Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

2,3,5-Tri-O-acetyl-1-(2-chloroethyl)- β -D-ribo-furanose

Edwin C. Constable, Catherine E. Housecroft,* Azad Mahmood, Markus Neuburger and Silvia Schaffner

Department of Chemistry, University of Basel, Spitalstrasse 51, CH 4056 Basel, Switzerland

Correspondence e-mail: catherine.housecroft@unibas.ch

Key indicators

Single-crystal X-ray study $T=173~\mathrm{K}$ Mean $\sigma(\mathrm{C-C})=0.002~\mathrm{\mathring{A}}$ R factor = 0.029 wR factor = 0.033 Data-to-parameter ratio = 14.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the crystal structure of the title compound, $C_{13}H_{19}ClO_8$, extensive intermolecular hydrogen bonding leads to a three-dimensional network, but the Cl substituent is not involved in these interactions.

Received 26 June 2006 Accepted 27 June 2006

Comment

We have recently prepared a series of 1-(2-haloethyl)-2,3,5-tri-O-acetyl- β -D-ribofuranose derivatives for use in the synthesis of ribose-functionalized 2,2'-bipyridine (Constable *et al.*, 2004) and 2,2':6',2''-terpyridine ligands. Crystals of 1-(2-chloroethyl)-2,3,5-tri-O-acetyl- β -D-ribofuranose, (I), were grown by freeze—thawing the colourless oil that was obtained after chromatographic purification of the compound.

Fig. 1 shows the molecular structure of (I). Bond distances and angles are unexceptional. The conformation of (I) is very similar to that found in polymorph B of 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose (Bombicz *et al.*, 2003; James & Stevens, 1973; Poppleton, 1976), and the conformations of the two molecules

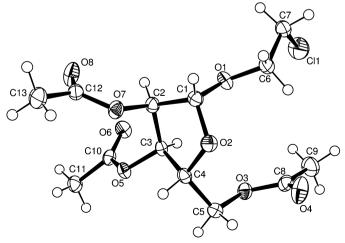


Figure 1
The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radii.

© 2006 International Union of Crystallography All rights reserved

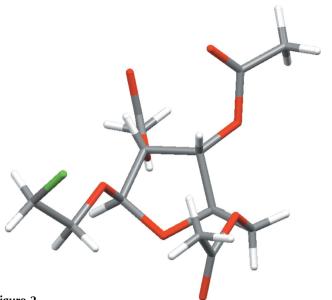
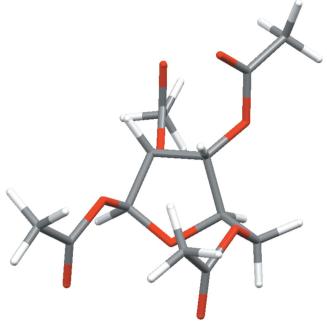


Figure 2
The conformation of compound (I).

are compared in Figs. 2 and 3. Both compounds crystallize in the non-centrosymmetric space group $P2_12_12_1$, with cell dimensions that are similar, suggesting similar packing. Two polymorphs of 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose exist (Bombicz *et al.*, 2003; Czugler *et al.*, 1981; James & Stevens, 1973; Patterson & Groshens, 1954; Poppleton, 1976) and the relative instablity of polymorph A has been attributed to extremely short $H \cdots H$ contacts (Bombicz *et al.*, 2003).


The molecule of (I) exhibits two short intramolecular $C-H\cdots O$ contacts $[C2-H21\cdots O8=2.25\ \mathring{A}$ and $C2\cdots O8=2.679\ (2)\ \mathring{A}$, and $C5-H51\cdots O4=2.26\ \mathring{A}$ and $C5\cdots O4=2.671\ (2)\ \mathring{A}]$. These are, however, non-directional ($C2-H21\cdots O8=106^\circ$ and $C5-H51\cdots O4=105^\circ$) (Desiraju & Steiner, 1999). Similar short contacts are observed in 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose. Intermolecular interactions involve $C-H\cdots O$ contacts (Table 2) and lead to the formation of an extensive network of interconnected molecules. The Cl substituent is not involved in any intermolecular interactions.

Experimental

The title compound was prepared as a colourless oil from 1,2,3,5-tri-O-acetyl- β -D-ribofuranose and 2-chloroethanol in the presence of SnCl₄ by a method previously described for the analogous reaction starting from arabinofuranose (Pathak *et al.*, 2001). Crystals were grown by repeatedly dipping a sample of the compound contained in a tube under high vacuum into liquid nitrogen.

Crystal data

Crystat data	
$C_{13}H_{19}ClO_8$	Z = 4
$M_r = 338.74$	$D_x = 1.465 \text{ Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation
a = 7.3407 (5) Å	$\mu = 0.29 \text{ mm}^{-1}$
b = 13.5532 (14) Å	T = 173 K
c = 15.4384 (9) Å	Block, colourless
$V = 1536.0 (2) \text{ Å}^3$	$0.28 \times 0.26 \times 0.22 \text{ mm}$

Figure 3 The conformation of polymorph B of 1,2,3,5-tetra-O-acetyl- β -D-ribofuranose.

Data collection

Nonius KappaCCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) $T_{\min} = 0.93, T_{\max} = 0.94$

46023 measured reflections 3896 independent reflections 2801 reflections with $I > 3\sigma(I)$ $R_{\rm int} = 0.075$ $\theta_{\rm max} = 28.5^{\circ}$

Refinement

Refinement on F $R[F > 2\sigma(F)] = 0.029$ wR(F) = 0.033 S = 1.072801 reflections 200 parameters H-atom parameters constrained $w = [1 - (F_0 - F_c)^2/36\sigma^2(F)]^2/$ $[2.46T_o(x) - 0.945T_1(x)$ $+ 1.98T_2(x) - 0.132T_3(x)$ + $0.288T_4(x)$], where T_i are the Chebychev polynomials and $x = F_c/F_{\rm max}$ (Prince, 1982; Watkin, 1994) (Δ/σ)_{max} = 0.001 $\Delta\rho_{\rm max} = 0.20$ e Å⁻³ $\Delta\rho_{\rm min} = -0.18$ e Å⁻³ Absolute structure: Flack (1983), with 1663 Friedel pairs Flack parameter: -0.01 (6)

Table 1 Selected geometric parameters (Å, °).

Cl1-C7	1.7847 (19)	C3-C4	1.516 (2)
C1-C2	1.513 (2)	C3-O5	1.428 (2)
C1-O1	1.397 (2)	C4-C5	1.506(2)
C1-O2	1.421(2)	C4-O2	1.428 (2)
C2-C3	1.515 (2)	C5-O3	1.436 (2)
C2-O7	1.435 (2)		
C2-C1-O1	106.34 (13)	C2-C3-O5	114.33 (13)
C2-C1-O2	105.66 (14)	C4-C3-O5	108.65 (13)
O1 - C1 - O2	111.71 (13)	C3-C4-C5	115.53 (14)
C1-C2-C3	100.45 (14)	C3-C4-O2	104.72 (13)
C1-C2-O7	106.62 (13)	C5-C4-O2	110.94 (13)
C3-C2-O7	109.57 (13)	C4-O2-C1	110.50 (12)
C2-C3-C4	102.56 (13)		

Table 2 Intermolecular $C-H\cdots O$ interactions $(\mathring{A}, \,^{\circ})$ in (I).

	Н∙∙∙О	$C \cdot \cdot \cdot O$	Н-С· · · О
C1-H11···O4 ⁱ	2.56	3.453 (2)	157
C9−H92···O6 ⁱⁱ	2.55	3.447 (3)	156
C11-H113···O5 ⁱⁱⁱ	2.48	3.428 (2)	168
C7−H72···O4 ^{iv}	2.61	3.391 (3)	139
$C6-H61\cdots O2^{i}$	2.71	3.249 (2)	117

Symmetry codes: (i) $-\frac{1}{2} + x, \frac{3}{2} - y, 2 - z$; (ii) $-x, \frac{1}{2} + y, \frac{3}{2} - z$; (iii) $-\frac{1}{2} + x, \frac{1}{2} - y, 2 - z$; (iv) x - 1, y, z.

All H atoms were treated as riding atoms, with C-H = 0.96 Å and $U_{\rm iso}({\rm H})$ between $1.0 U_{\rm eq}({\rm C})$ and $1.2 U_{\rm eq}({\rm C})$.

Data collection: *COLLECT* (Nonius, 2001); cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *CRYSTALS*.

We thank the Swiss National Science Foundation and the University of Basel for financial support.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). *J. Appl. Cryst.* 27, 435.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Bombicz, P., Czugler, M., Tellgren, R. & Kálmán, A. (2003). Angew. Chem. Int. Ed. 42, 1957–1960.

Constable, E. C., Frantz, R., Housecroft, C. E., Lacour, J. & Mahmood, A. (2004). *Inorg. Chem.* 43, 4817–4819.

Czugler, M., Kálmán, A., Kovács, J. & Pintér, I. (1981). Acta Cryst. B37, 172–177.

Desiraju, G. R. & Steiner, T. (1999). *The Weak Hydrogen Bond*, pp. 58–62. Oxford University Press.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

James, V. J. & Stevens, J. D. (1973). Cryst. Struct. Commun. 2, 609-612.

Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Pathak, A. K., Pathak, V., Bansal, N., Maddry, J. A. & Reynolds, R. C. (2001). Tetrahedron Lett. 42, 979–982.

Patterson, A. L. & Groshens, B. P. (1954). Nature, 173, 398-398.

Poppleton, B. J. (1976). Acta Cryst. B32, 2702-2705.

Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, p. 113. New York: Springer-Verlag.

Watkin, D. (1994). Acta Cryst. A50, 411-437.