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CONVERGENCE ANALYSIS OF ENERGY CONSERVING EXPLICIT1

LOCAL TIME-STEPPING METHODS FOR THE WAVE EQUATION⇤2

MARCUS J. GROTE† , MICHAELA MEHLIN‡ , AND STEFAN A. SAUTER§3

Abstract. Local adaptivity and mesh refinement are key to the e�cient simulation of wave4
phenomena in heterogeneous media or complex geometry. Locally refined meshes, however, dictate5
a small time-step everywhere with a crippling e↵ect on any explicit time-marching method. In [18]6
a leap-frog (LF) based explicit local time-stepping (LTS) method was proposed, which overcomes7
the severe bottleneck due to a few small elements by taking small time-steps in the locally refined8
region and larger steps elsewhere. Here a rigorous convergence proof is presented for the fully-discrete9
LTS-LF method when combined with a standard conforming finite element method (FEM) in space.10
Numerical results further illustrate the usefulness of the LTS-LF Galerkin FEM in the presence of11
corner singularities.12
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1. Introduction. E�cient numerical methods are crucial for the simulation of16

time-dependent acoustic, electromagnetic or elastic wave phenomena. Finite element17

methods (FEM), in particular, easily accommodate varying mesh sizes or polyno-18

mial degrees. Hence, they are remarkably e↵ective and widely used for the spatial19

discretization in heterogeneous media or complex geometry. However, as spatial dis-20

cretizations become increasingly accurate and flexible, the need for more sophisticated21

time-integration methods for the resulting systems of ordinary di↵erential equations22

(ODE) becomes all the more apparent.23

Today’s standard use of local adaptivity and mesh refinement causes a severe bot-24

tleneck for any standard explicit time integration. Even if the refined region consists25

of only a few small elements, those smallest elements will impose a tiny time-step ev-26

erywhere for stability reasons. To overcome that geometry induced sti↵ness, various27

local time integration strategies were devised in recent years. Typically the mesh is28

partitioned into a “coarse” part, where most of the elements are located, and a “fine”29

part, which contains the remaining few smallest elements. Inside the “coarse” part,30

standard explicit methods are used for time integration. Inside the “fine” part, local31

time-stepping (LTS) methods either use implicit or explicit time integration.32

Locally implicit methods are based on implicit-explicit (IMEX) approaches com-33

monly used in CFD for operator splitting [2, 31]. They require the solution of a34

linear system inside the refined region at every time-step, which becomes increasingly35

expensive (and ill-conditioned) as the mesh size decreases [33]. Alternatively, expo-36

nential Adams methods [29] apply the matrix exponential locally in the fine part while37

reducing to the underlying Adams-Bashforth scheme elsewhere.38

Locally implicit or exponential time integrators typically use the same time-step39
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2 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

everywhere but apply di↵erent methods in the ”fine” and the ”coarse” part. In40

contrast, explicit LTS methods typically use the same method everywhere but take41

smaller time-steps inside the “fine” region [24]; hence, they remain fully explicit.42

Since the finite-di↵erence based adaptive mesh refinement (AMR) method by Berger43

and Oliger [5], various explicit LTS were proposed in the context of discontinuous44

Galerkin (DG) FEM, which permit a di↵erent time-step inside each individual ele-45

ment [23, 35, 21, 46, 14, 15]. In [16] multiple time-stepping algorithms were presented46

which allow any choice of explicit Adams type or predictor-corrector scheme for the47

integration of the coarse region and any choice of ODE solver for the integration of48

the fine part. High-order explicit LTS methods for wave propagation were derived in49

[26, 27, 25] starting either from Leap-Frog, Adams-Bashforth or Runge-Kutta meth-50

ods.51

In [11, 4, 13], Collino et al. proposed a first energy conserving LTS method for the52

wave equation which was analyzed in [12, 32]. This second-order method conserves53

a discrete energy and thereby guarantees stability, but it requires at every time-step54

the solution of a linear system at the interface between the fine and the coarser55

elements; hence, it is not fully explicit. A fully explicit second-order LTS method was56

proposed for Maxwell’s equations by Piperno [41] and further developed in [20, 37].57

In [36, 42], the high-order energy conserving explicit LTS method proposed in [18] was58

successfully applied to 3D seismic wave propagation on a large-scale parallel computer59

architecture.60

Despite the many di↵erent explicit LTS methods that were proposed and success-61

fully used for wave propagation in recent years, a rigorous fully discrete space-time62

convergence theory is still lacking. In fact, convergence has been proved only for the63

method of Collino et al. [12, 11, 32] and very recently for the locally implicit method64

for Maxwell’s equations by Verwer [47, 17, 30], neither fully explicit. Indeed, the65

di�culty in proving convergence of fully explicit LTS methods is twofold. On the one66

hand, classical proofs of convergence [22, 3] always assume standard time discretiza-67

tions, while proofs for multirate schemes (in the ODE literature) are always restricted68

to the finite-dimensional case. Hence, standard convergence analysis cannot be easily69

extended to LTS methods for partial di↵erential equations. On the other hand, when70

explicit LTS schemes are reformulated as perturbed one-step schemes, they involve71

products of di↵erential and restriction operators, which do not commute and seem to72

inevitably lead to a loss of regularity.73

Our paper is structured as follows. In Section 2, we consider a general second-74

order wave equation and introduce (the notation for) conforming finite element spaces75

on simplicial meshes with local polynomial orderm. Next, we define finite-dimensional76

restriction operators to the ”fine” grid and formulate the leap-frog (LF) based LTS77

method from [18] in a Galerkin conforming finite element setting. In Section 3, we78

prove continuity and coercivity estimates for the LTS operator that are robust with79

respect to the number of local time-steps p, provided a genuine CFL condition is80

satisfied. Here, new estimates on the coe�cients that appear when rewriting the LTS-81

LF scheme in ”leap-frog manner” play a key-role – see Appendix. Those estimates82

pave the way for the stability estimate of the time iteration operator, for which we83

then prove a stability bound independently of p. In doing so, the truncation errors84

are estimated through standard Taylor arguments for the leap-frog method. Due to85

the local restriction, however, a judicious splitting of the iteration operator and its86

inverse is required to avoid negative powers of h via inverse inequalities. By combining87

our analysis of the semi-discrete formulation, which takes into account the e↵ect of88

local time-stepping, with classical error estimates [3], we eventually obtain optimal89
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CONVERGENCE OF LOCAL TIME-STEPPING METHODS 3

convergence rates explicit with respect to the time step �t, the mesh size h, the90

right-hand side, the initial data and the final time T , which hold uniformly with91

respect to the number of local time-steps p. Finally, in Section 4, we report on some92

numerical experiments inside an L-shaped domain. By applying the LTS method in93

the locally refined region near the re-entrant corner, we obtain a significant speedup94

over a standard leap-frog method with a small time-step everywhere.95

2. Galerkin Discretization with Leap-Frog Based Local Time-Stepping.96

2.1. The Wave Equation. Let ⌦ ⇢ Rd be a Lipschitz domain and L2 (⌦) de-97

note the space of square integrable, real-valued functions with scalar product denoted98

by (·, ·) and corresponding norm by k·k = (·, ·)1/2. Next, let H1 (⌦) denote the stan-99

dard Sobolev space of all square integrable, real-valued functions whose first (weak)100

derivatives are also square integrable; as usual, H1 (⌦) is equipped with the norm101

kukH1

(⌦)

= (kuk2 + kruk2)1/2.102

We now let V ⇢ H1 (⌦) denote a closed subspace of H1 (⌦), such as V = H1 (⌦)103

or V = H1

0

(⌦), and consider a bilinear form a : V ⇥ V ! R which is symmetric,104

continuous, and coercive:105

(1a) a (u, v) = a (v, u) 8u, v 2 V106

and107

(1b) |a (u, v)|  C
cont

kukH1

(⌦)

kvkH1

(⌦)

8u, v 2 V108

and109

(1c) a (u, u) � c
coer

kuk2H1

(⌦)

8u 2 V.110

For given u
0

2 V, v
0

2 L2 (⌦) and F : [0, T ] ! V 0, we consider the wave equation:111

Find u : [0, T ] ! V such that112

(2) (ü, w) + a (u,w) = F (w) 8w 2 V, t > 0113

with initial conditions114

(3) u (0) = u
0

and u̇ (0) = v
0

.115

It is well known that (2)–(3) is well-posed for su�ciently regular u
0

, v
0

and F [34].116

In fact, the weak solution u can be shown to be continuous in time, that is, u 2117

C0(0, T ;V ), u̇ 2 C0(0, T ;L2 (⌦)) – see [[34], Chapter III, Theorems 8.1 and 8.2] for118

details – which implies that the initial conditions (3) are well defined.119

Example 1. The classical second-order wave equation in strong form is given by120

utt �r · (c2ru) = f in ⌦⇥ (0, T ),

u = 0 on �D ⇥ (0, T ),

@u

@⌫
= 0 on �N ⇥ (0, T ),

u|t=0

= u
0

in ⌦,

ut|t=0

= u
0

in ⌦.

(4)121

In this case, we have V := H1

D (⌦) :=
�

w 2 H1 (⌦) : w|
�D

= 0
 

; the bilinear form122

is given by a (u, v) :=
�

c2ru,ru
�

and the right-hand side by F (w) = (f, w) for all123

w 2 V .124
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2.2. Galerkin Finite Element Discretization. For the semi-discretization125

in space, we employ the Galerkin finite element method and we first have to intro-126

duce some notation. We assume for the spatial dimension d 2 {1, 2, 3} and that the127

bounded Lipschitz domain ⌦ ⇢ Rd is an interval for d = 1, a polygonal domain for128

d = 2, and a polyhedral domain for d = 3. Let T := {⌧i : 1  i  NT } denote a129

conforming (i.e.: no hanging nodes), simplicial finite element mesh for ⌦. Let130

h⌧ := diam ⌧ and h := max
⌧2T

h⌧ and h
min

:= min
⌧2T

h⌧131

and denote by ⇢⌧ the diameter of the largest inscribed ball in ⌧ . As a convention, the132

simplices ⌧ 2 T are closed sets. The shape regularity constant � of the mesh T is133

defined by134

� (T ) := max
⌧

8

>

<

>

:

max
n

h⌧
ht

: t 2 T : t \ ⌧ 6= ;
o

d = 1,

h⌧

⇢⌧
d = 2, 3,

135

and the quasi-uniformity constant by136

C
qu

:=
h

h
min

.137

For m 2 N, we define the continuous, piecewise polynomial finite element space138

by139

Sm
T :=

�

u 2 C0 (⌦) | 8⌧ 2 T : u|⌧ 2 Pm

 

,140

where Pm is the space to d-variate polynomials of maximal total degree m. The defi-141

nition of a Lagrangian nodal basis is standard and employs the concept of a reference142

element. Let143

⌧̂ :=

(

x = (xi)
d
i=1

2 Rd
�0

:
d
X

i=1

xi  1

)

144

denote the reference element. For ⌧ 2 T , let �⌧ : b⌧ ! ⌧ denote an a�ne pullback.145

For m � 1, we denote by ⌃̂m a set of nodal points in ⌧̂ unisolvent on Pm, which allow146

to impose continuity across simplex faces. The nodal points on a simplex ⌧ 2 T are147

then given by lifting those of the reference element:148

⌃m
⌧ :=

n

�⌧ (z) : z 2 ⌃̂m
o

.149

The set of global nodal points is given by150

⌃m
T :=

S

⌧2T ⌃
m
⌧ .151

A Lagrange basis for Sm
T is given by (bz,m)z2⌃

m
T

via the conditions152

bz,m 2 Sm
T and 8z0 2 ⌃m

T it holds bz,m (z0) =

⇢

1 z = z0,
0 otherwise.

153

For a subset ⌃ ⇢ ⌃m
T , we define a prolongation map P

⌃

: R⌃ ! Sm
T and a154

restriction map R
⌃

: Sm
T ! R⌃ by155

P
⌃

u =
X

z2⌃

uzbz,m and (R
⌃

v) =

✓

Z

⌦

vbz,m

◆

z2⌃

.156
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CONVERGENCE OF LOCAL TIME-STEPPING METHODS 5

The mass matrix, M
⌃

, is given by157

M
⌃

:=

✓

Z

⌦

bz,mbz0,m

◆

z,z02⌃

.158

If ⌃ = ⌃m
T holds, we write P,R, M short for P

⌃

,R
⌃

, M
⌃

.159

Remark 2. Since M
⌃

= R
⌃

P
⌃

, we also have P�1

⌃

= M�1

⌃

R
⌃

.160

The matrix M
⌃

is the matrix representation of the L2-scalar product with respect161

to the basis (bz,m)z2⌃

. We introduce a diagonally weighted, mesh dependent Eu-162

clidean scalar product which is equivalent to the bilinear form hu,M
⌃

vi (cf. Lemma163

7), where h·, ·i denotes the Euclidean scalar product on R⌃.164

For u = Pu and v = Pv with u = (uz)z2⌃

m
T

and v = (vz)z2⌃

m
T

we set165

(u, v)T :=
X

⌧2T
|⌧ |

X

z2⌃

m
⌧

uzvz =
⌦

D
⌃

m
T
u,v

↵

with

⇢

D
⌃

m
T
= diag [dz : z 2 ⌃m

T ] ,
dz := |supp bz,m| ,166

where, for a measurable set ! ⇢ Rd, we denote by |!| its d-dimensional volume. The167

norm is given by168

kukT := (u, u)1/2T .169

For later use, we define a localized version of D
⌃

m
T
. Let N ⇢ ⌃m

T and define the170

diagonal matrix DN = diag [dN ,z : z 2 ⌃m
T ] by171

dN ,z :=

⇢

dz z 2 N ,
0 z 2 ⌃m

T \N .
172

We define the fine grid restriction operator RN : Sm
T ! Sm

T by173

(5) RN = R�1DNP�1.174

Remark 3. Note that the diagonal matrix DN corresponds to the matrix repre-175

sentation of RN :176

(6) (RNPu, Pv) = hDNu,vi =
X

z2N
dzuzvz.177

For the support of RNu it holds178

supp (RNu) ⇢ ⌦N :=
S

⌧2T
⌧\N 6=;

⌧.179

The operator RN is symmetric positive semi-definite, which follows from dz � 0 and180

the symmetry of the right-hand side in (6).181

We define conforming subspaces of V by182

V m
T := Sm

T \ V .183

Notation 4. We write S short for V m
T if no confusion is possible. Since S =184

Sm
T \V, we may assume that there is a subset ⌃S ⇢ ⌃m

T such that S = span {bz,m : z 2 ⌃S}.185

The operators associated to the continuous and discrete bilinear form are the linear186

mappings A : V ! V 0 and AS : S ! S defined by187

hAu, viV 0⇥V = a (u, v) 8u, v 2 V,188

(ASu, v) = a (u, v) 8u, v 2 S.189190

Here h·, ·iV 0⇥V is the continuous extension of the L2 (⌦) scalar product to the dual191

pairing h·, ·iV 0⇥V .192

This manuscript is for review purposes only.



6 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

Example 5. If homogeneous Dirichlet boundary conditions are imposed for the193

wave equation we have V := H1

0

(⌦) :=
�

u 2 H1 (⌦) | u|@⌦ = 0
 

. The nodal points194

⌃1

T for the P
1

finite element space are the inner triangle vertices and bz,1 is the usual195

continuous, piecewise a�ne basis function for the nodal point z.196

The semi-discrete wave equation then is given by: find uS : [0, T ] ! S such that197

(7a) (üS , v) + a (uS , v) = F (v) 8v 2 S, t > 0198

with initial conditions199

(7b)
(uS (0) , w) = (u

0

, w)

(u̇S (0) , w) = (v
0

, w)

9

=

;

8w 2 S.200

2.3. Discrete LTS-Galerkin FE Formulation. Starting from the leap-frog201

based local time-stepping LTS-LF scheme from [18], we now present the fully discrete202

space-time Galerkin FE formulation. First we let the (global) time-step �t = T/N203

and denote by u
(n)
S = Pu(n)

S the FE approximation at time tn = n�t for the cor-204

responding coe�cient vector (nodal values) u(n)
S 2 R⌃ . Similarly we define the205

right-hand sides fS : [0, T ] ! S and f
(n)
S 2 S by206

(8) (fS , w) = F (w) 8w 2 S and f
(n)
S := fS (tn) ,207

where again f
(n)
S = P f (n)S with corresponding coe�cients f (n)S 2 R⌃.208

Given the numerical solution at times tn�1

and tn, the LTS-LF method then209

computes the numerical solution of (7) at tn+1

by using a smaller time-step�⌧ = �t/p210

inside the regions of local refinement; here, p � 2 denotes the ”coarse” to ”fine” mesh211

size ratio. Clearly, if the maximal velocity in the coarse and the fine regions di↵er212

significantly, the choice of p should also reflect that variation and instead denote the213

local CFL number ratio. In the ”fine” region, the right-hand side is also evaluated at214

the intermediate times tn+m
p
= tn +m�⌧ and we let215

f
(n)
S,m := fS

✓

tn +
m

p
�t

◆

, with f
(n)
S,m = P f (n)s,m, 0  m  p.216

In Algorithm 1, we list the full second-order LTS-LF Algorithm ([18], [26, Alg. 1])217

for the sake of completeness. All computations in Steps 2 and 3 that involve the right-218

hand side f (n)S,m or the sti↵ness matrix A only a↵ect those degrees of freedom inside219

the region of local refinement or directly adjacent to it. The successive updates of the220

coarse unknowns involving w during sub-steps reduce to a single standard LF step of221

size �t and, in fact, can be replaced by it. In that sense, Algorithm 1 yields a local222

time-stepping method. We remark that higher order LTS-LF methods of arbitrarily223

high (even) accuracy were derived and implemented in [18].224

Like the standard leap-frog method (without local time-stepping), the LTS-LF225

Algorithm requires in principle the solution of a linear system involving M at every226

time-step. Although the mass matrix is sparse, positive definite, and well-conditioned227

so that solving linear systems with this matrix is relatively cheap, this computational228

e↵ort is commonly avoided by using either mass-lumping techniques [10, 38], spectral229

elements [7, 9] or discontinuous Galerkin finite elements [1, 28]. The resulting LTS-LF230

scheme is then fully explicit.231
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CONVERGENCE OF LOCAL TIME-STEPPING METHODS 7

Algorithm 1 LTS-LF Galerkin FE Algorithm

1. Set ũ(n)
S,0 := u(n)

S and compute w as

w = M�1

⇣

(M�DN ) f (n)S �A
�

I�M�1DN
�

u(n)
S

⌘

.

2. Compute

ũ(n)
S,1 = ũ(n)

S,0 +
1

2

✓

�t

p

◆

2

⇣

w +M�1

⇣

DN f (n)S �AM�1DN ũ(n)
S,0

⌘⌘

.

3. For m = 1, . . . , p� 1, compute

ũ(n)
S,m+1

= 2ũ(n)
S,m � ũ(n)

S,m�1

+

✓

�t

p

◆

2

 

w +M�1

✓

1

2
DN

⇣

f (n)S,m + f (n)S,�m

⌘

�AM�1DN ũ(n)
S,m

◆

!

4. Compute

u(n+1)

S = �u(n�1)

S + 2ũ(n)
S,p.

In [18], the above LTS-LF Algorithm was rewritten in “leap-frog manner” by232

introducing the perturbed bilinear form ap : S ⇥ S ! R:233

(9) ap (u, v) := a (u, v)� 2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

a
⇣

(RNAS)
j
u, v
⌘

8u, v 2 S234

with associated operator235

(10) AS,p : S ! S, AS,p := AS � 2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

AS (RNAS)
j
.236

Here the constants ↵m
j , j = 1, . . . ,m� 1 are recursively defined for m � 2 by237

(11)

↵2

1

= 1

2

↵3

1

= 3, ↵3

2

= � 1

2

↵m+1

1

= m2

2

+ 2↵m
1

� ↵m�1

1

,
↵m+1

j = 2↵m
j � ↵m�1

j � ↵m
j�1

, j = 2, . . . ,m� 2,
↵m+1

m�1

= 2↵m
m�1

� ↵m
m�2

,
↵m+1

m = �↵m
m�1

.

238

Then the LTS-LF scheme (Algorithm 1) is equivalent to239

(12)

⇣

u
(n+1)

S � 2u(n)
S + u

(n�1)

S , w
⌘

+�t2ap

⇣

u
(n)
S , w

⌘

= �t2
⇣

f
(n)
S , w

⌘

8w 2 S,
⇣

u
(0)

S , w
⌘

= (u
0

, w)

⇣

u
(1)

S , w
⌘

= (u
0

, w) +�t (v
0

, w) + �t2

2

⇣

f
(0)

S (w)� a (u
0

, w)
⌘

9

>

>

=

>

>

;

8w 2 S.
240
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Neither the equivalent formulation (12) nor the constants ↵m
j are ever used in practice241

but only for the purpose of analysis; in fact, the constants ↵m
j do not appear in242

Algorithm 1.243

Remark 6. In (12) the term a (u
0

, w) in the third equation could be replaced by244

ap (u0

, w) which allows for local time-stepping already during the very first time-step.245

In that case, the analysis below also applies but requires a minor change, namely,246

replacing AS by AS,p in (51) and (52). This modification neither a↵ects the stability247

nor the convergence rate of the overall LTS-LF scheme.248

3. Stability and Convergence Analysis.249

3.1. Estimates of the Bilinearform. The following equivalence of the contin-250

uous L2 (⌦)- and mesh-dependent norm is well known.251

Lemma 7. k·kT and k·k are equivalent norms on Sm
T . The constants c

eq

, C
eq

in252

the equivalence estimates253

c
eq

kukT  kuk  C
eq

kukT 8u 2 Sm
T254

only depend on the polynomial degree m and the shape regularity constant � (T ).255

It is also well known that the functions in Sm
T satisfy an inverse inequality (for a256

proof we refer, e.g., [8, (3.2.33) with m = 1, q = r = 2, l = 0, n = d.]1).257

Lemma 8. There exists a constant C
inv

> 0, which only depends on � (T ) and m,258

such that for all ⌧ 2 T259

(13) krukL2

(⌧)  C
inv

h�1

⌧ kukL2

(⌧) , 8u 2 Sm
T .260

The global versions of the inverse inequality involves also the quasi-uniformity constant261

(14) kruk  C
inv

C
qu

h�1 kuk and kukH1

(⌦)


q

1 + C2

inv

C2

qu

h�2 kuk262

for all u 2 Sm
T .263

In the next step, we will estimate kASuk in terms of kukH1

(⌦)

.264

Lemma 9. It holds265

(15) kASuk  C
cont

q

1 + C2

inv

C2

qu

h�2 kukH1

(⌦)

8u 2 S.266

Proof. Since AS is a self-adjoint, positive operator there exists an orthonormal267

system (⌘⌫)
M
⌫=1

such that268

AS⌘⌫ = �⌫⌘⌫269

and270

(⌘⌫ , ⌘µ) = �⌫,µ271

where M := dimS. Hence, every function v 2 S has a representation272

v =
M
X

⌫=1

c⌫⌘⌫ .273

1There is a misprint in this reference: m � 1 should be replaced by m � `, see also [6, (4.5.3)
Lemma].
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For s 2 R we define the norm on S274

|||v|||s :=
(

M
X

µ=1

�sµc
2

µ

)

1/2

.275

It is obvious that for all v 2 S, it holds276

|||v|||
0

= kvk ,277

|||v|||
1

= a (v, v)1/2 Q
(

C
1/2
cont

kvkH1

(⌦)

,

c
1/2
coer

kvkH1

(⌦)

.
278

279

Note that280

|||v|||2
2

:=
M
X

µ=1

�2µc
2

µ =
M
X

µ,⌫=1

�µcµ�⌫c⌫ (⌘µ, ⌘⌫) = (ASv,ASv) .281

We assume that the eigenvalues �⌫ are ordered increasingly. From Lemma 8 we282

conclude that283

�M := max
u2S\{0}

a (u, u)

(u, u)
 C

cont

max
u2S\{0}

kuk2H1

(⌦)

kuk2
(13)

 C
cont

�

1 + C2

inv

C2

qu

h�2

�

284

holds. Hence,285

kASvk2  C
cont

�

1 + C2

inv

C2

qu

h�2

�

M
X

µ=1

�µc
2

µ  C2

cont

�

1 + C2

inv

C2

qu

h�2

�

kvk2H1

(⌦)

.
286

Next, we will estimate the bilinear form ap (·, ·).287

Lemma 10. The operator RN as in (5) has bounded L2 (⌦) norm:288

(16) kRNuk  c�2

eq

kuk 8u 2 Sm
T .289

For u 2 Sm
T it holds290

(17) kRNASuk  C
cont

c2
eq

 

1 +
C2

inv

C2

qu

h2

!

kuk .291

Proof. Let u = Pu and v = Pv with u = (uz)z2⌃

m
T
, v = (vz)z2⌃

m
T
. We employ292

(RNu, v) = hDNu,vi =
X

z2N
dzuzvz.293

Hence294

kRNuk = sup
v2Sm

T \{0}

P

z2N dzuzvz

kvk  sup
v2Sm

T \{0}

P

z2N dz |uz| |vz|
kvk295

 sup
v2Sm

T \{0}

⌦

D
⌃

m
T
u,u

↵

1/2 ⌦
D

⌃

m
T
v,v

↵

1/2

kvk = kukT sup
v2Sm

T \{0}

kvkT
kvk296

 c�2

eq

kuk .297298
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10 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

For the second estimate we employ (15) and (14) to obtain299

(18) kRNASuk  c�2

eq

kASuk  C
cont

c2
eq

�

1 + C2

inv

C2

qu

h�2

�

kuk300

for all u 2 Sm
T .301

Lemma 11. Let the bilinear form a (·, ·) satisfy (1) and let the CFL condition302

(19) C
cont

�t2

 

1 +
C2

inv

C2

qu

h2

!

 min

(

6c2
eq

✓

c
coer

C
cont

◆

3/2

,
4C

cont

max{C
cont

, 3}

)

303

hold.304

Then, the bilinear form ap (·, ·) is continuous,305

|ap (u, v)|  C
cont

 

1 +

r

C
cont

c
coer



12

!

kukH1

(⌦)

kvkH1

(⌦)

306

with307

(20)  :=

✓

C
cont

c2
eq

◆

�t2

 

1 +
C2

inv

C2

qu

h2

!

,308

and symmetric, ap (u, v) = ap (v, u) for all u, v 2 S. Moreover, for any f 2 L2 (⌦),309

the problem: Find u 2 S such that310

ap (u, q) = (f, q) 8q 2 S311

has a unique solution, which satisfies312

kukH1

(⌦)

 2

c
coer

kfk .313

Remark 12. In (19) the condition on the time-step �t implies that �t is essen-314

tially proportional to h and inversely proportional to
p
C

cont

, as c
coer

 C
cont

. Hence315

(19) corresponds to a genuine CFL condition since
p
C

cont

usually corresponds to the316

maximal (physical) wave speed.317

Proof of Lemma 11. If p = 1, the two bilinear forms ap and a coincide and the318

result trivially follows. Thus, we now assume that p � 2.319

a) Continuity. Let u, v 2 S and320

(21) w := u� 2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
u.321

Then, by definition of ap and continuity of a, we have322

|ap (u, v)| = |a (w, v)|  C
cont

kwkH1

(⌦)

kvkH1

(⌦)

.323

By applying the triangle inequality to (21) we obtain324

kwkH1

(⌦)

 kukH1

(⌦)

+
2

p2

�

�

�

�

�

�

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
u

�

�

�

�

�

�

H1

(⌦)

325

 kukH1

(⌦)

+
2

p2

�

�

�

�

�

�

A
�1/2
S

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j
⇣

A
1/2
S RNA

1/2
S

⌘j

A
1/2
S u

�

�

�

�

�

�

H1

(⌦)

.326

327
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From (1), it follows that328

�

�

�

A
�1/2
S u

�

�

�

2

H1

(⌦)

 1

c
coer

kuk2 and
�

�

�

A
1/2
S u

�

�

�

2

 C
cont

kuk2H1

(⌦)

8u 2 S.329

Hence,330

(22) kwkH1

(⌦)


 

1 + Cp

r

C
cont

c
coer

!

kukH1

(⌦)

.331

with332

Cp := sup
v2S\{0}

2

p2

�

�

�

�

�

�

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j
⇣

A
1/2
S RNA

1/2
S

⌘j

v

�

�

�

�

�

�

�

kvk .333

The operator A1/2
S RNA

1/2
S is self-adjoint with respect to the L2 (⌦) scalar product334

and positive semi-definite. It is well-known that under these conditions we have335

Cp = max
�2�

⇣
A

1/2
S RNA

1/2
S

⌘
2

p2

�

�

�

�

�

�

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

�j

�

�

�

�

�

�

.336

From (17) we conclude that the spectrum �
⇣

A
1/2
S RNA

1/2
S

⌘

is contained in the interval337
h

0, C
cont

c2
eq

⇣

1 +
C2

inv

C2

qu

h2

⌘i

so that338

Cp  sup
0x

2

p2

�

�

�

�

�

�

p�1

X

j=1

↵p
j

✓

x

p2

◆j
�

�

�

�

�

�

339

with  as in (20). The CFL condition (19), together with the continuity and the340

coercivity of a and p � 2, implies  2
⇥

0, 4p2
⇤

. Thus, Lemma 18 (Appendix) implies341

(23) Cp  

12
,342

which we insert in (22) to obtain343

kwkH1

(⌦)


 

1 +


12

r

C
cont

c
coer

!

kukH1

(⌦)

.344

b) Symmetry. This follows since AS , RN are self-adjoint with respect to the345

L2 (⌦) scalar product.346

c) Coercivity. Note that the problem: Find u 2 S such that347

ap (u, q) = (f, q) 8q 2 S348

can be solved in two steps: Find w 2 S such that349

(24) a (w, q) = (f, q) 8q 2 S.350

Then u is the solution of351
0

@I � 2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j

1

Au = w.352
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12 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

By the similar arguments as in the first part of this proof, one concludes that the353

CFL-condition (19) implies354

(25)

�

�

�

�

�

�

2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
q

�

�

�

�

�

�

H1

(⌦)

 1

2
kqkH1

(⌦)

8q 2 S355

so that356

kukH1

(⌦)

 2 kwkH1

(⌦)

.357

The well-posedness of problem (24) follows from the Lax-Milgram lemma as well as358

the estimate359

kwkH1

(⌦)

 1

c
coer

kfk .
360

Corollary 13. The bilinear form ap (u, v) is symmetric, continuous and coer-361

cive. Hence, there exists an L2 (⌦)-orthonormal eigensystem (�S,p,k, ⌘S,p,k)
M
k=1

for362

ap (·, ·), i.e.,363

ap (⌘S,p,k, v) = �S,p,k (⌘S,p,k, v) 8v 2 S,
(⌘S,p,k, ⌘S,p,`) = �k,` 8k, ` 2 {1, . . . ,M} ,364

with real and positive eigenvalues �S,p,k > 0. Let the CFL condition (19) be satisfied.365

Then, the smallest and largest eigenvalue satisfy366

�min

p � c
coer

2
and �max

p  3

2
C

cont

�

1 + C2

inv

C2

qu

h�2

�

.367

Proof. We start with the smallest eigenvalue. It holds368
�

�

�

�

�

�

a

0

@

2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
v, v

1

A

�

�

�

�

�

�

 C
cont

�

�

�

�

�

�

2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
v

�

�

�

�

�

�

H1

(⌦)

kvkH1

(⌦)

369

(23)

 C
cont

r

C
cont

c
coer



12
kvk2H1

(⌦)

370
371

with  as in (20). Hence,372

ap (v, v) = a (v, v)� a

0

@

2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
v, v

1

A373

�
 

c
coer

� C
cont

r

C
cont

c
coer



12

!

kvk2H1

(⌦)

.374

375

The CFL condition (19) implies376

(26a) ap (v, v) �
c
coer

2
kvk2H1

(⌦)

� c
coer

2
kvk2377

which yields the lower bound on the smallest eigenvalue �min

p .378

For the largest eigenvalue �max

p , we get by using the CFL condition and (14) that379

(26b) |ap (v, v)| 
3

2
C

cont

kvk2H1

(⌦)

 3

2
C

cont

�

1 + C2

inv

C2

qu

h�2

�

kvk2 ,380

from which the upper bound on �max

p follows.381
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Corollary 14. Let the assumptions of Lemma 11 be satisfied. Then382

�

�

�

A�1

S,pw
�

�

�

 2

c
coer

kwk 8w 2 S,383

uniformly in p.384

Proof. We write385

A�1

S,p =

0

@IS � 2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j

1

A

�1

A�1

S .386

Note that for all w 2 S it holds387
�

�

�

�

�

�

2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
w

�

�

�

�

�

�

=

�

�

�

�

�

�

R
1/2
N

2

p2

p�1

X

j=1

↵p
j

 

(�t)2

p2
R

1/2
N ASR

1/2
N

!j�1

✓

�t

p

◆

2

⇣

R
1/2
N AS

⌘

w

�

�

�

�

�

�

.388

Since RN is symmetric, positive semi-definite (see Remark 3), we infer from (16) that389
�

�

�

R
1/2
N v

�

�

�

 c�1

eq

kvk holds for all v 2 S. From Lemmas 8 and 9 we obtain for all v 2 S390

�

�

�

⇣

R
1/2
N AS

⌘

v
�

�

�

 c�1

eq

kASvk391

 C
cont

c
eq

q

1 + C2

inv

C2

qu

h�2 kvkH1

(⌦)

 C
cont

c
eq

�

1 + C2

inv

C2

qu

h�2

�

kvk .392
393

Thus, we argue as for (22) and get394

�

�

�

�

�

�

2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
w

�

�

�

�

�

�

 C 0
p

C
cont

c2
eq

✓

�t

p

◆

2

�

1 + C2

inv

C2

qu

h�2

�

kwk395

with396

C 0
p := max

�2�
⇣
R

1/2
N ASR

1/2
N

⌘
2

p2

�

�

�

�

�

�

p�1

X

j=1

↵p
j

 

(�t)2 �

p2

!j�1

�

�

�

�

�

�

.397

From Lemma 18 we conclude that C 0
p  (p2 � 1)/12  p2/12 so that (19) implies398

�

�

�

�

�

�

2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j
w

�

�

�

�

�

�

 C
cont

12 c2
eq

(�t)2
�

1 + C2

inv

C2

qu

h�2

�

kwk  1

2
kwk .399

Thus, we have proved400

(27)

�

�

�

�

�

�

�

0

@IS � 2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j

1

A

�1

w

�

�

�

�

�

�

�

 2 kwk 8w 2 S.401

From (1c) we conclude that402

�

�A�1

S w
�

�  c�1

coer

kwk 8w 2 S,403

which together with (27) leads to the assertion.404
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14 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

3.2. Error equation and estimates. To derive a priori error estimates for the405

LTS/FE-Galerkin solution of (12), we first introduce the new function406

(28) v
(n+1/2)
S :=

u
(n+1)

S � u
(n)
S

�t
,407

and rewrite (12) as a one-step method408

⇣

v
(n+1/2)
S , q

⌘

=
⇣

v
(n�1/2)
S , q

⌘

��tap

⇣

u
(n)
S , q

⌘

+�tF (n) (q) 8q 2 S,

��t
⇣

v
(n+1/2)
S , r

⌘

+
⇣

u
(n+1)

S , r
⌘

=
⇣

u
(n)
S , r

⌘

8r 2 S,
⇣

u
(0)

S , w
⌘

= (u
0

, w)
⇣

v
(1/2)
S , w

⌘

= (v
0

, w) +
�t

2

⇣

F (0) (w)� a (u
0

, w)
⌘

8w 2 S.

(29)

409

The elimination of v(n+1/2)
S from the second equation by using the first one leads410

to the operator equation411

(30a)

 

v
(n+1/2)
S

u
(n+1)

S

!

= S

 

v
(n�1/2)
S

u
(n)
S

!

+ (�t) f (n)
S

✓

1
�t

◆

412

with AS,p as in (10), f (n)
S as in (8), and413

(30b) S : =



IS ��tAS,p

�tIS IS ��t2AS,p

�

.414

415

Next, we will derive a recursion for the error416

e(n+1/2)
v = v

�

tn+1/2

�

� v
(n+1/2)
S and e(n+1)

u = u (tn+1

)� u
(n+1)

S ,417

where u is the solution of (2)-(3) and v the solution of the corresponding first-order418

formulation: Find u, v : [0, T ] ! V such that419

(v̇, w) + a (u,w) = F (w) 8w 2 V, t > 0,

(v, w) = (u̇, w) 8w 2 V, t > 0,(31)420

and initial conditions u(0) = u
0

and v(0) = v
0

.421

To split the error we introduce the first-order formulation of the semi-discrete422

problem (7). Find uS , vS : [0, T ] ! S such that423

(v̇S , w) + a (uS , w) = F (w)
(vS , w) = (u̇S , w)

�

8w 2 S, t > 0,

(uS (0) , w) = (u
0

, w)

(vS (0) , w) = (v
0

, w)

9

=

;

8w 2 S.
424
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Hence, we may write e(n+1) :=

✓

e
(n+ 1

2

)
v , e

(n+1)

u

◆|
= e(n+1)

S + e(n+1)

S,�t with425

e(n+1)

S :=

 

e
(n+1/2)
v,S

e
(n+1)

u,S

!

:=

✓

v
�

tn+1/2

�

� vS
�

tn+1/2

�

u (tn+1

)� uS (tn+1

)

◆

,(32)426

e(n+1)

S,�t :=

 

e
(n+1/2)
v,S,�t

e
(n+1)

u,S,�t

!

:=

 

vS
�

tn+1/2

�

� v
(n+1/2)
S

uS (tn+1

)� u
(n+1)

S

!

.(33)427

428

We first investigate the error e(n+1)

S,�t and introduce429

�(n+1/2)
1

:=
vS
�

tn+1/2

�

� vS
�

tn�1/2

�

�t
+AS,puS (tn)� f

(n)
S ,(34a)430

�(n+1)

2

:=
uS (tn+1

)� uS (tn)

�t
� vS

�

tn+1/2

�

.(34b)431
432

These equations can be written in the form433

vS
�

tn+1/2

�

= vS
�

tn�1/2

�

+ (�t)�(n+1/2)
1

� (�t)AS,puS (tn) + (�t) f (n)
S ,(35)434

uS (tn+1

) = uS (tn) + (�t) vS
�

tn+1/2

�

+ (�t)�(n+1)

2

.(36)435436

By subtracting the first equation in (29) from (35) and the second equation in (29)437

from (36) we obtain438

e
(n+1/2)
v,S,�t = e

(n�1/2)
v,S,�t � (�t)AS,pe

(n)
u,S,�t + (�t)�(n+1/2)

1

,

e
(n+1)

u,S,�t = e
(n)
u,S,�t + (�t) e(n+1/2)

v,S,�t + (�t)�(n+1)

2

.
439

Eliminating the term e
(n+1/2)
v,S,�t in the second equation by using the first one yields440

e
(n+1/2)
v,S,�t = e

(n�1/2)
v,S,�t � (�t)AS,pe

(n)
u,S,�t + (�t)�(n+1/2)

1

,

e
(n+1)

u,S,�t = (�t) e(n�1/2)
v,S,�t + e

(n)
u,S,�t � (�t)2 AS,pe

(n)
u,S,�t,

+(�t)2 �(n+1/2)
1

+ (�t)�(n+1)

2

.

441

We rewrite it in operator form by using the operator S as in (30)442

 

e
(n+1/2)
v,S,�t

e
(n+1)

u,S,�t

!

= S

 

e
(n�1/2)
v,S,�t

e
(n)
u,S,�t

!

+�tS
1

 

�(n+1/2)
1

�(n+1)

2

!

443

with444

S
1

=



IS 0
(�t) IS IS

�

445

This recursion can be resolved446
 

e
(n+1/2)
v,S,�t

e
(n+1)

u,S,�t

!

= Sn

 

e
(1/2)
v,S,�t

e
(1)

u,S,�t

!

+�t
n�1

X

`=0

S`S
1

 

�(n�`+1/2)
1

�(n+1�`)
2

!

.447

Let I2⇥2

S :=



IS 0
0 IS

�

and observe that448

�

I2⇥2

S �S
��1

=
1

�t



(�t) IS �IS
A�1

S,p 0

�

449
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and450

�

I2⇥2

S �S
��1

S
1

=
1

�t



0 �IS
A�1

S,p 0

�

.451

We introduce452

�(n) =
�

I2⇥2

S �S
��1

S
1

 

�(n+1/2)
1

�(n+1)

2

!

=
1

�t

 

��(n+1)

2

A�1

S,p�
(n+1/2)
1

!

(37)453

(34)

=
1

�t

0

@

�uS(tn+1

)�uS(tn)
�t + vS

�

tn+1/2

�

uS (tn) +A�1

S,p

✓

vS(tn+1/2)�vS(tn�1/2)
�t � f

(n)
S

◆

1

A454

455

and the di↵erences456

di↵(n) :=

 

di↵(n�1/2)
1

di↵(n)
2

!

:= �(n) � �(n+1)457

=

0

B

@

uS(tn+2

)�2uS(tn+1

)+uS(tn)
�t2 +

vS(tn+1/2)�vS(tn+3/2)
�t

uS(tn)�uS(tn+1

)

�t +A�1

S,p

✓

�vS(tn+3/2)+2vS(tn+1/2)�vS(tn�1/2)
�t2 +

f
(n+1)

S �f
(n)

S
�t

◆

1

C

A

458

459

and use (3.2) to rewrite the error representation (3.2) as460

 

e
(n+1/2)
v,S,�t

e
(n+1)

u,S,�t

!

= Sn

 

e
(1/2)
v,S,�t

e
(1)

u,S,�t

!

+�t
n�1

X

`=0

S`
�

I2⇥2

S �S
�

�(n�`)461

= Sn

 

e
(1/2)
v,S,�t

e
(1)

u,S,�t

!

+�t
n�1

X

`=1

S` di↵(n�`)
462

+�t�(n) ��tSn�(1).(38)463464

3.2.1. Stability. As usual, the convergence analysis can be split into an estimate465

for the stability of the iteration operator S (corresponding to a homogeneous right-466

hand side) and a consistency estimate. We begin with the analysis of the stability.467

Theorem 15 (Stability). Let the CFL condition (19) be satisfied. Then the leap-468

frog scheme (12) is stable469
�

�

�

v
(n+1/2)
S

�

�

�

+
�

�

�

u
(n)
S

�

�

�

 C
0

⇣

�

�

�

v
(1/2)
S

�

�

�

+
�

�

�

u
(1)

S

�

�

�

⌘

,470

where C
0

is independent of n, �t, h, and T .471

Proof. We choose the eigensystem as introduced in Corollary 13 and expand472

u
(n)
S =

M
X

k=1

�
(n)
S,p,k⌘S,p,k and v

(n�1/2)
S =

M
X

k=1

�
(n�1/2)
S,p,k ⌘S,p,k.473

Inserting this into the recursion

 

v
(n+1/2)
S

u
(n+1)

S

!

= S

 

v
(n�1/2)
S

u
(n)
S

!

leads to a recursion474

for the coe�cients �(n+1/2)
S,p,k , �(n+1)

S,p,k :475

(39)

 

�
(n+1/2)
S,p,k

�
(n+1)

S,p,k

!

= Sp

 

�
(n�1/2)
S,p,k

�
(n)
S,p,k

!

476
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with477

Sp =

✓

1 � (�t)�S,p,k
�t 1� (�t)2 �S,p,k

◆

.478

The eigenvalues of Sp are given by479

1� �S,p,k (�t)2

2
± i�t

2

r

�S,p,k

⇣

4� �S,p,k (�t)2
⌘

.480

The CFL condition (19) implies (�t)2 �max

p < 4 so that the eigenvalues are di↵erent481

and Sp is diagonalizable. From [45, Satz (6.9.2)(2)] we conclude that there is a norm482

|||·||| in R2 such that the associated matrix norm |||Sp||| is bounded from above by the483

spectral radius:484

⇢ (Sp) = max
±

�

�

�

�

�

1� �S,p,k (�t)2

2
± i�t

2

r

�S,p,k

⇣

4� �S,p,k (�t)2
⌘

�

�

�

�

�

= 1.485

Hence486
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 

�
(n+1/2)
S,p,k

�
(n+1)

S,p,k

!

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

 

�
(1/2)
S,p,k

�
(1)

S,p,k

!

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

.487

Since all norms in R2 are equivalent there exists a constant C such that488

(40)

r

�

�

�

�
(n)
S,p,k

�

�

�

2

+
�

�

�

�
(n�1/2)
S,p,k

�

�

�

2

 C

r

�

�

�

�
(1/2)
S,p,k

�

�

�

2

+
�

�

�

�
(1)

S,p,k

�

�

�

2

.489

The eigenfunctions ⌘S,p,k are chosen to be an orthonormal system in L2 (⌦) so that490

�

�

�

v
(n+1/2)
S

�

�

�

2

+
�

�

�

u
(n)
S

�

�

�

2

=
M
X

k=1

�

�

�

�
(n)
S,p,k

�

�

�

2

+
�

�

�

�
(n+1/2)
S,p,k

�

�

�

2

 C2

M
X

k=1

✓

�

�

�

�
(1/2)
S,p,k

�

�

�

2

+
�

�

�

�
(1)

S,p,k

�

�

�

2

◆

(41)

491

= C2

✓

�

�

�

v
(1/2)
S

�

�

�

2

+
�

�

�

u
(1)

S

�

�

�

2

◆

492
493

which shows the L2 (⌦)-stability of the method.494

3.2.2. Error Estimates. In this section we first estimate the discrete error495

e
(n+1)

u,S,�t. Standard estimates on the semi-discrete error then lead to an estimate of the496

total error e(n+1)

u .497

Theorem 16. Let the assumptions of Lemma 11 be satisfied. Let the solution498

of the semi-discrete equation (7) satisfy uS 2 W 5,1 �[0, T ] ;L2 (⌦)
�

and the right-499

hand side fS 2 W 3,1 �[0, T ] ;L2 (⌦)
�

. Then the fully discrete solution u
(n+1)

S of (12)500

satisfies the error estimate501

�

�

�

e
(n+1)

u,S,�t

�

�

�

 C�t2 (1 + T )M (uS , fS)502

with503

(42) M (uS , fS) := max

⇢

max
1`3

�

�@`tfS
�

�

L1
([0,T ];L2

(⌦))

, max
3`5

�

�@`tuS

�

�

L1
([0,T ];L2

(⌦))

�

504

and a constant C which is independent of n, �t, T , h, p, fS, and uS.505
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Proof. We apply the stability estimate to the second component of the error506

representation (38). From Theorem 15 and (37) we obtain2507

�

�

�

e
(n+1)

u,S,�t

�

�

�

 C
0

�

�

�

e(1)S,�t

�

�

�

`1
+ C

0

�t
n�1

X

`=1

�

�

�

di↵(n�`)
�

�

�

`1
(43)508

+�t
�

�

�

�(n)
�

�

�

`1
+ C

0

�t
�

�

�

�(1)

�

�

�

`1
.509

510

For the summands in the second term of the right-hand side in (43), we obtain by a511

Taylor argument and Corollary 14512

(44) di↵(n) =

 

0

�u̇S

�

tn+1/2

�

+A�1

S,p

⇣

�v̈S
�

tn+1/2

�

+ ḟS
�

tn+1/2

�

⌘

!

+
(�t)2

24
E I

n513

with514
�

�E I

n

�

�

`1
 2

✓

1 +
3

c
coer

◆

Mn (uS , fS)515

and516

Mn (uS , fS) := max

⇢

max
1`3

�

�@`tfS
�

�

L1
([tn,tn+1

];L2

(⌦))

, max
3`5

�

�@`tuS

�

�

L1([tn�1/2,tn+2

];L2

(⌦))

�

.517

Now, let  denote the second component of the first term in the right-hand side518

of (44),519

 := �u̇S

�

tn+1/2

�

+A�1

S,p

⇣

�v̈S
�

tn+1/2

�

+ ḟS
�

tn+1/2

�

⌘

.520

By using üS +ASuS = fS (cf. (7a) and (10)) we obtain521

 = �@t
⇣

uS

�

tn+1/2

�

�A�1

S,pASuS

�

tn+1/2

�

⌘

522

=
2

p2
A�1

S,p

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(ASRN )j AS u̇S

�

tn+1/2

�

523

=

0

@IS � 2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2j

(RNAS)
j

1

A

�1

2 (�t)2

p4
RN

p�1

X

j=1

↵p
j

✓

�t

p

◆

2(j�1)

(ASRN )j�1

AS u̇S

�

tn+1/2

�

.524

525

We employ (27) and argue as in the proof of Corollary 14 to obtain526

k k  2

�

�

�

�

�

�

R
1/2
N

2

p2

p�1

X

j=1

↵p
j

✓

�t

p

◆

2(j�1)

⇣

R
1/2
N ASR

1/2
N

⌘j�1

✓

�t

p

◆

2

R
1/2
N AS u̇S

�

tn+1/2

�

�

�

�

�

�

�

527

 2
(�t)2

12 c2
eq

�

�AS u̇S

�

tn+1/2

�

�

� .528

529

This yields530

�

�

�

�u̇S

�

tn+1/2

�

+A�1

S,p

⇣

�v̈S
�

tn+1/2

�

+ ḟS
�

tn+1/2

�

⌘

�

�

�

 (�t)2

6c2
eq

�

�AS u̇S

�

tn+1/2

�

�

�531

 (�t)2

6c2
eq

⇣

�

�@3t uS

�

tn+1/2

�

�

�+
�

�

�

ḟ
(n+1/2)
S

�

�

�

⌘

.532
533

2For a pair of functions v = (v1, v2)
| 2 S2 we use the notation kvk`1 := kv1k+ kv2k.
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In summary we have proved534

�

�

�

di↵(n)
�

�

�

`1
 (�t)2

12

✓

1 +
8

c2
eq

+
3

c
coer

◆

Mn (uS , fS) .535

Next, we estimate the remaining terms in (43). We employ the discrete wave536

equation and a Taylor argument to obtain537

�t
�

�

�

�(n)
�

�

�

`1
 (�t)2

24

�

�@3t uS

�

�

L1
([tn,tn+1

];L2

(⌦))

(45)

538

+

�

�

�

�

�

�

A�1

S,p

0

@AS,puS (tn) + üS (tn)� f
(n)
S

| {z }

=0

+
u̇S

�

tn+1/2

�

� u̇S

�

tn�1/2

�

�t
� üS (tn)

1

A

�

�

�

�

�

�

(46)

539

Cor. 14

 (�t)2

24

�

�@3t uS

�

�

L1
([tn,tn+1

];L2

(⌦))

540

+
2

c
coer

�

�

�

�

�

u̇S

�

tn+1/2

�

� u̇S

�

tn�1/2

�

�t
� üS (tn)

�

�

�

�

�

(47)

541

 (�t)2

24

�

�@3t uS

�

�

L1
([tn,tn+1

];L2

(⌦))

+
2

c
coer

(�t)2

24

�

�@4t uS

�

�

L1
([tn,tn+1

];L2

(⌦))

542

 (�t)2

24

✓

1 +
2

c
coer

◆

Mn (uS , fS) .543
544

The estimate of the last term in (43) follows by setting n = 1 in (45)545

C
0

�t
�

�

�

�(1)

�

�

�

`1
 C

0

(�t)2

24

✓

1 +
2

c
coer

◆

M
1

(uS , fS) .546

Inserting these estimates into (43) leads to547

�

�

�

e
(n+1)

u,S,�t

�

�

�

 C
0

�

�

�

e(1)S,�t

�

�

�

`1
+ C

0

(�t)2

12

✓

1 +
8

c2
eq

+
3

c
coer

◆

�t
n�1

X

`=1

Mn�` (uS , fS)

(48)

548

+
(�t)2

24

✓

1 +
2

c
coer

◆

(Mn (uS , fS) + C
0

M
1

(uS , fS))

(49)

549

 C
0

�

�

�

e(1)S,�t

�

�

�

`1
+

(�t)2

12

✓

C
0

T

✓

1 +
8

c2
eq

+
3

c
coer

◆

+

✓

1 +
2

c
coer

◆

1 + C
0

2

◆

M (uS , fS)

(50)

550
551

It remains to estimate the initial error e(1)S,�t. Let u
(0)

S := uS (0) and v
(0)

S :=552

u̇S (0) 2 S be as in (7b). A Taylor argument for some 0  ✓  ⌧  �t and the553
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definition of u(0)

S , u(1)

S as in (12) lead to554

�

�

�

uS (t
1

)� u
(1)

S

�

�

�


�

�

�

�

✓

u
(0)

S + (�t) v(0)S +
�t2

2
üS (⌧)

◆

�
✓

u
(0)

S + (�t) v(0)S +
�t2

2

⇣

f
(0)

S �ASu
(0)

S

⌘

◆

�

�

�

�

(51)

555

=
�t2

2

�

�

�

fS (⌧)� f
(0)

S �AS

⇣

uS (⌧)� u
(0)

S

⌘

�

�

�

556

 �t3

2

✓

�

�

�

ḟS

�

�

�

L1
([0,�t];L2

(⌦))

+ kAS u̇S (✓)k
◆

557

 �t3

2

✓

2
�

�

�

ḟS

�

�

�

L1
([0,�t];L2

(⌦))

+
�

�@3t uS

�

�

L1
([0,�t];,L2

(⌦))

◆

558

 3

2
�t3M (uS , fS) .559560

For the initial error in vS we obtain by a similar Taylor argument561

�

�

�

vS
�

t
1/2

�

� v
(1/2)
S

�

�

�

=

�

�

�

�

u̇S

�

t
1/2

�

� v
(0)

S � �t

2

⇣

f
(0)

S �ASuS,0

⌘

�

�

�

�

(52)

562

=
�t

2

�

�

�

üS (⌧) +ASu
(0)

S � f
(0)

S

�

�

�

563

=
�t

2

�

�

�

üS (⌧) +ASuS (⌧)� fS (⌧) +AS

⇣

u
(0)

S � uS (⌧)
⌘

+ fS (⌧)� f
(0)

S

�

�

�

564

 (�t)2

2

✓

�

�@3t uS

�

�

L1
([0,�t];L2

(⌦))

+ 2
�

�

�

ḟS

�

�

�

L1
([0,�t];L2

(⌦))

◆

565

 3 (�t)2

2
M (uS , fS) .566567

In summary, we have estimated the initial error by568

(53)
�

�

�

e(1)S,�t

�

�

�

`1
 3 (�t)2

2
(1 +�t)M (uS , fS) .569

The combination of (48) and (53) leads to the assertion.570

Theorem 16 can be combined with known error estimates for the semi-discrete571

error e(n+1)

S to obtain an error estimate of the total error.572

Theorem 17. Let the bilinear form a (·, ·) satisfy (1) and let the CFL condition573

(19) hold. Assume that the exact solution satisfies u 2 W 1,1 �[0, T ] ;Hm+1 (⌦)
�

\574

W 5,1 �[0, T ] ;L2 (⌦)
�

. Then, the corresponding fully discrete Galerkin FE formulation575

with local time-stepping (12) has a unique solution u
(n+1)

S which satisfies the error576

estimate577

�

�

�

u(tn+1

)� u
(n+1)

S

�

�

�

 C (1 + T )
�

hm+1 +�t2
�

M (u, uS , fS)578

with579

M (u, uS , fS) := max
n

M (uS , fS) , kukW 1,1
([0,T ];Hm+1

(⌦))

o

580

and a constant C which is independent of n, �t, h, p, fS, uS, and the final time T .581
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Proof. The existence of the semi-discrete solution uS follows from [3, Theorem582

3.1], which directly implies the existence of our fully discrete LTS-Galerkin FE solu-583

tion.584

Next, we split the total error585

e(n+1) =
⇣

v
�

tn+1/2

�

� v
(n+1/2)
S , u (tn+1

)� u
(n+1)

S

⌘|
586

according to (32). Following [40], we note that the semi-discrete solution uS inherits587

the same regularity from u 2 W 5,1 �[0, T ] ;L2 (⌦)
�

; thus, we can apply Theorem 16.588

To estimate the remaining error from the semi-discretization,589

e(n+1)

S =
�

v
�

tn+1/2

�

� vS
�

tn+1/2

�

, u (tn+1

)� uS (tn+1

)
�|

,590

we use [3, Theorem 3.1] to obtain591

(54)

ku� uSkL1
([0,T ];L2

(⌦))

 Chm+1

⇣

kukL1
([0,T ];Hm+1

(⌦))

+ ku̇kL2

([0,T ];Hm+1

(⌦))

⌘

.592

Inspection of the proof in [3, Theorem 3.1] shows that the constant in (54) can be593

estimated by C
⇣

1 +
p
T
⌘

. Using a Hölder inequality in the second summand of the594

right-hand side in (54) thus results in595

ku̇kL2

([0,T ];Hm+1

(⌦))


p
T ku̇kL1

([0,T ];Hm+1

(⌦))

,596

from which we conclude that597

ku� uSkL1
([0,T ];L2

(⌦))

 C 0hm+1 (1 + T ) kukW 1,1
([0,T ];Hm+1

(⌦))

598

with a constant C 0 which is independent of the final time T . Finally, the triangle599

inequality leads to the assertion.600

(a) Initial mesh (b) First refinement (c) Second refinement

Fig. 1. Initial coarse mesh and local mesh refinement towards re-entrant corner. The fine
region (in green) of the final mesh of form (c) always corresponds to the innermost 30 elements.

4. Numerical Experiments. Numerical experiments that corroborate the con-601

vergence rates and illustrate the stability properties of the LTS-LF scheme when602

combined with continuous or discontinuous Galerkin FEM [28] were presented in [18].603

Together with its higher order versions, the LTS-LF method was also successfully604

applied to other (vector-valued) second-order wave equations from electromagnetics605
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Fig. 2. Snapshots of the numerical solution at time t = 0, 0.1, 0.3, 0.4, 0.5, 0.6

[26] and elasticity [36, 42] . Here we demonstrate the versatility of the LTS approach606

in the presence of adaptive mesh refinement near a re-entrant corner.607

To illustrate the usefulness of the LTS approach, we consider the classical scalar608

wave equation (Example 1) in the L-shaped domain ⌦ shown in Fig. 1. The re-entrant609

corner is located at (0.5, 0.5) and we set c = 1, f = 0 and the final time T = 2. Next,610

we impose homogeneous Neumann boundary conditions on all boundaries and choose611

as initial conditions the vertical Gaussian plane wave612

u
0

(x, y) = exp
�

�(x� x
0

)2/�2
�

, v
0

(x, y) = 0, (x, y) 2 ⌦ ,613

of width � = 10�5 centered about x
0

= 0.25 . For the spatial discretization we opt614

for P2 continuous finite elements with mass lumping [10].615

First, we partition ⌦ into equal triangles of size h
init

– see Fig. 1 (a). Then we616

bisect the six elements nearest to the corner and subsequently bisect in the resulting617

mesh all elements with a vertex at (0.5, 0.5). Starting from that intermediate mesh,618

shown in Fig. 1 (b), we repeat this procedure again with the six elements adjacent619

to the corner, which finally yields the mesh shown in Fig. 1 (c). Hence the mesh620

refinement ratio, that is the ratio between smallest elements in the ”coarse” and the621

”fine” regions, in the resulting mesh is 4:1. We therefore choose a four times smaller622

time-step �⌧ = �t/p with p = 4 inside the fine region.623

Clearly, this refinement strategy is heuristic, as optimal mesh refinement in the624

presence of corner singularities generally requires hierarchical mesh refinement [39].625

However, when the region of local mesh refinement itself contains a sub-region of even626

smaller elements, and so forth, any local time-step will again be overly restricted due627

to even smaller elements inside the ”fine” region. To remedy the repeated bottleneck628

caused by hierarchical mesh refinement, multi-level local time-stepping methods were629

proposed in [19, 42], which permit the use of the appropriate time-step at every level of630

mesh refinement. For simplicity, we restrict ourselves here to the standard (two-level)631
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Fig. 3. Comparison of run times between LTS-LF and standard LF vs. number of global
refinements with constant coarse/fine mesh size ratio p = 4.

LTS-LF scheme.632

In Fig. 2 we display snapshots of the numerical solution at di↵erent times: the633

plane wave splits into two wave fronts travelling in opposite directions. The lower634

half of the right propagating wave is reflected while the upper half proceeds into the635

upper left quadrant. To avoid any loss in the global CFL condition and reach the636

optimal global time-step, we always include an overlap by one element, that is, we637

also advance the numerical solution inside those elements immediately next to the638

”fine” region with the fine time-step.639

In Fig. 3 we compare the runtime of the LTS-LF(p) on a sequence of meshes using640

the refinement strategy depicted in Fig. 1, with the runtime of a standard LF scheme641

with a time-step�t/4 on the entire domain. As expected, the LTS-LF method is faster642

than the standard LF scheme, in fact increasingly so, as the number of refinements643

increases. Indeed, as the number of degrees of freedom in the ”coarse” region grows644

much faster than in the ”fine” region, where it remains essentially constant, the use645

of local time-stepping becomes increasingly beneficial on finer meshes.646
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Appendix A. Some Auxiliary Estimates.650

Lemma 18. For p � 2 let ↵p
j , j = 1, . . . , p � 1, be recursively defined as in (11).651

Then, the constants ↵p
j are given by652

(55) ↵p
j =

j
Y

`=0

�

`2 � p2
�

(2j + 2)!
, 1  j  p� 1, p � 2653
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Moreover, for  2
⇥

0, 4p2
⇤

it holds654

�

�

�

�

�

�

2

p2

p�1

X

j=1

↵p
j

✓



p2

◆j
�

�

�

�

�

�

 

12
and

�

�

�

�

�

�

2

p2

p�1

X

j=1

↵p
j

✓



p2

◆j�1

�

�

�

�

�

�

 p2 � 1

12
.655

Proof. To show that the constants ↵p
j are in fact given by (55), we first use the656

identity657

(56) p(p+ j)(p+ j � 1) . . . (p+ 1)p(p� 1) . . . (p� j + 1)(p� j) =
j
Y

`=0

�

p2 � `2
�

658

to rewrite (55) as659

(57) ↵p
j =

(�1)j+1

p (p+ j)!

(p� j � 1)! (2j + 2)!
.660

By using (57) it is then straightforward to verify that ↵p
j satisfies the recursive defi-661

nition in (11).662

Next, one proves by induction that663

p�1

X

j=1

↵p
jx

j =
p2

2
+

Tp

�

1� x
2

�

� 1

x
664

p�1

X

j=1

↵p
jx

j�1 =
p2x+ 2Tp

�

1� x
2

�

� 2

2x2

.665

666

with the Čebyšev polynomials Tp of the first kind. We recall that667

(58) T (m)

p (1) =
m�1

Y

`=0

�

p2 � `2
�

(2`+ 1)
and

�

�

�

T (m)

p

�

�

�

L1
([�1,1])

= T (m)

p (1) ,668

where the first relation follows from [43, (1.97)] and the second one from [43, Theorem669

2.24], see also [44, Corollary 7.3.1].670

Now, let x = /p2. The condition  2
⇥

0, 4p2
⇤

implies
⇥

1� x
2

, 1
⇤

⇢ [�1, 1]. Hence,671

a Taylor argument shows that there exists ⇠ 2 [�1, 1] such that672

�

�

�

�

�

�

p�1

X

j=1

↵p
jx

j

�

�

�

�

�

�

=

�

�

�

�

�

p2

2
+

Tp (1)� x
2

T 0
p (1) +

x2

8

T 00
p (⇠)� 1

x

�

�

�

�

�

673

=
�

�

�

x

8
T 00
p (⇠)

�

�

�


p2
�

p2 � 1
�

24
x =

p2 � 1

24
,(59)674

675

where we have also used (58). Similarly, we get676

�

�

�

�

�

�

p�1

X

j=1

↵p
jx

j�1

�

�

�

�

�

�
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�

�

�

�

�

�

p2x+ 2
⇣

Tp (1)� x
2

T 0
p (1) +

x2

8

T 00
p (⇠)

⌘

� 2

2x2

�

�

�

�

�

�

677

=

�

�

�

�

�

�

p2x+ 2
⇣

1� xp2

2

+ x2

8

T 00
p (⇠)

⌘

� 2

2x2
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�

�
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�T 00
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