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Abstract. Local adaptivity and mesh refinement are key to the efficient simulation of wave
phenomena in heterogeneous media or complex geometry. Locally refined meshes, however, dictate
a small time-step everywhere with a crippling effect on any explicit time-marching method. In [18]
a leap-frog (LF) based explicit local time-stepping (LTS) method was proposed, which overcomes
the severe bottleneck due to a few small elements by taking small time-steps in the locally refined
region and larger steps elsewhere. Here a rigorous convergence proof is presented for the fully-discrete
LTS-LF method when combined with a standard conforming finite element method (FEM) in space.
Numerical results further illustrate the usefulness of the LTS-LF Galerkin FEM in the presence of
corner singularities.
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1. Introduction. Efficient numerical methods are crucial for the simulation of
time-dependent acoustic, electromagnetic or elastic wave phenomena. Finite element
methods (FEM), in particular, easily accommodate varying mesh sizes or polyno-
mial degrees. Hence, they are remarkably effective and widely used for the spatial
discretization in heterogeneous media or complex geometry. However, as spatial dis-
cretizations become increasingly accurate and flexible, the need for more sophisticated
time-integration methods for the resulting systems of ordinary differential equations
(ODE) becomes all the more apparent.

Today’s standard use of local adaptivity and mesh refinement causes a severe bot-
tleneck for any standard explicit time integration. Even if the refined region consists
of only a few small elements, those smallest elements will impose a tiny time-step ev-
erywhere for stability reasons. To overcome that geometry induced stiffness, various
local time integration strategies were devised in recent years. Typically the mesh is
partitioned into a “coarse” part, where most of the elements are located, and a “fine”
part, which contains the remaining few smallest elements. Inside the “coarse” part,
standard explicit methods are used for time integration. Inside the “fine” part, local
time-stepping (LTS) methods either use implicit or explicit time integration.

Locally implicit methods are based on implicit-explicit (IMEX) approaches com-
monly used in CFD for operator splitting [2, 31]. They require the solution of a
linear system inside the refined region at every time-step, which becomes increasingly
expensive (and ill-conditioned) as the mesh size decreases [33]. Alternatively, expo-
nential Adams methods [29] apply the matrix exponential locally in the fine part while
reducing to the underlying Adams-Bashforth scheme elsewhere.

Locally implicit or exponential time integrators typically use the same time-step
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2 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

everywhere but apply different methods in the ”fine” and the ”coarse” part. In
contrast, explicit LTS methods typically use the same method everywhere but take
smaller time-steps inside the “fine” region [24]; hence, they remain fully explicit.
Since the finite-difference based adaptive mesh refinement (AMR) method by Berger
and Oliger [5], various explicit LTS were proposed in the context of discontinuous
Galerkin (DG) FEM, which permit a different time-step inside each individual ele-
ment [23, 35, 21, 46, 14, 15]. In [16] multiple time-stepping algorithms were presented
which allow any choice of explicit Adams type or predictor-corrector scheme for the
integration of the coarse region and any choice of ODE solver for the integration of
the fine part. High-order explicit LTS methods for wave propagation were derived in
[26, 27, 25] starting either from Leap-Frog, Adams-Bashforth or Runge-Kutta meth-
ods.

In [11, 4, 13], Collino et al. proposed a first energy conserving LTS method for the
wave equation which was analyzed in [12, 32]. This second-order method conserves
a discrete energy and thereby guarantees stability, but it requires at every time-step
the solution of a linear system at the interface between the fine and the coarser
elements; hence, it is not fully explicit. A fully explicit second-order LTS method was
proposed for Maxwell’s equations by Piperno [41] and further developed in [20, 37].
In [36, 42], the high-order energy conserving explicit LT'S method proposed in [18] was
successfully applied to 3D seismic wave propagation on a large-scale parallel computer
architecture.

Despite the many different explicit LTS methods that were proposed and success-
fully used for wave propagation in recent years, a rigorous fully discrete space-time
convergence theory is still lacking. In fact, convergence has been proved only for the
method of Collino et al. [12, 11, 32] and very recently for the locally implicit method
for Maxwell’s equations by Verwer [47, 17, 30], neither fully explicit. Indeed, the
difficulty in proving convergence of fully explicit LTS methods is twofold. On the one
hand, classical proofs of convergence [22, 3] always assume standard time discretiza-
tions, while proofs for multirate schemes (in the ODE literature) are always restricted
to the finite-dimensional case. Hence, standard convergence analysis cannot be easily
extended to LTS methods for partial differential equations. On the other hand, when
explicit LTS schemes are reformulated as perturbed one-step schemes, they involve
products of differential and restriction operators, which do not commute and seem to
inevitably lead to a loss of regularity.

Our paper is structured as follows. In Section 2, we consider a general second-
order wave equation and introduce (the notation for) conforming finite element spaces
on simplicial meshes with local polynomial order m. Next, we define finite-dimensional
restriction operators to the ”fine” grid and formulate the leap-frog (LF) based LTS
method from [18] in a Galerkin conforming finite element setting. In Section 3, we
prove continuity and coercivity estimates for the LTS operator that are robust with
respect to the number of local time-steps p, provided a genuine CFL condition is
satisfied. Here, new estimates on the coefficients that appear when rewriting the LTS-
LF scheme in "leap-frog manner” play a key-role — see Appendix. Those estimates
pave the way for the stability estimate of the time iteration operator, for which we
then prove a stability bound independently of p. In doing so, the truncation errors
are estimated through standard Taylor arguments for the leap-frog method. Due to
the local restriction, however, a judicious splitting of the iteration operator and its
inverse is required to avoid negative powers of h via inverse inequalities. By combining
our analysis of the semi-discrete formulation, which takes into account the effect of
local time-stepping, with classical error estimates [3], we eventually obtain optimal
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CONVERGENCE OF LOCAL TIME-STEPPING METHODS 3

convergence rates explicit with respect to the time step At, the mesh size h, the
right-hand side, the initial data and the final time 7', which hold uniformly with
respect to the number of local time-steps p. Finally, in Section 4, we report on some
numerical experiments inside an L-shaped domain. By applying the LTS method in
the locally refined region near the re-entrant corner, we obtain a significant speedup
over a standard leap-frog method with a small time-step everywhere.

2. Galerkin Discretization with Leap-Frog Based Local Time-Stepping.

2.1. The Wave Equation. Let Q C R? be a Lipschitz domain and L? () de-
note the space of square integrable, real-valued functions with scalar product denoted
by (-,-) and corresponding norm by ||| = (-, «)1/2. Next, let H! () denote the stan-
dard Sobolev space of all square integrable, real-valued functions whose first (weak)
derivatives are also square integrable; as usual, H! (f2) is equipped with the norm
lull 10y = lull® + [ Vul )72

We now let V' C H' (Q) denote a closed subspace of H! (Q2), such as V = H' (Q)
or V = H} (), and consider a bilinear form a : V x V — R which is symmetric,
continuous, and coercive:

(1a) a(u,v) = a(v,u) Yu,v eV

and

(1b) |a (u,v)] < Coont [[ull g1 @) 0]l 1 ) Yu,v €V
and

(IC) a (u7u) > Ceoer Hu”i]l(g) Yu € V.

For given uy € V,vy € L?(Q) and F : [0,7] — V', we consider the wave equation:
Find w : [0,7] — V such that

(2) (t,w) +a(u,w)=F(w) YweV,t>0
with initial conditions
(3) w(0) =ug and 4 (0) =wp.

It is well known that (2)—(3) is well-posed for sufficiently regular ug, vg and F [34].
In fact, the weak solution u can be shown to be continuous in time, that is, u €
C%0,T;V),u € C°0,T;L?(Q)) — see [[34], Chapter III, Theorems 8.1 and 8.2] for
details — which implies that the initial conditions (3) are well defined.

EXAMPLE 1. The classical second-order wave equation in strong form is given by
uy — V- (2Vu) = f in Q x (0,7),
u=0 onT'p x (0,T),

Ju
(4) 5—0 onTn x (0,7T),
ule=0 = uo in €,
Ugli=0 = g n Q.

In this case, we have V := H} (Q) = {w e H' () : wlp, = 0}; the bilinear form
is given by a (u,v) := (c*Vu,Vu) and the right-hand side by F (w) = (f,w) for all
weV.

This manuscript is for review purposes only.
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4 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

2.2. Galerkin Finite Element Discretization. For the semi-discretization
in space, we employ the Galerkin finite element method and we first have to intro-
duce some notation. We assume for the spatial dimension d € {1,2,3} and that the
bounded Lipschitz domain Q C R? is an interval for d = 1, a polygonal domain for
d = 2, and a polyhedral domain for d = 3. Let 7 := {r, : 1 <i < Ny} denote a
conforming (i.e.: no hanging nodes), simplicial finite element mesh for Q. Let

h; :=diam7 and h:=maxh, and Ay, = minh,
TeT TET

and denote by p, the diameter of the largest inscribed ball in 7. As a convention, the
simplices 7 € T are closed sets. The shape regularity constant « of the mesh 7T is
defined by

max{%::tET:tﬁT#@} d=1,
T d=23,

and the quasi-uniformity constant by

Cop =

hmin

For m € N, we define the continuous, piecewise polynomial finite element space
by
ST = {UECO(Q) VT €T :ul, €Pp},

where P, is the space to d-variate polynomials of maximal total degree m. The defi-
nition of a Lagrangian nodal basis is standard and employs the concept of a reference

element. Let
%::{x—( 1€]R legl}

denote the reference element. For 7 € T, let ¢, : T — 7 denote an affine pullback.
For m > 1, we denote by ™ a set of nodal points in 7 unisolvent on P,,, which allow
to impose continuity across simplex faces. The nodal points on a simplex 7 € T are
then given by lifting those of the reference element:

:{@(z):zeim}.
The set of global nodal points is given by
? = UTGTET'
A Lagrange basis for ST is given by (bzym)zezgl via the conditions

1 2=2,

bem € S7 and V2" € X7 it holds b () = { 0 otherwise

For a subset ¥ C X2, we define a prolongation map Py : R® — ST and a
restriction map Ry : ST — R> by

Psu = Z Uzbym and  (Ryv) = (/Q vbz,m> ez'
4

zEX

This manuscript is for review purposes only.



CONVERGENCE OF LOCAL TIME-STEPPING METHODS 5

157 The mass matrix, My, is given by

158 MZ = (/ bz,mbz/7m> .
Q z,2' €8

159 If ¥ = X7 holds, we write P, R, M short for Ps, Ry, Myx.
160 REMARK 2. Since My = Ry Ps, we also have Pgl = M;Rg.

161 The matrix My, is the matrix representation of the L2-scalar product with respect
162 to the basis (b.,m), cs- We introduce a diagonally weighted, mesh dependent Eu-
163 clidean scalar product which is equivalent to the bilinear form (u, Myv) (cf. Lemma
164 7), where (-,-) denotes the Euclidean scalar product on R*.

165 For u = Pu and v = Pv with u = (Uz)zez¢ and v = (UZ)zez¢ we set

. Dyr = diagld, : z € 37
166 Uy V) = T uv, = (Dygmu,v) with T T
) ( ’ )T 7;*‘ |z§m °r < ¥ > { d,:= |supp bz,m' 5

167 where, for a measurable set w C R?, we denote by |w]| its d-dimensional volume. The

168 norm is given by
. 1/2
160 = (u, )3

170  For later use, we define a localized version of Dgg Let N C X% and define the
171 diagonal matrix Dy = diag[dy - : z € XF] by

172 d _Jd: zeN,
" N2Z 00 zenp\W.

173 We define the fine grid restriction operator Ry : ST — ST by

174 (5) Ry =R'DyP L

175 REMARK 3. Note that the diagonal matriz Das corresponds to the matriz repre-

176 sentation of Ras:

177 (6) (RyvPu, Pv) = (Dyu,v) = > d.u.v..
zEN

178 For the support of Ryu it holds

179 supp (Rayu) C Qn :=U rer 7
TNNZD

180 The operator Ryr is symmetric positive semi-definite, which follows from d, > 0 and
181 the symmetry of the right-hand side in (6).

182 We define conforming subspaces of V' by

183 Vi =87nV.

184 NOTATION 4. We write S short for VI if no confusion is possible. Since S =

185 SPNV, we may assume that there is a subset g C X% such that S = span{b. m : z € X5} .}
186 The operators associated to the continuous and discrete bilinear form are the linear

187 mappings A:V — V' and Ag : S — S defined by
188 <Au7 U>V’><V =a (u’v) Vu,v €V,
189 (Asu,v) = a(u,v) Yu,v € S.

191 Here (-,")y.y is the continuous extension of the L? () scalar product to the dual
192 pairing (-, )y gy -

This manuscript is for review purposes only.
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6 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

ExXAMPLE 5. If homogeneous Dirichlet boundary conditions are imposed for the
wave equation we have V := Hg (Q) := {u € H' (Q) | u|yq =0}. The nodal points
Z%— for the Py finite element space are the inner triangle vertices and b is the usual
continuous, piecewise affine basis function for the nodal point z.

The semi-discrete wave equation then is given by: find ug : [0,7] — S such that
(7a) (ig,v) + a(ug,v) =F(v) YveSt>0
with initial conditions

(us (0),w) = (ug, w)
(7b) Yw € S.
(s (0),w) = (vo,w)

2.3. Discrete LTS-Galerkin FE Formulation. Starting from the leap-frog
based local time-stepping LTS-LF scheme from [18], we now present the fully discrete
space-time Galerkin FE formulation. First we let the (global) time-step At = T/N

(n) _

and denote by ug Pugl) the FE approximation at time ¢, = nAt for the cor-

responding coefficient vector (nodal values) g’) € R* . Similarly we define the
right-hand sides fs: [0,7] — S and f(n) € S by

(8) (fs,w)=F(w) YweS and [ = fs(ts),

where again f( ") = = Pfy (" with corresponding coefficients £y M e RE

Given the numerlcal solution at times t,,_; and t,, the LTS-LF method then
computes the numerical solution of (7) at ¢,,41 by using a smaller time-step AT = At/p
inside the regions of local refinement; here, p > 2 denotes the ”coarse” to ”fine” mesh
size ratio. Clearly, if the maximal velocity in the coarse and the fine regions differ
significantly, the choice of p should also reflect that variation and instead denote the
local CFL number ratio. In the ”fine” region, the right-hand side is also evaluated at
the intermediate times t,,LJr% =t, + mAT and we let

£ = fs <tn + %At) . with f§) = P£{". 0<m<p.

In Algorithm 1, we list the full second-order LTS-LF Algorithm ([18], [26, Alg. 1])
for the sake of completeness. All computations in Steps 2 and 3 that involve the right-
hand side f ("721 or the stiffness matrix A only affect those degrees of freedom inside
the region of local refinement or directly adjacent to it. The successive updates of the
coarse unknowns involving w during sub-steps reduce to a single standard LF step of
size At and, in fact, can be replaced by it. In that sense, Algorithm 1 yields a local
time-stepping method. We remark that higher order LTS-LF methods of arbitrarily
high (even) accuracy were derived and implemented in [18].

Like the standard leap-frog method (without local time-stepping), the LTS-LF
Algorithm requires in principle the solution of a linear system involving M at every
time-step. Although the mass matrix is sparse, positive definite, and well-conditioned
so that solving linear systems with this matrix is relatively cheap, this computational
effort is commonly avoided by using either mass-lumping techniques [10, 38], spectral
elements [7, 9] or discontinuous Galerkin finite elements [1, 28]. The resulting LTS-LF
scheme is then fully explicit.

This manuscript is for review purposes only.



CONVERGENCE OF LOCAL TIME-STEPPING METHODS 7

Algorithm 1 LTS-LF Galerkin FE Algorithm

1. Set ﬁfgng = ugn) and compute w as
w=M"((M-Dy){” - A(I-M 'Dy)uf").
2. Compute
1 /At n _
ﬁ(s’j{:ﬁ(s’fg+§<?> (w+M" (DyEl” - AM~'Dya))).

3. Form=1,...,p—1, compute
At\?
ES’TLT)rH*l = Qﬁg’% _ ~gn7)n 1+ (?) (w + M~ ( Dy (f(n) + f(nlm)

~ AM™'Dyiy) >)

4. Compute

WD = gD |95l

232 In [18], the above LTS-LF Algorithm was rewritten in “leap-frog manner” by
233 introducing the perturbed bilinear form a, : § x § — R:

N A -
234 (9)  ap(u,v) :==a(u,v) — o Zaf (?) a ((RNAS)J u, v) Yu,v € S
j=1

235 with associated operator

-1 2j
2 .
236 (10) Agp:S— S, Agpi=Ag— 72 <7> As (RnvAs) .

237 Here the constants af", j = 1,...,m — 1 are recursively defined for m > 2 by
2 _ 1 3 _ 3 1
ai =3 ay =3, 2= =3
m+l  _ m m m—1
38 (11) PR Ty S S
- m p— m m— m
a; " 207 a; —ajly, j=2,...,m—2,
m — m m
amJ—r% - 2am 1 amev
m — m
Ay =0y,

239 Then the LTS-LF scheme (Algorithm 1) is equivalent to
( (n+D) _ 9y (") + u(n 1) ) + Ata, (ug"), ) = At? (fém,w Yw € S,

210 (12) (ug)),w) = (uo, w)

(u(sl ,w) = (uo, w) + At (vo, w) + Ath ( éo) (w) —a (uo,w))

Yw € S.

This manuscript is for review purposes only.
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m

Neither the equivalent formulation (12) nor the constants o are ever used in practice
but only for the purpose of analysis; in fact, the constants ai" do not appear in
Algorithm 1.

REMARK 6. In (12) the term a (up,w) in the third equation could be replaced by
ap (ug, w) which allows for local time-stepping already during the very first time-step.
In that case, the analysis below also applies but requires a minor change, namely,
replacing Ag by Ag,p in (51) and (52). This modification neither affects the stability
nor the convergence rate of the overall LTS-LF scheme.

3. Stability and Convergence Analysis.

3.1. Estimates of the Bilinearform. The following equivalence of the contin-
uous L? (Q)- and mesh-dependent norm is well known.

LEMMA 7. ||| and ||| are equivalent norms on SF. The constants ceq, Ceq in
the equivalence estimates

Ceq HUHT < ull £ Ceq ||U||T Vu € ST

only depend on the polynomial degree m and the shape reqularity constant ~v (T).

It is also well known that the functions in S%* satisfy an inverse inequality (for a
proof we refer, e.g., [8, (3.2.33) withm =1,¢g=7r=2,1=0,n=d.]").

LEMMA 8. There exists a constant Ciny > 0, which only depends on v (T) and m,
such that for all T € T

(13) IVull 2y < Cinvhiz llull g2y » Yu € ST

The global versions of the inverse inequality involves also the quasi-uniformity constant

(14)  [Vull < CineCoquh™ ull - and  lull g1y < 1/1+ C3,C2uh~2 |lu]

inv~'qu

for all w € ST.
In the next step, we will estimate [|Asul| in terms of [[ull ;1 (q)-
LEMMA 9. It holds

(15) [ Asull < Ceontr/1+ C C2h 72 ||ull gy Vu €S

Proof. Since Ag is a self-adjoint, positive operator there exists an orthonormal
system (ny)ﬁil such that
Asny = )\1/771/
and
(nm nu) = 5v,u

where M := dim S. Hence, every function v € S has a representation

M
v = E CyNy.-
v=1

IThere is a misprint in this reference: m — 1 should be replaced by m — £, see also [6, (4.5.3)
Lemma)].

This manuscript is for review purposes only.
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For s € R we define the norm on S

M 1/2
vl = {Z Azci} :
p=1

It is obvious that for all v € S| it holds
llvllg = llvll

lollly = a(v,0) = =9 15

1/2
1/2 < Ccont ||U||H1(Q) ’
Ccoer HUHHI(Q)'

Note that
M M
2
|HUH|2 = Z )‘ici = Z )‘ucu)\ucu (77;.”771/) = (AvaAS'U) .
p=1

Hr=1

We assume that the eigenvalues A, are ordered increasingly. From Lemma 8 we
conclude that

2
u (13)
7” oz o) < Ceont (14 C2,C2.07?)

inv~'qu

AM = max cont Max 5
ues\{0} (u,u) ueS\{0}  |lul|

holds. Hence,

M
2 — — 2
||ASU|| S C’cont (1 + C?nvcflu Z < cont (1 + C(121r1vc’2 2) ”UHHl(Q) .

Next, we will estimate the bilinear form a,, (-, ).

LEMMA 10. The operator Ry as in (5) has bounded L? () norm:
(16) [Raull < cof llull  VueSP.

For v e 8T it holds

CCOH CI2UVC2H
a7 | RaAsul] < Czt(u <20 )

eq

Proof. Let w = Pu and v = Pv with u = (“Z)zezgnv v = (vz)zezy. We employ

(Ryu,v) = (Daru, v) Z du,v,.

zeN
Hence
d,u,v d, |u,||v
[Ravul = sup  Zmew Bt oy, Do el U]
veSTE\{0} vl veST\{0} llvll
1/2 1/2
Dymu,u Dymv, v
§ sup < ET ? > < ET ? > :HUHT sup HUHT
veSZ\{0} (vl vesp(oy V]|
< oo Jlull -

This manuscript is for review purposes only.
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10 MARCUS J. GROTE, MICHAELA MEHLIN, STEFAN SAUTER

For the second estimate we employ (15) and (14) to obtain

CCOI’I —
(18) 1BarAsull < e [l Asull < =52 (1+ G Cauh™) llul

inv qu
eq

for all u € SF*. 0
LEMMA 11. Let the bilinear form a(-,-) satisfy (1) and let the CFL condition

Nes Ceoer /2 4C
2 inv™~'qu < . 2 coer cont
(19) Ceont At (1 + 12 ) < min {6Ceq (Ccont> " max{ Coonn, 3}

hold.

Then, the bilinear form ay (-,-) is continuous,

/C K
|ap (u,l))| S Cvcont (1 + Lﬂt 12> H ||H1(Q) ||U||H1(Q)
with
C2 C?
(20) Ko <Ccont> Atz ( mv2 qu) ’
cZ, h

and symmetric, a, (u,v) = ap, (v,u) for all u,v € S. Moreover, for any f € L? (),

the problem: Find u € S such that
ap(u,q) = (f,q) Vg€ S

has a unique solution, which satisfies

2
||U||H1(Q) < P £l -

REMARK 12. In (19) the condition on the time-step At implies that At is essen-
tially proportional to h and inversely proportional to /Ceont, a5 Ceoer < Ceont- Hence
(19) corresponds to a genuine CFL condition since \/Ceont usually corresponds to the
mazimal (physical) wave speed.

Proof of Lemma 11. If p = 1, the two bilinear forms a, and a coincide and the
result trivially follows. Thus, we now assume that p > 2.
a) Continuity. Let u,v € S and

i 4 :
21 - RNAS J u.
(21) 2 g (21) (was)
Then, by definition of a, and continuity of a, we have

|ap (u,0)| = la (w, v)] < Ceont [[wll 10y V]l 1110 -

By applying the triangle inequality to (21) we obtain

P =N AN ]
Il < Tollny + 25 |07 (5F) " (Rwds)'
=t HY(9)
—1 27 .
2 | —1/2% AN 1 4 2\? 1/2
< lullgr (o) +1§ Ag / ZO‘;} <? (As/ RNAE'/ ) As/ u
J=1 H(Q)

This manuscript is for review purposes only.
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CONVERGENCE OF LOCAL TIME-STEPPING METHODS 11

From (1), it follows that

—1/2 1/2
[A45720  l? amd 4320 < Coom ey Ve 5.
Hence
Ccont
(22) HwHHl(Q) (1 +Cyp Cover ) H“HHI(Q) )
with
2 |k~ , (A
Op = sup Zaf <7> (Al/QR A1/2 /H’UH
veS\{0} p j=1 D

The operator A}g/zRNA}g/Q is self-adjoint with respect to the L? () scalar product
and positive semi-definite. It is well-known that under these conditions we have

2 B2 /AN .
C, = max - Zaé—' <?> M.

Aeo—(Als”RNAlS“) 2

From (17) we conclude that the spectrum o (A}q/ 2R,\/Ag/ 2) is contained in the interval

C2
eq

2 |22 i
Cp< sup — ozf( )
0<z<rk P =1

with k£ as in (20). The CFL condition (19),
coercivity of a and p > 2, implies € [0,4p?].

~—

together with the continuity and the
Thus, Lemma 18 (Appendix) implies

Sl=

(23) Cp <

which we insert in (22) to obtain

Ccont
”wHHl(Q) <1 + 55 12V ¢ ) HuHHl(Q) :

coer

b) Symmetry. This follows since Ag, Ry are self-adjoint with respect to the
L? () scalar product.
c) Coercivity. Note that the problem: Find u € S such that

ap (u,q) = (f,q) VYqe S

can be solved in two steps: Find w € S such that

(24) a(w,q)=(f.q) VgeS.

Then w is the solution of

2 k1 (A .
- = ZO‘ZJ‘) (?) (RyAs) | u=w.
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By the similar arguments as in the first part of this proof, one concludes that the
CFL-condition (19) implies

RN A : 1
(25) EXa(2) was’s| < glilee vies
= HY(2)
so that
lull g1 () < 2wl g, -
The well-posedness of problem (24) follows from the Lax-Milgram lemma as well as
the estimate

141 .

||w||H1(Q)

coer

COROLLARY 13. The bilinear form a, (u,v) is symmetric, continuous and coer-
cive. Hence, there exists an L? (Q)-orthonormal eigensystem ()\S,p,kzns,p,k)iwzl for
ap (+,+), i.e.,

ap (Ms,p,k, V) = Asp (Ns,pk, V) VU €S,
(nS,p,k7’r/S,p75) :(;k,f Vk7€€ {17"'7M}7

with real and positive eigenvalues As pr > 0. Let the CFL condition (19) be satisfied.
Then, the smallest and largest eigenvalue satisfy

i (& T max 3 -
/\er“m > % and /\p & < §Ccont (1 + C’12nvcv2 )

Proof. We start with the smallest eigenvalue. It holds

2j

2 = 2 281, (A :
72 Z (7> RNAS) v,v | < Ccont P Zaf <?> (RNAS)JU HU”HI(Q)
= j=1

H'(Q)
(23) [Coomt K
< Ccont cont ” ”Hl(Q)

a, (v,0) = a(v,0) —a 2225 <>2J (RpAs) v, 0

/C nt K
> (Ccocr — Ceont cont 12) H HHl(Q)

The CFL condition (19) implies

with x as in (20). Hence,

Ccoer

> Ccoer H H2

(263.) ap ('va) > ||UHH1(Q) 9

which yields the lower bound on the smallest eigenvalue )\;“i".
For the largest eigenvalue AJ'**, we get by using the CFL condition and (14) that

3 _
(26b) lap (v, 0)] < Ccom o117 0y < 5 Ceont (1 + ChwCauh %) 0117, O

from which the upper bound on AJ** follows.
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COROLLARY 14. Let the assumptions of Lemma 11 be satisfied. Then

[4shu] < —wl  vwes,

coer
uniformly in p.

Proof. We write

Note that for all w € S it holds

2 5, (A ; 122 %, (A1)
j=

j=1

j—1
1/2 1/2 ’ At\? 1/2

Since Ry is symmetric positive semi-definite (see Remark 3), we infer from (16) that
HR1/2 H < ¢oq ||v]| holds for all v € S. From Lemmas 8 and 9 we obtain for all v € S

H (RN As) of| < cadd A5l

C‘1(301’]
< =14 C2LC2 02 0]l g gy <

Ccont
inv~'qu

Ceq eq

(1+C2,C2.h72) ||v]|.

inv~qu

Thus, we argue as for (22) and get
2 50 /ANY Coont [ At ~
I? Za? <?> RNAs) wl| < CI’) CC; t (?) (1 + Cfm,C'éu ) [Jw]|

with
p—

1 2 J
2 A
C, = max i off ( )2
reo (RYZAsRY?) 2l et p

From Lemma 18 we conclude that Cj, < (p* —1)/12 < p®/12 so that (19) implies

PN A : Coont 1
D J con 2 2 5 —
e () (sl < {5 80 (14 G ol < g .

Thus, we have proved

—1

-1 2j _
(27) % Z <—) (RyAs)’ w|| < 2w YVw € S.

From (1c) we conclude that

coer

HA;IwH < ooy ]| Yw € S,

which together with (27) leads to the assertion. ]
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3.2. Error equation and estimates. To derive a priori error estimates for the
LTS/FE-Galerkin solution of (12), we first introduce the new function

ufgn+l) . ufgn)

(n+1/2) ,_
(28) Vg T At )

and rewrite (12) as a one-step method

(29)
( (n+1/2>’q) ( (n-1/2) ) Ata, (uS ,q) +AtF™ () Vg € S,
At (v(an/Q)v’“) ( <”“>77«) (u(s”), ) vre s,
(u(so), ): Ug, W

(vé}/z),w) = (vo, w) + At (F(O)( )—a(uo,w)) Yw € S.

The elimination of U(S"H/ %) from the second equation by using the first one leads
to the operator equation

(n+1/2) (n=1/2)
Vs _ Us m (1
s s
with Ag ) as in (10), fén) as in (8), and

(30b) 6= { Is —Oids, } .

Atlg Is— At?Ag,

Next, we will derive a recursion for the error
egnﬂ/z) — (th/Q) _ U(Sn+1/2) and e(n+1) = u(tug1) — U(anrl)’

where u is the solution of (2)-(3) and v the solution of the corresponding first-order
formulation: Find w,v : [0,7] — V such that

(0, w)+a(u,w)=F(w) YweV, t>0,
(31) (v,w) = (4,w) YweV, t>0,

and initial conditions u(0) = ug and v(0) = wy.
To split the error we introduce the first-order formulation of the semi-discrete
problem (7). Find ug,vg : [0,7] — S such that

(vs,w) + a(ug,w) = F (w)
(vs,w) = (s, w)

(us (0),w) = (uo, w)

(vs (0),w) = (vo, w)

} Ywe S, t>0,

Yw € S.

This manuscript is for review purposes only.



CONVERGENCE OF LOCAL TIME-STEPPING METHODS 15

DN
at

N T
Hence, we may write e(+1) ;= <e£n+2), e(u"ﬂ)> = e(S"H) + eg_lztl) with

(nt1/2) -
126 (32) el = ( eu,(§+1) > = < U (tns1/2) = s (tnty2) )7

U (tpi1) — us (tnt1)

u,S

(n+1/2) n+1/2
127 (33) e(n+1) — € v,S,At .— Us (tn+1/2) - ( =

/ S.At ¢ oS! : B (n+1) .
128 €u,8,At us (tny1) — ug
429 We first investigate the error eg "D and introduce
n vs (th —vs (th— n

430 (34a) Ag R ( +1/2)At & ( 1/2) + Aspus (tn) — fé )v
N . (n+1) . US (tn+1) —us (tn)
ﬂllgé (34b) AQ = At — Vs (tn+1/2) .

133 These equations can be written in the form

434 (35) vs (tn+1/2) = vg (tn—l/z) (At) A(n+1/2) (At) Agpus () + (AL) f(n)
i (36)  us (bayr) = us (ta) + (At) vs (tngay2) + (A1) AT

437 By subtracting the first equation in (29) from (35) and the second equation in (29)
138 from (36) we obtain

IND = SN — (A Ag el o, + (A1) AT,

439 1 +1/2 +1
eSJ};A)t = 5:% At (AY) g;nS,A/t )+ (At) A(n ),

440  Eliminating the term efjn; 1A/t2 in the second equation by using the first one yields

n+1/2 n—1/2 n n+1/2
eg,;A/t ) = efz,S,A/t )~ (At) Ag p@i,g,m + (At) Ag ),

n+1 n—1/2) n 2 n
Al el(t,;_,A)t = (A1) EEJ,S,A/t + EL?S’A:& — (A1) Asypei,g“,At?
+ (At)z A§n+1/2) + (At) Aén-&—l).

442 We rewrite it in operator form by using the operator & as in (30)
(Y- (G ) vwm (S500)
443 Yo =6 Yoy + AtS,
+1 +1
e’I(J,T,LS,A)t efﬁg‘,m Aén )
444 with
. | Is 0
1o 61 = [ (At) Is Ig :|
446 This recursion can be resolved
(n+1/2) (1/2) n—1 (n—£+1/2)
e e A
r < i) ) &" ( i ) +AtY &' < A0 > :
€u,5,At eu S,At =0 2
I 0
2 2x2 S
448 Let Ig™* := [ 0 Is } and observe that
_ 1 (At)Is —Ig
149 22 R Z
) ( S 6) At AS,];; 0
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and

2x2 _ x\"1 _ 1 0 —Is
(IS 6) G, = Al [ A;; 0 :|

We introduce

(n+1/2) (n+1)
(n) _ (72%x2 _ -1 Aj _ 1 -4,
(7)o"= (15 - 9) 61( N )m AGhAl)

@y 1 _US(thA)it_uS(tn) + s (tnt1/2)

Al g (tn) +A§;7 (vs(tn+1/2);tvs(tn71/2) _ fén)>

and the differences

cp(n—1/2)
D)

us (tn42)—2us(tny1)tus(tn) + vs (t'n,+1/2)7vs (tn+3/2)
At2

t
T us(tn)—us(tni1) +A§1 (7”5(tn+3/2)+2vs(tn+1/‘2)7vs(t'n,—l/Q) + f'é"+l)—fé")>
sP

At At? At

and use (3.2) to rewrite the error representation (3.2) as

(n11/2) (1/2) n—1
U(S;Alt) —G" E;I,A)S',At + At Z 6[ (I§X2 _ 6) o_(n—ﬁ)

€u,S,At €u,S,At (=0

o(1/2) n—1

_&=n v,S,At £ 3:00(n—20)
u,S,At /=1
(38) + Ate™ — Atc" o).

3.2.1. Stability. As usual, the convergence analysis can be split into an estimate

for the stability of the iteration operator & (corresponding to a homogeneous right-
hand side) and a consistency estimate. We begin with the analysis of the stability.

THEOREM 15 (Stability). Let the CFL condition (19) be satisfied. Then the leap-
frog scheme (12) is stable

Jos7 2+ s < o (st + o
Proof. We choose the eigensystem as introduced in Corollary 13 and expand

where Cy is independent of n, At, h, and T.

M M
—1/2 —1/2
W =S A s and o =30
k=1 k=1

(n1/2) L1/2)
Inserting this into the recursion 5<" iy | =6 Su<") leads to a recursion
s s

for the coefficients ﬁg";;ﬂ), Xgl:,l):

ET o1
(39) iy | =Sp &)
XS,p,k XS,p,k
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with

S — 1 — (At) /\S,p,k
P At 1-— (At)z )\S,p,k '

The cigenvalues of S,, are given by

/\57 k (At)Z 1At 2
1-— pf + - ASp.k (4 — ASpk (At) )

The CFL condition (19) implies (At)? Ap¥ < 4 so that the eigenvalues are different
and S,, is diagonalizable. From [45, Satz (6.9.2)(2)] we conclude that there is a norm
Il in R? such that the associated matrix norm |||S, || is bounded from above by the
spectral radius:

Asp (AP 1At 5
Tt T (4 — Asp (A ) =1

(7 ary
{nt1) y :
ngp,k XS,p.k

Since all norms in R? are equivalent there exists a constant C' such that

2 2 2 2
() Vel + o < oyf|ssal + [

The eigenfunctions 7g p x are chosen to be an orthonormal system in L? () so that

p(S,) = mas |1 -

<

(41)

2 2
o s |

2 N[ m+1/2)[% _ s (a2 o
=2 ‘Xs,p,k + ‘Bs,p,k Sy ‘ﬁs,p,k + ‘Xs,p,k‘
k=1 k=1

1/2 2 1 2
e (7 + )

which shows the L2 (Q)-stability of the method. O

3.2.2. Error Estimates. In this section we first estimate the discrete error
ei”;'lA)t. Standard estimates on the semi-discrete error then lead to an estimate of the

total error "tV

THEOREM 16. Let the assumptions of Lemma 11 be satisfied. Let the solution
of the semi-discrete equation (7) satisfy us € W ([0,T];L? () and the right-
hand side fs € W3 ([0,T]; L*(Q)). Then the fully discrete solution ugn'H) of (12)
satisfies the error estimate

e Ri|| < ca 4+ 7) M (us, f5)
with
. 4 Y
(42) M (u57 fS) ‘= max {121[3‘%(3 Hat fSHLoo([O,T];LQ(Q)) ’3%1?%(5 atuSHLOO([O,T];L2(Q))}

and a constant C which is independent of n, At, T, h, p, fs, and ug.
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506 Proof. We apply the stability estimate to the second component of the error
507 representation (38). From Theorem 15 and (37) we obtain®

n—1
i n+1 1
508 (43) SLSA)tH <G HeSAtHL;l +COAtZ Hdlﬁ
=1
509 +At H”(n) + CoAt HU(I) H
510 o “

511 For the summands in the second term of the right-hand side in (43), we obtain by a
512  Taylor argument and Corollary 14

513 (44)  diff™ = ) : + Ms
o T\ —ts (tagry2) + Ag, (—i}s (tns1/2) + fs (tn+1/2)) 24 "

514  with

3

515 €8], <2 <1 + ) M, (us, fs)

Ccoer
516 and
. o ¢ ¢
517 My, (us, fs) = max {1??%‘3 Hat fSHLOO([t,L,t,LJrl] L2(Q)) 321?2(5 ||8t“5HLoo([tn,l/Q,t,,M];Lz(Q))} I
518 Now, let ¥ denote the second component of the first term in the right-hand side
519 of (44),
520 ¢ = —tg (tnt1/2) + Agp (*’Us (tns1/2) + fs (tn+1/2)) .

521 By using iig + Asus = fs (cf. (7a) and (10)) we obtain

522 1/} = —8t (US (tn+1/2) — Ag;ASUS (tn+1/2))

2 N AN :
523 = EAE;) off <?> (AsRy) Asiis (tns1)2)
j=1

-1

2 — At)
P g J ( p (RacAs)’
526 We employ (27) and argue as in the proof of Corollary 14 to obtain

2 % A\ 20 i-1 (At
521 [yl <2 R“Qp a§ (?) (RV*AsRY?) (;) R\ As s (tsr)2)
Jj=1

)2 p—1 A\ 20-D -
Ry af (;) (AsRn)" ™" Asis (tnt1/2) -I
j=1

(At)® .
528 <92 A / .
:)2: T 1263, [As s (tnias2)
530  This yields
; (At)°
531 H_us (tas1/2) +Ag), (_iis (tns1/2) + fs (tn+1/2)) H < 62, |Astis (tnsr2)]|
At
gg—: = 6¢2 c2, (”atus tnt1/2 H + Hf(”+1/2)H) I
2For a pair of functions v = (v1,v2)T € S? we use the notation ||v||,1 := [|v1]| + |lv2]|-
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In summary we have proved

Jaitr AW( 8 8

et 1+—+—>Mn(us7fs)-

2
Ceq Ccoer

Next, we estimate the remaining terms in (43). We employ the discrete wave
equation and a Taylor argument to obtain

(45)
AtH”( N = 51 10l e o a2
(46)
n tn — 1 tn— .
Aspus (tn) + iis (tn) — F57 + is +1/2)Atus( 1/2) — dig (tn)
=0
Cor 14 A
HaduSHLOO([tn,tn+1] (L2(Q))
(47)
2 | (tng1y2) — s (tno1/2) ..
+ CCOEI’ At B us (tn)
(At 2 (At)?
< HaﬁuS”Lw([t,,,t,,+1] (L2(Q)) 21 Ha?us’|L°°([t,,,,t,L+1];L2(Q))
(At) 2
ST 1+Ccoer M., (us7fs)- I

The estimate of the last term in (43) follows by setting n =1 in (45)

At)?
(1)” < o (A"
Cont||o®| <ot S- (14— ) Mi(us. fs).
Inserting these estimates into (43) leads to
(48)
0 At)’ 8 . 3 =
e < oo, + 0B (14 5+ ) A>T Macs (s, fo)
12 Ceq Ccoer -1
(49)
At 2
# B (14 2 s )+ Cuts (s 1)
(50)
At) 8,3 2\ 1+Co
< Co el , B (eor (14 2 14— ) —=2 :
= eS,At o * 12 0 Tt eq * Ccoer * * Ccoer 2 M(U’S fS)I
L " N (1) ) ._ ) ._
It remains to estimate the initial error eg,,. Let ug’ = us(0) and vg

g (0) € S be as in (7b). A Taylor argument for some 0 < 6 < 7 < At and the
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definition of us , ugl) as in (12) lead to

(51)

At?
Hus (t) —u<;>H < H (ug” + (A0 vy + s (T)) = <ug°> T (an® 4 A (f(o) Asug”)) H

At?

28 -0 =)
At3

< —

- 2 (Hf HLOO(OAt] L2(Q)) || SUS( )H)

<28 (25 + o]
-2 I Lo jo,a8522(9) ¢Sl Loe ([0, A3, L2(02))

S gAtBM (US, fs) .

For the initial error in vg we obtain by a similar Taylor argument

(52)
Hvs (t12) — qul/Z)H = ||as (t/2) — U(SO) - % (f.éO) - ASUS’O) ‘
RIS
= % Hus (1) + Asus (1) — fs (1) + As (Ug)) —us (T)) + s (7
(At)® 3 f
<= (Hat us | e o,an2(0) T2 HfSHLOO([O,At];L2(Q)))
< 3(§t)2/\/l(us,fs)-

In summary, we have estimated the initial error by

3 (At)?
(53) e, < 200 14 an M (s, 55).
The combination of (48) and (53) leads to the assertion. O

Theorem 16 can be combined with known error estimates for the semi-discrete

error e(SnH) to obtain an error estimate of the total error.

THEOREM 17. Let the bilinear form a (-,-) satisfy (1) and let the CFL condition
(19) hold. Assume that the ezact solution satisfies v € W ([0,T]; H™ (Q)) N
W50 ([O, T); L* (). Then, the corresponding fully discrete Galerkin FE formulation

with local time-stepping (12) has a unique solution u(sn+1) which satisfies the error
estimate

Hu(tml) — H <CA+T) (W™ + A) M (u,us, fs)
with

M (u, us, fs) := max {M (us, fs), HUHlew([O,T];H"“rl(Q))}

and a constant C which is independent of n, At, h, p, fs, ug, and the final time T.
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Proof. The existence of the semi-discrete solution ug follows from [3, Theorem
3.1], which directly implies the existence of our fully discrete LTS-Galerkin FE solu-
tion.

Next, we split the total error

.
elmth) — (U (tn+1/2) - ”(SMI/Q),U (tny1) — U(snﬂ))

according to (32). Following [40], we note that the semi-discrete solution ug inherits
the same regularity from u € W5 ([0, T];L? (Q)); thus, we can apply Theorem 16.
To estimate the remaining error from the semi-discretization,

eEgnH) = (v (tns1/2) — vs (tny12) U (tngr) — us (tn+l))T ;

we use [3, Theorem 3.1] to obtain
(54)

flu— US”Loo([o,T];Lz(Q)) < Cpmtt (||“||Loo([o,T];Hm+1(Q)) + HuHLz([O,T];Hm+1(Q))) ’
Inspection of the proof in [3, Theorem 3.1] shows that the constant in (54) can be
estimated by C (1 +VT ) Using a Holder inequality in the second summand of the
right-hand side in (54) thus results in
il 2 o, zycarm @) < VT o o 2yt 0
from which we conclude that
llu = usll oo jo.17;22(02)) < C'R™ (1+T) l[ullw.oo (0,79 541 (2))

with a constant C’ which is independent of the final time 7. Finally, the triangle
inequality leads to the assertion. 0

(a) Initial mesh (b) First refinement (c) Second refinement

Fic. 1. Initial coarse mesh and local mesh refinement towards re-entrant corner. The fine
region (in green) of the final mesh of form (c) always corresponds to the innermost 30 elements.

4. Numerical Experiments. Numerical experiments that corroborate the con-
vergence rates and illustrate the stability properties of the LTS-LF scheme when
combined with continuous or discontinuous Galerkin FEM [28] were presented in [18].
Together with its higher order versions, the LTS-LF method was also successfully
applied to other (vector-valued) second-order wave equations from electromagnetics
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o
i

F1G. 2. Snapshots of the numerical solution at time t = 0, 0.1, 0.3, 0.4, 0.5, 0.6

(26] and elasticity [36, 42] . Here we demonstrate the versatility of the LTS approach
in the presence of adaptive mesh refinement near a re-entrant corner.

To illustrate the usefulness of the LTS approach, we consider the classical scalar
wave equation (Example 1) in the L-shaped domain § shown in Fig. 1. The re-entrant
corner is located at (0.5,0.5) and we set ¢ = 1, f = 0 and the final time T' = 2. Next,
we impose homogeneous Neumann boundary conditions on all boundaries and choose
as initial conditions the vertical Gaussian plane wave

uo(x,y) = exp (—(w — x0)2/62) , vo(z,y) =0, (z,y) €,

of width § = 107° centered about zq = 0.25 . For the spatial discretization we opt
for P? continuous finite elements with mass lumping [10].

First, we partition €2 into equal triangles of size hin;y — see Fig. 1 (a). Then we
bisect the six elements nearest to the corner and subsequently bisect in the resulting
mesh all elements with a vertex at (0.5,0.5). Starting from that intermediate mesh,
shown in Fig. 1 (b), we repeat this procedure again with the six elements adjacent
to the corner, which finally yields the mesh shown in Fig. 1 (¢). Hence the mesh
refinement ratio, that is the ratio between smallest elements in the ”coarse” and the
”fine” regions, in the resulting mesh is 4:1. We therefore choose a four times smaller
time-step A1 = At/p with p = 4 inside the fine region.

Clearly, this refinement strategy is heuristic, as optimal mesh refinement in the
presence of corner singularities generally requires hierarchical mesh refinement [39].
However, when the region of local mesh refinement itself contains a sub-region of even
smaller elements, and so forth, any local time-step will again be overly restricted due
to even smaller elements inside the ”fine” region. To remedy the repeated bottleneck
caused by hierarchical mesh refinement, multi-level local time-stepping methods were
proposed in [19, 42], which permit the use of the appropriate time-step at every level of
mesh refinement. For simplicity, we restrict ourselves here to the standard (two-level)
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Fic. 3. Comparison of run times between LTS-LF and standard LF vs. number of global
refinements with constant coarse/fine mesh size ratio p = 4.

LTS-LF scheme.

In Fig. 2 we display snapshots of the numerical solution at different times: the
plane wave splits into two wave fronts travelling in opposite directions. The lower
half of the right propagating wave is reflected while the upper half proceeds into the
upper left quadrant. To avoid any loss in the global CFL condition and reach the
optimal global time-step, we always include an overlap by one element, that is, we
also advance the numerical solution inside those elements immediately next to the
”fine” region with the fine time-step.

In Fig. 3 we compare the runtime of the LTS-LF(p) on a sequence of meshes using
the refinement strategy depicted in Fig. 1, with the runtime of a standard LF scheme
with a time-step At/4 on the entire domain. As expected, the LTS-LF method is faster
than the standard LF scheme, in fact increasingly so, as the number of refinements
increases. Indeed, as the number of degrees of freedom in the ”coarse” region grows
much faster than in the ”fine” region, where it remains essentially constant, the use
of local time-stepping becomes increasingly beneficial on finer meshes.
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Appendix A. Some Auxiliary Estimates.

LEMMA 18. For p > 2 let a?, j=1,...,p—1, be recursively defined as in (11).
Then, the constants a? are given by

J
H(£2_p2)
(55) a;):%v 1<j<p-1, p=>2
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Moreover, for k € [0, 4p2] it holds

2 — I K 9 24 g\ p?—1
2 ki I e <
() )< [pEa () )<

Proof. To show that the constants a? are in fact given by (55), we first use the
identity

ﬁ (p2 _ 62)

£=0

(56) plp+ip+i-1...p+Dplp-1)...(p—F+1)p—3)=

to rewrite (55) as

P G A X))

7 KRR R TR

By using (57) it is then straightforward to verify that o/; satisfies the recursive defi-
nition in (11).
Next, one proves by induction that

L o T,(1-%) -1
pj_ P  fp\t 7o) T4
;a]x 2+ .
p—1 2 z
. Pla+2T,(1-%) -2
;O‘?z] - 2x2 ) '

with the Cebysev polynomials 7}, of the first kind. We recall that

(58)  T™ (1) = TﬁIM and HT<m>H =T (1),
g 20+1) Lo ([—1,1))

where the first relation follows from [43, (1.97)] and the second one from [43, Theorem
2.24], see also [44, Corollary 7.3.1].

Now, let 2 = £/p*. The condition x € [0,4p?] implies [1 — £, 1]
a Taylor argument shows that there exists £ € [—1, 1] such that

C [-1,1]. Hence,

Zw” | nw-smo+En©-1
2 T
rPe-1)  p-1
— |2 (¢ ‘ -
(59) ‘8 P IETT s T T
where we have also used (58). Similarly, we get
2
] e (mo - sm o+ £ ) -2
Zajx - 912
j=1
2 _zp? | 2w _
P2l 5T) -2 g <P =Y g
222 8P - 24
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