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ABSTRACT

Gene activation involves protein complexes with
diverse enzymatic activities, some of which are
involved in chromatin modification. We have shown
previously that the base excision repair enzyme thym-
ine DNA glycosylase (TDG) acts as a potent coactiv-
ator for estrogen receptor-a. To further understand
how TDG acts in this context, we studied its interac-
tion with known coactivators of nuclear receptors. We
find that TDG interacts in vitro and in vivo with the
p160 coactivator SRC1, with the interaction being
mediated by a previously undescribed motif encoding
four equally spaced tyrosine residues in TDG, each
tyrosine being separated by three amino acids. This
is found to interact with two motifs in SRC1 also
containing tyrosine residues separated by three
amino acids. Site-directed mutagenesis shows that
the tyrosines encoded in these motifs are critical for
the interaction. The related p160 protein TIF2 does
not interact with TDG and has the altered sequence,
F-X-X-X-Y, at the equivalent positions relative to
SRC1. Substitution of the phenylalanines to tyrosines
is sufficient to bring about interaction of TIF2
with TDG. These findings highlight a new protein–
protein interaction motif based on Y-X-X-X-Y and

provide new insight into the interaction of diverse
proteins in coactivator complexes.

INTRODUCTION

Estrogens play a critical role in reproductive physiology, are
important in other diverse processes and have been implicated
in breast and endometrial cancers, as well as cardiovascular
disease, osteoporosis and in Alzheimer’s disease (1–3). Estro-
gen actions are mediated by two ligand-dependent transcrip-
tion factors, estrogen receptors a (ERa) and b (ERb). These
receptors belong to the nuclear receptor (NR) superfamily,
which includes high affinity receptors for the steroid hor-
mones, vitamin D3, thyroid hormone and retinoic acid. The
so-called ‘orphan receptors’ include receptors that bind with
low affinity to dietary lipids such as fatty acids, oxysterols, bile
acids and xenobiotics, and a large number of receptors for
which no ligand has been identified to date (4). NR share a
common modular structure, with a core DNA-binding domain
(DBD) and a C-terminal ligand-binding domain (LBD). Upon
binding estrogen, ERa and b stimulate gene expression by
binding as homo- or hetero-dimers to estrogen response ele-
ments (ERE) in promoters of estrogen-regulated genes (5).
Two activation domains, AF1 and AF2, mediate transcription
activation. AF1 activity is regulated by phosphorylation (2,6),
AF2 is integral to the LBD and requires estrogen-binding for
its activity. The LBD is comprised of conserved a-helical
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sequences (7). Agonist-binding induces conformational
changes that orient the C-terminal AF2 helix, helix 12, to
create a binding pocket to which coactivators of transcrip-
tion can be recruited. Anti-estrogens are known to prevent
coactivator binding to the ERa LBD, by reorienting
helix 12, such that helix 12 lies over and blocks the binding
pocket (8,9).

Several coactivator proteins have been implicated in
estrogen action and include the distinct, but related, p160
proteins, SRC1/N-CoA1, TIF2/GRIP1 and AIB1/pCIP/
ACTR/RAC3/NCoA-3 (10–12). These coactivators interact
with the LBD of agonist-bound receptors through a-helical
motifs, which include a sequence with the consensus
LXXLL (13–15). These so-called NR boxes orient within
the hydrophobic pocket containing helix 12, held by a
charge clamp composed of conserved residues in helices 3,
4, 5 and 12 (9,16–19). The p160 coactivators recruit other
proteins required for transcription activation, including
CBP/p300 and the associated factor P/CAF, as well as
CARM1 and PRMT1 (20–26). CBP/p300 and P/CAF possess
intrinsic histone acetyltransferase activities. CARM1 and
PRMT1 are methyltransferases that methylate arginine 17
of histone H3 and arginine 3 of histone H4, respectively
(25,27). These modifications facilitate gene expression
by transcription factors by chromatin remodeling and/or
recruitment of additional factors.

Recent studies have shown that DNA repair-associated
enzymes can stimulate transcription factor activity. The
basal transcription factor TFIIH, required for nucleotide
excision repair (NER), also regulates the activity of a number
of transcription factors including retinoic acid receptors a and
g (28,29), ERa (30) and the androgen receptor (AR) (31).
BRCA1, which has been implicated in double-strand break
repair, represses ERa and stimulates AR activity (32–35),
whilst the modified O6-methylgluanine-DNA methyltrans-
ferase involved in the reversal of DNA alkylation damage
can also repress ERa activity (36) and 3-methyladenine
DNA glycosylase inhibited transactivation by ERa (37).
The AP endonuclease Ref-1/APE1, required for the repair
of abasic DNA damage, was found to activate c-jun and
p53 (38–40). Thymine DNA glycosylase (TDG), which
excises damaged cytosine and 5-methylcytosine bases
opposite G (41), represses the activity of the homeodomain
containing transcription factor TTF-1 (42), and potentiates
the activities of retinoic acid receptor a and retinoid
X receptor a (43,44).

More recently, we have shown that TDG associates with and
stimulates the activity of ERa, acting as a transcriptional
coactivator (43). The only known enzymatic activity of
TDG is its DNA glycosylase activity and, in our previous
work, we showed that coactivation by TDG does not require
this activity. Rather, it is likely that TDG acts as a coactivator
by interacting with other co-regulators of gene expression. To
explore this possibility, we have investigated the interaction of
TDG with coactivators of ERa. We show that TDG interacts
with SRC1 and this interaction is mediated by a novel
tyrosine-containing motif present in both proteins. Together,
these studies identify a new protein–protein interaction motif,
which features in the association of proteins in coactivator
complexes.

MATERIALS AND METHODS

Plasmids and peptides

All expression plasmids and the reporter genes have been
described (26,43,45). Additional constructs were derived
from these and verified by sequencing. Details are available
on request. The peptides were synthesized, high-performance
liquid chromatography (HPLC) purified and verified by
mass-spectrometric analysis by the ABC, Imperial College
London.

Protein expression, purification and glutathione
S-transferase (GST)-based interaction assay

In vitro transcription/translations were performed using TNT
rabbit reticulocyte lysates (Promega, UK), in the presence of
35S-labelled methionine. GST proteins were induced and lys-
ates prepared as described previously (46). For pulldowns,
GST fusion proteins were purified by affinity chromatography
on glutathione-agarose beads and retained as a 50% slurry in
20 mM HEPES (pH 7.6), 100 mM KCl, 1 mM EDTA, 1 mM
DTT and 20% glycerol, supplemented with protease inhibit-
ors. A total of 100 ml volumes of glutathione-agarose bead
slurry loaded with 10 mg of GST fusion proteins were then
used directly in binding assays with 10 ml radiolabelled in vitro
translation reactions and 890 ml of low-salt buffer [50 mM
HEPES (pH 7.6), 250 mM NaCl, 0.5% NP-40, 5 mM EDTA,
0.1% BSA, 0.5 mM DTT, 0.005% SDS and protease inhibit-
ors]. Following 1 h incubation at room temperature, the beads
were washed twice with low-salt buffer and twice with high-
salt buffer (low-salt buffer containing 1 M NaCl). Samples
were boiled for 10 min in 80 ml of Laemmli buffer and frac-
tionated by SDS–PAGE. Gels were dried and autoradio-
graphed.

Reporter gene assays

COS-1 cells were maintained in DMEM, supplemented with
5% fetal calf serum (FCS). Cells were seeded onto 9 cm
dishes and transiently transfected with 4 mg of b-galactosidase
and chloramphenicol acetyl transferase (CAT) reporter genes
and 0.5 mg of expression plasmids, using the calcium phos-
phate co-precipitation technique. Cells were harvested after a
further 24 h and reporter gene activities were assayed as
described (47). For experiments involving ERa, the cells
were seeded in DMEM lacking phenol red and containing
5% dextran-coated charcoal-stripped FCS. E2 (10 nM) was
added as appropriate.

Immunoprecipitations and immunoblotting

COS-1 cells were plated in 9 cm dishes in DMEM supple-
mented with 5% FCS 16 to 24 h before transfection and,
transfected with 4 mg of HA-TDG and/or HA-SRC1 expres-
sion plasmids using Lipofectamine 2000 (Invitrogen, UK).
Following transfection (48 h), the cells were lysed in
RIPA buffer [150 mM NaCl, 1% NP-40, 0.5% deoxycholic
acid, 0.1% SDS and 50 mM Tris–HCl (pH7.5)] containing
protease inhibitors. Lysates (2 mg) were immunoprecipitated
using an anti-TDG mouse monoclonal antibody, which has
been described previously (48), or using a rabbit polyclonal
SRC1 antiserum [a gift of Dr H. Hurst, Barts and the
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London School of Medicine and Dentistry (49)]. Control
immunoprecipitations were carried out using rabbit IgG
(Sigma-Aldrich, UK). Immunoprecipitates were resolved by
SDS–PAGE and immunoblotted using horseradish-peroxidase
(HRP)-labelled HA antibody (Sigma).

Chromatin Immunoprecipitation (ChIP)

Estrogen (10 nM) was added to MCF7 cells maintained in
phenol red-free DMEM supplemented with 5% dextran-
coated charcoal stripped FCS, for 30 min before cell fixation
and harvesting. ChIP and re-ChIP assays were performed
essentially as described by Shang et al. (50), using the
TDG mouse monoclonal antibody and SRC1 rabbit polyclonal
antisera described above, or using the ERa mouse monoclonal
B10 (51). Control ChIP/re-ChIP were carried out using
rabbit IgG.

For ChIP/re-ChIP experiments an initial ChIP immuno-
precipitate was generated. This and the corresponding super-
natant were each divided into three equal amounts. For re-ChIP,
each of these was subjected to ChIP using antibodies against
two other proteins. The final re-ChIP products were analysed by
PCR against the ERE encoding region of the pS2 gene promoter
using primers with the sequences 50-GCCATCTCTCACT-
ATGAATCACTTCTGC-30 and 50-GGCAGGCTCTGTTTG-
CTTAAAGAGCG-30, as described (50).

Yeast 2-hybrid analysis of TDG: SRC1 interaction

The Saccharomyces cerevisiae reporter L40a strain (MATa,
trp1, his3, leu2, ade2, LYS::(LexAop)4-HIS3, URA3::
(LexAop)8-LacZ), expressing LexA-SRC1(989–1240) (45),
was transformed with VP16-fused mutants of mouse TDG
as described previously (44). b-galactosidase activities were
determined as described (45).

RESULTS

TDG interacts with SRC1 in vivo

We have shown previously that TDG acts as an ERa coactiv-
ator (43). Previous studies have also demonstrated TDG asso-
ciation with CBP/p300 (52). In confirming the latter findings
we also investigated whether TDG interacts with other nuclear
receptor coactivators. In order to test this possibility, COS-1
cells were co-transfected with HA-tagged TDG and HA-
SRC1a. Immunoprecipitation of whole cell lysates with anti-
bodies to TDG resulted in the co-precipitation of SRC1a,
indicating that TDG interacts with SRC1a in vivo
(Figure 1A). Immunoprecipitation using antibodies to SRC1
co-precipitated TDG, whilst immunoprecipitation with rabbit
IgG did not (Figure 1B).

Interaction between endogenous ERa, TDG and SRC1 was
further investigated using ChIP by performing serial immuno-
precipitations in which soluble chromatin prepared from E2-
treated MCF7 cells was divided in three. One aliquot was
immunoprecipitated with TDG antibodies, followed by release
of the immune complexes, which were further divided in three
and re-immunoprecipitated with ERa and SRC1 antibodies,
whilst DNA was prepared from the third portion. The second
aliquot was immunoprecipitated with SRC1 antibodies, fol-
lowed by re-immunoprecipitation (re-IP) with ERa and TDG
antibodies. Re-IP were similarly performed using the super-
natants from the primary immunoprecipitations, again follow-
ing division into two aliquots. TDG and SRC1 antibodies
immunoprecipitated the pS2 promoter following E2-
treatment, as described previously (43) (Figure 1B). However,
re-IP using supernatants did not immunoprecipitate the pS2
promoter, whereas re-IP of the eluted primary immunoprecip-
itates from the TDG IP using ERa or SRC1 antibodies did
immunoprecipitate the pS2 promoter. Similarly, performing
re-IP following primary immunoprecipitation for SRC1

Figure 1. SRC1 and TDG interact in vivo. (A and B) Lysates prepared from COS-1 cells transfected with HA-tagged TDG and/or HA-SRC1a were immuno-
precipitated with anti-TDG (A), anti-SRC1 (B) or rabbit IgG (B). Immunoprecipitates were resolved by SDS–PAGE and immunoblotted using HA antibodies. (C)
MCF-7 cells were stimulated with 100 nM E2 for 30 min before fixation, harvesting and aliquoting in three. One aliquot was immunoprecipitated with antibodies to
TDG (IP). The other two aliquots were immunoprecipitated with antibodies against TDG, release of immune complexes and re-IP with antibodies against ERa and
SRC1 (Re-IP Bound). The supernatants from the primary IPs were also re-immunoprecipitated (Re-IP Supernatant). A similar procedure was followed whereby
primary IP performed with antibodies to SRC1 were re-immunoprecipitated, using antibodies against ERa and TDG. Primary IPs using mouse immunoglobulins,
followed by re-IP with antibodies to ERa, TDG or SRC1, using supernatants or pellets was carried out as a control. The bound immunoprecipitated DNA was
amplified by PCR (25 cycles) using primers for the pS2 gene directed against a region of the gene encompassing the ERE.
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demonstrated that ERa and TDG were co-immunoprecipitated
with SRC1. Control ChIP/re-ChIP were also performed, using
isotype-matched mouse immunoglobulins for the first IP.
On re-IP, pS2 was immunoprecipitated from the supernatants
and not from the eluted primary immunoprecipitates. This
shows that TDG and SRC1 are recruited concomitantly by
ERa-binding to the promoters of estrogen-responsive genes,
and therefore indicate that TDG and SRC1 associate in vivo,
or at least that they are present in the same complex at
promoters of estrogen-responsive genes.

Interaction of TDG with SRC1 is mediated
by a novel tyrosine repeat-containing
protein–protein interaction motif

We next attempted to determine whether SRC1 and TDG
interact directly in vitro. GST-binding assays using non-
overlapping regions of SRC1 fused to GST (Figure 2A)
showed that TDG interacts with a region of SRC1 encoded

within amino acids 989–1240 of SRC1 (Figure 2B). Absence
of TDG-binding to GST-SRC1(1107–1399) suggested that
amino acids 1107–1240 are critical for SRC1 interaction
with TDG, although amino acids 989–1106 also appear to
be important, since TDG-binding to GST-SRC1(349–1106)
was lower than that observed with GST-SRC1(989–1240)
(Figure 2C). Further, in a mammalian 2-hybrid assay
using the Gal4 DNA-binding domain fused to overlapping
regions of SRC1, significant interaction of VP16 fused to
TDG was only observed with amino acids 989–1240
(Figure 2D), in agreement with the results of the in vitro
GST-binding assays.

The sequences in TDG required for interaction with SRC1
were also determined with a yeast 2-hybrid assay, using a
LexA fusion with SRC1 amino acids 989–1240, for interaction
with VP16 fused to overlapping portions of mouse TDG
(Figure 3A). These deletions showed that amino acids 32–
307 of mouse TDG are insufficient for interaction with
SRC1, whereas TDG(32–346) was able to interact, indicating

Figure 2. Mapping the region of SRC1 required for interaction with TDG. (A) Schematic representation of human SRC1 isoforms and the regions that were fused to
GST and to the Gal4 DBD. Numbers refer to amino acids. Indicated are the bHLH-PAS homology region, the binding regions for NR and the functional LXXLL
motifs (numbered 1–4). The fusion proteins (1241–1444) and (1241–1399) contain amino acid sequences unique to the SRC1a and SRC1e proteins, respectively (26).
(B) GST-binding assays were carried out by incubation of 35S-labelled TDG or ERa with GST (lane 1) or GST–SRC1 fusion proteins encoding amino acids 1–198
(lane 2), 199–569 (lane 3), 570–780 (lane 4), 781–988 (lane 5), 989–1240 (lane 6) or 1241–1441 (lane 7) of SRC1a, or with amino acids 1241–1399 of SRC1e (Lane
8), as depicted in (A). In the case of ERa, binding assays were carried out in the absence of ligand or with E2 (100 nM). The input lanes represent 10% of the total
volume of the in vitro translation reaction used in the binding assay. (C) GST-binding assays were carried out as above by incubation of 35S-labelled TDG with GST
(lane 2) or GST–SRC1 fusions encoding amino acids 989–1240 (lane 3), 349–1106 (lane 4) or 1107–1399 (lane 5) of SRC1e, as depicted in (A). The input lanes
represent 20% of the total volume of the in vitro translation reaction used in the binding assay. (D) Regions of SRC1 fused to the DBD of the yeast transcription factor
Gal4 (amino acids 1-147) were tested for their ability to simulate a Gal4 reporter in COS-1 cells, following cotransfection with VP16 or VP16 fused to TDG. Fold
activity indicates the activity of the Gal4 fusions over the empty Gal4 plasmid contransfected with the VP16 plasmid.
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that amino acids 307–346 are critical for the interaction. Dele-
tions lacking N-terminal sequences showed that residues 272–
421 were sufficient, whereas amino acids 338–421 did not
interact. Together, these data are indicative of a SRC1-
interacting region in residues 307–338 of mouse TDG.

Examination of the corresponding amino acid sequence
revealed that this region of low amino acid complexity is
distinguished by the presence of four equally spaced tyrosine

residues (334-YDPGYEAAYGGAY-346 in human TDG),
which is highly conserved in vertebrate TDG proteins
(Figure 3B). Note, however, that this region maps C-
terminal to the DNA glycosylase domain and does not appear
to be required for the enzymatic activity of TDG (48,53). We
generated TDG mutants in which two or all four tyrosine
residues in this region were substituted by phenylalanine or
by alanine. Binding of human TDG to GST-SRC1(989–1240)

Figure 3. Association of TDG with SRC1 is mediated by a tyrosine repeat-containing motif in TDG. (A) Fusions of VP16 with regions of mouse TDG were expressed
in yeast, together with LexA-SRC1 (989–1240) and the activity of an integrated LexA-regulated b-galactosidase gene was determined. Activities are shown relative
to the activity observed with mouse TDG (32–421). Also indicated are the regions in TDG required for the DNA glycosylase activity and the region required for TDG
interaction with ERa. (B) Amino acid sequence of mouse TDG amino acids 317–348 is shown, aligned to TDG from other species. The numbers above the sequences
refer to mouse TDG. Alignments were generated using dbClustal (81). (C) Binding assays were done following incubation of 35S-labelled human TDG or TDG
mutants with GST, GST-SRC1(989–1240) or with GST fusion with the ERaLBD/AF2 (GST-AF2). E2 (100 nM) was present in the case of GST-AF2. The input lanes
represent 10% of the total volume of the in vitro translation reaction used in the binding assay. (D) Binding assays were done in the presence of 1 mM (lanes 4, 8, 12,
16), 5 mM (lanes 5, 9, 13, 17), 10 mM (lanes 6, 10, 14, 18) or 20 mM (lanes 7, 11, 15, 19) of peptides corresponding to amino acids 330–346 of human TDG. A peptide
corresponding to wild-type TDG, or containing the substitutions shown, were used in the competitions. P1, a peptide corresponding to amino acids 115–146 of human
TDG served as a further control. (E) COS-1 cells transfected with Gal4-SRC1(989–1240) and VP16-TDG or mutants, were tested for their ability to stimulate a Gal4
reporter in COS-1 cells. Fold activity refers to activity over the empty Gal4 plasmid co-transfected with the VP16 plasmid.

Nucleic Acids Research, 2005, Vol. 33, No. 19 6397

Downloaded from https://academic.oup.com/nar/article-abstract/33/19/6393/1308626/T-G-mismatch-specific-thymine-DNA-glycosylase-TDG
by WWZ Bibliothek (Oeffentliche Bibliothek der UniversitÃ¤t Basel) user
on 10 October 2017



was reduced significantly if the first two or the third and fourth
tyrosines were substituted by phenylalanine or alanine resi-
dues. Substitution of all four tyrosine residues prevented inter-
action with SRC1 (Figure 3C). Two cysteine residues in
mammalian TDG follow the equally spaced tyrosine residues,
whilst the N-terminal-most of these cysteine residues is
replaced by a tyrosine in chicken TDG, which might mean
that the cysteine residues extend the SRC1-interacting region
of TDG. However, substitution of the cysteine residues by
alanines had no effect on the interaction of human TDG
with SRC1. Interaction of TDG with the LBD/AF2 of ERa
is mediated by a sequence motif around amino acids 132–136
of TDG (43). Mutation of the tyrosine residues in TDG did not
inhibit the interaction of ERa AF2 with TDG, suggesting that
these substitutions do not grossly affect the structure of TDG.
This possibility was further explored using peptides corres-
ponding to the tyrosine motif region. A peptide corresponding
to human TDG amino acids 330–364 competed for TDG-
binding to SRC1 (Figure 3D), whereas substitution of the
tyrosine residues prevented competition. A peptide in which
the conserved cysteine residues were substituted by alanines
(351A/356A) blocked interaction of SRC1 and TDG. Finally,
peptide (P1), corresponding to amino acids 115–146 of human
TDG, which contain the motif required for TDG association
with ERa, also failed to compete.

The interaction between TDG and SRC1 was confirmed
using the mammalian 2-hybrid assay (Figure 3E). Substitution
of the first two or the third and fourth tyrosine residues by
phenylalanine significantly reduced the interaction, and sub-
stitution of all four tyrosine residues completely prevented
the interaction of TDG with SRC1. Substitutions in the
ERa-interacting motif (VP16-TDG-132A/135A/136A) did
not prevent the interaction. Asparagine 140 is absolutely
required for the DNA glycosylase activity of TDG (54). Sub-
stitution of this residue by alanine also did not inhibit the
interaction of TDG and SRC1. Collectively, these data indic-
ate that the interaction of TDG with SRC1 is mediated by
a novel tyrosine-containing interaction motif located within
amino acids 334–346 of human TDG.

Interaction of TDG with SRC1 is mediated by a novel
tyrosine motif in TDG and a similar motif in SRC1

Intriguingly, examination of the sequence of SRC1 encoded
within amino acids 989–1240 highlighted the presence of two
Y-X-X-X-Y motifs separated by about 170 amino acids in
SRC1 (Figure 4A). The region around these tyrosine-
containing motifs is conserved in the two related genes,
AIB1 and TIF2. The Y-X-X-X-Y motifs are also conserved
in AIB1, but are altered in TIF2, where the first tyrosine (Y1
and Y3) in each of these motifs is substituted by phenylalanine
in TIF2 (Figure 4A). In agreement with the potential import-
ance of these tyrosine residues for interaction with TDG,
SRC1 and AIB1 interacted with GST-TDG in GST-binding
assays, whereas TIF2 did not interact (Figure 4B).

In order to determine whether these tyrosine residues are
required for interaction of SRC1 with TDG, Y1, Y3 or Y1/Y3
were mutated to phenylalanines, to reflect the difference
observed in TIF2 compared with AIB1 and SRC1. We invest-
igated whether these tyrosine residues are involved in medi-
ating the interaction of SRC1 with the tyrosine-containing

motif in TDG. Substitution of Y1, Y3 or Y1/Y3 by phenylalan-
ine significantly reduced interaction of GST–SRC1(989–
1240) with TDG (Figure 4C). Substitution of Y1 and Y3
also prevented interaction of SRC1 with TDG in a yeast 2-
hybrid assay (Figure 4D). Interestingly, in the yeast 2-hybrid
assay Y3 appeared to be more important for the interaction
with TDG than Y1. In agreement with these results, SRC1e
bound GST-TDG, but substitution of Y1 by phenylalanine
reduced binding, whereas substitution of Y3 or Y1/Y3
prevented the interaction of SRC1 with TDG (Figure 4E),
suggesting that the C-terminal Y-X-X-X-Y motif may be
more important for interaction with TDG than the
N-terminal motif.

The importance of the Y-X-X-X-Y motif for interaction of
p160 coactivators with TDG was confirmed by substitution of
the phenylalanine residues at positions equivalent to Y1 and
Y3 in SRC1 and AIB1 by tyrosine in TIF2. Substitution of the
phenylalanine at position 1, 3 or 1/3 allowed TIF2 interaction
with TDG (Figure 4E). As observed for SRC1, the C-terminal
motif appeared to be more important for interaction with TDG
than the N-terminal motif. Together, these data indicate that
the interaction of TDG with members of the p160 family of
nuclear receptor coactivators is mediated by a motif containing
tyrosine residues separated by three amino acids in TDG with a
motif in SRC1 also containing tyrosine residues spaced by
three amino acids.

Cooperativity between SRC1 and TDG is mediated by
the tyrosine repeat motif

SRC1 and TDG are coactivators for ERa. In order to deter-
mine whether the novel tyrosine-containing motifs that
mediate SRC1/TDG interaction have functional significance
in vivo, TDG and SRC1 were cotransfected into COS-1 cells,
together with ERa and an estrogen-responsive CAT reporter
gene. As has been described previously, both TDG and SRC1
stimulated ERa activity in the presence of estrogen (E2)
(Figure 5A). Interestingly, co-transfection of TDG with
SRC1 significantly stimulated ERa in the absence of ligand
(Figure 5A), suggesting that TDG and SRC1 can cooperate.
The coactivation by TDG and SRC1, individually or together,
required the integrity of helix 12 in the ERa LBD, since
substitution of the key leucine residues in helix 12, at
amino acid positions 539 and 540 prevented transcriptional
stimulation by TDG and SRC1. In the absence of ligand, there
was little stimulation of ERa activity by the other two mem-
bers of the p160 family. However, co-transfection of AIB1
with TDG resulted in stimulation of ERa activity, whereas
cotransfection of TIF2 with TDG did not (Figure 5B).

The importance of the tyrosine motif in the cooperativity
between SRC1 and TDG was demonstrated by the fact that
substitution of Y1 and Y3 of SRC1 prevented stimulation of
ERa activity by TDG and SRC1 (Figure 5C). Similarly, a
TDG mutant where all of the tyrosine residues were replaced
by alanines did not cooperate with SRC1. Finally, whilst TIF2/
TDG did not stimulate ERa activity, TIF2[YY. . .YY] was
able to cooperate with TDG to stimulate ERa activity
(Figure 5D). Taken together, these data provide in vivo evid-
ence for the interaction between TDG and p160 coactivators
being mediated by a novel protein–protein interaction motif
involving tyrosine residues separated by three amino acids in
one protein, with a similar motif in a second protein.
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Figure 4. Y-X-X-X-Y motifs in SRC1 mediate its interaction with TDG. (A) SRC1, AIB1 and TIF2 were aligned using dbClustal (81). The various other names of
these coactivators are listed. The conserved tyrosine residues are highlighted and are numbered 1 to 4. The amino acid numbering above the sequences refers to human
SRC1. (B) GST-binding assays were done with 35S-labelled SRC1e, AIB1 or TIF2, using GST or GST-TDG. The input lanes represent 10% of the total volume of the
in vitro translation reaction used in the binding assay. (C) TDG-binding assays were done using GST-SRC1(989–1240) or mutants in which tyrosine 1, 3 or 1 and 3
were substituted by phenylalanine (F). The input lanes represent 10% of the total volume of the in vitro translation reaction used in the binding assay. (D) TDG fusions
with the Gal4 activation domain (Gal AD-TDG), were expressed in yeast, together with LexA-SRC1(989–1240) and the activity of an integrated LexA-regulated
b-galactosidase gene was determined. Activities are displayed as b-galactosidase units. The activities obtained for three independent yeast colonies are shown.
(E) GST pulldown assays were performed using SRC1e and SRC1e in which tyrosine residues 1, 3 or 1/3 were substituted by phenylalanine. Binding assays were also
performed using TIF2 or TIF2 in which phenylalanine residues were substituted by tyrosines.
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DISCUSSION

It is now clear that nuclear receptors interact with
proteins involved in DNA repair, such interactions leading
to transcriptional repression or activation. In the case of
transcription activation, interaction with TFIIH suggests

that phosphorylation of ERa can be an important event in
this activation and leads to increased responsiveness to low
levels of estrogen, thereby potentiating the estrogen response
by ERa (30). Recently, we have shown that TDG interacts
with ERa to stimulate its activity (43). We have now demon-
strated that TDG also interacts with the NR coactivators SRC1

Figure 5. TDG cooperates with SRC1 to stimulate ERa activity in the absence of ligand. (A) COS-1 cells were transfected with an estrogen-regulated reporter gene
and the expression plasmid pSG5, ERa or ERawith substitution of leucine residues at amino acids 539/540. TDG and/or SRC1a were co-transfected, as appropriate.
The results of three independent experiments are shown. Transcription activation by ERa in the presence of E2 was taken as 100%. All other activities are shown
relative to this. (B) COS-1 cells grown in DMEM, lacking phenol red and supplemented with 5% dextran-coated charcoal-stripped FCS, were transfected with a ERE-
3-TATA-CAT, together with ERa. TDG, SRC1, AIB1 and TIF2 were transfected as shown. The results of three independent experiments are shown. Activities are
shown relative to the activity observed for ERa alone. (C and D) COS-1 cells grown in estrogen depletion conditions were transfected with ERE-3-TATA-CAT,
together with ERa. TDG or TDG-AAAA was co-transfected with SRC1, SRC1 mutated in each of the tyrosine motifs, TIF2 or TIF2 in which phenylalanines were
replaced by tyrosines. The results of three independent experiments are shown. Fold activation is shown relative to the activity observed for ERa alone (�).
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and AIB1 to stimulate their recruitment by ERa. To our know-
ledge, this is the first demonstration of a direct interaction
between SRC1 and AIB1 with a DNA damage recognition
and repair protein, and is suggestive of an as yet unknown
functional relationship between certain transcriptional activa-
tion and DNA bases excision repair processes.

Interaction between TDG and SRC1 is mediated
by a novel tyrosine containing motif

Co-immunoprecipitation and ChIP assays were used to show
that TDG interacts with SRC1 in vivo. Deletion mapping in
yeast demonstrated that the interaction between SRC1 and
TDG required a highly conserved region of TDG that was
distinguished by the presence of four equally spaced tyrosine
residues. Substitution of the tyrosines prevented association
with SRC1 in vitro and in vivo, whereas substitution of
two highly conserved cysteines in the same region did not
prevent SRC1-binding. Although this region is highly con-
served in TDG from different vertebrate species it is not
present in other DNA glycosylases. Moreover, this region is
not required for DNA glycosylase activity, although the
lysine at position 330, just N-terminal to the tyrosine repeat,
is a target for SUMO modification, which modulates TDG
activity by reducing its DNA substrate and abasic binding
site affinity (48). Substitution of these tyrosine residues in
TDG inhibited interaction with SRC1 in vivo and in vitro
and prevented cooperative stimulation of ERa activity by
SRC1 and TDG.

Amino acids 989–1240 in SRC1 mediated its interaction
with TDG. Alignment of this region with AIB1 and TIF2
revealed the presence in human SRC1 of two regions with
the sequence 991-Y-S-Q-P-Y-995 and 1168-Y-P-P-N-Y-
1172. There were no other Y-X-X-X-Y or F-X-X-X-Y motifs
in the human SRC1 amino acid sequence. Alignment of SRC1
with AIB1 and TIF2 showed that the two motifs were strictly
conserved between SRC1 and AIB1 from different species. In
TIF2, however, these motifs had the sequences 1133-F-P-Q-Q-
Y-1137 and 1300-F-P-P-N-Y-1304, both having a phenylalan-
ine in place of the tyrosines present in SRC1 and AIB1.
Substitutions in each of the two Y-X-X-X-Y motifs in
SRC1 inhibited in vitro and in vivo interaction with TDG.
Moreover, simply by replacing the phenylalanines by tyr-
osines it was possible to obtain interaction of TIF2 with
TDG and to allow ERa activation in the absence of ligand.
Of the two Y-X-X-X-Y motifs in SRC1 the C-terminal one
appeared to be more important. This was confirmed in TIF2,
where substitution of phenylalanine at position 3 by tyrosine
enabled more efficient binding to TDG than replacement of the
phenylalanine at position 1. These findings indicate that a
single Y-X-X-X-Y motif may be sufficient for interaction
with a second such motif in a different protein. Alternatively,
multiple motifs may be required but if so then their spacing
appears to demonstrate considerable flexibility, as in the case
of SRC1 and AIB1, where in contrast to TDG, the two Y-X-X-
X-Y motifs are separated by �170 amino acids. Certainly, the
data presented here indicates that both motifs in SRC1 are
required for maximal interaction with TDG. Few clues are
provided as to the additional sequence requirements in
these motifs by examination of the TDG and p160 sequences
due to the high sequence conservation of these proteins across

species. Careful mutagenesis around this region should help to
define sequence requirements more precisely. Nevertheless,
our data clearly demonstrate the importance of the tyrosine
residues for interaction between TDG and SRC1 and define a
protein–protein interaction motif involving tyrosine residues
separated by three amino acids that has not been described
previously.

The TDG tyrosine repeat motif is present
in histone acetyl transferases

Searching protein databases with Y-X-X-X-Y or Y-X-X-X-Y-
X-X-X-Y was not possible due to the large number of possible
hits. However, a search of the SwissProt database for matches
with the sequence Y-X-X-X-Y-X-X-X-Y-X-X-X-Y as found
in TDG identified 174 matches when searching all species,
with 17 of these matches being human proteins (Swiss Institute
of Bioinformatics myhits search for patterns in proteins, http://
myhits.isb-sib.ch/cgi-bin/pattern_search) and including
TDG. Many of the genes identified on this basis encode tran-
scription regulatory proteins. In particular, one of the identi-
fied proteins is human GCN5, the prototype histone
acetyltransferase for the superfamily of acetyltransferses
known as GCN5-related N-acetyltransfereases (GNATs)
(55,56). Previous alignment of the GCN5 HAT domains
shows that the tyrosine repeat motif and a second similar
motif are present in the related HAT domain of P/CAF, but
not in other N-acetyltransferases (57–60). Structural studies of
the GCN5 and P/CAF HAT domains have shown that the
regions encoding the tyrosine containing motifs are solvent
accessible and likely to be involved in histone substrate recog-
nition, with one of the motif tyrosines also contacting acetyl
coenzyme A cofactor. Based on our findings, it is interesting to
speculate that these regions may be involved in protein–
protein interactions with non-histone proteins, to facilitate
their acetylation and/or for regulation of the HAT activity.
Additionally, yeast Gcn5 and human P/CAF are present in
coactivator complexes required for ERa activity in yeast
and in human cells, respectively (61,62); thus interaction
with TDG could be involved in regulating the recruitment
of Gcn5 and P/CAF-containing coactivator complexes by nuc-
lear receptors, in a manner similar to that which we have
described here.

DNA repair is likely to be affected by chromatin structure
and to be regulated by chromatin remodeling complexes. Cer-
tainly, hyperacetylated nucleosomes facilitate enhanced
recognition of DNA lesions and their repair (63). Histone
H3 acetylation levels increase following UV-irradiation in
mammalian cells and the HAT activity of the mammalian
GCN5-containing TFTC complex is greater on nucleosomes
containing UV-irradiated DNA (64). Given that the TDG tyr-
osine repeat motif is found in very few human proteins and the
possible requirement of chromatin remodeling for DNA repair
by TDG, it would be interesting to determine whether with
GCN5 or P/CAF might be involved in facilitating DNA repair
by TDG through interactions mediated by the tyrosine repeat
motif. Certainly, the GCN5-containing STAGA complex can
associate with the UV-damage-DNA-binding protein DDB1
(65). Moreover, TDG associates with CBP/p300 and is a sub-
strate for acetylation by CBP, its acetylation regulating recruit-
ment of the APE1 endonuclease (52). It is therefore, not
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unreasonable to suppose that GCN5 also acetylates TDG and
thereby regulates DNA repair by TDG.

The significance of TDG interaction with transcription
factors and transcriptional coactivators

In vertebrate genomes the dinucleotide CpG is often found to
specify modifications leading to 50 methylation of the cytosine.
This is an important feature of gene regulation, but can be
corrupted by spontaneous deamination to thymine and this
deamination may contribute to as much as 30% of all germline
mutations, despite comprising only about 1% of the genome
(66–68). In this context TDG is responsible for initiating
correction of the T:G mismatches that arise at sites of 5-
methylcytosine deamination, but also for the repair of U:G
mismatches resulting from deamination of cytosines. Our
studies have highlighted the importance of another aspect
of TDG activity, namely interaction with transcription factors
such as ERa, leading to the recruitment of coactivators and the
subsequent activation of transcription. Such interactions may
be a general feature of transcriptional regulation and raise the
possibility that TDG would localize to gene promoters. This in
turn would allow TDG to interrogate and maintain local DNA
sequence integrity, including the CpG islands found in the
promoters of many genes. Such a function would have
great significance, as CpG islands are associated with about
one-half of all mammalian genes (69) and may be a major
feature in maintaining the stability and functionality of mam-
malian genomes. Transcription factors such as ERa could play
an important role in DNA repair by ‘sensing’ DNA damage at
transcriptionally important regions of the genome through
their ability to recruit DNA repair enzymes such as TDG.
Conversely, the involvement of TDG as a transcriptional
coactivator may form part of a signal for DNA integrity at
gene promoters.

It is now well recognized that DNA methylation is an
important feature of vertebrate gene regulation, where
methylation of CpG dinucleotide sequences in and around
gene promoters is often associated with gene silencing and
is a key epigenetic regulator of gene expression (70,71). How-
ever, it is also clear that reversal of this methylation state is
necessary for gene activation to occur. In this situation, the
exact nature of the demethylation mechanism is unclear,
although it has been suggested that such demethylation
could occur through the activity of base excision and repair
mechanisms. In this respect, it has been shown previously that
a DNA glycosylase, named 5-methylcytosine DNA glyc-
osylase (5-MCDG) copurifies with a DNA demethylation
activity in chicken embryos and liver, mouse myoblasts and
in HeLa cells (72–75). Further, it is clear that 5-MCDG is TDG
and that, in an experimental model of myoblast differentiation
featuring genome-wide demethylation, antisense-RNA to
TDG/5-MCDG inhibits the demethylation, whilst its overex-
pression correlates with demethylation of a reporter gene in a
human embryonic kidney cell line (76,77). Further, ERa
has been shown to promote the demethylase activity of 5-
MCDG in vitro (78) and longstanding observations show
that estrogen treatment results in the demethylation of chicken
vitellogenin genes in the liver (79,80). Therefore, TDG could
act to promote and/or help to maintain the demethylated status
of CpG dinucleotides in promoters of estrogen-responsive

genes through a process requiring chromatin remodeling/
modification, by facilitating the recruitment of transcriptional
coactivator complexes through direct interaction with p160
coactivators SRC1 and AIB1, as well as the reported interac-
tion with CBP/p300 (52). Clearly, a role for complexes con-
taining TDG and coactivators in the DNA demethylation and
chromatin remodeling associated with gene activation requires
further investigation.
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