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Abstract

We study Moser-Trudinger type functionals in the presence of singular potentials. In par-
ticular we propose a proof of a singular Carleson-Chang type estimate by means of Onofri’s
inequality for the unit disk in R2. Moreover we extend the analysis of [1] and [8] consid-
ering Adimurthi-Druet type functionals on compact surfaces with conical singularities and
discussing the existence of extremals for such functionals.

1 Introduction

Let ⌦ ✓ R2 be a bounded domain, from the well known Sobolev’s inequality

kuk
L

2p
2�p

(⌦)

 SpkrukLp

(⌦)

p 2 (1, 2), u 2 W 1,p
0

(⌦), (1)

one can deduce that the Sobolev space H1

0

(⌦) := W 1,2
0

(⌦) is embedded into Lq(⌦) 8 q � 1. A
much more precise result was proved in 1967 by Trudinger [27]: on bounded subsets of H1

0

(⌦)
one has uniform exponential-type integrability. Specifically, there exists � > 0 such that

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

e�u
2
dx < +1. (2)

This inequality was later improved by Moser in [20], who proved that the sharp exponent in (2)
is � = 4⇡, that is

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

e4⇡u
2
dx < +1, (3)

and

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

e�u
2
dx = +1 (4)

for � > 4⇡. An interesting question consists in studying the existence of extremal functions
for (3). Indeed, while there is no function realizing equality in (1), one can prove that the
supremum in (3) is always attained. This was proved in [4] by Carleson and Chang for the unit
disk D ✓ R2, and by Flucher ([9]) for arbitrary bounded domains (see also [23] and [15]). The
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proof of these results is based on a concentration-compactness alternative stated by P. L. Lions
([16]): for a sequence un 2 H1

0

(⌦) such that krunkL2
(⌦)

= 1 one has, up to subsequences, either
Z

⌦

e4⇡u
2
ndx !

Z

⌦

e4⇡u
2
dx

where u is the weak limit of un, or un concentrates in a point x 2 ⌦, that is

|ru|2dx* �x and un * 0. (5)

The key step in [4] consists in proving that if a sequence of radially symmetric functions un 2
H1

0

(D) concentrates at 0, then

lim sup
n!1

Z

D
e4⇡u

2
ndx  ⇡(1 + e). (6)

Since for the unit disk the supremum in (3) is strictly greater than ⇡(1 + e), one can exclude
concentration for maximizing sequences by means of (6) and therefore prove existence of extremal
functions for (3). In [9] Flucher observed that concentration at arbitrary points of a general
domain ⌦ can always be reduced, through properly defined rearrangements, to concentration
of radially symmetric functions on the unit disk. In particular he proved that if un 2 H1

0

(⌦)
satisfies krunk2 = 1 and (5), then

lim sup
n!1

Z

⌦

e4⇡u
2
ndx  ⇡e1+4⇡A⌦(x) + |⌦|. (7)

where A
⌦

(x) is the Robin function of ⌦, that is the trace of the regular part of the Green
function of ⌦. He also proved

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

e4⇡u
2
dx > ⇡e1+4⇡max⌦ A⌦ + |⌦|, (8)

which implies the existence of extremals for (3) on ⌦. Similar results hold if ⌦ is replaced by a
smooth closed surface (⌃, g). Let us denote

H :=

⇢

u 2 H1(⌃) :

Z

⌃

|ru|2dvg  1,

Z

⌃

u dvg = 0

�

.

Fontana [10] proved that

sup
u2H

Z

⌃

e4⇡u
2
dvg < +1 (9)

and

sup
u2H

Z

⌃

e�u
2
dvg = +1 (10)

8 � > 4⇡. Existence of extremal functions for (9) was proved in [13] (see also [12], [14]), again
by excluding concentration for maximizing sequences.
In this paper we are interested in Moser-Trudinger type inequalities in the presence of singular
potentials. The simplest example is given by the singular metric |x|2↵|dx|2 on a bounded domain
⌦ ⇢ R2 containing the origin. In [2] Adimurthi and Sandeep observed that 8 ↵ 2 (�1, 0],

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

|x|2↵e4⇡(1+↵)u2
dx < +1, (11)
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and

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

|x|2↵e�u2
dx = +1, (12)

for any � > 4⇡(1 + ↵). Existence of extremals for (11) has recently been proved in [7] and
[8]. The strategy is similar to the one used for the case ↵ = 0. One can exclude concentration
for maximizing sequences using the following estimate, which can be obtained from (6) using a
simple change of variables (see [2], [8]).

Theorem 1.1. Let un 2 H1

0

(D) be such that
R

D |run|2dx  1 and un * 0 in H1

0

(D), then
8 ↵ 2 (�1, 0] we have

lim sup
n!1

Z

D
|x|2↵e4⇡(1+↵)u2

ndx  ⇡(1 + e)

1 + ↵
. (13)

In the first part of this work we will give a simplified version of the argument in [4] and show
that (6) (and therefore (13)) can be deduced from Onofri’s inequality for the unit disk.

Proposition 1.1 (See [21], [3]). For any u 2 H1

0

(D) we have

log

✓

1

⇡

Z

D
eudx

◆

 1

16⇡

Z

D
|ru|2dx+ 1. (14)

Theorem 1.1 can be used to prove existence of extremals for several generalized versions of (3).
In [1] Adimurthi and Druet proved that

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

e
4⇡u2

(1+�kuk2
L

2(⌦)
)

dx < +1 (15)

for any � < �(⌦), where �(⌦) is the first eigenvalue of �� with respect to Dirichlet boundary
conditions. This bound on � is sharp, that is

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

e
4⇡u2

(1+�(⌦)kuk2
L

2(⌦)
)

dx = 1. (16)

Existence of extremal functions for su�ciently small � for this improved inequality has been
proved in [17] and [28]. Similar results hold for compact surfaces on the space H. We refer to
[25], [29] and references therein for further improved inequalities.

In this work we will focus on Adimurthi-Druet type inequalities on compact surfaces with conical
singularities. Given a smooth, closed Riemannian surface (⌃, g), and a finite number of points
p
1

, . . . , pm 2 ⌃ we will consider functionals of the form

E�,�,q
⌃,h (u) :=

Z

⌃

he�u
2
(1+�kuk2

L

q(⌃,g))dvg (17)

where �,� � 0, q > 1 and h 2 C1(⌃\{p
1

, . . . , pm}) is a positive function satisfying

h(x) ⇡ d(x, pi)
2↵

i with ↵i > �1 near pi i = 1, . . . ,m. (18)

One of the main motivations for the choice of these singular weights comes indeed from the study
of surfaces with conical singularities. We recall that a smooth metric g on ⌃\{p

1

, . . . , pm} is said
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to have conical singularities of order ↵
1

, . . . ,↵m in p
1

, . . . , pm if g = hg with g smooth metric on
⌃ and 0 < h 2 C1(⌃\{p

1

, . . . , pm}) satisfying (18). Thus the functional (17) naturally appears
in the analysis of Moser-Trudinger embeddings for the singular surface (⌃, g) (see [26]).

If m = 0 and h ⌘ 1, E�,�,q
⌃,1 corresponds to the functional studied in [17]. In particular, one has

sup
u2H

E4⇡,�,q
⌃,1 < +1 () � < �q(⌃, g), (19)

where

�q(⌃, g) := inf
u2H

R

⌃

|ru|2dvg
kuk2Lq

(⌃,g)

.

As it happens for (11), if h has singularities the critical exponent becomes smaller. More
precisely, in [26] Troyanov (see also [5]) proved that if h is a positive function satisfying (18),
then

sup
u2H

E�,0,q
⌃,h < +1 () �  4⇡(1 + ↵) (20)

where ↵ = min

⇢

0, min
1im

↵i

�

. In this paper we combine (19) and (20) obtaining the following

singular version of (19).

Theorem 1.2. Let (⌃, g) be a smooth, closed, surface. If h 2 C1(⌃\{p
1

, . . . , pm}) is a positive
function satisfying (18), then 8 � 2 [0, 4⇡(1 + ↵)] and � 2 [0,�q(⌃, g)) we have

sup
u2H

E�,�,q
⌃,h (u) < +1, (21)

and the supremum is attained if � < 4⇡(1 + ↵) or if � = 4⇡(1 + ↵) and � is su�ciently small.
Moreover

sup
u2H

E�,�,q
⌃,h (u) = +1

for � > 4⇡(1 + ↵), or � = 4⇡(1 + ↵) and � > �q(⌃, g).

Note that we do not treat the case � = 4⇡(1+↵) and � = �q(⌃, g) (see Remark 5.1). In Theorem
1.2, it is possible to replace k · kLq

(⌃,g), �q(⌃, g) and H, with k · kLq

(⌃,g
h

)

, �q(⌃, gh) and

Hh :=

⇢

u 2 H1

0

(⌃) :

Z

⌃

|rg
h

u|2dvg
h

 1,

Z

⌃

u dvg
h

= 0

�

,

where gh := hg. In particular we can extend the Adimurthi-Druet inequality to compact surfaces
with conical singularities.

Theorem 1.3. Let (⌃, g) be a closed surface with conical singularities of order ↵
1

, . . . ,↵m > �1
in p

1

, . . . , pm 2 ⌃. Then for any 0  � < �q(⌃, g) we have

sup
u2H

Z

⌃

e4⇡(1+↵)u2
(1+�kuk2

L

q(⌃,g))dvg < +1,

and the supremum is attained for � < 4⇡(1 + ↵) or for � = 4⇡(1 + ↵) and su�ciently small �.
Moreover

sup
u2H

Z

⌃

e�u
2
(1+�kuk2

L

q(⌃,g))dvg = +1,

if � > 4⇡(1 + ↵) or � = 4⇡(1 + ↵) and � > �q(⌃, g).
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As in [13], [29] and [17], our techniques can be adapted to treat the case of compact surfaces
with boundary.

Theorem 1.4. Let (⌃, g) be a smooth compact Riemannian surface with boundary. If p
1

, . . . , pm 2
⌃\@⌃ and h 2 C1(⌃\{p

1

, . . . , pm}) satisfies (18), then 8 � 2 [0, 4⇡(1+↵)] and � 2 [0,�q(⌃, g))
we have

sup
u2H1

0 (⌃),
R
⌃ |ru|2dv

g

1

E�,�,q
⌃,h (u) < +1

and the supremum is attained if � < 4⇡(1 + ↵) or if � = 4⇡(1 + ↵) and � is su�ciently small.
Furthermore if � > 4⇡(1 + ↵), or � = 4⇡(1 + ↵) and � � �q(⌃, g), we have

sup
u2u2H1

0 (⌃),
R
⌃ |ru|2dv

g

1

E�,�,q
⌃,h (u) = +1.

In particular, if ⌃ = ⌦ is the closure of a bounded domain in R2, Theorem 1.4 gives the following
generalization of the results in [9], [1], [8].

Corollary 1.1. Let ⌦ ✓ R2 be a bounded domain. For any choice of V 2 C1(⌦), V > 0,
↵
1

, . . . ,↵m > �1, x
1

, . . . , xm 2 ⌦, q > 1 and � 2 [0,�q(⌦)), the supremum

sup
u2H1

0 (⌦),
R
⌦ |ru|2dx1

Z

⌦

V (x)
m
Y

i=1

|x� xi|2↵ie
4⇡(1+↵)u2

⇣
1+�kuk2

L

q(⌦)

⌘

dx

is finite. Moreover it is attained if � is su�ciently small.

This paper is organized as follows. Section 2 contains a simple proof of Theorem 1.1. Theorem
1.2 will be proved in the remaining three sections. In section 3 we will state some useful lemmas
and prove existence of extremals for E�,�,q

⌃,h with � < 4⇡(1 + ↵). In Section 4 we will deal with
the blow-up analysis for maximizing sequences for the critical case � = 4⇡(1 + ↵) and we will
prove an estimate similar to (7), which implies the finiteness of the supremum in (21). Finally,
in Section 5 we test the functionals with a properly defined family of functions and complete the
proof Theorem 1.2. In the Appendix we will discuss some Onofri-type inequalities. In particular
we will show how to deduce (14) from the standard Onofri inquality on S2 and discuss its
extensions to singular disks. The proof of Theorems 1.3 and 1.4 is very similar to the one of
Theorem 1.2, hence it will not be discussed in this work.

2 A Carleson-Chang type estimate.

In this section we will prove Theorem 1.1 by means of (14). We will consider the space

H :=

⇢

u 2 H1

0

(D) :

Z

D
|ru|2dx  1

�

and, for any ↵ 2 (�1, 0], the functional

E↵(u) :=

Z

D
|x|2↵e4⇡(1+↵)u2

dx.

By (11) we have supH E↵ < +1. For any � > 0, we will denote with D� the disk with radius �
centered at 0.
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Remark 2.1. With a trivial change of variables, one immediately gets that if � > 0 and u 2
H1

0

(D�) are such that
R

D
�

|run|2dx  1, then

Z

D
�

|x|2↵e4⇡(1+↵)u2
dx  �2(1+↵) sup

H
E↵.

In order to control the values of the Moser-Trudinger functional on a small scale, we will need
the following scaled version of (14) (cfr. Lemma 1 in [4]).

Corollary 2.1. For any �, ⌧ > 0 and c 2 R we have
Z

D
�

ecu dx  ⇡e1+
c

2
⌧

16⇡ �2

for any u 2 H1

0

(D�) such that
R

D
�

|ru|2 dx  ⌧ .

As in the original proof in [4], we will first assume ↵ = 0 and work with radially symmetric
functions. For this reason we introduce the spaces

H1

0,rad(D) :=
�

u 2 H1

0

(D) : u is radially symmetric and decreasing
 

.

and
Hrad := H \H1

0,rad(D).

Functions in Hrad satisfy the following useful decay estimate.

Lemma 2.1. For any u 2 Hrad we have

u(x)2  � 1

2⇡

 

1�
Z

D|x|

|ru|2dy
!

log |x| 8 x 2 D\{0}.

Proof. We bound

|u(x)| 
Z

1

|x|
|u0(t)|dt 

 

Z

1

|x|
tu0(t)2dt

!

1
2

(� log |x|) 1
2

 1p
2⇡

 

Z

D\D|x|

|ru|2dy
!

1
2

(� log |x|) 1
2

 1p
2⇡

 

1�
Z

D|x|

|ru|2dy
!

1
2

(� log |x|) 1
2 .

On a su�ciently small scale, it is possible to control E
0

using only Corollary 2.1 Lemma 2.1 and
Remark 2.1.
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Lemma 2.2. If un 2 Hrad and �n �! 0 satisfy
Z

D
�

n

|run|2dx �! 0, (22)

then

lim sup
n!1

Z

D
�

n

e4⇡u
2
ndx  ⇡e.

Proof. Take vn := un � un(�n) 2 H1

0

(D�
n

) and set ⌧n :=
R

D
�

n

|run|2dx. If ⌧n = 0, then

un ⌘ un(�n) in D�
n

and, using Lemma 2.1, we find

Z

D
�

n

e4⇡u
2
ndx = ⇡�2ne

4⇡u
n

(�
n

)

2  ⇡ < ⇡e.

Thus, w.l.o.g. we can assume ⌧n > 0 for every n 2 N. By Holder’s inequality and Remark 2.1
we have

Z

D
�

n

e4⇡u
2
ndx = e4⇡un

(�
n

)

2
Z

D
�

n

e4⇡v
2
n

+8⇡u
n

(�
n

)v
ndx

 e4⇡un

(�
n

)

2

 

Z

D
�

n

e4⇡
v

2
n

⌧

n dx

!⌧
n

 

Z

D
�

n

e
8⇡u

n

(�
n

)v
n

1�⌧
n dx

!

1�⌧
n

 e4⇡un

(�
n

)

2

✓

�2n sup
H

E
0

◆⌧
n

 

Z

D
�

n

e
8⇡u

n

(�
n

)v
n

1�⌧
n dx

!

1�⌧
n

.

(23)

Applying Corollary 2.1 with ⌧ = ⌧n, � = �n and c = 8⇡u
n

(�
n

)

1�⌧
n

we find

Z

D
�

n

e
8⇡u

n

(�
n

)v
n

1�⌧
n dx  �2n⇡e

1+

4⇡u
n

(�
n

)2

(1�⌧
n

)2
⌧
n

thus from (23) it follows

Z

D
�

n

e4⇡u
2
ndx  �2n

✓

sup
H

E
0

◆⌧
n

(⇡e)1�⌧
n e

4⇡u2
n

(�
n

)+

4⇡u
n

(�
n

)2⌧
n

(1�⌧
n

)

= �2n

✓

sup
H

E
0

◆⌧
n

(⇡e)1�⌧
n e

4⇡u
n

(�)2

1�⌧
n .

Lemma 2.1 yields

�2ne
4⇡ u

n

(�
n

)2

1�⌧
n  1,

therefore
Z

D
�

n

e4⇡u
2
ndx 

✓

sup
H

E
0

◆⌧
n

(⇡e)1�⌧
n .

Since ⌧n �! 0, we obtain the conclusion by taking the lim sup as n ! 1 on both sides.
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In order to prove Theorem 1.1 on Hrad for ↵ = 0, it is su�cient to show that, if un * 0, there
exists a sequence �n satisfying the hypotheses of Lemma 2.2 and such that

Z

D
�

n

⇣

e4⇡u
2
n � 1

⌘

dx �! 0. (24)

Note that, by dominated convergence theorem, (24) holds if there exists f 2 L1(D) such that

e4⇡u
2
n  f (25)

in D\D�
n

. In the next lemma we will chose a function f 2 L1(D) with critical growth near 0
(i.e. f(x) ⇡ 1

|x|2 log2 |x|) and define �n so that (25) is satisfied.

Lemma 2.3. Take un 2 Hrad such that

sup
D\D

r

un �! 0 8 r 2 (0, 1). (26)

Then there exists a sequence �n 2 (0, 1) such that

1. �n �! 0.

2. ⌧n :=
R

D
�

n

|run|2dx �! 0.

3.
R

D\D
�

n

e4⇡u
2
ndx �! ⇡.

Proof. We consider the function

f(x) :=

(

1

|x|2 log2 |x| |x|  e�1

e2 |x| 2 (e�1, 1].
(27)

Note that f 2 L1(D) and
inf
(0,1)

f = e2. (28)

Let us fix �n 2 (0, 1

n) such that
R

D
�

n

|run|2dx  1

n . We define

e�n := inf
n

r 2 (0, 1) : e4⇡u
2
n

(x)  f(x) for r  |x|  1
o

2 [0, 1).

and

�n :=

(

e�n if e�n > 0

�n if e�n = 0.

By definition we have
e4⇡u

2
n  f in D\D�

n

,

thus 3 follows by dominated convergence Theorem. To conclude the proof it su�ces to prove
that if nk % +1 is chosen so that �n

k

= e�n
k

8 k, then

lim
k!1

�n
k

= lim
k!1

⌧n
k

= 0. (29)
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For such nk one has
e4⇡un

k

(�
n

k

)

2
= f(�n

k

). (30)

In particular using (28) we obtain

e4⇡un

k

(�
n

k

)

2
= f(�n

k

) � e2 > 1

which, by (26), yields �n
k

k!1�! 0. Finally, Lemma 2.1 and (30) imply

1 � �
2(1�⌧

n

k

)

n
k

e4⇡un

k

(�
n

k

)

2
=

�
�2⌧

n

k

n
k

log2 �n
k

so that ⌧n
k

k!1�! 0 (otherwise the limit of the RHS would be +1).

Combining Lemma 2.2 with Lemma 2.3 we immediately get (6) for radially symmetric functions:

Proposition 2.1. Let un 2 Hrad and ↵ 2 (�1,+1]. If for any r 2 (0, 1)

sup
D\D

r

un �! 0,

then

lim sup
n!1

E↵(un)  ⇡(1 + e)

(1 + ↵)
.

Proof. If ↵ = 0 the proof follows directly applying Lemma 2.3 and Lemma 2.2. If ↵ 6= 0 consider

vn(x) = (1 + ↵)
1
2un(|x|

1
1+↵ ).

We have
Z

D
|rvn|2 dx =

Z

D
|run|2 dx

and hence vn 2 Hrad. Moreover we compute
Z

D
|x|2↵e(1+↵)u2

n dx =
1

1 + ↵

Z

D
e4⇡v

2
n dx

and the claim follows at once from the case ↵ = 0.

To pass from Proposition 2.1 to Theorem 1.1 we will use symmetric rearrangements. We recall
that given a measurable function u : R2 �! [0,+1), the symmetric decreasing rearrangement of
u is the unique right-continuous radially symmetric and decreasing function u⇤ : R2 �! [0,+1)
such that

|{u > t}| = |{u⇤ > t}| 8 t > 0.

Among the properties of u⇤ we recall that

1. If u 2 Lp(R2), then u⇤ 2 Lp(R2) and ku⇤kp = kukp.
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2. If u 2 H1

0

(D), then u⇤ 2 H1

0,rad(D) and
Z

D
|ru⇤|2dx 

Z

D
|ru|2dx. (31)

3. If u, v : R2 �! [0,+1), then
Z

R2
u⇤(x)v⇤(x)dx �

Z

R2
u(x)v(x)dx. (32)

In particular if u 2 H1

0

(D) and ↵  0,
Z

D
|x|2↵eu⇤

dx �
Z

D
|x|2↵eudx. (33)

Note that (33) does not hold if ↵ > 0. We refer the reader to [11] for a more detailed introduction
to symmetric rearrangements.

Proof of Theorem 1.1. Take un 2 H such that un * 0 and let u⇤n be the symmetric decreasing
rearrangement of un. Then u⇤n 2 Hrad and since ku⇤nk2 = kunk2 �! 0 we have supD\D

r

u⇤n �! 0
8 r > 0. Thus from (33) and Proposition 2.1 we get

lim sup
n!1

E↵(un)  lim sup
n!1

E↵(u
⇤
n) 

⇡(1 + e)

1 + ↵
.

In the next section we will need the following local version of Theorem 1.1.

Corollary 2.2. Fix � > 0, ↵ 2 (�1, 0] and take un 2 H1

0

(D�) such that
R

D
�

|run|2dx  1 and

un * 0 in H1

0

(D�). For any choice of sequences �n ! 0, xn 2 ⌦ such that D�
n

(xn) ⇢ D� we
have

lim sup
n!1

Z

D
�

n

(x
n

)

|x|2↵e4⇡(1+↵)u2
ndx  ⇡e

1 + ↵
�2(1+↵).

Proof. Let us define eun(x) := un(�x). Note that eun 2 H and satisfies the hypotheses of Theorem
1.1, thus

lim sup
n!1

Z

D
�

|x|2↵(e4⇡u2
n � 1) dx

= �2(1+↵) lim sup
n!1

Z

D
|x|2↵(e4⇡eu2

n � 1) dx

 �2(1+↵) ⇡e

1 + ↵
.

Thus we get

lim sup
n!1

Z

D
�

n

(x
n

)

|x|2↵e4⇡(1+↵)u2
ndx

= lim sup
n!1

Z

D
�

n

(x
n

)

|x|2↵
⇣

e4⇡(1+↵)u2
n � 1

⌘

dx


Z

D
�

|x|2↵(e4⇡u2
n � 1)dx

 �2(1+↵) ⇡e

1 + ↵
.
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Remark 2.2. We remark that for ↵ 2 (�1, 0] by Theorem 1.1 it is enough to show that

sup
H

E↵ >
⇡(1 + e)

1 + ↵

in order to prove existence of extremal functions for E↵ (see [4], [7]).

We conclude this section pointing out that as we just did for the Carleson-Chang type esti-
mates, one can have a singular version of the Onofri inequality (14) (see Proposition A.2 in the
Appendix). In particular one can deduce the following generalized version of Corollary 2.1.

Corollary 2.3. 8 �, ⌧ > 0 , c 2 R and ↵ 2 (�1, 0] we have

Z

D
�

|x|2↵ecu dx  ⇡e
1+

c

2
⌧

16⇡(1+↵) �2(1+↵)

1 + ↵

8 u 2 H1

0

(D�) such that
R

D
�

|ru|2 dx  ⌧ .

3 Extremals on Compact Surfaces: Notations and Prelimiaries

Let (⌃, g) be a smooth, closed Riemannian surface. In this section, and in the rest of the
paper, we will fix p

1

, . . . , pm 2 ⌃ and consider a positive function h 2 C1(⌃\{p
1

, . . . , pm})
satisfying (18). More precisely, denoting by d the Riemannian distance on (⌃, g) and by Br the
corresponding metric ball, we will assume that for some � > 0,

h

d( · , pi)2↵i

2 C1

+

(B�(pi)) :=
�

f 2 C1(B�(pi)) : f > 0
 

for i = 1, . . . ,m. (34)

In order to distinguish the singular points p
1

, . . . , pm from the regular ones, we introduce a
singularity index function

↵(x) :=

⇢

↵i if x = pi
0 x 2 ⌃\{p

1

, . . . , pm}. (35)

Clearly condition (34) implies that the limit

K(p) := lim
q!p

h(q)

d(q, p)2↵(p)
(36)

exists and is strictly positive for any p 2 ⌃. We will study functionals of the form (17) on the
space

H :=

⇢

u 2 H1(⌃) :

Z

⌃

|ru|2dvg  1,

Z

⌃

u dvg = 0

�

.

To simplify the notation we will set

↵ := min

⇢

0, min
1im

↵i

�

11



and
� := 4⇡(1 + ↵).

Given s � 1, the symbols k · ks, Ls(⌃) will denote the standard Ls�norm and Ls�space on ⌃
with respect to the metric g. Since we will deal with the singular metric gh = gh we will also
consider

kuks,h :=

Z

⌃

|u|sdvg
h

=

Z

⌃

h |u|sdvg
and

Ls(⌃, gh) := {u : ⌃ �! R Borel-measurable, kuks,h < +1}.
In this section we will prove the existence of an extremal function for E�,�,q

⌃,h for the subcritical

case � < �. We begin by stating some well known but useful Lemmas:

Lemma 3.1. If u 2 H1(⌃) then eu
2 2 Ls(⌃) \ Ls(⌃, gh), 8 s � 1.

Proof. From (34) we have h 2 Lr(⌃) for some r > 1, hence it is su�cient to prove that eu
2 2

Ls(⌃), 8 s � 1. Moreover, since

esu
2
= es(u�u)2+2s(u�u)u+u2  e2s(u�u)2e2su

2
,

without loss of generality we can assume u = 0. Take " > 0 such that 2s"  4⇡ and a function
v 2 C1(⌃) satisfying krg(v � u)k2

2

 " and
R

⌃

v dvg = 0. By (9), we have

ke2s(u�v)2k
1

+ ke2s" u

2

kruk2 k
1

< +1. (37)

Note that
esu

2  es(u�v)2e2suv. (38)

By (37), we have es(u�v)2 2 L2(⌃) and, since v 2 L1(⌃),

e2suv  e
s" u

2

kruk22 eC(",s,kruk2)v2 2 L2(⌃).

Hence using (38) and Holder’s inequality we get esu
2 2 L1(⌃).

Lemma 3.2. If un 2 H and un * u 6= 0 weakly in H1(⌃), then

sup
n

Z

⌃

hep�u
2
ndvg < +1

8 1  p < 1

1�kruk22
.

Proof. Observe that

ep�u
2
n  ep�(un

�u)2e2p�un

u. (39)

Since

1

p
> 1� kruk2

2

� krunk2
2

� kruk2
2

= kr(un � u)k2
2

+ o(1) =) lim sup
n!1

kr(un � u)k2
2

<
1

p
,

by (20) we get kep�(un

�u)2ks,h  C for some s > 1. Taking 1

s +
1

s0 = 1 and using Lemma 3.1 we
have

e2ps
0�u

n

u  e
�

2 u
2
n eCs,↵,p

u2 2 L1(⌃, gh) =) ke2p�un

uks0,h  C.

Thus from (39) we get kep�u2
nk

1,h  C.
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Existence of extremals for � < � is a simple consequence of Lemma 3.2 and Vitali’s convergence
Theorem.

Lemma 3.3. 8 � 2 (0,�), � 2 [0,�q(⌃, g)), q > 1 we have

sup
H

E�,�,q
⌃,h < +1

and the supremum is attained.

Proof. Let un 2 H be a maximizing sequence for E�,�,q
⌃,h , and assume un * u weakly in H1(⌃).

We claim that e�u
2
n

(1+�ku
n

k2
q

) is uniformly bounded in Lp(⌃, gh) for some p > 1. In particular

by Vitali’s convergence theorem we get E�,�,q
⌃,h (un) �! E�,�,q

⌃,h (u) with E�,�,q
⌃,h (u) < +1. Hence

E�,�,q
⌃,h (u) = supHE�,�,q

⌃,h (u), proving the conclusion.
If u = 0, then

�(1 + �kunk2q) �! � < �,

and the claim is proved taking 1 < p < �
� and using (20). If u 6= 0, since

(1� kruk2
2

)(1 + �kunk2q)  1� kruk2
2

+ �kuk2q + o(1)  1� (�q(⌃)� �)kuk2q + o(1) < 1

we can find p > 1 such that lim sup
n!1

p(1 + �kunk2q) <
1

1� kruk2
2

, and the claim follows from

Lemma 3.2.

The behaviour of extremal functions as � ! � will be studied in the next section. As for now
we can study the convergence of the suprema.

Lemma 3.4. As � % � we have

sup
H

E�,�,q
⌃,h �! sup

H
E�,�,q

⌃,h .

Proof. Clearly, since � < �, we have

lim sup
�%�

sup
H

E�,�,q
⌃,h  sup

H
E�,�,q

⌃,h .

On the other hand, by monotone convergence theorem we have

lim inf
�%�

sup
H

E�,�,q
⌃,h � lim inf

�%�
E�,�,q

⌃,h (v) = E�,�,q
⌃,h (v) 8 v 2 H,

which gives

lim inf
�%�

sup
H

E�,�,q
⌃,h � sup

H
E�,�,q

⌃,h .
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We conclude this section with some Remarks concerning isothermal coordinates and Green’s
functions. We recall that, given any point p 2 ⌃, we can always find a small neighborhood ⌦ of
p and a local chart

 : ⌦ �! D�0 ⇢ R2 (40)

such that
 (p) = 0 (41)

and
( �1)⇤g = e'|dx|2 (42)

where
' 2 C1(D�0) and '(0) = 0. (43)

For any � < �
0

we will denote ⌦� :=  �1(D�). More generally if Dr(x) ✓ D�0 we define
⌦r( �1(x)) :=  �1(Dr(x)). We stress that (36) and (42) also imply

('�1)⇤gh = |x|2↵(p)V (x)e'|dx|2. (44)

with
0 < V 2 C0(D�0) and V (0) = K(p). (45)

For any p 2 ⌃ we denote G�
p the solution of

8

>

>

<

>

>

:

��gG
�
p = �p + �kG�

pk2�q
q |G�

p |q�2G�
p � 1

|⌃|
✓

1 + �kG�
pk2�q

q

Z

⌃

|G�
p |q�2G�

pdvg

◆

Z

⌃

G�
pdvg = 0.

(46)

In local coordinates satisfying (40)-(45) we have

G�
p( 

�1(x)) = � 1

2⇡
log |x|+A�

p + ⇠(x) (47)

with ⇠ 2 C1(D�0) and ⇠(x) = O(|x|). Observe that G0

p is the standard Green’s function for ��g.

Lemma 3.5. As �! 0 we have G�
p �! G0

p in Ls(⌃) 8 s and A�
p �! A0

p.

Proof. Let us denote c� :=
�

|⌃|kG
�
pk2�q

q

Z

⌃

|G�
p |q�2G�

pdvg. Observe that

��g(G
�
p �G0

p) = �kG�
pk2�q

q |G�
p |q�2G�

p � c�.

Since
�

�

�

kG�
pk2�q

q |G�
p |q�2G�

p

�

�

�

q

q�1

= kG�
pkq

by elliptic estimates we find

kG�
p �G0

pk1  kG�
p �G0

pkW 2, q

q�1
(⌃)

 C�kG�
pkq. (48)

In particular

kG�
pkq  kG0

pkq + kG�
p �G0

pkq  kG0

pkq + CkG�
p �G0

pk1  kG0

pkq + C�kG�
pkq,

14



hence for su�ciently small � we have

kG�
pkq  CkG0

pkq.

Thus by (48), as �! 0 we find
kG�

p �G0

pk1 �! 0.

In particular G�
p �! G0

p in Ls for any s > 1. Since A�
p � A0

p = (G�
p � G0

p)(p) we also get

A�
p ! A0

p.

Lemma 3.6. Fix p 2 ⌃ and let (⌦, ) be a local chart satisfying (40)-(45). As � ! 0 we have

Z

⌃\⌦
�

|rG�
p |2dvg = � 1

2⇡
log � +A�

p + �kG�
pk2q +O(�| log �|).

Proof. Integrating by parts we have

Z

⌃\⌦
�

|rG�
p |2dvg = �

Z

⌃\⌦
�

�gG
�
p G�

pdvg �
Z

@⌦
�

G�
p

@G�
p

@⌫
d�g. (49)

For the first term, using the definition of G�
p we get

�
Z

⌃\⌦
�

�gG
�
p G�

pdvg = �kG�
pk2�q

q

Z

⌃\⌦
�

|G�
p |qdvg �

✓

1

|⌃| + c�

◆

Z

⌃\⌦
�

G�
p dvg

= �kG�
pk2q + o(1).

(50)

For the second term we use (47) to find

�
Z

@⌦
�

G�
p

@G�
p

@⌫
d�g = � 1

2⇡
log � +A�

p +O(�| log �|). (51)

4 Blow-up Analysis for the Critical Exponent.

In this section we will study the critical case � = �.
Let us fix q > 1,� 2 [0,�q(⌃, g)) and take a sequence �n % � ( �n < � for any n 2 N). To

simplify the notation we will set En := E�
n

,�,q
⌃,h . By Lemma 3.3, for any n we can take a function

un 2 H such that
En(un) = sup

H
En. (52)

Up to subsequences, we can always assume that

un * u
0

in H1(⌃) (53)

and
un �! u

0

in Ls(⌃) 8 s � 1. (54)
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Lemma 4.1. If u
0

6= 0, then

En(un) �! E�,�,q
⌃,h (u

0

) < +1. (55)

In particular

sup
H

E�,�,q
⌃,h < +1

and u
0

is an extremal function.

Proof. If u
0

6= 0 we can argue as in Lemma 3.3 to find p > 1 such that e�n

u2
n

(1+�ku
n

k2
q

) is
uniformly bounded in Lp(⌃, gh). Vitali’s convergence Theorem yields (55). Lemma 3.4 implies

sup
H

E�,�,q
⌃,h = E�,�,q

⌃,h (u
0

) < +1.

Thus it is su�cient to study the case u
0

= 0, which we will assume for the rest of this section.
In the same spirit of Theorem 1.1 and (7), we will prove the following sharp upper bound for
En(un).

Proposition 4.1. If u
0

= 0 we have

lim sup
n!1

En(un)  ⇡e

1 + ↵
max

p2⌃,↵(p)=↵
K(p)e�A

�

p + |⌃|g
h

where A�
p is defined as in (47) and |⌃|g

h

:=
R

⌃

h dvg.

Remark 4.1. We remark that the quantity

max
p2⌃,↵(p)=↵

K(p)e�A
�

p

is well defined. Indeed if ↵ < 0 the set of points such that ↵(p) = ↵ is finite. On the other hand

if ↵ = 0 we have that K ⌘ h on ⌃ \ {p
1

, . . . , pm} = {p 2 ⌃ : ↵(p) = ↵} and the function he�A
�

p

is continuous on ⌃ and has zeros at the points p
1

, . . . , pm.

In particular Lemma 4.1 and Proposition 4.1 give a proof of an Adimurthi-Druet type inequality,
namely

sup
H

E�,�,q
⌃,h < +1.

The rest of this section is devoted to the proof of Proposition 4.1.

Lemma 4.2. There exists s > 1 such that un 2 H \W 2,s(⌃) 8 n. Moreover krunk2 = 1 and
we have

��gun = �nh(x)une
b
n

u2
n + sn(x) (56)

where
bn := �n(1 + �kunk2q) �! �, (57)

lim sup
n

�n < +1 and �n

Z

⌃

h u2ne
u2
ndvg �! 1, (58)
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and
sn := �nkunk2�q

q |un|q�2un � cn (59)

with
�n �! �, (60)

and

cn :=
1

|⌃|
✓

�n

Z

⌃

une
b
n

u2
ndvg

h

+ �nkunk2�q
q

Z

⌃

|un|q�2undvg

◆

. (61)

In particular we have
cn �! 0, ksnk q

q�1
�! 0 (62)

as n ! +1.

Proof. The maximality of un clearly implies krunk2 = 1. Using Langrange multipliers theorem,
it is simple to verify that un satisfies

��gun = ⌫nbnh(x)une
b
n

u2
n + �⌫n�nµnkunk2�q

q |un|q�2un � cn. (63)

where bn is defined as in (57), µn :=
R

⌃

h u2ne
b
n

u2
ndvg,

cn :=
1

|⌃|
✓

�n

Z

⌃

hune
b
n

u2
ndvg + �⌫n�nµnkunk2�q

q

Z

⌃

|un|q�2undvg

◆

, (64)

and ⌫n 2 R. We define �n := ⌫nbn, �n := �⌫n�nµn and sn(x) := �nkunk2�q
q |un|q�2un � cn

so that (56) and (59) are satisfied. Observe also that
�

�kunk2�q
q |un|q�2un

�

�

q

q�1
= kunkq �! 0. (65)

and

kunk2�q
q

�

�

�

�

Z

⌃

|un|q�2undvg

�

�

�

�

 kunkq|⌃|
1
q �! 0 (66)

If s
0

> 1 is such that h 2 Ls0(⌃), using Lemma 3.1 and standard Elliptic regularity, we find
un 2 W 2,s(⌃) 8 1 < s < min{s

0

, q
q�1

}. Multiplying (63) by un and integrating on ⌃ we get

1 = ⌫nbnµn + �⌫n�nµnkunk2q = ⌫nbnµn(1 +
��nkunk2q

bn
) = �nµn(1 + o(1))

from which we get the second part of (58). As a consequence we also have

�n = �⌫n�nµn = ��nµn
�n
bn

�! �. (67)

Now we prove lim sup
n!1

�n < +1 or, equivalently, lim inf
n!1 µn > 0. For any t > 0, we have

En(un)  1

t2

Z

{|u
n

|>t}
h u2ne

b
n

u2
ndvg +

Z

{|u
n

|t}
hebnu

2
ndvg  1

t2

Z

⌃

hu2ne
b
n

u2
ndvg + |⌃|g

h

+ o(1)

from which

lim inf
n!1 µn = lim inf

n!1

Z

⌃

h u2ne
b
n

u2
ndvg � t2

✓

sup
H

E�,�,q
⌃,h � |⌃|g

h

◆

> 0.
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It remains to prove that cn �! 0 which, with (65) and (67), completes the proof of (62). For
any t > 0

�n

Z

⌃

h|un|ebnu2
ndvg  �n

t

Z

{|u
n

|>t}
hu2ne

b
n

u2
ndvg + �n

Z

{|u
n

|t}
h|un|ebnu2

ndvg =
1 + o(1)

t
+ o(1).

Since t can be taken arbitrarily large we find

�n

Z

⌃

hune
b
n

u2
ndvg �! 0.

Combined with (61), (66) and (67), this yields cn ! 0.

By Lemma 4.2 we know that un 2 C0(⌃), thus we can take a sequence pn such that

mn := max
⌃

|un| = un(pn), (68)

where the last equality holds up to changing the sign of un. Clearly if supnmn < +1, then we
would have En(un) �! |⌃|g

h

which contradicts Lemma 3.4. Thus, up to subsequences, we will
assume

mn �! +1 and pn �! p. (69)

Lemma 4.3. Let ⌦ ⇢ ⌃ be an open subset such that

lim sup
n!+1

krunkL2
(⌦)

< 1.

Then
kunkL1

loc

(⌦)

 C.

Proof. Fix ⌦̃ b ⌦. Take a cut-o↵ function ⇠ 2 C1
0

(⌦) such that 0  ⇠  1 and ⇠ ⌘ 1 in ⌦0

where ⌦̃ b ⌦0 b ⌦. Since
Z

⌃

|run⇠|2dvg =

Z

⌦

|run|2⇠2dvg + 2

Z

⌦

un⇠run ·r⇠ dvg +
Z

⌦

|r⇠|2u2ndvg 

 (1 + ")

Z

⌦

|run|2⇠2dvg + C"

Z

⌦

|r⇠|2u2ndvg
and " can be taken arbitrarily small, we find

lim sup
n!1

kr(un⇠)k2L2
(⌃)

< 1.

Thus, applying (20) to vn := ⇠u
n

kr(⇠u
n

)k
L

2(⌃)
we find

�

�

�

e�u
2
n

(1+�ku
n

k2
q

)

�

�

�

Ls0
(⌦

0,g
h

)

 C (70)

for some s
0

> 1. From (62) and (70), ��gun is uniformly bounded in Ls(⌦0) for any s <

min{s
0

, q
q�1

}. If we take another cut-o↵ function e⇠ 2 C1
0

(⌦0) such that e⇠ ⌘ 1 in ⌦̃, applying

elliptic estimates to e⇠un in ⌦0 we find sup
⌦

0 ⇠̃un  C and hence sup
˜

⌦

un  C.
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From Lemma 4.3 one can deduce that |run|2 * �p, that is un concentrates at p. Intuitively
it is natural to expect that concentration for maximizing sequences happens in the regions in
which h is larger. We will show that p must be a minimum point of the singularity index ↵
defined in (35). This will clarify the di↵erence between the cases ↵ < 0 and ↵ = 0: in the
former, the blow-up point p will be one of the singular points p

1

, . . . , pm, while in the latter
p 2 ⌃\{p

1

, . . . , pm} (cfr. Remark 4.2 and Proposition 4.3). The next step consists in studying
the behaviour of un around p. Arguing as in [13] we will prove that a suitable scaling of un
converges to a solution of a (possibly singular) Liouville-type equation on R2 (see Proposition
4.2).

Again we consider a local chart (⌦, ) satisfying (40)-(45). From now on we will denote xn :=
 (pn) and

vn = un �  �1. (71)

Define tn and t̃n so that

t2(1+↵(p))
n �nm

2

ne
b
n

m2
n = 1, (72)

t̃2n|xn|2↵(p)�nm2

ne
b
n

m2
n = 1. (73)

Lemma 4.4. For any � < � we have

t2(1+↵(p))
n m2

ne
�m2

n ! 0, t̃2n|xn|2↵(p)m2

ne
�m2

n ! 0

as n ! +1. In particular, for any s � 0 we have

lim
n!+1 tnm

s
n = 0, lim

n!+1 t̃nm
s
n = 0.

Moreover as n ! +1 we have

|xn|
tn

! +1 () |xn|
t̃n

! +1. (74)

Proof. Since the result can be proven both for tn and t̃n with the same argument, we will prove
it here only for tn. By (57), (58) and (72)

t2(1+↵(p))
n m2

ne
�m2

n =
e(��b

n

)m2
n

�n
= e(��b

n

)m2
n

Z

⌃

hu2ne
b
n

u2
ndvg(1 + o(1))


Z

⌃

hu2ne
�u2

ndvg(1 + o(1)).

Take s = �
�

0
(i.e. 1/s+ �/� = 1) and s

0

> 1 such that h 2 Ls0(⌃). Then

Z

⌃

hu2ne
�u2

ndvg  ku2nks,hke�u
2
nk

�

�

1,h  Ckhk
1
s

s0ku2nkss00 �! 0.

As for the last claim it is enough to observe that from (72) and (73) one computes

|xn|
t̃n

=

✓ |xn|
tn

◆

1+↵(p)

.
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We define now

rn :=

(

t̃n if |x
n

|
t
n

! +1 as n ! +1,

tn otherwise
(75)

and

⌘n(x) := mn (vn(xn + rnx)�mn) (76)

where the function ⌘n is defined in D
�0
r

n

.

Proposition 4.2. Up to subsequences, ⌘n ! ⌘
0

in C0

loc(R2) \H1

loc(R2). Moreover

(i) if |x
n

|
r
n

! +1 as n ! +1 the function ⌘
0

solves

��⌘
0

= V (0)e2�⌘0 (77)
Z

R2
V (0)e2�⌘0 dx = 1; (78)

(ii) if |x
n

|
r
n

! x the function ⌘
0

solves

��⌘
0

= |x+ x|2↵(p)V (0)e2�⌘0 (79)
Z

R2
|x+ x|2↵(p)V (0)e2�⌘0 dx = 1. (80)

Proof. If |x
n

|
t
n

! +1 as n ! +1 then rn = t̃n and it follows that ⌘n as in (76) satisfies

��⌘n = mnr
2

ne
'(x

n

+r
n

x)
⇣

�n|xn + rnx|2↵(p)V (xn + rnx)e
b
n

v2
nvn(xn + rnx) + sn(xn + rnx)

⌘

=

= e'(xn

+r
n

x)

 

�

�

�

�

xn
|xn| +

rn
|xn|x

�

�

�

�

2↵(p)

V (xn + rnx)

✓

1 +
⌘n
m2

n

◆

e
b
n

✓
2⌘

n

+

⌘

2
n

m

2
n

◆

+mnr
2

nsn(xn + rnx)

!

.

Otherwise we have that rn = tn and, up to subsequences, |x
n

|
t
n

! x as n ! +1 and ⌘n satisfies

��⌘n = mnr
2

ne
'(x

n

+r
n

x)
⇣

�n |xn + rnx|2↵(p) V (xn + rnx)e
b
n

u2
nvn(xn + rnx) + sn(xn + rnx)

⌘

=

= e'(xn

+r
n

y)

 

�

�

�

�

xn
rn

+ x

�

�

�

�

2↵(p)

V (xn + rnx)

✓

1 +
⌘n
m2

n

◆

e
b
n

✓
2⌘

n

+

⌘

2
n

m

2
n

◆

+mnr
2

nsn(xn + rnx)

!

.

Observe that from Lemma 4.4 and (62) we have
Z

D
L

|mnr
2

nsn(xn + rnx)|
q

q�1 dx = m
q

q�1
n r

2
q�1
n

Z

D
Lr

n

(x
n

)

|sn(x)|
q

q�1 dx

 m
q

q�1
n r

2
q�1
n ksnk

q

q�1
q

q�1
! 0

(81)
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for any L > 0. Since 2⌘n +
⌘2
n

m2
n

 0 and |⌘n|  2m2

n, for any L > 0, in both cases (i) and (ii) we

can find s > 1 such that
k ��⌘nkLs

(D
L

)

 C.

Moreover ⌘n(0) = 0, thus we can exploit Sobolev’s embeddings Theorems and Harnack’s in-
equality to find a uniform bound for ⌘n in C0,↵(D

L

2
) for any L > 0. Hence with a diagonal

argument, we find a subsequence of ⌘n such that ⌘ �! ⌘
0

in H1

loc(R2) \ C0

loc(R2). Moreover ⌘
0

is a solution of (77) or (79), depending on our choice of rn. It remains to prove (78) and (80)
respectively. In order to do this we observe that in case (i) we compute

1 = �
Z

⌃

�gunundvg = �n

Z

⌃

h u2ne
b
n

u2
ndvg + �nkunk2q

� �n

Z

⌦

Lr

n

(p
n

)

h u2ne
b
n

u2
ndvg + o(1)

= V (0)

Z

D
L

e2�⌘0dx+ o(1).

(82)

In particular it holds (see for instance [6])

lim
L!+1

V (0)

Z

D
L

e2�⌘0dx =
1

1 + ↵
� 1 (83)

where the last inequality follows from the fact that ↵  0. Hence with (82) we obtain (78).
Similarly, in case (ii) we have

1 = �
Z

⌃

�gunundvg � V (0)

Z

D
L

|x+ x|2↵(p)e2�⌘0dx+ o(1). (84)

On the other hand (cfr. [22])

lim
L!+1

V (0)

Z

D
L

|x+ x|2↵(p)e2�⌘0dx =
1 + ↵(p)

1 + ↵
� 1 (85)

where now the last inequality follows from the minimality of ↵. Therefore (80) is proven.

Remark 4.2. From the proof of Proposition 4.2 it follows that if ↵ < 0 then by (82) and (83)
we have that only case (ii) is possible. Moreover from (84) and (85) we get ↵(p) = ↵, that is p
must be one of the singular points p

1

, . . . , pm.

We stress that Proposition 4.2 gives us information on the nature of the point p only in the case
↵ < 0. To have a deeper understanding of the case ↵ = 0 and a more complete analysis of the
blow-up behaviour of un near the point p we will need few more steps (see Proposition 4.3).

Lemma 4.5. We have

(i) limL!+1 limn!+1
R

⌦

L

r

n

(p
n

)

�nmnhunebnu
2
n dvg = 1

(ii) limL!+1 limn!+1
R

⌦

L

r

n

(p
n

)

�nhu2ne
b
n

u2
n dvg = 1

21



(iii) limL!+1 limn!+1
R

⌦

L

r

n

(p
n

)

hebnu
2
n dvg = lim supn!+1

1

�
n

m2
n

.

Proof. Both (i) and (ii) follow easily from Proposition 4.2. We are left with the proof of (iii).
By Proposition 4.2, for any L > 0 we have

lim
n!+1 �nm

2

n

Z

⌦

Lr

n

(p
n

)

hebnu
2
ndvg = 1 + oL(1)

where oL(1) �! 0 as L ! 1. Hence

lim sup
n!1

1

�nm2

n
= (1 + oL(1)) lim sup

n!1

Z

⌦

Lr

n

(p
n

)

hebnu
2
ndvg

and we can conclude the proof letting L ! +1.

Following [13], for any A > 1 we define

uAn := min{un, mn

A
}.

Lemma 4.6. For any A > 1 we have

lim sup
n!1

Z

⌃

|ruAn |2dvg =
1

A
.

Proof. Integrating by parts we have

lim inf
n!1

Z

⌃

|ruAn |2dvg = lim inf
n!1

Z

⌃

ruAn ·rundvg = lim inf
n!+1 �

Z

⌃

�gunu
A
n dvg.

Fix now L > 0. By Proposition 4.2, for su�ciently large n, ⌦Lr
n

(pn) ✓ {un > m
n

A }, hence using
(56) and (59) we find

�
Z

⌃

�gun uAn dvg = �n

Z

⌃

hune
b
n

u2
nuAn dvg + o(1) � �nmn

A

Z

⌦

Lr

n

(p
n

)

h une
b
n

u2
ndvg + o(1).

Hence passing to the limit as n, L ! +1 we obtain

lim inf
n!1

Z

⌃

|ruAn |2dvg = lim inf
n!+1 �

Z

⌃

�gunu
A
n dvg � 1

A
(86)

where the last inequality follows from Lemma 4.5. Similarly

�
Z

⌃

�gun
⇣

un � mn

A

⌘

+

dvg � �n

Z

⌦

Lr

n

(p
n

)

h une
b
n

u2
n

⇣

un � mn

A

⌘

dvg + o(1)

we get

lim inf
n!1

Z

⌃

|r(un � mn

A
)+|2dvg � A� 1

A
, (87)

again from Lemma 4.5. Clearly un = uAn + (un � m
n

A )+ and
R

⌃

ruAn ·r(un � m
n

A )+dvg = 0 thus

1 =

Z

⌃

|run|2dvg =

Z

⌃

|ruAn |2dvg +
Z

⌃

|r
⇣

un � mn

A

⌘

+ |2dvg
and from (86) and (87) we find

lim
n!1

Z

⌃

|ruAn |2dvg =
1

A
and lim

n!1

Z

⌃

|r
⇣

un � mn

A

⌘

+ |2dvg =
A� 1

A
.
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With Lemma 4.6 we have a first rough version of Proposition 4.1.

Lemma 4.7.

lim sup
n!1

En(un)  lim
L!+1

lim
n!+1

Z

⌦

L

r

n

(p
n

)

hebnu
2
n dvg + |⌃|g

h

.

Proof. For any A > 1 we have

En(un) =

Z

{u
n

�m

n

A

}
hebnu

2
ndvg +

Z

{u
n

m

n

A

}
hebn(u

A

n

)

2
dvg.

By (58),
Z

{u
n

�m

n

A

}
hebnu

2
ndvg  A2

m2

n

Z

⌃

hu2ne
b
n

u2
ndvg =

A2

�nm2

n
(1 + o(1)).

For the last integral we apply Lemma 4.6. Since lim supn!1 kruAn k2
2

 1

A < 1, (20) implies that

ebn(u
A

n

)

2
is uniformly bounded in Ls(⌃, gh) for some s > 1. Thus by Vitali’s Theorem

Z

{u
n

m

n

A

}
hebn(u

A

n

)

2
dvg 

Z

⌃

hebn(u
A

n

)

2
dvg �! |⌃|g

h

.

Therefore we proved

lim sup
n!1

En(un)  lim sup
n!1

A2

�nm2

n
+ |⌃|g

h

.

As A ! 1 we get the conclusion thanks to Lemma 4.5.

Lemma 4.8. We have
�nmnhune

b
n

u2
n * �p

weakly as measures as n ! +1.

Proof. Take ⇠ 2 C0(⌃). For L > 0, A > 1 we have

�nmn

Z

⌃

h une
b
n

u2
n⇠dvg

= �nmn

Z

⌦

Lr

n

(p
n

)

hune
b
n

u2
n⇠dvg

+ �nmn

Z

{u
n

>m

n

A

}\⌦
Lr

n

(p
n

)

hune
b
n

u2
n⇠dvg

+ �nmn

Z

{u
n

m

n

A

}
hune

b
n

u2
n⇠dvg

=: I1n + I2n + I3n.

We have

I1n = �nmn

Z

⌦

L

r

n

(p
n

)

hune
b
n

u2
n(⇠ � ⇠(p)) dvg + �nmn

Z

⌦

L

r

n

(p
n

)

hune
b
n

u2
n⇠(p) dvg.

23



From k⇠ � ⇠(p)kL1(⌦

L

r

n

(p
n

))

! 0 as n ! +1 and Lemma 4.5 we have

lim
L!1

lim
n!1 I1n = ⇠(p).

Similarly, using (58)

|I2n|  mn

Z

{u
n

>m

n

A

}\⌦
Lr

n

(p
n

)

�nhune
b
n

u2
n |⇠|dvg

 A

Z

{u
n

>m

n

A

}\⌦
Lr

n

(p
n

)

�nhu
2

ne
b
n

u2
n |⇠|dvg

 Ak⇠kL1
(⌃)

 

1�
Z

⌦

Lr

n

(p
n

)

�nhu
2

ne
b
n

u2
ndvg + o(1)

!

.

Therefore, from Lemma 4.5,
lim
L!1

lim
n!1 I2n = 0.

For the last integral by Lemma 4.6 and (20) there exist s > 1, C > 0 such that

Z

⌃

hes�(u
A

n

)

2
dvg  C

thus

|I3n|  �nmnk⇠k1
Z

⌃

h|un|ebn(un

)

2
dvg  �nmnk⇠k1kunks0,hke�(un

)

2ks,h = �nmno(1).

By (iii) in Lemma 4.5 and Lemma 4.7 we get that �nmn �! 0 and hence we find |I3n| �! 0
which gives the conclusion.

Let now G�
p be the Green’s function defined in (46). Using Lemma 4.8 we obtain:

Lemma 4.9. mnun �! G�
p in C0

loc(⌃\{p}) \H1

loc(⌃\{p}) \ Ls(⌃) 8 s > 1.

Proof. First we observe that kmnunkq is uniformly bounded. If not we could consider the
sequence wn := u

n

ku
n

k
q

which satisfies

��gwn = �nh
un

kunkq e
b
n

u2
n +

sn
kunkq

Arguing as in Lemma 4.8 one can prove that k�nhmnunebnu
2
nk

1

 C and hence it follows

k�nhunebnu2
nk

1

kunkq =
k�nhmnunebnu

2
nk

1

kmnunkq ! 0

as n ! +1. Moreover it is easy to check with (59) and (61) that

ksnk1  Ckunkq
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and we have a uniform bound for ��gwn in L1(⌃). Therefore wn is uniformly bounded in
W 1,s(⌃) for any 1 < s < 2 (see [24] for a reference on open sets in R2). The weak limit w of wn

will satisfy
Z

⌃

rw ·r' dvg = �

Z

⌃

|w|q�2w'dvg

for any ' 2 C1(⌃) such that
R

⌃

'dvg = 0. But, since � < �q(⌃, g), this implies w = 0 which
contradicts kwnkq = 1. Hence kmnunkq  C.
This implies that ��g(mnun) is uniformly bounded in L1(⌃) and, as before, mnun is uniformly
bounded in W 1,s(⌃) for any s 2 (1, 2). By Lemma 4.8 we have mnun * G�

p weakly in W 1,s(⌃),
s 2 (1, 2) and strongly in Lr for any r � 1.
From Lemma 4.3 we get |run|2 * �p and un is uniformly bounded in L1

loc(⌃\{p}). This implies
the boundedness of ��g(mnun) in Ls

loc(⌃\{p}) for some s > 1 which gives a uniform bound

for mnun in W 2,s
loc (⌃\{p}). Then, by elliptic estimates, we get mnun �! G�

p in H1

loc(⌃\{p}) \
C0

loc(⌃\{p}).
As we did in the proof of Theorem 1.1, in the next Proposition we will use an Onofri-type
inequality (Corollary 2.3) to control the energy on a small scale.

Proposition 4.3. We have ↵(p) = ↵ and for any L > 0

lim sup
n!1

Z

⌦

Lr

n

(p
n

)

hebnu
2
ndvg  ⇡K(p)e1+�A�

p

1 + ↵
.

Proof. Let us observe that
Z

D
Lr

n

(x
n

)

|x|2↵(p)ebnv2n dx =

Z

D
Lr

n

(x
n

)

|x|2(↵(p)�↵)+2↵ebnv
2
n dx

 (Lrn)
2(↵(p)�↵)

Z

D
Lr

n

(x
n

)

|x|2↵ebnv2n dx.
(88)

Fix � > 0 and set ⌧n =
R

⌦

�

|run|2dvg =
R

D
�

|rvn|2dy. Observe that, by Lemma 4.9,

m2

n(1� ⌧n) =

Z

⌃\⌦
�

|rG�
p |2dvg + o(1), (89)

and
m2

nkunk2q = kG�
pk2q + o(1). (90)

Since by Lemma 3.6 we have
Z

⌃\⌦
�

|rG�
p |2dvg = � 1

2⇡
log � +O(1)

�!0�! +1, (91)

for � su�ciently small, we obtain

⌧n(1 + �kunk2
2

) =

 

1� 1

m2

n

Z

⌃\⌦
�

|rG�
p |2dvg + o

✓

1

m2

n

◆

!

✓

1 +
�

m2

n
kG�

pk2q + o

✓

1

m2

n

◆◆

= 1� 1

m2

n

 

Z

⌃\⌦
�

|rG�
p |2dvg � �kG�

pk2q
!

+ o

✓

1

m2

n

◆

< 1.

(92)
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We denote dn := sup@D
�

vn and wn := (vn � dn)+ 2 H1

0

(D�). Applying Holder’s inequality we
have
Z

D
L

r

n

(x
n

)

|x|2↵ebnv2ndx = ebnd
2
n

Z

D
L

r

n

(x
n

)

|x|2↵ebnw2
n

+2b
n

d
n

w
ndx

 ebnd
2
n

 

Z

D
Lr

n

(x
n

)

|x|2↵e�n

w

2
n

⌧

n dx

!⌧
n

(1+�ku
n

k2
q

)

 

Z

D
Lr

n

(x
n

)

|x|2↵e
2b

n

w

n

d

n

1�⌧
n

(1+�ku
n

k2
q

)

!

1�⌧
n

(1+�ku
n

k2
q

)

.

(93)

Observe that, for n ! +1, we have that w
np
⌧
n

�! 0 uniformly on D�\D�0 for any 0 < �0 < �.

Thus applying Corollary 2.2 to the function w
np
⌧
n

with �n = Lrn, we find

lim sup
n!1

Z

D
Lr

n

(x
n

)

|x|2↵e�n

w

2
n

⌧

n dx  ⇡e

1 + ↵
�2(1+↵). (94)

Using Corollary 2.3 we find

Z

D
Lr

n

(x
n

)

|x|2↵e
2b

n

w

n

d

n

1�⌧
n

(1+�ku
n

k2
q

) 
Z

D
�

|x|2↵e
2b

n

w

n

d

n

1�⌧
n

(1+�ku
n

k2
q

)dx

 ⇡e
1+

4b2
n

d

2
n

⌧

n

16⇡(1+↵)(1�⌧
n

(1+�ku
n

k2
q

)2

1 + ↵
�2(1+↵)

 ⇡e
1+

b

n

d

2
n

⌧

n

(1+�ku
n

k2
q

)

(1�⌧
n

(1+�ku
n

k2
q

)2

1 + ↵
�2(1+↵).

Combining this with (88), (93) and (94), we find

lim sup
n!1

Z

D
L

r

n

(x
n

)

|x|2↵(p)ebnv2ndx  ⇡e�2(1+↵)

1 + ↵
lim sup
n!1

(Lrn)
2(↵(p)�↵) e

b

n

d

2
n

1�⌧
n

(1+�ku
n

k2
q

) . (95)

Using (92) and Lemma 4.9,

lim
n!1

bnd2n
1� ⌧n(1 + �kunk2q)

=
�(sup@B

�

G�
p)

2

⇣

R

⌃\⌦
�

|rG�
p |2dvg � �kG�

pk2q
⌘ =: H(�). (96)

Notice that by Lemma 3.6 and (47) we find

H(�) = �2(1 + ↵) log � + �A�
p + o�(1). (97)

From (95), (96) we obtain

lim sup
n!+1

Z

⌦

Lr

n

(p
n

)

hebnu
2
n dvg = lim sup

n!1

Z

D
L

r

n

(x
n

)

V (x)|x|2↵(p)ebnv2ndx

 K(p)⇡e�2(1+↵)
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eH(�) lim sup

n!+1
(Lrn)

2(↵(p)�↵) .

(98)
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If ↵(p) > ↵ we would have (Lrn)2(↵(p)�↵) ! 0 as n ! +1. This would imply, using Lemma
4.7, that

lim sup
n!+1

En(un)  |⌃g
h

|,

which is a contradiction since un is a maximizing sequence. Hence necessary we have ↵(p) = ↵.
Therefore combining (96), (97) and (98) we get

lim sup
n!+1

Z

⌦

Lr

n

(p
n

)

hebnu
2
n dvg  K(p)⇡e�2(1+↵)

1 + ↵
eH(�) =

K(p)⇡e1+�A�
p

+o
�

(1)

1 + ↵
.

Proof of Proposition 4.1. The proof follows at once from Lemma 4.7 and Proposition 4.3.

5 Test Functions and Existence of Extremals.

By Proposition 4.1, in order to prove existence of extremals for E�,�,q
⌃,h it su�ces to show that

the value
⇡e

1 + ↵
max

p2⌃, ↵(p)=↵
K(p)e�A

�

p + |⌃|g
h

.

is exceeded. In this section we will show that this is indeed the case if � is small enough.

Proposition 5.1. There exists �
0

> 0 such that 8 0  � < �
0

one has

sup
u2H

E�,�q
⌃,h >

⇡e

1 + ↵
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p2⌃, ↵(p)=↵
K(p)e�A

�

p + |⌃|g
h

Proof. Let p 2 ⌃ be such that ↵(p) = ↵ and

K(p)e�A
�

p = max
q2⌃, ↵(q)=↵

K(q)e�A
�

q .

In local coordinates (⌦, ) satisfying (40)-(45) we define

w"(x) :=

8

>

>

>

>

<

>

>

>

>

:

c" �
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✓
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⇣
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"

⌘2(1+↵)
◆
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"
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�⌘
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⇠
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"

x 2 ⌦
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"

"\⌦�
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"

"

(99)

and
u" :=

w"
q

1 + �
c2
"

kG�
pk2q

where c", L" will be chosen later, �" = | log "| 1
1+↵ , ⇠ is defined as in (47) and ⌘" is a cut-o↵

function such that ⌘" ⌘ 1 in ⌦�
"

", ⌘" 2 C1
0

(⌦
2�
"

") and kr⌘"kL1
(⌃)

= O( 1

�
"

"). In order to have

u" 2 H1(⌃) we choose L" so that

�c2" � L" = log

 

1 + �2(1+↵)
"

�2(1+↵)
"

!

+ �A�
p � 2(1 + ↵) log ". (100)
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Observe that
Z

⌦

�

"

"

|rw"|2dvg =
1

�c2"

⇣

log(1 + �2(1+↵)
" )� 1 +O(| log "|�2)

⌘

. (101)

Since ⇠ 2 C1(D�0) and ⇠(x) = O(|x|) we have
Z

⌦2�
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"
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= O((�"")
2),

and similarly
Z
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\⌦
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"

"

rG�
p ·r(⌘"⇠)dvg = O(�"").

By Lemma 3.6 we have
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"
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= � 1

2⇡
log �""+A�

p + �kG�
pk2q +O(�""| log(�"")|).

Observe that �"" log(�"") = o(| log "|�2), therefore we get
Z

⌃

|rw"|2dvg =
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�c2"

⇣

�1� 2(1 + ↵) log "+ �A�
p + ��kG�

pk2q +O(| log "|�2)
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.

If we chose c" so that

�c2" = �1� 2(1 + ↵) log "+ �A�
p +O(| log "|�2), (102)

then u" � u" 2 H. Observe also that (100), (102) yield

L" = �1 +O(| log "|�2). (103)

and
2⇡c2" = | log "|+O(1). (104)

Since 0  w"  O(c") in ⌦�
"

" we get
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2) = o(| log "|�2).

Moreover
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therefore
w" = o(| log "|�2) = o(c�4

" ). (105)

From (102), (103) and (105) it follows that in ⌦�
"

" we have

�(w" � w")
2 � �c2" � 2L" � 2 log
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We have
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2
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� kG�
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where the last inequality follows from (99) and Bernoulli’s inequality after splitting the integral
on regions where |G�

p | � |c"w"| and |G�
p |  |c"w"|. Therefore we find
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1 +
�kw" � w"k2q
1 + �

c2
"

kG�
pk2q

!

�
1 + 2 �

c2
"

kG�
pk2q + o(c�4

" )
⇣

1 + �
c2
"

kG�
pk2q
⌘

2

= 1� �2kG�
pk4q
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Therefore
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It follows that
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Using (102) and (103) we find
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so that
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Finally, with (105) and (106), we observe that
Z
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"
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)
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(108)

Hence from (107) and (108) it follows that

E�,�,q
⌃,h (u" � u") � ⇡K(p)
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where we used that by definition K(p) = V (0). By Lemma 3.5, we know that
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!

�! kG0
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> 0

as �! 0 thus for su�ciently small � we get the conclusion.

To finish the proof of Theorem 1.2 we have to treat the case � > �q(⌃, g). Will use a family of
test functions similar to the one used in [17].

Lemma 5.1. If � > � or � = � and � > �q(⌃, g), we have

sup
H

E�,�,q
⌃,h = +1.

Proof. Take p 2 ⌃ such that ↵(p) = ↵ and a local chart (⌦, ) satisfying (40)-(45). Let us define
v" : D�0 �! [0,+1),
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0

and

u"(x) :=

⇢

v"( (x)) x 2 ⌦
0 x 2 ⌃\⌦.

It is simple to verify that
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⌃
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Z

D
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thus u" � u" 2 H. By direct computation one has
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hence in ⌦" we have

(u" � u")
2 =

1

2⇡
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✓

�
0

"

◆

+O(1).

Thus if � > � we have
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as " �! 0. For the case � = � and � > �q(⌃, g) we take a function u
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This function u
0

will also satisfy

��gu0 = �qku0k2�q
q |u
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� c
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Let us take t", r" �! 0 such that

t2"| log "| �! +1,
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"
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log2 r"
t2"| log "|

�! 0. (111)

We define
w" := u"⌘" + t"u0 (112)

where ⌘" 2 C1
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(⌦
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O(r�1

" ). It is straightforward that

w" = O(| log "|� 1
2 ). (113)
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Thus
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Furthermore by dominated convergence we have,
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Remark 5.1. If there exists a point p 2 ⌃ such that ↵(p) = ↵ and u
0

(p) 6= 0, then one can
argue as in [17] to prove that,

sup
H

E�,�,q
⌃,h = +1

also for � = �q(⌃, g0). This is always true if ↵ = 0.
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A Onofri-type Inequalities for Disks.

Let (⌃, g) be a smooth, closed Riemannian surface. As a consequence of (9) one gets
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|⌃|
Z

⌃

eu�udvg

◆

 1

16⇡

Z

⌃

|rgu|2dvg + C(⌃, g). (114)

While it is well known that the coe�cient 1

16⇡ is sharp, the optimal value of C(⌃, g) is harder to
determine. For the special case of the standard Euclidean sphere (S2, g

0

), Onofri ([21]) proved
that C(S2, g

0

) = 0 and gave a complete characterization of the extremal functions for (114).

Proposition A.1 ([21]). 8 u 2 H1(S2) we have

log

✓

1

4⇡

Z
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Z
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with equality holding if and only if eug
0

is a metric on S2 with positive constant Gaussian
curvature, or, equivalently, u = log | det d'| + c with c 2 R and ' : S2 �! S2 a conformal
di↵eomorphism of S2.

We will prove now Proposition 1.1 by means of the stereographic projection.

Proof. Let us fix Euclidean coordinates (x
1

, x
2

, x
3

) on S2 ✓ R3 and denote N := (0, 0, 1) and
S = (0, 0,�1) the north and the south pole. Let us consider the stereographic projection
⇡ : S2\{N} �! R2

⇡(x) :=
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x
1

1� x
3

,
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1� x
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.

It is well known that ⇡ is a conformal di↵eomorphism and
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�⇤
g
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= eu0 |dx|2 (115)

where
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(116)

satisfies
��u

0

= 2eu0 on R2. (117)

Given r > 0, let Dr := {x 2 R2 : |x| < r} be the disk of radius r and S2

r = ⇡�1(Dr). We
consider the map Tr : H1

0

(Dr) �! H1(S2) defined by

Tru(x) :=
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Using (115) we find
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Moreover, by (117),
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It is easy to check with a direct computation that one has
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D
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D
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u
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eu0dy = 8⇡ log 2� 8⇡ + o(1),

where o(1) �! 0 as r ! +1. Thus we get
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Using (118), (119) and Proposition A.1 we can conclude
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(120)

Now if u 2 H1

0

(D) we can apply (120) to ur(y) = u(yr ) and since

Z

D
eudx =

1

r2

Z

D
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eur

(y)dy and
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|ru|2dx =
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we find
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As r ! 1 we get the conclusion.

As in [2], starting from (14) we can use a simple change of variables to obtain singular Onofri-type
inequalities for the unit disk.
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Proposition A.2. Let �1 < ↵  0. Then for any u 2 H1

0

(D) we have
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Moreover, if we restrict ourselves to the space H1

0,rad(D), we have that (121) holds true for any
↵ 2 (�1,+1].

Proof. As we did in the proof of Proposition 2.1, for u 2 H1

0,rad(D) we consider the function

v(x) = u(|x| 1
1+↵ ), which is again in H1

0,rad(D). The second claim follows at once applying (14)
to v. As for the first claim, if ↵  0 we can use again symmetric rearrangements as we did in
the proof of Theorem 1.1 to remove the symmetry assumption.

Since
Z

D
|x|2↵dx =

⇡

1 + ↵
,

Proposition A.2 can be written in a simpler form in terms of the singular metric g↵ = |x|2↵|dx|2.
Corollary A.1. If u 2 H1

0

(D) and �1 < ↵  0 (or ↵ > 0 and u 2 H1

0,rad(D)), we have

log

✓

1

|D|↵

Z

D
eudvg

↵

◆

 1

16⇡(1 + ↵)

Z

D
|ru|2dvg

↵

+ 1

where |D|↵ = ⇡
(1+↵) is the measure of D with respect to g↵.

We stress that the constant 1 appearing in Proposition A.2 is sharp.

Proposition A.3. For any �1 < ↵  0 we have

inf
u2H1

0 (D)

1

16⇡(1 + ↵)

Z

D
|ru|2dx� log

✓

1

|D|↵

Z

D
|x|2↵eudx

◆

= �1.

Moreover, if we restrict ourselves to the space H1

0,rad(D), the conclusion above holds true for
any ↵ 2 (�1,+1).

Proof. Let us denote

E↵(u) :=
1

16⇡(1 + ↵)

Z

D
|ru|2dx� log

✓

1

|D|↵

Z

D
|x|2↵eudvg

◆

.

It is su�cient to exhibit a family of functions u" 2 H1

0,rad(D) such that E↵(u")
"!0�! �1. Take

�"
"!0�! +1 such that "�"

"!0�! 0, and define

u"(x) =

8

<

:

�2 log

✓

1 +
⇣ |x|

"

⌘

2(1+↵)
◆

+ L" for |x|  �""

�4(1 + ↵) log |x| for �""  |x|  1

where the quantity

L" := 2 log

 

1 + �2(1+↵)
"

�2(1+↵)
"

!

� 4(1 + ↵) log "
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is chosen so that u" 2 H1

0

(D). Simple computations show that

1

16⇡(1 + ↵)

Z

D
|ru"|2dx = �1� 2(1 + ↵) log "+ o"(1)

and

Z

D
|x|2↵eu"dx =

"2(1+↵)�2(1+↵)
" eL"⇡

(1 + ↵)(1 + �2(1+↵)
" )

+
⇡

1 + ↵

✓

1

(�"")2(1+↵)
� 1

◆

=
⇡"�2(1+↵)

1 + ↵
(1 + o"(1)).

Thus
E↵(u") �! �1.

To conclude we remark that Propositions A.2 and A.3 can also be deduced directly using the
singular versions of Proposition A.1 proved in [18], [19].
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