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Abstract

The present article is devoted to the study of two well-known inverse problems, that is the
data completion problem and the inverse obstacle problem. The general idea is to reconstruct
some boundary conditions and/or to identify an obstacle or void of different conductivity which is
contained in a domain, from measurements of voltage and currents on (a part of) the boundary of
the domain. We focus here on Laplace’s equation.

Firstly, we use a penalized Kohn-Vogelius functional in order to numerically solve the data com-
pletion problem, which consists in recovering some boundary conditions from partial Cauchy data.
The novelty of this part is the use of a Newton scheme in order to solve this problem. Secondly, we
propose to build an iterative method for the inverse obstacle problem based on the combination of
the previously mentioned data completion subproblem and the so-called trial method. The under-
lying boundary value problems are efficiently computed by means of boundary integral equations
and several numerical simulations show the applicability and feasibility of our new approach.

Keywords: Cauchy problem, Data completion problem, Inverse obstacle problem, Laplace’s equation,
Kohn-Vogelius functional.

AMS classification: 35R30, 35R25, 35N25, 49M15.

1 Introduction

Electrical Impedance Tomography (E.I.T.) is used in medical imaging to reconstruct the electric
conductivity of a part of the body from measurements of currents and voltages at the surface (see,
e.g., [33]). The same technique is also used in geophysical explorations. An important special case
consists in reconstructing the shape of an unknown inclusion or void assuming (piecewise) constant
conductivities.

We deal in this article with the inverse obstacle problem which is defined as follows. Let Ω be a
bounded connected Lipschitz open set of Rd, where d = 2 or d = 3, with a boundary ∂Ω. For some
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nontrivial Cauchy data (fm, gm) ∈ H1/2(∂Ω)× H−1/2(∂Ω) on the outer boundary, which corresponds
to a pair of current/voltage measurements, we consider the following inverse problem:

Find a set ω∗ ∈ D and a solution u ∈ H1
(
Ω\ω∗

)
∩ C

(
Ω\ω∗

)

of the following overdetermined boundary value problem:



∆u = 0 in Ω\ω∗,
u = fm on ∂Ω,

∂nu = gm on ∂Ω,
u = 0 on ∂ω,

(1.1)

where D = {ω b Ω, ∂ω is Lipschitz and Ω\ω is connected}. In other words, we want to detect an
inclusion ω∗ characterized by a homogeneous Dirichlet boundary condition from the knowledge of the
Dirichlet and Neumann boundary conditions on the exterior boundary ∂Ω. Then the problem under
consideration is a special case of the general conductivity reconstruction problem.

It is known that problem (1.1) admits at most one solution, as claimed by the following identifiability
result (see, e.g., [10, Theorem 1.1] or [19, Theorem 5.1]).

Theorem 1.1 The domain ω and the function u that satisfy (1.1) are uniquely defined by the non-
trivial Cauchy data (fm, gm).

It is also well-known that problem (1.1) is severely ill-posed: the problem may fail to have a solution
and, even when a solution exists, the problem is highly unstable (see, e.g., [4, 20]).

This inverse problem has been intensively investigated by numerous methods. We can cite for exam-
ple sampling methods [34], methods based on conformal mappings [2, 26], on integral equations [32, 36],
methods using the full Dirichlet-to-Neumann map at the outer boundary [11, 12], or level-set methods
coupled with quasi-reversibility in the exterior approach [10]. We also refer for example to [17, 28] for
numerical algorithms and to [5, 23] for particular results concerning uniqueness.

In [35], the problem under consideration has been reformulated as a shape optimization problem
for the Kohn-Vogelius functional. Then, seeking the unknown inclusion is equivalent to seeking the
minimizer of an energy functional. Much attention has been spent on the analysis of this approach
(see, e.g., [3, 21]) and its comparison with a least-squares tracking type functionals. These kind of
methods have some advantages such as being adaptable for several partial differential equations, such
as the Stokes system (see, e.g., [13, 15, 25]), and for obstacles characterized by different boundary
conditions, such as Neumann or generalized boundary conditions (see, e.g., [6, 14]).

In this article, we propose a new point of view to numerically solve this model inverse obstacle
problem. We build an iterative sequence of domains using the combination of a data completion
subproblem and the so-called trial method which is used to control the evolution of the inclusion
boundary. This means that, given an inclusion ω, we compute an harmonic function u ∈ H1(Ω\ω)
which admits the Cauchy data (fm, gm) at the outer boundary ∂Ω. With the help of the Cauchy data
at the interior boundary ∂ω, we aim at updating the interior boundary such that the desired Dirichlet
condition u = 0 holds at the new interior boundary. The data completion problem is solved by
minimizing a Kohn-Vogelius functional using a Newton method, which is efficient since the functional
is quadratic.

Organization of the article. The rest of the article is organized as follows. In Section 2, we
introduce the data completion problem which we intend to solve by means of the minimization of
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a Kohn-Vogelius functional, also introduced in this section. We additionally provide all the general
notations and assumptions used throughout the article. In Section 3, we provide some properties
concerning the considered boundary value problems and compute the gradient and the Hessian of the
Kohn-Vogelius functional. Then, in Section 4, we introduce the Tikhonov regularization term needed
to numerically minimize the functional. The minimization of this regularized functional is considered
by means of a Newton scheme. Especially, numerical results are presented, which demonstrate that
our approach yields an efficient solution of the data completion problem. In Section 5, we focus on
the numerical resolution of the inverse obstacle problem. To this end, we present the so-called trial
method, used to update an approximated inclusion’s boundary from the information obtained from
the previous data completion step. Numerical results validate that the proposed approach is feasible
to reconstruct inclusions in Electric Impedance Tomography (E.I.T.). Finally, in Section 6, we state
concluding remarks.

2 Introduction of general notations and of the considered problems

Introduction of the general notations. For a bounded open set Ω of Rd (d ∈ N∗) with a

(piecewise) Lipschitz boundary ∂Ω, we precise that the notation

∫

Ω
u means

∫

Ω
u(x)dx which is

the classical Lebesgue integral. Moreover we use the notation

∫

∂Ω
u to denote the boundary integral

∫

∂Ω
u(x)ds(x), where ds represents the surface Lebesgue measure on the boundary. We also introduce

the exterior unit normal n of the domain Ω and ∂nu will denote the normal derivative of u.
We denote by L2(Ω), L2(∂Ω), H1(Ω), H1(∂Ω), the usual Lebesgue and Sobolev spaces of scalar

functions in Ω or on ∂Ω. The classical norm and semi-norm on H1(Ω) are respectively denoted by ‖·‖
and |·|. Moreover 〈·, ·〉 denotes the following product, for all u, v ∈ H1(Ω),

〈u, v〉 =

∫

Ω
∇u · ∇v.

Introduction of the data completion problem. We recall that we consider in this article a
bounded connected Lipschitz open set Ω of Rd, where d = 2 or d = 3, and an inclusion ω ∈ D,
with D = {ω ⊂⊂ Ω, ∂ω is Lipschitz and Ω\ω is connected}. Let us consider some nontrivial Cauchy
data (fm, gm) ∈ H1/2(∂Ω)×H−1/2(∂Ω).

The data completion problem consists in recovering data on ∂ω, from the overdetermined data
(fm, gm) on ∂Ω, that is:

Find u ∈ H1(Ω\ω∗) such that



∆u = 0 in Ω\ω∗,
u = gD on ∂Ω,

∂nu = gN on ∂Ω.

(2.1)

Of course, the previous problem is not standard. In general, it admits only a local solution (that
is defined in the neighborhood of ∂Ω under regularity assumptions) by the Cauchy-Kowalevskaya
theorem. Since we are interested in global solutions, this result is not satisfactory and we have to
define the notion of compatible data.

Definition 2.1 A pair (fm, gm) ∈ H1/2(∂Ω) × H−1/2(∂Ω) is said compatible if the Cauchy prob-
lem (2.1) has a (necessarily unique) solution.
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When data is compatible, the unknown u is uniquely determined by either its Dirichlet trace or
its Neumann trace on the inner boundary ∂ω. The property of being compatible is not open: indeed
the set of compatible pairs is dense in H1/2(∂Ω) × H−1/2(∂ω). Hence, if a given pair (fm, gm) is not
compatible, we may approximate it by a sequence of compatible data. Typical density results have
been stated by Andrieux et al. in [1, Lemma 2.1] or Fursikov in [24], where the following result is
given.

Lemma 2.2 We have the two following density results.

1. For a fixed fm ∈ H1/2(∂Ω), the set of compatible data g is dense in H−1/2(∂Ω).

2. For a fixed gm ∈ H−1/2(∂Ω), the set of compatible f is dense in H1/2(∂Ω).

Therefore, any numerical scheme should incorporate a regularization step. Several approaches have
been considered to solve the data completion problem. Among others, we mention the works of Kozlov
et al. [30], Cimetière et al. [18], Ben Belgacem et al. [7, 8].

We shall follow the energy based strategy introduced by Andrieux et al. in [1] by the minimization
of the Kohn-Vogelius like functional which admits the solution of problem (2.1) as minimizer, if such
a solution exists. Notice that such a functional turns to be quadratic and convex. Surprisingly, to the
best of our knowledge, only gradient based numerical schemes have been studied for the resolution
of this problem. We will describe in this article the Newton method that is completely suited for
quadratic objectives.

In order to deal with the ill-posedness previously mentioned, we consider a Tikhonov regularization
of the functional which ensures the existence of a minimizer even for not compatible data thanks to
the gained of coerciveness and, in case of compatible data, the convergence towards the exact solution
(see, e.g., [16, Proposition 2.5 and Theorem 2.6]).

The Kohn-Vogelius functional. As mentioned, the data completion problem (2.1) can be studied
through the minimization of a Kohn-Vogelius cost functional (see [29]). To this end, we introduce the
two maps uDN and uND defined as follows

uDN : H1/2(∂Ω) × H−1/2(∂ω) −→ H1(Ω\ω),

uND : H−1/2(∂Ω) × H1/2(∂ω) −→ H1(Ω\ω),
(2.2)

where uDN (f, ψ) ∈ H1(Ω\ω) solves the boundary values problem





∆u = 0 in Ω\ω,
u = f on ∂Ω,

∂nu = ψ on ∂ω,
(2.3)

and where uND(g, φ) ∈ H1(Ω\ω) solves the boundary values problem





∆u = 0 in Ω\ω,
∂nu = g on ∂Ω,
u = φ on ∂ω.

(2.4)

Notice that the indices mean the type of boundary condition, where the first one indicates the outer
boundary and the second one the inner boundary.
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Then, we focus on the following optimization problem

(φ∗, ψ∗) ∈ argmin
(ϕ,ψ)∈H1/2(∂Ω)×H−1/2(∂Ω)

K(φ, ψ),

where K : H1/2(∂ω)×H−1/2(∂ω)→ R is the nonnegative Kohn-Vogelius cost functional defined by

K(φ, ψ) =
1

2

∫

Ω\ω
|∇uDN (fm, ψ)−∇uND(gm, φ)|2 =

1

2
|uDN (fm, ψ)− uND(gm, φ)|2H1(Ω\ω) . (2.5)

Indeed, for a given and known inclusion ω, if the inverse problem (2.1) has a solution, then the
identifiability result Theorem 1.1 ensures that K(φ, ψ) = 0 if and only if (φ, ψ) = (φ∗, ψ∗) with
uDN (fm, ψ

∗) = uND(gm, φ
∗) be the solution of the Cauchy problem in Ω\ω∗.

Remark 2.3 Note that the two problems (2.3) and (2.4) are well-posed for any given boundary
conditions (φ, ψ) ∈ H1/2(∂ω) × H−1/2(∂ω), without additional compatibility conditions between fm
and ψ for the first problem and between gm and φ for the second. This is of particular interest for
numerical implementations, as the considered setting allows to consider the classical Sobolev spaces
and, therefore, the implementations can be done with classical finite element method softwares without
any additional adjustments.

3 Some properties concerning the data completion problem

3.1 Properties of the maps uDN ant uND

Let us first emphasize some properties of the maps defined in (2.2) we should use.

Proposition 3.1 (Properties of the boundary values problems) We have the following state-
ments.

1. The maps uDN and uND are linear: for all (f1, ψ1) and (f2, ψ2) ∈ H1/2(∂Ω)×H−1/2(∂ω), there
holds

uDN (f1 + f2, ψ1 + ψ2) = uDN (f1, ψ1) + uDN (f2, ψ2) = uDN (f2, ψ1) + uDN (f1, ψ2),
uND(g1 + g2, φ1 + φ2) = uND(g1, φ1) + uND(g2, φ2) = uND(g2, φ1) + uND(g1, φ2).

2. There are constants C1 and C2 such that

C1‖φ‖H1/2(∂ω) ≤ ‖uND(0, φ)‖H1(Ω\ω) ≤ C2‖φ‖H1/2(∂ω),

C1‖ψ‖H−1/2(∂ω) ≤ ‖uDN (0, ψ)‖H1(Ω\ω) ≤ C2‖ψ‖H−1/2(∂ω),
(3.1)

for all (φ, ψ) ∈ H1/2(∂ω)×H−1/2(∂ω).
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3. There holds

〈uDN (f1, ψ1),uDN (f2, ψ2)〉 =

∫

∂Ω
f1∂nuDN (f2, ψ2) +

∫

∂ω
uDN (f1, ψ1)ψ2

=

∫

∂Ω
f2∂nuDN (f1, ψ1) +

∫

∂ω
uDN (f2, ψ2)ψ1,

〈uDN (f1, ψ1),uND(g1, φ1)〉 =

∫

∂Ω
f1g1 +

∫

∂ω
uDN (f1, ψ1)∂nuND(g1, φ1)

=

∫

∂Ω
uND(g1, φ1)∂nuDN (f1, ψ1) +

∫

∂ω
φ1ψ1,

〈uND(g1, φ1),uND(g2, φ2)〉 =

∫

∂Ω
uND(g1, φ1)g2 +

∫

∂ω
φ1∂nuND(g2, φ2)

=

∫

∂Ω
uND(g2, φ2)g1 +

∫

∂ω
φ2∂nuND(g1, φ1),

for all (f1, ψ1), (f2, ψ2) ∈ H1/2(∂Ω)×H−1/2(∂ω) and (g1, φ1), (g2, φ2) ∈ H−1/2(∂Ω)×H1/2(∂ω).

Proof. The first assertion is a trivial consequence of the superposition principle. The second assertion
comes from usual a priori elliptic estimates and from the continuity of the trace operators. The third
assertion is a consequence of the Green formulae. �

Let us remark that the third assertion of Proposition 3.1 implies in particular the following formulae
which is useful to transform an integral over the outer boundary into an integral over the inner
boundary:

〈uDN (0, ψ),uDN (f, 0)〉 = 0 =

∫

∂Ω
f∂nuDN (0, ψ) +

∫

∂ω
uDN (f, 0)ψ,

∫

∂Ω
uND(0, φ)∂nuDN (f, 0) =

∫

∂ω
uDN (f, 0)∂nuND(0, φ),

〈uND(g, 0),uND(0, φ)〉 = 0 =

∫

∂Ω
uND(0, φ)g +

∫

∂ω
φ∂nuND(g, 0).

Another consequence of these integration by parts formulae is the following alternative expression
of the Kohn-Vogelius objective:

K(φ, ψ) =

∫

∂Ω

(
fm − uND(gm, φ)

)(
∂nuDN (fm, ψ)− gm

)

+

∫

∂ω

(
uDN (fm, ψ)− φ

)(
ψ − ∂nuND(gm, φ)

)
. (3.2)

Remark 3.2 Let us emphasize that we use the usual abusive notation since the boundary integrals
are to be understood as duality product between a Dirichlet trace in H1/2 and a Neumann trace
in H−1/2.

3.2 Properties of the Kohn-Vogelius objective K
The main properties of the functional defined by (2.5) can be summarized as follow.

Proposition 3.3 (Properties of the Kohn-Vogelius objective) We have the following statements.
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1. The functional K is convexe, positive and

inf
{
K(φ, ψ) ; (φ, ψ) ∈ H1/2(∂ω)×H−1/2(∂ω)

}
= 0.

2. The functional K is of class C∞ with gradient

DK(φ, ψ) · [δφ, δψ] =

∫

∂ω
[∂nuND(∂nuDN (fm, ψ), φ)− ψ] δφ+

[
uDN

(
uND(gm, φ), ψ

)
− φ

]
δψ,

and Hessian

D2K(φ, ψ) · ([δφ1, δψ1], [δφ2, δψ2]) = 〈uDN (0, δψ1)− uND(0, δφ1),uDN (0, δψ2)− uND(0, δφ2)〉.

The first point of this statement is proved in [16, Proposition 2.2] but we recall the proof for reader’s
convenience.
Proof. We prove each statement.

1. Convexity and positiveness are obvious. To prove that inf(φ,ψ)K(φ, ψ) = 0, we have to consider
two cases. If the pair (fm, gm) is compatible, we consider the solution uex of the Cauchy prob-
lem (2.1) and we define φ∗ = uex|∂ω and ψ∗ := ∂nuex|∂ω and then obtain K(φ∗, ψ∗) = 0. Let us
now focus on the non-compatible case. Thanks to the density lemma 2.2, we can approximate fm
by a sequence (fnm)n in a way that the pairs (fnm, gm)n are compatibles for all n ∈ N. For each n,
consider (φ∗n, ψ

∗
n) to be the minimizer of the Kohn-Vogelius function for the data (fnm, gm) which

implies that ∇uDN (fnm, ψ
∗
n) = ∇uND(gm, φ

∗
n). Then, we have

K(φ∗n, ψ
∗
n) =

1

2
|uDN (fm, ψ

∗
n)− uDN (gm, φ

∗
n)|2 =

1

2
|uDN (fm, ψ

∗
n)− uDN (fnm, ψ

∗
n)|2

=
1

2
|uDN (fm − fnm, 0)|2 ≤ C‖fm − fnm‖2H1/2(∂Ω)

−→
n→∞

0,

which concludes the proof.

2. An elementary computation shows that

K(φ+ δφ, ψ + δψ) =
1

2
|uDN (fm, ψ)− uND(gm, φ) + uDN (0, δψ)− uND(0, δφ)|2

= K(φ, ψ) + 〈uDN (fm, ψ)− uND(gm, φ),uDN (0, δψ)− uND(0, δφ)〉

+
1

2
|uDN (0, δψ)− uND(0, δφ)|2 .

Hence, the objective K is convex and its derivatives are

DK(φ, ψ) · [δφ, δψ] = 〈uDN (fm, ψ)− uND(gm, φ),uDN (0, δψ)− uND(0, δφ)〉,
D2K(φ, ψ) · ([δφ1, δψ1], [δφ2, δψ2]) = 〈uDN (0, δψ1)− uND(0, δφ1),uDN (0, δψ2)− uND(0, δφ2)〉.

However, this writing is not directly useful since the dependency in (δφ, δψ) is not completely
explicit. We therefore expand the expression of the gradient

DK(φ, ψ) · [δφ, δψ] = 〈uDN (fm, ψ),uDN (0, δψ)〉 − 〈uDN (fm, ψ),uND(0, δφ)〉
− 〈uND(gm, φ),uDN (0, δψ)〉+ 〈uND(gm, φ),uND(0, δφ)〉,
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and use the properties of the maps uDN and uDN given in Proposition 3.1 to express each of
the previous expressions as integrals over the inner boundary. We first consider products of the
same map. One the one hand, we have

〈uDN (fm, ψ),uDN (0, δψ)〉 =

∫

∂Ω
fm∂nuDN (0, δψ) +

∫

∂ω
uDN (fm, ψ)δψ

= −
∫

∂ω
uDN (fm, 0)δψ +

∫

∂ω
uDN (fm, ψ)δψ

=

∫

∂ω
[uDN (fm, ψ)− uDN (fm, 0)] δψ

=

∫

∂ω
uDN (0, ψ)δψ.

On the other hand, we get in a similar manner

〈uND(gm, φ),uND(0, δφ)〉 =

∫

∂Ω
uND(0, δφ)gm +

∫

∂ω
δφ∂nuND(gm, φ)

= −
∫

∂Ω
δφ∂nuND(gm, 0) +

∫

∂ω
δφ∂nuND(gm, φ)

=

∫

∂Ω
δφ∂n [uND(gm, φ)− uND(gm, 0)]

=

∫

∂Ω
δφ∂nuND(0, φ).

Then, we consider the cross products

〈uDN (fm, ψ),uND(0, δφ)〉 =

∫

∂Ω
uND(0, δφ)∂nuDN (fm, ψ) +

∫

∂ω
ψδφ

= −
∫

∂ω
∂nuND(∂nuDN (fm, ψ), 0)δφ+

∫

∂ω
ψδφ

=

∫

∂ω
[ψ − ∂nuND(∂nuDN (fm, ψ), 0)] δφ,

and in the very same manner

〈uND(gm, φ),uDN (0, δψ)〉 =

∫

∂Ω
uND(gm, φ)∂nuDN (0, δψ)

∫

∂ω
φδψ

=

∫

∂ω
[φ− uDN (uND(gm, φ), 0)] δψ.

Gathering the terms, we obtain the announced expression of the gradient.

�

Remark 3.4 As seen from the previous proof, we have

D2K(φ, ψ) · ([δφ1, δψ1], [δφ2, δψ2]) = DK(δφ1, δψ1).([δφ2, δψ2]) = DK(δφ2, δψ2).([δφ1, δψ1]).

Thus, the Hessian does not depend on (φ, ψ). Especially, it holds

D2K(φ, ψ) · ([δφ1, δψ1], [δφ2, δψ2]) =

∫

∂ω
[∂nuND(∂nuDN (0, δψ1), δφ1)− δψ1] δφ1

+
[
uDN

(
uND(0, δφ2), δψ2

)
− δφ2

]
δψ2.
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4 Numerical resolution of the data completion problem

4.1 Newton scheme

As mentioned previously, a regularization process is needed for such a severely ill-posed inverse
problem. We use here the standard Tikhonov regularization as studied, e.g., in [16]. Therefore,
we consider a non-negative real number ε and introduce the regularized Kohn-Vogelius cost func-
tional Kε : H1/2(∂ω)×H−1/2(∂ω)→ R defined by

Kε(φ, ψ) = K(φ, ψ) + εT (φ, ψ), (4.1)

where the regularizing term T (φ, ψ) is defined by

T (φ, ψ) =
1

2

(
|uND(0, φ)|2 + |uDN (0, ψ)|2 +

∫

∂ω
φ2

)

=
1

2

∫

∂ω

(
φ+ ∂nuND(0, φ)

)
φ+ uDN (0, ψ)ψ.

Lemma 4.1 The regularizing functional T is non-negative with the unique minimizer (0, 0).

Proof. Assume that (φ, ψ) is such that

|uND(0, φ)|2 + |uDN (0, ψ)|2 = 0.

Then, uND(0, φ) and uDN (0, ψ) are constant functions. By exploiting the boundary conditions on ∂ω,
we check that φ is constant and ψ = 0 on ∂ω. Since ‖φ‖L2(∂ω) = 0, the proof is complete. �

Remark 4.2 This regularization permits to obtain the existence of a minimizer, for all ε > 0, even
for not compatible data thanks to the gained of coerciveness and, in case of compatible data, the con-
vergence of these minimizers towards the exact solution when ε goes to 0 (see, e.g., [16, Proposition 2.5
and Theorem 2.6]).

Remark 4.3 Notice that the usual regularizing term would have been ‖(φ, ψ)‖2
H1/2(∂ω)×H−1/2(∂ω)

, but

the two quantities are equivalent as claimed in the following lemma.

Lemma 4.4 There exist two nonnegative constants C1 and C2 such that

C1‖ψ‖2H−1/2(∂ω)
≤ |uDN (0, ψ)|2H1(Ω\ω) ≤ C2‖ψ‖2H−1/2(∂ω)

and

C1‖φ‖2H1/2(∂ω)
≤ |uND(0, φ)|2H1(Ω\ω) +

∫

∂ω
φ2 ≤ C2‖φ‖2H1/2(∂ω)

,

for all (φ, ψ) ∈ H1/2(∂ω)×H−1/2(∂ω).

Proof. Firstly, thanks to the continuity of the trace operator and thanks to Proposition 3.1 (see
equation (3.1)), there exists two nonnegative constants C1 and C2 such that

C1‖ψ‖2H−1/2(∂ω)
≤ |uDN (0, ψ)|2 ≤ ‖uDN (0, ψ)‖2 ≤ C2‖ψ‖2H−1/2(∂ω)

,

for all ψ ∈ H−1/2(∂ω).
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Secondly, using again (3.1) and the continuous embedding H1/2(∂ω) ↪→ L2(∂ω), there exists a
nonnegative constant C3 such that

|uND(0, φ)|2 +

∫

∂ω
φ2 ≤ C3‖φ‖2H1/2(∂ω)

,

for all φ ∈ H1/2(∂ω).
Let us now show that there exists a nonnegative constant C4 such that

C4 ‖uND(0, φ)‖2 ≤ |uND(0, φ)|2 +

∫

∂ω
φ2,

for all φ ∈ H1/2(∂ω), which will complete the proof by using the continuity of the trace operator. To
this end, let us proceed by contradiction assuming that, for all n ∈ N, there exists φn ∈ H1/2(∂ω) such
that

‖vn‖ = 1 and
1

n
> |vn|2 +

∫

∂ω
v2
n,

where we have set vn =
uND(0, φ)

‖uND(0, φ)‖ . Hence, ‖∇vn‖ −→
n→+∞

0 and

∫

∂ω
v2
n −→n→+∞

0. Furthermore, (vn)n

is bounded in H1(Ω\ω) which is compactly embedded in L2(Ω\ω) and then, up to a subsequence, there
exists v ∈ H1(Ω\ω) such that

vn ⇀ v in H1(Ω\ω) and vn → v in L2(Ω\ω).

Since ∇vn → 0 in L2(Ω\ω), we conclude that vn → v in H1(Ω\ω) and ∇v = 0. Therefore, v is
constant and ∫

∂ω
v2
n −→ 0 =

∫

∂ω
v2 = v2 |∂ω| .

Thus, v = 0 which contradicts the fact that ‖vn‖ = 1 −→ ‖v‖ = 1. �
We now compute the gradient of the objectives with respect to (φ, ψ).

Proposition 4.5 The derivative of T with respect to (φ, ψ) is

DT (φ, ψ) · [δφ, δψ] =

∫

∂ω
δφ
(
φ+ ∂nuND(0, φ)

)
+ uDN (0, ψ)δψ,

D2T (φ, ψ) · [(δφ1, δψ1), (δφ2, δψ2)] =

∫

∂ω
δφ1

(
δφ2 + ∂nuND(0, δφ2)

)
+ uND(0, δψ2)δψ1.

Proof. We expand the quadratic quantity T and follow the proof of Proposition 3.3 to get the
announced result. �

The first idea to build a numerical scheme for minimizing the objective is to use a descent method.
This leads to a sequence (φn, ψn) by the update rule

(
φn+1

ψn+1

)
=

(
φn
ψn

)
+ τn+1dn,

where τn+1 is a descent step and where the descent direction dn is naturally chosen as the anti-gradient:

dn = −
(
∂nuND

(
∂nuDN (fm, ψn), φn

)
− ψn

uDN
(
uND(gm, ψn), ψn

)
− φn

)
+ ε

(
φn + ∂nuND(0, φn)

uDN (0, ψn)

)
.
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However, this updates is not in the right spaces: while (φn, ψn) ∈ H1/2(∂ω) × H−1/2(∂ω), the
update dn lies in H−1/2(∂ω)×H1/2(∂ω). In fact, dn is not the gradient that should be computed with
respect to the scalar product on H1/2(∂ω)×H−1/2(∂ω) and not with respect to L2(∂ω)×L2(∂ω). The
true gradient is much more complex to compute. Therefore, we will not consider the gradient method
here and directly use the Newton method.

Proposition 4.6 The Newton update (δφ, δψ) ∈ H1/2(∂ω) × H−1/2(∂ω) for the regularized Kohn-
Vogelius objective Kε(φn, ψn) is given by the linear system





∂nuND
(
∂nuDN (0, δψ), δφ

)
− δψ + ε

(
δφ+ ∂nuND(0, δφ)

)

= ψn − ∂nuND
(
∂nuDN (fm, ψn), φn

)
− ε
(
φn + ∂nuND(0, φn)

)
,

uDN
(
uND(0, δφ), δψ

)
− δφ+ εuDN (0, δψ)

= φn − uDN
(
uND(gm, ψn), ψn

)
− εuDN (0, ψn).

Proof. The Newton scheme leads to the sequence (φn, ψn) such that the increment

(δφ, δψ) = (φn+1, ψn+1)− (φn, ψn)

satisfies the weak problem

(D2K + εD2T )(φn, ψn) · ([δφ, δψ], [h, `]) = −(DK + εDT )(φn, ψn) · [h, `]
for all [h, `] ∈ H1/2(∂ω)×H−1/2(∂ω).

To solve this equation in the unknowns (δφ, δψ), we need to rewrite the left hand side in order to
make explicit the dependency on [h, `]. We proceed as for the gradient: we first expand

〈uDN (0, δψ)− uND(0, δφ),uDN (0, `)− uND(0, h)〉
= 〈uDN (0, δψ),uDN (0, `)〉+ 〈uND(0, δφ),uND(0, h)〉

− 〈uND(0, δφ),uDN (0, `)〉 − 〈uDN (0, δψ),uND(0, h)〉
and then compute each term:

〈uDN (0, δψ),uDN (0, `)〉 =

∫

∂ω
uDN (0, δψ)`,

〈uND(0, δφ),uND(0, h)〉 =

∫

∂ω
∂nuND(0, δφ)h,

〈uND(0, δφ),uDN (0, `)〉‘ =

∫

∂ω

[
δφ− uDN

(
uND(0, δφ), 0

)]
`,

〈uDN (0, δψ),uND(0, h)〉 =

∫

∂ω

[
δψ − ∂nuND

(
∂nuDN (0, δψ), 0

)]
h.

The weak problem reads: find (δφ, δψ) ∈ H1/2(∂ω)×H−1/2(∂ω) such that
∫

∂ω

[
uDN

(
uND(0, δφ), δψ

)
− δφ+ εuDN (0, δψ)

]
`

+
[
∂nuND

(
∂nuDN (0, δψ), δφ

)
− δψ + ε

(
δφ+ ∂nuND(0, δφ)

)]
h

= −
∫

∂ω

[
∂nuND

(
∂nuDN (fm, ψn), φn

)
− ψn + ε

(
φn + ∂nuND(0, φn)

)]
h

−
∫

∂ω

[
uDN

(
uND(gm, ψn), ψn

)
− φn + εuDN (0, ψn)

]
`

for all (h, `) ∈ H1/2(∂ω)×H−1/2(∂ω). This implies the assertion. �
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4.2 Implementation

Our approach to determine the Cauchy data of the functions uDN (fm, ψ) and uND(gm, φ) relies
on a system of boundary integral equations arising from the direct formulation based on Green’s
fundamental solution.

In this section, in order to simplify the formulae, we use the following notation: Σ = ∂Ω and Γ = ∂ω.

Assuming that u ∈ H1(Ω\ω) solves Laplace’s equation, then Green’s representation formula implies
the relation

u(x) =

∫

Σ∪Γ

{
G(x,y)

∂u

∂n
(y)− ∂G(x,y)

∂ny
u(y)

}
dσy, x ∈ Ω\ω,

where the Green function G is given by

G(x,y) =





− 1

2π
log ‖x− y‖, if d = 2,

1

4π‖x− y‖ , if d = 3.

Using the jump properties of the layer potentials, we obtain the direct boundary integral formulation
of the problem

u(x) =

∫

Γ∪Σ
G(x,y)

∂u

∂n
(y)dσy +

1

2
u(x)−

∫

Γ∪Σ

∂G(x,y)

∂ny
u(y)dσy, x ∈ Γ ∪ Σ. (4.2)

We restrict ourselves to the two-dimensional situation d = 2.

Let A,B ∈ {Γ,Σ} which represent the boundaries. Then the expression (4.2) includes the single
layer operator defined by

S : C(A)→ C(B),
(
SAB

)
(ρ)(x) = − 1

2π

∫

A
log ‖x− y‖ ρ(y)dσy, (4.3)

and the double layer operator defined by

D : C(A)→ C(B),
(
DAB

)
(ρ)(x) =

1

2π

∫

A

〈x− y,ny〉
‖x− y‖2 ρ(y)dσy, (4.4)

with the densities ρ being the Cauchy data of u at the boundary A. The equation (4.2) in combination
with (4.3) and (4.4) amounts to the Dirichlet-to-Neumann map, which is given by the following system
of integral equations

[
SΓΓ SΣΓ

SΓΣ SΣΣ

] [
∂nu|Γ
∂nu|Σ

]
=

[
1
2 I +DΓΓ DΣΓ

DΓΣ
1
2 I +DΣΣ

] [
u|Γ
u|Σ

]
.

Reordering this system of boundary integral equations yields the missing Cauchy data of the solu-
tion uDN (fm, ψ) ∈ H1(Ω\ω) of problem (2.3) by

[
1
2 I +DΓΓ −SΣΓ

−DΓΣ SΣΣ

] [
u|Γ
∂nu|Σ

]
=

[
SΓΓ −DΣΓ

−SΓΣ
1
2 I +DΣΣ

] [
ψ
fm

]
(4.5)

and of the solution uND(gm, φ) ∈ H1(Ω\ω) of Problem (2.4) by

[
SΓΓ −DΣΓ

−SΓΣ
1
2 I +DΣΣ

] [
∂nu|Γ
u|Σ

]
=

[
1
2 I +DΓΓ −SΣΓ

−DΓΣ SΣΣ

] [
φ
gm

]
. (4.6)
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The boundary integral operators on the left hand side of the systems (4.5) and (4.6) of boundary
integral equations are continuous and satisfy a G̊arding inequality with respect to L2(Γ) × H−1/2(Σ)
and H−1/2(Γ)×L2(Σ), respectively, provided that diam(Ω) < 1. Since injectivity follows from potential
theory, these systems of integral equations are uniquely solvable according to the Riesz-Schauder
theory. With the help of the solutions given by (4.5) and (4.6), we can compute the Kohn-Vogelius
functional (3.2) and its gradient and Hessian. The same holds true for the regularized functional Kε.

The next step towards the solution of the boundary value problem is the numerical approximation of
the integral operators included in (4.5) and (4.6), respectively, which first requires the parametrization
of the integral equations. To that end, we insert parameterizations γ : [0, 2π]→ Γ and σ : [0, 2π]→ Σ
of the boundaries. For the approximation of the unknown Cauchy data, we use the collocation method
based on trigonometric polynomials. Applying the trapezoidal rule for the numerical quadrature and
the regularization technique along the lines of [31] to deal with the singular integrals, we arrive at an
exponentially convergent boundary element method provided that the data and the boundaries and
thus the solution are arbitrarily smooth.

Since the Hessian of the functional Kε(φ, ψ) does not depend on the argument (φ, ψ), the Newton
scheme converges in one iteration. Especially, the Hessian is positive definite since the functional
under consideration is convex. We can thus use the conjugate gradient method [27] to compute the
Newton update. Therefore, we can efficiently determine the functions (φ, ψ) ∈ H1/2(Γ) × H−1/2(Γ)
such that it holds uND(gm, φ) = uDN (fm, ψ) for the current boundary Γ = ∂ω.

4.3 Numerical validation

We shall validate the data completion approach by some numerical test examples. We choose Ω as the
ball of radius 0.4, which is centered in 0. If we take the Cauchy data of a known harmonic function u
at the outer boundary ∂Ω as data (fm, gm), the desired Cauchy data (φ, ψ) ∈ H1/2(∂ω)× H−1/2(∂ω)
at the inclusion’s boundary ∂ω are just (u|∂ω, ∂nu|∂ω).

The settings for the data completion algorithm are as follows. The regularization parameter ε for
the data completion functional (4.1) is set to ε = 0.1, ε = 0.01, or ε = 0.001. We use N = 200
boundary elements per boundary for the discretization of the boundary integral equations in (4.5)
and (4.6), respectively. Hence, the computed Cauchy data (φN , ψN ) at the inclusion’s boundary ∂ω
are represented by N = 200 boundary elements each.

Figure 1: The ball with ellipse inclusion (left-hand side) and with potato inclusion (right-hand side).
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In our first example, we consider the ellipse with semi-axis hx = 0.25 and hy = 0.15 as inclusion ω,
compare the left plot of Figure 1. In the second example, we have a potato shaped inclusion ω,
compare the right plot of Figure 1. We moreover prescribe the Cauchy data (fm, gm) of the harmonic
function u(x, y) = x2 − y2. The approximation errors for the different geometries and regularization
parameters are found in Table 1, where the respective Sobolev norms are computed by means of appro-
priately weighted Fourier series. In particular, we observe that the best choice for the regularization
parameter is ε = 0.01 since therefore the approximation errors are the smallest ones. We like to stress
that an increase of the number N of boundary elements does not increase accuracy, which reflects the
severe ill-posedness of the problem under consideration.

regularization
ε = 0.1 ε = 0.05 ε = 0.01 ε = 0.005 ε = 0.001

parameter

el
li

p
se

‖φ−φN‖H1/2(Γ)

‖φ‖
H1/2(Γ)

1.7256 · 10−1 1.5610 · 10−1 1.4621 · 10−1 2.3244 · 10−1 2.3302 · 10−1

‖ψ−ψN‖H−1/2(Γ)

‖ψ‖
H−1/2(Γ)

1.3689 · 10−2 1.3586 · 10−2 7.7903 · 10−3 1.2139 · 10−1 1.2085 · 10−1

p
ot

at
o

‖φ−φN‖H1/2(Γ)

‖φ‖
H1/2(Γ)

8.0964 · 10−2 5.0993 · 10−2 8.1978 · 10−2 8.4939 · 10−2 8.7713 · 10−2

‖ψ−ψN‖H−1/2(Γ)

‖ψ‖
H−1/2(Γ)

4.2829 · 10−2 2.6365 · 10−2 3.5529 · 10−2 3.6279 · 10−2 3.7131 · 10−2

Table 1: The approximation errors for the data completion approach in dependence of the regular-
ization parameter.

5 Resolution of the inverse obstacle problem with the trial method

We now aim to numerically solve the inverse obstacle problem (1.1). The general idea is to use the
previous data completion step in order to reconstruct u|∂ω and ∂nu|∂ω on an approximation ∂ω of the
real inclusion and then to use the so-called trial method in order to update the shape of the inclusion.

We first present the trial method and then illustrate the efficiency of our method with some numerical
simulations.

5.1 Background and motivation

The trial method is a fixed-point type iterative method, which is well-known from the solution of
free boundary problems (see, e.g., [9, 22, 38] and the references therein). In the context of inverse
problems, it has been used for example in [37].

We shall assume in the following that the domain ω is starlike. Hence, we can represent the
inclusion’s boundary ∂ω by a parametrization γ : [0, 2π]→ R2 in polar coordinates, that is

∂ω =
{
γ(s) = r(s)er(s) ; s ∈ [0, 2π]

}
,

where er(s) =
(

cos(s), sin(s)
)>

denotes the unit vector in the radial direction. The radial function r(s)
is supposed to be a positive function in Cper([0, 2π]), where

Cper([0, 2π]) =
{
r ∈ C([0, 2π]) ; r(0) = r(2π)

}
,

14



such that dist(∂Ω, ∂ω) > 0.

The trial method to solve the conductivity problem problem (1.1) requires an update rule. Suppose
that the actual void’s boundary is ∂ωk. Then the data completion problem yields a state uk which
satisfies 




∆uk = 0 in Ω\ωk,
uk = fm on ∂Ω,

∂nuk = gm on ∂Ω.

The new boundary ∂ωk+1 is now determined by moving the old boundary into the radial direction,
which is expressed by the update rule

γk+1 = γk + δrk er. (5.1)

The computation of the update function δrk is the topic of the next section.

5.2 Update rule

The update function δrk ∈ Cper([0, 2π]) should be constructed in such a way that the desired homo-
geneous Dirichlet boundary condition will be (approximately) satisfied at the new boundary ∂ωk+1,
i.e.,

uk ◦ γk+1
!

= 0 on [0, 2π],

where uk is assumed to be smoothly extended into the exterior of Ω\ωk if required.
The traditional update rule is obtained by linearizing uk ◦ (γk + δrk er) with respect to the update

function δr. This yields the equation

uk ◦ γk+1 ≈ uk ◦ γk +

(
∂uk
∂er
◦ γk

)
δrk.

We decompose the derivative of uk in the direction er into its normal and tangential components:

∂uk
∂er

=
∂uk
∂n
〈er,n〉+

∂uk
∂t
〈er, t〉 on ∂ωk.

Hence, defining F (δrk) = uk ◦ γk +

(
∂uk
∂er
◦ γk

)
δrk, we arrive at the update equation

F (δrk) = uk ◦ γk +

[(
∂uk
∂n
◦ γk

)
〈er,n〉+

(
∂uk
∂t
◦ γk

)
〈er, t〉

]
δrk

!
= 0. (5.2)

Remark 5.1 We mention that the solution of the data completion problem according to Section 4
immediately yields the quantities uk|∂ωk

and ∂nuk|∂ωk
. Since uk|∂ωk

is expressed in terms of trigono-
metric polynomials, it is also straightforward to compute

(
∂uk
∂t
◦ γk

)
(s) =

1

‖γ ′k(s)‖
∂uk
∂s

(s).

Consequently, all terms required in (5.2) are available.
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5.3 Discretization of the sought boundary

For the numerical computations, we discretize the radial function rnk associated with the boundary ∂ωk
by a finite Fourier series according to

rnk (s) = a0 +
n−1∑

`=1

{
a` cos(`s) + b` sin(`s)

}
+ an cos(ns). (5.3)

This obviously ensures that rnk is always an element of Cper([0, 2π]). To determine the update func-
tion δrnk , represented likewise by a finite Fourier series, we insert the N ≥ 2n equidistantly distributed
points s` = 2π`/N into the update equations (5.2):

F (δrnk )
!

= 0 in all the points s1, . . . , sN .

This is a discrete least-squares problem which can simply be solved by the normal equations.

5.4 Numerical results

We shall illustrate our approach by some numerical test examples. We choose Ω as the ball of radius 0.4,
which is centered in 0. Knowing the inclusion ω, we can compute the current measurements gm from
a given voltage distribution fm. For the specific voltage distribution fm(x, y) = y|∂Ω, we try to
reconstruct the inclusion ω in the following by using the synthetic data (fm, gm).

The settings for the data completion algorithm are as in Subsection 4.3, i.e., the regularization
parameter ε for the data completion functional (4.1) is set to 0.01, which turned out to be the best
choice. We use 200 boundary elements per boundary for the discretization of the boundary integral
equations in (4.5) and (4.6), respectively.

The reconstruction is performed by the trial method detailed previously. Precisely, the sought
inclusion is represented by a Fourier series with 10 terms, i.e., we have n = 5 in (5.3). The initial
guess is always a ball of radius 0.3 (always indicated via the red boundary in the subsequent figures)
and we stop the trial method after 20 iterations, where the damping factor h = 0.2 is used. This
means that the update from (5.2) is multiplied with h before computing the new iterate in accordance
with (5.1).

In our first example, we consider again the ellipse with semi-axis hx = 0.25 and hy = 0.15 as
inclusion ω, compare the left plot of Figure 1. In the second example, we have again the potato
shaped inclusion ω, compare the right plot of Figure 1. We add 1% and 5% noise, respectively, to the
respective synthetic current measurement gm.

The final reconstructions, indicated via the green boundary, can be found in Figure 2 for the first
example and in Figure 3 for the second example; on the left-hand side the reconstructions for the
noise level 1% are shown and on the right-hand side the reconstructions for the noise level level 5%
are shown. The intermediate iterates are indicated by the blue boundaries.

In order to better understand the reconstruction algorithm, we draw 25 realizations with noise
level 5 % for both obstacles. They can be found in Figure 4 for the ellipse inclusion on the left-hand
side and for the potato inclusion on the right-hand side. Since we are dealing with starshaped domains,
we can compute the mean of the realizations by taking the mean of the respective Fourier coefficients.
The mean shape is plotted in green. As one readily infers, the reconstructions vary around the mean
shapes which basically coincides with the sought inclusions.
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Figure 2: Iterates (in blue) and the final reconstructions for the first example (in green) with 1%
noise (left-hand side) and with 5% noise (right-hand side).

Figure 3: Iterates (in blue) and the final reconstructions for the second example (in green) with 1%
noise (left-hand side) and with 5% noise (right-hand side).

Figure 4: 25 reconstructions and mean shape (in green) in case of the ellipse inclusion (left-hand
side) and in case of the potato inclusion (right-hand side).
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6 Conclusion

In the present article, we solved the data completion problem for Laplace’s equation by the mini-
mization of the Kohn-Vogelius functional, which has been regularized with respect to the associated
energy norm. The minimization of the regularized Kohn-Vogelius functional has been performed by a
Newton scheme, which results in a direct solver. By employing a collocation method based on trigono-
metric polynomials, we arrive at a very efficient numerical method for the data completion problem.
We then combined this data completion algorithm with the trial method in order to solve an inverse
obstacle problem. It updates a given inclusion such that the desired inclusion’s homogeneous Dirichlet
boundary condition is approximately satisfied. This yields an iterative method for the detection of
inclusions in electric impedance tomography.
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