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Abstract

Let m � 2 be an integer. For any open domain ⌦ ⇢ R2m, non-positive function
' 2 C1(⌦) such that �m' ⌘ 0, and bounded sequence (V

k

) ⇢ L1(⌦) we prove the
existence of a sequence of functions (u

k

) ⇢ C2m�1(⌦) solving the Liouville equation
of order 2m

(��)mu
k

= V
k

e2mu

k in ⌦, lim sup
k!1

Z

⌦

e2mu

kdx < 1,

and blowing up exactly on the set S
'

:= {x 2 ⌦ : '(x) = 0}, i.e.

lim
k!1

u
k

(x) = +1 for x 2 S
'

and lim
k!1

u
k

(x) = �1 for x 2 ⌦ \ S
'

,

thus showing that a result of Adimurthi, Robert and Struwe is sharp. We extend
this result to the boundary of ⌦ and to the case ⌦ = R2m. Several related problems
remain open.

1 Introduction and main results

In several nonlinear elliptic problems of second order and “critical type”, sequences of
solutions are not always compact, as they can blow up at finitely many points, see e.g [2],
[4], [5], [11], [24], [25], [26]. For instance, as shown by H. Brézis and F. Merle in [5]:

Theorem A ([5]) Given a sequence (u
k

)
k2N of solutions to the Liouville equation

��u
k

= V
k

e2uk in ⌦ ⇢ R2, (1)

⇤The authors are supported by the Swiss National Science Foundation, project nr. PP00P2-144669.
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with kV
k

k
L

1  C and ke2ukk
L

1  C for some C independent of k, there exists a finite
(possibly empty) set S

1

=
�
x(1), . . . , x(I)

 
⇢ ⌦ such that, up to extracting a subsequence

one of the following alternatives holds:

(i) (u
k

) is bounded in C1,↵

loc

(⌦ \ S
1

).

(ii) u
k

! �1 locally uniformly in ⌦ \ S
1

.

A similar behaviour is also found on manifolds, or in higher order and higher di-
mensional problems, see e.g. [21], [27], or even in 1-dimensional situations involving the
operator (��)

1
2 , see [9], [10]. Now consider the problem

(��)mu
k

= V
k

e2mu

k in ⌦ ⇢ R2m (2)

lim sup
k!1

Z

⌦

e2mu

k dx < 1, lim sup
k!1

kV
k

k
L

1
(⌦)

< 1, (3)

We recall that (2) is a special case of the prescribedQ-curvature equation on a Riemannian
manifold (M, g) of dimension 2m

P
g

u+Q
g

= Q
g

u

e2mu in M, (4)

where P
g

= (��
g

)m + l.o.t. and Q
g

are the GJMS-operator of order 2m and the Q-
curvature of the metric g, respectively, and Q

g

u

is the Q-curvature of the conformal
metric g

u

:= e2ug. In this sense every solution u
k

to (2) gives rise to a metric e2uk |dx|2 on
⌦ with Q-curvature V

k

, and volume
R
⌦

e2mu

kdx.
Since blow-up at finitely many points appears in many problems with various critical

nonlinearities and also of higher order, one might suspect that this is a general feature also
holding for (2). On the other hand Adimurthi, Robert and Struwe [1] found an example
of solutions to (2)-(3) for m = 2 that blow up on a hyperplane, and showed in general that
the blow-up set of a sequence (u

k

) of solutions to (2)-(3) can be of Hausdor↵ dimension
3. This was generalized to the case of arbitrary m in [19]. More precisely for a finite set
S
1

⇢ ⌦ ⇢ R2m let us introduce

K(⌦, S
1

) := {' 2 C1(⌦ \ S
1

) : '  0, ' 6⌘ 0, �m' ⌘ 0}, (5)

and for a function ' 2 K(⌦, S
1

) set

S
'

:= {x 2 ⌦ \ S
1

: '(x) = 0}. (6)

Theorem B ([1, 19]) Let (u
k

) be a sequence of solutions to (2)-(3) for some m � 1.
Then the set

S
1

:=

⇢
x 2 ⌦ : lim

r#0
lim sup
k!1

Z

B

r

(x)

|V
k

|e2mu

kdy � ⇤
1

2

�
, ⇤

1

:= (2m� 1)!vol(S2m)

is finite (possibly empty) and up to a subsequence either
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(i) (u
k

) is bounded in C2m�1,↵

loc

(⌦ \ S
1

), or

(ii) there exists a function ' 2 K(⌦, S
1

) and a sequence �
k

! 1 as k ! +1 such that

u
k

�
k

! ' locally uniformly in ⌦ \ S
1

.

In particular u
k

! �1 locally uniformly in ⌦ \ (S
'

[ S
1

).

Notice that Theorem B contains Theorem A since when m = 1 we have S
'

= ;
for every ' 2 K(⌦, S

1

) by the maximum principle. In fact the more complex blow-up
behaviour of (2) when m > 1 can be seen as a consequence of the size of K(⌦, S

1

). A
way of recovering a finite blow-up behaviour for (2)-(3) was given by F. Robert [23] when
m = 2 and generalized by the third author [20] when m � 3, by additionally assuming

k�u
k

k
L

1
(B

r

(x))

 C on some ball B
r

(x) ⇢ ⌦,

which is su�cient to control the “polyharmonic part” of u
k

.

The first result that we will prove shows that the condition given in [1] and [19] on the
set S

'

above is sharp, at least when S
1

= ;. In fact we shall consider a slightly stronger
result, by defining

S⇤
'

:= S
'

[ {x 2 @⌦ : lim
⌦3y!x

'(y) = 0}, (7)

namely we add to S
'

the points on @⌦ where ' can be continuously extended to 0. Then
we have

Theorem 1 Let ⌦ ⇢ R2m, m � 1, be an open (connected) domain and let (V
k

) ⇢ L1(⌦)
be bounded. Then for every ' 2 K(⌦, ;) there exists a sequence (u

k

) of solutions to (2)
with Z

⌦

e2mu

k dx ! 0, (8)

such that as k ! 1

u
k

! �1 loc. unif. in ⌦ \ S
'

, u
k

! +1 loc. unif. on S⇤
'

, (9)

where S
'

and S⇤
'

are as in (6) and (7).

The proof of Theorem 1 is based on a Schauder’s fixed-point argument. The case when
⌦ is smoothly bounded is very elementary, as one looks for solutions of the form

u
k

= c
k

'+ k + v
k

, c
k

! 1,

where v
k

is a small correction term.
The general case is a priori more rigid. For instance in the case m = 1, when V

k

⌘ 1
there are few solutions to (2)-(3) when ⌦ = R2 (see [8]) and many more when ⌦ is
bounded (see [7]). To treat the general case we will borrow ideas from [28] (see also [14])
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and suitably prescribe the asymptotic behavior of u
k

at infinity. More precisely we will
look for solutions of the form

u
k

= c
k

'+ k � ↵
k

log(1 + |x|2)� �|x|2 + v
k

,

for some c
k

! 1, ↵
k

! 0, � > 0, and a function v
k

! 0 uniformly. If '(x) ! �1
su�ciently fast as |x| ! 1, or when ⌦ is bounded, one can choose � = 0, but the case
⌦ = R2m, '(x

1

, . . . , x
2m

) = �x2

1

shows that � in general must be positive when

lim inf
x2⌦,|x|!1

'(x) > �1,

otherwise the condition (3) might fail to be satisfied.
The simplicity of the proof of Theorem 1 comes at the cost of not being able to

prescribe the total Q-curvature of the metric g
u

k

:= e2uk |dx|2, which will necessarily go
to zero, together with the volume of g

u

k

. Resting on variational methods from [15] going
back to [6], we can extend Theorem 1 to the case in which we prescribe both the blow-up
set S

'

and the total curvature of the metrics g
u

k

. This time, though, we will have to
restrict to non-negative functions V

k

.

Theorem 2 Let 0 < ⇤ < ⇤
1

/2, ⌦ ⇢ R2m open, m � 2, ' 2 K(⌦, ;), and let S
'

be as in
(6). Let further V

k

: ⌦ ! R be functions for which there exists x
0

2 S⇤
'

such that

lim inf
k!+1

Z

B

"

(x0)\⌦
V
k

dx > 0, for every " > 0, 0  V
k

 b < 1. (10)

Then there exists a sequence (u
k

)
k2N of solutions to (2) with
Z

⌦

V
k

e2mu

kdx = ⇤, (11)

such that (9) holds.

The integral assumption in (10) is crucial. In fact, for any ' 2 K(⌦, ;) there are
functions V

k

satisfying 0  V
k

 b < 1, such that for every ⇤ > 0 there exists no
sequence (u

k

) of solution to (2) satisfying (9) and (11) (see Proposition 12).
As we shall see, Theorems 1 and 2 give several examples of solutions blowing-up on

the boundary, already in dimension 2.

Corollary 3 Let ⌦ ⇢ R2m with m � 1 be a bounded domain with smooth boundary and
let � ⇢ @⌦ be a proper closed subset. Let (V

k

) be as in Theorem 1. Then we can find
solutions u

k

: ⌦ ! R to (2) such that the conclusion of Theorem 1 holds with S⇤
'

= � for
some ' 2 K(⌦, ;). If m � 2 and (V

k

) additionally satisfies (10) for some x
0

2 �, then
we can prescribe (11) instead of (8).

Open problem 1 Can one remove the assumption ⇤ < ⇤1
2

in Theorem 2? In the radially
symmetric case this appears to be the case, as the following result shows.
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Theorem 4 Let ⌦ = B
R2 \ B

R1 ⇢ R2m and ' 2 K(⌦, ;) be radially symmetric. Let
⇤ > 0 and let (V

k

) be radially symmetric satisfying (10). Then there exists a sequence
of radially symmetric solutions (u

k

) to (2) such that (9) and (11) hold. For ⌦ = B
R

the
same conclusion holds if in addition we have �'(0) > 0 and V

k

! 1 in L1(B
�

(0)) for
some � > 0.

Gluing open problems

We have worked under the assumption S
1

= ;. What happens if we drop it?

Open problem 2 Can one have both S
1

6= ; and S
'

6= ; in Theorem B? Or when m = 1
can one have S

1

6= ; and S⇤
'

6= ;?

This can be considered as a gluing problem. For instance, can one glue a standard
bubble of the form

u
x0,�(x) := log

2�

1 + �2|x� x
0

|2 , for some � > 0, x
0

2 R2m (12)

solving

(��)mu
x0,� = (2m� 1)!e2mu

x0,� , (2m� 1)!

Z

R2m

e2mu

x0,�dx = ⇤
1

, (13)

to one of the solutions provided by Theorems 1 and 2?
Moreover, as shown by Chang-Chen [6], whenm � 2 problem (13) has several solutions

which are not of the form (12). Such solutions behave polynomially at infinity, as shown
in [17, 18] (see also [12, 16] for similar results in odd dimension). Let us call v such a
solution and

v
x1,µ(x) := v(µ(x� x

1

)) + log µ, for some µ > 0, x
1

2 R2m.

Open problem 3 Can one glue a spherical solution u
x0,� to a non-spherical solution

v
x1,µ as above (x

1

6= x
0

)? More precisely, can one find a sequence of solutions (u
k

) to
(2)-(3) with u

k

= u
x0,�

k

+ w
k

suitably close to x
0

and u
k

= v
x1,µ

k

+ w
k

suitably close to
x
1

, with an error term w
k

bounded and �
k

, µ
k

! 1?

This problem can be seen in terms of gradient estimates or estimates for �u
k

. Indeed
on any fixed ball B one has

k�u
�,x0kL1

(B)

= O(1), k�v
�,x1kL1

(B)

! 1, as � ! 1

(see Theorems 1 and 2 in [18]). This is consistent with a result of F. Robert [23], extended
in [20], stating that in a region ⌦

0

such that k�u
k

k
L

1
(⌦0)  C, u

k

has a bubbling behaviour
leading to solutions of the form (12).
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It was open whether there exists a sequence (u
k

) of solutions to (2)-(3) on some domain
⌦ in R2m with 2 open regions ⌦

0

,⌦
1

⇢ ⌦ such that

k�u
k

k
L

1
(⌦0) = O(1), k�u

k

k
L

1
(⌦1) ! 1.

We will prove that this is actually possible.

Theorem 5 On ⌦ = B
2

⇢ R2m for any ⇤ 2 (0,⇤
1

) we can find a sequence (u
k

) of
solutions to (2)-(3) with V

k

⌘ 1 such that
Z

B2

e2mu

kdx = ⇤, (14)

and Z

B1

|�u
k

|dx  C,

Z

B2

(�u
k

)�dx
k!1���! 1. (15)

It remains open whether in the situation of Theorem 5 one can also have blow-up in
B

1

, in B
2

\B
1

, or in both regions.

In what follows we will denote by C a generic positive constant that can change its
value from line to line.

Acknowledgements The question that led to Theorem 1, then extended into the
present work, was raised by Michael Struwe to the third author several years ago.

2 Proof of Theorem 1

In order to clarify the simple idea behind the proof we start considering the easier case
when ⌦ is bounded and has regular boundary. The proof in the general case is more
complex.

2.1 Case ⌦ smoothly bounded

The proof will be based on an application of a fixed-point argument. Consider the Banach
space

X := C0(⌦̄), kvk
X

= max
x2¯

⌦

|v(x)|.

For each k 2 N choose c
k

� k2 such that

ke2mc

k

'k
L

2
(⌦)

 e�3mk.

For k 2 N consider the operator T
k

: X ! X defined by T (v) = v̄ where v̄ is the unique
solution of ⇢

(��)mv̄ = V
k

e2m(k+c

k

'+v) in ⌦
v̄ = �v̄ = · · · = �m�1v̄ = 0 on @⌦.
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From elliptic estimates, the Sobolev embedding and Ascoli-Arzelà’s theorem it follows
that T

k

is compact. Moreover, for every v 2 X we have

kv̄k
X

 C
1

k�mv̄k
L

2
(⌦)

 C
2

Me2mkke2mvk
X

ke2mc

k

'k
L

2
(⌦)

, kV
k

k
L

1  M.

This shows that

kT
k

(v)k
X

 C
3

e2mke�3mk, for kvk
X

 1, C
3

:= C
2

M. (16)

Therefore T
k

(B̄
1

) ⇢ B̄ 1
2
for k large enough (here B

r

is a ball in X), and hence T
k

has

a fixed point in X. We denote it by v
k

. Notice that kv
k

k
X

 Ce�mk ! 0 as k ! 1.
Moreover, by Hölder’s inequality,

Z

⌦

e2mke2mc

k

'e2mv

kdx  e2mk

p
|⌦|ke2mc

k

'k
L

2
(⌦)

k!1���! 0.

We set
u
k

:= v
k

+ k + c
k

'.

Then u
k

satisfies

(��)mu
k

= V
k

e2mu

k in ⌦,

Z

⌦

e2mu

kdx
k!1���! 0.

Moreover
inf
x2S⇤

'

u
k

= o(1) + k
k!1���! 1.

Finally, for any compact subset K b ⌦ \ S
'

, using that c
k

� k2, we obtain

max
x2K

u
k

= o(1) + k + c
k

max
x2K

'  k � "k2

k!1���! �1,

where " > 0 is such that max
x2K ' < �". This completes the proof.

2.2 General case

We will use many ideas from [14] and [28]. Let ' 2 K(⌦, ;). Fix u
0

2 C1(R2m), u
0

> 0,
such that u

0

(x) = log |x| for |x| � 2, and notice that integration by parts yields
Z

R2m

(��)mu
0

dx = ��
2m

, (17)

where �
2m

is defined by

(��)m log
1

|x| = �
2m

�
0

in R2m, i.e. �
2m

=
⇤

1

2
. (18)

We will work in weighted spaces.
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Definition 6 For k 2 N, � 2 R and p � 1 we set Mp

k,�

(R2m) to be the completion of
C1

c

(R2m) in the norm

kfk
M

p

k,�

:=
X

|�|k

k(1 + |x|2)
(�+|�|)

2 D�fk
L

p

(R2m
)

.

We also set Lp

�

(R2m) := Mp

0,�

(R2m). Finally we set

�p

�

(R2m) :=

⇢
f 2 Lp

2m+�

(R2m) :

Z

R2m

fdx = 0

�
,

whenever �p > �2m, so that Lp

2m+�

(R2m) ⇢ L1(R2m) and the above integral is well defined.

Lemma 7 (Theorem 5 in [22]) For 1 < p < 1 and � 2
⇣
�2m

p

,�2m

p

+ 1
⌘
, the opera-

tor (��)m is an isomorphism from Mp

2m,�

(R2m) to �p

�

(R2m).

Lemma 8 (Lemma 2.3 in [14]) For � > �2m

p

, p � 1, the embedding

E : Mp

2m,�

(R2m) ,! C
0

(R2m)

is compact.

We will construct a sequence (u
k

)
k2N of solutions to (2)-(8) of the form

u
k

= ��|x|2 + c
k

'� ↵
k

u
0

+ k + v
k

, in ⌦, (19)

for some � � 0 and v
k

2 C2m�1(R2m) such that as k ! 1

sup
⌦

|v
k

| ! 0, c
k

! 1, ↵
k

! 0.

In general � > 0 is an arbitrary fixed constant, but if ' satisfies
Z

⌦

e2m'|x|2q dx < 1, for some q > 0, (20)

then we can take � = 0 as well.
We consider

X := C
0

(R2m) :=

⇢
v 2 C0(R2m) : lim

|x|!1
v(x) = 0

�
, kvk

X

= sup
x2R2m

|v(x)|.

For c 2 R we set

F
k,c

=

⇢
V
k

e2mke�2m�|x|2e2mc' in ⌦
0 in R2m \ ⌦.
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Let "
1

2 (0, q

8m

) (to be fixed later). We fix p > 1 and � 2 (�2m

p

, 2m
p

+ 1) such that

p(2m+ �) < q

4

. For each k 2 N we choose c
k

� k2 so that
Z

R2m

|F
k,c

k

(x)|(M + |x|)qdx  "
1

e�ke�2m, (21)

kF
k

(M + |x|)
q

4k
L

p

2m+�

 "
1

e�k, F
k

:= F
k,c

k

, (22)
Z

⌦

e2m(c

k

'+k)(M + |x|)q dx  e�k, (23)

where q is as in (20) and M > 0 is such that eu0  M on B
2

. For each k 2 N, define a
continuous function I

k

on X ⇥ (� q

2m

, q

2m

) given by

I
k

(v,↵) =
1

�
2m

Z

R2m

F
k

e�2m↵u0e2mvdx.

If I
k

(v, 0) > 0 then

lim
↵!0

+

I
k

(v,↵)

↵
= 1,

I
k

(v, "
1

e�k)

"
1

e�k

 1, kvk
X

 1,

and hence there exists ↵ 2 (0, "
1

e�k] such that I
k

(v,↵) = ↵. Notice that

sup
↵2[� q

4m ,0]

|I
k

(v,↵)|  e�k"
1

, for kvk
X

 1.

Thus, if I
k

(v, 0) < 0 then

lim
↵!0

�

I
k

(v,↵)

↵
= 1,

|I
k

(v,�"
1

e�k)|
"
1

e�k

 1, kvk
X

 1,

and hence there exists ↵ 2 [�"
1

e�k, 0) such that I
k

(v,↵) = ↵. For kvk
X

 1 we define

↵
k,v

:=

8
<

:

inf{↵ > 0 : ↵ = I
k

(v,↵)} if I
k

(v, 0) > 0
sup{↵ < 0 : ↵ = I

k

(v,↵)} if I
k

(v, 0) < 0
0 if I

k

(v, 0) = 0.

From the continuity of I
k

it follows that ↵
k,v

= I
k

(v,↵
k,v

).

Lemma 9 There exists "
0

> 0 such that for every " 2 (0, "
0

) and for every v 2 B
1

if

I
k

(v,↵
v

) = ↵
v

for some |↵
v

| < q

4m
,

then for every w 2 B
"

2(v) \ B
1

there exists ↵
w

2 (↵
v

� ",↵
v

+ ") such that

I
k

(w,↵
w

) = ↵
w

.

Moreover, the map v 7! ↵
k,v

is continuous on B
1

.
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Proof. Let R > 0 be such that Rq = 1

"

2 . With this particular choice of R we have

Z

B

c

R

|F
k

| (1 + |x|)q dx  C"2.

Now for |↵
v

� ↵|(2m logR)2 < 1

2

we have

1

�
2m

Z

B

R

F
k

e�2m↵u0e2mw dx

=
1

�
2m

Z

B

R

F
k

e�2m↵

v

u0e2mve2m(w�v)e2m(↵

v

�↵)u0 dx

=
1

�
2m

Z

B

R

F
k

e�2m↵

v

u0e2mv (1 + 2m(↵
v

� ↵)u
0

+O (↵
v

� ↵))
�
1 +O("2)

�
dx

= I
k

(v,↵
v

) +
2m(↵

v

� ↵)

�
2m

(1 +O("2))

Z

B

R

F
k

e�2m↵

v

u0e2mvu
0

dx

+O (↵
v

� ↵)

Z

B

R

F
k

e�2m↵

v

u0e2mv dx+O("2)

=: I
k

(v,↵
v

) +
2m(↵

v

� ↵)

�
2m

(1 +O("2))J
1

+O (↵
v

� ↵) J
2

+O("2).

Using (21) we get

|J
1

|  e2m
Z

B

R

|F
k

|e�2m↵

v

u0u
0

dx  e2m
Z

B

R

|F
k

|(M + |x|)
q

2u
0

dx

 C(q)e2m
Z

B

R

|F
k

|(M + |x|)q dx  C(q)"
1

,

and J
2

= O("
1

). Let ↵ = ↵
v

+ ⇢, with |⇢|  1

2(2m logR)

2 . Then

I
k

(w,↵
v

+ ⇢)� (↵
v

+ ⇢) = ⇢+O("2) + ⇢O("
1

).

We fix "
0

> 0 and "
1

> 0 such that for every " 2 (0, "
0

) we have |O("2)|  "

4

and
|O("

1

)|  1

4

. Then we can choose ⇢̄ 2 (�", ") such that

|⇢̄|  1

2(2m logR)2
, ⇢̄+O("2) + ⇢̄O("

1

) = 0,

concluding the first part of the lemma.
Now we prove the continuity of the map v 7! ↵

k,v

from B
1

to R.
For v

n

! v 2 B
1

it follows that (at least) for large n, |↵
k,v

n

| < q

4m

and |↵
k,v

| < q

4m

.
First we consider the case ↵

k,v

= 0. Then for any " > 0 one has I
k

(v
n

,↵
v

n

) = ↵
v

n

for
some ↵

v

n

2 (�", ") where kv � v
n

k
X

< "2. This follows from the first part of the lemma.
Since |↵

k,v

n

|  |↵
v

n

|, we have the continuity.

10



Now we consider ↵
k,v

> 0 (negative case is similar). Then I
k

(v, 0) > 0, and hence
↵
k,v

n

� 0 for large n. We set ↵1 := lim
n!1 ↵

k,v

n

(this limit exists at least for a sub-
sequence). From the continuity of the map I

k

it follows that I
k

(v,↵1) = ↵1. Since
↵1 � 0 and I

k

(v, 0) > 0, we must have ↵1 > 0. From the definition of ↵
k,v

we deduce
that ↵

k,v

 ↵1. We fix " 2 (0, ↵k,v

2

). Then by the first part of the lemma there exists
↵
v

n

2 (↵
k,v

� ",↵
k,v

+ ") such that I
k

(v,↵
v

n

) = ↵
v

n

for every kv � v
n

k
X

< "2. Since
↵
k,v

n

 ↵
v

n

and ↵
k,v

n

! ↵1, we have for n large

↵
k,v

 ↵1  ↵
k,v

n

+ "  ↵
v

n

+ "  ↵
k,v

+ 2".

We conclude the lemma. ⇤

Proof of Theorem 1 We define T
k

: B
1

⇢ X ! X, v 7! v̄, where

v̄(x) :=
1

�
2m

Z

R2m

log

✓
1

|x� y|

◆
F
k

(y)e�2m↵

k,v

u0+2mv(y) dy + ↵
k,v

u
0

,

that is v̄ solves
(��)mv̄ = F

k

e�2m↵

k,v

u0+2mv + ↵
k,v

(��)mu
0

.

Notice that arguing as in [14] one gets v̄ 2 X. Using (17) and our choice of ↵
k,v

we have

Z

R2m

(��)mv̄ dx = 0.

With our choice of � and p we have v̄ 2 Mp

2m,�

(R2m). For v 2 B̄
1

⇢ X we bound with
Lemma 7, Lemma 8 and (22)

kT
k

(v)k
X

 C
1

kT
k

(v)k
M

p

2m,�

 C
1

k(��)mv̄k
�

p

�

,

 C
1

ke�2m↵

k,v

u0F
k

k
L

p

2m+�

+ C
1

|↵
k,v

|k(��)mu
0

k
L

p

2m+�

k!1���! 0.

Therefore, for "
1

small enough, kT
k

(v)k
X

 1

2

and there exists a fixed point v
k

for every
k. Hence, thanks to (23), the sequence

u
k

(x) = ��|x|2 � ↵
k,v

k

u
0

(x) + c
k

'(x) + k + v
k

(x), x 2 ⌦,

is a sequence of solutions with the stated properties. ⇤

3 Proof of Theorem 2 and Corollary 3

A slightly di↵erent version of the following proposition appears in [15]. For the sake of
completeness we give a sketch of the proof.

11



Proposition 10 Let w
0

(x) = log 2

1+|x|2 and consider two functions K, f : R2m ! R such
that

K � 0, K 6⌘ 0, Ke�2mw0 2 L1(R2m)

and

fe�2mw0 2 L1(R2m), ⇤ :=

Z

R2m

fdx 2 (0,⇤
1

).

Then there exists a function w 2 C2m�1(R2m) and a constant c
w

such that

(��)mw = Ke2m(w+c

w

) � f in Rn,

Z

R2m

Ke2m(w+c

w

)dx = ⇤, (24)

and lim|x|!1 w(x) 2 R. Moreover, if f is of the form f = (��)mg for some g 2 C2m(R2m)
with g(x) = O(log |x|) at infinity, then w satisfies

w(x) =
1

�
2m

Z

R2m

log

✓
1 + |y|
|x� y|

◆
K(y)e2m(w(y)+c

w

) � g(x) + C,

for some C 2 R.

Proof. Let ⇡ be the stereographic projection from S2m to R2m. We define the functional
J on Hm(S2m) given by

J(u) =

Z

S

2m

✓
1

2
|(P 2mu)

1
2 |2 + f̃

1

u

◆
dV

0

� ⇤

2m
log

✓Z

S

2m

K̃e�2mw0�⇡e2mudV
0

◆
,

where f
1

:= fe�2mw0 , f̃
1

:= f
1

� ⇡, K̃ := K � ⇡ and P 2m is the Paneitz operator of order
2m with respect to the standard metric on S2m. Following the arguments in [15] one can
show that there exists u 2 H2m(S2m) such that

P 2mu =
⇤K̃e�2mw0�⇡e2mu

R
S

2m K̃e�2mw0�⇡e2mudV
0

� f̃
1

=: C
0

K̃e�2mw0�⇡e2mu � f̃
1

.

Notice that P 2mu 2 L1(S2m), thanks to the embedding H2m(S2m) ,! C0(S2m), and
hence u 2 C2m�1(S2m).

We set w = u � ⇡�1. Then w 2 C2m�1(R2m) and lim|x|!1 w(x) 2 R. Using the
following identity of Branson (see [3])

(��)mv = e2mw0(P 2mv) � ⇡�1, for every v 2 C1(S2m),

and by an approximation argument, we have that

(��)mw = C
0

Ke2mw � f =: Ke2m(w+c

w

) � f, in R2m.

Now we set

w̃(x) :=
1

�
2m

Z

R2m

log

✓
1 + |y|
|x� y|

◆
K(y)e2m(w(y)+c

w

) � g(x).

12



Then �m(w�w̃) = 0 in R2m and (w�w̃)(x) = O(log |x|) at infinity. Therefore, w = w̃+C
for some C 2 R.

This finishes the proof of the proposition. ⇤

Proof of Theorem 2 Let ' 2 K(⌦, ;) and let u
0

2 C1(R2m) be such that u
0

= � log |x|
on Bc

1

. We set f = 2⇤

⇤1
(��)mu

0

. For each k 2 N we set

K = K
k

:= V
k

e2m(��|x|2+k'+↵u0), ↵ :=
2⇤

⇤
1

, � > 0,

and we extend K
k

by 0 outside ⌦. Then by Proposition 10 there exists a sequence of
functions (w

k

) satisfying

w
k

(x) =
1

�
2m

Z

R2m

log

✓
1 + |y|
|x� y|

◆
K

k

(y)e2m(w

k

(y)+c

w

k

)dy � 2⇤

⇤
1

u
0

+ a
k

,

for some a
k

2 R. We set

u
k

(x) := w
k

+ c
w

k

� �|x|2 + k'(x) +
2⇤

⇤
1

u
0

(x), x 2 ⌦ [ S⇤
'

.

Then u
k

satisfies

u
k

(x) =
1

�
2m

Z

⌦

log

✓
1 + |y|
|x� y|

◆
V
k

e2mu

k

(y)dy � �|x|2 + k'(x) + c
k

and also (11), where c
k

:= a
k

+ c
w

k

. We conclude the proof with Lemma 11. ⇤

Lemma 11 Let ⌦ be a domain in R2m. Let ' and V
k

as in Theorem 2. Let (u
k

) be a
sequence of solutions to

u
k

(x) =
1

�
2m

Z

⌦

log

✓
1 + |y|
|x� y|

◆
V
k

e2mu

k

(y)dy � �|x|2 + k'(x) + c
k

, x 2 ⌦ [ S⇤
'

,

for some � > 0. Assume that

Z

⌦

V
k

e2mu

k

(y)dy = ⇤ <
⇤

1

2
.

Then c
k

! 1, c
k

= o(k) and

I
k

(x) :=
1

�
2m

Z

⌦

log

✓
1 + |y|
|x� y|

◆
V
k

e2mu

k

(y)dy, x 2 R2m,

is locally uniformly bounded from above on ⌦ \ S
'

, and locally uniformly bounded from
below on R2m. In particular, u

k

! 1 on S⇤
'

and u
k

! �1 locally uniformly on ⌦ \ S
'

.

13



Proof. For any fixed R > 0 and x 2 B
R

we bound

I
k

(x) =

Z

|y|2R, y2⌦
log

✓
1 + |y|
|x� y|

◆
V
k

e2mu

k

(y)dy +

Z

|y|>2R, y2⌦
log

✓
1 + |y|
|x� y|

◆
V
k

e2mu

k

(y)dy

� �C(R) +

Z

|y|>2R, y2⌦
log

✓
1

2
+

1

2|y|

◆
V
k

e2mu

k

(y)dy

� �C(R).

Since ⇤ < ⇤1
2

, using Jensens inequality we obtain for some p < 2m

e2mu

k

(x)  e2mc

ke�2m�|x|2+2mk'(x)

Z

R2m

✓
1 + |y|
|x� y|

◆
p

V
k

(y)e2mu

k

(y)dy.

Using that
Z

⌦

✓
1 + |y|
|x� y|

◆
p

e�2m�|x|2+2mk'(x)dx
k!1���! 0,

and together with Fubini theorem, one has
Z

⌦

V
k

(x)e2mu

k

(x)dx = e2mc

ko(1), as k ! 1.

Now ⇤ > 0 implies that c
k

! 1.
We assume by contradiction that c

k

6= o(k). Then for some " > 0 we have c

k

k

� 2"
for k large. Let x

0

2 S⇤
'

be such that (10) holds. Let � > 0 be such that '(x) > �" for
x 2 B

�

(x
0

) \ ⌦. Therefore

u
k

(x) � �C � k"+ c
k

� �C + k", x 2 B
�

(x
0

) \ ⌦,

and hence Z

⌦

V
k

e2mu

kdx � e�C+k"

Z

B

�

(x0)

V
k

dx
k!1���! 1,

a contradiction.
Now we prove that I

k

is locally uniformly bounded from above on ⌦\S
'

. For ⌦̃ b ⌦\S
'

we have
k'+ c

k

! �1 uniformly on ⌦̃.

Using Jensens inequality one can show that ke2mu

kk
L

p

(⌦1)  C for some p > 1, where
⌦̃ b ⌦

1

b ⌦ \ S
'

. For x 2 ⌦̃ we obtain by Hölder inequality

I
k

(x) =
1

�
2m

Z

⌦

c

1\⌦
log

✓
1 + |y|
|x� y|

◆
V
k

e2mu

k

(y)dy +
1

�
2m

Z

⌦1\⌦
log

✓
1 + |y|
|x� y|

◆
V
k

e2mu

k

(y)dy

 C + Ck log |x�· |k
L

p

0
(⌦1)

ke2mu

kk
L

p

(⌦1)

 C.
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The remaining part of the lemma follows immediately. ⇤
Proof of Corollary 3. Let g 2 C1(@⌦) be such that g  0, g 6⌘ 0 on @⌦ and g = 0 on �.
Let ' be the solution to

8
><

>:

(��)m' = 0 in ⌦,

(��)j' = 0 on @⌦, j = 1, . . . ,m� 1

' = g on @⌦.

Then by maximum principle ' < 0 in ⌦ and hence S⇤
'

= �. Then the conclusion follows
by Theorem 1 and 2. ⇤

Proposition 12 Let ⌦ be a domain in R2m. Let ' 2 K(⌦, ;). Let ⌦̃ b ⌦\S
'

be an open
set. Let V

k

be such that V
k

⌘ 0 on ⌦̃c and V
k

⌘ 1 on ⌦̃. Then for any ⇤ > 0 there exists
no sequence (u

k

) of solutions to (2) satisfying (9) and (11).

Proof. We assume by contradiction that the statement of the proposition is not true.
Then there exists a sequence of solutions (u

k

) to (2) satisfying (9) and (11) for some
⇤ > 0. Therefore, by (9), u

k

! �1 uniformly in ⌦̃ and hence

⇤ =

Z

⌦

V
k

e2mu

kdx =

Z

˜

⌦

e2mu

kdx
k!1���! 0,

a contradiction. ⇤

4 Proof of Theorem 4

4.1 The case ⌦ is an annulus.

Let ⌦ = B
R2 \ BR1 be an annulus. Let X = C0

rad

(⌦̄). We fix ⇤ 2 (0,1). For k 2 N and
v 2 X we choose c

v

= c(v, k) 2 R so that
Z

⌦

V
k

e2m(v+c

v

)dx = ⇤.

Let ' 2 K(⌦, ;) be radially symmetric. For k 2 N we define an operator T
k

: X ! X,
v 7! v̄ where

v̄ := ṽ + k'(x), ṽ(x) =

Z

⌦

G(x, y)V
k

(y)e2m(v(y)+c

v

)dy,

and G is the Green function of (��)m on ⌦ with the Navier boundary conditions.

Lemma 13 Let k 2 N be fixed. Let (v, t) 2 X ⇥ (0, 1] satisfies v = tT
k

(v). Then there
exists M > 0 such that kvk

X

 M for all such (v, t).
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Proof. We have

v(x) = t

Z

⌦

G(x, y)V
k

(y)e2m(v(y)+c

v

)dy + tk'(x) � �C(k) in ⌦.

Hence from the definition of c
v

we get

⇤ =

Z

⌦

V
k

e2m(v+c

v

) dx � e2m(�C(k)+c

v

)

Z

⌦

V
k

dx > ae2m(�C(k)+c

v

)

hence c
v

 C(k). Define the cone C as the set

C := {x 2 ⌦ : |x̄|  ⇢x
1

} , with x = (x
1

, x̄) 2 R⇥ R2m�1, (25)

for some ⇢ > 0 to be fixed later. For some finite M = M(⇢) we can write ⌦ as a union of
(not necessarily disjoint) cones {C

i

}M
i=1

such that for each such cone C
i

we have

(i) C
i

is congruent to C,

(ii)
R
N(C

i

)

V
k

(y)e2m(v(y)+c

v

)dy  ⇤1
4

, N(C
i

) := [C
i

\C
j

6=;Cj

and we fix ⇢ such that (ii) holds. Notice that there exists � > 0 such that dist(C
i

, N(C
i

)c) �
� for i = 1, . . . ,M . Therefore, for x 2 C

1

v(x)  t

Z

N(C1)
G(x, y)V

k

(y)e2m(v(y)+c

v

)dy + tk'(x) + C(�),

and together with Jensen’s inequality, for some p > 1 we get
Z

⌦

ep2m(v+c

v

)dx  M

Z

C1
ep2m(v+c

v

)dx  C.

Since ' is radially symmetric and polyharmonic we have ' 2 C2m(⌦̄), and therefore by
elliptic estimates and Sobolev embeddings

kv � tk'k
X

 Ckv � tk'k
W

2m,p

(⌦)

 Ck(��)mvk
L

p

(⌦)

 C,

concluding the proof. ⇤
A consequence of Lemma 13 is that for every k 2 N, the operator T

k

has a fixed point
v
k

2 X. We set u
k

= v
k

+ c
v

k

. Then

u
k

(x) =

Z

⌦

G(x, y)V
k

e2mu

k

(y)dy + k'(x) + c
v

k

,

Z

⌦

V
k

e2mu

k

(y)dx = ⇤. (26)

We claim that c
v

k

! 1.
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Again writing ⌦ as a union of cones and using Jensen’s inequality we obtain

Z

⌦

e2mu

kdx  Ce2mc

v

k

Z

⌦

e2mu

k

(y)dy

Z

⌦

e2mk'(x)

|x� y|p dx,

for some p < 2m. Hence, if c
v

k

 C, then

Z

⌦

V
k

e2mu

kdx  Cb

Z

⌦

e2mu

k

(y)dy

Z

⌦

e2mk'(x)

|x� y|p dx
k!1���! 0,

a contradiction. Thus c
v

k

! 1, and hence u
k

! 1 on S⇤
'

.
It remains to show that u

k

! �1 in C0

loc

(⌦ \ S
'

). Arguing as in Lemma 11 we
conclude the proof. ⇤

4.2 The case ⌦ is a ball

We consider

X = C2

rad

(B̄
R

), kvk
X

:= max
¯

B

R

(|v(x)|+ |v0(x)|+ |v00(x)|).

Let ⇤ > 0. We fix k 2 N. For v 2 X define c
v

2 R given by
Z

⌦

V
k

e2m(v+c

v

)dx = ⇤.

We define T
k

: X ! X given by v 7! v̄ where

v̄(x) =
1

�
2m

Z

⌦

log

✓
1

|x� y|

◆
V
k

(y)e2m(v(y)+c

v

)dy +

✓
k +

|�v(0)|
2�'(0)

◆
'(x).

Arguing as in [13] one can show that the operator T
k

has a fixed point, say v
k

. We set
u
k

= v
k

+ c
v

k

. Then

u
k

(x) =
1

�
2m

Z

⌦

log

✓
1

|x� y|

◆
V
k

(y)e2mu

k

(y)dy +

✓
k +

|�v
k

(0)|
2�'(0)

◆
'(x) + c

v

k

,

and Z

⌦

V
k

e2mu

kdx = ⇤.

Again as in [13] one can show that there exists C > 0 such that u
k

 C on B
"

for some
" > 0. Using this, and as in the annulus domain case, one can show that c

v

k

! 1. Thus
u
k

(x) ! 1 for every x 2 S⇤
'

. Finally, similar to the annulus domain case, it follows that
u
k

! �1 locally uniformly in ⌦ \ S
'

. ⇤

17



5 Proof of Theorem 5

Let m � 2. We set

'
k

(r, ✓) := rk cos(k✓), 0  r  2, 0  ✓  2⇡.

We extend '
k

on B
2

⇢ R2m as a function of only two variables, that is, '
k

(x) := '
k

(r, ✓)
for x 2 B

2

, where (r, ✓) is the polar coordinate of ⇧(x) and ⇧ : R2m ! R2 is the projection
map. Then '

k

is a harmonic function on B
2

. Let �
k

be the solution to the equation
(
���

k

= '
k

in B
2

,

�
k

= 0 on @B
2

.

We fix 0 < ⇤ < ⇤
1

. Then by Proposition 10 there exists a sequence of solutions (w
k

) to
(24) with

f :=
2⇤

⇤
1

(��)mu
0

, K
k

:=

(
e2m(�

k

+

2⇤
⇤1

u0) on B
2

0 on Bc

2

,

where u
0

2 C1(R2m) with u
0

= � log |x| on Bc

1

. Then

u
k

:= w
k

+ c
w

k

+ �
k

+
2⇤

⇤
1

u
0

satisfies (14) and u
k

is given by

u
k

(x) =
1

�
2m

Z

B2

log

✓
1 + |y|
|x� y|

◆
e2mu

k

(y)dy + �
k

(x) + c
k

,

for some c
k

2 R. Moreover,
�u

k

= �'
k

+ e
k

,

where

|e
k

(x)|  C

Z

B2

e2mu

k

(y)

|x� y|2dy.

Integrating, using Fubini’s theorem and (14) we obtain ke
k

k
L

1
(B2)  C. Then (15) follows

at once from the definition of '
k

. ⇤
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