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Summary 

 

Arbuscular mycorrhiza is an ancient symbiosis between the majority of land plants and fungi 

from the phylum Glomeromycota. Arbuscular mycorrhizal fungi (AMF) colonize plant roots 

and contribute to the mineral nutrient uptake of the hosts in exchange for carbohydrates. AMF 

species diversity and identity was reported to have a decisive influence on the composition 

and productivity of natural plant communities. Only around 200 glomeromycotan species 

described so far were thought to colonize the majority of higher plant species and thus, their 

host specificity was thought to be very low. 

In this thesis, molecular methods were used to investigate ecological aspects of root 

colonizing AMF. The community composition of these fungi was analyzed in two plant 

species-rich grasslands facing different environmental conditions and harboring different 

plant communities. One site consisting of two meadows located close to each other was 

situated in the upper montane zone of the Swiss Alps. The other was located in the lowland in 

France on the edge of the Jura mountains. The roots were analyzed using AMF-specific 

nested PCR, RFLP screening and sequencing of rDNA small subunit and internal transcribed 

spacer regions. AMF sequences were analyzed phylogenetically and used to define 

monophyletic sequence types.  

Overall, 27 different AMF sequence types were detected in the root samples from both 

field sites. The overlap between the AMF communities in the alpine and lowland site was 

relatively small - they shared just six sequence types. These results indicate strong 

geographical differences in the AMF community composition, reflecting different 

environmental conditions and plant species communities in each site. 

The question was adressed, whether different host plant species co-occurring in the same 

area host distinct or similar AMF communities. Gentiana verna, G. acaulis and Trifolium spp. 

growing in two alpine species-rich meadows harbored significantly different AMF 

communities, whereas the differences between the two sites were negligible. These results 

indicate that within a relatively small area with similar soil and climatic conditions, the host 

plant species can have a major influence on the AMF communities within the roots. In these 

alpine sites, there was also a focus on green plants from the family Gentianaceae. In contrast 

to their mycoheterotrophic relatives, the green gentians did not show a high level of 

specificity towards AMF. The plants sampled harbored AMF communities comprising 

multiple phylotypes from different fungal lineages.  

In the lowland site – a calcareous grassland – different culturing methods and their 

influence on the AMF community composition in the roots were adressed. Four plant species 

were sampled i) directly in the field, ii) in a bait plant bioassay conducted directly in that 
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grassland and iii) in a greenhouse trap experiment using soil and a transplanted whole plant 

from that grassland as inoculum. The community composition in their roots was strongly 

influenced by the experimental approach, with additional influence of cultivation duration, 

substrate and host plant species in some experiments.  

Some fungal phylotypes, e.g. Glomus mosseae and several members of Glomus group B, 

appeared predominantly in the greenhouse experiment or in bait plants. These phylotypes can 

be considered r strategists, rapidly colonizing uncolonized ruderal habitats in early 

successional stages of the fungal community. Other phylotypes as Glomus badium and 

GLOM-A16 were detected almost exclusively in roots sampled from plants naturally growing 

in the grassland or from bait plants exposed in the field, indicating that they preferentially 

occur in late successional stages of fungal communities and thus represent the K strategy. The 

only phylotype found with high frequency in all three experimental approaches as well as in 

the alpine site was GLOM A-1 (Glomus intraradices), which is assumed to be a generalist.  

These ecological strategies of different AMF species or phylotypes should be considered 

in AMF experimental work. In greenhouse trap experiments it is difficult to establish a root-

colonizing AMF community reflecting the diversity of these fungi in the field roots, because 

fungal succession in such artificial systems may bias the results. However, the field bait plant 

approach might be a convenient way to study the influence of different environmental factors 

on AMF community composition directly under the field conditions.  

Finally, the co-existence of the Glomeromycota in the root samples with fungi from the 

basidiomycotan order Sebacinales was addressed. These fungi are widely distributed and 

known to form various types of presumable mycorrhizal associations of different morphology 

(ecto-, ectendo-, orchid, ericoid, jungermannoid) with a broad range of host plant species. 

However, their presence in plants forming arbuscular mycorrhiza has not been reported yet. 

Therefore, the root samples originating from the two species-rich grasslands mentioned above 

were analyzed with Sebacinales-specific primers for the D1/D2 region of the nuclear 28S 

rDNA subunit. Fungi from the order Sebacinales were present in the majority of the root 

samples from both sites, where they co-existed with the Glomeromycota. In agreement with 

studies targeting the Sebacinales in ericoid plants, the phylogenetic analysis of sebacinoid 

sequences from our samples did not reveal any patterns according to their host plant species 

or geographical origin.  
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Chapter 1 

 

General introduction 

 

1.1. Mycorrhiza – general definition and its main types 

 

Mycorrhiza can be defined as a mutualistic symbiotic association between roots and some 

groups of soil fungi. Mycorrhizal associations have been found between fungal hyphae and 

the thalli of many bryophytes, as well as the roots of vascular plants (Smith and Read 1997). 

In the mycorrhizal relationship, the fungus colonizes the roots during periods of the active 

growth, and a new organ, the “mycorrhiza”, is formed. The host plant receives mineral 
nutrients from the fungus while the fungus obtains from its plant partner 

photosynthetically derived carbon compounds. Indeed, mycorrhizas, not roots, are the 

main organs of nutrient uptake by most terrestrial plants. Mycorrhiza can exist in many forms, 

its morphology is determined by the characteristics of each partner involved and by the 

specific plant-fungus combination.  

Mycorrhizas are classified morphologically according to the fungal growth and 

structures in the roots. The ectomycorrhizal symbiosis in which fungal hyphae grow in the 

intercellular spaces but do not enter the plant cells is mainly formed between trees (e.g. 

members of Pinaceae, Fagaceae, Myrtaceae, Salicaceae) and fungi belonging to the phyla 

Basidiomycota and Ascomycota. The plant roots get shorter, thicker and highly branched. 

The fungus forms a hyphal sheath on the root surface and an extraradical mycelium to acquire 

water and mineral nutrients in the soil. The nutrient exchange between the plant root and the 

fungus takes place in a hyphal network, the Hartig net, in the intercellular spaces of the outer 

root cortex layers (Smith and Read 1997).  

Arbuscular mycorrhiza (AM) is characterized by the inter- and intracellular growth of 

the fungus. It is formed by fungi from the phylum Glomeromycota (Schüssler et al. 2001) and 

mostly herbaceous plant species and tropical trees. The nutrient exchange unit is localized 

intracellularly, often in the form of a tree-like structure called arbuscule (for details see 

Chapters 1.2.1. and 1.2.3.). Ectendomycorrhiza is a morphologically intermediate type 

between the ecto- and arbuscular mycorrhiza. Further, several special types of mycorrhiza 

were described and named after the plant taxa they occur in: orchid, ericoid, monotropoid and 

arbutoid mycorrhizae (Smith and Read 1997).  

Interestingly, several predominantly nonmycorrhizal taxa developed during evolution 

(members of e.g. Brassicaceae, Chenopodiaceae, Caryophyllaceae), but this is nevertheless a 

relatively rare phenomenon (Harley and Harley 1987). 
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1.2. Arbuscular mycorrhiza - its morphology and life cycle 

 

1.2.1. General features of arbuscular mycorrhiza  

Arbuscular mycorrhiza is an ancient symbiosis thought to date back to the Ordovician, 460 

million years ago, when the first plants were colonizing the land (Redecker et al. 2000). It is 

estimated to occur in about 80% of plant species (Bonfante and Perotto 1995). Arbuscular 

mycorrhizal fungi (AMF) colonize plant roots, produce an extensive network of extraradical 

mycelium in the soil and as mentioned above, contribute to the mineral nutrient uptake of the 

hosts in exchange for carbohydrates (Smith and Read 1997). 

Arbuscular mycorrhizal fungi are present in most terrestrial ecosystems and crop 

production systems and mediate plant root and soil interactions. The roots are regularly 

colonized by AMF and in most habitats it is almost impossible to find non-mycorrhizal 

individuals. AMF are asexual obligate symbionts, i.e. they cannot grow without their plant 

hosts. They form a coenocytic mycelium  - i.e. it lacks hyphal septa. 

 

1.2.2. The AMF life cycle 

AMF spores (diameter 40-800 µm) are commonly present in soils. They possess layered walls 

and contain several hundreds to thousands of nuclei (Becard and Pfeffer 1993). Under 

favorable environmental conditions, the spores germinate and the hyphae colonize susceptible 

roots. AMF hyphal growth and branching in the rhizosphere of host plants can be increased 

by strigolactones produced as branching factors in root exudates, whereas non-host plants do 

not have such effects on the hyphae (Smith et al. 2006). Similar to the branching factors, 

which are produced by plants as a compatibility signal for the fungus, the branched fungal 

hyphae secrete a diffusible signal to the roots (Kosuta et al. 2003). Thus, a crosstalk between 

the plant and the fungus is established. 

After the recognition of the host plant root, the hyphae form appressoria on the root 

epidermis (the root hair or other epidermal cell) and excrete small amounts of cell wall 

degrading enzymes such as pectinase and cellulase. Nevertheless, the low rate of production 

of these enzymes suggests that AMF penetrate the root surface mostly by mechanical force 

(Bonfante and Perotto 1995). The entry of the fungus is assisted by the plant by the 

establishment of a special cytoskeletal arrangement, the prepenetration apparatus (Genre et al. 

2005). The appressorium formation is followed by hyphal penetration of the cell lumen and 

proliferation of the intraradical hyphae in the upper cell layers of the root cortex. 

Furthermore, the hyphae enter the middle and inner cortex of the root. However, the 
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fungus never enters meristems or vascular cylinders, perhaps because of its inability to 

degrade suberin and lignin in the endodermal cell walls (Bonfante and Perotto 1995). 

Although the fungal hyphae may grow inside the host cells, they always stay surrounded by 

the intact plasma membrane of the plant host. In the deeper cortical layers, the fungal hyphae 

may form arbuscules - a highly branched tree-like structures - in the plant cells. A plant 

periarbuscular membrane surrounds the thin fungal branches of the arbuscules forming an 

Fig. 1   Structures of arbuscular mycorrhiza. From 

http://www.ffp.csiro.au/research/mycorrhiza/method.html 
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Fig. 3 The Paris type of AM. 

Root of Gentiana acaulis 

stained with trypan blue, 

200x magnified. The star 

shows the intracellular 

hyphal coils, the triangle 

indicates the central 

cylinder and the circle 

shows the rhizodermis. 

Fig. 2 The Arum type of AM. Root of Inula 
salicina stained with trypan blue, 200x 

magnified. The star shows the 

intercellular hyphae with intracellular 

branches forming arbuscules, the 

triangle indicates the central cylinder 

and the circle shows the rhizodermis. 

extremely large contact surface between the two symbionts. Here, the nutrients are transferred 

between the plant and the fungus, mediated through a series of specific proteins (Ferrol et al. 

2002). For further details see Chapter 1.4.1. 

Some AMF taxa (families Glomeraceae and Acaulosporaceae according to 

http://invam.caf.wvu.edu/fungi/taxonomy/classification.htm) form intra- or intercellular 

vesicles in the host plant roots. Vesicles are lipid-filled storage structures with an ovoid 

shape.  

Once the fungal colonization is established in the root, extensive growth of the 

extraradical mycelium (ERM) begins. Its finely branched fans (2 µm according to Friese and 

Allen (1991) are well adapted to the exploration of soil pores, mineral nutrient uptake and 

association with soil particles and thus stabilization of soil aggregates. The ERM forms a 

complex network, which can link roots of plants of the same or different species (Smith and 

Read 1997). The life cycle of the AMF is completed by the formation of spores or sporocarps 

on the ERM or rarely inside the roots.  

 

1.2.3. Paris and Arum type of arbuscular mycorrhiza  

Two types of AM symbiosis were defined according to the morphology of the intraradical 

colonization (Gallaud 1905). They were named after the plants in which they were first 

described: the Arum and the Paris type.  
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In the Arum type (Fig. 2), the AMF produce long intercellular hyphae whose branches 

form typical arbuscules inside the cortical cells. Despite their central role in the nutrient 

exchange, arbuscules have a relatively short life. They collapse and degrade already after a 

few days or weeks, leaving the host plant cell intact (Dickson and Smith 2001). The Paris 

type (Fig. 3) is characterized by predominantly intracellular hyphal growth and formation of 

extensive intracellular hyphal swellings, coils and/or arbusculate coils in the root cortex 

(Smith and Smith 1997). In addition to arbuscules, coils are also believed to participate in the 

nutrient transfer between the symbionts. Both arbuscules and coils increase the contact area 

between the fungus and the plant cell (Smith and Read 1997). 

The two AM types differ not only in their morphology, but also in the kinetics of root 

colonization. The development of Paris type colonization within the root is much slower than 

in the Arum type (Azcon- Aguilar et al. 1994). The type of AMF colonization seems to be 

largely determined by the host plant genotype, as the same AMF species known to form the 

Arum type in some host plant species produces the Paris type in other hosts (Demuth and 

Weber 1990; Sýkorová et al. 2003; Ahulu et al. 2006).  

 

1.3. Genetics of AMF 

 

The glomeromycotan fungi are thought to reproduce clonally (asexually) by spore 

formation or by formation of coenocytic (multinucleate) hyphal networks. Studies using 

molecular marker genes have detected no genetic recombination or only low levels (Kuhn 

et al. 2001). 

Sanders et al. (2003) reported that there is an unusual level of within-individual 

genetic diversity. Different variants of rDNA (with up to 24.1% variation among ITS 

sequences) as well as protein-coding genes may co-exist within a single AMF spore (Sanders 

et al. 1995; Kuhn et al. 2001; Jansa et al. 2002b). There are conflicting reports on the possible 

cause of this high diversity and on the question whether the nuclei in the mycelium and spores 

of one AMF organism are genetically identical or different. Pawlowska and Taylor (2004) 

proposed a homokaryotic system with intranuclear rDNA polymorphism, whereas Hijri and 

Sanders (2005) presented evidence for a heterokaryotic system with genetically different 

nuclei.  

Hijri and Sanders (2005) also addressed the question of polyploidy as a source of 

genetic and nuclear DNA content variation in AMF as proposed by Pawlowska and 

Taylor (2004). They provided evidence that AMF even with large nuclear DNA contents 

are haploid. Further, these authors proposed that the nuclei are genetically different and 

that probably not all of them are inherited by every spore. However, the frequent 

anastomoses among hyphae of the same species or isolate (de la Providencia et al. 2005) 
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were suggested to mediate the re-establishment of the genome diversity of the fungus. At 

the moment, the question of genetic structure of AMF is a topic of intensive discussions. 

Further investigations are necessary to understand the mechanisms how these genetic 

features contribute to the ecology, evolution and symbiotic efficiency of the 

Glomeromycota.  

 

1.4. Beneficial features of arbuscular mycorrhiza 

 

1.4.1. Nutrient exchange between the symbionts  

The symbiosis between AMF and autotrophic plants is generally regarded as mutualistic. 

With the exception of few achlorophyllous species, AM host plants are autotrophic and, 

although normally colonized by mycorrhizal fungi in the field, they are usually capable of 

satisfactory growth in the absence of mycorrhizal colonization, provided that mineral nutrient 

supplies are adequate. In contrast, the glomeromycotan fungi are obligate symbionts, as their 

extraradical hyphae are unable to take up carbohydrates (Pfeffer et al. 1999). Thus, they 

depend on photosynthates supplied by the plant and utilize a considerable proportion of its 

assimilated C (probably 4-20% of net photosynthate; Jakobsen and Rosendahl 1990).  

It is predicted that phosphate and carbon transfer occur at the arbuscule/cortical cell 
interface, although direct evidence for carbon transfer at this location is lacking (Javot et 

al. 2007). The assimilate transfer includes sucrose breakdown into glucose and fructose, their 

export across the plant plasma membrane and active uptake by hexose transporters across the 

fungal plasma membrane, driven by an increased H
+
ATPase activity at the arbuscular 

membrane (Gianinazzi-Pearson et al. 2000). H
+
-ATPases are assumed to drive the 

transmembrane proton gradient that is required for some of the transmembrane transporter 

activities and are responsible for an acidic pH in the periarbuscular space. The only 
monosaccharide transporter of the Glomeromycota described so far has been found in 
Geosiphon pyriforme (Schüssler et al. 2006). This fungus is known to form bladders but 

not arbuscules (see Chapter 1.5.1.). In the fungal cytosol, the hexoses are then converted 

into triacylglycerides, amino acids or incorporated into glycogen pools. The major storage 

forms of carbon in spores and hyphae are lipids, trehalose and glycogen (Pfeffer et al. 1999). 

Hyphae from colonized roots extend into the soil and aid root hairs in absorbing water 

and mineral nutrients. Phosphorus is a major limiting nutrient in many ecosystems and 

enhanced phosphorus supply by AMF plays a key role in ecosystem functioning (e.g. 

Klironomos et al. 2000). Phosphate is taken up from the soil by AMF through fungal 

phosphate transporters. Within the extraradical fungal hyphae, phosphate is condensed to 

polyphosphate, and transported into the intraradical hyphae. In the arbuscules, polyphosphate 
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is hydrolysed by enhanced phosphatase activity and released into the periarbuscular space 

(Ohtomo and Saito 2005). Phosphate is then taken up by the plant through a transmembrane 

transporter, such as the Medicago truncatula MtPt4, located in the periarbuscular membrane 

(Harrison et al. 2002; Javot et al. 2007). Similarly to carbon, the uptake of phosphate and 

other nutrients by arbuscular plant cells may be linked to the high plant and fungal H
+
-

ATPase activity observed at the periarbuscular membrane (Gianinazzi-Pearson et al. 2000).  

Although most of the nutrient transfer between the two symbiotic partners takes place 

in the arbuscules, they do not seem to be the sole place of the nutrient exchange. It is almost 

certain that the nutrient transfer may additionally occur at the intracellular hyphal coils and 

swellings, as many plant species form the Paris type of mycorrhiza, which may lack the 

arbuscules (see Chapter 1.2.3.; Smith and Smith 1997). 

 

1.4.2. Other beneficial features of arbuscular mycorrhiza 

AM associations have been shown to benefit the plants by increasing mineral nutrients 

(mainly phosphorus) and water absorption; root health and longevity (resistance to pathogens 

and insect herbivores); tolerance to drought, high soil temperature, toxic heavy metals, 

extremes in pH and transplant shock (Smith and Read 1997). Many studies have shown that 

mycorrhizal colonization is followed by a considerable stimulation of growth (Smith and 

Read 1997). However, it was demonstrated that the impacts of mycorrhizal association differ 

according to the plant species and fungus involved; there is a range of plant growth responses 

from strongly positive, through neutral to negative (Francis and Read 1995). 

Hyphae of mycorrhizal fungi are important stabilizing agents in the soil. In many soils, 

the roots and hyphae together with other organic components play a major role in stabilisation 

of soil aggregates (Schreiner and Bethlenfalvay 1995), erosion control and water management 

(Piotrowski et al. 2004). Moreover, the plants in their communities are functionally 

interconnected with the mycelial network of AMF. The potential importance of these hyphal 

links is discussed in the Chapter 1.6.2. A healthy AM community with intact soil structure is 

of high importance for the agriculture, as symbiotic plants achieve higher biomass and crop 

yields particularly in nutrient poor soils (Klironomos et al. 2000). The AMF colonization may 

also lead to an increased overall plant fitness and resistance against nematodes or pathogens, 

which can, to a certain extent, alleviate the necessity of a high input of agrochemicals in the 

agricultural practice. 
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1.5. Identification, phylogeny, systematics and diversity of the Glomeromycota 

 

1.5.1. Systematics and phylogeny of the Glomeromycota 

Previously, AMF were placed into the order Glomales and belonged to the phylum 

Zygomycota (Morton and Benny 1990). However, based on their obligate symbiotic habit, the 

apparent lack of zygospores (i.e. spore produced through the conjugation of specialised 

hyphae during the sexual reproduction) and the rDNA phylogeny, Schüssler et al. (2001) 

defined the phylum Glomeromycota as a sister clade of Basidio- and Ascomycota. 

 Glomeromycota currently comprise approximately 200 described species distributed 

among ten genera, most of which were defined primarily based on the morphology of their 

spores or spore-bearing structures (http://www.lrz-muenchen.de/~schuessler/amphylo/). The 

spores can be analyzed under the microscope, certain spore wall structures can be stained. 

The way the spore is formed on the hypha ("mode of spore formation") has been important to 

define genera and families; and the number of the walls, their layer structure as well as 

ornamentation to distinguish species (Morton 1988). Although these characteristics are 

specific, they can differ according to the environmental conditions and on the stage of the 

spore; aged, dry or decaying spores may look different, even if they belong to the same 

species. Moreover, it is quite difficult and requires expert knowledge; to distinguish and 

classify the spores by their morphology. 

Recently, DNA sequences have also been used to describe AMF taxa and their 

phylogenetic relationships (e.g. Schwarzott et al. 2001; Redecker and Raab 2007), for details 

see Chapter 1.5.2.). Molecular methods allow the identification of spores as well as the AMF 

community currently colonizing plant roots or growing in the soil at any given time. 

However, the possible sequence variation within individuals (see Chapter 1.3.) makes it 

difficult to interpret molecular community data when sequences are obtained from colonized 

plant roots. Hence, a conservative approach in the evaluation of phylogenetic analyses is 

advisable; e.g. by defining a monophyletic well supported sequence cluster as an AMF 

phylotype (i.e. sequence type).  

At the present time, the phylogeny of all genera of AMF is based entirely on analyses 

of the nuclear small subunit RNA gene. Although additional genes have begun to be 

sequenced from some taxa (e.g. Helgason et al. 2003; Corradi et al. 2004; Redecker and Raab 

2007), phylogenetic hypotheses based on multilocus DNA sequence data have yet to be 

incorporated into the AMF classification. 
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Four orders, containing eight families and ten genera have been delimited within the 

Glomeromycota (Figs. 4,5). The largest genus within this phylum, Glomus, as originally 

defined by the spore morphology and formation was revealed to be polyphyletic 

according to molecular data (Schwarzott et al. 2001). Therefore, this genus was divided 

into the following five genera: Glomus, Paraglomus, Archaeospora (Morton and 

Redecker 2001), Pacispora (Oehl and Sieverding 2004) and Diversispora (Walker et al. 

2004). The remaining species of the genus Glomus are further divided into three clades A, 

B and C (Schwarzott et al. 2001). Further glomeromycotan genera are Scutellospora and 

Gigaspora, which form the family Gigasporaceae; and Acaulospora and Entrophospora, 

belonging previously to the family Acaulosporaceae (Fig. 5). However, just recently, the 

genera Archaeospora and Entrophospora have been revised by several groups of authors 

(Sieverding and Oehl 2006; Spain et al. 2006; Walker et al. 2007).  Based on the mode of 

spore formation, spore wall structures, trypan blue staining intensity of the fungal intraradical 

structures as well as DNA analyses, two new families have been established: 

Appendicisporaceae and Entrophosporaceae. However, in the following chapters, old 

Fig. 4 Phylogenetic tree implementing recent changes in the taxonomy of the 

Glomeromycota. The tree shows the glomeromycotan taxa before the 

establishment of the families Appendicisporaceae and Entrophosporaceae. From 

http://www.lrz-muenchen.de/~schuessler/amphylo/. 
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nomenclature will be retained, because these changes happened only recently. 

 Glomus groups A and B form a monophyletic clade (Fig. 5). Their spores are formed 

by budding from a hyphal tip and typically have a layered wall structure. The sporogenic 

hyphae often remain attached to the mature spore. This glomoid mode of spore formation 

occurs in all other glomeromycotean families with exception of the Acaulosporaceae, 

Entrophosporaceae and                                Gigasporaceae                                   

(http://invam.caf.wvu.edu/fungi/taxonomy/classification.htm). Members of the Glomus group 

A are the dominant and most diverse AMF in many field sites (e.g. Öpik et al. 2006). This 

group also includes the ubiquitous species Glomus intraradices. Glomus group B contains 

several AMF species like Glomus etunicatum, Glomus claroideum and Glomus lamellosum, 

which are difficult to distinguish (Rodriguez et al. 2005). Glomus group C (recently defined 

as a new family Diversisporaceae; Walker et al. (2004) is more closely related to the 

Acaulosporaceae than to Glomus groups A and B based on phylogenies of nuclear-encoded 

ribosomal genes (Schwarzott et al. 2001) and also contains tropical species forming large 

sporocarps, e.g. Glomus fulvum (Redecker et al. 2007).  

Fig. 5  Phylogenetic tree based on analysis of ribosomal small subunit sequences. Glomus 
subgroups as defined by Schwarzott et al. (2001). The tree shows the 

glomeromycotan taxa before the establishment of the families Appendicisporaceae 

and Entrophosporaceae. The boxes on the right hand side show the delimitation of 

glomeromycotan families or subgroups and the mode of the spore formation in each 

group. Tree by D. Redecker, unpublished. 
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The Acaulosporaceae form spores laterally next to “sporiferous saccules”, (Fig. 5) 

which collapse or completely disappear after the spore maturation. A germ tube of the 

Acaulosporaceae emerges from a spherical "germination orb".  
The Gigasporaceae do not form vesicles within the roots but form so-called “auxiliary 

cells” on the extraradical mycelium (Fig. 1). Their spores are are generally larger than 200 

µm in diameter at maturity and are formed from a morphologically specialized bulbous 

sporogenous cell formed terminally on a fertile hypha 

(http://invam.caf.wvu.edu/fungi/taxonomy/classification.htm). The genus Scutellospora 

possesses a “germination shield”, a membraneous structure that is used during the spore 

germination to penetrate the spore wall. In contrast, the genus Gigaspora lacks this 

germination shield and as well as the flexible inner spore wall.  

Pacispora species form spores terminally on the hyphae like members of the genus 

Glomus but have flexible inner walls and germinate by means of a germination shield 

(Walker et al. 2004). The genus Pacispora was recently established by Oehl and Sieverding 

(2004). 

The Archaeosporaceae and Paraglomeraceae are thought to be the basal members of 

the Glomeromycota. This conclusion is based on phylogenetic studies of the nuclear rDNA by 

Morton and Redecker (2001) and the possession of unique fatty acids which could not be 

found in other glomeromycotan fungi (Graham et al. 1995). Their intraradical structures stain 

very faintly and they do not seem to form vesicles. Some members of the Archaeosporaceae 

form dimorphic spores – the acaulosporoid type formed similarly to the Acaulospora on the 

neck of a sporiferous saccule that is formed terminally on a fertile hypha, and the glomoid 

type (Spain et al. 2006). Paraglomeraceae form their spores like members of the genus 

Glomus.  

The new family Appendicisporaceae contains e.g. Appendicispora gerdemanni, Ap. 

appendicula, Ap. fennica, which were tranferred from the family Archaeosporaceae. 

Appendicispora is a dimorphic genus, forming both acaulosporoid and glomoid spores. This 

genus may form vesicles in the roots and the fungal intraradical structures stain pale with 

trypan blue (Sieverding and Oehl 2006; Walker et al. 2007).  

Geosiphon pyriformis is a glomeromycotan species belonging to the order 

Archaeosporales. It is the only fungus in the Glomeromycota currently known to form a 

symbiosis with a cyanobacterium: it produces bladders that harbor symbiotic Nostoc 

punctiforme (Schüssler et al. 1994). Despite its different morphology and life strategy, 

molecular phylogenetic analysis has shown that Geosiphon is a member of the 

Glomeromycota (Schwarzott et al. 2001). 



Chapter 1: General introduction 

 
 

 14 

1.5.2. Molecular identification of AMF using PCR-based techniques 

Molecular methods enable the identification of AMF in the host plant roots or directly in the 

soil. However, as the Glomeromycota are obligate symbionts, it is difficult or even impossible 

to obtain their pure biomass, which is necessary for the development of molecular markers. 

Only some AMF can be cultivated in sterile conditions using transformed plant roots (Fortin 

et al. 2002), others in non-sterile greenhouse pot cultures (e.g. Oehl et al. 2005b) and others 

are probably non-cultivable or non-sporulating at all. AMF spores or sporocarps, which are 

the biggest separable and distinguishable units of the fungal tissue, usually host numerous 

non-glomeromycotan organisms like other fungi or bacteria (Hijri et al. 2002) if they 

originate from pot cultures or the field. PCR-based methods using AMF-specific primers 

enable the amplification even of very small amounts of template DNA from the fungi 

growing in the soil or roots. The specificity of the primers is essential, as a single root or soil 

sample may be simultaneously colonized by glomeromycotan fungi as well as by numerous 

fungal pathogens and saprophytes.  

During the past ten years, nuclear-encoded ribosomal DNA (rDNA) has been well 

established for molecular identification and phylogeny of AMF. These genes are present in 

multiple copies and contain conserved coding (small subunit - SSU and large subunit - LSU) 

as well as variable non-coding parts (internal transcribed spacers - ITS). Thus, they are useful 

to distinguish taxa at many different levels (Redecker 2006). The ITS region evolves faster 

than the conserved regions and therefore provides more information about close relationships, 

whereas the conserved regions enable primer construction and taxa resolution on the genus 

and family level. A comprehensive molecular phylogeny has been based largely on sequences 

of the small subunit (18S) rDNA, as these sequences were available first (Simon et al. 1993).  

Different authors have tried to develop AMF-specific primers (Fig. 6) targeting 

different regions of the small subunit of the rDNA (18S). The first primer designed to be 

AMF-specific, the VANS1 primer for the 5’ end of the SSU (Simon et al. 1992), does not 

amplify all glomeromycotan lineages (Clapp et al. 1995). Moreover, its targeted region is not 

variable enough to distinguish taxa and amplification problems appeared when it was used for 

field root samples (Clapp et al. 1999). Helgason et al. (1998) designed the AM1 primer, 

which in combination with the universal primer NS31 amplifies the variable central region of 

the SSU. This primer combination is also widely used in field studies (Öpik et al. 2006). 

However, it does not amplify Archaeosporaceae and Paraglomeraceae and neither Glomus 

group B. Other authors constructed primers targeting the LSU of rDNA (Kjoller and 

Rosendahl 2000; Gollotte et al. 2004). Similarly to the AM1/NS31 primer pair, these primers 

also amplify only a subset of the glomeromycotan taxa. Redecker (2000) designed a primer 

set for the 3’ end of the SSU and ITS regions allowing to detect seven genera of the 
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Glomeromycota including Archaeosporaceae and Paraglomeraceae, which is the largest 

possible portion of taxon diversity recognized so far. An interesting approach was developed 

by Renker et al. (2003), who selected for glomeromycotan PCR products by a restriction 

digest with AluI. As most AMF lacked the target site for this enzyme in the IST region, they 

were amplified preferentially.  

Usually, the PCR products obtained by the primer combinations mentioned above have 

to be cloned and sequenced, as many different AMF taxa may be present in a single root 

sample and many different variants of the same gene can be present in a single spore. For 

screening of the clones, different techniques may be used: restriction fragment length 

polymorphism (RFLP; Helgason et al. 1999), single strand conformation polymorphism 

(SSCP; Kjoller and Rosendahl 2000) and denaturing gradient gel electrophoresis (DGGE; de 

Souza et al. 2004). A useful approach to fingerprint the AMF community in large numbers of 

samples without the necessity of cloning and sequencing seems to be t-RFLP (terminal 

restriction fragment length polymorphism; Mummey and Rillig 2006; Lekberg et al. 2007). 

However, this approach may be biased by the impossibility of detection of the non-specific 

(non-AMF) PCR amplicons of used primers. 

Some authors use the relative numbers of clones corresponding to different sequence 

types (definition see Chapter 1.5.1.) as a measure of the relative abundance of these sequence 

types in the roots (Helgason et al. 1999). This method is controversial, as it assumes equally 

efficient amplification and proportional cloning of all taxa. 

 

1.5.3. Methods to assess AMF diversity – their pros-and-cons 

The diversity of arbuscular mycorrhizal fungi at a given field site can be evaluated using 

either i) fungal spores originating directly from the field, ii) fungal spores produced in 

Fig. 6  Ribosomal DNA structure and annealing sites of different primers used in 

AMF community studies. In red AMF-specific primers, in white universal 

primers 
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greenhouse trap cultures with field soil and „universal“ host plant species, iii) fungal 

mycelium growing in the soil or iv) intraradical fungal mycelium.  

The trap culture approach is commonly used to cultivate and harvest healthy spores 

from a field using “universal host plants” (e.g. Plantago lanceolata, Trifolium pratense, Zea 

mays, Allium porrum) inoculated with field soil in greenhouse pot cultures. It is known that 

this approach does not necessarily reveal the same community of AMF species as the direct 

analysis of spores in the field (Jansa et al. 2002a; Oehl et al. 2003). Similarly, a strong 

difference between the AMF community composition in the roots from an agricultural field 

site and from corresponding trap plant roots was found by Hijri et al. (2006) using molecular 

methods. This phenomenon was attributed to selective effects of the trap plant species (Jansa 

et al. 2002a; Ahulu et al. 2006), different growth conditions in the greenhouse or by influence 

of time and spatial succession in the culture pots (Oehl et al. 2003).  

Molecular studies of AMF field communities from the last decade (e.g. Husband et al. 

2002a; Wubet et al. 2004; Börstler et al. 2006) revealed numerous previously unknown 

phylotypes, which do not correspond to any morphologically- defined and sequenced species. 

Thus, the diversity of the Glomeromycota may be strongly underestimated. However, not all 

of the 200 morphologically described species have been characterized by molecular methods 

so far, which makes it difficult to compare the results of the morphological surveys with the 

molecular ones. It is also problematic to evaluate and compare results of different molecular 

studies focused on the diversity of AMF in the field among each other, as different research 

teams target different parts of DNA and define the sequence types inconsistently (see e.g. 

Öpik et al. 2006).  

As mentioned in the Chapter 1.5.2., molecular methods allow the identification of the 

symbiotic community currently colonizing the roots of an individual plant at any given time. 

Interestingly, strong discrepancies have been reported between the taxa present as spores in 

the field or produced in the trap cultures using field soil, and the fungal community currently 

detected in the roots (e.g. Clapp et al. 1995; Kowalchuk et al. 2002; Wubet et al. 2003; 

Renker et al. 2005; Ahulu et al. 2006; Börstler et al. 2006). Actually, these two approaches - 

AMF spores and AMF in the roots - target different ecological parameters: the studies using 

spores characterize the inoculum potential of a particular soil sample, whereas the molecular 

studies analyzing AMF colonizing plant roots can reveal the fungi actively and currently 

involved in the symbiosis. 

Moreover, the results of field AMF community studies using the approaches mentioned 

above may be influenced by several other methodical factors. Sampling effort and the way of 

pooling of the analyzed samples may influence the assessment of the species richness and 

composition of the local community (Renker et al. 2006; Whitcomb and Stutz 2007). Further, 
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the seasonality of AMF community composition in a single field was reported using spore 

morphology (Bever et al. 2001) and molecular methods targeting plant roots (Daniell et al. 

2001), respectively.  

 

1.6. Ecology of AMF 

 

1.6.1. AMF in different ecosystems: their diversity and species richness  

A global survey of root-colonizing AMF communities ranked different ecosystems according 

to their AMF species richness (Öpik et al. 2006). The species-richest habitats were the 

tropical forests with eighteen AMF taxa/host plant species; followed by the plant-species-rich 

non-disturbed grasslands. Approximately eight AMF taxa were associated with a single host 

plant species here. In the temperate forests and habitats under strong antropogenic influence 

like arable fields and polluted sites, approximately five AMF taxa associated with a single 

host plant species. In European grasslands and woodlands, using both molecular and 

morphological approaches, AMF species richness was also reported to be higher in diverse 

natural plant communities compared to arable fields (Helgason et al. 1998; Daniell et al. 

2001; Oehl et al. 2003; Oehl et al. 2004; Öpik et al. 2006). However, evidence for a relatively 

high AMF diversity in arable sites with low-input agriculture was presented by Hijri et al. 

(2006). Ten to 24 AMF phylotypes were detected in the roots of two to 18 plant species 

growing in different temperate grasslands (Vandenkoornhuyse et al. 2002; Gollotte et al. 

2004; Scheublin et al. 2004; Börstler et al. 2006). 

Using molecular and morphological methods, some evidence for ecological 

specialization of different AMF species was found. For instance, Acaulospora alpina was 

described in plant species-rich grasslands of the Swiss Alps at altitudes between 1800 and 

2700 m above sea level (Oehl et al. 2006) and Glomus badium was found in grasslands, grass-

intercropped vineyards or olive fields, or non-tilled arable lands in Central Europe (Oehl et al. 

2005a). In contrast, G. intraradices has been reported as a ubiquitous AMF species with 

global distribution (Öpik et al. 2006) occurring in many different native (e.g. Appoloni 2006) 

and human-influenced ecosystems (e.g. Hijri et al. 2006). Glomus mosseae, G. caledonium, 

G. claroideum, G. intraradices and G. etunicatum were frequently found in intensively 

managed tilled arable soils from different sites in Europe (Helgason et al. 1998; Daniell et al. 

2001; Jansa et al. 2002a; Hijri et al. 2006). These species were also found in trap cultures 

from several agroecosystems already after two to four months, in some cases after six months, 

as the first sporulating ones (Oehl et al. 2003; Oehl et al. 2004; Oehl et al. 2005b). However, 

further molecular and morphological investigations are necessary to elucidate the ecological 
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preferences of AMF. 

  

1.6.2. The ecological importance of AMF diversity and richness 

Interactions among AMF, host plants and environmental factors (particularly the availability 

of nutrients in the soil and other soil organisms) are complex. Mycorrhizal associations of 

plant roots with fungi are ubiquitous in nature and therefore, this symbiosis is of enormous 

ecological importance.  

AMF were reported to have a decisive influence on the composition of natural plant 

communities. Plant diversity and community productivity increased with AMF diversity (van 

der Heijden et al. 1998; Klironomos et al. 2000; Landis et al. 2004) and also depended on the 

AMF species identity (Stampe and Daehler 2003; Vogelsang et al. 2006). An increased 

diversity of AMF may also cause an increase in microbial diversity (Johansson et al. 2004). 

Furthermore, evidence for functional specificity has been reported: Helgason et al. (2002); 

Burleigh et al. (2002); Klironomos (2003) and van der Heijden et al. (2003) observed that in 

certain combinations of AMF and plant hosts stronger beneficial effects for the plant were 

detected than in other combinations. Differences in functionality were observed even among 

isolates of a single AMF species (Munkvold et al. 2004). Stampe and Daehler (2003) reported 

a relation between AMF species identity and the invasion success of an invasive plant in a 

microcosm experiment. From the plant point of view, a different host plant community may 

also select for a different symbiotically-active AMF community, as has been shown in 

microcosm experiments by (Bever et al. 1996; Bever 2002; Johnson et al. 2003).  

Because more than one plant can be colonized by the same fungus and each plant may 

be host for many fungal species, a large plant-fungal network may be established. This lack of 

absolute host specificity (for details see Chapter 1.6.3.) and therefore the assemblage of a 

mycorrhizal network connecting different plants of the same (Malcová et al. 2001) or 

different species (Newman et al. 1994) potentially enables the establishment of colonization 

in seedlings (Mcgee 1990; Malcová et al. 2001), the distribution of nutrients (Koide and 

Dickie 2002) and the redistribution of nutrients from senescent roots to other plants (Newman 

and Eason 1989).  Non-photosynthetic plants may parasitize their neighboring plants via 

“cheating” on the shared fungal network – they take up the carbohydrates originating 

from green neighboring plants (Bidartondo et al. 2002). However, the possible influence of 

hyphal links on the species coexistence, possibly even dependency, and maintenance of the 

plant diversity remains to be elucidated. 
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1.6.3. Host specificity or preferences and other factors shaping the AMF 

community in the roots in the field 

The small number of AMF species described so far was thought to colonize the majority of 

higher plant species and their host specificity was thought to be very low (Smith and Read 

1997). Moreover, most plant species have been successfully inoculated with many different 

AMF species under greenhouse conditions (e.g. Klironomos 2003). The progress in molecular 

methods enables the study of AMF communities colonizing plant roots in the field and thus 

the study of their host preferences as well. Using rDNA as molecular marker, Bidartondo et 

al. (2002) reported high specificity of non-photosynthetic mycoheterotrophic plants towards a 

few highly restricted clades of AMF. Host specificity in green plants appears to be lower, but 

in several cases statistically significant differences were detected among different host plant 

species growing in the same habitat, mainly in grasslands (Helgason et al. 2002; 

Vandenkoornhuyse et al. 2002; Vandenkoornhuyse et al. 2003; Gollotte et al. 2004; 

Scheublin et al. 2004).  

In other studies, environmental factors other than host preference appeared to be 

dominant in shaping the AMF community in plant roots. Husband et al. (2002a) observed a 

very complex structure of AMF communities in the roots of two host plant species in a 

tropical forest in Panama: AMF community composition differed depending on sampling 

time, host plant species and field site. Interestingly, significantly different fungal populations 

colonized two age classes of seedlings on the same field site sampled at the same time point 

(Husband et al. 2002b). Öpik et al. (2003) observed site-dependent differences in AMF 

community composition in two Pulsatilla species, but no host preferences. However, these 

authors perfomed a pot experiment with a mixture of natural soil and sterile sand, which is a 

relatively artificial system.  

Nielsen et al. (2004) did not observe host specificity in their study analyzing Littorella 

uniflora and Lobelia dortmanna in Swedish lakes, whereas they showed evidence for site-

specific differences in AMF community composition. Santos et al. (2006) investigated the 

roots of Festuca pratensis and Achillea millefolium from a Swedish pasture along a 

fertilization gradient. They did not observe host specificity, whereas the influence of sampling 

season and soil nitrogen content on the AMF community composition was clearly significant. 

In some investigations, species composition in plant roots changed over time (Helgason et al. 

1999; Daniell et al. 2001; Vandenkoornhuyse et al. 2002; Heinemeyer et al. 2004), but other 

authors reported the absence of seasonal changes (Rosendahl and Stukenbrock 2004).  

Another factor, which may influence the AMF community composition in the roots of 

a single plant species, is the identity of the neighboring plants. Helgason et al. (1999) and 

Clapp et al. (1995) observed that the target plant Hyacinthoides non-scripta harbored distinct 
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AMF species under different canopies but there was also a seasonal shift of the frequencies of 

some of their AMF symbionts. Mummey et al. (2005) observed strong AMF community 

shifts in grass roots growing in the close proximity of the invasive herb Centaurea maculosa 

in Montana, USA.  

 

1.7. Aims of the thesis 

 

The aims of this thesis were i) to characterize the communities of arbuscular mycorrhizal 

fungi in the roots of several selected plant species originating from plant species-rich 

grasslands in different parts of Switzerland using molecular methods and ii) to address the 

question of the preferences of these root-colonizing AMF for specific host plant species and 

environmental conditions.  

In order to implement this aim, a set of PCR primers was used that enables to detect the 

largest possible proportion of taxa of the Glomeromycota (Redecker 2000). I wanted to 

compare the communities of AMF in the roots of different host plant species from a single 

site and to evaluate whether the differences, if any, can be explained by host preferences or 

even specificity. Furthermore, the influence of the site as well as local climatic and soil 

conditions was addressed by comparing the AMF communities of the two different field sites: 

two species-rich grasslands facing different climate and environmental conditions and 

harboring different plant species communities.  

The lowland site, a calcareous grassland, was located on the edge of the Jura mountains 

and the AMF diversity was already investigated there using the trap culture approach (Oehl et 

al. 2003). Therefore, the root-colonizing AMF and the AMF spore community in this site 

could be compared. In this site, the question of the influence of different experimental 

approaches to study the AMF community was addressed. I wanted to test whether plant roots 

directly sampled in the field or grown in different culture systems using the same inoculum 

would harbor similar AMF communities. These data were expected to provide useful insights 

into possible ecological preferences and life history strategies of the AMF phylotypes and 

would also be of practical value for planning experiments with AMF species consortia.  

The alpine site was located at approximately 2000 m above sea level, therefore facing 

much longer winters and a colder climate than the lowland site. This site was also chosen 

because of the high abundance of Gentiana verna and G. acaulis. Based on my own previous 

research (Sykorova et al. 2003) and the work on mycoheterotrophic members of the family 

Gentianaceae (Bidartondo et al. 2002), it was intriguing to elucidate whether these green 

gentians would show similar specificity towards AMF as their achlorophyllous, 
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mycoheterotrophic relatives. These data would contribute to a better understanding of the 

evolution of mycoheterotrophy in the Gentianacae and the role of mycorrhizal specificity. 

Finally, the possible coexistence of AMF with basidiomycetes from the order 

Sebacinales in the roots was addressed. The Sebacinales have been shown to form symbiotic 

associations with a broad spectrum of plants (Weiß et al. 2004) and therefore, it was 

interesting to test whether they also colonize arbuscular mycorrhizal host plants. If so, 

possible specificity or preferences towards their host plants and as well as geographical 

distribution patterns could provide important clues to better understand this interaction.   
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2.1. Abstract 

 

The community composition of arbuscular mycorrhizal fungi (AMF) was analyzed in roots of 

Gentiana verna, Gentiana acaulis and accompanying plant species from two species-rich 

Swiss alpine meadows located in the same area. The aim of the study was to elucidate the 

impact of host preference or host specificity on the AMF community in the roots. The roots 

were analyzed by nested PCR, RFLP screening and sequencing of rDNA small subunit and 

ITS regions. The AMF sequences were analyzed phylogenetically and used to define 

monophyletic sequence types.  

The AMF community composition was strongly influenced by the host plant species 

whereas it did not significantly differ between the two sites. Detailed analyses of the two 

cooccurring gentian species G. verna and G acaulis, as well as neighboring Trifolium spp. 

revealed that their AMF communities differed significantly. All three host plant taxa harbored 

AMF communities comprising multiple phylotypes from different fungal lineages. A frequent 

fungal phylotype from Glomus group B was almost exclusively found in Trifolium spp., 

suggesting some degree of host preference for this fungus in this habitat.  

In conclusion, the results indicate that within a relatively small area with similar soil 

and climatic conditions, the host plant species can have a major influence on the AMF 

communities within the roots. No evidence was found for a narrowing of the mycosymbiont 

spectrum in the two green gentians in contrast to previous findings with their achlorophyllous 

relatives. 

 

2.2. Introduction 

 

Arbuscular mycorrhiza is an ancient symbiosis (Redecker et al. 2000) between the majority of 

land plants and fungi from the phylum Glomeromycota (Schüssler et al. 2001). Arbuscular 

mycorrhizal fungi (AMF) colonize plant roots and contribute to the mineral nutrient uptake of 

the hosts in exchange for carbohydrates (Smith and Read 1997).  

The diversity of AMF can be evaluated using microscopic analysis of spore 

morphology or molecular methods. The production of spores is highly dependent on 

environmental conditions, the physiological status and life strategy of the particular 

mycorrhizal fungus. Molecular methods allow the identification of the symbiotic community 

currently colonizing the roots of an individual plant at any given time. The majority of recent 

molecular studies have used AMF-specific primers for nuclear-encoded ribosomal RNA 



Chapter 2:  Cooccurring Gentiana verna and Gentiana acaulis and their  

      neighboring plants harbor distinct AMF communities  

 

 29 

genes (rDNA). However, identification of AMF on the species or even isolate level is 

complicated by the heterogeneity of rDNA within glomeromycotan spores and isolates. 

Several authors have shown that different variants of rDNA genes coexist within single AMF 

spores (Sanders et al. 1995; Jansa et al. 2002). Hence, a conservative approach in the 

evaluation of phylogenetic analyses is advisable by, e.g., defining a well-supported 

monophyletic sequence cluster as an AMF phylotype.   

On the basis of the morphological features of their spores, only about 200 species of 

AMF have been described so far (http://www.lrz-muenchen.de/~schuessler/amphylo/). This 

small number of species was originally thought to colonize the majority of higher plant 

species, and as a consequence, their host specificity or preference was thought to be very low 

(Smith and Read 1997). However, molecular studies of AMF field communities from the last 

decade (e.g. Husband et al. 2002a; Wubet et al. 2004; Börstler et al. 2006) revealed numerous 

previously unknown phylotypes. In several cases, significant differences were observed 

between the AMF communities inhabiting roots of different host plant species in the same 

habitat, mainly in grasslands (Helgason et al. 2002; Vandenkoornhuyse et al. 2002; 

Vandenkoornhuyse et al. 2003; Gollotte et al. 2004; Scheublin et al. 2004). In contrast, an 

apparent lack of host specificity was reported by other authors (Öpik et al. 2003; Santos et al. 

2006).  

Achlorophyllous mycoheterotrophic members of the Gentianaceae were among the 

plants showing the strongest host specificity known so far in arbuscular mycorrhiza 

(Bidartondo et al. 2002). Therefore, it was intriguing to see whether their green relatives show 

a similar restriction to a narrow clade of fungal symbionts. Previous studies provided 

evidence suggesting the possibility of a partly non-mutualistic interaction with AMF in 

gentians, based on the observation of a strong similarity of the mycorrhizal morphology 

between Gentiana spp. and mycoheterotrophic plants (Imhof 1999). Such a morphology, a 

Paris-type mycorrhiza with hyphal coils and pronounced swellings but without apparent 

arbuscules, was also observed in the G. acaulis and G. verna roots used in our study (not 

shown). Moreover, we previously found that G. verna could be colonized only with AMF 

from a living host plant of another species acting as the AMF donor (Sýkorová et al. 2003). 

Therefore, data about the mycorrhizal specificity of gentians may provide insight into the 

presumed transition from a mutualistic arbuscular mycorrhizal symbiosis to 

mycoheterotrophy by identifying evolutionary trends in the mycorrhizal interactions. 

In the present study, we used the set of primers designed by Redecker (2000), allowing 

us to detect seven genera of Glomeromycota, which is the largest possible portion of taxon 

diversity recognized so far. The aims of this study were i) to analyze and compare the 

community of AMF in roots of two green gentian species and some of their surrounding 
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plants sampled in the Swiss Alps and ii) to evaluate whether green gentians would show 

specificity towards AMF similar to that of their achlorophyllous mycoheterotrophic relatives 

(Bidartondo et al. 2002). The present study is also the first one to use molecular methods to 

analyze AMF communities in the European upper montane zone. 

  

2.3. Materials and methods 

 

2.3.1. Field sites 

The study sites were two species-rich meadows with approximately 80 plant species in two 25 

m
2
 plots per site (K. Maurer, pers. comm.). They were situated

 
close to the village Ramosch 

in the Engadin region of Switzerland in the upper montane forest zone (definition according 

to Körner, 2003): site 2A (Fig.1) is at 10°23'30''E/ 46°51'40''N and 1820 m ASL (above sea 

level) and site 11 (Fig. 2) is at 10°23' 00''E/ 46°51'30''N and 2010 m ASL. The timberline in 

this part of the Alps is around 2200 m ASL. Both meadows are mown regularly but neither 

grazed by cattle nor fertilized (Maurer et al. 2006). They are situated about 600 m apart, 

separated by a forest and exposed to the southeast. The altitude difference between the two 

sites is ca. 200 m. Site 11 is relatively steep and situated close to the forest line, with scattered 

ericaceous shrubs and Juniperus communis, whereas site 2A is a relatively flat meadow 

without interspersed shrubs. The dominant grass in both sites was Nardus stricta; they shared 

approximately further 50 plant species, the remaining 30 were unique to each site (K. Maurer, 

pers. comm.). At site 2A the soil pH (H2O) was 6.6, the level of sodium acetate-extractable 

phosphorus was relatively low at 9 ng/g and the total carbon content was 4.2% (w/w; 

laboratory F.M. Balzer, Wetter-Amönau, Germany). Both sites were subjected to plant 

diversity research project (Maurer 2006). 

 

2.3.2. Sampling 

In May 2003, sixteen soil cores with a diameter of ca. 20 cm and a depth of 15 cm were 

sampled in each meadow. The cores were randomly removed from areas of approximately 40 

and 30 m in diameter. Each core contained one Gentiana verna (Fig. 3) or Gentiana acaulis 

(Fig. 4) plant, and up to eight taxa of the surrounding plants. The plants were separated from 

each other and identified to species level if possible, and their roots were washed carefully 

and blotted dry using paper tissue. Aliquots of 50 mg consisting of root pieces assembled 

from a single root system were frozen in liquid nitrogen and stored at -80°C until use. Roots 

of the following plant species were used for further analyzes: Crocus albiflorus Kit., 

Hieracium hoppeanum Schult., Leontodon hispidus., an unidentified grass (“Poaceae sp.”), 
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Polygala vulgaris, Ranunculus montanus, Thymus pulegioides, and Trifolium spp. Plants 

belonging to the genus Trifolium turned out to be difficult to identify to the species level, as 

they were not flowering; therefore we decided to pool all Trifolium root samples into one 

category: "Trifolium spp.". Plant records performed by Katrin Maurer (personal 

communication) suggest that this form taxon may comprise T. pratense, T. montanum, T. 

repens and T. badium, as these were the predominant Trifolium species at both field sites. 

 

2.3.3. DNA extraction and polymerase chain reaction 

Roots were ground in liquid nitrogen using a pellet pestle within a 1.5 ml tube. DNA was 

extracted from roots using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according 

to the manufacturer’s instructions. DNA was eluted in two steps (each step used 50 µl of 

elution buffer). DNA extracts were diluted 1:10 or 1:100 in TE buffer and used as template 

for the first PCR reaction. PCR was performed in a nested procedure as described by 

Redecker (2000) using Taq polymerase from Amersham (Basel, Switzerland) or New 

England Biolabs (BioConcept, Allschwil, Switzerland), 2 mM MgCl2, 0.5 µM primers and 

0.13 mM of each desoxynucleoside triphosphate. The first round of amplification was 

performed using the universal eukaryote primers NS5 and ITS4 (White et al. 1990). The 

cycling parameters were: 3 min at 94°C, followed by 30 cycles of 45 sec at 94°C, 50 sec at 

51°C and 1 min 30 sec at 72°C. The program was concluded by a final extension phase of 10 

min at 72°C. 

The PCR products were diluted 1:100 in TE buffer and used as a template in the second 

round. Five separate PCR reactions were performed using the primer pairs 

GLOM1310/ITS4i, LETC1677/ITS4i, ACAU1661/ITS4i, ARCH1311AB/ITS4i, 

NS5/GIGA5.8R (Redecker 2000; Redecker et al. 2003). The PCR parameters for the second 

round differed from the first one only in the annealing temperature (61°C). Moreover, a “hot 

start” at 61°C was performed manually to prevent non-specific amplification. In order to 

check the success of amplification, PCR products were run on agarose gels (2% NuSieve - 

1% SeaKem, Cambrex Bio Science, Rockland, ME, USA) in Tris-acetate buffer at 120V for 

30 min. 

 

2.3.4. Cloning, restriction fragment length polymorphism analyses and 

sequencing 

PCR products were purified using the High Pure Kit from Hoffman LaRoche (Basel, 

Switzerland) and cloned into a pGEM-t vector (Promega/Catalys, Wallisellen, Switzerland). 

Inserts were re-amplified, preferably ten positive clones of each PCR product were digested 
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with HinfI and MboI and run on agarose gels as described above. Restriction fragment 

patterns were compared to a database modified from the spreadsheet developed by Dickie et 

al. (2003). Representative clones of new restriction types were then re-amplified, purified 

using the High Pure Kit and sequenced in both directions. The BigDye Terminator Cycle 

Sequencing Kit (ABI, Foster City, CA, USA) was used for labeling. Samples were run on an 

ABI 310 capillary sequencer. Sequences were deposited in the EMBL database under the 

accession numbers AM384904-AM384984 shown in the phylogenetic trees.  

 

2.3.5. Sequence analyses 

Sequences were aligned to previously published sequences in PAUP*4b10 (Swofford 2001). 

The glomeromycotan origin of the sequences was initially tested by BLAST (Altschul et al. 

1997). Separate ITS alignments were prepared for each of the target groups of the specific 

primers LETC1677, GLOM1310, ACAU1661, and ARCH1311AB. In addition, an alignment 

of the partial 3' end of 18S rDNA small subunit was compiled for the sequences amplified 

with GLOM1310 and ARCH1311AB (Bidartondo et al. 2002).  

Phylogenetic trees were obtained primarily by distance analysis (the neighbor-joining 

algorithm) in PAUP*4b10 using the Kimura two-parameter model and a gamma shape 

parameter of 0.5. Results were verified by performing maximum likelihood analyses based on 

parameters estimated in Modeltest 3.5 (Posada 2004). 

 

2.3.6. Definition of sequence phylotypes 

Sequence phylotypes were defined in a conservative manner as consistently separated 

monophyletic groups in the phylogenetic trees. Only those clades that were supported by 

neighbor joining bootstrap analysis and also present in the respective maximum likelihood 

tree were used. In case of GLOM A and ARCH phylotypes, the clades had to be supported by 

both 18S partial subunit and ITS trees. We avoided splitting the lineages unless there was a 

positive evidence for doing so. The sequence phylotypes were designated after the major 

clade they belonged to, followed by a numerical index (x in the following examples) 

identifying the type (Hijri et al. 2006): GLOM A-x (Glomus group A), GLOM B-x (Glomus 

group B), ACAU-x (Acaulosporaceae), ARCH-x (Archaeosporaceae). Representative 

sequences of each sequence type were checked manually for possible chimaeras, which were 

excluded from further analyses. 
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2.3.7. Statistical analyses 

The presence or absence of AMF phylotypes in each root sample was used to construct the 

sampling effort curves (with 95% confidence intervals, using the analytical formulas of 

Colwell et al. (2004) in the program EstimateS 7.5 (Colwell 2005), and calculate Shannon 

diversity indices [H=-Σpi∗ln(pi)] for each plant species. G. verna, G. acaulis and Trifolium 

spp. were represented by 9-13 root samples each and thus these plant taxa were analyzed in 

detail. The data for the remaining host plant species were pooled, as only 1-3 root samples per 

plant species were analyzed due to technical limitations. 

The influence of host plant species and field site on the number of sequence types 

found in the root samples was analyzed using the program NCSS (NCSS, Kaysville, UT, 

USA). In order to investigate the influence of environmental factors (host plant species and 

field sites) on the distribution of the AMF phylotypes in the root samples, ordination analyzes 

were conducted in Canoco for Windows v. 4.5 (ter Braak and Smilauer 2004) using the 

presence/absence data for each root sample. Initial Detrended Correspondence Analysis 

(DCA) suggested a unimodal character of the data response to the sample origin (the lengths 

of gradients were >4), therefore the Canonical Correspondence Analysis (CCA) was used. 

The variance-partitioning method with permutations in blocks defined by the co-variables 

was used to compare the influence of host plants with that of field sites. Host plants were 

considered covariables when the influence of field sites was tested as a variable, and vice 

versa. Monte Carlo Permutation Tests were conducted using 499 random permutations. The 

subsequent forward-selection procedure ranked the environmental variables according to their 

importance and significance for the distribution of the sequence types. 

 

2.4. Results 

 

2.4.1. PCR yields and sequence types detected in the root samples 

Using our PCR approach with four nested primer sets, 45 of the 67 extracted root samples 

(67%) yielded 119 PCR products (693 clones after the cloning) of which 71 (60%) could be 

ascribed to AMF phylotypes. Whereas all DNA extracts of Trifolium spp. yielded PCR 

amplicons of AMF origin, only 75% of G. verna and 42% of G. acaulis extracts did. No PCR 

products or only non-AMF amplicons were obtained from the remaining samples.  

After RFLP screening, 166 clones obtained from 10 root samples of G. verna, 9 

samples of G. acaulis, 13 samples of Trifolium spp. and 13 samples of other surrounding 

plants were sequenced and analyzed phylogenetically. Altogether, 17 different sequence types 

were found, ten of which belonged to Glomus group A (group definitions are according to 
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Schwarzott et al. (2001), three to Glomus group B, two to the Acaulosporaceae and two to the 

Archaeosporaceae (Figs. 5, 6, 7, 8, 9; Tab. 1). The sampling effort curves (Fig. 10) showed 

that for G. verna, G. acaulis and Trifolium spp., the number of analyzed root samples was 

sufficient to detect the majority of sequence types present in their roots, as the curves 

approach saturation. On the contrary, the curve for the pooled data of the remaining host plant 

species did not level off.  

By far the most abundant sequence type (found in 29 root samples) was GLOM A-1 

(Fig. 5), which corresponds to the morphologically defined species Glomus intraradices. The 

second- and third-most-frequent sequence types were GLOM B-4 (Fig. 6) (which could not 

be assigned to any morphologically described species) and GLOM A-25 (Fig. 5) (which 

corresponds to Glomus proliferum). Interestingly, no sequence types belonging to the genera 

Paraglomus, Scutellospora, or Gigaspora were found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 (on the next page) Phylogenetic tree of Glomeromycota obtained by neighbor-joining 

analysis of 310 characters of the 18S rDNA subunit. Numbers above branches denote 

neighbor-joining bootstrap values from 1000 replications. The tree was rooted by 

Paraglomus occultum and P. brasilianum. Sequences obtained in the present study are 

shown in boldface. They are labeled with the database accession number, (e.g. 

AM384944), internal identification number (e.g. ZS359_360), the host plant species 

they were obtained from (e.g. Leontodon), the field site code (2A or 11) and the soil 

core code (1-8 or A-C). Except with Gentiana verna and G. acaulis, the last letter (a or 

v) indicates whether the host plant was collected in a soil core with G. verna (v) or with 

G. acaulis (a). The brackets show the delimitation of the sequence types. 

 



Chapter 2:  Cooccurring Gentiana verna and Gentiana acaulis and their  

      neighboring plants harbor distinct AMF communities  

 

 35 

 

 

Fig. 5 (legend see on the previous page) 
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Fig. 6 Phylogenetic tree of Glomus group B based on neighbor-joining analysis of 375 

characters of ITS2 and 5.8S rDNA sequences. Numbers above branches denote 

neighbor-joining bootstrap values from 1000 replications. The tree was rooted using 

the sequence type GLOM B-5. Sequences obtained in the present study are shown in 

boldface and are labeled as described in the legend of Fig. 5. The brackets show the 

delimitation of the sequence types. 
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Fig. 7 Phylogenetic tree of Glomus group A obtained by neighbor-joining analysis of 387 

characters from ITS2 and 5.8S rDNA. Numbers above branches denote neighbor-

joining bootstrap values from 1000 replications. The tree was rooted using the 

sequence type GLOM A-7. Sequences obtained in the present study are shown in 

boldface and are labeled as described in the legend of Fig. 5. The brackets show the 
delimitation of the sequence types. 
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Fig. 8 Phylogenetic tree of Archaeosporaceae obtained by neighbor-joining analysis of 

404 characters from ITS2 and 5.8S rDNA. Numbers above branches denote 

neighbor-joining bootstrap values from 1000 replications. The tree was midpoint-

rooted. Sequences obtained in the present study are shown in boldface and are 

labeled as described in the legend of Fig. 5. The brackets show the delimitation of 

the sequence types. 
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Fig. 9 Phylogenetic tree of Acaulosporaceae obtained by neighbor-joining analysis of 325 

characters from ITS2 and 5.8S rDNA. Numbers above branches denote neighbor-

joining bootstrap values from 1000 replications. The tree was rooted by 

Entrophospora colombiana. Sequences obtained in the present study are shown in 

boldface and are labeled as described in the legend of Fig. 5. The brackets show the 

delimitation of the sequence types. 
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Tab. 1 Overview of the clone numbers per sequence type in all analyzed samples yielding at least one AMF sequence type or RFLP pattern.
a
  

 
Sequence type 

 
Glomus group A Glomus group B Acaulosporaceae 

Archaeospora-

ceae 

Sample 

description 

GLOM 

A-1 

GLOM 

A-7 

GLOM 

A-8 

GLOM 

A-9 

GLOM 

A-12 

GLOM 

A-14 

GLOM 

A-15 

GLOM 

A-17 

GLOM 

A-25 

GLOM 

A-28 

GLOM 

B-3 

GLOM 

B-4 

GLOM 

B-5 

ACAU-

1 

ACAU-

5 

ARCH

-3 

  ARCH 

-4 

G. verna 11-8         1         

G. verna 11-5         2         

G. verna 11-2       3           

G. verna 11-6        9          

G. verna 11-5 9                 

G. verna 2A-4 5     1   4         

G. verna 2A-3 8       2 2         

G. verna 2A-B 12                 

G. verna 2A-5      5            

G. acaulis 11-1  10                

G. acaulis 11-4    7 1             

G. acaulis 11-4                10  

G. acaulis 11-2    4 3             

G. acaulis 2A-2               3   

G. acaulis 2A-1   3               

G. acaulis 2A-4 6                 

G. acaulis 2A-C 11                 

G. acaulis 2A-B 1 1  10              

G. acaulis 2A-3      9          11  

Trifolium spp. 11-3a 10           5 1     

Trifolium spp. 11-4a 1             9    

Trifolium spp. 11-4a 12          1 1 1 3    

Trifolium spp. 11-1a 9           1 1   2  

Trifolium spp. 2A-1a 6           6 2     

Trifolium spp. 2A-1a 7           6      

Trifolium spp. 2A-

Ba 8          1 7      
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Sequence type 

 
Glomus group A Glomus group B Acaulosporaceae 

Archaeospora-

ceae 

Sample 

description 

GLOM 

A-1 

GLOM 

A-7 

GLOM 

A-8 

GLOM 

A-9 

GLOM 

A-12 

GLOM 

A-14 

GLOM 

A-15 

GLOM 

A-17 

GLOM 

A-25 

GLOM 

A-28 

GLOM 

B-3 

GLOM 

B-4 

GLOM 

B-5 

ACAU-

1 

ACAU-

5 

ARCH

-3 

  ARCH 

-4 

Trifolium spp. 11-5v 2        4   11      

Trifolium spp. 11-6v 6        1 1  7      

Trifolium spp. 11-2v 10                 

Trifolium spp. 2A-3v 11           6      

Trifolium spp. 2A-4v 14                 

Trifolium spp. 2A-5v 4                 

Thymus 11-1a     5             

Thymus 2A-1a 6  2     1          

Leontodon 2A-1a 10                 

Leontodon 2A-1a 4       3          

Leontodon 2a-2a 8                 

Crocus 2a-2a   2 8           2   

Crocus 2A-3a          4 10       1 

Poaceae spec.  2A-2a 9              2   

Poaceae spec. 2A-Ba 9                 

Hieracium 11-4a 10            2     

Hieracium 11-1a 9           6      

Polygala 11-3a      8            

Ranunculus 11-4a 16        1    2  4   

 
a
No number in the cell indicates that no clones of the corresponding phylotype were detected in the sample. Sample description: host plant name is followed 

by the field site code (11 and 2A, respectively), soil core code (1-8 or A-C). Except for Gentiana verna and G. acaulis, the last letter (a or v) indicates if the 

host plant was collected in the soil core with G. verna (v) or with G. acaulis (a). 
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2.4.2. AMF richness and diversity 

The observed absolute numbers of sequence types per root sample were compared using 

ANOVA. Host plant taxon had a significant influence (P=0.029) on the number of sequence 

types, whereas the field sites did not (P=0.60). The plant harboring the highest mean number 

of AMF phylotypes (2.61) was Trifolium spp., which differed significantly from G. verna and 

G. acaulis (1.44 and 1.50, respectively) according to Fisher's LSD Multiple-Comparison Test. 

The mean number of AMF phylotypes harbored by the remaining host plants (2.0; pooled 

data) did not significantly differ from those of either of the host plant species mentioned 

above. 

The Shannon diversity index calculated for different host plant species was 1.99 in the 

case of G. acaulis, 1.69 for Trifolium spp. (1.61 for Trifolium spp. collected in the soil cores 

with G. acaulis and 1.20 for Trifolium spp. collected in the soil cores with G. verna), and 1.50 

for G. verna; for the remaining, pooled host plant species it reached 2.17. The Shannon index 

calculated for the whole study was 2.38. 

 

Fig. 10 Sampling effort curves for Gentiana verna (n=9), G. acaulis (n=10), Trifolium 
spp. (n=13) and the remaining pooled host plants (n=13). Sample order was 

randomized by 100 replications in EstimateS 7.5 (Colwell 2005).  
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2.4.3. AMF communities in different host plant species and field sites 

The influence of the host plant species and the field sites (subsequently called “all 

environmental factors”) on the distribution of AMF sequence types was investigated using a 

multivariate statistical approach. Sample G. verna 11-2 was excluded from the analysis as an 

outlier, because only one sequence type (GLOM A-15) was detected in it - which occurred 

only once in the whole study. CCA (Canonical correspondence analysis) was focused on G. 

acaulis, G. verna and Trifolium spp., as these plant taxa were represented by 9-13 root 

samples each and thus analyzed in detail. Trifolium spp. plants originating from soil cores 

with G. verna or G. acaulis were treated as different categories. All environmental factors 

explained 22.2% of the whole variance, and their effect on the distribution of AMF sequence 

types was clearly significant (P=0.002). The variance partitioning showed that the host plant 

identity accounted for 86% of the variance explained by all environmental factors, whereas 

the field sites accounted only for 13.7% (the remaining 0.3% was explained by the correlation 

of both of them). Moreover, the influence of the host plants was statistically significant 

(P=0.002). According to the forward-selection output, G. acaulis (P=0.002) and G. verna 

(P=0.004) were the two variables with significant contribution. These results demonstrate that 

the AMF communities hosted by those two plants were different from each other and also 

from the AMF harbored by Trifolium spp.  

The biplot diagram of this CCA (Fig. 11) also demonstrates these results: the centroids 

representing the field sites are close to each other, indicating that the sites hosted similar 

AMF communities. In contrast, the centroids representing different host plant species are 

distant to each other, which demonstrates that they harbored distinct AMF. Fig. 4 also clearly 

shows which sequence types occurred in which of these three host plants: e.g. GLOM A-7, 

GLOM A-8, GLOM A-9 and GLOM A-12 were hosted exclusively by G. acaulis. The only 

sequence type common to all three host plants was GLOM A-1, but its relative abundance 

differed: it was detected in 100% of Trifolium spp. samples, but only in 44% of G. verna 

samples and 30% of G. acaulis samples (see also Tab. 1).  

The AMF communities in the roots of Trifolium spp. neighboring G. acaulis or G. 

verna, respectively, did not significantly differ from each other. However, a trend towards 

more similar AMF between Trifolium spp. and its neighboring Gentiana species was 

observed, probably due to sharing of some phylotypes (ARCH-3 in G. acaulis and their 

neighboring Trifolium spp. and GLOM A-25 in G. verna and their neighboring Trifolium 

spp.). 

The CCA conducted with the whole dataset with all host plants supported the results of 

the first CCA: all environmental factors accounted for 33.3% of the whole variance and their 

influence on the sequence type distribution was significant according to the Monte Carlo 
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Permutation Test (P=0.006). Similarly to what occurred in the first CCA, the variance 

partitioning method revealed that host plants accounted for 90.4% of the variability explained 

by all environmental factors together, whereas field sites contributed only 9.3%. The 

remainder (0.3%) was explained by the correlation of both of them. A CCA biplot of this 

analysis is shown in Fig. 12.  

 

Fig. 11 CCA biplot of the sequence types and environmental factors (using Hill’s scaling 

focused on inter-species distances) of the reduced dataset comprising Trifolium 

spp., Gentiana verna and G. acaulis samples. Trifolium spp. plants originating 

from soil cores with G. verna or G. acaulis were treated as different categories. 

Host plant species are represented by filled triangles, field sites by open triangles 

and sequence types by circles. The 1
st 

axis accounted for 42.9% of the variability 

explained by all canonical axes and was significant (P=0.006). The percentages 

shown on the 1
st 

and 2
nd 

axes correspond to the percentages of variance of AMF 

sequence types data explained by the particular axis. 
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Fig. 12 CCA biplot of sequence types and environmental factors (using Hill’s scaling 

focused on inter-species distances) based on all host plants. Host plant species 

are represented by filled triangles, field sites by open triangles and sequence 

types by circles. The 1
st 

axis accounted for 27,5% of the variability explained 

by all canonical axes and was significant (P=0.042). The percentages shown 

on 1
st 

and 2
nd 

axes correspond to the percentages of variance of species data 

explained by the particular axis. 
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2.5. Discussion 

 

2.5.1. AMF in the European alpine and upper montane forest zone 

To our knowledge, this is the first molecular diversity study of AMF in the upper montane 

forest zone in Europe. Previous studies of this topic used spore morphology or root staining in 

order to evaluate the diversity of symbiotic fungi and root colonization (Read and 

Haselwandter 1981; Haselwandter 1987).  

AMF diversity has recently been studied using the classical approach based on spore 

morphology in multiple field sites covering the whole Swiss Alps at altitudes from 1000–

3000 m a.s.l. (Oehl et al., unpublished). Part of this study was conducted in several high 

mountainous grazed meadows close to our study sites in the community of Ramosch and in 

the neighboring community Sent. Twelve to eighteen AMF species were identified per site (F. 

Oehl, personal communication), which is in agreement with the 17 phylotypes found in our 

study. Oehl et al. (2006) observed that species belonging to the genus Acaulospora were 

particularly prominent and more abundant in the Swiss Alps than in the lowlands of 

Switzerland; those authors also described a new species Acaulospora alpina, which was 

found exclusively in the Alps at altitudes above 1300 m ASL. As our study site near Ramosch 

was close to one of the study sites investigated by Oehl et al. (2006), it was interesting to see 

whether we could recover A. alpina from colonized roots. The sequence type ACAU-5 (Fig. 

9) that we detected was related to A. alpina but formed a distinct clade with sequences 

originating from a mountainous area from central Germany (between 640 and 705 m ASL; 

Börstler et al. 2006). These findings suggest the possibility of the existence of another 

Acaulospora clade related to A. alpina that preferentially occurs in mountainous meadows.  

 

2.5.2. Relationships to phylotypes in other studies 

Fifteen out of the 17 AMF phylotypes have been found in previous studies (Tab. 2). Only the 

sequence types GLOM A-8 and GLOM B-5 were detected for the first time, i.e. no sequences 

belonging to these groups were found in the EMBL database. These records demonstrate a 

surprisingly broad ecological amplitude and geographical distribution for most of the AMF 

sequence types. However, due to our conservative approach in sequence type definition it is 

possible that we underestimated AMF species diversity and that some sequence types 

contained more than one species. The molecular delimitation of an AMF species is 

problematic due to sequence heterogeneity within spores and species (Sanders et al. 1995).  
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Tab. 2 Overview of all sequence types found in our study and their matches to morphologically described AMF species and molecular phylotypes found in 

some other studies. 

 

Sequence 

type 

Morphospecies Reference 

e.g. 

Host plant species  

e.g. 

Ecosystem/Country 

GLOM A-1 Glomus intraradices e.g. Hijri et al. (2006) Zea mays Germany, Switzerland 

GLOM A-7 - Wubet et al. (2003a); Russell & Bulman 

(2005); Waldrop et al. (unpublished) 

Prunus africana, Marchantia 
foliacea, soil sample 

Ethiopia, New Zealand, 

Minnesota (USA) 

GLOM A-8 - - - - 

GLOM A-9 - Börstler et al. (2006) Arrhenatherum elatius Germany 

GLOM A-12 - Russell et al. (2002); Waldrop et al. 

(unpublished) 

Podocarpaceae root nodules, soil 

sample 

New Zealand, Minnesota 

(USA) 

GLOM A-14 - Börstler et al. (2006); Russell & Bulman 

(2005) 

Dactylis glomerata, Marchantia 
foliacea 

Germany, New Zealand 

GLOM A-15 Glomus constrictum Hijri et al. (2006); Wubet et al. (2003a), 

Landwehr et al. (2002) 

Pot culture; Prunus africana, 
Spore 

Ethiopia, Germany 

GLOM A-17 Glomus badium Wubet et al. (2003b); Wirsel (2004); Oehl et 

al. (2005) 

Taxus baccata, Phragmites 
australis, spores 

Germany, Switzerland 

GLOM A-25 Glomus proliferum Declerc et al. (2000); Raab et al. (2005) Root organ culture Guadeloupe 

GLOM A-28 - Landwehr et al. (2002) Spore Germany 

GLOM B-3 - Wubet et al. (2003a) Prunus africana Ethiopia 

GLOM B-4 - Börstler et al. (2006) Plantago major Germany 

GLOM B-5 - - - - 

ARCH-3 - Wubet et al. (2003a,b); Hempel et al. (2007) Prunus africana, Taxus baccata, 
soil sample 

Ethiopia, Germany  

ARCH-4 - Russell et al. (2002); Hijri et al. (unpublished) Podocarpaceae root nodules, 

Trap culture  

New Zealand, Switzerland 

ACAU-1 - Hijri et al. (2006) Triticum aestivum Switzerland 

ACAU-5 - Börstler et al. (2006) Plantago lanceolata Germany 
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 1 

The high proportion of sequence types without a known counterpart among described 2 

morphospecies (76.5%) is consistent with previous predictions (Helgason et al. 2002) that the 3 

200 morphospecies are only a fraction of the true diversity of the Glomeromycota. 4 

Our phylotypes cannot easily be compared to those of other studies using the primer 5 

pair NS31/AM1 because those targeted a different 18S rDNA region. In addition, Glomus 6 

group B is not detected very often using these primers, possibly because of mismatches in the 7 

annealing sites. 8 

  9 

2.5.3. AMF richness and diversity in our study sites 10 

It is difficult to directly compare results of molecular studies of the AMF diversity in the 11 

field, as different research teams target different parts of DNA and define the sequence types 12 

inconsistently.  13 

Nonetheless, the overall number of sequence types found in both our sites - seventeen - 14 

is in the same range as those of other studies focusing on undisturbed plant species-rich 15 

grasslands, which revealed between ten and 24 phylotypes (Vandenkoornhuyse et al. 2002; 16 

Scheublin et al. 2004; Börstler et al. 2006; Öpik et al. 2006).  17 

Interestingly, AMF community richness varied on two different levels, which may 18 

respond to different factors. The highest AMF richness per sample was detected in Trifolium 19 

spp. Moreover, Trifolium spp. and G. acaulis harbored a higher overall AMF richness than G. 20 

verna (see the sampling effort curves in Fig. 10). The highest overall richness was found in 21 

the category "surrounding plants", and it was clearly not characterized exhaustively. The 22 

richness per sample, however, was not significantly different compared to G. verna or G. 23 

acaulis. These findings indicate that AMF richness in a plant taxon per root system and across 24 

the habitat may not necessarily be linked.  25 

The lower amplification success from G. acaulis samples could have been caused by 26 

high contents of secondary metabolites like xanthones reported from some Gentiana species 27 

(Chericoni et al. 2003). A higher sampling effort was necessary to obtain a number of samples 28 

yielding PCR products comparable to those from G. verna and Trifolium spp. A lower 29 

efficiency of amplification may potentially have biased the AMF community composition 30 

detected in G. acaulis. However, this is unlikely for several reasons: i) the sampling effort 31 

curve demonstrates that the AMF community in this plant is not less diverse than in Trifolium 32 

spp., ii) the number of phylotypes found in each sample is not significantly different from the 33 

number in G. verna. and iii) a systematic bias against some glomeromycotan lineages by 34 

possible differences in primer susceptibilities towards the inhibitor substances is unlikely 35 

because phylotypes were detected from the same lineages as in G. verna.  36 
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 37 

2.5.4. Host preference versus other factors influencing AMF communities 38 

The sampling effort curve (Fig. 10) shows an interesting trend: several host plant species 39 

pooled together hosted more different AMF sequence types than the single plant species or 40 

genus, which supports the host preference hypothesis.  41 

Our CCA results (Figs. 11, 12) concerning the strong influence of the plant species on 42 

the composition of the AMF community in the roots are in agreement with the results of 43 

several studies, which have presented evidence for host preferences in arbuscular mycorrhiza 44 

in the past few years (Helgason et al. 2002; Vandenkoornhuyse et al. 2002; 45 

Vandenkoornhuyse et al. 2003). In all these cases, host plants harbored diverse communities 46 

of glomeromycotan symbionts, usually from different genera or families. In other studies, 47 

environmental factors other than host preference appeared to be dominant: site dependency 48 

(Öpik et al. 2003); sampling season and soil nitrogen content (Santos et al. 2006); sampling 49 

date and field site (Husband et al. 2002a), or age classes of seedlings (Husband et al. 2002b).  50 

Host specificity in the stricter sense, i.e. a host plant being colonized only by a narrow 51 

clade of fungal taxa, has been demonstrated only for mycoheterotrophic members of the 52 

Gentianaceae (Bidartondo et al. 2002). The Gentiana species that we studied clearly show 53 

host preference but not host specificity as defined above. In this respect, they are more similar 54 

to other green plants from other families than to their mycoheterotrophic relatives. Thus, we 55 

did not find evidence for narrowing on a restricted set of symbionts as a possible symptom of 56 

a transition to a non-mutualistic symbiosis.  57 

From the fungal point of view, our data indicate that AMF taxa belonging to Glomus 58 

group B seem to show strong preference for Trifolium spp. roots. However, none of these 59 

phylotypes was detected in Trifolium repens and Trifolium pratense in the surroundings of 60 

Jena, Germany (Hempel et al. 2007). These findings are in agreement with the fact that none 61 

of the studies addressing the topic of host preferences in AMF so far has shown host 62 

preference to act across different geographical regions. Therefore the term "local host 63 

preference" may be more appropriate to describe this phenomenon.  64 

 65 

2.5.5. Ecological consequences of AMF host preference 66 

Scheublin et al. (2004) suggested that host plant species may have various degrees of 67 

specificity for AMF species that range from selective specialists to non-selective generalists. 68 

None of the plants in our experiment showed a distinctly narrowed spectrum of fungal 69 

symbionts comparable to that of mycoheterotrophic Gentianaceae; nevertheless, the plant taxa 70 
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analyzed differed in their levels of AMF richness and diversity and contained distinct 71 

communities.   72 

Börstler et al. (2006) and Öpik et al. (2006) proposed the concept that some AMF 73 

species occur globally, showing high local abundance and low host specificity. Glomus 74 

intraradices clearly falls into this category as a generalist, because it has been found in a 75 

surprisingly broad range of environments. The fact that GLOM A-1 was the only sequence 76 

type in our study shared by both gentian species and Trifolium spp. strongly supports this 77 

notion. However, the second-most-frequent phylotype (GLOM B-4) showed strong evidence 78 

of host preference for Trifolium spp. The fact that this phylotype was not found in another 79 

study analyzing Trifolium spp. suggests that local availability of fungal inoculum and other 80 

environmental factors may also have an influence on this interaction.  81 

The findings of van der Heijden et al. (1998) showing that AMF diversity is correlated 82 

with diversity and yield of emerging plant communities suggest some degree of specificity in 83 

the interactions between symbionts in AM. This specificity can be due to preferential 84 

colonization or to specific functional interactions (e.g. nutrient transfer). Only the former 85 

aspect was addressed in this study and in other molecular studies of host preferences reported 86 

so far. The extent to which this phenomenon is responsible for maintenance and coexistence 87 

of plant species remains to be shown in future studies. 88 

 89 
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 Fig. 4 Bromus erectus, 

Landskron meadow. 

Photo by B. Börstler 

Fig. 3 Origanum vulgare, 

Landskron meadow. 

Photo by B. Börstler 

Fig. 1 Inula salicina, 

Landskron meadow. 

Photo by B. Börstler 

Fig. 2 Medicago sativa, Landskron 

meadow. Photo by B. 

Börstler 
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3.1. Abstract 

 

The community composition of arbuscular mycorrhizal fungi (AMF) was investigated in 

roots of four different plant species (Inula salicina, Medicago sativa, Origanum vulgare and 

Bromus erectus; Figs. 1-4) sampled in (i) a plant species-rich calcareous grassland, (ii) a bait 

plant bioassay conducted directly in that grassland and (iii) a greenhouse trap experiment 

using soil and a transplanted whole plant from that grassland as inoculum. Roots were 

analyzed by AMF-specific nested PCR, RFLP screening and sequence analyses of rDNA 

small subunit and internal transcribed spacer regions. The AMF sequences were analyzed 

phylogenetically and used to define monophyletic phylotypes.  

Overall, sixteen phylotypes from several lineages of AMF were detected. The 

community composition was strongly influenced by the experimental approach, with 

additional influence of cultivation duration, substrate and host plant species in some 

experiments.  

Some fungal phylotypes, e.g. GLOM-A3 (Glomus mosseae) and several members of 

Glomus group B, appeared predominantly in the greenhouse experiment or in bait plants. 

Thus, these phylotypes can be considered r strategists, rapidly colonizing uncolonized ruderal 

habitats in early successional stages of the fungal community. In the greenhouse experiment, 

for instance, Glomus  mosseae was abundant after 3 months, but could not be detected 

anymore after 10 months. In contrast, other phylotypes as GLOM-A17 (Glomus badium) and 

GLOM-A16 were detected almost exclusively in roots sampled from plants naturally growing 

in the grassland or from bait plants exposed in the field, indicating that they preferentially 

occur in late successional stages of fungal communities and thus represent the K strategy. The 

only phylotype found with high frequency in all three experimental approaches was GLOM 

A-1 (Glomus intraradices), which is known to be a generalist.  

These results indicate that in greenhouse trap experiments it is difficult to establish a 

root-colonizing AMF community reflecting the diversity of these fungi in the field roots, 

because fungal succession in such artificial systems may bias the results. However, the field 

bait plant approach is a convenient way to study the influence of different environmental 

factors on AMF community composition directly under the field conditions. For a better 

understanding of the dynamics of AMF communities it will be necessary to classify AMF 

phylotypes and species according to their life history strategies. 

 

Key words: Arbuscular mycorrhiza; molecular diversity; rDNA; life history strategy; 

cultivation systems 
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3.2. Introduction 

 

The diversity of arbuscular mycorrhizal fungi (AMF) can be assessed based on either the 

spores found in the soil or the fungal mycelium in the roots. AMF spores can be identified 

either by microscopy or molecular analysis, whereas molecular methods are required to 

distinguish AMF species in the roots. The production of spores is highly dependent on 

environmental conditions and on the physiological status and life strategy of the particular 

mycorrhizal fungus (Smith and Read 1997). A trap culture approach is commonly used to 

harvest newly-formed spores of AMF from “universal host plants” (e.g. Plantago lanceolata, 

Trifolium pratense, Zea mays, Allium porrum) inoculated using field soil in pot cultures in the 

greenhouse. It is known that this approach does not reveal the same community composition 

of AMF species as the direct analysis of spores in the field (Jansa et al. 2002; Oehl et al. 

2003). This phenomenon was attributed to selective effects of the trap plant species (Jansa et 

al. 2002; Ahulu et al. 2006) or to different growth conditions in the greenhouse including the 

time period of culturing (Oehl et al. 2003).  

Molecular methods allow the identification of the symbiotic community colonizing the 

roots of an individual plant at any given time. Considerable differences between AMF 

communities present as spores and in the roots in a single field site have been reported (e.g. 

Clapp et al. 1995; Kowalchuk et al. 2002; Wubet et al. 2003; Renker et al. 2005; Ahulu et al. 

2006; Börstler et al. 2006; Hempel et al. 2007). 

Based on spore morphology, only about 200 AMF species have been described so far 

(http://www.tu-darmstadt.de/fb/bio/bot/schuessler/amphylo). This small number was thought 

to colonize the majority of higher plant species and consequently, their host specificity or 

preference was thought to be very low (Smith and Read 1997). However, recent molecular 

studies of AMF field communities (e.g. Husband et al. 2002; Wubet et al. 2004; Börstler et al. 

2006) revealed numerous previously unknown phylotypes and, in several cases, the 

phylotypes inhabiting roots of different plant species in the same habitat differed, indicating 

some degree of host preference (Helgason et al. 2002; Vandenkoornhuyse et al. 2002; 

Vandenkoornhuyse et al. 2003; Gollotte et al. 2004; Scheublin et al. 2004; Sýkorová et al. 

2007). In contrast, an apparent lack of host preference has been reported by other authors 

(Öpik et al. 2003; Santos et al. 2006).  

Using direct field soil sampling and greenhouse trap cultures, followed by 

morphological analysis of the AMF spores, low-input grasslands were shown to be the most 

AMF-diverse among several agroecosystems compared in Central Europe (Oehl et al. 2003) 

harboring 26-27 AMF species per site. A global survey of molecular studies of root-

colonizing AMF by Öpik et al. (2006) identified temperate grasslands as the ecosystem with 
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the second highest AMF species richness after tropical forests. Read and Birch (1988) 

identified AMF mycelia as primary sources of inoculum in permanent grasslands.  

The aim of this study was to analyze the communities of AMF in roots of four plant 

species dominant in a plant species-rich calcareous grassland in France  (subsequently called 

target plants) comparing three different experimental approaches: i) direct root sampling in 

the field (field samples, FS); ii) cultivation of target plants in compartment systems (CS) in 

the greenhouse using the field soil and a transplanted field plant as inoculum; iii) trapping the 

AMF in the roots of target plants grown in in-growth cores exposed in the field (bait plants, 

BP). Our goal was to address whether the same AMF communities could be detected in the 

different host plants using these three experimental approaches. We also wanted to elucidate 

whether the AMF phylotypes present in the roots would differ with respect to their ecological 

preferences and life history strategies. We used the primer set for rDNA small subunit and 

internal transcribed spacer regions designed by Redecker (2000) allowing us to detect seven 

genera of the Glomeromycota, which is the largest possible portion of AMF taxon diversity 

recognized so far.  
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Fig. 5 The Landskron field site. Photo by D. 

Redecker 

Fig. 6 Compartment systems after 10 

months of cultivation in the 

greenhouse 

Fig. 7 Scheme of the compartment systems used in the greenhouse 

bioassay. The big central compartment is separated by nylon 

mesh from the lateral compartments with target plants (modified 

from Wyss et al. 1991). 
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3.3. Materials and methods 

 

3.3.1. Field site  

The study site was a low-input species-rich grassland (Fig. 5) close to Leymen in Alsace, 

France (47°29’16’’ N; 7°29’16’’ E; ca 490 m above the sea level). It is mown once or twice 

per year, has not been fertilized during the last 20 years and has very high plant diversity 

(approximately 80 species) with Bromus erectus being the dominant grass. The vegetation 

type was classified as a Meso-Brometum. The soil pH (measured in H2O) was 7.4, NaOAc-

extractable phosphorus was 12 ng/g, HCl/H2SO4-extractable calcium was 1.3g/100g. Humus 

content was >9% (w/w; laboratory F.M. Balzer, Wetter-Amönau, Germany).  

 

3.3.2. Field samples (FS) 

In July 2002 and July 2005, a total of 17 soil cores with a depth of 15 cm were randomly 

removed in an area of approximately 15 m in diameter in the meadow. Plant roots were 

washed carefully, separated by plant species and blotted dry using paper tissue. Aliquots of 50 

mg consisting of root pieces assembled from a single root system of one species were frozen 

in liquid nitrogen and stored at -80°C until use. Roots of the following plant species 

(subsequently called “target plants”) were used for further DNA analyzes: the forb Inula 

salicina (Asteraceae, Fig. 1), the legume Medicago sativa (Fabaceae, Fig. 2), the forb 

Origanum vulgare (Lamiaceae, Fig. 3) and the grass Bromus erectus (Poaceae, Fig. 4). Five 

samples from five different root systems for each plant species were analyzed. All of the 

target plants were highly abundant in the field site, but showed a different distribution: B. 

erectus was distributed evenly, I. salicina occurred in dense patches, M. sativa and O. vulgare 

grew in a scattered pattern. 

 

3.3.3. Greenhouse experiment with compartment systems (CS) 

Compartment systems (Wyss et al. 1991; Figs. 6, 7) were used to analyze possible host 

preferences of AMF and neighbor effects of the target plant species under controlled 

greenhouse conditions in two different successional stages, ensuring the complete separation 

of target plant root systems. In September 2003, the central large compartments were filled 

with a 1:1:1 mixture of autoclaved sand, autoclaved Terragreen (American aluminium oxide, 

oil dry US special, Lobbe Umwelttechnik, Iserlohn, Germany) and non-autoclaved 

homogenized soil from the field. In addition, seeds of the plant species Plantago media and 
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Lotus corniculatus had been collected in the field site where they occurred frequently. These 

seeds were sterilized in 4% sodium hypochlorite for approximately 5 min and pre-germinated 

in Petri dishes with sterile sand. Two Bromus erectus plants taken directly from the field and, 

in addition, P. media and L. corniculatus seedlings were planted into the central compartment 

in order to facilitate propagation of the inoculum. The lateral compartments, separated from 

the central chamber by a nylon net (60 µm aperture size; Lanz-Anliker AG, Rohrbach, 

Switzerland) were filled with a 1:1:1 mixture of autoclaved sand, autoclaved Terragreen and 

autoclaved homogenized soil from the field. Seedlings of target plants grown from the seeds 

collected in the field site and sterilized as described above were planted singly into one lateral 

compartment each. Two alternately-placed plant species were cultivated in one compartment 

system (Fig. 7a). Two compartment systems with the plant combinations I. salicina/O. 

vulgare and I. salicina/M. sativa were established and cultivated under greenhouse conditions 

(12 h light in winter, and 16 h in summer at 24-28 °C; night temperature at least 16 °C). After 

three months, half of the root system of each target plant was harvested using a removable 

side-wall while keeping the remainder of the plants intact. The compartments were then 

refilled with the original substrate; the harvested roots were washed and 3-4 aliquots of 50 mg 

per root system frozen in -80°C. The second harvest followed in July 2004 (after 10 months), 

using the whole root systems. 

 

 

 
Fig. 7a Scheme of the floor projection of a compartment system with target plant 

species placement 
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3.3.4. Bait plants in the field site (BP) 

In July 2004, an experiment with bait plants (Fig. 8) was established in order to trap the 

native AMF community from the field using target plant species under natural field 

conditions. The purpose was to analyze possible host preferences for AMF in two different 

successional stages while ensuring the complete separation of the target plant roots from the 

other plants in the field. The in-growth core system designed by Johnson et al. (2001) was 

adapted for our study in the following way: plastic bottles (diameter: 53 mm, height: 69 mm; 

Semadeni, Switzerland) with a screw lid were used. The bottom of each bottle was cut off and 

a hole with a diameter of ca 4 cm was cut out in the lid. A double nylon net (60 µm aperture 

size; Lanz-Anliker AG, Rohrbach, Switzerland) was fixated between the bottle and the lid by 

screwing and the bottles were inverted upside down. Fifteen bottles were filled with a mixture 

(1:2) of autoclaved sand and autoclaved soil (collected in September 2003 in the field, sieved 

through 4 mm sieve and homogenized); another fourteen bottles were filled with the same 

mixture, but the soil was not autoclaved. Five ml of a bacterial filtrate from the non-

autoclaved soil were added to all bottles.  

Two seedlings of one of the target plant species were planted into each bottle (3-4 

repetitions per plant species per substrate, altogether 29 bottles) and cultivated for two months 

in the greenhouse (Fig. 9) in order to ensure initial growth of the plantlets in the bottles. In 

September 2004, holes were dug out in a grid with approximately one meter distance between 

each other in the field site in the same area where the field samples were taken. Bottles were 

inserted into the holes (Fig. 10) in random order and watered every 4-5 days for three weeks. 

After three months, soil cores with roots were taken from three bottles per plant species. 

Holes made by coring were refilled with autoclaved soil from the meadow. Roots were 

washed and aliquots of 50 mg were frozen at -80°C. The second harvest using the whole root 

systems was conducted in July 2005, after 10 months exposure in the field.  
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Fig. 8 Scheme of the bait plant bioassay after the transplantation into the field (drawn by 

B. Börstler) 

 

Fig. 10 Inula salicina bait plant after 

the transplantation into the 

field 

Fig. 9 Bait plants in the greenhouse 

before the transplantation into the 

field 
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3.3.5. DNA extraction and polymerase chain reactions 

Roots were ground in liquid nitrogen using a pellet pestle within a 1.5 ml tube. DNA was 

extracted from roots using the DNeasy Plant Mini Kit (Quiagen, Hilden, Germany) according 

to the manufacturer’s instructions. DNA was eluted in two steps, using 50 µl of elution buffer 

in each step. DNA extracts were diluted 1:10 or 1:100 in TE buffer and used as template for 

the first step of a nested PCR as described by Redecker (2000). This first round of 

amplification was performed using the universal eukaryote primers NS5 and ITS4 (White et 

al. 1990), Taq polymerase from Amersham (Basel, Switzerland) or New England Biolabs 

(BioConcept, Allschwil, Switzerland), 2 mM MgCl2, 0.5 µM primers and 0.13 mM of each 

desoxynucleotide. The cycling parameters were: 3 min at 94°C, followed by 30 cycles of 45 

sec at 94°C, 50 sec at 51°C and 1 min 30 sec at 72°C. The program was concluded by a final 

extension phase of 10 min at 72°C. 

The PCR products were diluted 1:100 in TE buffer and used as a template in the second 

round. Five separate PCR reactions were performed using the primer pairs GLOM1310/ITS4i 

(specific for Glomus group A), LETC1677/ITS4i (specific for Glomus group B), 

ACAU1661/ITS4i (Acaulosporaceae), ARCH1311AB/ITS4i (Archaeosporaceae), 

NS5/GIGA5.8R or NS7/GIGA5.8R or GIGA5.8R/GIGA1313 (Gigasporaceae; Redecker 

2000; Redecker et al. 2003). The PCR parameters for the second round differed from the first 

one only in the annealing temperature (61°C). Moreover, a “hot start” at 61°C was performed 

manually to prevent non-specific amplification. PCR products were checked on agarose gels 

(2%:1% NuSieve/SeaKem, Cambrex Bio Science, Rockland, ME, USA) in Tris/Acetate 

buffer at 120 V for 30 min. 

 

3.3.6. Cloning, restriction fragment length polymorphism analyses and 

sequencing 

PCR products were purified using the High Pure Kit from Hoffman LaRoche (Basel, 

Switzerland) and cloned into a pGEM-t vector (Promega/Catalys, Wallisellen, Switzerland). 

Inserts were re-amplified, preferably ten positive clones of each PCR product were digested 

with HinfI and MboI and run on agarose gels as described above. Restriction fragment 

patterns were compared to a database modified from the spreadsheet developed by Dickie et 

al. (2003). Representative clones of new restriction types were re-amplified, purified using 

the High Pure Kit and sequenced in both directions. The BigDye Terminator Cycle 

Sequencing Kit (ABI, Foster City, CA, USA) was used for labeling. Samples were run on an 

ABI 310 capillary sequencer. Sequences were deposited in the EMBL database under the 
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accession numbers AM494584-AM494585; AM495115-AM495207; AM497782, AM497783 

shown in the phylogenetic trees.  

 

3.3.7. Sequence analyses 

Sequences were aligned to previously-published sequences in PAUP*4b10 (Swofford 2001). 

The glomeromycotan origin of the sequences was initially tested by BLAST (Altschul et al. 

1997). Separate ITS alignments were prepared for each of the target groups of the specific 

primers LETC1677, GLOM1310, ARCH1311AB. In addition, an alignment of the partial 3' 

end of 18S rDNA small subunit was compiled for the sequences amplified with GLOM1310 

and ARCH1311AB (Bidartondo et al. 2002).  

Phylogenetic trees were primarily obtained by distance analysis using the neighbor 

joining algorithm in PAUP*4b10, the Kimura two-parameter model and a gamma shape 

parameter=0.5. Results were verified by performing maximum likelihood analyses based on 

parameters estimated in Modeltest 3.5 (Posada 2004). 

 

3.3.8. Definition of sequence phylotypes 

Sequence phylotypes were defined in a conservative manner as consistently separated 

monophyletic groups in the phylogenetic trees. Only those clades were used that were 

supported by neighbor joining analysis and also present in the respective maximum likelihood 

tree. In case of GLOM-A and ARCH phylotypes, the clades had to be supported by both 18S 

partial subunit and ITS trees. We avoided splitting the lineages unless there was a positive 

evidence for doing so. The sequence phylotypes were designated after the major clade they 

belonged to, followed by a numerical index (x in the following examples) identifying the type 

(Hijri et al. 2006): GLOM-Ax (Glomus group A), GLOM-Bx (Glomus group B) and ARCH-x 

(Archaeosporaceae). Representative sequences of each phylotype were checked manually for 

possible chimaeras, which were excluded from further analyses. 

 

3.3.9. Statistical analyses 

Presence/absence of AMF phylotypes in each root sample were used to construct the species 

accumulation curves with 95% confidence intervals, using the analytical formulas of Colwell 

et al. (2004) in the program EstimateS 8.0 (Colwell 2005). Shannon diversity indices (H=-

Σpi∗ln(pi)) were calculated using the website 

http://www.changbioscience.com/genetics/shannon.html for each experimental approach and 

target plant species.  
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The influence of host plant species and experimental approach on the number of 

phylotypes found in the root samples was analyzed using the program NCSS (NCSS, 

Kaysville, UT, USA). In order to investigate the influence of environmental factors (host 

plant species, experimental approach, harvest, substrate, plant combination) on the 

distribution of the AMF phylotypes in the root samples, ordination analyses were conducted 

in Canoco for Windows v. 4.5 (ter Braak and Smilauer 2004) using the presence/absence data 

for each root sample. Initial Detrended Correspondence Analysis (DCA) suggested a 

unimodal character of the data response to the sample origin (the lengths of gradients were 

>4), therefore the Canonical Correspondence Analysis (CCA) was used. The variance 

partitioning method with permutations in blocks defined by the co-variables was used to 

compare the influence of groups of environmental factors between each other. For example, 

host plants were considered as co-variables when the influence of experimental approaches as 

variables was tested, and reverse. Monte Carlo Permutation Tests were conducted using 499 

random permutations. The subsequent forward selection procedure ranked the environmental 

variables according to their importance and significance for the distribution of the phylotypes. 

 

3.4. Results 

  

3.4.1. PCR yields and phylotypes detected in the root samples 

An overview of sampling and phylotypes occurring is presented in Tab. 1. Using our PCR 

approach with five nested primer sets, 74 of the 97 extracted root samples (76%) yielded 173 

PCR products, resulting in 1182 clones after cloning. A total of 130 PCR products (75%; 938 

clones) could be assigned to AMF phylotypes. Inula salicina root samples from the field and 

from the second harvests of the compartment systems and bait plants turned out to be the 

most problematic – only 25% of these DNA extracts yielded PCR amplicons. Eventually, 19 

root samples from the field (4-5 replicates/plant species), 20 samples from the bait plants (3 

replicates/plant species/harvest) and 31 samples from the compartment systems (5 

replicates/plant species/compartment system/harvest) yielded AMF-containing PCR products.  

After RFLP screening, 211 clones were sequenced and analyzed phylogenetically. 

Altogether, 16 different phylotypes were found, nine of which belonged to Glomus group A 

(group definitions according to Schwarzott et al. 2001), six to Glomus group B and one to the 

Archaeosporaceae (Figs. 11, 12, 13, 14; Tab. 1). By far the most abundant phylotype, which 

was found in 58 root samples, was GLOM A-1 (Figs. 11, 12). It corresponds to the 

morphologically-defined species Glomus intraradices. The second and third most frequent 

phylotypes were GLOM B-4 and GLOM B-1 (Fig. 13), which could not be assigned to any 
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morphologically described species, and GLOM A-3 (Figs. 11, 12), which corresponds to G. 

mosseae. No phylotypes belonging to the families Paraglomeraceae, Acaulosporaceae and 

Gigasporaceae were found.  

Out of the 16 phylotypes reported in our study, five are known morphospecies, another 

six are known only as sequences detected in root or soil samples in other studies and the 

remaining five are new to science (Tab. 2).  

Fig. 11 (figure on the next page) Phylogenetic tree of the Glomeromycota obtained by 

neighbor-joining analysis of 311 characters of the 18S rDNA subunit. Numbers above 

branches denote neighbor-joining bootstrap values from 1000 replications. The tree 

was rooted with Paraglomus occultum and P. brasilianum. Sequences obtained in the 

present study are shown in boldface. They are labeled with the database accession 

number, (e.g. AM495185), internal identification number (e.g. ZS557_558), the host 

plant species (e.g. M. sativa), kind of experimental approach (FS, BP, CS, see text); 

for FS the harvest year (05 or 02) is indicated; for BP 1
st
 or 2

nd
 harvest are shown (1 or 

2); for CS 1
st
 or 2

nd
 harvest (1 or 2) are noted. The parentheses show the delimitation 

of the phylotypes. 
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Fig. 11 (legend on the previous page) 



Chapter 3: The cultivation bias: different communities of AMF in roots from      

the field, from bait plants, and from a greenhouse trap experiment  

 

 

 67 

 

Fig. 12 Phylogenetic tree of Glomus group A obtained by neighbor-joining analysis of 387 

characters from ITS2 and 5.8S rDNA. Numbers above branches denote neighbor-

joining bootstrap values from 1000 replications. The tree was rooted with Glomus 
walkeri. Sequences obtained in the present study are shown in boldface and are 

labeled like in Fig. 11. The parentheses show the delimitation of the phylotypes.  
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Fig. 13 Phylogenetic tree of Glomus group B based on neighbor-joining analysis of 381 

characters of ITS2 and 5.8S rDNA sequences. Numbers above branches denote 

neighbor-joining bootstrap values from 1000 replications. The tree was rooted 

using Glomus walkeri. Sequences obtained in the present study are shown in 

boldface and are labeled like in Fig. 11. The parentheses show the delimitation of 

the phylotypes. 
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Fig. 14 Midpoint-rooted phylogenetic tree of Archaeosporaceae obtained by neighbor-

joining analysis of 328 characters from ITS2 and 5.8S rDNA. Numbers above 

branches denote neighbor-joining bootstrap values from 1000 replications. 

Sequences obtained in the present study are shown in boldface and are labeled like 

in Fig. 11. The parentheses show the delimitation of the sequence types. 
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Tab. 1 Overview of the clone numbers per sequence type in all analyzed samples yielding at least one AMF sequence type or RFLP pattern. Each line corresponds to a root 

sample taken from a single plant. 
Sequence types 

Sample description 
Glomus group A Glomus group B 

Archaeo- 

sporaceae 
Experim. 

approach 
Host 

plant 
Harvest Glom 

A-1 
Glom 

A-3 
Glom 

A-7b 
Glom 

A-29 
Glom 

A-31 
Glom 

A-30 
Glom 

A-15 
Glom  

A-16 
Glom 

A-17 
Glom 

B-1 
Glom 

B-2 
Glom 

B-4 
Glom 

B-5 
Glom 

B-6 
Glom 

B-7 Arch-2 
5                
8           5 5    
2 1          3 5    
5 2               In

ul
a 

6                
9         9       

11         2 7      
11           13     
10 1        7  2     O

rig
an

um
 

C
o

m
b

in
a

ti
o

n
b
 I

-O
 

10 4        7       
8 2        5       
 10               
 13        1  7 1    
5 1        1       In

ul
a 

5 2        9  4     
9           8     

13                
12                
 10        2       M

ed
ic

ag
o 

C
o

m
b

in
a

ti
o

n
 I

-M
 

1
st
 harvest 

(after 3 

months) 

12         1 6      

In
u

-la
 

6       5    9 4    
5       4    7 1    

10                
8      1     1     
8       2  5  7     O

rig
an

um
 

C
o

m
b

. 
I-

O
 

9                
13            2    
9           5 1    
8           5 5    

12           7     

C
o

m
p

a
rt

m
en

t 
sy

st
e
m

s 

M
ed

ic
ag

o 

C
o

m
b

. 
I-

M
 

2
nd

 

harvest 

(after 10 

months) 

9           9     
9                
2     1           

Field 

 

Bromus July 02 

5                



Chapter 3: The cultivation bias: different communities of AMF in roots from the field, from bait plants, and from a greenhouse trap experiment  

 
 

 

 71 

Sequence types 

Sample description 
Glomus group A Glomus group B 

Archaeo- 

sporaceae 
Experim. 

approach 
Host 

plant 
Harvest Glom 

A-1 
Glom 

A-3 
Glom 

A-7b 
Glom 

A-29 
Glom 

A-31 
Glom 

A-30 
Glom 

A-15 
Glom  

A-16 
Glom 

A-17 
Glom 

B-1 
Glom 

B-2 
Glom 

B-4 
Glom 

B-5 
Glom 

B-6 
Glom 

B-7 Arch-2 
1       2 4         
7        1    4 4   
4     1           
        10 1   1  1  

In
ul

a 
 

5        1        
Inula July 05 8        2  8      

Medica-
go July 02 1                

9        2        
7       1 1        
9               1 M

ed
ic

a-
go

 

7       3         
5       5    1     

10                
9   1        10    7 
9       1  10       

 
O

rig
an

um
 July 05 

8                
Inula-A

c           4      
Inula-N  5      1 2        
Inula-N           2 1     
Brom.-N        11   13     2 
Brom.-A            1     
Brom.-A 8                
Orig.-N         10 3 7      
Orig.-A 8                
Orig.-A  8     2     12     
Medi.-N 

1
st
 harvest 

(after 3 

months) 

6 1               
Inula-A  13       2   1  1    
Inula-N 1 7   1   5   1 9     
Brom.-N  8         1 2  1    
Brom.-A  12           2 1    
Brom.-A             7 2    
Orig.-A  10           5     
Orig.-A  7  1      3   8     
Medi.-A  9 1         5 5     
Medi.-N  7                

B
a

it
 p

la
n

ts
 

Medi.-A  

2
nd

 

harvest 

(after 10 

months) 

8           12     
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a
No number in the cell indicates that no clones of the corresponding phylotype were detected in the root sample.  

b
Compartment systems description: combination of target plants (e.g. I-O corresponds to Inula-Origanum combination). 

c
Bait plants description: host plant name is followed by N (non-autoclaved substrate) or A (autoclaved substrate). 
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Tab. 2 Overview of all sequence types found in our study and their matches to morphologically described AMF species and molecular phylotypes found in some other 

studies 
 

Sequence type Morphospecies Reference examples 

 

Host plant species examples 

 

Ecosystem/Country 

GLOM A-1 Glomus intraradices Hijri et al. (2006) Zea mays Germany, Switzerland 

GLOM A-3 Glomus mosseae Hijri et al. (2006) Zea mays Germany, Switzerland 

GLOM A-7b - Wubet et al. (2004); Russell & Bulman (2005); 

Waldrop et al. (unpublished); Sýkorová et al. 

(2007); Appoloni et al. (submitted) 

Prunus africana, Marchantia foliacea, 
soil sample; Gentiana acaulis; 
Agrostis scabra, Agrostis stolonifera 

Ethiopia, New Zealand, Minnesota 

(USA), Switzerland Yellowstone 

(USA), Iceland 

GLOM A-15 Glomus constrictum Hijri et al. (2006); Wubet et al. (2004), 

Landwehr et al. (2002); Sýkorová et al. (2007) 

Pot culture; Prunus africana, spore; 

Gentiana verna 

Ethiopia, Germany, Switzerland 

GLOM A-16 - - - - 

GLOM A-17 Glomus badium Wubet et al. (2003); Wirsel (2004); Oehl et al. 

(2005); Sýkorová et al. (2007) 

Taxus baccata, Phragmites australis, 
spores, Gentiana verna, Leontodon 
hispidus 

Germany, Switzerland 

GLOM A-29 - Wubet et al. (2003 and 2004); Waldrop et al. 

(unpublished); Hempel et al. (2007) 

Taxus baccata, Prunus africana, soil 

sample 
Germany, Ethiopia, Minnesota (USA) 

GLOM A-30 - - - - 

GLOM A-31 - - - - 

GLOM B-1 sister group to G. luteum  Hijri et al. (2006); Sudarshana et al. 

(unpublished) 

Pot culture  

GLOM B-2 sister group to G. etunicatum Wubet et al. (2004), Börstler et al. (2006); 

Sýkorová et al. (2007) 

Prunus africana, spore; Plantago 
major, Galium album, spores; Crocus 
albiflorus, Trifolium sp.  

Ethiopia, Germany, Switzerland 

GLOM B-4 - Börstler et al. (2006); Sýkorová et al. (2007); 

Bidartondo et al. (2002) 

Plantago major, Trifolium sp., 

Hieracium hoppeanum, unidentified 

plant root 

Germany, Switzerland 

GLOM B-5 - Sýkorová et al. (2007) Trifolium sp., Hieracium hoppeanum Switzerland 

GLOM B-6 - - - - 

GLOM B-7 - - - - 

ARCH-2 Archaeospora trappei ? Hijri et al. (2006); Appoloni et al. (submitted) Trap cultures; Agrostis scabra Switzerland, Yellowstone (USA) 
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3.4.2. AMF richness and diversity 

The sampling effort curves (Fig. 15a) showed that for the compartment systems (CS), the 

number of analyzed root samples was sufficient to characterize almost exhaustively the 

phylotypes present in the roots, as the curve clearly approaches saturation. In contrast, the 

curves for field samples (FS) and bait plants (BP) are not as clearly saturated but still 

approaching a plateau. This can be attributed to the higher complexity of the AMF 

community in these samples and to the lower number of samples analyzed (19 and 20, 

respectively) compared to the compartment systems (31 samples). To detect one more new 

phylotype, the analysis of additional 4-5 field or bait plant samples would have been 

necessary. Species accumulation curves calculated for each plant species across all 

experimental approaches (Fig. 15b) show the strongest saturation in M. sativa, where only 

nine AMF phylotypes were found. 

The observed absolute numbers of phylotypes per root sample were compared using 

ANOVA. Neither host plant species nor experimental approach nor their interaction had a 

significant influence on the number of phylotypes/sample (P=0.3; P=0.083 and P=0.07, 

respectively). The host plant harboring the highest mean number of AMF phylotypes/root 

sample (2.9) was I. salicina, followed by O. vulgare (2.6), B. erectus (2.3) and M. sativa 

(2.1). The mean number of AMF phylotypes/sample detected in the field was 2.3, whereas it 

was 2.6 in the bait plant approach and 2.5 in the compartments.  
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Figs. 15a, b Sampling effort curves for a) compartment systems (n=31), field samples 
(n=19) and bait plants (n=20); b) for each host plant species: I. salicina (n=20), 

O. vulgare (n=20), M. sativa (n=19) and B. erectus (n=11). The curves were 

computed analytically in EstimateS 8.0 (Colwell 2005).  

 

Fig. 15a 

Fig. 15b 
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3.4.3. AMF community composition in different experimental approaches and 

host plant species  

The influence of the kind of experimental approach and the host plant species (subsequently 

called “all environmental factors”) on the distribution of AMF phylotypes in the root samples 

was investigated using a multivariate statistical approach. Phylotypes GLOM A-7B, GLOM 

A-29, GLOM A-31, GLOM B-6 and GLOM B-7 were excluded from the analysis, because 

they were detected only once in the whole study.  

The initial CCA (Canonical correspondence analysis) performed using all samples 

revealed that all environmental factors explained 15% of the whole variance and that their 

effect on the distribution of AMF phylotypes was clearly significant (P=0.002). The forward 

selection procedure ranked the environmental factors as following: field samples (P=0.002), 

compartment systems samples (P=0.012) and O. vulgare (P=0.028). These results indicate 

that the root samples originating from field and compartment systems differed significantly 

from each other and also from the bait plants root samples, and that O. vulgare differed from 

samples originating from all other host plants. The influence of other host plant species on the 

distribution of the phylotypes was not significant. The variance partitioning showed that the 

experimental approach accounted for 63% of the variance explained by all environmental 

factors, whereas the host plant species accounted only for 34%. The remaining 3% was 

explained by the correlation of both groups of factors.  

The biplot diagram of this CCA (Fig. 16) also demonstrates these results: the centroids 

representing the three experimental approaches are distant from each other, forming a 

triangle, which demonstrates that the roots contained distinct AMF. In contrast, the centroids 

representing the host plant species are located inside in this triangle (except for O. vulgare) 

indicating that they hosted more similar AMF communities. The location of the phylotypes in 

the plot (Fig. 16) indicates in which experimental system they were detected. The relative 

abundance of each phylotype (Tab. 1) also contributed to its position in the plot. GLOM A-3, 

for instance, was detected only in CS and BP, GLOM A-17 and ARCH-2 in FS and BP. Most 

of the remaining phylotypes were present in all three experimental approaches, but their 

relative abundance differed: GLOM B-4, for instance, was present in 50% of samples from 

CS and BP, but only in 11% of the samples from FS. GLOM B-1 occurred in 35% of CS 

samples but only in 10% of FS and BP samples. GLOM A-16 was found in only 10% of the 

CS samples, but in 25-26% of the FS and BP samples. For the abundance of the remaining 

phylotypes see Tab. 1. The only phylotype present at relatively high abundance in all three 

experimental approaches was GLOM A-1.  
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Fig. 16 CCA biplot of the phylotypes and environmental factors (using Hill’s 

scaling focused on inter-species distances) of all samples from all three 

experimental approaches. Only phylotypes that occurred more than once 

in the whole study were included in the analysis. The three experimental 

approaches are represented by filled triangles, host plant species by open 

triangles and phylotypes by circles. The 1
st 

axis accounted for 42,9% of 

the variability explained by all canonical axes and was significant 

(P=0.002). The percentages shown by 1
st 

and 2
nd 

axis correspond to the 

percentage of variance of AMF phylotypes data explained by the 

particular axis. 
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3.4.4. Field samples – effect of host plant species and sampling year 

A CCA was also performed with data from field samples only (Fig. 17). It revealed that the 

host plants and the two sampling years as environmental factors explained 30% of the whole 

variance and their effect was not significant at the P=0.05 level (P=0.066). The variance 

partitioning method revealed that the influence of the host plant species (66%) on the AMF 

community composition was about twice the influence of the sampling year (29%). The only 

variable with significant influence according to the forward selection procedure was O. 

vulgare (P=0.032), probably due to specific presence of GLOM B-4 and absence of GLOM 

A-17, which was present in all remaining host plant species. These CCA results unfortunately 

are biased by the unequal numbers of samples per host plant species from each sampling year 

(see also CCA biplot in Fig. 17 and Tab. 1) and therefore by strong correlations. Furthermore, 

when the two sampling years were considered as the only environmental factors, their 

influence was significant (P=0.024), which may also be caused by the specific presence of O. 

vulgare samples only in the harvest from the year 2005. 
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Fig. 17 CCA biplot of sequence types and environmental factors (using Hill’s 

scaling focused on inter-species distances) of the data from the field. 

Harvests are represented by filled triangles, host plant species by open 

triangles and sequence types by circles. The 1
st 

axis accounted for 48% of 

the variability explained by all canonical axes and was not significant 

(P=0.108). The percentages shown by 1
st 

and 2
nd 

axis correspond to the 

percentage of variance of AMF sequence types data explained by the 

particular axis. 
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3.4.5. Compartment systems: influence of host plant species, plant species 

combination and the duration of cultivation  

A CCA was also performed with data from compartments systems only (Fig. 18). All 

environmental factors accounted for 29% of the whole variance in the CS samples and their 

effect was clearly significant (P=0.002). The forward selection procedure revealed the 

cultivation duration (P=0.002) as a significant factor. The host plant species I. salicina was 

not significant (P=0.062). Variance partitioning showed that from the variance explained by 

all environmental factors, the cultivation duration in fact accounted for 47%, the host plant 

species accounted for 39%, and the plant species combination in the CS (I. salicina/O. 

vulgare or I. salicina/M. sativa) explained only 14%. The influence of host plant species was 

significant (P=0.006) considering the other factors as covariables, but not significant 

(P=0.134) excluding other factors. Fig. 18 clearly shows that the centroids of the two harvests 

are located on the first canonical axis (P=0.002) far apart from each other, whereas the 

centroids of the host plant species are distributed along the second canonical axis (vertically) 

with I. salicina located far from the other two host plant species. The centroids of the plant 

combinations are in the middle of the biplot indicating that both combinations hosted similar 

AMF communities.  

Interestingly, the phylotypes GLOM A-3 and GLOM B-2 were present only in samples 

form the first harvest and the abundance of GLOM B-1 sharply dropped from the first to the 

second harvest, indicating that these phylotypes could be the fastest colonizers of a new 

niche, but disappeared later. In contrast, phylotypes GLOM B-5 and GLOM A-16 were more 

often or exclusively detected in samples from the second harvest, which suggests that these 

are AMF typical for older, more mature ecosystems Interestingly, they were also detected in 

the field samples and bait plants. Other phylotypes like GLOM A-1 or GLOM B-4 were 

present in samples from both harvests more or less equally, indicating their generalist 

character.  
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Fig. 18 CCA biplot of sequence types and environmental factors (using Hill’s scaling 

focused on inter-species distances) of the data from the compartment systems. 

Harvests are represented by filled black triangles, plant combinations by filled 

grey triangles, host plant species by open triangles and sequence types by 

circles. The 1
st 

axis accounted for 63% of the variability explained by all 

canonical axes and was significant (P=0.002). The percentages shown by 1
st 

and 2
nd 

axis correspond to the percentage of variance of AMF sequence types 

data explained by the particular axis. 
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3.4.6. Bait plants – influence of host plant species, duration of cultivation and 

substrate treatment  

The initial growth of the plantlets was more vigorous in the non-autoclaved substrate than in 

autoclaved soil (data not shown), which may be caused by the toxic ions released during the 

autoclaving process. After the transplantation into the field, the bait plants were generally 

thriving, except for M. sativa, which showed limited growth, with few roots; three plants even 

died until the second harvest.  

A CCA was performed with the bait plant samples only (for biplot see Fig. 19). It 

showed that all environmental factors explained 35% of the whole variance and their effect 

was significant (P=0.01). The forward selection identified the substrate type (P=0.03) and the 

host plant B. erectus (P=0.042) as significant factors. The variance partitioning revealed that 

the host plant species explained 58% of the variance explained by all environmental factors, 

the substrate type accounted for 19% and the cultivation duration explained only 13%. Ten 

percent was explained by correlations of these factors. When considered alone, the influence 

of the substrate and the host plants was significant. 

An interesting phenomenon was the species richness per sample in the two different 

substrates: in the non-autoclaved treatment, there were substantially more phylotypes per 

sample already after the first harvest, with an average of 2.6 phylotypes/sample in comparison 

to 1.4 in the autoclaved treatment. The same was observed after the second harvest (3.7 

versus 3.0). Overall, the samples from the second harvest were slightly higher in species 

richness (10 phylotypes detected) than samples from the first one (9 phylotypes detected, Tab. 

1). The overall number of phylotypes in the autoclaved substrate (10) did not differ from the 

non-autoclaved soil.  
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Fig. 19 CCA biplot of sequence types and environmental factors (using Hill’s scaling 

focused on inter-species distances) of the data from the bait plants. Harvests 

are represented by filled black triangles, original substrate (autoclaved or not-

autoclaved) by filled grey triangles, host plant species by open triangles and 

sequence types by circles. The 1
st 

axis accounted for 34% of the variability 

explained by all canonical axes and was not significant (P=0.28). The 

percentages shown by 1
st 

and 2
nd 

axis correspond to the percentage of variance 

of AMF sequence types data explained by the particular axis. 
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3.5. Discussion 

 

To our knowledge, this is the first study specifically addressing the influence of culturing 

methods on AMF community diversity using molecular methods. Our results demonstrate that 

the culturing techniques we used had a much stronger influence on AMF communities in the 

roots than host specificity.   

Generally, the number of twelve phylotypes found in our field site is within the range 

of 10-24 phylotypes found by other authors applying molecular methods in temperate 

grasslands (Öpik et al. 2006). However, this number is considerably lower than the 24 

morphospecies found using the microscopic investigation of spore morphology in the same 

field site (Oehl et al. 2003). It should be emphasized that spore-based methods and root-based 

molecular analysis characterize two different but related parameters of the soil biota: the 

spores reflect the inoculum potential which may be rather long-lived and usually does not 

perfectly correspond to the momentarily active fungal community within the roots (Renker et 

al. 2005; Börstler et al. 2006; Hempel et al. 2007) which is characterized by molecular 

methods.  

Another possible reason for the lower apparent diversity we detected was the fact that 

we focused on only four out of at least 60 potential host plant species in the site. This subset 

of taxa may not harbor the whole AMF community of this field site. Some degree of host 

preference of different host plant species has been reported (e.g. Vandenkoornhuyse et al. 

2003; Gollotte et al. 2004) and in another field site we showed that the diversity of detected 

AMF phylotypes increased with the number of plant species analyzed (Sýkorová et al. 2007).  

Similar to the present study, Oehl et al. (2003) did not find any species of the 

Acaulosporaceae in the field site and the respective trap cultures. Scutellospora calospora, a 

member of the Gigasporaceae, which were not detected at all by molecular methods, was 

among the rarest morphospecies in the spore-based study and the only representative of its 

family. Notably, the relatively high number of six phylotypes from Glomus group B in the 

present study exceeds the local diversity detected for this group in any previously published 

study.  

Many studies based on spore morphology have demonstrated that not necessarily the 

same AMF morphospecies are found in a field site and in greenhouse cultures set up using 

soil from this site ("trap cultures", Jansa et al. 2002; Oehl et al. 2003; Oehl et al. 2004), 

although there is usually a considerable overlap between the two species groups. The period 

of time the cultures are grown also appears to be important, as some species only sporulate 

after extended cultivation, e.g. 20 months (Oehl et al. 2004). 



Chapter 3: The cultivation bias: different communities of AMF in roots from  

     the field, from bait plants, and from a greenhouse trap experiment  

 

 

 85 

The fungi sporulating early in trap cultures could potentially be representatives of the r 

strategy (Pianka 1970), which dominate resource-rich uncolonized habitats in early 

successional stages of the fungal community. K strategists would follow the opposite strategy 

of slow growth under resource-limited conditions and occurrence in late successional stages. 

However, it is difficult to draw direct conclusions about the life history strategy of the fungi 

detected by their spores as differences in sporulation behavior may conceal these 

characteristics. Although r strategists typically invest heavily into their reproduction, it is 

possible that some r strategists are not prolific sporulators. Moreover, species abundantly 

producing spores in the field or in the greenhouse do not always dominate the AMF 

community in the field roots (e.g. Ahulu et al. 2006). 

Molecular studies have demonstrated differences in AMF communities in the roots 

between natural/seminatural and arable/disturbed sites, but attributed these differences mainly 

to environmental factors like high nutrient concentration, ploughing, fertilizer and fungicide 

input as well as low crop diversity or crop rotation in arable sites (Helgason et al. 1998; 

Daniell et al. 2001; Jansa et al. 2002; Hijri et al. 2006). As a form of recurring disturbance, 

ploughing was identified as factor potentially affecting AMF communities, but succession in 

AMF communities was not addressed in this context.  

The analysis of the distribution of the phylotypes across culturing approaches and 

different harvesting times revealed some highly interesting patterns (see Tab. 3). Most 

strikingly, GLOM A-3 (G. mosseae) was never detected in FS, but it occurred in 25% of the 

BP and 50% of the samples of the first harvest of the CS. Apparently, it later disappeared 

from the CS, most likely displaced by other fungi throughout the succession in the system. 

The presence of the spores of this morphospecies in the field site was already reported by 

Oehl et al. (2003), confirming that it was present predominantly as inoculum that could 

colonize the roots of BP and CS. These data strongly suggest that G. mosseae is a typical 

early-stage colonizer and an r strategist adapted to disturbed systems. This life history 

strategy is consistent with its occurrence in arable soils (Helgason et al. 1998; Daniell et al. 

2001; Hijri et al. 2006), where it has to be adapted to frequent soil disturbance and low host 

plant diversity and therefore faces similar environmental conditions like in CS and BP.   

Showing the opposite trend, GLOM-A-17 (Glomus badium) was never found in the CS, 

but was occasionally found in the BP and frequently in the FS. It was previously detected in 

the field site by an approach based on spore morphology (Oehl et al. 2003) and was reported 

to be widespread in European grasslands (Oehl et al. 2005), which is consistent with our 

observations of its preference for undisturbed systems. Similarly, GLOM-A-16 occurred 

frequently in FS and BP, but was not found in the first harvest of the CS. ARCH-2 was never 

found in CS, but occasionally in the FS and BP. We conclude from the data that these 
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phylotypes preferentially occur in more mature root/soil ecosystems and later stages of 

succession. As the competition for nutrient resources can be expected to increase under these 

conditions we suggest they can be classified as K strategists, though to different extents.  

The occurrence patterns of other phylotypes were not as striking but still showed a 

tendency to preferentially occur in either cultivated or natural environments (see Tab. 3). For 

instance, phylotypes GLOM A-15 (G. constrictum), GLOM B-1 (sister group of G. luteum), 

GLOM B-2 (sister group of G. etunicatum), GLOM B-4 and GLOM B-5 occurred 

predominantly in CS and BP, which indicates their ecological preferences for early 

successional stages. However, it should be noted that there were also apparent generalists 

exemplified by G. intraradices, which was the most frequently detected phylotype in all 

systems. Several phylotypes occurred only once, therefore not allowing to assign them 

reliably. 

The BP approach revealed an equally high diversity of AMF phylotypes as the FS. It 

detected both phylotypes predominantly present in FS (like GLOM A-17, GLOM A-16 or 

ARCH-2) and in CS (GLOM A-3, GLOM B-4 or GLOM B-5). Therefore, this approach 

seems to be useful to study the diversity of both AMF actively colonizing roots and present as 

inoculum in the field, and represents a valuable tool to evaluate the influence of different 

environmental factors on AMF community composition directly under field conditions. If 

using the trap culture approach to evaluate AMF diversity, long-term cultivation is advisable 

to minimize the possible exclusion of AMF appearing late in succession. When samples are 

taken from plants naturally growing in the field, a broad range of host plant species should be 

sampled to avoid possible effects of host preference (Sýkorová et al. 2007). 

For a better understanding of the dynamics of AMF communities it will be necessary to 

classify AMF phylotypes and species according to their life history strategies. The present 

study provides some first steps in this direction. Our findings also emphasize that in short-

term greenhouse experiments only a certain subset of AMF species, mainly comprising r 

strategists, is colonizing roots. This succession in the system is particularly important to 

consider for planning, setting up and inoculating experiments using multispecies AMF 

consortia.      
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Tab. 3 Relative abundance of the sequence types in root samples from different experimental 

approaches (calculated as % from presence/absence data of each sequence type in each 

root sample) 

 

Sequence 

type 

Relative abundance in the 

compartment systems (% 

of samples) 

Relative abundance 

in the bait plants 

(% of samples) 

Relative abundance 

in the field 

(% of samples) 

 
1

st
 harvest 2

nd
 harvest 

1
st
 

harvest 

2
nd

 

harvest 
 

GLOM A-1 85 100 30 100 95 

GLOM A-3 50 0 30 20 0 

GLOM A-7b 0 0 0 10 0 

GLOM A-29 0 0 0 0 5 

GLOM A-31 0 0 0 10 0 

GLOM A-30 0 0 0 0 11 

GLOM A-15 0 9 10 0 0 

GLOM A-16 0 27 20 20 26 

GLOM A-17 0 0 20 10 37 

GLOM B-1 50 9 10 10 11 

GLOM B-2 10 0 40 40 5 

GLOM B-4 35 73 30 70 11 

GLOM B-5 15 45 0 40 11 

GLOM B-6 0 0 0 0 5 

GLOM B-7 0 0 0 0 5 

ARCH-2 0 0 10 0 11 
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Appendix 1 

 

Sebacinales - an order of basidiomycetes with a uniquely wide 

spectrum of mycorrhizal types - are co-occurring with arbuscular 

mycorrhizal fungi in plant root samples  

 

(This preliminary study was done in cooperation with Michael Weiß from the University of 

Tübingen; some analyses shown in this chapter were conducted by Susann Appoloni during 

her MSc thesis.) 

 

A1.1. Summary 

 

Sebacinales are an order of the Basidiomycota recently established by Weiß et al. (2004). Its 

members are widely distributed and known to form various types of mycorrhizal associations 

of different morphology (ecto-, ectendo-, orchid, ericoid, jungermannoid) with a broad range 

of host plant species (Selosse et al. 2002a, Selosse et al. 2002b, Kottke et al. 2003, Setaro et 

al. 2006, Selosse et al. 2007). Only a limited number of pure cultures of the Sebacinales are 

available, which causes a problem for the construction of molecular markers and for the 

implementation of manipulative experiments. One of the species, which is axenically 

cultivable and therefore being investigated as a model organism of the Sebacinales, is 

Piriformospora indica (Verma et al. 1998). It associates with AMF host plants and promotes 

their growth and resistance to fungal diseases (Varma et al. 1999). In contrast to AMF, 

preliminary data suggest that P. indica requires host cell death for the proliferation in the 

roots (Deshmukh et al. 2006).  

In this study, we used Sebacinales-specific primers for the internal transcribed spacer 

(ITS) 2 to amplify and sequence the D1/D2 regions of the nuclear 28S rDNA subunit. We 

analyzed root DNA extracts originating from seventeen different AMF-host plant species 

from several ecosystems with different human impact in Europe and North America. Our 

results show that fungi from the order Sebacinales were present in each but two sites in the 

root samples of fourteen plant species tested, where they co-existed with the Glomeromycota. 

All but one sequence belonged to the subgroup B (according to Weiß et al. 2004), where they 

clustered with sequences from the Ericaceae, liverworts, P. indica and green orchids. In 

agreement with the results of a study investigating the presence of the Sebacinales in the 

Ericaceae (Selosse et al. 2007), the phylogenetic analysis of our sebacinoid sequences did not 
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reveal any patterns according to their host plant species or geographical origin. Nevertheless, 

to confirm these results, the analysis of a larger sample set from larger number of host plant 

species originating from more field sites would be advisable. The aspect of functional 

interaction between the Sebacinales and their host plants (e.g. nutrient transfer) was not 

addressed in this work and remains to be investigated in future studies. 

 

A1.2. Introduction 

 

A1.2.1. Systematic position of the order Sebacinales within the kingdom Fungi 

The order Sebacinales was established recently by Weiß et al. (2004) using molecular 

methods. These authors revealed that Sebacinales occupy a basal position within the 

Hymenomycetidae, which is a subclass of Hymenomycetes (i.e. Agaricomycotina), with 

Geastrum as a sister group (Fig. 1). Agaricomycotina, Ustilaginomycotina and 

Pucciniomycotina are the three subphyla of the phylum Basidiomycota (James et al. 2006, 

Hibbett et al. 2007). The subphylum Agaricomycotina includes almost two-thirds of known 

members of all Basidiomycota, including the vast majority of mushroom-forming fungi, but 

also jelly fungi and yeasts.  

Previously, the phylum Basidiomycota was divided into two classes: Homo- and 

Heterobasidiomycetes (Oberwinkler 1982, Hibbett 2001). Heterobasidiomycetes were 

characterized by basidiospores capable of forming secondary spores and septate or aseptate 

basidia; whereas Homobasidiomycetes have aseptate basidia and basidiospores exclusively 

germinating directly. The Sebacinales were placed in the Heterobasidiomycetes (Weiß et al. 

2004). This classification turned out to be artificial with Heterobasidiomycetes being 

paraphyletic. The classification into three subphyla mentioned above is now widely accepted. 

Nevertheless, the terms Homo- and Heterobasidiomycetes are still in use. 

The findings of Weiß et al. (2004) suggest that the Sebacinales are the most basal 

group in the Basidiomycota with mycorrhizal members. Early diverging lineages in the 

Agaricomycotina include parasitic and saprotrophic fungi. The mycorrhizal basidiomycetes 

seem to have multiple, independent evolutionary origins from these saprotrophic ancestors 

(James et al. 2006). In contrast, Selosse et al. (2002b) and Weiß et al. (2004) proposed the 

hypothesis that the common ancestor of the Hymenomycetidae was mycorrhizal. In this 

hypothesis, the distribution of mycorrhizal taxa within the basidiomycetes could be explained 

by multiple independent origins of saprotrophism rather than by convergent evolution of 

mycorrhizas. 
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Fig. 1 Phylogenetic placement of the Sebacinales within the basidiomycetes. From 
Weiß et al. (2004) 
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A1.2.2. The order Sebacinales: morphology and known genera 

Some members of Sebacinales form inconspicuous basidiomes (e.g. in the form of a crust on 

forest litter, Fig. 2) and were previously considered as saprophytes or parasites. They were 
placed into the order Auriculariales on the basis of their ultrastructural and microscopic 

features (Bandoni 1984). However, using molecular analyses of the phylogenetic 

relationships in Auriculariales, Weiß and Oberwinkler (2001) showed that the Sebacinales do 

not belong to the Auriculariales.  
 Weiß et al. (2004) defined Sebacinales morphologically by the combination of 

longitudinally septate basidia, imperforate parenthosomes (i.e. a derivative of the 

endoplasmic reticulum) surrounding the septal pores (Fig. 3) and both the lack of clamp 

connections (structures formed during cytokinesis on some basidiomycetous hyphae) and 

cystidia (large sterile cells in the hymenium of a basidiomycete between clusters of basidia). 

Only a few genera are known from this order: e.g. Sebacina, Tremellodendron, 

Efibulobasidium, Tremelloscypha.  

 

Fig. 2 Basidiome of Sebacina cf. incrustans. 

Photo by D. Redecker 
Fig. 3 Dolipore with straight, 

imperforate parenthosome 

 of a sebacinoid fungus. 
From Kottke et al. (2003) 
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Interestingly, a recently described root-endophytic fungus Piriformospora indica 

(Verma et al. 1998) also belongs to the Sebacinales (Weiß et al. 2004). This fungus was 

discovered in an arbuscular mycorrhizal spore from desert soil in India and was shown to 

provide strong host plant growth-promoting activity during its symbiosis with a broad 

spectrum of AMF host plants (Verma et al. 1998). Furthermore, it induced plant resistance to 

fungal diseases and tolerance to salt stress (Waller et al. 2005). In contrast to many Sebacina 

spp., P. indica can be easily propagated on various media in the absence of a host plant.  

Rhizoctonia is a highly polyphyletic form genus encompassing various asexual fungal 

stages and thought to form orchid mycorrhizas (Roberts 1999). Molecular analysis placed one 

of the Rhizoctonia isolates of Williams (1985) to Sebacinales close to P. indica among 

isolates of the S. vermifera complex (Weiß et al. 2004). Although fungi with Rhizoctonia 

anamorphs are known to be difficult to get to produce sexual stages, some of the isolates 

produce teleomorphs belonging to the Sebacina vermifera species complex. 

The lack of useful macro- and microscopic characters causes a problem for an accurate 

morphological delimitation of species or even genera. Moreover, only a limited number of 

pure cultures of Sebacina spp. are available (mainly from the S. vermifera complex, Warcup 

1988), which might be due to a strictly symbiotic life strategy. As a consequence, only a 

limited number of the sequences of morphologically-defined sebacinoid species are available. 

However, an increasing number of sebacinoid sequences obtained from environmental root 

samples (e.g. Setaro et al. 2006) indicates that the Sebacinales may be a larger taxon than 

previously thought, containing many still undescribed species.  

Using ITS and 28S rDNA sequences, some authors observed different (Setaro et al. 

2006) or homogeneous (Selosse et al. 2007) sebacinoids in a single root sample. However, it 

is not clear whether this represents inter- or intraspecific variation (Selosse et al. 2007). 

Therefore, molecular species delimitation is so far unclear. In addition, the genus Sebacina 

sp., as currently defined morphologically, is not monophyletic (Weiß et al. 2004). In 

conclusion, more morphological, anatomical and molecular investigations of the Sebacinales 

are necessary.  

 

A1.2.3. Broad diversity of mycorrhizal strategies within the Sebacinales 

Recently, many ribosomal DNA sequences from plant roots were published that can be 

assigned to the Sebacinales, which indicates that they may be involved in a wide spectrum of 

mycorrhizal types. They have been detected to build ectomycorrhizas (Selosse et al. 2002a), 

orchid mycorrhizas (Warcup 1988, Selosse et al. 2002b), ericoid mycorrhizas (Allen et al. 

2003, Selosse et al. 2007), jungermannoid mycorrhizas (Kottke et al. 2003) and 
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ectendomycorrhizas (Setaro et al. 2006). This broad diversity of mycorrhizal strategies 

present in the Sebacinales is unique.  

The morphology of symbiotic structures of the Sebacinales differs according to the 

type of mycorrhiza they form in a particular plant species. In ectendomycorrhizas (the 

cavendishioid, Setaro et al. 2006; and arbutoid type, Selosse et al. 2007), the Sebacinales 

intraradically build fine intercellular hyphae and large intracellular hyphal coils, whereas on 

the root surface, they form a hyphal sheath consisting of thin septate hyphae. In 

ectomycorrhizas, these fungi form true ectomycorrhizae with hyphal mantle and Hartig net 

(Selosse et al. 2002a) and in orchid roots they form intracellular coils (Selosse et al. 2002b). 

P. indica forms pear-shaped chlamydospores in the root hairs. It grows inter- and 

intracellularly in the root cortex forming coils, branches and round bodies, but does not enter 

the central cylinder of the AMF host plants (Varma et al. 1999, Waller et al. 2005). 

Preliminary data suggest that in contrast to AMF, P. indica requires host cell death for its 

proliferation in the roots (Deshmukh et al. 2006). However, the main part of the root develops 

further and is not necrotized. 

Within the order Sebacinales, Weiß et al. (2004) distinguished two subgroups using the 

D1/D2 region of the nuclear 28S LSU rDNA. Subgroup A contains sequences from 

basidiomes (fruitbodies), from ectomycorrhizas and heterotrophic orchids. Subgroup B 

contains sequences from axenic cultures of Sebacina vermifera originating from roots of 

green autotrophic orchids, sequences from ericoid mycorrhizas, liverwort rhizoids and P. 

indica. Interestingly, achlorophyllous orchids (Neottia nidus-avis) showed high specificity, 

being associated with Sebacinales from the subgroup A (Selosse et al. 2002b), whereas green 

orchids associated with Sebacinales from the subgroup B and also with other fungi 

(Shefferson et al. 2005).  

Surprisingly, apart from P. indica, there is only sporadic information on the association 

of the Sebacinales with AMF-host plant species or their interaction with AMF. Williams 

(1985) observed an endophytic association of a multinucleate rhizoctonia with grasses as well 

as legumes in several pot cultures of AMF and obtained rhizoctonia isolates from AMF 

spores, vesicles, or colonized roots. Similar isolates were obtained in Australia from diverse 

herbaceous host plants in the field or by baiting the soil with Lolium perenne and Trifolium 

subterraneum in greenhouse pots (Milligan and Williams 1987). These findings can be 

interpreted in the way that rhizoctonias might be saprophytes growing as opportunists on 

decaying mycorrhizas or even as parasites of mycorrhizal fungi. Interestingly, inoculation 

with these rhizoctonias affected plant growth only in the presence of AMF (Williams 1985). 

The aim of this work was to elucidate whether the fungi from the order Sebacinales i) 

are also present in the roots of herbs known to form arbuscular mycorrhizal symbiosis; ii) 
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show any specificity or preferences towards their host plants; iii) show any distribution 

patterns according to their geographic origin.  

  

A1.3. Material and methods 

 

A1.3.1. Root sampling and DNA extraction  

Some root samples collected for AM fungal community analyses (see Chapters 2 and 3) were 

also used for the investigations of the presence of Sebacinales. For field site characteristics, 

sampling details and DNA extraction procedure see Chapters 2.3 and 3.3. Furthermore, 

samples originating from following agriculturally managed field sites were analyzed: from 

the DOK experiment in Basel-Land, Switzerland; a maize monoculture field near 

Rheinweiler, Germany; and a leek field in Muri, Switzerland (for field site details, 

agricultural practice, sampling description and explanation of sample labeling see Hijri et al. 

2006). Additionally, Susann Appoloni analyzed several samples originating from thermal 

sites in Yellowstone National Park, USA and from Iceland (Appoloni 2006). An overview of 

all analyzed samples is provided in Tab. 1. 
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Tab. 1 Overview of all root samples analyzed for the presence of the Sebacinales. The column “PCR product in the 2
nd

 nested PCR” represents the results of 

nested PCR reactions with the primer pairs ITS1F/TW14 and Seb3ITS/NL4. 

Sample origin 
Root sample description: plant 

species (internal code) 

PCR product 

in the 2
nd

 

nested PCR: 

yes (Y)/ no (N)* 

Ligation 

number 

Number of 

clones 

screened 

No of different  

RFLP patterns after 

the digestion with 

enzymes HinfI and 

MboI 

Closest BLAST hits 

Sequence types of the 

Glomeromycota detected in 

the same root sample∇ 

Landskron, FR - bait 

plant (1st harvest) 

Bromus erectus (BA2) N - - - - GLOM B-4 

Bromus erectus (BA1) Y (DS)+ -  - - Sebacinales sp. (ZS725_726) GLOM B-4; B-5 

Medicago sativa 1 (MA2) Y (DS)+ -  - - Sebacinales sp. (ZS727_728) GLOM A-1; B-4 

Bromus erectus (BA2) Y (DS)+ -  - - Sebacinales sp. (ZS730) GLOM A-1; B-4; B-5 

Inula salicina (IA4) N+ - - - - GLOM A-1; A-16; B-2; B-5 

Origanum vulgare (OA3) N+ - - - - GLOM A-1; B-4 

Inula salicina (IN3) N+ - - - - GLOM A-1; A-3; A-31; A-16; 

B-2; B-4 

Bromus erectus (BN2) N+ - - - - GLOM A-1; B-1; B-2; B-5 

Origanum vulgare (OA1) N+ - - - - GLOM A-1; A-7; A-17; B-4 

Medicago sativa 2 (MN2) Y (DS)+ -  - - Sebacinales sp. (ZS731_732) - 

Medicago sativa (MA3) N - - - - GLOM A-1; A-3; B-2; B-4 

Origanum vulgare (ON4) N - - - - - 

Inula salicina (IN2) N - - - - - 

Medicago sativa 3 (MN2) Y (DS) -  - - Sebacinales sp. (ZS743_744) GLOM A-1 

Inula salicina (IN2) N - - - - - 

Landskron, France - 

bait plants (2nd harvest) 

 

Origanum vulgare (ON4) N - - - - - 

Origanum vulgare (O2-C) Y (DS) -  - - Sebacinales sp. (ZS745_746) GLOM A-1; A-16; B-4 

Origanum vulgare (O3-D) Y (DS) -  - - Sebacinales sp. (ZS747_748) GLOM A-1 

Medicago sativa (M3-A) Y (DS) - - - Bad quality of the sequence GLOM A-1; A-17 

Landskron, France – 

field samples 

 
Medicago sativa (M4-A) Y (DS) -  - - Sebacinales sp. (ZS751_752) GLOM A-1; A-16; A-17 

Gentiana acaulis (R-11-2) N - - - - GLOM A-9; A-12 

Gentiana verna (R-2A-5) N+ - - - - GLOM A-14 

Polygala vulgaris (R-11-4a) N+ - - - - - 

Gentiana acaulis 1 (R-2A-c) Y (DS)+ -  - - Sebacinales sp. (ZS733_734) GLOM A-1 

Gentiana acaulis 2 (R-2A-b) Y (DS)+ 1288 10 2 (9x like Sebacinales 

sp. ZS789_790) 

Sebacinales sp. (ZS759_760; 

ZS789_790) + bad sequence after 

DS 

GLOM A-1; A-7; A-9 

Ramosch, Switzerland 

 

Trifolium sp. (R-2A-ba) Y (DS)+ -  - - Sebacinales sp. (ZS737_738) GLOM A-1; GLOM B-3; 

GLOM B-4 
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Sample origin 
Root sample description: plant 

species (internal code) 

PCR product 

in the 2
nd

 

nested PCR: 

yes (Y)/ no (N)* 

Ligation 

number 

Number of 

clones 

screened 

No of different  

RFLP patterns after 

the digestion with 

enzymes HinfI and 

MboI 

Closest BLAST hits 

Sequence types of the 

Glomeromycota detected in 

the same root sample∇ 

Poaceae sp. 1 (R-2A-ba) Y (DS)+ 1289 8 4 (2x like Sebacinales 

sp. ZS761_762; 2x 

like Sebacinales sp. 

ZS763_764) 

Sebacinales sp. (ZS761_762; 

ZS763_764; 766) + bad sequence 

after DS 

GLOM A-1 

Gentiana acaulis (R-11-3) N - - - - - 

Crocus albiflorus (R-2A-3a) N - - - - GLOM A-28; GLOM B-3 

 

Gentiana acaulis (R-2A-a) N - - - - - 

Triticum aestivum K64a Y (double band; 

DS) 

1393 5 4 (1x like 

Cryptococcus 

ZS978_979) 

Dioszegia (ZS976_977); 

Cryptococcus (ZS978_979) + bad 

sequence after DS 

Not analyzed 

Triticum aestivum K64b Y (double band; 

DS) 

1394 7 6 (2x like 

Cryptococcus 

ZS978_979) 

Cortinarius/Parasola chimaera? 

(ZS980, 981); 

Cryptococcus/Coniochaeta 

chimaera? (ZS982, 983) + bad 

sequence after DS 

Not analyzed 

Zea mays M40a Y (DS) 1395 9 4 (5x like Sebacinales 

sp. ZS986_987) 

Sebacinales sp. (986_987); 

Phialocephala (ZS984_985) + 

Sebacinales sp. (ZS964) after DS 

Not analyzed 

Zea mays K62b Y (double band; 

DS) 

1396 7 3 (1x like 

Cryptococcus 

ZS988_989; 2x like 

ZS990_991) 

Cryptococcus (ZS988_989; 

ZS990_991) + Cryprococcus 
(ZS967) after DS 

Not analyzed 

Zea mays O18c Y (DS) 1397 9 5 (4x like Sebacinales 

sp. ZS994_995; 1x 

like Xylaria 

ZS992_993) 

Sebacinales sp. (994_995) + 

Sebacinales sp. (ZS968_969) – DS; 
Xylaria (ZS992_993); 

Not analyzed 

DOK experiment, 

Switzerland 

 

Zea mays O18b Y (DS) 1398 10 6 (4x like Sebacinales 

sp. ZSZS996_997) 

Cryptococcus (ZS998_999); 

Sebacinales sp. (ZS996_997) + 

Sebacinales sp. (ZS970_971) after 

DS 

Not analyzed 

Allium porrum KB II  N - - - - Not analyzed Leek field, Switzerland 

 Allium porrum KA V N - - - - Not analyzed 

Zea mays R2 N - - - - Not analyzed 
Maize field “R”, 

Germany 

 

Zea mays 1; R4 Y (DS) 1399 10 5 (2x like Sebacinales 

sp. ZS1000_1001; 2x 

like ZS1002_1003) 

Sebacinales sp. (ZS1000_1001; 

ZS1002_1003) 

Not analyzed 

Rabbit Creek, Agrostis scabra 1; 6-A2; 19.4°C Y (DS) - - - Sebacinales sp. (SA531_532) GLOM A-1; A-11 
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Sample origin 
Root sample description: plant 

species (internal code) 

PCR product 

in the 2
nd

 

nested PCR: 

yes (Y)/ no (N)* 

Ligation 

number 

Number of 

clones 

screened 

No of different  

RFLP patterns after 

the digestion with 

enzymes HinfI and 

MboI 

Closest BLAST hits 

Sequence types of the 

Glomeromycota detected in 

the same root sample∇ 

 

Agrostis scabra  
39-A5; 36.4°C 

Y (DS) - - - Cryptococcus (SA533_534) 

 

GLOM A-7a; PARA-3 

Dichanthelium lanuginosum  
77-D7; 54°C 

Y (DS) - - - Bad quality of the sequence 

 

- 

Agrostis scabra  

97-A7; 29.5°C 

Y (DS) - - - Bad quality of the sequence 

 

GLOM A-1; A-24; A-26 

Dichanthelium lanuginosum 1; 
110-D3; 29°C 

Y (DS) - - - Sebacinales sp. (SA539_540) 

 

GLOM A-11; A-26; A-27; 

ACAU-6 

Dichanthelium lanuginosum 
2; 126-D1; 33.1°C 

Y (DS) - - - Sebacinales sp. (SA541_542) 

 

GLOM A-1; GLOM A-27 

Agrostis scabra 2; 

197-A3; 25.5°C 

Y (DS) - - - Sebacinales sp. (SA543_544) 

 

GLOM A-7b; A-11; A-27 

Yellowstone, USA 

 

 

Dichanthelium lanuginosum  
3; 87-D5; 47.7°C 

Y (DS) - - - Sebacinales sp. (SA551_552) 

 

GLOM A-1; A-11; A-26; 

ACAU-7; PARA-1 

Jen’s spot, 

Yellowstone, USA 

Poaceae sp. 

 81; 27°C 

Y (DS) - - - Bad quality of the sequence 

 

GLOM A-1; A-7b; A-11; A-26; 

PARA-1 

Insect Hell Central, 

Yellowstone, USA 

Poaceae sp. 

 134; 25°C 

Y (DS) - - - Sebacinales sp. (SA547_548) 

 

GLOM A-1; A-13; A-26; A-27 

Ölkelduháls, Iceland 
Agrostis stolonifera 

Ö11A; 28.7°C 

Y (DS) - - - Sebacinales sp. (SA549_550) 

 

GLOM A-1; PARA-1 

 

* Explanatory notes: 

DS = direct sequencing without cloning 

+ this sample also yielded PCR product in the 2
nd

 nested PCR reaction using primer combination NS5/ITS4 (1
st
 nested PCR ) and SebITS3/ITS4i (2

nd
 nested PCR) 

∇ Sýkorová et al. (2007a); Sýkorová et al. (2007b); (Appoloni 2006)
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A1.3.2. Nested PCR reactions 

Initially, a quick check of the presence or absence of the Sebacinales was performed in 

several samples from Landskron and Ramosch (Tab. 1). The dilutions 1:100 of first nested 

PCR products (using primers NS5/ITS4, for details see Chapters 2.3.3 and 3.3.5) were used as 

templates for the second nested PCR round, where Sebacinales-specific primer ITS3Seb (with 

annealing site at the 3’ end of the 5.8S rDNA subunit, Setaro et al. 2006) and a universal 

primer ITS4i (Redecker et al. 2003) were employed. For PCR conditions see Chapters 2.3.3 

and 3.3.5. PCR products were checked on agarose gels, purified and sequenced in both 

directions as described in Chapters 2.3.4 and 3.3.6. The resulting short fragment representing 

mainly the ITS2 region with a length of ca 270 bp could be tested by BLAST (Altschul et al. 

1997) but not analyzed phylogenetically due to its variability.  

Therefore, all samples were then analyzed using the universal fungal primer ITS1F and 

the universal primer TW14 in the first nested PCR and the Sebacinales-specific primer 

ITS3Seb and universal fungal primer NL4 in the second PCR round. For all primer sequences 

see Setaro et al. (2006) and for the PCR conditions Chapters 2.3.3 and 3.3.5. The resulting 

fragment - ITS2 region and the 5’ end of the 28S rDNA subunit (D1/D2 region) of the nuclear 

rDNA - had an expected length of ca 900 bp and was suitable for the phylogenetic analysis. 

PCR products were checked on agarose gels, purified and sequenced in both directions (for 

details of these methods see Chapters 2.3.4 and 3.3.6). Nine PCR products (Tab. 1) from 

Ramosch, the maize field R and the DOK experiment were purified and cloned, clones were 

re-amplified, digested with restriction enzymes MboI and HinfI and some of them purified 

and sequenced (for details of these methods see Chapters 2.3.4 and 3.3.6).  

Sequences were aligned to previously published sequences in PAUP*4b10 (Swofford 

2001). A phylogenetic tree was obtained by distance analysis (neighbor joining; Saitou and 

Nei 1987) in PAUP*4b10 using the Kimura two-parameter model and a gamma shape 

parameter=0.5. Results were verified by performing maximum likelihood analysis based on 

parameters estimated in Modeltest 3.5 (Posada 2004) as well as Bayesian analysis performed 

in MrBayes 3.1.1 (Ronquist and Huelsenbeck 2003). Four chains were run over 1 x 10
6
 

generations with a burnin value of 2500. 
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A1.4. Results 

 

A1.4.1. PCR products obtained 

The primer combination ITS3Seb and ITS4i yielded PCR products in 15 out of 22 analyzed 

root samples. The PCR products were sequenced directly and the BLAST comparison 

revealed that the sequences belong to the Sebacinales. However, as these PCR products were 

too short for a phylogenetic analysis, all samples were analyzed using the primers 

ITS1F/TW14 in the first and ITS3Seb/NL4 in the second nested PCR. Only these longer 

fragments suitable for the phylogenetic analysis will be discussed in further text.  

Directly sequenced products of the second
 

nested PCR (with the primers 

ITS3Seb/NL4) were predominantly of good quality, and according to BLAST and 

phylogenetic analyses they belonged to the Sebacinales. In case the direct sequencing did not 

yield a sequence of a good quality, PCR products were subjected to cloning. Five to ten 

clones screened per cloned PCR product yielded two to six different RFLP patterns. The five 

sequenced clones from the two samples from Ramosch contained only Sebacinales. However, 

the seven PCR products from arable sites showed a different phenomenon: their sequenced 

clones belonged not only to the Sebacinales, but also to other Basidio- and Ascomycota. 

Thus, the cloning was a good solution when the quality of the direct sequencing output was 

bad, which might have been caused by a simultaneous presence of several sebacinoid 

phylotypes (showing also different RFLP patterns) or sebacinoid and non-sebacinoid fungi in 

a single root sample.  

An overview of all analyzed samples, PCR and sequencing products is provided in Tab. 

1. Fungi from the order Sebacinales were found in each but two field sites, in a total in 45% 

of the analyzed root samples. The ratio of positive (i.e. Sebacinales-containing) to negative 

samples differed in each site: Sebacinales were detected in 64% of samples from Yellowstone 

and Iceland; in 40% of samples from Landskron and in 33% of samples from the 

agriculturally managed sites (DOK experiment, leek and maize field) as well as from 

Ramosch.  

 

A1.4.2. Phylogenetic analysis 

The results of the neighbor joining (Fig. 4), maximum likelihood (ML) and Bayesian analyses 

showed that all but one sequence belonged to the subgroup B (sensu Weiß et al. 2004). 

Several clusters are apparent within this subgroup using all three approaches. The clusters 

with high neighbor joining branch support (>90) were also recovered by the maximum 
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likelihood and Bayesian algorithm. The sequences belonging to the subgroup B clustered well 

with sequences from the GenBank obtained from S. vermifera isolates, ericoid plants as well 

as green orchids and liverworts. The only sequence from Zea mays belonging to the subgroup 

A clustered well with Efibulobasidium albescens.  

In two cases (D. lanuginosum and M. sativa), the sequences obtained from different 

individuals of the same plant species were identical over all of the 524 characters of the 

conserved part of the LSU included into the phylogenetical analyses. However, other 

sequences from these plant species were also found in other clusters in the neighbor joining, 

ML and Bayesian tree. No clear geographical pattern was observed: e.g. sequences from 

Iceland, Swiss Alps and Yellowstone belonged all to a single well-supported cluster together 

with GenBank sequences from orchids from Australia or Ecuador as well as ericoid plants 

from Ecuador. 

After RFLP screening of eight to ten clones, the cloned PCR products yielded two 

different RFLP patterns in case of G. acaulis from Ramosch, five in case of Z. mays from the 

R field, and by Poaceae sp. from Ramosch four. Sequences of clones originating from a single 

root sample in two cases (Zea mays: ZS1000_1001 and ZS1002_1003; G. acaulis: 

ZS789_790 and ZS759_760) clustered relatively close to each other. They differed in 33 and 

9 characters, respectively. The sequences obtained from the Poaceae sp. root sample 

(ZS763_764 and ZS761_762) differed in 11 characters and did not cluster together in the 

neighbor joining tree. In contrast, in the ML and Bayesian tree, they grouped together in one 

cluster, which was however only weakly supported.  

 

 

Fig. 4 (Fig. on the next page) Phylogenetic tree of the Sebacinales obtained by neighbor 

joining analysis of 524 characters of the D1/D2 region of the 28S rDNA subunit. 

The left number above the each branch line denotes the bootstrap value obtained 

from 1000 replicates of the neighbor joining analysis; the right number after the 

slash indicates the credibility value from the Bayesian analysis. The tree was rooted 

with Geastrum saccatum and Auricularia auricula-judae. Sequences obtained in the 

present study are shown in color. They are labeled with internal identification 

number (e.g. ZS789 790), the host plant species (e.g. Gentiana acaulis), field site 

name and country. Sequences in the same color originate from root samples from 

the same field site. Multiple sequences originating from a single root sample are 

labeled with the same number (which is placed between plant species and field site 

name, see also Tab. 1). The parentheses show the delimitation of the two subgroups 

defined by (Weiss et al. 2004). 
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Fig. 4 (legend see previous page) 
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A1.5. Discussion 

 

To our knowledge, this is the first study on the molecular diversity of the Sebacinales in the 

AMF host plants. Our results show that these fungi were present in the majority of analyzed 

root samples from almost all field sites and that they coexisted with different lineages of the 

Glomeromycota in these plants (Tab. 1). No Sebacinales were detected in the leek field in 

Switzerland and Jen’s spot in USA, probably due to low number of samples analyzed (two 

and one, respectively). In all remaining field sites, Sebacinales were detected in different 

percentages of samples analyzed. Thus, this fungal order indeed seems to be ubiquitous. 

In agreement with our results, previous studies reported different sebacinoid sequences 

in the same site or in the same host plant species at the same site (e.g. Selosse et al. 2007) or 

even a single root sample (Setaro et al. 2006). These authors as well as others (Weiß et al. 

2004) did not reveal any pattern related to the geographical origin of the root samples, which 

corresponds well to the results of our study. Therefore, we can conclude that the Sebacinales 

might probably show no clear geographical pattern and also no strong preferences or even 

specificity towards their host plant species. However, this conclusion could be biased by the 

fact that the delimitation of a molecular species within this order is still unclear (Selosse et al. 

2007). Nevertheless, further investigations like analysis of more host plant species from more 

field sites, more root samples per host plant species per field site and cloning of the PCR 

products would be necessary to confirm these conclusions. 

The broad diversity of mycorrhizal strategies present in the Sebacinales might enable 

hyphal linkage and nutrient transfer between different organisms. For example, Sebacinales 

from the subgroup A may connect mycoheterotrophic orchids and surrounding 

ectomycorrhizal trees (Selosse et al. 2002b). Our sequences clustered well with GenBank 

sequences obtained from green orchids, ericoid plants and P. indica in the subgroup B. As 

orchids or ericoid plants were growing in some of our field sites (Landskron and Ramosch, 

respectively), we can hypothesize on possible hyphal connections between them and our 

AMF host plants. Setaro et al. (2006) noticed that Cavendishia nobilis, a member of the 

Ericaceae forming a specific type of ectendomycorrhiza (cavendishioid mycorrhiza) with 

Sebacinales from the subgroup B, grows in a tropical rain forest community in Ecuador 

dominated by arbuscular mycorrhizal plants (Kottke et al. 2004). These AM plants have not 

been investigated yet, but in case they would also host the Sebacinales, we can hypothesize 

on possible hyphal connections between them and C. nobilis and it would fit well together 

with our observations of arbuscular mycorrhizal herbs hosting Sebacinales from the subgroup 

B. However, as the sebacinoid host plants from the subgroup B are green, the physiological 
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meaning of possible hyphal connections would be different from the mycoheterotrophic 

orchids and surrounding trees mentioned above.  

The only morphological investigations of intraradical structures of a sebacinoid fungus 

in AMF host plant roots were conducted using P. indica and barley by Varma et al. (1999) 

and Deshmukh et al. (2006). These authors did not observe typical arbuscules like those 

formed by the Glomeromycota. Deshmukh et al. (2006) however, suggest that this fungus 

causes protoplast plasmolysis and thus host cell death. As P. indica can increase biomass and 

grain yield of crop plants, as well as their resistance to fungal diseases and abiotic stress 

(Waller et al. 2005), further investigations are necessary to elucidate the function and 

physiology of this symbiosis. 

As we did not conduct any ultrastructural and physiological investigations, we cannot 

conclude that the Sebacinales were growing indeed intraradically and we can just speculate 

on the function of these fungi for their host plants and of the plants for the fungi. Several 

scenarios are theoretically possible: i) Sebacinales may form a “standard” mycorrhiza with bi-

directional nutrient transfer, where both the plant as well as the fungus profit from each other; 

ii) they may be saprophytes growing as opportunists on decaying mycorrhizas or even 

parasites of arbuscular mycorrhizal fungi; iii) they may be root epi- or endophytes or even 

parasites without any relationship to AMF. 

In conclusion, members of the Sebacinales have been detected molecularly in root 

samples of host plants belonging to all main mycorrhiza types. As their mycelia may be 

shared by different root systems, we might expect a major role in interplant interactions. 

Nevertheless, the ecological potential and function of these associations have not been studied 

yet. Physiological investigations of nutrient transfer between the putative symbiotic partners 

using labeled carbon, nitrogen and phosphorus could elucidate this question. This approach 

should be supplemented also with molecular and ultrastructural analyses, with attempts to get 

more Sebacinales in pure cultures to be used in greenhouse experiments. The mechanisms of 

the coexistence or interaction of Sebacinales with other mycorrhizal fungi in the roots remain 

a question for future research as well. As mentioned above, Sebacinales might grow on the 

surface of AMF-colonized roots, they might be mycoparasites, they might form dual 

colonization of non-overlapping root areas with other mycorrhizal fungi or they might 

outcompete and replace other fungi in the roots. Selosse et al. (2007), for instance, observed 

Sebacinales coexisting with an ascomycete in a single cortical cell of an ericoid plant root. 
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Appendix 2 

 

Acaulospora alpina, a new arbuscular mycorrhizal fungal species 

characteristic for high mountainous and alpine regions of the Swiss Alps 

 

(published in Mycologia 98(2), 2006, pp. 286-294) 

 

Fritz Oehl, Zuzana Sýkorová, Dirk Redecker, Andres Wiemken, Ewald Sieverding
 

 

A2.1. Abstract 

 

Acaulospora alpina sp. nov. forms small (65–85 µm in diameter), dark yellow to orange-brown spores 

laterally on the neck of  hyaline to subhyaline sporiferous saccules. The spores have a three-layered 

outer spore wall, a bi-layered middle wall and a three-layered inner wall. The surface of the second 

layer of the outer spore wall is ornamented, having regular, circular pits (1.5–2 µm in diameter) that 

are as deep as wide and truncated conical.  A ‘beaded’ wall layer as found in most other Acaulospora 

spp. is lacking. The spore morphology of A. alpina resembles that of A. paulinae but can be 

differentiated easily by the unique ornamentation with the characteristic pits and by the spore color. A 

key is presented summarizing the morphological differences among Acaulospora species with an 

ornamented outer spore wall. Partial DNA sequences of the ITS1, 5.8S subunit and ITS2 regions of 

ribosomal DNA show that A. alpina and A. paulinae are not closely related. Acaulospora lacunosa, 

which has similar color but has generally bigger spores, also has distinct rDNA sequences. 

Acaulospora alpina is a characteristic member of the arbuscular mycorrhizal fungal communities in 

soils with pH 3.5–6.5 in grasslands of the Swiss Alps at altitudes between 1800 and 2700 m above sea 

level. It is less frequent between 1300 and 1800 m above sea level, and it has so far not been found in 

the Alps below 1300 m nor in the lowlands of Switzerland.  
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Key words: Alps, Acaulosporaceae, Acaulospora paulinae, Acaulospora lacunosa, Glomeromycetes, 

key, molecular identification, mycorrhiza, spore morphology, phylogeny, taxonomy 

 

A2.2. Introduction 

 

At high altitudes, in the mountainous and alpine regions of the Swiss Alps extending from 1000–3000 

m above sea level (a.s.l.), we have observed an astonishingly high diversity of arbuscular mycorrhizal 

(AM) fungal species (Oehl, unpublished). Spores of about 60 known species of the Glomeromycota 

(Schüssler et al 2001) could be identified from different grasslands growing on soils that had 

developed on siliceous and calcareous bedrocks. Some of the species were new and have recently been 

described (Oehl and Sieverding 2004, Oehl et al 2005a). Among the AM fungi, species belonging to 

the genus Acaulospora were particularly prominent and relatively much more abundant than in the 

lowlands of Switzerland. Here we describe a new Acaulospora species under the epithet A. alpina that 

was found exclusively in the Alps at altitudes >1300 m a.s.l. 

The genus Acaulospora was described by Gerdemann and Trappe (1974) who also presented the 

first key for the two species known at that time. The key differentiated a species known to produce 

spores with a smooth surface (A. laevis) from another one with an ornamented surface (A. elegans). 

Today we know 18 Acaulospora spp. with smooth spore surfaces and 15 Acaulospora spp. (including 

A. alpina) with ornamentation of the outer spore wall. Schenck et al (1984) presented the latest key to 

the ornamented species of Acaulospora. They used spines, tubercles, ridges, folds, pits or cracks as 

differentiating features for the spore wall ornamentations. We use similar characteristics and we 

present an updated key for Acaulospora spp. with ornamented spore walls.  

In recent years molecular biological tools have been applied to identify AM fungi (Clapp et al 

1995, Redecker 2000, Oehl et al 2005a). Environmental rDNA sequences are rapidly increasing in 

number in the public data bases. However, only a few DNA sequences of Acaulospora originating 

from morphologically-characterized spores are available. This is also true for the highly variable 

rDNA Internal Transcribed Spacer (ITS) region, which is a useful tool to distinguish many species-

level AM fungal taxa (Redecker et al 2003). Some of these database sequences show strong similarity 

to fungal groups other than the Glomeromycota and are more likely to originate from contaminant 

organisms (Millner et al 2001). Therefore, there is a clear need for rDNA sequences from described 

Acaulospora species. 

New species can only be adequately characterized when sequences of morphologically similar 

species are included in the analysis. To identify the phylogenetic position of A. alpina, the sequence of 

the ITS1, 5.8S rDNA and ITS2 region was determined not only from this new species but also from A. 
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paulinae Blasz. (Blaszkowski 1988) and A. lacunosa J.B. Morton (Morton 1986), which produce 

morphologically similar spores. Sequences obtained for A. alpina were also compared to 

environmental sequences of Acaulospora spp. available from the public data bases.  

      

A2.3. Materials and methods 

 

A2.3.1. Soil sampling 

Soil samples were taken from mountainous and alpine grasslands in the Swiss Alps from altitudes of 

1000–3000 m a.s.l.; the soils had developed on different geological bedrocks from nutrient poor 

Jurassic sandstones over granite and gneiss rocks to carbonatic and dolomitic limestones and 

ultrabasic serpentinites. Undisturbed soil cores from 0-10 cm depth were collected at several times 

between July and September of 2003. Spores of AM fungi were separated from the soil samples by a 

wet sieving process as described by Sieverding (1991).  

 

A2.3.2. AM fungal bait cultures 

Bait cultures were established directly after sampling as follows: 1000 mL pots were half filled with 

500 g of an autoclaved substrate (Terragreen; American aluminium oxide, Oil Dry US special, type III 

R; Lobbe Umwelttechnik Iserlohn, Germany
 
)

 
-Loess mixture 3:1; pH-KCl 6.2; organic carbon 0.3 %; 

available P (Na-acetate) 2.6 mg kg
-1

; available K (Na-acetate) 350 mg kg
-1

. 50 g dry weight field 

samples were placed at one side on the top of the substrate and covered with another 300 g of 

autoclaved substrate. Above the soil inocula, about 5–7 seeds of each of the four trap plants, Plantago 

lanceolata L., Lolium perenne L., Trifolium pratense L. and Hieracium pilosella L. were sown. We 

added 0.2 mL of a culture broth with Rhizobium trifolii (DSM 30138, from DSMZ-Deutsche 

Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany) grown in liquid 

DSMZ 98 medium at 27 C for 12 h to the two-wk-old Trifolium pratense plants in each pot. An 

automated watering system (Tropf-Blumat, Weninger GmbH, A-6410 Telfs) was installed and the 

cultures were kept in the greenhouse of the Institute of Botany in Basel under ambient natural light 

and temperature conditions until the end of 2004. The formation of spores in the bait cultures was 

checked between June and December 2004 at bimonthly intervals as described by Oehl et al (2003, 

2004). The new fungus only infrequently produced spores in these bait cultures. All trials of mono-

species cultures, either initiated with single or multi-spores, so far failed to establish a successful 

symbiosis.  
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A2.3.3. Morphological analyses 

The described morphological characteristics of spores and sporiferous saccules and their subcellular 

structures are based on observations of specimens mounted in polyvinyl alcohol-lactic acid-glycerol 

(PVLG; Koske and Tessier 1983), in a mixture of PVLG and Melzer’s reagent (Brundrett et al 1994), 

a mixture of lactic acid to water at 1:1, Melzer’s reagent, and in water. The terminology of the spore 

structure is that of Stürmer and Morton (1999), which was adapted by INVAM (International Culture 

Collection of Arbuscular and Vesicular-Arbuscular Endomycorrhizal Fungi, see homepage: 

www.invam.caf.wvu.edu), except that we use different abbreviations for the walls and wall layers. In 

detail, we call the outer ‘spore wall’ layers of the Acaulosporaceae sw1–3, the first flexible inner wall 

iw1 of Stürmer and Morton (1999), the ‘middle wall’ (mw), and the second flexible inner wall iw2 of 

Stürmer and Morton (1999) the ‘inner wall’ (iw). Photographs in Figs. 1–9 and 11–19 were taken with 

a digital camera (Olympus model DP70-CU) on a compound microscope (Zeiss Axioplan). To 

improve the quality of the pictures taken of the ornamentation of different Acaulospora spp., the 

software Auto-Montage Essentials 5.00 (Olympus) was used (technique used in Figs. 1–3; 7, 8, 14, 

15). Specimens mounted in PVLG and the mixture of PVLG and Melzer’s reagent were deposited at 

Z+ZT (Zürich, Switzerland), FB (Freiburg, Germany) and OSC (Corvallis, USA) herbaria. 

 

A2.3.4. Molecular analyses 

DNA crude extracts were produced as described by Redecker et al. (1997) from spores of A. alpina 

originating from a grassland on a Humic Cambisol at Spadla Alp (at 2700 m a.s.l. near Sent, 

Engiadina Bassa, Canton Grischun; soil pH-5.0 measured in water) and from isotypes isolated at 

Grand Muveran (at 2600 m a.s.l. near Ovronnaz/Martigny, Canton Valais; pH 5.6), from Tschima da 

Flix (at 2400 m a.s.l. near Sur, Surses, Canton Grischun; pH 6.0) and at Stützalp (at 1900 m a.s.l. near 

Davos, Canton Grischun; pH 6.1). DNA was extracted from approximately 10 spores from each 

location. 

Extracts of single spores were used as templates for a two-step polymerase chain reaction 

(Redecker et al 2003) using the primers NS5/ITS4 and ACAU1661/ITS4i, respectively (Redecker 

2000). PCR products were purified with a High Pure PCR Product Purification Kit (Roche, 

Mannheim, Germany), cloned into pGEM-T (Catalys, Wallisellen, Switzerland), reamplified from the 

clones and digested with MboI and HinfI restriction enzymes (Fermentas, Vilnius, Lithuania). Samples 

with different RFLP patterns were sequenced using a BigDye Terminator Cycle Sequencing Kit 

(Applied Biosystems, Foster City, CA, USA) for labeling. Samples were run on an ABI 310 capillary 

sequencer (Applied Biosystems). Sequences of A. alpina were submitted to the EMBL database under 

the accession numbers AJ890446 and AJ891101 - AJ891109. To compare the sequences obtained 

from A. alpina to other Acaulospora spp. of similar spore morphology, an isolate of A. paulinae and 
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the BEG78 isolate of A. lacunosa were included in the analysis. The isolate of A. paulinae originated 

from a soil sample taken from a meadow with Arrhenaterum elatius L. as the characteristic grass 

species, at Wintzenheim-La-Forge (Alsace, France) in April 2003. The A. lacunosa isolate originated 

from a temperate forest in New Hampshire, USA. Sequences were submitted to the EMBL database 

under the accession numbers AJ89114-AJ891121 (for A. paulinae) and AJ891110 - AJ891113 (for A. 

lacunosa). 

The sequences were aligned in PAUP*4b10 (Swofford 2001) in a dataset comprising rDNA 

ITS1, 5.8S subunit and ITS2 of other fungi from the family Acaulosporaceae. From a total of 700 

positions in the alignment, 315 positions were selected that were in unambiguous alignment. The ITS1 

region contains numerous insertions/deletions in long stretches of A or T, which causes serious 

alignment problems; therefore this region was excluded from the analysis. In all phylogenetic 

analyses, the sequence of the AM fungus Entrophospora colombiana was used as an outgroup. The 

appropriate sequence evolution model for maximum likelihood analysis (HKY+G) was determined 

using Modeltest 3.5. (Posada 2004). Bayesian analysis was performed in MrBayes 3.0 (Ronquist and 

Huelsenbeck 2003). Four chains were run over 3.6 x 10
6
 generations with a burnin value of 2000.  

Neighbor-joining analysis was performed using the Kimura 2-parameter model and a gamma shape 

parameter of 0.5. Alternatively, maximum likelihood distances obtained by the HKY+G model were 

used for neighbor joining, which yielded the same tree topology. Bootstrap analysis (Felsenstein 1985) 

was performed to estimate the robustness of the phylogeny. 

 

A2.4. Taxonomic analysis 

 

A2.4.1. Latin diagnosis 

 
Acaulospora alpina Oehl, Sykorova & Sieverd. sp. nov. (Figs. 1–9) 

Sacculus sporifer hyalinus aut pallido-luteus, globosus vel subglobosus, 65–92 µm in diametro et 

formationi sporae praecedens. Sporae singulae lateraliter formatae ad hypham in 40–80 µm distantia 

ad sacculum terminalem, flavae vel fulvae vel fulvo-aurantiae vel aureae vel aurantio-brunneae, (53–) 

65–85 (–97) µm in diametro, globosae vel subglobosae vel ovoideae vel ellipsoideae vel irregulares 

(53–) 60–81(–91) × 62–87 (–110) µm. Sporae tunicis tribus: tunica exterior, media et interior. Tunica 

exterior in totum 2.5–4.0 µm crassa, stratis tribus: stratum exterius hyalinum, tenue et evanescens; 

stratum medium laminatum vel unitum, flavum vel fulvum vel fulvo-aurantium vel brunneo-

aurantium, depressionibus subtilibus, rotundis, 1.5–2.2 (–2.8) µm in diametro, et conicis, 2.0–2.5 µm 

profundis, in interiorem strati huius insculptis; stratum interius flavum vel fulvum, subtile. Tunica 

media tenuis stratis duobus et tunica interior stratis tribus, uterque tunicae hyalinae et flexibiles. 
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Tunica interior 1.2–3.0 µm in totum; solo stratum medium tunicae interioris pallide colorans reagente 

Melzeri. Typus hic designatus # 41–4101: Z+ZT. 

 

       

         

         

 

Figs. 1–9 Acaulospora alpina —photographed from type specimen. 1. Spore and sporiferous 

saccule, scale bar = 75 µm. 2., 3. Spore showing regular ornamentation, scale bar = 50 

µm. 4. Spore with cylindric pedicel around cicatrix (cix), scale bar = 50 µm. 5. 

Cracked spore, with three walls (sw, mw, iw); outer spore wall three-layered (sw1–3) 

with pitted ornamentation (orn) on sw2; flexible middle wall (mw) with two usually 

adherent layers (mw1 and mw2; here separated) and inner wall (iw) with three tightly 

adherent layers (iw1–3), scale bar = 25 µm. 6. Inner wall (iw2) staining pale purple in 

Melzer’s reagent; iw3 often difficult to observe even in broken spores, scale bar = 50 

µm. 7. Cracked spore showing circular pits on sw2 and the cicatrix (cix), scale bar = 

50 µm. 8. Wall layer sw2 with truncated cone-shaped pits, scale bar = 50 µm. 9. Outer 

wall at higher magnification showing regular, round pits on sw2, scale bar = 25 µm. 

All photos by Fritz Oehl. 
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A2.4.2. Morphological description 

Sporiferous saccule is hyaline, globose (about 65–80 µm in diameter) to subglobose, 65–75 × 75–92 

µm, with one wall layer that is generally 1.0–2.1 µm thick (Fig. 1); formed at the end of a hypha in 

40–80 µm distance from the spore that arises thereafter. The saccule usually collapses after the spore 

wall has formed and is usually detached from mature spores in soil samples. 

Spores (Figs. 1–4) form laterally on the subtending hypha of the sporiferous saccule. The spores 

are dark yellow, orange to brown, globose to subglobose, (53–) 65–85 (–97) µm in diameter, rarely 

ovoid to irregular, (53–) 60–81 (–91) × 62–87 (–110) µm in diameter.  

Outer spore wall consists of three layers (sw1, sw2 and sw3), in total 2.5–4.0 µm thick (Figs. 5, 

6). Outer layer (sw1) is hyaline, unit, 0.5–1.0 µm thick, sloughing, evanescent and thus, usually absent 

in mature spores. Second layer (sw2) is light to dark yellow to yellow-orange to orange-brown, 

laminated, 2.0–3.0 µm thick including the ornamentation with regular, round and truncated conical 

pits that are 1.5–2.2 (–2.8) µm in diameter and at least as deep as wide (Figs. 7–9). Due to their 

truncated cone shape, the pits often appear to have a dark central point, but there is no second 

depression or projection within the pit. The distance between the pits is (3.0–) 4–6 (–7) µm. The inner 

spore wall layer (sw3) is concolorous with sw2, 0.5–1.3 µm thick, usually tightly adherent to sw2 and 

often difficult to observe when < 1.0 µm.  None of these wall layers stains in Melzer’s reagent.  

Middle wall is hyaline, bi-layered and rather thin; in total 0.5–1.2 µm; both layers (mw1 and 

mw2) are semiflexible (Fig. 5), tightly adherent to each other and thus, often appearing as being one 

wall layer (Fig. 6). None of the layers reacts to Melzer’s. 

Inner wall is hyaline, with three layers (iw1-3) that are 1.2–3.0 µm thick in total (Fig. 5). The 

iw1 is about 0.5 µm thick, and not ‘beaded’; iw2 is 1.2–2.0 µm thick; iw3 is about 0.5 µm thick and 

usually very difficult to detect due to the close adherence to iw2. Only iw2 shows a light, pale pink 

reaction to Melzer’s reagent (Fig. 6) usually visible only in cracked spores and not observed in all 

specimens.  

 Cicatrix (Figs. 4, 7) remains after detachment of the connecting hypha (Fig. 4), (5–) 7–12 µm 

wide. The layer sw2 often continues for a small distance [0.8–2.2(–3) µm] into the detaching hypha 

forming a short cylindrical pedicel around the pore. Although the pore itself is not ornamented, the 

tapering pedicel wall often has the pitted ornamentation of sw2. The pore is closed by some of the 

inner laminae of sw2 and by sw3. 

Etymology. Latin, alpina, referring to the Swiss Alps where the species was first found.    
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A2.4.3. Specimens examined  

SWITZERLAND. GRISCHUN: Sent, Alp Spadla, at 2000–2700 m a.s.l. (HOLOTYPE: Z+ZT); 

GRISHUN: Pontresina,  Diavolezza at 2000–2700 m; GRISCHUN, San Murezzano (St. Moritz), 

Corviglia at 2700 m; GRISHUN: La Punt, Passo D’Alvra-Piz Üertsch, at 2300–2600 m, GRISHUN: 

Sur, Tschima da Flix, at 2000–2500 m; GRAUBÜNDEN: Davos, Parsennhütte and Stützalp, at 1800–

2300 m (ISOTYPE: OSC); GRAUBÜNDEN: Chur-Haldenstein, at 1620–2300 m; GRISHUN: 

Sumvitg-Surrein, Alp Nadels, at1950–2500 m; TICINO, Olivone, Piz Corvo-Paso di Lucomagno, at 

1800–2500 m; TICINO: Airolo, Passo di Gotthardo, at 1800-2000 m; URI and VALAIS: Realp-

Oberwald, Furkapass, at 1850–2650 m;  BERN: Axalp, Axalphorn, at 1700–2300 m; BERN: 

Grindelwald, Grosse Scheidegg/ Gemschberg, at (1350–)1800–2500 m (ISOTYPE: FB); VALAIS: 

Ovronnaz, Grand Muveran, at 1720–2600 m; VALAIS: Champez, Le Cartogne, at (1350–)1800–2600 

m; VALAIS: Col de Grand St. Bernhard, Pointe de Drône, at 2300–2500 m a.s.l.  

 

A2.4.4. Commentary  

Spores of A. alpina were abundantly isolated from the rhizosphere of alpine grasslands (soil pH 3.5–

5.5) with vegetation dominated by Carex curvula All. or Nardus stricta L. Spores were less frequent 

in alpine grassland soils with pH > 6.0 and plant species communities dominated by Carex ferruginea 

Scop., Carex sempervirens Vill. or Sesleria caerulea (L.) Scop., or in lower altitude grasslands (1500–

1800 m a.s.l.) with plant species communities dominated by Nardus stricta or by Trisetum flavescens 

(L.) P. Beauv. The new species was found in a broad range of soils that developed on acidic 

sandstones, siliceous gneiss and granite rocks, up to ultrabasic serpentinite and calcareous ‘Bündner 

Schiefer’ schists and carbonatic and dolomitic limestones.  

 

A2.4.5. Molecular biological analysis 

Sequences of approximately 550 bp length were obtained, comprising ITS1, the 5.8S rDNA subunit 

and ITS2. Phylogenetic analysis firmly placed all sequences of A. alpina into the genus Acaulospora 

and in a single clade, which is clearly distinct from the other Acaulospora spp. that have been 

analyzed. In particular, A. lacunosa and A. paulinae are not closely related to A. alpina or each other. 

The sister group of A. alpina is made up of environmental sequences obtained from roots from the 

Schiefergebirge mountains of Thuringia, Germany (Renker et al 2003) and an alpine meadow near 

Ramosch (Canton Grischun, Switzerland) (Fig. 10). One of the environmental sequences from 

Anthoxanthum roots (ASP504636) appears to be an outlier, grouping somewhat intermediate between 

A. alpina and the other sequences obtained from roots. These environmental sequences are different 

from those of A. alpina as indicated by the bootstrap values. Together, A. alpina and the 

environmental sequences form a monophyletic clade, which is supported by the bootstrap distance 
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analyses and Bayesian probabilities test. Five major clades were consistently recovered within 

Acaulospora (Fig. 10) by distance, maximum likelihood and Bayesian analyses and received good 

support: i) A. paulinae/denticulata, ii) A. morrowiae/mellea, iii) A. alpina and environmental 

sequences from mountainous areas, iv) A. lacunosa, v) A. laevis/colossica. With the exception of the 

first two, which were identified as sister groups, the deeper relationships among clades were not 

resolved well. 

 

 

Fig. 10 Phylogenetic tree of Acaulospora spp. obtained by maximum likelihood analysis of 5.8S 

rDNA and ITS2 sequences. The left number above the line of each branche denotes the 

bootstrap value obtained from 1000 replicates of neighbor-joining analysis (Felsenstein, 

1985); the right number after the slash indicates the credibility value from Bayesian 

analysis. Sequence labels show the source organism, the database accession number and 

the locality. Multiple spores analyzed from the same site are numbered 1, 2, 3.    
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A2.5. Acaulospora spp. with ornamented outer spore walls 

 

Including A. alpina, 15 Acaulospora spp. have been described that have ornamented outer spore walls. 

These are: A. elegans Trappe & Gerd. (Gerdemann and Trappe 1974), A. scrobiculata Trappe (Trappe 

1977), A. bireticulata F.M. Rothwell & Trappe (Rothwell and Trappe 1979), A. spinosa C. Walker & 

Trappe (Walker & Trappe 1981), A. foveata Trappe & Janos and A. tuberculata Janos & Trappe 

(Janos and Trappe 1982), A. rehmii Sieverd. & S. Toro and A. denticulata Sieverd. & S. Toro 

(Sieverding and Toro 1987), A. taiwania H.T. Hu (Hu 1988), A. undulata Sieverd. (Sieverding 1988), 

A. cavernata Blasz. (Blaszkowski 1989), A. excavata Ingleby & C. Walker (Ingleby et al. 1994), and 

A. lacunosa and A. paulinae. Below we present a key, to help to distinguish the ornamented 

Acaulospora spp. For this report, species that have depressions or pits on the outer spore wall are of 

particular interest, and we include colored photographs for those species (Figs. 11-19). We did not 

have access to a specimen of A. taiwania, thus, a photo of this species is not presented. Photographs of 

the pitted Acaulospora spp. spores were generally taken from type or isotype material. We included A. 

denticulata in the picture series because it has a pit (cavity) in each of the broad projections of which 

the ornamentation of this species consists. It is, however, a member of the group of species with spines 

or projections on the spore surface.   

 

A2.5.1. Key:  Acaulospora Spp. with ornamented outer spore walls  

1. Spores with spines or polygonal projections with or without a reticulum   . . . . . . . . . . . . . 2 

1. Spores with depressions (pits) or cerebriform folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

2. Spores’ spines or projections with a reticulum   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

2. Spores’ spines or projections without a reticulum  . . . . . . . . . . . . . . . . . . . . . . . . . . 4 

3. Reticulum three-layered enclosing polygonal projections ±1 × 1 µm; spores generally 150–200 µm   

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. bireticulata 

3. Reticulum one-layered, overlaid over crowded, densely-organized spines ±2 µm high; spores 140–

280 µm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. elegans 

4. Spores with fine spines or tubercles  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

4. Spores with circular to oblong projections, 4–5(–9) µm wide and up to 3.2 µm high; each 

projection with a center cavity   . . . . . . . . . . . . . . . . . . . . . . . . . . .A. denticulata (Fig. 11) 

5. Spores with fine crowded, densely organized spines, 1–4 µm tall, 1 µm at base and tapering to 0.5 

µm at the tip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. spinosa 
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5. Spores with fine tubercles 0.7–3.5 µm long and 1.5 µm broad at the base, tapering to 0.7–1.1 at the 

rounded tip, irregular distances (0.5–3 µm) between single tubercles . . . . . . . . . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. tuberculata 

6. Spores with pits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . 7 

6. Spores with cerebriform folds   . . . . . . . . . . . . . . . . . . . . . . . . . . .A. rehmii (Fig. 12) 

7. Spores in sporocarps, spores 75–80 µm in diameter, ornamentation of 0.5–1µm wide, 4–5 side pits, 

1.2 × 0.5–1 µm across, ridges form mesh . . . . . . . . . . . . . . . . .. . . . . . . A. taiwania 

7. Spores formed singly in soil, not in sporocarps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 

8. Pits of irregular shape  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

8. Pits of regular round shape  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 

9. Spores 100–240 µm in diameter, subhyaline to light olive, circular to ellipsoid to y-shaped pits, 1.0–

1.5 × 1.0–3 µm in diameter . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  A. scrobiculata (Fig. 13) 

9. Spores 100–180 µm in diameter reddish-yellow to yellow-brown, with irregular, saucer-shaped pits, 

0.2–3 × 0.2–6 µm in diameter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. lacunosa (Fig. 14) 

10. Spores with regular round pits, spores regularly < 100 µm in diameter . . . . . … 11 

10. Spores with regular round pits, spores regularly > 100 µm in diameter   . . . . . . .12 

11. Spores hyaline to subhyaline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 

11. Spores yellow to orange brown, truncated cone shape pits of widest diameter of 1.5–2.2 µm  . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. alpina (Figs. 2, 3) 

12. Spores regularly 100-180 µm in diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 

12. Spores regularly >185 µm in diameter with concave round pits of widest diameter 4–10 

µm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. foveata (Fig. 15) 

13. Spores hyaline to subhyaline, concave round pits of widest diameter < 3.5 µm . . . . . . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. paulinae (Fig. 16) 

13. Spores hyaline to subhyaline, concave round pits of widest diameter >3.5 µm . . . . . . . . . . . . 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. undulata (Fig. 17) 

14. Spores yellow brown, 115–170 µm in diameter with concave round pits of widest diameter 

2–5µm  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A. cavernata (Fig. 18) 

14. Spores ochre to brown, 100–180(–200) µm diameter with concave round pits of widest 

diameter 4–20 µm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. excavata (Fig.. 19) 
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Figs. 11–19 Acaulospora spp. with ornamented outer spore walls (sw). 11. A. denticulata 

(ISOTYPE, OSC #46,713) with polygonal knobby projections with a central depression 

on the rounded tops, scale bar = 50 µm. 12. A. rehmii (ex type, C–116–6, Sieverding 

collection) with ridges and depressions appearing as cerebriform folds, scale bar = 100 

µm. 13. A. scrobiculata (ISOTYPE, BOLIVIA, Santa Cruz de la Sierra, Oehl collection) 

with regular or y-shaped pits, scale bar = 100 µm. 14. A. lacunosa (isotype obtained from 

the International Bank for the Glomeromyceta, BEG78) with irregular, saucer-shaped pits, 

scale bar = 100 µm. 15. Big-spored A. foveata (culture C–48–1, Sieverding collection, 

described in Schenck et al (1984), scale bar = 100 µm. 16. A. paulinae (ISOTYPE, 

SWITZERLAND, Therwil (Basel), deposited by Oehl at Z+ZT) with round concave pits, 

scale bar = 75 µm. 17. A. undulata (ex type, Sieverding collection) with large depressions 

(undulations), scale bar = 75 µm. 18. A. cavernata (ISOTYPE, GERMANY, Black Forest, 

Glottertal; deposited by Oehl at Z+ZT) with round pits, 3–5 µm wide, inner wall layer 

stained purple in Melzer’s reagent, scale bar = 100 µm. 19. A. excavata (ISOTYPE, OSC 

#83,345) with large and deep globose depressions, scale bar = 100 µm.      
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A2.6. Discussion 

 

Spores of the genus Acaulospora share several features. With the exception of A. undulata and A. 

myriocarpa Spain, Sieverd. & N.C. Schenck (Schenck et al 1986) (see below), they have three walls 

(Stürmer and Morton 1999): an outer spore wall (sw), a middle wall (mw) and an inner wall (iw) using 

our spore wall terminology. The innermost wall (iw) is the wall from where spores germinate and a, 

so-called germination orb may be involved in the germination process (Spain 1992). The outer wall 

generally is three-layered, the middle wall is bi-layered and the germinal inner wall is two- or three-

layered. Some of these layers are often difficult to discern, e.g., the innermost layer of the outer wall, 

and some of the layers of the inner wall. Also, the mounting medium can have a strong influence on 

the visibility of fine wall layers and, therefore, difficult to see layers should be observed in water 

(Spain 1990).  

Despite these common features in all Acaulosporaceae, the spores of the new species, A. alpina, 

can be distinguished easily from all others by the unique surface ornamentation and by a combination 

of several other morphological characteristics. These are the small spore size, the dark yellow to 

orange-brown spore color, the apparent absence of a ‘beaded’ layer in the inner wall and the weak, 

sometimes absent, staining reaction of iw2 in Melzer’s reagent.     

Three AM fungal species have similarities in spore morphology with A. alpina. Acaulospora 

taiwania shares spore size and spore color, but forms the spores in sporocarps and not singly in the 

soil as A. alpina. Furthermore, the ornamentation on the spore wall of A. taiwania consists of 4–5 

sided pits that give the appearance of a mesh. The morphological definition of A. paulinae is broad 

and overlaps with A. alpina. However, the ornamentation structures of A. paulinae are coarser, less 

regular and consist of concave pits or depressions (Fig. 16), and not of truncated conic depressions as 

in A. alpina (Figs. 5, 8). Also, spores of A. paulinae have a significant ‘beaded’ inner wall layer, and 

the innermost layer stains strongly in Melzer’s reagent. Spores of A. lacunosa are similar in color to 

those of A. alpina but they are bigger.  Moreover, A. lacunosa has irregular depressions on the spore 

surface, a beaded inner wall layer, and one of the inner wall layers stains dark purple in Melzer’s 

reagent.  

Spores size of A. undulata is similar to that of A. alpina. However, their spore color is white to 

creamy and the round concave pits are generally wider in diameter. Furthermore, in A. undulata the 

middle wall is lacking and the inner wall bears some similarity to the inner wall of some species of the 

genus Archaeospora J.B. Morton & D. Redecker (Morton and Redecker 2001). The root infection 

structures of A. undulata stain only weakly with trypan-blue, and vesicles were extremely scarce (E. 

Sieverding, unpublished observations). These features are typical for members of the genus 
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Archaeospora. Spores of A. myriocarpa also lack the middle spore wall (see above) and the root 

infection structures of A. mycriocarpa (Schenck et al 1986) resemble those of Archaeosporaceae 

(Morton and Redecker 2001), too. Based on these observations it is possible that A. undulata and A. 

myriocarpa are both members of Archaeosporaceae.  

Phylogenetically, both A. paulinae and A. lacunosa are clearly separated from A. alpina (Fig. 

10). These three species are not related to each other.  Comparison of sequences obtained from spores 

to those from field-collected roots allows additional insights into the occurrence and ecological range 

of AM fungal taxa. The closest relatives to A. alpina were detected in roots from a site close to one of 

our spore sampling sites (Ramosch, Engadin) and from a mountainous grassland (710 m a.s.l.) in 

Central Germany (Renker et al 2003) (Fig. 10). These data suggest that species related to A. alpina 

may occur at alpine as well as lower-altitude mountainous areas. Our analyses also show that 

previously unnamed environmental sequences from Costa Rica (AY248771) apparently belong to A. 

lacunosa. Some other previously published sequences from this species (Millner et al 2001) are not 

related to A. lacunosa, and even not to the Glomeromycota. It is likely that the sequences belong to 

non-Glomeromycota fungi inhabiting AM fungal spores.     

Acaulospora lacunosa was described from lower pH soil and soils with high aluminium 

concentration in West Virginia (Morton 1986). Acaulospora paulinae was reported to be widespread 

in grasslands and arable lands of Poland (Blaszkowski 1993). We found A. paulinae frequently in 

grasslands and arable lands of the Upper Rhine lowland in France, Germany and Switzerland (Oehl et 

al., 2003, 2004, 2005b) and lower mountainous regions, but rather restricted to de-carbonated soils 

with pH of 4–6.5. With increasing altitude in the Alps, spores of A. paulinae were found in decreasing 

spore numbers, but spores were found even up to 3000 m a.s.l. 

(www.nfp48.ch/projekte/projectdocs/17/Wiemken.pdf).  In contrast, spores of A. alpina were most 

abundant in grasslands of the high mountainous and alpine regions between 1900–2600 m a.s.l.  

Above 2700 m a.s.l. the species was rarely found. So far it has not been detected in the lowlands nor, 

in the Swiss Alps, in mountainous grasslands at altitudes below 1300 m a.s.l. 
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Chapter 4 

 

General discussion 

 

4.1. Overall contributions of these studies to science 

 

To our knowledge, this is the first molecular study of root colonizing AMF communities in 

the European upper montane zone. The finding that host preferences of green gentians for 

AMF are much lower in comparison to their mycoheterotrophic relatives is new to science as 

well. In agreement with other studies conducted in species-rich grasslands, clear differences 

were observed among AMF communities harbored by different plant species co-occurring in 

a single field site.  

Furthermore, different AMF communities were detected in two plant species-rich 

grasslands in the French lowland on the edge of the Jura mountains and in the Swiss Alps, 

which indicates some geographical patterns of AMF. In the roots of the same target plant 

species in the lowland site, different AMF communities were revealed depending on culturing 

methods of these plants. These results indicate distinct ecological strategies of different AMF 

species and phylotypes. This finding is of high importance for the general interpretation of 

greenhouse and field AMF assays.  

For the first time, we detected fungi from the order Sebacinales co-occurring with the 

Glomeromycota in the roots and speculate on their role and relationship to AMF.  

  

4.2. AMF taxa detected by our experimental approach in both investigated field 

sites  

 

Overall, by far the most abundant group of the Glomeromycota detected in the root samples 

was Glomus group A. This is not surprising, as this subgroup includes the highest number of 

species of AMF (http://www.lrz-muenchen.de/~schuessler/amphylo/). Its high abundance and 

diversity is also in agreement with other studies targeting grassland ecosystems, where 

different phylotypes from this group were the dominant taxa in the investigated field sites 

(Öpik et al. 2006).  

Glomus group B was the second most abundant taxon in both our studies. It occurred 

predominantly in Trifolium sp. samples from the alpine site as well as samples from the 

greenhouse and field bait plants from the Landskron study. We improved the PCR specificity 
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for this group using the LETC1677 primer, which turned out to be more efficient than the 

previously used LETC1670. Glomus group B is known for the difficulties in distinguishing its 

species and in defining sequence types (Rodriguez et al. 2005). Despite this fact, we delimited 

several highly abundant sequence types (GLOM B1, B-2, B-4 and B-5) in our samples, some 

of them new to science. AMF belonging to Glomus group B were detected in several studies 

targeting field roots as well as spores in different parts of the world (Jansa et al. 2002; Oehl et 

al. 2003; Renker et al. 2005; Ahulu et al. 2006; Börstler et al. 2006; Wubet et al. 2006). 

However, as the majority of other molecular studies focusing on the AMF communities in the 

field roots (e.g. Vandenkoornhuyse et al. 2002; Scheublin et al. 2004; Santos et al. 2006) used 

the primer pair AM1/NS31, which has a mismatch in the primer annealing site for the Glomus 

group B, the global diversity and frequency of occurrence of this group it the roots has 

probably been underestimated. Interestingly, species belonging to this group often appear in 

trap plant cultures and sporulate there already after several months of greenhouse cultivation 

(Jansa et al. 2002; Oehl et al. 2004; Oehl et al. 2005). 

Sequence types belonging to the family Archaeosporaceae according to its old 

delimitation (Morton and Redecker 2001) were present in both sites investigated. However, in 

the Landskron site, only sequences belonging to the clade A. trappei were detected. 

Interestingly, the study of Oehl et al. (2003) did not reveal any spores of A. trappei in this 

field. The sequences detected in our study clustered well with sequences found by Hijri et al. 

(2006) in roots from trap cultures from different agriculturally used field sites located close 

the Landskron meadow. These results may indicate predominant intraradical occurrence of 

this species in the Landskron site. In the Ramosch site, sequences from two other clusters 

were detected. Both of them would belong to the newly established genus Appendicispora 

(Spain et al. 2006; Walker et al. 2007) and seem to have a broad occurrence. The sequence 

type ARCH-3 comprises sequences from Ethiopia (Wubet et al. 2003) and Germany (Hempel 

et al. 2007) and the other one (ARCH-4) has been found in Switzerland (Hijri et al. 2006), 

USA (Appoloni 2006) and Costa Rica. Similarly to the Glomus group B, we can only 

speculate on the global occurrence and distribution of the Archaeosporaceae and 

Appendicisporaceae in the roots, as most studies have been conducted using primer pairs, 

which do not amplify these families.  

Although our primer set enables the detection of the broadest range of taxa of all 

primer sets used (Redecker 2006), we did not find the following taxa: Glomus group C 

(Diversisporaceae), Pacisporaceae, Paraglomeraceae and Gigasporaceae in both the alpine 

and Landskron site and Acaulosporaceae in the Landskron samples.  

The Acaulosporaceae were present only in the Ramosch site. One of the sequence types 

detected there (ACAU-5) was closely related to the species Acaulospora alpina, which we 
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newly described in mountainous sites close to Ramosch (Oehl et al. 2006), however, it is 

clearly forming its own clade. The other sequence type, ACAU-1, clustered closely with 

sequences found by Hijri et al. (2006) in a long-term farming experiment in the Swiss 

lowland. In other grassland studies, the Acaulosporaceae were relatively common (e.g. 

Gollotte et al. 2004; Ahulu et al. 2006), with some phylotypes showing strong seasonality 

with predominant root colonization in winter and spring (Hijri et al. 2006). Interestingly, in 

the study of Scheublin et al. (2004), one Acaulospora phylotype showed strong preference for 

legume nodules. In the Landskron meadow, neither spores of Acaulosporaceae (Oehl et al. 

2003) nor root colonizing phylotypes from this family were found. This might be due to 

higher pH and calcium content in comparison to Ramosch and other studies where this AMF 

family was detected (e.g. Gollotte et al. 2004; Börstler et al. 2006). However, as other authors 

do not always provide pH data for their field sites, we can only speculate on this topic. Oehl 

et al. (2006) reported a much higher spore abundance of species belonging to the genus 

Acaulospora in high mountainous areas in Switzerland compared to lowlands. From all the 

findings mentioned above we can draw conclusions about some level of ecological 

specialization in this family - some species and phylotypes might occur in higher 

mountainous ecosystems, others might show a trend for seasonality in the root colonization. 

As we did not conduct any sampling in spring, we cannot test this hypothesis. 

Glomus group C (Diversisporaceae) was not detected in any investigated site. This is 

due to the fact, that our primers do not amplify this group, a specific primer for the Glomus 

group C is being constructed (Redecker et al. 2007). The “G. fulvum subgroup” of this family 

forming large sporocarps seems to occur mainly in tropical ecosystems. However, as AMF 

belonging to the G. versiforme/Diversispora spurca subgroup were detected in several studies 

targeting temperate grasslands using the primer combination AM1/NS31 or SSU-

Glom1/LSU-Glom1 (Wirsel 2004; Renker et al. 2005; Börstler et al. 2006; Santos et al. 2006; 

Hempel et al. 2007) and their spores were detected in the Landskron field site (Oehl et al. 

2003) it would have been of interest to target this group in our samples as well. 

The family Pacisporaceae cannot be detected with primers used in our study. The genus 

Pacispora was described only recently and its spores were reported from high altitudes (Oehl 

and Sieverding 2004), but also from temperate grasslands and intensively managed fields 

(Oehl et al. 2005), and many other sites with different extent of human influence in Europe 

(http://www.agro.ar.szczecin.pl/~jblaszkowski/Pacispora%20scintillans.html). However, it 

has not been reported from any root samples, probably due to the fact, that the different 

primer combinations used by different research groups do not target this AMF family. 

Therefore, it would be of high importance to construct a primer set specific for the 

Pacisporaceae.  
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The Paraglomeraceae are an ancient AMF family (Morton and Redecker 2001). As it 

cannot be detected with the primer combination AM1/NS31, it has been overlooked in many 

molecular AMF diversity studies so far (Öpik et al. 2006). The primer combination 

ARCH1311AB/ITS4i amplifies this group (Appoloni 2006; Hijri et al. 2006), however, we 

never detected any of its members. Paraglomeraceae have been reported from root and soil 

samples from grasslands in Germany (Börstler et al. 2006; Hempel et al. 2007), thermal sites 

in USA (Appoloni 2006) and arable fields in Switzerland (Hijri et al. 2006), but never in such 

a high abundance as Glomus group A or B. Interestingly, the spores of P. occultum were 

found with a relatively high abundance in the Landskron field site and several other 

agroecosystems (Oehl et al. 2003) as well as in trap cultures (Oehl et al. 2005), their 

abundance increased with the increasing intensity of the land use. Therefore, we can 

hypothesize that members this AMF family might be preferring disturbed or ruderal sites like 

arable fields or trap cultures. In our sites, they might colonize plant roots to low extent while 

forming predominantly extraradical mycelium and spores, which would be in agreement with 

the findings of Hempel et al. (2007) from a grassland in Germany.  

We did not detect any member of the family Gigasporaceae in any of the investigated 

field sites. The genus Gigaspora was thought to be absent from Europe (Walker 1992), 

however, its spores have been recently found in several European arable (Jansa et al. 2002) as 

well as grassland ecosystems (Börstler et al. 2006; Hempel et al. 2007). The genus 

Scutellospora was detected relatively frequently in roots in field sites with different levels of 

human impact (Hijri et al. 2006; Santos et al. 2006). Interestingly, some authors described 

their seasonality in grasslands with higher abundance in roots in winter (Helgason et al. 1999) 

or in winter and summer but not fall (Heinemeyer et al. 2004). In the Landskron site, the 

spores of AMF belonging to this family were detected only at a very low abundance (Oehl et 

al. 2003). From all these observations we can hypothesize that the Gigasporaceae might be 

rather infrequent in European species-rich nutrient-poor grasslands, with possible seasonal 

fluctuations in root colonization peaking in winter. As we did not conduct any root sampling 

in winter, we cannot draw conclusions about this hypothesis. 

 

4.3. AMF species richness and diversity in both field sites; host plant and site 

preferences of AMF  

 

In the Landskron site, 12 AMF sequence types were detected directly in the field root samples 

in comparison to Ramosch, where 17 sequence types were found. This difference might be 

caused by the different numbers of analyzed root samples. In the Ramosch study, 67 root 
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samples were investigated, which yielded 45 AMF-containing samples, whereas from the 27 

investigated Landskron field samples, 19 contained AMF. An important factor may also be 

the lower number of investigated plant species - four in Landskron in comparison to ten in 

Ramosch. These arguments are supported by our observations from the Ramosch site, where 

we clearly showed a trend in increasing number of different detected AMF phylotypes with 

increasing number of analyzed root samples as well as plant species. However, the 12 and 17 

phylotypes found in our field sites, respectively, are within the range of 10-24 phylotypes 

found by other authors applying molecular methods in temperate grasslands (Öpik et al. 

2006). 

The field root samples from Ramosch and Landskron shared just four AMF phylotypes, 

which indicates strong site-dependent differences. This is not surprising, as the two field sites 

had distinct environmental conditions as well as plant communities, they shared 

approximately 15 from the total number of 80 plant species growing in each site. A similarly 

large variation in AMF community composition among distinct grassland locations was 

reported by Öpik et al. (2006). As the plant communities were different between the sites, 

different plant species were analyzed in the two studies. This fact may have contributed to the 

differences in AMF community composition detected between the two sites, because in the 

Ramosch study clear differences were observed among the AMF phylotypes harbored within 

the three plant taxa studied in full detail.  

The AMF communities of the two meadows located close to each other in Ramosch 

were compared. The two meadows had similar environmental conditions and shared 

approximately 50 plant species, 30 were unique to each meadow. The AMF community in 

both meadows was relatively similar as well, they shared 12 AMF sequence types, three were 

unique to one meadow, two to the other one. Similarly to the comparison between Landskron 

and Ramosch, the AMF sequence types unique to one of the two Ramosch meadows had low 

overall abundance, thus, they can be considered as rare ones. 

Based on these findings we can conclude: i) different field sites inhabiting different 

plant communities and facing different environmental conditions may host different AMF 

communities; ii) different plant species co-occurring in a single field site may host different 

AMF communities in their roots. 
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4.4. Ecological strategies and global distribution of different AMF species or 

phylotypes 

 

Interestingly, if the root samples from the Landskron bait plant approach are included for 

calculating the number of AMF sequence types shared by the Ramosch and the Landskron 

sites, the shared number of phylotypes increases from four to six. This comparison indicates 

that some AMF present in one field site in the field roots may also have been present in the 

other site, however, predominantly as spores representing the inoculum potential of this site. 

These AMF may be detected using the trap culturing or bait plant approach.  

Due to technical limitations, we did not conduct a bait plant assay also in the Ramosch 

study. This might have been an interesting perspective enabling further comparisons of the 

two investigated sites. It would have been interesting to see whether we would find the same 

or similar AMF as those ones found in the bait plants in Landskron. Based on the results of 

these studies and previously published work by other authors, a similar set of rapidly-

colonizing r strategists could be expected to be shared between the two sites. Some AMF 

species quickly appearing in trap cultures as spores have been found in a broad range of 

environments world wide (e.g. Jansa et al. 2002; Mathimaran et al. 2005; Oliveira et al. 2005; 

Gai et al. 2006) as well as in roots from arable fields with regular disturbance (Helgason et al. 

1998; Daniell et al. 2001; Hijri et al. 2006). 

The majority (74%) of the sequence types detected in both our studies was also found 

by other authors in different parts of the world, which indicates their relatively broad 

distribution and low site specificity from a global point of view. We could draw conclusions 

about this topic even though we could not directly compare our results with considerable part 

of other molecular studies of the root colonizing AMF communities, as their authors targeted 

different DNA regions. Within a single field site, however, the AMF phylotypes seem to 

show strong host preferences for different host plants species, as we have reported in the 

Ramosch study and other authors in the majority of molecular studies focused on this issue 

(e.g. Vandenkoornhuyse et al. 2003). 

By far the most abundant sequence type in field samples from both sites was the 

ubiquitous Glomus intraradices. Indeed, this fungus was revealed to be dominant or highly 

abundant in most of the molecular diversity studies of root-colonizing AMF in different 

ecosystems around the globe (Öpik et al. 2006). The second most frequent sequence types we 

detected were GLOM B-4, which could not be assigned to any morphologically described 

species in Ramosch, and Glomus badium in the Landskron samples. Neither of these 

phylotypes showed specificity for the field site. Sequences belonging to these clusters have 
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also been found by other authors (Bidartondo et al. 2002; Wubet et al. 2003; Wirsel 2004; 

Börstler et al. 2006).   

Two of the four AMF phylotypes shared between Landskron and Ramosch field 

samples – GLOM A-1 (Glomus intraradices), GLOM A-17 (Glomus badium) – were 

relatively highly abundant in both field sites. GLOM B-4 and GLOM B-5 were highly 

abundant preferentially in the Trifolium spp. samples in Ramosch, however, in the Landskron 

study, these phylotypes showed high abundance in the compartment systems and bait plants 

but not field samples. Rare phylotypes with low overall abundance were not shared between 

the sites at all. These results are in agreement with the hypothesis of Öpik et al. (2003) and 

Börstler et al. (2006), who proposed a concept of some AMF species occurring globally with 

high local abundance and low host specificity. The sequence types GLOM A-1 and A-17 

clearly fall into this category. The sequence types GLOM B-4 and B-5 showed relatively 

strong host preferences for Trifolium spp. in the Ramosch site, however, they were also found 

with low frequency in other plant species in this site. In the Landkron samples, we did not 

observe any host specificity of these sequence types. The group GLOM B-4 was found also in 

other studies from different parts of the world (Bidartondo et al. 2002; Börstler et al. 2006). 

Thus, we can draw a conclusion that they may fall into this category as well.  

Based on these findings we can conclude:  i) most of the AMF sequence types 

seem to show a broad global distribution, however, a specific assembly of these 

globally occurring AMF can be established in each field site, ii) some AMF sequence 

types species are rarely detected and appear to occur only under specific conditions, 

iii) some AMF species and sequence types seem to represent r strategists – they prefer 

uncolonized ruderal habitats and, thus, may be found in the roots of plants growing in 

e.g. intensively managed agriculture sites as well as in trap cultures or bait plant 

assays, iv) other AMF - the K strategists - occur mainly in  late successional stages of 

the fungal community and therefore can be found in roots in stable natural plant 

communities, v) one AMF species - Glomus intraradices - is ubiquitous and thus 

detectable in almost all investigated sites using trap culturing as well as direct root 

sampling, vi) there are some AMF species or sequence types like Glomus intraradices 

and G. badium occurring globally in different grasslands and showing there high local 

abundance and low host specificity as well. 
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4.5. Co-occurrence of AMF in plant roots with other endophytic fungi 

 

Using either specific primers for the basidiomycetous order Sebacinales or occasionally also 

by a non-specific amplification using our AMF-primer set, these investigations revealed that 

most AMF-colonized roots were co-inhabited by Sebacinales. However, as we did not 

conduct any morphological and ultrastructural investigations, we cannot answer the question 

whether these non-AM fungi were predominantly present on the root surface or whether they 

grew intraradically. We can only hypothesize that the Sebacinales, proven to colonize root 

cells and intercellular spaces in ericoid plants, orchids and ectomycorrhizal trees (Weiß et al. 

2004) and detected in almost all our analyzed root samples, represent probably root 

endophytic fungi. As we properly washed all the root samples before we prepared aliquots for 

later DNA extractions, it would be rather unlikely to detect root surface-colonizing fungi in 

such a high proportion of samples. 

A large diversity of fungal endophytes has been reported from different plant 

tissues, e.g. Ascomycetes as Lophodermium piceae from conifer needles (Muller et al. 

2001), Epichloë bromicola from grass leaves (Groppe et al. 1999) or Curvularia sp. from 

grass roots, crowns, leaves, and seed coats (Redman et al. 2002). Many of these fungi do not 

cause any disease symptoms of the host plants. There are numerous reports of Asco- and 

Basidiomycetes colonizing AMF-host plant roots (e.g. Verma et al. 1998; Redman et al. 

2002; Renker et al. 2004), and, interestingly, also AMF spores (Hijri et al. 2002). However, 

in many cases no host specificity was detected and the nature of the relationship between 

these fungi, AMF and their plant hosts has remained obscure. The most-studied non-AMF 

root endosymbiont is the sebacinoid fungus Piriformospora indica (Deshmukh et al. 2006), as 

it significantly contributes to host plant fitness.  

A relatively well-investigated group of root endophytes are the dark septate endophytes 

(DSE). These are conidial or sterile ascomycetous fungi colonizing plant roots (Jumpponen 

and Trappe 1998). The DSE have been reported from various habitats and from a wide range 

of hosts including species known to be non-mycorrhizal or hosts of arbuscular, ericoid, orchid 

or ectomycorrhiza. Fuchs and Haselwandter (2004), for instance, found regular DSE 

colonization in several AMF-host plants from Austrian wetlands. So far, the role of DSE in 

the ecosystem is not clearly understood, the relationship between host plants and DSE 

probably ranging from mutualistic to parasitic associations (Jumpponen 2001). 

The present study adds a new aspect to the diversity of endophytes in plants and 

opens an interesting new field of research on the occurrence and function of these 

ubiquitous fungal symbionts.   
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4.6. Future perspectives in the field of AMF molecular ecology 

 

In order to compare the results of morphological and molecular studies and to draw 

conclusions about the global distribution of AMF and their ecological preferences, DNA 

marker sequences for species, which have been so far described only morphologically, are 

necessary. This will enable to match morphospecies to sequence types, to compare AMF 

present as spores and those ones colonizing the roots or growing as mycelium in the soil in a 

single field site and thus, compare different strategies of AMF. 

 Furthermore, there is a strong need for a specific PCR primer pair targeting all taxa of 

the Glomeromycota. As the primer pairs targeting the SSU, ITS and LSU of the nuclear 

rDNA commonly used in the field studies turned out to miss some taxa, the description of the 

AMF diversity in the investigated field sites or host plants is not complete. The mitochondrial 

LSU rDNA (Raab et al. 2005) seems to be a promising marker for this purpose. 

Based on the work presented here, it would be highly interesting to investigate more 

deeply the specific morphological Paris type of arbuscular mycorrhiza formed by plants from 

the family Gentianaceae. Its role in nutrient transport between the fungus and the plant 

remains unclear, as it often lacks arbuscules which are the places of nutrient exchange in the 

Arum type. Our previous study focused on Gentiana verna showed that the coexistence with 

neighboring plants has a key role for inducing mycorrhizal colonisation in its roots and for its 

integration into an existing extraradical mycelial (ERM) network (Sýkorová et al. 2003). Such 

hyphal links could ensure one- or bi-directional transport of assimilates and/or inorganic 

nutrients between plants. Thus, it would be of high interest to address the impact of AMF on 

nutrient acquisition by gentian plants, identify the symbionts in the roots and the place of the 

nutrient exchange between the symbionts and address the importance of hyphal connections 

for the transfer of mineral nutrients and carbon compounds between the gentians and 

neighboring plants. Speculations about a possible tendency to mixotrophy in gentians are 

tempting because some members of the Gentianaceae are achlorophyllous and apparently 

mycoheterotrophs, i.e. they obtain all of their nutrients via bridges of AMF mycelium from 

neighboring green mycorrhiza hosts (Imhof and Weber 1997; Bidartondo et al. 2002).   

The influence of neighboring plants on the AMF of a given species clearly deserves 

further attention, also in other plant families than the Gentianaceae. An interesting subject in 

this context, which may be targeted using molecular methods, are invasive plant species 

interacting with AMF. These plants have been shown to shift the AMF community of 

surrounding native plant species (Mummey and Rillig 2006; Hawkes et al. 2006). However, 

comparisons of the AMF communities of these invasive plant species in their original and 
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new habitats as well as investigations of altered AMF communities as a possible key factor 

for the invasive success have not been conducted yet. 

Molecular and ultrastructural methods should be used in combination to elucidate the 

nature of the interaction of AMF with other fungi in the roots. Investigations of the 

relationship between the AMF, host plants and non-AM fungi might provide evidence for an 

understanding of the ecology and physiology of the organisms involved and will have 

possible implications for agricultural systems.  
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