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Abstract

This article is dedicated to the computation of a parametric representation of sol-
vent excluded surfaces and isosurfaces by smooth four-sided patches. Such surface
representations allow for the isoparametric discretization of the boundary integral
equations which arise from solvation continuum models. Thus, higher-order ansatz
functions can be applied in the boundary element method that is commonly used to
solve the underlying equations, yielding a more accurate approximation of the sought
apparent surface charge. Numerical results are reported to illustrate the approach.
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INTRODUCTION

Many reactions in chemistry take place in complex realistic environments. The overall sys-

tem is then far too large to allow for a full quantum chemical treatment, due to the large

number of particles involved. Continuum models include the environment as a continuum,

disregarding its atomistic structure. They make thus quantum chemical simulations feasible

and require only a handful of parameters to define the molecular cavity and the properties

of the continuum21,25,26.

The interface between the solute and the continuum constitutes the molecule’s surface.

In general, the molecule is defined as a union of balls, centered in the nuclei positions

and of radii related to the van der Waals radius. The resulting surface is called the van

der Waals surface (VWS). Whereas, the solvent accessible surface (SAS) coincides with the

VWS surface except for scaling of the radii. In this article, we will focus on solvent excluding

surfaces (SES), also known as Connolly surfaces4. They are defined from the VWS model

by “rolling” a spherical probe over the surface.

A considerable amount of work has to go into the description and discretization of the

cavity, since –without a good discretization– no good approximation of the desired con-

tinuum model can be expected. Famous algorithms include the GEPOL algorithm15,16,23

with the extensions for geometry optimization, continuous surface charge and switching

Gaussians11,12,22, the isosurface approach implemented in Gaussian6, the algorithm found

in DefPol17,18, the FIXPVA approach from GAMESS24, or the analytic description of the

surface9,19,20.

In this article, we aim at the construction of a parametric representation of the cavity’s

surface Γ by four-sided patches. This means that we intend to subdivide the surface into

smooth four-sided patches

Γ =
M⋃

i=1

Γi,

where the intersection Γi ∩ Γi′ of two patches consists at most of a common vertex or a

common edge if i 6= i′. For each patch, a smooth diffeomorphism is constructed, mapping

from the reference domain � := [0, 1]2 to the respective patch:

γi : �→ Γi with Γi = γi(�) for i = 1, 2, . . . ,M.
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The diffeomorphisms of neighbouring patches are required to coincide on the common edge

except for orientation. This ensures that regular subdivision of the reference domain leads

to a regular mesh on the surface, as illustrated in Figure 1 in case of ethyl alcohol.

Figure 1: Ball and stick description of ethyl alcohol (left) and associated parametrization

of the solvent excluded surface by 40 patches (right).

The main advantage of a parametric representation of the cavity’s surface is that an

exact representation is offered –no approximation by e.g. flat panels is performed– thus

allowing for higher-order discretizations of the underlying equations2,5,27. In this article, we

present a respective algorithm, which constructs the desired surface representation in case

of SES and isosurfaces. As an intermediate step, a regular triangulation is derived, which

can immediately be used in standard boundary element codes, such as the fast multipole

method7, the panel clustering8, or the adaptive cross approximation1. Numerical results for

both, SES and isosurfaces, are presented. Convergence studies for the computation of the

apparent surface charge in the polarizable continuum model14 by the wavelet PCM solver2,27

are also given.
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GENERATING THE CAVITY

The construction of the parametrization for the cavity starts with its mathematical descrip-

tion by means of a level-set function. It is constructed first a fine triangulation with an even

number of triangles which resolve the geometry. This triangulation is coarsened step-by-step

to get a coarse triangulation of the cavity, consisting of an even number of triangles. A graph

based algorithm is then employed to find the best way to glue always two triangles together

to form a quadrangular patch. Finally, the parametric representation is constructed by using

a subdivision scheme.

Level-set function representation

The geometry can be defined by the position of the atoms of the molecule and the charac-

teristic radius of the solvent. This results in a decomposition of the molecular surface into

three types of partial surfaces: the atomic surface, stemming from the atoms of the molecule,

the toroidal surface, appearing when two atoms interact with the radius of the solvent, and

the spherical patch, a concave surface coming from the interaction of more than two atoms

with the radius of the solvent. Separate level-set functions for each of these surfaces are

constructed and used to determine whether or not a point is inside the molecular cavity.

(a) Atomic surface. (b) Toroidal surface. (c) Spherical patch.

Figure 2: Surface decomposition.

As used in the IPCM version implemented in Gaussian6, the charge distribution in space

can also be used to define the surface of the molecule. The isosurface is a set of points that

have the same value, which in this case means the same charge value. The surface that will

eventually be used as a description of the molecular cavity is then given by one isosurface.
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The input is given in form of a cube file, where the charge values for voxels in a bounding

box containing the molecule are defined. In order to check if a point is inside the molecule,

a cubic Newton interpolation is used, placing the requested point in the middle voxel of the

interpolant. If the charge value is larger than the value for the desired isosurface, the point

is inside the molecule, otherwise it is located outside the molecular cavity.

Initial triangulation

Given a level-set function, an initial triangulation can be computed by using the marching

cubes algorithm13. In short, this algorithm discretizes the bounding box of the molecule by

a cubic mesh and checks where the surface of the molecule traverses the resulting voxels by

checking whether or not there are both corner points of the cubes inside and outside of the

molecule. In order to resolve the geometry accurately, the cube size for the marching cubes

algorithm has to be small enough. The initial mesh is an unstructured grid with potentially

very small elements or very small edges, as seen in Figure 3, whilst the sought after mesh is

a triangular mesh that can be used to generate quadrangular patches.

Figure 3: Unstructured grid resulting from the marching cubes algorithm.

Each cell of the unstructured grid is first subdivided into triangles by recursive insertion

of edges. The subdivision can be done without hesitation, since all the cells are convex.
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In our case, the shortest edge is always chosen. This results in an initial triangular mesh,

with possibly ugly triangles and not necessarily an even amount of triangular cells. To each

triangle ∆, a fitness measure can be associated

fit(∆) =
4
√

3|∆|∑
i |ei|2

, (1)

where |ei| denotes the length of the edge ei in ∆ and |∆| is the area of the triangle. This

measure takes values between 0 and 1, with a maximum for the equilateral triangle. The

further the triangle deviates from being equilateral, the smaller the fitness measure becomes.

The fitness measure can be used to give an overall assessment of the triangular mesh at

hand. To this end, the smallest fitness value of the triangles a mesh consists of is associated

as the fitness value of the mesh. The first improvement of the mesh replaces edges by points

in order to achieve a better overall fitness. The replacement is done in ascending order of

the replacement error and stops when the fitness of the mesh reaches a threshold or too

few triangles are left. The algorithm that replaces the edge with a point has as input the

mesh description and the index of the edge, e = (q1,q2), to be replaced. The output of

the replacement algorithm is the new point, pnew, and the replacement error, error(e). The

point pnew is calculated as the least squares solution of the following problem:

pnew = arg min
q∈R3
‖Aq− b‖2. (2)

Here, the matrix A is given by ni, the normals to the triangles containing either q1 or q2,

and b = 〈ni,pi〉, where pi is a point in the triangle corresponding to the index i of the

system matrix. In order to get a better understanding of the entries of the matrix A and

the vector b, let us consider the situation found in Figure 4. The matrix A and the vector

b are here given by

A =




nT1
...

nT4

nT5
...

nT9




and b =




〈n1,q2〉
...

〈n4,q2〉
〈n5,q1〉

...

〈n9,q1〉




.
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The new point is calculated by a QR decomposition of the system matrix A. The norm

of the residuum of the solution is used to decide upon which edge to replace first. The error

for the edge marked with magenta is thus given by

error(e) = ‖Apnew − b‖2.

∆1

∆2

n1

n2

n3n4 = n∆1
n5

n6

n7 n8

n9 = n∆2

q1 q2
pnew

Figure 4: Example of edge replacement.

Before an edge is replaced, the new point is projected to the surface in the direction of the

normal and an admissibility test is performed in order to guarantee that the new resulting

surface mesh does not have self-intersections.

After achieving a nice mesh, according to the fitness measure from Equation (1), the

next step is to ensure an even number of triangles. This can easily be done by refining each

triangle into four subtriangles and projecting the new points onto the surface. Since the

mesh that is refined has a good fitness, the new even numbered mesh will also have a good

fitness property.

Quadrangular patches

The improved triangular mesh consists now of an even number of triangles which are coars-

ened until the number of triangles is double the desired number of patches, n∆ = 2n�. The

desired number of patches can either be a predefined number given by the user or a number

determined by the algorithm. In the second case, the even numbered triangular mesh with

the best fitness with respect to Equation (1) is chosen out of a range of possible meshes.
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The next big step is to find out which two triangles should be glued together to form a

quadrangular patch. To this end, the coarse triangles are refined again in order to estimate

the curved surface better, as seen in Figure 5.

(a) Coarse mesh. (b) Refinement on level one.

(c) Refinement on level two. (d) Edges and fine mesh on level

four.

Figure 5: Coarse mesh and refinement up to the required level for quadrangular patch

calculation.

Each triangle can be combined with one of its three neighbours. The blossom algorithm10

is used to find a minimum cost perfect matching in a weighted graph and can thus be applied

to find the best possible combination of pairs of triangles. Therefore, a fitness measure is

introduced for the combination of two triangles. Ideally, all angles of the resulting quadrangle

8



would be close to π
2
. This is accomplished if the measure

fit(�) =
1

min{sin2 α̂, sin2 β̂, sin2 γ̂, sin2 δ̂}
is closest to 1, where the angles can be seen in Figure 6 and are measured on the fine mesh.

If one of the angles is over π or too close to 0, a very high value is assigned to the fitness,

such that the combination is rarely chosen.

p1

p2

p3
p4

p1→2

p2→1 p2→3

p3→2

p3→4
p4→3

p4→1

p1→4
α̂

β̂

γ̂δ̂

(a) Quadrangle angles used. (b) Refined triangles.

Figure 6: Quadrangle approximation from two refined triangles.

Surface parametrization

The input parameter, nL, defines the level of refinement of the quadrangular mesh. The

output of the blossom algorithm already defines the corners of the quadrangular patches,

and thus the refinement on level 0 of the mesh. The refinement on level nL is then obtained

by a subdivision scheme, recursively refining each element of the quadrangular patches. This

is illustrated in Figure 7, where the normals and the elements are represented for each level

of refinement.

The refinement uses the mapping from the unit square, �, to the bilinear element de-

scribed by the corner points, p1,p2,p3, and p4. The element is refined and the new points
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(a) Coarse mesh, including ele-

ment normals.

(b) Refinement on level one, in-

cluding element normals.

(c) Refinement on level two, in-

cluding element normals.

(d) Refinement on level three,

including element normals.

(e) Refinement on level four, in-

cluding element normals.

(f) Refinement on level four.

Figure 7: Coarse patches and refinement up to required level.
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are lifted onto the surface in normal direction. The bilinear interpolation is given by:

Q�i(s, t) = (1− s)
(
(1− t)p1 + tp4

)
+ s
(
(1− t)p2 + tp3

)
.

The surface point corresponding to (s, t) ∈ � is calculated by projecting the result of the

bilinear interpolation, Q�i(s, t), in the direction of the normal at this point, n�i(s, t). The

normal is calculated by taking the partial derivatives in s and t and applying the cross

product

n�i(s, t) =
∂Q�i
∂s

(s, t)× ∂Q�i
∂t

(s, t).

On the boundary between two elements, the arithmetic mean between the normals from both

sides is taken. For one refinement step, the inner point found at (0.5, 0.5) and the boundary

points at (0, 0.5), (1, 0.5), (0.5, 0), and (0.5, 1) have to be computed for each element. All

points on the element boundaries are calculated only once.

If the initial position of the nodes on the coarse quadrangular representation of the surface

that comes out of the blossom algorithm does not lead to satisfying results, improvements

can be applied. This is done by taking the optimal angle into account. For a given node, pi,

of the coarse quadrangular mesh the optimal angles around that node depend on the degree

of the node, αopt = 2π
degpi

. The optimization is done by means of steepest descent, such that

the angles around a node become optimal. The fitness associated to a point is given by

fit(pi) =

∑
j(〈pji→i−1 − pi,p

j
i→i+1 − pi〉 − cos(αopt))

2

degpi
. (3)

Here, each angle of the node, pi, taken inside the patch j is schematically seen in Figure 8

and thus approximated by ](pji→i−1,pi,p
j
i→i+1) on the finest level.

Two special optimization cases are taken into account. The first one eliminates impossible

combinations of patches, meaning quadrangular patches with two common edges. This is

always combined with a convexity problem for the resulting patches and can only happen

during the blossom algorithm if no better option is found. The solution in this case is

to merge the two quadrangular patches into one. The second special case is looking at

the lengths of the edges and puts a halt to the optimization in case an edge becomes too

short. This can happen, since the steepest descent optimization only takes the angles into

account. The steepest descent optimization is first done for all corner points of the patches
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p0
i→i−1

p2
i→i−1

p1
i→i+1

p2
i→i+1

pi

p0
i→i+1p1

i→i−1

α0

α1

α2

Figure 8: Description of angles around a patch vertex.

simultaneously until an optimality condition is reached and thereafter only for the corner

point with the worst fitness. In both cases, the optimization also stops if the mesh becomes

worse with respect to the fitness defined in Equation (3).

A control flow of the mesh generation is found in Figure 9 and shows the three main stages

of the algorithm: (i) the initialization phase where the input is read into the program, (ii)

the calculation of a nice coarse triangular mesh, and (iii) the combination of the triangular

mesh into a quadrangular one ready to be used with the wavelet method.

VALIDATION

As already mentioned, the only information needed by the mesh generator is a characteristic

function or a level-set function. The results of the description given by atoms and automatic

detection of patches are found in Figure 1 for ethyl alcohol (on level 4, n� = 40, fit = 0.43).

The benzene molecule is used to prove the applicability of the isosurface approach. The

input file was generated by Gaussian09, using Hartree-Fock and the 6-311++G** basis set.

A point is inside the molecule if the value of the interpolated voxels evaluated at the given

point is larger than the constant isoSurfaceValue = 0.02. A resulting mesh for the benzene

example using n� = 50 patches can be found in Figure 10.
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Initialization

readIn

read geometry description
(atoms or isosurface)

initGeometry

calculate level-set function
and domain decomposition

Coarse surface generation

initialTriang

calculate surface cubes,
unstructured surface mesh,
and initial triangulation

edgeReplace1

first edge replacement
until fitness reached

uniformRefinement

ensure even number of
elements by one refinement

edgeReplace2

replace edges up to coarse mesh

Quadrangular
mesh generation

edgePoints

calculate points on edge
by recursive uniform

refinement of coarse mesh

matching

calculate matching
using blossom algorithm

improveMesh

improve position of coarse mesh
vertices to get a better mesh

Figure 9: Control flow for the cavity generator.
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Figure 9: Control flow for the cavity generator.

Figure 10: Ball and stick description of benzene and the mesh generated with the isosurface

description, n� = 50 patches on level 4, fit = 3.3.
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Mesh generation time versus number of patches

The time needed to compute the surface is split into nine main components. The first ( )

point in time recorded is after determining the cubes situated on the surface. The second

( ) point in time marks the computation of the surface points by means of the bisection

algorithm. This time period depends on the number of surface cubes, which in turn also

factors in the constant dimension of the cubes. The time needed to triangulate the resulting

unstructured mesh is negligible and is thus not taken into account. The third ( ) point in

time recorded is the time needed to compute the fine mesh by means of edge replacement

using the QR decomposition. The fourth ( ) point in time is closely related to the third and

marks the computation of the coarse mesh. The fifth ( ) point in time pinpoints the time

needed for the refinement needed for the matching. The quadrangular patch initialization

and refinement towards the boundary that will be used for the improvement strategy are

stored in the sixth ( ) point in time. The seventh ( ) and the eighth ( ) point in time mark

the time needed for the global and the local improvement strategies, respectively. The last

and ninth ( ) point in time contains the projection onto the surface with a higher accuracy,

the refinement up to the required level, nL, and the output of the grid on all relevant levels

in a format that can be read in by the boundary element code.

The time needed for the refinement and the output depends on the number of patches

and the time needed to project the points onto the surface. This is a balancing act: if the

number of patches is small, then the approximation of the surface is poorer and the time

needed to project the refined patches onto the surface might take longer. On the other hand,

the approximation of the surface is better if the number of patches is larger, but more points

need to be projected onto the surface.

Figure 11 contains a representation of the time needed for the ethyl alcohol molecule

given by the atom description. The pie chart on the left shows the time distribution for the

automatic patch detection. The total time there is 116 sec. On the right the time for a fixed

number of patches varies between 150 sec and 220 sec.

The conclusion that can be reached is that most of the time is spent in the edge re-

placement algorithm and the final refinement and output steps. While the output cannot
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be optimized, a better, coarser starting mesh would save a lot of time currently spent in

the edge replacement algorithm. The starting mesh, however, has to resolve all the fine

structures of the geometry. This is not automatically guaranteed with a larger cube size for

the marching cubes algorithm.

40 45 50 55 60

0

50

100

150

200

250

Number of patches

T
im

e
(s

)

surface cubes surface points fine mesh
coarse mesh refined mesh patch init
global improve local improve final output

Figure 11: Time distribution for ethyl alcohol: On the left, the time for the automatic

patch number detection can be seen, total time = 116 sec. On the right, the version for fixed

number of patches is depicted.

The time needed for the implementation using isosurfaces is much shorter than for the

description given by atoms. This can be seen in Figure 12 where the y-scale is in the order

of seconds. The test if one point is inside or outside the molecule is done much faster, which

also leads to a different distribution of the time. The final point in time containing the

refinement and the output is no longer dominant, now most of the time is spent in the edge

replacement algorithm, as seen in the fixed number of patches. For the automatic patch

detection, more time is spent in the refinement step, due to the fact that we have a large

number of patches, namely n� = 243.
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Figure 12: Time distribution or benzene described as isosurface: On the left, the time for

the automatic patch number detection can be seen, total time = 39 sec. On the right, the

version for fixed number of patches is shown.
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Mesh quality versus number of patches

The next validation test shows the influence of the number of patches on the fitness of the

resulting mesh for different molecules. The number of patches has been varied from 40 to 60.

The quality of the mesh is taken as the worst value of the node fitness from Equation (3).

The fitness values vary between 0.28 and 3.6 and do not directly correlate with the number

of patches. This is due to the fact that the coarsening is governed by the error of the edge

replacement and the resulting quadrangular patches are not taken into account. In Figure 13

however only fitness values between 0.2 and 0.6 are shown for the chosen test molecules found

in the legend.

40 45 50 55 60
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0.4

0.5

0.6

Number of patches
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n
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alcohol
aspirine
benzene
benzylpenicillin
caffeine
cubane
glucose

Figure 13: The worst node fitness versus the number of patches for a set of molecules

calculated on level 4.

Scalability

A simple scalability test that can be done for the cavity generator is to take a look at the

polyalkane chains CnH2n+2, n = 8, 16, 32. We look at the time needed to generate the mesh

starting from the atom description and using an automatic patch number detection with the

resulting number of patches n�(C8H18) = 399, n�(C16H34) = 603, and n�(C32H66) = 1999.

The patches that have been generated, coloured corresponding to their fitness value, are
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shown on the left side in Figure 14. On the right hand side, the pie chart of the time

distribution for the automatic patch detection on refinement level 4 is shown. One can see

that the time required for each step is similar for every molecule.

(a) C8H18 patch representation with automatic patch detection, n� = 399, fit = 3.6.

(b) C16H34 patch representation with automatic patch detection, n� = 603, fit = 3.4.

(c) C32H66 patch representation with automatic patch detection, n� = 1999, fit = 1.56.

Figure 14: Surface description with automatic number of patch detection.

Convergence of PCM solver

We consider the polarizable continuum model (PCM)14, solved by means of the integral

equation formalism (IEFPCM)3. We will thus demonstrate the interplay between the para-

metric surface representation and our wavelet PCM solver2,27. The wavelet PCM solver was

used to compute the apparent surface charge (ASC) by the boundary integral equation

Sσ =
1

ε− 1

(
ε+ 1

2(ε− 1)
−D

)−1

Nρ −Nρ on Γ, (4)

where S and D are the single and double layer potential operators associated with the

Laplace equation

Sf(x) =

∫

Γ

f(y)

‖x− y‖ dsy, Df(x) =

∫

Γ

∂

∂ny

f(y)

‖x− y‖ dsy,

and Nρ is the potential generated by the charge distribution ρ located inside the cavity.
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For our test, the solvent’s dielectric constant is ε = 78.39 and corresponds to water. The

charge distribution ρ are point charges, located in the nuclei positions. In this situation,

the interaction energy is known exactly, thus serving as an error measure. The ASC was

computed on levels ` = 2, . . . , 6, yielding roughly 4`M piecewise constant or bilinear ansatz

functions in the wavelet PCM solver.

The results are shown in Figure 15 for piecewise constant ansatz functions and in Fig-

ure 16 for piecewise bilinear ansatz functions. The figures show the difference in the ASC

compared to the expected theoretical value for different molecules. Both choices of ansatz

functions converge for all molecules tested, starting with errors in the region of 10−1 and

reaching up to 10−3 for the piecewise constant ansatz functions and reaching errors of around

10−5 for the piecewise bilinear ansatz functions. Hence, the piecewise bilinear ansatz func-

tions perform better than the piecewise constant ansatz functions.

2 3 4 5 6

10−7

10−5

10−3

10−1

Level

E
rr

or

ethyl alcohol
aspirine
benzene
iso-benzene
benzylpenicillin
caffeine
glucose

2−4level

2−3level

2−2level

Figure 15: Convergence of the wavelet PCM solver using piecewise constant ansatz functions,

calculated as a difference to the theoretical value.
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Figure 16: Convergence of the wavelet PCM solver using piecewise bilinear ansatz functions,

calculated as a difference to the theoretical value.

CONCLUSION

Simulation of molecules in their environment can be performed by continuum models. The

discretization of the underlying equations require in general also a suitable discretization

of the molecule’s surface. By starting with a level-set description of this surface, we have

presented an algorithm that computes a parametric representation of the surface by smooth

four-sided patches. Such surface representations allow for higher-order discretization tech-

niques, especially in the integral equation formulation of the polarizable continuum model.

Numerical results for solvent accessible surfaces and isosurfaces of several molecules have

been given to present the approach.
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