) revealed that 

Ang II induced sprouts typically consist of endothelial cells aligned with smooth muscle 

cells/pericytes.  

Since hypoxia was confirmed to be a prerequisite for in vitro angiogenesis of the adult 

mouse heart (see also14) all following experiments were performed in hypoxia.  

 

Ang II induces dose-dependent sprouting through the AT2 receptor. 

Stimulation of heart explants with a wide concentrations range of Ang II (10-10mol/L to 10-

6mol/L) showed that endothelial sprouting induced by Ang II was dose dependent over at 

least a 1000-fold range of concentrations, and was maximal at 10-7mol/L (2.2 ± 0.3, n=5, 

p<0.05) (Figure 2).  
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Next, we evaluated the contribution of AT1 and AT2 receptors in Ang II-mediated sprout 

formation. The selective AT2 agonist CGP-42112 induced an angiogenic response 

similar to that observed in Ang II-stimulated hearts (2.0 fold increase with 10-7mol/L 

CGP-42112, p<0.05 versus control) (Figure 2). AT1 and AT2 receptor inhibitors 

corroborated these results (Figure 3): Losartan, a specific AT1 inhibitor, did not affect 

Ang II-induced sprout formation; PD 123319, a selective AT2 antagonist, significantly 

reduced Ang II-induced sprout formation to control levels (p<0.05). The combination of 

both antagonists elicited a response very similar to that seen with PD 123319 alone 

(p<0.05). CGP-42112-induced sprout formation was inhibited by PD123319 but not by 

losartan (data not shown). Taken together, these results suggest that the AT2 receptor 

subtype mediates the angiogenic effect induced by Ang II in the mouse heart under 

hypoxia.  

 

Ang II does not induce sprouting in AT2
-/- animals. 

To confirm these latter findings we examined hearts from AT1a-/- and AT2
-/- mice. Ang II 

could not induce sprouting above control levels in heart explants from adult AT2
-/- mice 

under hypoxia (Figure 4), either alone or after blocking the AT1 receptor with losartan. 

However, VEGF induced a significant level of sprout formation compared to controls (2.6 

fold increase, p<0.05) suggesting that VEGF-induced angiogenesis in vitro is 

independent of AT2 signalling. On the other hand, Ang II induced sprout formation in 

heart explants from AT1a-/- mice as efficiently as in wild type hearts (1.9 fold increase, 

p<0.05) (Figure 4). In these mice, Ang II also elicited sprouting in the presence of 

losartan, which inhibits both AT1a and AT1b receptors, excluding the possibility that the 

observed angiogenic effect could be mediated by the AT1b receptor still present in the 

AT1a-/- mice. On the other hand, PD 123319 completely inhibited sprout formation 

(p<0.05) in the AT1
-/- heart explants. These results clearly demonstrate the exclusive role 

of the AT2 receptor in Ang II-mediated angiogenesis in adult hypoxic mouse heart 

explants.  

 

AT1 and AT2 receptor expression under hypoxia.  

To exclude the possibility that AT2-dependent Ang II-induced sprout formation could be 

due to the down-regulation of AT1 receptor in hypoxia, we determined AT1 and AT2 

receptor protein and mRNA expression in wild type mouse heart explants. As shown in 
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figure 5, both AT1 and AT2 were expressed confirming that both pathways are available 

for signalling. 

 

Ang II induces sprouting via an AT2 –B2 receptor pathway. 

To analyze the role of the B2 receptor, we stimulated hypoxic mouse heart explants with 

Ang II in both wild type and AT1
-/- animals in the presence of HOE 140, a selective B2 

antagonist (Figure 6A). We found an Ang II-induced angiogenic response (wt: 3.5 fold 

increase, AT1
-/-: 3.3 fold increase versus control, p<0.05) that was completely abolished 

by HOE 140 (p<0.05). Bradykinin per se (10-7 mol/L) induced sprout formation both in 

wild type and AT2
-/- mouse heart (wt: 1.44 fold increase, AT2

-/-: 1.5 fold increase versus 

control, p<0.001). To confirm that Ang II-induced angiogenesis requires the B2 receptor, 

heart explants from B2-/- mice were assessed. Neither Ang II nor VEGF induced 

significant sprouting in B2-/- mice (Figure 6B). To clarify whether accumulation of 

bradykinin was the intermediate step in Ang II-induced sprouting, we treated the heart 

explants with a specific kininogenase inhibitor, PKSI-527 (10-5 mol/L) that blocks the 

conversion of kinins into bradykinin. PKSI-527 completely inhibited Ang II-induced 

angiogenesis in wild type mouse heart (Figure 6C). Therefore, we conclude that Ang II is 

angiogenic in the mouse heart under hypoxia via a pathway involving both the AT2 and 

the B2 receptors linked by activation of bradykinin production. 

 

Ang II-induced sprouting requires NO release. 

Since stimulation of the AT2 receptor is associated with increased generation of 

bradykinin17, NO and cyclic GMP (cGMP)18 , we tested whether the angiogenic effects of 

Ang II may also require NO. As expected, Ang II (10-7mol/L) and bradykinin (10-7mol/L) 

significantly increased NO production as measured by nitrite accumulation in the 

medium after 7 days of incubation (in 10-9xmol/L, control: 90±5; bradykinin: 121±5; Ang 

II: 114±15, n=3, p<0.05, ANOVA). We then inhibited NO generation using NO synthase 

inhibitors, i.e., SMT, L-NIO, L-NAME and 1400W. Ang II- and CGP-42112-induced 

angiogenesis were completely blunted by NO inhibition (Figure 7A). Heart explants 

derived from wild type, AT2
-/- and BK2-/- mice were then incubated with two different NO 

donors, GSNO (S-nitrosoglutathione,10-5 mol/L) and PAPA NONOate (NONO-ate 10-

5mol/L) (figure 7B). Both NO donors induced angiogenesis (GSNO; wt: 1.7 fold increase, 

AT2
-/- 1.7 fold increase, BK2-/- 1.6 fold increase versus control, p<0.05). These results 

demonstrate that NO is a key mediator of angiogenesis in the hypoxic mouse heart and 
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is a required downstream effector of Ang II-induced sprout formation. 
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Figure 1 

 
Ang II induces endothelial sprouts in a heart angiogenesis assay in vitro.  
A. Mouse hearts stimulated with 10-7 mol/L Ang II, 10-7 mol/L bradykinin, 10 ng/mL VEGF164 or 
diluent control after 7 days in culture under 21% O2 (normoxia) or 1% O2 (hypoxia). B. Ang II (10-7 
mol/L), bradykinin (10-7 mol/L) or VEGF164 (10 ng/mL) increased sprouting only under hypoxia. A 
standardized scale indicates the degree of cellular outgrowth (angiogenic index). Data points 
represent the mean of 5 independent experiments ± SEM. C. Fixed Ang II-induced sprout stained 
for endothelial cells by fluorescein conjugated GSL-IB4 (green), for pericytes or smooth muscle 
cells by Cy3 conjugated αSMA (red), and for nuclei by Hoechst-dye (blue).  
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Figure 2 

 

 

 

 

 

 

 

 

 
 
 
Ang II induces dose-dependent sprouting in vitro in adult mouse hearts in hypoxia. Pieces 
of mouse heart were stimulated with Ang II from 10-10 to 10-6 mol/L (left) or AT2 agonist CGP-
42112 from 10-9 to 10-6 mol/L (right) and incubated under hypoxia for 7 days. Data points 
represent the mean of 5 independent experiments ± SEM.*p<0.05 vs negative control. 
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Figure 3 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
AT1 is not required for Ang II induced sprouting. Pieces of mouse heart were incubated with 
Ang II (10-7 mol/L) alone or in combination with Losartan (10-6 mol/L) and/or PD 123319 (10-

6mol/L) under hypoxia for 7 days. The AT2 inhibitor (PD123319) but not the AT1 blocker Losartan 
significantly decreases Ang II-mediated sprout formation. Data points represent the mean of 5 
independent experiments ± SEM. *p<0.05 vs negative control. 
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Figure 4 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Ang II-induced angiogenesis is impaired in hearts from AT2

-/- but not from AT1
-/- mouse. 

Pieces of mouse heart from AT2
-/- (left side of the figure) and AT1

-/- mice (right side of the figure) 
were stimulated with Ang II (10-7 mol/L) alone or in combination with Losartan (10-6 mol/L) or PD 
123319 (10-6 mol/L) and incubated under hypoxia for 7 days. VEGF164 (10 ng/mL) was used as a 
positive control. Data points represent the mean of 5 independent experiments ± SEM. *p<0.05 
vs VEGF (left side) and *p<0.05 vs negative control (right side). 
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Figure 5 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
AT1 and AT2 mRNA and protein expression of the mouse heart in vitro under hypoxia. 
Pieces of heart from wild type mice were incubated under 21%O2 or 1%O2 during 24 hours, lysed 
and protein and mRNA extracted. Westernblotting and RT-PCR analysis show that both the AT1 
and the AT2 receptor are expressed under normoxia and hypoxia. 



 
 

86 

Figure 6 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Ang II-induced sprouting in wild type and AT1 KO mice requires the B2 receptor. A. Pieces 
of heart from wild type or AT1

-/- mice stimulated with Ang II (10-7 mol/L) alone or in combination 
with the specific B2 receptor antagonist, HOE 140 (10-7 mol/L) and incubated under hypoxia 
during 7 days. HOE140 significantly (*p<0.05 vs negative control) decreased Ang II-induced 
sprout formation in wild type- and AT1

-/- mice compared to Ang II-treated heart pieces without the 
inhibitor. B. Pieces of hearts from B2-/- mice stimulated with Ang II (10-7 mol/L ) alone or in 
combination with PD123319 (10-6 mol/L) were incubated in culture medium containing 5% FCS 
under hypoxia for 7 days. VEGF164 (10 ng/mL) was used as a positive control. *p=ns. Data points 
represent the mean of 5 independent experiments ± SEM. C. Pieces of heart from wild type mice 
were stimulated with Ang II (10-7 mol/L) alone or in combination with kininogenase specific 
inhibitor PKSI-527 (10-5 mol/L) were incubated in culture medium containing 5% FCS under 
hypoxia for 7 days. VEGF164 (10 ng/mL) was used as a positive control. Data points represent the 
mean of 3 independent experiments ± SEM. *p<0.05 vs control. 
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Figure 7 
 

 
 
 
NO mediates Ang II-induced sprouting under hypoxia. A. Pieces of heart from wild type mice 
stimulated with Ang II (10-7 mol/L) (left side) or with the AT2 agonist (CGP-42112, 10-7 mol/L) 
(right side) alone or in the presence of different NO synthase inhibitors (10-7 mol/L) and incubated 
in culture medium containing 5% FCS under hypoxia for 7 days. *p<0.05 vs control. Data points 
represent the mean of 5 independent experiments ± SEM. B. Pieces of heart from wild type, AT2

-/- 
and B2-/- mice were stimulated with two different NO donors: GSNO (10-5 mol/L) and PAPA 
NONOate (10-5 mol/L) and incubated in culture medium containing 5% FCS under hypoxia for 7 
days. *p<0.05 vs control. Data points represent the mean of 5 independent experiments ± SEM. 
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Discussion 

Here we show that Ang II induces angiogenesis in the adult mouse heart specifically 

under hypoxia, signalling through the AT2 but not the AT1 receptor. The mechanism 

requires generation of bradykinin with activation of the B2 receptor, and leads to NO 

biosynthesis as the downstream effector.  

The RAAS is an important system in regulating vascular homeostasis. However, the 

precise role of the RAAS and the AT1/AT2 receptor pathway in angiogenesis is unclear. 

Clinical data has shown that blocking the AT1 receptor preserves cardiac function after 

myocardial infarction19. Our results showing that Ang II-induced angiogenesis in the 

mouse heart under hypoxia is mediated exclusively by the AT2 receptor may explain 

some beneficial effects of AT1 blockade treatment in the heart. In fact, AT1 blockade may 

unmask beneficial properties due to preferential AT2 stimulation.  

The role of the AT1 and AT2 receptor in angiogenesis is controversial. Ang II-induced 

angiogenesis was shown to be mediated via both the AT1 and the AT2 receptor in the 

mesenteric vasculature of Ang II-infused rats20 or specifically via the AT2 receptor in 

tumor angiogenesis in mice21. High AT1 expression was associated with reduced 

myocardial vessel density in rats22. In contrast, others have shown AT1-dependent 

angiogenesis in the ischemic hindlimb of mice23 whereas AT2 appeared to be 

antiangiogenic in the same animal model24. Tumor angiogenesis was impaired in AT1
-/- 

receptor mice25. Thus, the role of AT1 and AT2 receptors in angiogenesis is not clear and 

may vary upon model, tissue and conditions investigated. In particular, the vasculature 

of the heart has not been investigated in models of controlled hypoxia. Our model of 

angiogenesis in vitro of the mouse heart provides this possibility and demonstrates the 

key role of hypoxia in Ang II-induced cardiac angiogenesis.  

Hypoxia can lead to the formation of new vessels in mature tissue, triggering vessel 

growth by signalling through hypoxia-inducible transcription factor (HIF-1)26. 

Interestingly, Ang II induces HIF-1α27-29. Hypoxia may also modulate the expression of 

AT1 and/or AT2 receptors30. In our experiments both AT1 and AT2 receptors were present 

under normoxia and hypoxia. Still, further studies investigating other tissues, receptor 

expression and intracellular signalling pathways may reveal whether AT2-dependent 

angiogenesis is specific for the hypoxic heart.  

The AT2 receptor might exert downstream effects via the B2 receptor12. We clearly show 

that Ang II-induced angiogenesis is abrogated when the B2 receptor is 

pharmacologically inhibited or knocked out. B2 activation by bradykinin induces 
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vasodilation31 which is also a prerequisite for initiation of angiogenesis32. AT2 

overexpressing mice blocked Ang II-induced vasopressor effects through B2 receptor33. 

Importantly, bradykinin was shown to induce angiogenesis via B2 receptor34 or as shown 

by using a model of hindlimb-induced ischemia in B2-/- mice35. Collectively, these data 

suggest a mechanism by which a vasopressor molecule, such as Ang II, can also 

mediate vasodilator and angiogenic effects specifically by AT2 receptor-dependent 

signalling leading to B2 kinin receptor activation36. Ang II-dependent activation of B2 

could be achieved in different ways. A direct interaction between AT2 and B2 leading to 

nitric oxide production has recently described37 although the precise nature of this 

interaction has not been fully clarified. Others have pointed out an Ang II-mediated pH 

increase that may release kininogens to produce bradykinin33,38. In our study, the 

angiogenic effect of B2 receptor was dependent on bradykinin synthesis since 

kininogenase inhibition blocked Ang II-induced angiogenesis. Bradykinin induced 

angiogenesis in hypoxic heart explants only from both wild type and AT2-/- mice. Ang II, 

however, as mentioned before, failed to induce angiogenesis in hearts from BK2-/- mice. 

We conclude that angiogenesis induced by Ang II requires signalling through the AT2 

receptor and is mediated by an increase in bradykinin production.  

Endothelium derived NO synthase is crucial for angiogenesis in vitro and in vivo39. In 

fact, NO inhibition blocked Ang II-induced endothelial sprout formation in our model of 

angiogenesis of the heart in vitro. Increased nitrite accumulation in the medium of Ang II-

stimulated heart explants was also observed. Accordingly, NO-donors directly induced 

angiogenesis in pieces of heart either from wild type, B2-/- and AT2
-/- mice. Our results 

are in agreement with previous reports, showing that Ang II can induce renal production 

of bradykinin, NO and cGMP via the AT2 receptor40. These data suggest that an increase 

in NO bioavailability downstream of AT2 and B2 receptors is the final effector of Ang II-

induced angiogenesis in the hypoxic heart.  

 

Perspectives 

The present study provides evidence for the significant role of the AT2/B2 pathway in the 

Ang II-induced angiogenesis in vitro in the adult mouse heart under hypoxia. In clinical 

studies, AT1 blocker treatment of hypertension has revealed additional cardioprotective 

effects beyond the lowering blood pressure41,42. A potential advantage of AT1 blockers 

over ACE inhibition is the preservation of the AT2-mediated pathway. Here we describe 

that Ang II-induced angiogenic effects through AT2/B2 may provide some explanation for 



 
 

90 

these beneficial effects. Studies on neovascularization of the heart in hypertensive 

animals and patients after AT1 treatment are needed to test the clinical relevance of our 

mechanisitic results. This may help to understand and to uncover novel therapeutic 

effects of AT1 receptor blockers for patients with left ventricular hypertrophy, ischemic 

heart disease or myocardial infarction. 

 

Methods 

Animals 

Experiments were performed with hearts of C57Bl/6: wild type-, AT1a-/- - (The Jackson 

Laboratory, Maine USA) and B2-/- mice (Jackson Laboratories). FVB/J AT2
-/- mice were a 

gift from Prof. Hein and have been previously described13. The animals were euthanized 

and the hearts immediately transferred to PBS. Within half an hour post mortem, small 

pieces (1mm3) of the mouse myocardium (left ventricle) were cut and embedded in fibrin 

gel. All experiments were conducted in accordance with the Swiss Federal Act on 

Animal Protection (1998) and were approved by the Veterinary Department of the 

Kanton of Basel (Switzerland). We used between 5 and 9 mice for every experiment. 

The age of mice ranged from 12 to 14 weeks.  

 

Angiogenesis in vitro assay 

A three-dimensional in vitro assay of heart angiogenesis was established in our 

laboratory as described in detail previously14. Briefly, 0.5 - 1mm3 cubes from the left 

ventricular myocardium of the mouse heart were placed onto fibrin-gels (Sigma-Aldrich) 

with 500 µl DMEM plus 5%FCS (Biochrom). Heart explants were incubated under 

normoxia (21% O2) or hypoxia (1% O2) for 7 days. Stimulants/inhibitors were added 

every other day: hr VEGF164 (R&D systems); HOE140 (Sigma-Aldrich AG); Ang II 

Acetate (Sigma-Aldrich); Losartan (MSD), CGP-42112 (Bachem), PD123319 (Fluka) and 

PKSI-527 (Wako Chemicals); Nitric oxide (NO) inhibitors and donors (Sigma-Aldrich). 

Inhibitors were added freshly 20 minutes before stimulants. After 7 days endothelial 

sprouts were photographed digitally (ColorView II-Soft Imaging System) on an inverted 

light microscope (Olympus IX50). The extent of sprout formation was determined as 

previously detailed13. Briefly, we used octuplicates for each condition and sprout 

formation was calculated and averaged by two independent investigators by comparison 

with a standardized scale (angiogenic index). The angiogenic index was defined with the 

help of an image analysis software (AnalySIS Pro, Soft Imaging System) as [sprouting 
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area/total area]X10 where total area corresponds to the sprouting area plus tissue area. 

Sprouting was computed from the area that was actually occupied by endothelial sprouts 

and not the space between the cells. Sprouting and tissue area were computed by 

AnalySIS Pro and the angiogenic index was rounded to the nearest integer and handled 

as a scored value. 

 

Characterization of cells & tissue 

Characterization of outgrowing cells and sprouts was performed by using specific cell 

markers GSL I – IB4 (20 µg/ml; Rectolab) for endothelium and Cy3-conjugated anti-α-

smooth muscle actin (1:100; SMA; Fluka Chemie) for smooth muscle cells/pericytes and 

Hoechst dye (Polysciences Europe) for visualization of cell nuclei as described 

previously14.  

 

NO production assay 

NO concentrations were measured by the fluorometric nitrite assay15 with the NO Assay 

Kit (Calbiochem). Briefly, pieces of mouse heart were incubated in phenol-free DMEM. 

The supernatants were collected, nitrite was detected by fluorescence and concentration 

(nanomoles/L) calculated according to a calibration curve in each experiment. 

Western blotting 

Heart tissue was lysed in RIPA buffer as described before1. After SDS-PAGE, proteins 

were transferred onto Polyvinylidene fluoride membrane (Millipore). The membrane was 

blocked with 4% skim milk powder in TBS-Tween solution and probed with polyclonal 

anti-AT1(N-10) and anti-AT2 (C-18) from Santa Cruz Biotechnology. HRP-conjugated 

IgGs from Cell Signaling Technology were used to visualize the proteins by a 

chemiluminescence reaction (Amersham).  

 

Reverse transcription polymerase chain reaction (PCR)  

Total RNA was isolated with TRIzol Reagent (Invitrogen), quantified and reverse-

transcribed with M-MLV reverse transcriptase system (Promega). 

The cDNA (1µl) was amplified in 35 cycles polymerase chain reactions. The following 

primer sequences were used; for mouse AT1 receptor sense: 5′-

TGAGAACACCAATATCAC TG-3′, and antisense: 5′-TTCGTAGACAGGCTTGAG-3′; 

mouse AT2 receptor sense: 5′-CCTTGGCTGACTTACTCCTT-3′, and antisense 5′-

GAACTACATAAGATGCTTGCC-3′; mouse 18S ribosomal RNA sense: 5′-
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CCTGGATACCGCAGCTAGGA-3′, and antisense 5′-GCGGCGCAATACGAATGCCCC-

3′. Specific PCR annealing temperatures were: 49°CAT1, 52°C AT2 and 57°C18S.  

 

Statistical analysis 

All results depicted represent experiments repeated using at least five different heart 

explants. Each single condition was performed in octuplicate wells. Data points 

represent the mean ± SEM. Statistical analysis was performed with SPSS for Mac OS X 

(SPSS Inc.). Statistical significance (p < 0.05) was computed using non-parametric 

analysis; Kruskal-Wallis and Mann-Whitney tests were performed accordingly. 
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5. General discussion 

Hypoxia is a direct cause of a lack of adequate microvessel supply, but appears to be at 

the same time an essential stimulus to induce the formation of new microvessels by 

induction of angiogenesis. How is hypoxia sensed by endothelial cells, what are the 

signalling pathways that transduce the hypoxia signal, and what are the effector 

molecules that may finally lead to increased endothelial proliferation and angiogenesis? 

In this thesis, I have investigated these questions in three related experimental projects 

and discuss the interrelated and common findings below. 

Detailed discussions of the individual projects are located in chapter 4. 

 

EC proliferation is an important step in the process of angiogenesis since it provides the 

building blocks for nascent microvessels. We have shown previously that ECs increase 

proliferation in response to hypoxia. The increased proliferation was rapamycin sensitive 

and or could be further increased by mTOR overexpression10. In the study “Hypoxia-

Induced Endothelial Proliferation Requires Both mTORC1 and mTORC2” we 

scrutinized the mechanism of EC activation under hypoxia. By analyzing mTOR and the 

distinct downstream targets of mTORC1 (S6 kinase 1) and mTORC2 (PKB/AKT), we 

found that hypoxia activates mTOR signalling O2-concentration dependently and in a 

timed program, leading to an early activation and a late inhibition of mTORC1 and a 

delayed but sustained activation of mTORC2. Raptor and rictor knock down by siRANA 

demonstrated that rictor (mTORC2) is essential for hypoxia-induced endothelial 

proliferation, whereas raptor knock down only partially inhibited hypoxia-increased 

proliferation. By studying the pathways potentially directing the hypoxic stimulus to 

mTOR, we found that hypoxia-induced cell proliferation is independent of regulation by 

TSC. TSC is an upstream negative regulator of mTOR and directs signals triggered by 

growth factors, energy and nutrients. Thus, mTOR is a central and maybe directly 

activated regulation point to integrate signals from hypoxia to induce EC proliferation 

under hypoxia. 

 

HIF-1α is stabilized under hypoxia and activates many genes involved in the process of 

angiogenesis. HIF-1α degradation is initiated by prolyl hydroxlases (PHD). PHD activity 

is oxygen-dependet and tags HIF-1α for proteasomal degradation only under 

normoxia5,69. In this study with the working title “Role of mTORC1 and mTORC2 in 
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hypoxia-induced HIF-1α stabilization and endothelial proliferation” we have studied 

signalling pathways that are known to be induced by stress responses for their role in 

HIF-1α stabilization. We could exclude MEK1/2, Jun kinase and p38 for being 

responsible to modulate HIF-1α stability under hypoxia. We identified mTOR as an 

essential factor for HIF-1α stabilization under hypoxia. Interestingly, HIF-1α has been 

shown to carry a potential phosphorylation site for mTOR-kinase and HIF-1α 

stabilization under hypoxia was shown to be rapamycin sensitive74. Thus, HIF-1α 

stabilization under hypoxia is not only negatively regulated by PHD but also positively by 

mTOR. PDGF-BB induced HIF-1α stabilization under normoxia was rapamycin sensitive 

as well, suggesting that mTOR signalling is also essential for growth factor-induced HIF-

1α stabilization under normoxia. Thus, mTOR signalling activated by growth factors or 

hypoxia is required for HIF-1α stabilization. We hypothesize that multiple hypoxia-

activated pathways for HIF-1α regulation could integrate different regulatory signals for 

specific conditions. This might ensure, that HIF-1α is only activated if all criteria for cell 

growth are fulfilled such as available energy or amino acids.  

Knock down of HIF-1α in RAECs inhibited proliferation under hypoxia only partially. This 

may be due to an incomplete knock down of HIF-1α. However, MEFs completely lacking 

the HIF-1α gene reduced proliferation under hypoxia to a similar degree, thus, not 

completely. We speculate, that HIF-1α is not the only mTOR effector responsible for 

increased proliferation of RAECs and MEFs under hypoxia.  

mTORC1 is rapamycin-sensitive, and rapamycin destabilizes HIF-1α under hypoxia. 

Thus, is mTORC1 the pivotal mTOR complex for hypoxia- or growth factor mediated 

HIF-1α stabilization? In endothelial cells, prolonged (~24 hr) treatment of rapamycin can 

also prevent formation of mTORC2. We have also shown that both mTORCs are 

required to promote proliferation of RAECs under hypoxia. Therefore the answer, which 

of the two mTOR complexes is responsible for HIF-α accumulation is not clear yet. 

RNAi-mediated knockdown of raptor and rictor in endothelial cells and Cre-inducible 

knockout of raptor and rictor in MEFs are currently carried out in our lab, and HIF-1α 

detection in those cells will potentially reveal the responsible mTOR complex. 

 

In our study “Angiotensin II induces angiogenesis in the hypoxic adult mouse heart 

in vitro through an AT2-B2 receptor pathway” we studied the angiogenic role of 

Angiotensin II in an in vitro model of angiogenesis of the heart. Ischemia, thus a hypoxic 
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environment with a lack of nutrients and excess of metabolites, often occurs in 

cardiovascular complications such as in angina pectoris, left ventricular hypertrophy or 

after myocardial infarct. 

We realized that Angiotensin II, Bradykinin or even the classic angiogenic molecule 

VEGF could not induce angiogenesis from hearts cultured under normoxia. Incubation in 

hypoxia was necessary to induce angiogenesis that could be increased with the addition 

of VEGF, bradykinin or Ang II. This result highlights the role of hypoxia as a pro-

angiogenic condition in the heart. Further, by using pharmacological agonists and 

antagonists of AT1, AT2 and BK2 receptor signalling and heart tissue from corresponding 

knockout mice, we determined that Ang II induces angiogenesis in vitro via the AT2 

receptor. Moreover AT2 induces angiogenesis via Bradykinin release and activation of 

the BK2 receptor. Ang II induced angiogenesis was also nitric oxide dependent. 

Bradykinin induces NO and VEGF, both essential factors to promote angiogenesis2. Ang 

II also was shown to induce HIF-1α57,59 and HIF-1α controls the expression of iNOS 

(inducible nitric oxide synthase; produces NO) and VEGF55,129. Thus Ang II induced 

angiogenesis might also be partially mediated via HIF-1.  

 

In conclusion, these studies help us to understand the concepts, mechanisms and 

interactions in hypoxia-mediated or dependent-responses that ultimately lead to 

endothelial proliferation and formation of new microvessels. 
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6. Outlook 

 

Follow up on project “Hypoxia-Induced Endothelial Proliferation Requires Both 

mTORC1 and mTORC2” 

• To assess whether VEGF, Bradykinin, and Angiotensin II require mTORC1 or 

mTORC2 to induce angiogenesis in vitro. 

• To assess whether FoxO transcription factors are downstream of mTORC2 and 

Akt and are required for angiogesis in vitro in response to hypoxia or angigenic 

molecules.  

• To characterize the role of mTORC1 and mTORC2 in angiogenesis in vivo by 

induction of Cre-mediated excision of the loxed raptor and rictor gene in adult 

mouse endothelium. Angiogenesis and vascular morphology will be assessed 

after injection of myoblasts expressing distinct concentrations of VEGF in the 

mice ear. 

 

Follow up on project “Role of mTORC1 and mTORC2 in hypoxia-induced HIF-1α  

stabilization and endothelial proliferation”  

• To identify the mTOR complex responsible for HIF-1α stabilization by using 

raptor- and rictor knockout MEFs and raptor and rictor silenced RAECs.  

• To identify the mTOR complex responsible for HIF-1α-mediated transcription by 

using Hypoxia-Response Element (HRE) containing Luciferase reporter plasmids 

in raptor- and rictor knockout MEFs and RNAi-mediated silencing of raptor and 

rictor in RAECs.  

• To investigate role of HIF-2/3α in endothelial cells. 

 

Follow up on project “Angiotensin II induces angiogenesis in the hypoxic adult 

mouse heart in vitro through an AT2-B2 receptor pathway” 

• To investigate mechanisms of AT2 and B2 receptor interaction. 

• To investigate the dominant role of B2 receptor in AT2, B1- and VEGF-induced 

angiogenesis. 

• To analyse if mTOR (and HIF) is involved in Ang II and Bradykinin-induced 

angiogenesis (see also 6.1). 
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7. Abbreviations 

ACE    –  Angiotensin Converting Enzyme  

ACE-I    –  ACE Inhibitor 

AMPK    –  AMP -Activated Protein Kinase  

Ang I    –  Angiotensin I  

Ang II    –  Angiotensin II  

ARBs    –  AT1 Receptor Blockers  

ARNT    –  Aryl Hydrocarbon Nuclear Translocator 

AT1 Receptor   –  Angiotensin II Receptor 1  

AT2 Receptor   –  Angiotensin II Receptor 2 

bHLH-PAS  –  Basic Loop Helix-Per ARNT Sim Proteins 

B1   – Kinin Receptor B1 

B2   – Kinin Receptor B2 

BK Receptor   –  Bradykinin Receptor  

C-TAD, N-TAD C  –  C and N –terminal Transactivation Domains  

ECM    –  Extracellular Matrix  

ECs    –  Endothelial Cells  

EPAS1   –   Endothelial PAS 1 

FGF    –  Fibroblast Growth factor  

FIH    –  Factor Inhibiting HIF-1  

GF    –  Growth Factors  

HRE   –  Hypoxia Response Element  

iNOS    –  Inducible Nitric Oxide Synthase 

IPAS    –  Inhibitory PAS 

MMPs    – Matrix Metalloproteinases  

mSIN1   –  Mammalian Stress-Activated Protein Kinase [SAPK]- 

    Interacting Protein 

mTOR    –  Mammalian Target of Rapamycin 

ODDD    –  Oxygen Dependent Degradation Domain 

PDGF    –  Platelet-Derived Growth Factor  

PHD    –  Prolyl Hydroxylase  

RAAS    –  Rennin-Angiotensin-Aldosterone-System  

RAEC    –  Rat Aortic Endothelial Cells 

Raptor   –  Regulatory Associated Protein of mTOR  
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Rictor    –  The Rapamycin-Insensitive Companion of mTOR  

ROS    –  Reactive Oxygen Species  

SMC    –  Smooth Muscle Cell  

TORC    –  TOR Complex  

TSC    –  Tuberous Sclerosis Complex 

VEGF    –  Vascular Endothelial Growth Factor  
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