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Summary 

Over the recent years, RNA interference (RNAi) has emerged as a powerful 

method to study the role of individual genes. However, the mechanism 

underlying the gene silencing by the double-stranded RNA (dsRNA) is still not 

fully understood. RNAi is initiated when dsRNA is processed by RNase III 

endonuclease Dicer into short interfering RNAs (siRNAs), of 21 to 22 nucleotides 

in length. SiRNAs are then incorporated into RNA-induced Silencing Complex 

(RISC) that by base-pairing targets messenger RNA for degradation. Dicer is 

also involved in processing of precursors of the small regulatory RNA species, 

microRNAs (miRNAs). MiRNAs are encoded in the genome and are implicated in 

gene expression regulation in various cellular processes. After maturation by 

Dicer, miRNAs are incorporated into RISC-like complexes that in animals 

imperfectly base-pair with the target mRNA and lead to inhibition of translation. 

This thesis focuses on Dicer, the central protein involved in both RNAi and 

miRNA pathways.  

Detailed study of the ribonuclease activity of human Dicer and its 

ancestral prototype, bacterial RNase III, are described in the first experimental 

chapter of this thesis. The common model for dsRNA cleavage by the RNase III-

class enzymes is proposed. The use of mutagenesis to investigate the catalysis 

revealed that Dicer and bacterial RNase III contain a single compound catalytic 

center. Both RNase III domains of Dicer contribute to the dsRNA cleavage 

reaction. The results obtained in this study have proved the then-accepted model 

of RNase III catalysis to be inadequate. We demonstrated that instead of the two 
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catalytic centers as proposed in the old model, both E. coli RNase III and Dicer 

contain one compound catalytic center that generates products with 2-nt 3’ 

overhangs. In silico modeling of the dsRNA substrate into 3D crystal structure 

coordinates of the bacterial RNase III offered additional support to our 

interpretation. Together with other data, a new model was proposed according to 

which Dicer functions as an intramolecular pseudodimer of its two RNase III 

domains, assisted by the flanking RNA binding domains, PAZ and dsRBD. 

Second chapter describes dsRNA binding domain (dsRBD)-containing 

protein, TRBP, that was found to associate with Dicer in mammalian cells and in 

vitro. We show that TRBP is required for optimal RNA silencing mediated by 

siRNAs and endogenous miRNAs, and that it is involved in efficient processing of 

pre-miRNAs. Since TRBP had previously been described as the inhibitor of the 

interferon-induced double-stranded RNA-regulated protein kinase PKR, the 

TRBP-Dicer interaction raises a possibility of the connection between RNAi and 

interferon-PKR pathways. 

DsRNA binding properties of human Dicer dsRBD are described in the 

third chapter. We have found that this domain has the propensity to bind dsRNAs 

of different lengths. Surprisingly, it displays hardly detectable affinity for siRNAs. 

This observation suggests that the dsRBD might be involved in substrate binding 

during Dicer cleavage reaction and take part in substrate/product discrimination 

preventing the enzyme from sequestering its own product.  

The two supplementary chapters contain the work performed in 

collaboration with other laboratories. We show that like its Drosophila counterpart, 
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human Dicer is able to form complexes with siRNAs both in vitro and in vivo. 

These results indicate that also in mammals Dicer could function downstream of 

the dsRNA cleavage step and could take part in RISC assembly. The other 

supplementary chapter describes RNAi connection with chromatoid bodies 

during spermatogenesis. We show that Dicer and components of the RISC-like 

complex (Ago and miRNA) are concentrated in chromatoid body. We also 

demonstrate that Dicer directly interacts with the RNA helicase MVH (mouse 

Vasa homolog) that is the germ-line specific chromatoid body component. Our 

findings suggest that the chromatoid body might function as a subcellular 

concentration site for the miRNA pathway components during spermatogenesis. 



 

 

INTRODUCTION 
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RNA interference (RNAi) is a posttranscriptional gene regulatory pathway that is 

triggered by double-stranded RNA (dsRNA). Since the discovery that introduction 

of dsRNA into cells initiates sequence specific gene silencing (Fire et al., 1998), 

the use of RNAi as a laboratory tool has revolutionized the study of eukaryotic 

gene function. The discovery of RNAi was awarded the Nobel Prize in Physiology 

or Medicine in 2007 to Andrew Z. Fire and Craig C. Mello. 

 

The discovery of RNAi 

RNA interference (RNAi) was discovered through three independent lines of 

experiments. The most familiar work is that from the laboratories of Fire and 

Mello. They made the groundbreaking discovery that double-stranded RNA 

(dsRNA) could induce gene silencing in the nematode Caenorhabditis elegans 

(Fire et al., 1998). Prior to this discovery, however, Baulcombe and coworkers 

and also other laboratories have described co-suppression or PTGS (Post-

transcriptional gene silencing), gene silencing mechanism in plants that was 

triggered by viral replication or transgene expression (de Haan et al., 1992; 

English et al., 1996; Hobbs et al., 1993; Lindbo et al., 1993). The short interfering 

RNA (siRNA) was then first discovered in plant systems (Hamilton and 

Baulcombe, 1999) and subsequent identification of siRNAs in Drosophila 

melanogaster provided the connection between gene silencing pathways across 

kingdoms (Hammond et al., 2000; Zamore et al., 2000). The third line of 

experimentation leading to the discovery of RNAi mechanisms dealt with the the 

study of developmental timing in C. elegans. Laboratories of Ambros and Ruvkun 
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(Lee et al., 1993; Wightman et al., 1993) had identified lin-4, a small untranslated 

RNA that was involved in the regulation of expression of the mRNA encoding lin-

14. This was the first identified microRNA (miRNA). We now know that miRNAs 

are naturally occurring molecules that trigger the RNA silencing pathway and 

play an essential role in gene regulation at the posttranscriptional level in many 

organisms, including plants, nematodes, flies, and humans. 

 

Mechanism of RNAi 

The RNAi machinery consists of a conserved core of factors with roles in 

recognizing, processing and effecting responses to dsRNA. The general two step 

model is proposed to describe the mechanism of RNAi (Fig. 1). The first step, 

RNAi initiation, involves the processing of dsRNA into discrete 21- to 25-

nucleotide long (21-25-nt) dsRNA fragments, siRNAs, by ribonuclease (RNase) 

type III Dicer. Subsequently, siRNAs are involved in RNAi effector step and join a 

multiprotein complex that base-pairs to mRNAs and leads to their degradation. 

 

The initiation step of RNAi 

DsRNA introduced into cells by viral infection, artificial expression or formed in 

cells by synthesis of complementary strands is processed to ~20-bp siRNAs 

containing 2-nt 3’ overhangs. Proteins involved in siRNA generation include 

RNase III endonuclease Dicer along with its associated partners: TRBP in 

mammals (this work; (Chendrimada et al., 2005; Lee et al., 2006), R2D2 and 

Loquacious in Drosophila (Forstemann et al., 2005; Liu et al., 2003; Pham et al., 
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2004; Saito et al., 2005), and RDE-4 in C. elegans (Grishok et al., 2000; Tabara 

et al., 1999).  

 

Fig. 1. Scheme of siRNA and miRNA mediated gene silencing. Dicer is the central enzyme involved in both 

pathways, processing long dsRNAs into siRNAs and pre-miRNAs into mature miRNAs. 

 

 

The effector step of RNAi 

SiRNAs produced by Dicer are handed over to the RNA-induced silencing 

complex (RISC) where the cognate mRNA is identified by base-pairing and 

targeted for degradation. Most important component of RISC is a PPD protein 

family member, Argonaute, that cleaves mRNA in the middle of siRNA-mRNA 

complementarity (Liu et al., 2004; Meister et al., 2004). Other factors 

cofractionating with RISC include the Vasa intronic gene (VIG) protein, Tudor-SN 
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nuclease and dFXR, the Drosophila ortholog of human fragile X mental 

retardation protein (FMRP) (Caudy et al., 2003; Caudy et al., 2002; Ishizuka et al., 

2002). 

 

Gene regulation by miRNAs 

RNAi machinery is also involved in the miRNA-mediated gene regulation 

pathway. MicroRNAs are a family of small, non-coding RNAs that regulate gene 

expression in a sequence-specific manner (reviewed by (Bartel, 2004). MiRNAs 

are generated from the genome-encoded precursor hairpins (Lagos-Quintana et 

al., 2001) by the sequential action of two RNase III type nucleases, Drosha in the 

nucleus (Lee et al., 2003) and Dicer in the cytoplasm (Bernstein et al., 2001). 

 

Discovery of miRNAs 

The founding member of the miRNA family, lin-4, was discovered in nematode C. 

elegans through a genetic screen for defects in the temporal control of post-

embryonic development. Mutations in lin-4 disrupt the temporal regulation of 

larval development, causing the first larval stage-specific cell-division patterns to 

reiterate at later developmental stages (Chalfie et al., 1981). Opposite 

developmental phenotypes are observed in worms that are deficient for lin-14 

(Ambros and Horvitz, 1984). Most genes identified from mutagenesis screens 

encode proteins, but lin-4 encodes a 22-nucleotide non-coding RNA that is 

partially complementary to 7 conserved sites located in the 3’-untranslated region 

(3’-UTR) of the lin-14 gene (Lee et al., 1993; Wightman et al., 1993). Lin-14 
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encodes a nuclear protein that has to be downregulated at the end of the first 

larval stage to promote the developmental progression into the second larval 

stage. Both, the functional lin-4 gene and an intact 3’-UTR of its mRNA, are 

essential for the negative regulation of LIN-14 protein expression. It has been 

demonstrated that the imperfect base pairing between lin-4 and the lin-14 3’-UTR 

was essential for the ability of lin-4 to control LIN-14 expression at the level of 

protein synthesis (Ha et al., 1996; Olsen and Ambros, 1999). 

The discovery of lin-4 and its target-specific translational inhibition pointed 

at a new mechanism of gene regulation during development. Second miRNA, let-

7 was identified, hinting that lin-4-type regulation of gene expression was not an 

isolated case but possibly a general mechanism. Let-7 encodes a temporally 

regulated 21-nucleotide small RNA that controls the developmental transition 

from the last larval stage into the adult stage (Reinhart et al., 2000). Similar to lin-

4, let-7 imperfectly binds to the 3’-UTR of lin-41 and hbl-1 mRNAs and inhibits 

their translation (Abrahante et al., 2003; Lin et al., 2003).  

Identification of let-7 raised the possibility that similar RNAs might be 

present in species other than nematodes. Both let-7 and lin-41 are evolutionarily 

conserved throughout metazoans, with homologues that were detected in 

mollusks, sea urchins, flies, mice and humans (Pasquinelli et al., 2000). This 

extensive conservation strongly indicated a more general role of small RNAs in 

developmental regulation. Orthologues of lin-4 were also later identified in flies 

and mammals (Lagos-Quintana et al., 2002; Sempere et al., 2002). 
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Hundreds of miRNAs have now been identified in various organisms 

(Bartel and Chen, 2004), and the RNA structure and regulatory mechanisms that 

have been characterized in lin-4 and let-7 define unique molecular signatures 

defining miRNAs. MiRNAs are generally 21–25 nucleotide-long, non-coding 

RNAs that are derived from larger, genome encoded precursors transcribed by 

RNA polymerase II (Pol II), forming partially double stranded stem-loop 

structures (reviewed by (Bartel, 2004). The mature miRNA is most often derived 

from one arm of the precursor hairpin, and is released from the primary transcript 

through stepwise processing by two RNase III enzymes. In animals, most 

miRNAs bind with imperfect complementarity to the target mRNA 3’-UTR and 

function as translational repressors. 

 

SiRNA and miRNA pathways 

Both, siRNAs and miRNAs, can silence cytoplasmic mRNAs either by triggering 

a endonucleolytic cleavage or by promoting repression of translation. A key 

difference between siRNA and miRNA function is the specificity of their 

interactions with the target mRNA. Generally, siRNA base-pair perfectly to the 

mRNA and trigger the endonucleolytic cleavage between bases 10 and 11 of the 

duplex (Elbashir et al., 2001; Haley and Zamore, 2004; Hammond et al., 2000; 

Martinez and Tuschl, 2004; Tuschl et al., 1999). In plants, also most of the 

miRNAs direct endonucleolytic cleavage (Llave et al., 2002). In metazoan, there 

are also some examples of perfect base-pairing between endogenous miRNA 

and mRNA leading to the mRNA cleavage (Yekta et al., 2004). However, most 
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metazoan miRNA form imperfect mismatches and trigger translational repression 

(reviewed by (He and Hannon, 2004). From a number of experiments, some key 

principles the miRNA/target interaction have emerged. Base-pairing between the 

5’ end of the miRNA (residues 2–7, a ‘seeding region’) and the mRNA target 

plays a primary role in establishing the interaction (Doench and Sharp, 2004). 

Moreover, the 5’ portion of related miRNAs is the most highly conserved. The 3’ 

portion of the miRNA contributes to efficient repression, and it has been 

suggested to work as a modulator of suppression (Doench and Sharp, 2004; 

Kiriakidou et al., 2004; Kloosterman et al., 2004).  

While only one complementary site is generally sufficient to direct repression by 

cleavage, with a few exceptions multiple sites are required for efficient 

translational repression (Doench et al., 2003; Doench and Sharp, 2004; 

Kiriakidou et al., 2004; Zeng et al., 2003). In addition, the binding of the miRNP to 

the mRNA might be influenced by other RNA-binding proteins such as GW182 

that interacts with Argonaute proteins and is required for efficient miRNA-

mediated repression in animals (Jakymiw et al., 2005; Liu et al., 2005a; 

Rehwinkel et al., 2005). 

 Some recent data suggest that miRNAs downregulate translation at the 

initiation step and that repressed mRNAs are subsequently relocalized to 

P-bodies (processing bodies) that contain pools of mRNAs not engaged in 

translation or undergoing degradation (Brengues et al., 2005; Kedersha et al., 

2005). Ago proteins, miRNAs, and repressed mRNA targets are enriched in P-

bodies (Jakymiw et al., 2005; Liu et al., 2005b; Pillai et al., 2005; Sen and Blau, 
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2005). Some other observations suggest that miRNAs might also repress 

translation by affecting a step in protein production after translation initiation, 

possibly causing ribosome drop off during elongation of translation (Petersen et 

al., 2006). The possibility that miRNAs and RISC can drive translation repression 

by multiple mechanisms cannot be excluded at present. 

 

Ribonuclease III superfamily 

The discovery that RNase III enzymes are involved in RNAi and miRNA 

pathways in various organisms resulted in renewed interest in this class of 

enzymes. A classification scheme for RNase III orthologs has been proposed 

(Blaszczyk et al., 2001) (Fig. 2). Class I, including eubacterial enzymes and the 

yeast ortholog Rnt1p, has the simplest domain organization, with a single 

catalytic domain and a dsRNA binding domain (dsRBD). Rnt1p has an N-terminal 

extension that was shown to be important for dimerization activity of the enzyme 

(Lamontagne et al., 2000). Class II enzymes, including Drosha proteins, have a 

duplicated catalytic domain, a single dsRBD, and a variable length N-terminal 

region with the proline-rich and arginine/serine-rich domains. Middle part, lacking 

a distinguishable motif, is needed for interaction with a partner protein, such as, 

for example, DGCR8 (Han et al., 2004). Drosha enzymes are found only in 

animals. Class III includes Dicer homologs containing two catalytic domains, 

dsRBD, DUF283 (domain of unknown function), and PAZ (Piwi/Argonaute/Zwille) 

and ATPase/helicase domains. Dicers are found in most eukaryotes (e.g. 

Schizosaccharomyces pombe, plants and animals. Dicer gene is not present in 
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Saccharomyces cerevisiae. Enzymes of RNase III class are not present in 

archaea. 

 

 

Fig. 2. Classification of RNase III orthologs and their associated dsRBD-containing partners. Individual 

protein domains are depicted as colored blocks.  

 

 

Function of RNase III 

RNase III was first discovered as a dsRNA degrading activity in Escherichia coli. 

RNase III autoregulates its own expression by cleavage of a stem-loop upstream 

of its ORF (Bardwell et al., 1989). Bacterial RNase III can be phosphorylated by a 

phage T7 encoded serine–threonine protein kinase that leads to an increase of 

the dsRNA cleavage activity (Mayer and Schweiger, 1983).  
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The main function of RNase III is in pre-rRNA processing. In addition, 

bacterial RNase III participates in the maturation of mRNAs, excising mRNAs 

and co-transcribed tRNAs or intercistronic regions from polycistronic mRNA 

precursors. RNase III has a role in mRNA turn-over by cleaving mRNAs within 5’-

untranslated regions (5’-UTRs) (Regnier and Grunberg-Manago, 1990). 

Maturation of tRNA precursors or processing of phage and plasmid transcripts is 

often dependent on RNase III (reviewed by (Nicholson, 1999). It has been 

proposed, that RNase III can also exert regulatory functions within the cell 

through binding of a particular RNA, without its cleavage (Dasgupta et al., 1998). 

Although RNase III is involved in many important cellular processes, its deletion 

is not lethal but just results in a slower growth phenotype of E. coli (Babitzke et 

al., 1993) which suggests that some of the reactions catalyzed by RNase III can 

be carried out by other RNases. However, in Bacillus subtilis and in the ‘minimal’ 

genome of Mycoplasma genitalium, RNase III gene is essential (Herskovitz and 

Bechhofer, 2000; Hutchison et al., 1999). 

In eukaryotes, the first studied RNase III enzymes were the S. cerevisiae 

Rnt1p and S. pombe Pac1p. Both are essential for viability (Abou Elela and Ares, 

1998; Chanfreau et al., 1998). The yeast RNases III have an N-terminal 

extension which at least in the case of the S. cerevisiae enzyme facilitates 

dimerization of the protein (Lamontagne et al., 2000). In eukaryotes, RNase III is 

involved in rRNA maturation by cleaving pre-rRNA in 3’-ETS (external 

transcribed spacer) (Kufel et al., 1999) and processing of some small nucleolar 

RNAs (snoRNAs) and small nuclear RNAs (snRNAs) (Chanfreau et al., 1998; Qu 
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et al., 1999; Seipelt et al., 1999). However, RNase III is not a part of the yeast 

exosome complex which also processes sn(o)RNAs (Mitchell and Tollervey, 

2000). 

Endonucleolytic cleavage by RNase III creates dsRNA fragments with 5’-

phosphates and 3’-OH groups containing 2 nt 3’-overhangs. When perfectly 

base-paired dsRNA substrates such as poly I-C RNA are incubated with RNase 

III, exhaustive digestion yields dsRNA fragments of 12–15 nt in lenght. The 

minimum substrate length is ~20 base-pairs (bp), equivalent to about two turns of 

an A-form dsRNA. The cleavage site selection appears to be random (reviewed 

by (Nicholson, 1996). In imperfect duplexes RNase III specificity is not 

determined by a clearly defined sequence motives within the substrate, as in the 

case of type II restriction endonucleases. Physiological RNase III substrates are 

cleaved at exactly defined positions, although they lack a consensus motif. 

Current model for cleavage site determination by the E. coli RNase III is based 

on the presence or absence of so-called anti-determinants, nucleotides that have 

to be present or absent in certain regions (distal and proximal boxes, respectively) 

close to the cleavage site (Zhang and Nicholson, 1997). This model, however, is 

not universally valid for all RNase III substrates (Evguenieva-Hackenberg and 

Klug, 2000). 

Catalysis by RNase III possibly follows a two metal ion mechanism. 

Consistently, in order to cleave its substrate RNase III needs divalent cations, 

preferably magnesium. Magnesium ions can be substituted for by manganese, 

cobalt or nickel ions, but these can result in altered cleavage specificity. 
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Recognition and binding of the RNA is possible in the absence of divalent metal 

ions (Li et al., 1993). 

 

Dicer 

Dicers are approximately 200 kDa multidomain proteins. The PAZ, dsRBD and 

RNase III domains are involved in dsRNA binding and cleavage. The PAZ 

domain is also found in PPD (PAZ and Piwi Domain) or Argonaute proteins that 

interact with Dicer and are involved in RNAi and miRNA function. Structural 

studies of the PAZ domain of the Drosophila PPD proteins Ago-1 and Ago-2 

revealed a similarity to the oligonucleotide binding (OB) fold, consistent with the 

RNA binding activity of the domain (Lingel et al., 2003; Song et al., 2003; Yan et 

al., 2003). The presence of the helicase/ATPase domain could be attributed to 

the observation that generation of siRNAs by the C. elegans Dicer and one of the 

two Drosophila Dicers seems to be of ATP-dependant (Bernstein et al., 2001; 

Ketting et al., 2001; Liu et al., 2003; Nykanen et al., 2001). However, no such 

effect is observed for the mammalian enzyme (Zhang et al., 2002). Moreover, 

Dicers of Dictyostelium and Giardia intestinalis are devoid of the 

helicase/ATPase domain (Macrae et al., 2006; Martens et al., 2002). 

Mammalian genome encodes one Dicer gene. Plants, such as 

Arabidopsis thaliana, poplar and rice express four dicer-like proteins (Dcl). Fungi, 

such as Neurospora crassa and insects, such as Drosophila, and mosquito, 

contain two Dicer genes. Four plant Dicer-like proteins have distinct roles: Dcl-1 

processess miRNAs, Dcl-2 generates siRNAs associated with virus defense, 
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Dcl-3 produces siRNAs that are involved in chromatin modification and 

transcriptional silencing, and Dcl-4 creates trans-acting siRNAs (tasiRNAs) that 

regulate vegetative phase change (Borsani et al., 2005; Gasciolli et al., 2005; 

Park et al., 2002; Xie et al., 2005; Xie et al., 2004). Since the small RNAs 

produced by different Dcls are involved in diverse processes, there must be a 

mechanism that allows efficient substrate RNA discrimination and subsequent 

incorporation of the product into correct effector complexes. It has been 

suggested that dsRBD might be involved in mediating this process. Dcls, with the 

exception of Dcl-2, contain two dsRBDs, while Dcl-2 contains one such domain. 

It has been noted that the variation between the pair-wise sequence alignments 

of Dcl-types 1, 3 and 4 is most pronounced in this domain, what might account 

for potentially different substrate specificity (Margis et al., 2006). Fusion proteins 

containing both dsRBD1 and dsRBD2 domains of Dcl-1, Dcl-3 and Dcl-4 can 

bind to members of the HYL1/DRB family of proteins that are implicated in small 

RNA pathways in Arabidopsis (Hiraguri et al., 2005). The model has been 

proposed that the dsRBD domain along with the PAZ, and RNase IIIa and b 

domains recognizes and processes specific RNA substrates and, by specific 

interaction with different HYL1/DRB members, directs the newly generated small 

RNAs to their appropriate effector complexes (Margis et al., 2006). 

Studies in Drosophila established distinct roles for the two Drosophila 

Dicer proteins. Dicer-1 is essential for miRNA processing while Dicer-2 is 

necessary for siRNA production. Separation of function for Drosophila Dicers is 

not absolute. Although Dicer-1 and Dicer-2 generate different types of small 
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RNAs, both are required for siRNA-directed target mRNA cleavage and gene 

silencing. Dicer-2 is required to form a stable siRNA-protein complex that initiates 

siRISC assembly and contains Dicer-2 and R2D2 (Lee et al., 2004b; Liu et al., 

2003; Pham et al., 2004). Dicer-1 is required for correct assembly of the 

intermediate complex from its precursor initiator complex (Lee et al., 2004b). 

 

 

Fig. 3. A model of pre-miRNA processing by Dicer. Individual domains of Dicer shown are in different colors. 

The enzyme contains a single dsRNA cleavage center with two independent catalytic sites. The center is 

formed by the RIIIa and RIIIb domains of the same Dicer molecule. The placement of the RIIIa domain 

illustrates the fact that this domain cleaves the 3’-OH-bearing RNA strand. DsRBD is arbitrarily positioned on 

the substrate. 

 

dsRNA and pre-miRNA processing by Dicer 

In the course of this work the mechanism of Dicer cleavage of dsRNA and 

pre-miRNA was investigated and a model of the cleavage has been proposed 

(Fig. 3). Briefly, Dicer works as an intramolecular pseudodimer with RNase IIIa 

and IIIb forming a single catalytic center containing two independent catalytic 

‘half sites’, each capable of cutting one RNA strand of the duplex to generate 

products with 2-nt 3’ overhangs. The end of the dsRNA substrate is recognized 

by the PAZ domain. A model proposed in this work is strengthened by the recent 

determination of the crystal structure of the full-length Giardia intestinalis Dicer 
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(Macrae et al., 2006). The RNase III domains form the catalytic domain and the 

PAZ domain is directly connected to the RNase IIIa domain by a long α-helix 

dubbed the ‘connector’ helix which is implicated in determining the product length 

(Fig. 4). 

 

Fig. 4. Crystal structure of Giardia Dicer. Ribbon representation of Dicer shows the N-terminal platform 

domain (blue), the PAZ domain (orange), the connector helix (red), the RNase IIIa domain (yellow), the 

RNase IIIb domain (green). 

 

From the crystal structure the role for conserved ‘domain of unknown 

function 283’ (DUF283) was proposed. Low but significant sequence homology 

between the N-terminal domain of Giardia Dicer and DUF283 suggests that 

DUF283 forms a platform structure similar to that of the Giardia Dicer also in the 

Dicers of higher eukaryotes. Based on computational modeling it was proposed 

that DUF283 could possibly adapt a dsRBD fold (Dlakic, 2006). It is worth noting 

that although Giardia Dicer contains neither helicase nor dsRBD domains found 
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in other Dicers, it is capable of complementing the Dicer deletion mutant of 

fission yeast. 

After completing the cleavage reaction Dicer remains associated with the 

product (Zhang et al., 2002). This observation is consistent with the involvement 

of Dicer in the effector step of RNAi. For the siRNAs to act as a guide for mRNA 

cleavage, it must be unwound into its component strands and then reassembled 

with proteins to form active RISC. The strand that is going to be incorporated into 

RISC is called the guide strand, while the second passenger strand undergoes 

degradation. Strand selection mechanism exists to ensure an effective and 

efficient siRNA loading to RISC. Thermodynamic differences in the base-pairing 

stabilities of the 5' ends of the two siRNA strands determine which strand is 

assembled into the RISC (Khvorova et al., 2003; Schwarz et al., 2003). In 

Drosophila, the strand selection is achieved by appropriate orientation of the 

Dicer-2/R2D2 heterodimer on the siRNA duplex. R2D2 binds the siRNA end with 

stronger thermodynamic stability, Dicer binds the opposite less stable end, and 

with the strand with its 5’-terminus at this end is selected as a guide and 

becomes a part of an active RISC (Preall et al., 2006; Tomari et al., 2004b). In 

addition, guide strand selection does not depend on Dicer processing (Preall et 

al., 2006). Both partners, Dicer and R2D2 act as a protein sensor for 

determination of siRNA thermodynamic asymmetry. Dicer always approaches the 

substrate from the end (Zhang et al., 2002) and processes it in a polar way with 

RNase IIIa domain cleaving 3’-hydroxyl and RNase IIIb cleaving the 5’-

phosphate-bearing RNA strand (this work). Hence, the asymmetry of the short 
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RNA duplex at least in some cases has to be determined not at the level of 

cleavage, but afterwards. When siRNA generated by Dicer happens to have a 

thermodynamically unfavorable end associated with the enzyme, it needs to be 

released from Dicer after the cleavage, and then re-bound by the Dicer/R2D2 

heterodimer. The fact that the siRNA strand decision is not random but follows 

well defined thermodynamic rule argues in favor of existence of such an siRNA 

‘flipping’; however, the mechanism underlying the process is not known. Similar 

strand choosing mechanism has to be employed for the correct selection of a 

mature miRNA, as miRNA originate from either ascending or descending strand 

of the pre-miRNA hairpin. Like siRNAs, miRNAs show polarity in their reactivity 

and thermodynamic stability that define the active strand which encodes mature 

miRNA sequence (Krol et al., 2004). 

 

dsRBD-containing cofactors of Dicer 

During cleavage of their substrates Dicer and Drosha function as components of 

larger complexes. They seem to invariably associate with dsRBD-domain-

containing protein cofactors (Fig.2). The first dsRBD protein, Rde-4 (RNAi 

deficient-4), was identified in a genetic screen in C. elegans (Tabara et al., 1999). 

It is required for the initiation step of RNAi in worms, but its activity is not required 

for miRNA processing or worm development (Grishok et al., 2000). In Drosophila, 

Dicer-1, Dicer-2 and Drosha are associated with Loquacious (Loqs), R2D2, and 

Pasha, respectively (Denli et al., 2004; Forstemann et al., 2005; Gregory et al., 

2004; Landthaler, 2004; Liu et al., 2003; Saito et al., 2005). The role of R2D2 in 
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directing strand specific incorporation of the siRNA is well established. 

Heterodimer of Dicer-2 and R2D2 senses the stability of the duplex ends and 

determines which strand will enter the RISC. Photocrosslinking to siRNAs 

containing 5-iodouracils revealed that Dicer binds to the less stable and R2D2 to 

the more stable siRNA end (Tomari et al., 2004b). Since the siRNA asymmetry 

rules are quite similar in all organisms, R2D2-related proteins could likely be 

involved in the definition of siRNA strands in other organisms. Loqs associates 

with Dicer-1 and is required for providing the correct substrate specificity for pre-

miRNAs to Dicer-1 (Saito et al., 2005) and enhanced processing activity 

(Forstemann et al., 2005; Saito et al., 2005) 

In humans, Drosha associates with DGCR8 (Han et al., 2004) and in the 

course of this work TRBP [human immunodeficiency virus (HIV-1) transactivating 

response (TAR) RNA-binding protein] was found to be a dsRBD protein partner 

of human Dicer. TRBP is required for optimal RNA silencing mediated by siRNAs 

and endogenous miRNAs. However although related to R2D2/Loqs, TRBP was 

not to date demonstrated to be involved in definition of siRNA asymmetry. TRBP 

has previously been assigned several functions, including inhibition of the 

interferon (IFN)-induced dsRNA regulated protein kinase PKR (Daher et al., 

2001), modulation of HIV-1 gene expression through its association with TAR 

(Dorin et al., 2003), and control of cell growth (Benkirane et al., 1997; Lee et al., 

2004a). A mouse TRBP homologue, Prbp, was shown to function as a 

translational regulator during spermatogenesis, and mice that have its deletion 

were male sterile and usually died at the time of weaning (Zhong et al., 1999). 
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Argonautes / PPD proteins 

The genes encoding Arabidopsis thaliana AGO1 and ZWILLE were the first PPD 

family members to be characterized (Bohmert et al., 1998; Moussian et al., 1998). 

Before the discovery that PPD proteins are RNAi effectors, AGO1 and ZWILLE 

were shown to have overlapping functions in plant development (Lynn et al., 

1999). Although ZWILLE has no RNAi-related functions, it is well-documented 

that AGO1 is important for gene silencing (Boutet et al., 2003; Vaucheret et al., 

2004). The C. elegans genome encodes total of 27 PPD proteins, mice and 

humans each contain seven and eight PPD genes, respectively. It appears that 

PPD proteins evolved to perform highly specialized functions. For example, the 

PPD proteins RDE-1 and PPW-1 are required for efficient siRNA-mediated 

mRNA cleavage (Fagard et al., 2000; Tabara et al., 1999; Tijsterman et al., 2002), 

whereas ALG-1 and ALG-2 are not required for this process. However, ALG-1 

and ALG-2 function in maturation and translational inhibition activities of miRNAs 

that regulate developmental timing pathways (Grishok et al., 2001). In Drosophila, 

Ago-2 is required for the incorporation of siRNAs into RISC and subsequent 

targeting of cognate mRNAs for destruction. Fly embryos lacking Ago-2 activity 

are defective for siRNA-targeted mRNA cleavage. In contrast, Ago-1 is required 

for miRNA biogenesis, but not siRNA-mediated RISC activities (Okamura et al., 

2004). In humans, four PPD proteins (Ago-1 through Ago-4) were shown to bind 

miRNAs, but only Ago-2 is associated with the catalytic activity required for the 

siRNA guided mRNA cleavage (Liu et al., 2004; Meister et al., 2004). 
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Structural studies of Ago proteins and their subdomains provided 

important insights into understanding the mechanism of the effector step of RNAi. 

X-ray and NMR studies of Argonaute PAZ domains, both free and complexed 

with RNA, have revealed the similarity to the OB fold and determined that the 

domain specifically recognizes the 2 nt 3’ overhang of the duplex or the 3’-OH 

end of a single-stranded RNA (Lingel et al., 2004; Liu et al., 2004; Ma et al., 

2004). In the structure of the human Ago-1 PAZ, the 2 nt overhang is inserted 

into a pocket constituted of conserved aromatic and hydrophobic amino acids. In 

the proximal dsRNA region, only the strand with the anchored protruding 3’ 

terminus is in contact with basic amino acid residues, suggesting that this strand 

will be retained and will function as mRNA antisense guide after siRNA unfolding 

(Ma et al., 2004). Although the structures of full-length eukaryotic Ago proteins 

are not available, important information has been obtained from three-

dimensional structures of Ago-like proteins. The Ago-like proteins are encoded in 

the genomes of some archaea and eubacteria, and their function is not clear. 

Crystallization efforts yielded the determination of the structure of PfAgo 

from Pyrococcus furiosus (Song et al., 2004) and AfPiwi from Achaeoglobus 

fulgidus (Parker et al., 2004). The ~85 kDa PfAgo includes both PAZ and PIWI 

domains. AfPiwi is approximately half the size of PfAgo and structurally 

corresponds to PfAgo middle and PIWI domains; in the AfPiwi structure, they are 

referred to as domains A and B and constitute the PIWI fold. PIWI domain of 

PfAgo and AfPiwi bears striking similarity to RNase H, an enzyme that cleaves 

the RNA strand in DNA-RNA hybrids (Fig. 5). This suggested that Ago proteins 
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containing the PIWI domain could be responsible for ‘Slicer’ activity, performing 

the siRNA directed endonucleolytic cleavage of mRNA in RISC. RNase H 

contains a triad of conserved acidic amino acids, DDE, essential for catalysis. A 

related set of residues, DDH, is conserved in PfAgo and some eukaryotic 

Argonaute proteins, like Ago-2. Mutagenesis of human Ago-2 demonstrated that 

all three DDH triad amino acids are involved in mRNA cleavage within RISC (Liu 

et al., 2004; Rivas et al., 2005). The demonstration that human Ago-2 expressed 

and purified from E. coli is able to cleave target mRNA targeted by a 

complementary single-stranded siRNA provided the ultimate proof that Ago-2 

acts as a Slicer in RISC (Rivas et al., 2005).  

 

Fig. 5. Structures of PfAgo, AfPiwi and E. coli RNase HI shown in a similar view. Structurally conserved 

domains are traced in the same color and a schematic is shown below. In the PfAgo structure, the DDE triad 

amino acids are represented as orange balls; a pocket containing conserved amino acids involved in the 

binding of the 30-protruding nucleotides is marked as a dotted circle. 

 

Several important characteristic features of siRNAs and miRNAs can be 

explained by the structure of AfPiwi complexed to siRNA-like molecule (Ma et al., 
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2005; Parker et al., 2005). It was found both experimentally and bioinfomatically 

that the terminal 5’ nucleotide of miRNA and siRNA does not need to form base 

pair interaction with the target mRNA (Saxena et al., 2003). In the crystal 

structure, the 5’ phosphate interacts with four conserved basic amino acids and a 

bound divalent metal ion. Binding of the 5’ base is stabilized by stacking on the 

aromatic ring of conserved tyrosine and the anchored 5’ nucleotide is not base 

paired to the complementary strand, in contrast to the downstream nucleotides, 

which are engaged in an A-form helix positioned in the basic channel at the A-B 

domain interface. The observation that the 5’ part of miRNA (miRNA ‘seed’ 

sequence) has to form a near perfect double stranded duplex with its 

complementary mRNA sequence to result in efficient silencing is explained by 

the involvement of the sugar phosphate backbone of four 5’-proximal nucleotides 

(positions 2 to 5) of the guide strand in contacts with the PIWI domain. The guide 

nucleotides 2–5 form a quasihelical structure on the PIWI surface that is suitable 

for base pairing. Modeling of longer A-form helices into the AfPiwi structure 

placed the scissile phosphate of the mRNA target in the proximity of the 

proposed catalytic region. This suggests that the mRNA cleavage site is 

determined by measuring the fixed distance from the anchored siRNA 5’ end. 

 

Other proteins identified as RISC components 

A number of other factors have been found to associate with Ago proteins in 

RISC complexes. In Drosophila S2 cells, RISCs additionally contain Vasa intronic 

gene (VIG), dFXR, a Drosophila homolog of fragile X mental retardation protein 
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(FMRP) (Caudy et al., 2002; Ishizuka et al., 2002; Mourelatos et al., 2002) and a 

protein containing Tudor and staphylococcal nuclease domains (Tudor-SN) that 

was shown to bind and possibly degrade dsRNAs hyperedited by adenosine 

deaminases (ADARs), providing a hint of a possible connection between editing 

and RNAi pathways (Scadden, 2005). A similar complex, containing Argonaute, 

Tudor-SN and VIG homologs along with siRNAs, was detected in C. elegans 

extracts and mammalian cells (Caudy et al., 2003). Mammalian Argonaute-

containing complexes have been found to co-immunoprecipitate with SMN 

complex proteins Gemin-3 and Gemin-4 (Mourelatos et al., 2002), human FMRP 

(Hammond et al., 2001), putative RNA helicase MOV10 and the RNA recognition 

motif (RRM)-containing protein TNRC6B (Meister et al., 2005). The precise 

function of these proteins in RNA silencing is unknown, however, MOV10 and 

TNRC6B colocalize with Ago proteins in P-bodies and are required for miRNA-

guided mRNA cleavage in cells (Meister et al., 2005). 

 

RISC assembly 

The dynamics of RISC formation has been studied by the the application of 

native gel electrophoresis (Pham et al., 2004; Tomari et al., 2004a) and led to the 

identification of three stages of RISC formation defined by three distinct siRNA 

containing complexes: R1, R2 and R3. The R1 complex  corresponds to the 360 

kDa RISC-like structure described previously (Nykanen et al., 2001). It consists 

of Dicer-2, R2D2, and one or more yet unidentified proteins. The function of R1 

may be the processing of long dsRNA and possibly determination of 
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guide/passenger strand asymmetry of siRNA. R1 serves as a precursor to R2 

and R3 (Pham et al., 2004). R2 is formed with a high rate, which suggests that it 

may be derived from the binding of R1 to an as yet unidentified pre-assembled 

complex. The R2 complex is thought to function in siRNA duplex unwinding. The 

Dicer-2–R2D2 complex senses the thermodynamic stabilities of the ends of the 

siRNA duplex and selects the guide strand that becomes associated with Ago-2. 

As siRNA unwinding continues, the Dicer-2–R2D2 complex is replaced with Ago-

2, which binds the 2 nt 3’ overhang of the guide strand. The unwinding of the 

siRNA is initiated by the Dicer-2–R2D2 complex, but can proceed only in the 

presence of Ago-2 (Tomari et al., 2004b). An ATP-dependent DEA(H/D)-box 

helicase Armitage and PPD protein Aubergine have been implicated in the 

unwinding process (Cook et al., 2004; Tomari et al., 2004a). The 80S R3 

complex whose formation is enhanced by ATP, contains siRNAs, Dicer-1, 

Dicer-2, VIG, Tudor-SN, Ago-2, dFXR and R2D2. The R3 complex co-purifies 

with rRNA from small and large ribosomal subunits, suggesting that it is 

ribosome-associated. R3, the RNAi effector complex has been dubbed a 

‘holoenzyme’. It may conatain regulatory factors that are not absolutely 

necessary for mRNA cleavage in vitro (Pham et al., 2004). 

The dynamics of RISC assembly in mammals is not as well understood as 

in Drosophila. One of the intermediates has been named complex D, it contains 

Dicer that is directly bound to siRNA. Complex D might be an equivalent of 

Drosophila R1 complex based on its estimated size of 250-300 kDa (Pellino et al., 

2005). Another study argues that human cells contain already preassembled 
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complex of Dicer, TRBP and Ago-2 capable of binding siRNA duplexes 

(Chendrimada et al., 2005) and that the complex containing these three 

components in able to determine the asymmetry of the siRNA duplex and 

tocorrectly incorporate the guide strand for mRNA cleavage (Gregory et al., 

2005). Other data indicate that Dicer might be redundant for the active RISC 

formation in mammals. HeLa cell extracts immuno-depleted of Dicer retain full 

siRNA-mediated RISC activity (Martinez et al., 2002) and Dicer-null mouse 

embryonic stem cells are capable of siRNA-triggered RISC activity 

(Kanellopoulou et al., 2005). Dicer might play a role in enhancing RISC assembly 

and function. DsRNAs acting as Dicer substrates are more efficient than siRNA 

at triggering RISC activity in human cells (Kim et al., 2005; Rose et al., 2005; 

Siolas et al., 2005), consistent with the possibility that Dicer processing might 

stimulate RISC assembly. 

 

DsRNA binding domain (dsRBD) 

DsRBD has been identified in proteins found in all kingdoms. The 

functions of dsRBD-containing proteins are diverse and include RNA editing 

(ADAR1 and ADAR2) (Bass, 1997; Higuchi et al., 2000; Wang et al., 2000), RNA 

localization and translational control (Staufen) (Ferrandon et al., 1994; Micklem 

et al., 2000), viral defense and apoptosis (PKR) (Clemens, 1997; Tan and Katze, 

1999; Williams, 1999), translational repression (PKR, TRBP, PACT) (Bennett et 

al., 2004; Gatignol et al., 1991; Gupta et al., 2003), hnRNA association (XLRBPA) 

(Benkirane et al., 1997), and finally RNA interference (Dicer, RDE-4, R2D2, 
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Loquacious, TRBP, PACT). The most evident function of the dsRBD is dsRNA 

binding, but other roles of this domain have been established. The third dsRBD 

of human ADAR-1 acts as a Nuclear Localization Signal (NLS) and the NLS 

activity of dsRBD3 does not depend on RNA binding (Eckmann et al., 2001). 

DsRBD is also involved in mediating protein-protein interactions as it has been 

shown for TRBP and PACT that their third dsRBD is important for formation of 

homodimers (Daher et al., 2001).  

 

Fig. 6. Structure of the dsRBD2 of XLRBPA bound to a dsRNA helix. Loop between β1 and β2 interacts with 

the RNA minor groove and loop between β2 and α2 with the major groove. Helix α1 forms another minor 

groove interaction. 

 

Until now structures of seven dsRBDs have been determined. They 

include dsRBDs of PKR, XLRBPA, TRBP, Staufen, Rnt1p and RNase III from 

Aquifex aeolicus and Thermotoga maritima (Blaszczyk et al., 2004; Nanduri et al., 

1998; Ramos et al., 2000; Ryter and Schultz, 1998); PDB 1o0w). In three cases, 

the second XLRBPA domain, the third Staufen domain and Aquifex RNase III, 

the domain structure was determined in the presence of a bound RNA ligand, 
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providing insights into the recognition mechanism. The overall structures of the 

folds are remarkably similar, with three areas of the α-β-β-β-α protein fold lined 

up on one surface and involved in recognition of the RNA (Fig. 6). Loop 2 

interacts with the RNA minor groove and loop 4 with the major groove. Helix α1 

forms another minor groove interaction in case of XLRBPA and most interestingly, 

in the case of Staufen, interacts with a tetraloop present in the hairpin ligand. The 

XLRBPA thus spans two successive minor grooves and the intervening major 

groove, covering 16 bp. Loops 2 and 4 change conformation upon RNA binding. 

The case of tetraloop recognition by Rnt1p dsRBD is particularly interesting, 

since it resembles the recognition pattern required in sn/sno RNAs and the rRNA 

3’-ETS (Chanfreau et al., 2000; Nagel and Ares, 2000). The interactions with the 

tetraloop are not sequence-specific and nucleotide substitutions have mostly 

kinetic effects. Although dsRBD structures show how major and minor groove 

interactions and interactions involving the RNA-specific 2’-OH group discriminate 

against dsDNA or DNA/RNA duplexes binding, there is no indication for 

sequence-specific features recognized by dsRBDs. It appears that structural 

features of RNA duplexes make them appropriate RNase III substrates. Proteins 

which contain more than one dsRBD (for example Staufen, with 5 dsRBDs), may 

possibly exploit the differences between the individual dsRBDs to provide a 

greater potential for substrate discrimination. The observed great specificity for 

dsRNA cleavage by bacterial RNAse III comes from the presence or absence of 

anti-determinants and most likely is achieved by specific interaction of the 

catalytic core and not the dsRBD of the enzyme with the substrate. The presence 
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of only one dsRBD in class II and class III RNase III enzymes (although two 

identical dsRBDs are present in a homodimeric bacterial RNase III) may limit 

possibilities to distinguish between different substrates. Possibly the dsRBD 

protein cofactors of eukaryotic Drosha and Dicer enzymes provide additional 

specificity in substrate recognition. 
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Introduction 

Five different domain types are present in human Dicer: helicase/ATPase, 

DUF283, PAZ, RNase IIIa and b, and dsRBD. Functions of helicase and DUF 

domains remain to be identified. Majority of biochemical experiments were 

targeted at elucidating the role of RNase III and PAZ domain in dsRNA cleavage. 

dsRBD, the double stranded RNA binding domain of Dicer, was shown to bind 

dsRNA previously (Provost et al., 2002) and was generally thought to mediate 

unspecific binding of Dicer to dsRNA, stabilizing the enzyme-substrate interaction. 

In the course of this work it was determined that human Dicer deleted for dsRBD 

is still active in both dsRNA cleavage and pre-miRNA processing, however its 

activity was reduced 2-3 fold (Zhang et al., 2004). 

Recently, new roles different than simple dsRNA binding have emerged 

for dsRBD. There is structural evidence and also experimental data which 

support the notion that individual dsRBDs within a protein can specifically 

recognize and discriminate between different RNAs in vivo. Examples include 

dsRBDs of Staufen recognizing tetraloops (Ramos et al., 2000), dsRBD2 of 

Staufen that is responsible for microtubule-dependent localization of oskar 

mRNA whereas dsRBD5 is needed for its translational control (Micklem et al., 

2000), dsRBDs of Xenopus laevis ADAR1 that target the enzyme to different 

transcriptionally active lampbrush chromosomal loops (Doyle and Jantsch, 2003) 

and dsRBD2 of ADAR1 and dsRBD2 of XLRBPA that have recently been shown 

to specifically recognize different imperfectly double stranded substrates 

identified by the SELEX procedure (Hallegger et al., 2006). 
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dsRBD roles reach beyond RNA binding. It has been shown that the third 

dsRBD of human ADAR-1 has an atypical Nuclear Localization Signal (NLS) that 

overlaps entirely with the dsRBD domain. Moreover, NLS activity of dsRBD3 

does not depend on RNA binding, showing a new function of that domain 

(Eckmann et al., 2001). DsRBD is also involved in mediating protein-protein 

interactions. In case of TRBP and its ortholog PACT it has been shown that their 

third dsRBD is important for formation of homodimers (Daher et al., 2001). In 

addition, PKR activation by PACT and inhibition by TRBP is mediated via their 

dsRBD3 (Gupta et al., 2003). 

 

 

 
Fig. 1. DsRBD conservation. (A) Conservation of individual domain sequences between human, mouse and 

zebrafish Dicers. The percent of identity of the whole Dicer sequence is also shown on the left. (B) 

Alignment of vertebrate Dicer dsRBDs. (C) Alignment of human Dicer dsRBD with other dsRBD sequences. 
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Human Dicer dsRBD is the most conserved domain within vertebrate 

Dicers (Fig. 1A and 1B), however, its sequence differs quite significantly from the 

general dsRBD consensus (Fig. 1C). We wanted to characterize dsRNA binding 

properties of human Dicer dsRBD. Dicer dsRBD was shown to bind dsRNA 

previously (Provost et al., 2002), however the experiments were performed using 

a fusion protein encompassing nearly half of the RNase IIIb and the dsRBD. In 

addition no quantitative data or substrate length preferences were provided. 
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Results 

dsRBD of human Dicer has a higher affinity for longer dsRNAs and exhibits 

very low siRNA binding activity 

To characterize the nucleic acid binding properties of dsRBD, we performed gel 

mobility shift assays with purified recombinant dsRBD fused to GST and 

expressed in Escherichia coli (Fig. 2A) using dsRNA substrates of different 

lengths. 32P-labeled dsRNA was incubated with increasing concentrations of 

dsRBD and subsequently resolved by native polyacrylamide gel electrophoresis, 

enabling the visualization of protein/RNA complexes. We tested the ability of 

dsRBD to bind dsRNA of different lengths: 130, 70, 50, 30 and 19-bp dsRNA. 

The 30-bp and 19-bp long dsRNAs tested contained two nucleotide 3' overhangs, 

thus 19-bp long dsRNA mimicked an siRNA. 

As a control we used GST tagged second dsRBD of Xenopus laevis dsRNA 

binding protein A (XLRBPA) purified in the same way. The XLRBPA dsRBD was 

previously shown to bind dsRNA (Krovat 1996). Both Dicer dsRBD (referred to as 

D-dsRBD) and XLRBPA dsRBD (XL-dsRBD) readily formed stable complexes 

with 130, 70, 50 and 30-bp dsRNA (Fig. 2B). XL-dsRBD was also able to bind 

19-bp long dsRNA, however D-dsRBD shown very little affinity for this siRNA-like 

molecule (Fig. 2C). GST alone did dot bind any of the RNA tested (Fig. 2C and 

data not shown). 

We have determined dissociation constants Kd for interaction of both 

dsRBDs with different substrates (Table 1). Generally, XL-dsRBD binds dsRNA 
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with ~2 orders of magnitude higher affinity than D-dsRBD, and longer substrates 

are bound better by both dsRBDs.  

 

Fig. 2. DsRNA binding properties of Dicer dsRBD. (A) SDS-PAGE of E. coli expressed and purified 

recombinant GST-fusion dsRBD and XLRBPA dsRBD2. (B) Dicer dsRBD binds 30-, 50- and 130-bp-long 

dsRNAs as assayed by native PAGE. The concentration range of the protein used is indicated. (C) dsRBD 

of Dicer does not bind siRNA duplex. ssRNA of 21 nt is used as a control. dsRBD of Dicer is used in 

increasing concentrations – 900, 2720 and 8160 nM. 

 

 

 

 
Table 1. Dissociation constants Kd for interaction of Dicer dsRBD and XLRBPA dsRBD2 with different 

substrates 
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Design of dsRNA binding-deficient mutants of human Dicer dsRBD 

Since the general dsRDB consensus is poorly conserved in Dicer dsRBD, it is 

hard to predict which residues could directly contribute to dsRNA binding. Based 

on XLRBPA mutation data (Krovat and Jantsch, 1996) and the its crystal 

structure in a complex with dsRNA (Ryter and Schultz, 1998) we chose 9 

residues to mutate within D-dsRBD and created point-mutated versions of the 

domain, designated mut1 to mut9 (Fig. 3A). Mut1, 2, 8 and 9 were expressed in 

insoluble form and failed to purify, most likely due to a folding defect caused by 

the introduced amino acid substitutions. Other mutants were soluble (Fig 3B) and 

were tested for dsRNA binding using 50- and 130-bp long substrates. Binding of 

mut4 was unaffected (data not shown), while mut3, 5, 6 and 7 showed reduced 

RNA binding activity (Fig. 4A). Based on analysis of complexes formed with 

different protein concentrations with dsRBD, resolved by native PAGE, we 

estimated that the binding of mut7, showing the strongest effect, was reduced 3 

to 9 fold. We have also purified multiple mutants. Double mutant combined mut3 

and 7, quadruple mutant was a combination of all four single mutations. Both, the 

double and the quadruple mutants, showed further reduced binding activities (Fig. 

4B). 
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Fig. 3. Summary of the dsRBD mutants generated. (A) Sequence of human Dicer dsRBD. The mutated 

residues are indicated in red. XLRBPA mutagenesis data are provided for equivalent mutants. (B) SDS-

PAGE of purified mutated proteins. Full length GST-dsRBD is indicated by an arrow. Asterisks mark 

contaminating bands. 
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Fig. 4. 50 and 130 bp long dsRNA binding by dsRBD point mutants (A) and multiple mutants (B) as assayed 

by native PAGE. Concentrations of proteins used are indicated.  
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Discussion 

The observation that dsRBD of human (and because of very high degree of 

conservation possibly also other vertebrates) Dicer very weakly binds RNAs of 

the 19-bp has several implications. During dsRNA and pre-miRNA cleavage 

reaction dsRBD appears to stabilize the binding of substrate. This is supported 

by the observation that activity of Dicer-∆dsRBD is reduced ~2-3 fold in 

processing of both pre-let7 miRNA and dsRNA (Zhang et al., 2004). However, 

after the cleavage dsRBD would not contribute to the binding of the 

siRNA/miRNA product. Since Dicer alone is shown to bind siRNA (Pellino et al., 

2005), binding activity would come from other protein domains able to bind RNA, 

like PAZ and the catalytic core of RNase IIIa and IIIb. The binding is most likely 

needed for handing the siRNA over to RISC. Consecutively, during Dicer function 

at the effector step dsRBD would not participate in binding, perhaps lowering the 

affinity of the enzyme for its cleavage product and favoring siRNA/miRNA release 

or handing over to downstream components, such as Ago proteins (Fig. 5). It is 

also conceivable that like in Drosophila, mammalian Dicer participates in 

determination of siRNA/miRNA polarity before siRNA/miRNA enters RISC. Since 

Dicer always approaches the substrate from the dsRNA end, in some of the 

situations siRNA/miRNA ‘flipping’ would have to occur to ensure incorporation of 

the guide strand. 

Recently RNA-binding properties of RDE-4 were also investigated (Parker 

et al., 2006). It was found that purified RDE-4 binds with higher affinity to long 

dsRNA. This is in agreement with our observations on Dicer dsRBD and 
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XLRBPA dsRBD2 and suggests that the better binding of longer substrates is an 

intrinsic property of dsRBD. However our data show, that unlike XLRBPA and 

RDE-4, Dicer dsRBD binds substrates of the siRNA size with very low affinity.  

 

 

Fig. 5. Schematic representation of two different dsRNA binding modes of human Dicer. During dsRNA and 

pre-miRNA processing the dsRBD contributes to binding and stabilizes the substrate. When Dicer remains 

associated with siRNA after the cleavage, dsRBD does not participate in binding, potentially lowering the 

enzyme affinity in order to facilitate siRNA release or its function at the effector step. 

 

We have found that dsRBD of Dicer acts as an atypical Nuclear 

Localization Signal (NLS) (M. Doyle, unpublished results). To determine whether 

the NLS activity of dsRBD depends on RNA binding we have characterized 6 

different mutants that were defective in dsRNA binding. The ability of the dsRBD 

of human Dicer to localize to the nucleus appears to be RNA-independent (M. 

Doyle, unpublished data). 

Three-dimensional structure of XLRBPA dsRBD2 has been determined 

(Ryter and Schultz, 1998). It was crystallized in a complex with dsRNA duplex 

formed by annealed self-complementary 10-nt long oligonucleotide. Within the 
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crystals, the 10 bp dsRNA helices stack end-to-end as a pseudo-continuous helix. 

dsRBD2 spans a total of 16 bp of RNA. Other solved structures of different 

dsRBDs align well with the X. laevis domain indicating that the minimal length of 

dsRNA for efficient binding could be similar. This includes solution structures of 

human PKR (Nanduri et al., 1998), mouse Staufen (Bycroft et al., 1995), human 

TRBP2 (pdbid 1di2), and S. cerevisiae Rnt1p (Leulliot et al., 2004), and also 

crystal structures of Aquifex aeolicus and Thermatoga maritima RNase III 

(Blaszczyk et al., 2004 and pdb id 1o0w). Our finding that Dicer dsRBD very 

weakly binds substrates of 19 bp suggests that this dsRBD possibly adapts 

different conformation than other known dsRBDs.  

Determination of the 3D structure of dsRBD of Dicer would certainly prove 

to be very informative both for greater understanding of the mechanism of 

dsRNA recognition by dsRBD and to explain its role within the full-length Dicer 

and in dsRNA processing. 
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Materials and methods 

 

Expression constructs. 

Fragment encoding dsRBD of human Dicer (residues 1839-1915) was amplified 

by PCR using pBS-Dicer as a template (Zhang et al., 2002) and cloned into 

BamHI/HindIII sites of pGEX expression vector. Plasmid expressing GST-tagged 

dsRBD2 of XLRBPA was described previously (Krovat and Jantsch, 1996). 

 

Protein expression and purification 

GST-fusion proteins were expressed in E. coli BL21-CodonPlus(DE3)-RIPL cells 

(Stratagene), purified using GS-sepharose (Amersham) according to 

manufacturer’s instructions, dialysed against buffer containing 20 mM Tris-HCl 

pH 7.5, 100 mM NaCl, 1 mM MgCl2, 50% glycerol and stored in -20 °C. Purity of 

proteins was analyzed by 15% PAGE. Protein concentration was determined by 

Bradford method with BSA as a standard. 

 

Mutagenesis of dsRBD 

Mutagenesis was performed using Quikchange site directed mutagenesis system 

(Stratagene) according to manufacturer’s instructions.  

 

Preparation of RNA substrates 

The internally 32P-labeled 30-bp, 50-bp, 70-bp and 130-bp dsRNA were prepared 

as described before [Zhang 2002]. RNAs were synthesized by the T7 

polymerase in vitro transcription, using the Ambion T7 MaxiScript transcription kit 

and [α-32P]UTP. After transcription, samples were RNA purified by denaturing 8% 

PAGE. Complementary RNA strands were annealed at 95 °C for 3 min in 20 mM 

NaCl, transferred to 75 °C, and then slowly cooled down to 20 °C. 

The 5’-end-labeling of siRNA, using T4 polynucleotide kinase and either 

[γ-32P]ATP or cold ATP, was carried out as described by Sambrook et al., (1989). 
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Analysis dsRBD-dsRNA complexes by native PAGE 

10-microliter reactions containing 300 pM-labeled dsRNA and varying protein 

concentrations were incubated for 30 min at 37 °C in buffer containing final 

concentration of 30 mM Tris pH 8.0, 50 mM NaCl, 1 mM MgCl2 and 25% glycerol. 

Complexes were analyzed on 5% native polyacrylamide gels with acrylamide/bis-

acrylamide ratio on 19:1. Gels were electrophorezed in 1xTBE buffer at 4 °C, 

dried and quantified by Phosphoimager. Fraction bound was calculated using 

Molecular Dynamics Image Quant 5. Radioactivity corresponding to dsRNAfree 

and dsRNAtotal (total radioactivity in entire lane) was quantified. Apparent 

dissociation constants (Kd) were calculated by fitting the experimental data by 

nonlinear least-squares regression to the single-site binding isotherm: 

% free RNA = Kd[app]/(Kd[app] + [protein]). 

From this equation, the apparent Kd corresponds to the protein concentration at 

which half of the RNA is bound. Fitting of the data was done using Prism 5 

(GraphPad). 

 

Sequences of RNAs used: 

siRNA(a): 

upper strand: 5’ GCAGCACGACUUCUUCAAGUU 3’ 

lower strand: 5’ CUUGAAGAAGUCGUGCUGCUU 3’ 

siRNA(b): 

upper strand: 5’ GUCACAUUGCCCAAGUCUCUU 3’ 

lower strand: 5’ GAGACUUGGGCAAUGUGACUU 3’ 

21blunt: 

upper strand: 5’ AAGUCACAUUGCCCAAGUCUC 3’ 

lower strand: 5’ GAGACUUGGGCAAUGUGACUU 3’ 
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The aim of this work was to further biochemically characterize the activity of the 

purified human Dicer, a key enzyme involved in RNAi pathway, to get an insight 

into the dsRNA/pre-miRNA cleavage mechanism, and also to characterize the 

heterodimeric Dicer/TRBP complex functioning in the RNAi/miRNA pathway.  

The X-ray structure of the bacterial RNase III has been solved, and a 

model of how this enzyme binds to dsRNA and processes it into ~11 bp products 

was proposed (Blaszczyk et al., 2001). Since Dicer belongs to the RNase III 

superfamily, the bacterial RNase III structure and its activity model suggested a 

possible mechanism of dsRNA cleavage by Dicer. Moreover, a model was 

proposed to explain the size difference between the products of RNase III (~11-

bp) and Dicer (~22-bp). The model was not conclusive and did not address 

several important issues. The proposed catalytic residues E37 and E64 were not 

involved in co-ordination of a metal ion. The size difference was speculatively 

explained by the fact that one of the evolutionarily conserved putative catalytic 

residues in Dicer is changed from glutamate to proline (Proline 1729 in human 

Dicer, P64 according to A. aeolicus numbering used throughout this discussion). 

This substitution however should only partly incapacitate the cleavage site, still 

allowing the remaining residues D44 and E110 to cleave one of the dsRNA 

strands. Also, the model was only tested in an indirect assay by assessing the 

Ec-RNase III dependent expression of the λN-lacZ reporter in vivo (Blaszczyk et 

al., 2001).  

We have previously established the in vitro processing assay with a 

purified Dicer (Zhang et al., 2002) and we have used this system to investigate 
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the mechanism of dsRNA cleavage by Dicer and in parallel by Ec-RNaseIII. To 

address this problem, the putative catalytic residues in the two Dicer RNase III 

domains, as based on the bacterial RNase III model, were mutated to yield single 

amino acid substitutions or combinations thereof.  

Analysis of Dicer mutants showed that Dicer processes dsRNA by a 

mechanism different from the one in the proposed model. Mutation of residues in 

positions 37 and 64 in both RNase III domains did not lead to an appreciable 

difference in enzyme activity as compared with the wild type enzyme. Results 

obtained with mutants of the E. coli RNase III confirmed the effect seen in Dicer. 

Mutations of E37 and E64 to alanine caused the enzyme to increase its KM 

without affecting the Vmax, suggesting that these residues are not directly 

involved in catalysis but may contribute to substrate binding.  

These data indicated that the previously proposed model is not correct. 

Based on the results of RNase III and Dicer mutagenesis, we proposed new 

models for the substrate cleavage by both the E. coli RNase III and Dicer. In the 

bacterial RNase III model, the dsRNA substrate is rotated by approximately 30 

degrees with regard to its position in the old model of Blaszczyk et al. (2001). In 

the new model, residues in positions 37 and 64, previously proposed to be 

important for the catalysis, play no role in the cleavage. For Dicer, an intra-

molecular pseudo dimer model is proposed. In this model, Dicer RNase IIIa and 

RNase IIIb domains form together one compound catalytic center. Further 

support for this model came from the results of gradient sedimentation which 

showed that Dicer behaves as a monomer rather than as a dimer. Our results 
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have recently been fully supported by the determination of crystal structure of the 

Giardia intestinalis Dicer by the laboratory of Jennifer Doudna (Macrae et al., 

2006). The RNase III domains form the catalytic domain and the PAZ domain is 

directly connected to the RNase IIIa domain by a long ‘connector’ alpha helix 

which may act as a measuring ruler determining the product length. Based on the 

crystal structure, the role for the conserved ‘domain of unknown function 283’ 

(DUF283) was proposed (Fig. 4, Introduction). Low but significant sequence 

homology between the N-terminal domain of Giardia Dicer and DUF283 suggests 

that DUF283 forms a platform structure similar to that of Giardia Dicer also in 

Dicers of higher eukaryotes. A computational approach to predict the fold of 

DUF283 proposes that DUF283 could possibly adapt a dsRBD fold (Dlakic, 

2006). 

We have also investigated a role of PAZ and dsRBD domains in human 

Dicer. Mutations of four conserved amino acids in the Dicer PAZ domain were 

shown to have strong inhibitory effect on the dsRNA cleavage activity of Dicer. 

We proposed that PAZ domain is responsible for the recognition of a substrate 

end by binding the 2-nt 3’ overhang. Structure of related PAZ domains from 

Argonaute proteins have revealed the similarity to the oligonucleotide binding fold 

and determined that the domain specifically recognizes the 2 nt 3’ overhang of 

the duplex or the 3’-OH end of a single-stranded RNA (Lingel et al., 2004; Liu et 

al., 2004; Ma et al., 2004). By binding the overhang, the PAZ domain together 

with the connector helix and the platform DUF283 domain (see above) ensures 
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the appropriate distance between the end of the substrate and the active center 

of the enzyme. 

We have determined that although human Dicer dsRBD sequence differs 

quite significantly from general dsRBD consensus, it is remarkably conserved 

among vertebrates and more conserved than any other Dicer domain (Fig. 1, 

Chapter 3). We have found that dsRBD of Dicer is able to bind 130-, 50- and 30-

bp-long dsRNAs. However, the 19-bp siRNAs are bound with significantly lower 

affinity. This could reflect two different binding modes of Dicer. During the 

dsRNA/pre-miRNA cleavage dsRBD would be engaged with product recognition 

and binding. At the effector step, siRNA would be bound to Dicer by other 

domains (i.e. PAZ and RNase III), dsRBD would not contribute to the product 

binding, possibly lowering the affinity of the enzyme for its cleavage product and 

favoring siRNA/miRNA release or handing over to downstream components, 

such as Ago proteins (Fig. 5, Chapter 3). Recently RNA-binding properties of 

dsRBD-containing protein, RDE-4, were also investigated (Parker et al., 2006). It 

was found that purified RDE-4 binds with higher affinity to long dsRNA. This is in 

agreement with our observations on Dicer dsRBD and XLRBPA dsRBD2 and 

suggests that the better binding of longer substrates is an intrinsic property of the 

dsRBD. We have found that dsRBD of Dicer acts as an atypical Nuclear 

Localization Signal (NLS) (M. Doyle, unpublished results). To determine whether 

the NLS activity of dsRBD depends on RNA binding we have characterized 6 

different mutants that were defective in dsRNA binding. The ability of the dsRBD 
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of human Dicer to localize to the nucleus appears to be RNA-independent (M. 

Doyle, unpublished data). 

Function of the helicase domain of Dicer still remains unknown. The 

double stranded siRNAs must be unwound at a certain stage of the reaction to 

generate a single-stranded siRNA, which will base-pair to the mRNA targeted for 

degradation after being incorporated into RISC; the same is true for the initial, 

double-stranded form of miRNA resulting from the processing of pre-miRNA by 

Dicer. So far we could not demonstrate ATPase activity in Dicer preparations, 

suggesting that function of this domain is possibly regulated by additional factors. 

Also, it was shown previously that mutation of the conserved lysine residue in the 

nucleotide binding site (P-loop motif) has no impact on Dicer activity (Zhang et al., 

2002). Dicer orthologs are present in almost all eukaryotic organisms, but the 

differences exist between from different organisms. In C. elegans and also in the 

case of Drosophila Dicer-1, the substrate cleavage seems to ATP-dependent. 

Drosophila Dicer-1 is also a component of the holo-RISC, whose formation is 

stimulated by ATP (Pham et al., 2004). Possibly, helicase domain of Drosophila 

Dicer-1 plays a cleavage-independent role in this process. Giardia intestinalis 

Dicer is devoid of the helicase domain, but it can complement the RNAi functions 

of S. pombe strain deleted of the endogenous Dicer despite that the latter 

contains the helicase domain. In Dictyostelium discoideum, the putative homolog 

of Dicer also lacks the ATPase/helicase domain, and a domain with a homology 

to the Dicer ATPase/helicase domain is present in the RNA-dependent-RNA-

polymerase-like protein (Martens et al., 2002). It was proposed that the 
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helicase/ATPase domain of Dicer could promote translocation of the enzyme 

along the dsRNA, or a structural rearrangement of the substrate required for the 

cleavage. So far there is no evidence to support either of the proposed functions. 

It is possible that C. elegans and Drosophila Dicer-1 cleave dsRNA by a 

processive mechanism requiring ATP hydrolysis, while the mammalian Dicer 

might function in a distributive, ATP-independent way. However, other 

possibilities are also conceivable. For example, preparations of human Dicer 

might lack some of the components required for the ATPase activity that are 

present in worm and fruit fly extracts. This explanation would be consistent with 

the observed low catalytic efficiency of the mammalian enzyme. However, no 

ATP effect was observed when extracts or Dicer immunoprecipitates from 

mammalian cells were assayedfor dsRNA cleavage activity (Billy et al., 2001). 

Analysis of purified Dicer proteins and the complexes that the enzyme forms in 

cells from different systems like C. elegans, Drosophila and mammals might 

provide further information about the role of the ATPase/helicase domain and 

might help to understand organism-specific differences. 

In an attempt to characterize Dicer containing complexes in human cells 

we have found that Dicer consistently copurifies with the TRBP protein. TRBP 

has previously been found to perform several functions. It is involved in inhibition 

of the interferon (IFN)-induced dsRNA regulated protein kinase PKR (Daher et al., 

2001), modulation of HIV-1 gene expression through its association with TAR 

(Dorin et al., 2003) and control of cell growth (Benkirane et al., 1997; Lee et al., 

2004a). A mouse TRBP homologue, Prbp, was shown to function as a 
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translational regulator during spermatogenesis, and Prbp knock-out mice were 

male sterile and usually died at the time of weaning (Zhong et al., 1999).  

To validate the Dicer−TRBP interaction, we performed co-

immunoprecipitation experiments using either extracts from human cells or 

purified proteins. We found that Dicer and TRBP directly interact and their 

association is RNA independent. Using stable, TRBP knock-down (TRBP-kd) cell 

lines we analyzed the role of TRBP in miRNA- and siRNA- mediated silencing. 

Using the RISC-mediated mRNA reporter cleavage we determined that TRBP is 

required for either the assembly or functioning of RISC. We have also found that 

the response to exogenous siRNA was significantly reduced in TRBPkd cells. We 

compared the pre-let7 processing activity of TRBPkd cell extracts with that of the 

Dicer-kd and the wild type cell extracts. However, despite that the extracts 

prepared from TRBPkd cells are less active in pre-miRNA processing, the steady 

state levels of several miRNAs did not significantly differ between knock down 

and control cells, and there was no apparent accumulation of pre-miRNAs in 

TRBP-kd cells. Taken together, our data suggest that TRBP is required for the 

assembly and function RISC in mammalian cells, and it may also stimulate the 

cleavage of pre-miRNAs by Dicer. 

Two other reports also described the TRBP−Dicer partnership 

(Chendrimada et al., 2005; Lee et al., 2006). Two observations described in the 

Chendrimada et al paper do not agree with our results. First, they found that 

depletion of TRBP results in a decrease of steady-state levels of miRNAs, 

whereas in our analysis the miRNA content was not significantly changed. 
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Importantly, our finding were confirmed by Narry Kim’s laboratory reporting that 

using similar TRBPkd cell line no significant changes in miRNA levels are 

detectable (Lee et al., 2006). Second, in contrast to our findings, Chendrimada et 

al reported that knockdown of TRBP destabilizes Dicer, and vice versa 

(Chendrimada et al., 2005). However, the authors did not analyze the levels of 

TRBP and Dicer in total extracts prepared from cells depleted in either protein 

but the analysis was performed with Ago-2 immunoprecipitates. Hence, it is likely 

that depletion of Dicer or TRBP affects the ability of the partner protein to form a 

complex with Ago-2 rather than causing the destabilization of proteins. In this 

context it is important to mention that the knockout of Prbp, the mouse 

homologue of TRBP, causes a relatively mild phenotype in mice (Zhong et al., 

1999), in contrast to the Dicer knockout that is embryonic lethal (Bernstein et al., 

2003). This argues against the possibility that depletion of TRBP destabilizes the 

Dicer protein.  

In the follow-up research, the laboratory of Shiekhattar reports that human 

cells contain already preassembled complex containing Dicer, TRBP and Ago-2, 

capable of binding siRNA duplexes (Chendrimada et al., 2005) and that the 

complex containing only these three components in able to determine the 

asymmetry of the siRNA duplex and correctly incorporate the guide strand for 

mRNA cleavage (Gregory et al., 2005). In addition, the authors claim that the 

RISC activity does not require ATP hydrolysis since it is stimulated by addition of 

ATP and also non-hydrolyzable ATP-analogs or even inorganic phosphate. The 

findings of this work are however not entirely conclusive, because the 
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experiments were performed using cell extract immunoprecipitates, and it is not 

certain whether no other protein factors copurifying with the Dicer/Ago-2/TRBP 

complex. Requirements for additional factors could explain why reconstitution of 

active RISC using recombinant proteins was unsuccessful so far. 

Our findings that mammalian Dicer forms a complex with a dsRBD protein 

TRBP confirm the notion that class II and class III RNase III enzymes such as 

Drosha and Dicer, generally require dsRBD protein partners for their function. 

Drosophila Loquacious and R2D2 are two Drosophila dsRBD proteins that 

associate with Dicer-1 and Dicer-2, acting in miRNA and siRNA pathways, 

respectively (Forstemann et al., 2005; Lee et al., 2004b; Liu et al., 2003; Pham et 

al., 2004; Saito et al., 2005). Loquacious and Dicer-1 are essential for efficient 

pre-miRNA processing, and also participate in gene silencing that is triggered by 

artificial dsRNA hairpins (Forstemann et al., 2005; Saito et al., 2005). 

R2D2−Dicer-2 complex is able to define the asymmetry siRNAs and ensure its 

proper loading into RISC (Tomari et al., 2004). Our observation that TRBP is 

required for efficient cleavage of pre-miRNA in vitro and for the function of RISC 

programmed with either endogenous miRNA or transfected siRNA into cells 

indicates that TRBP combines at least some functions that are performed 

separately by Loquacious and R2D2 in Drosophila. We investigated, using both 

cell extracts and recombinant proteins, whether Dicer and TRBP are involved in 

sensing the thermodynamic stability of the 5' ends of the siRNA strands in the 

same way as Dicer-2 and R2D2. These experiments, using 5-iodo-U-modified 

siRNAs, have not produced conclusive results (our unpublished results). 
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Another three-dsRBD protein, PACT, 42% identical to TRBP, is expressed 

in mammals. In contrast to TRBP, which inhibits PKR, PACT has a stimulatory 

effect on PKR. The effects of TRBP and PACT on PKR activity are mediated by 

the C-terminal dsRBDs, which have no detectable dsRNA-binding activity (Gupta 

et al., 2003). In addition to effects on PKR, the C-terminal domains of PACT and 

TRBP can mediate homodimerization of both proteins (Daher et al., 2001). C-

terminal dsRBD of TRBP is also involved with association with Dicer, what raises 

the possibility that RNAi and PKR pathways could be connected and subjected to 

reciprocal regulation by protein−protein interactions. Moreover, PACT has been 

recently implicated in interaction with Dicer and the depletion of PACT has been 

shown to strongly affect the accumulation of mature miRNAs in cells (Lee et al., 

2006). Both PACT and TRBP are known as regulators of PKR (Gupta et al., 

2003). PKR is a dsRNA-dependent serine/threonine protein kinase, which 

phosphorylates eIF2alpha on Ser51 to cause a general reduction of protein 

synthesis (Dar et al., 2005; Dey et al., 2005). Besides eIF2alpha, PKR is known 

to phosphorylate several other proteins, such as NFAR-1, NFAR-2, and human 

protein phosphatase 2A (PP2A) regulatory subunit B56alpha (Saunders et al., 

2001; Xu and Williams, 2000). It is conceivable that the components of RISC 

might be regulated by PKR through phosphorylation and that PACT and TRBP 

may regulate PKR activity to control the RISC activity. Alternatively, it is possible 

that there exists competition between the RNA silencing pathway and the PKR 

pathways, because the third dsRBD of both PACT and TRBP is responsible for 

their interaction with Dicer as well as for the regulation of PKR. It certainly would 
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be interesting to investigate the possibility of the crosstalk between the RNA 

silencing and the PKR pathways. As both RNAi and IFN–PKR pathways have a 

role in antiviral responses, communication between them could be envisioned. In 

the future, it would be interesting to find out how Dicer interaction with TRBP and 

PACT affect RNA silencing and other defence pathways in normal and virus 

infected cells. Recently it has been reported that the HIV-1 TAR-binding protein 

Tat functions as an RNAi suppressor, sequesters TRBP and thus compromises 

the activity of Dicer (Bennasser et al., 2005). 
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