Ferrer, Isidre and Kapfhammer, Josef P. and Hindelang, Colette and Kemp, Stephan and Troffer-Charlier, Nathalie and Broccoli, Vania and Callyzot, Noëlle and Mooyer, Petra and Selhorst, Jacqueline and Vreken, Peter and Wanders, Ronald J. A. and Mandel, Jean Louis and Pujol, Aurora. (2005) Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage. Human Molecular Genetics, Vol. 14, H. 23. pp. 3565-3577.
PDF
- Published Version
1329Kb |
Official URL: http://edoc.unibas.ch/dok/A5262189
Downloads: Statistics Overview
Abstract
ATP-binding cassette (ABC) transporters facilitate unidirectional translocation of chemically diverse substances, ranging from peptides to lipids, across cell or organelle membranes. In peroxisomes, a subfamily of four ABC transporters (ABCD1 to ABCD4) has been related to fatty acid transport, because patients with mutations in ABCD1 (ALD gene) suffer from X-linked adrenoleukodystrophy (X-ALD), a disease characterized by an accumulation of very-long-chain fatty acids (VLCFAs). Inactivation in the mouse of the abcd1 gene leads to a late-onset neurodegenerative condition, comparable to the late-onset form of X-ALD [Pujol, A., Hindelang, C., Callizot, N., Bartsch, U., Schachner, M. and Mandel, J.L. (2002) Late onset neurological phenotype of the X-ALD gene inactivation in mice: a mouse model for adrenomyeloneuropathy. Hum. Mol. Genet., 11, 499-505.]. In the present work, we have generated and characterized a mouse deficient for abcd2, the closest paralog to abcd1. The main pathological feature in abcd2-/- mice is a late-onset cerebellar and sensory ataxia, with loss of cerebellar Purkinje cells and dorsal root ganglia cell degeneration, correlating with accumulation of VLCFAs in the latter cellular population. Axonal degeneration was present in dorsal and ventral columns in spinal cord. We have identified mitochondrial, Golgi and endoplasmic reticulum damage as the underlying pathological mechanism, thus providing evidence of a disturbed organelle cross-talk, which may be at the origin of the pathological cascade.
Faculties and Departments: | 03 Faculty of Medicine > Departement Biomedizin > Division of Anatomy > Developmental Neurobiology and Regeneration (Kapfhammer) |
---|---|
UniBasel Contributors: | Kapfhammer, Josef |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Oxford University Press |
ISSN: | 0964-6906 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Related URLs: | |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 13 Mar 2018 17:19 |
Deposited On: | 22 Mar 2012 13:34 |
Repository Staff Only: item control page