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Linear equations over multiplicative groups, recurrences, and mixing III

H. Derksen and D. Masser

Abstract. Given an algebraic Zd

-action corresponding to a prime ideal of a Laurent

ring of polynomials in several variables, we show how to find the smallest order n + 1

of non-mixing. It is known that this is determined by the non-mixing sets of size n + 1,

and we show how to find these in an e↵ective way. When the underlying characteristic is

positive and n � 2, we prove that there are at most finitely many classes under a natural

equivalence relation. We work out two examples, the first with 5 classes and the second

with 134 classes.

2010 MSC codes. 14G17, 37A25

1. Introduction. Not long ago the second author published a paper [M] about linear

equations over multiplicative groups in positive characteristic. This was specifically aimed

at an application to a problem about mixing for dynamical systems of algebraic origin, and

as a result about linear equations it lacked some of the simplicity of the classical results in

zero characteristic. A new feature was the appearance of n � 1 independently operating

Frobenius maps; here n is the number of variables.

Soon afterwards the first author published a paper [D] about recurrences in positive

characteristic. He proved an analogue of the Skolem-Lech-Mahler Theorem famous in

zero characteristic. A new feature was the appearance of integer sequences involving

combinations of d� 2 powers of the characteristic; here d is the order of the recurrence.

It turns out that these two new features are identical. In positive characteristic the

vanishing of a recurrence with d terms can be regarded as a linear equation in d�1 variables

to be solved in a multiplicative group (so in particular n � 1 = d � 2). This observation

can be developed in three directions.

In Part I of this series [DM1] we gave an improved version of the result of [M] in a

form more closely related to that in zero characteristic. In Part II [DM2] we applied this

to recover the result of [D], and indeed we generalized it to sums of recurrences. Here

in Part III we present some new applications to mixing problems for dynamical systems

of algebraic origin. In an earlier version we gave an e↵ective algorithm to determine the
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smallest order n+ 1 of non-mixing of any basic action associated with a given prime ideal

in a Laurent polynomial ring. This solved the problem (3) mentioned by Klaus Schmidt

in [S] (p.283).

Thanks to the work of [M] we know that this non-mixing comes from sets of cardinality

n+1 which are themselves non-mixing for ↵ (see later for definitions). After receiving our

solution mentioned above, Klaus Schmidt in a message dated 12th July 2006 asked us if it

is possible to determine all these non-mixing sets (or “shapes”) e↵ectively. This we do in

the present paper, which also includes a di↵erent method of determining n.

For a positive integer d let ↵ be a Zd-action on a compact abelian group. We have

three possibilities:

(I) there is n-mixing but not (n+ 1)-mixing for some unique n = n(↵) � 2,

(II) there is no 2-mixing,

(III) there is n-mixing for all n � 2.

In case (II) we may write n(↵) = 1, and in case (III) we may write n(↵) = 1.

Write R = R
d

for the Laurent polynomial ring Z[u1, u
�1
1 , . . . , u

d

, u�1
d

]. As in Lemma

5.1 of [S] (p.36), for any countableR-moduleM there is a corresponding Zd-action ↵ = ↵M

by automorphisms of the compact metric group cM. We may therefore write n(↵) = n(M).

By Theorem 27.2(1) of [S] (p.264) the mixing properties of ↵ are determined by the mixing

properties of the actions ↵R/P corresponding to the prime ideals P of R associated with

M. In particular

n(M) = min
P

n(R/P).

So in some sense it su�ces to consider just these ↵ = ↵R/P . Certainly if M is Noetherian

there are only finitely many P to consider, and it is well-known that these can often be

e↵ectively found (for example if M is an ideal of R).

Then for ↵ = ↵R/P a set {m0, . . . ,mn

} in Zd of cardinality n + 1 is non-mixing if

and only if there are a0, . . . , an in the quotient field K of the integral domain R/P, not

all zero, such that

a0u
m0k + · · ·+ a

n

umnk = 0 (1.1)

(inK) for infinitely many positive integers k, where um = um1
1 · · ·umd

d

form = (m1, . . . ,md

).

If the characteristic of R/P is zero (so that P \ Z is zero) and ↵ is mixing, then it

is known that ↵ is n-mixing for every n � 3. See Theorem 27.3(2) of [S] (p.265) for the

proof, due to Schmidt and Ward [SW], which amounts to showing that is equivalent to the

classical results of Evertse, Schlickewei and van der Poorten about linear equations over
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multiplicative groups in zero characteristic. Thus in this case n(R/P) must be either 1 or

1.

The dichotomy here can be resolved in several ways; here is one possibility.

It is known that ↵R/P is 2-mixing (that is, just mixing) if and only if u1, . . . , ud

stay

multiplicatively independent in K. See for example Theorem 6.5(2) of [S] (p.47). Now it

is not di�cult to determine whether u1, . . . , ud

become multiplicatively dependent modulo

constants of K; a good estimate in terms of the variety in Cd associated with P is given

as Lemma 3.2 of [BMZ] (p.14), for example. If there is such a dependence, then using a

simple induction we can even determine all relations

ub = � (1.2)

in the form of a basis (b1, . . . ,br

) for the group B of all b = (b1, . . . , bd) in Zd for which

there exists constant � in (1.2). These � must be algebraic over Q; call them �1, . . . ,�r

corresponding to the basis elements. Now it is clear that u1, . . . , ud

become multiplicatively

dependent in K if and only if �1, . . . ,�r are themselves multiplicatively dependent. This

latter can be determined in a standard way using heights; for a good estimate in a typical

situation see Corollary 3.2 of [LM] (p.281) for example.

Let us assume that �1, . . . ,�r are indeed multiplicatively dependent, so that the small-

est order of non-mixing is 2.

Then in a similar way one can determine the group of all c = (c1, . . . , cr) in Zr such

that �c1
1 · · ·�cr

r

= 1. Via b = c1b1 + · · · + c
r

b
r

this leads easily to the subgroup B1 of B

for which ub = 1. And B1 is of finite index in a unique primitive subgroup
p
B1 in Zd;

this is the set of b for which there exists a root of unity ⇣ with

ub = ⇣. (1.3)

Now it is an easy exercise using (1.1) to show that the set {m0,m1} of cardinality 2

in Zd is non-mixing for ↵ if and only if the non-zero m0 �m1 lies in
p
B1.

Thus the only real problems arise when the characteristic p of R/P is positive, and

from now on we assume that this is the case. Then it is known that n = n(R/P) < 1
(see below).

When n = 1 we can reason as in zero characteristic. Namely the arguments of Lemma

3.2 of [BMZ] stay valid in positive characteristic; the essential fact is that a field of rational
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functions over F
p

in several variables is still a “field with a proper set of absolute values

satisfying a product formula”. Indeed this fact was used throughout [DM1] to define all

the heights there. But then � in (1.2) is algebraic over F
p

and so a root of unity; thus we

are automatically in (1.3).

Now by Theorem 28.7 (p.275) of [S] the non-mixing property of a set is invariant under

Zd-translation and also under multiplication by a positive integer. Also from (1.1) it is

trivially invariant under dividing by a positive integer as long as the set stays in Zd. Thus

in particular it seems reasonable to think of the non-mixing sets as being in Qd rather

than Zd; further they fall into natural equivalence classes as follows.

Define two finite sets M,M# in Qd to be equivalent if there is a positive rational x,

and f in Qd, such that xM = M#+ f (this is not quite the same definition as in Ward [W]

p.2). We might without much confusion describe the equivalence classes also as “shapes”.

Clearly every non-empty equivalence class contains an M in Zd. We can even take all

the coordinates non-negative, and moreover make sure that the convex hull touches every

coordinate hyperplane (for example when d = 2 we just push the set as far as it will go

south and west). This is the same as saying that the Laurent polynomial
P

m2M

um is

a genuine polynomial and not divisible by any of u1, . . . , ud

. We could call such a set

semi-reduced.

We can further assume that no s�1M (s = 2, 3, . . .) is in Zd; and this we call reduced.

It is not di�cult to see that the reduced set in each class is unique (we will not

need this until the examples). At first it is rather clear that if M,M# are both semi-

reduced and translates of each other, then they are equal (when d = 2 this is obvious from

pushing). And if M,M# are both reduced and equivalent then xM,M# are semi-reduced

and translates so xM = M#. Writing x = r/s for positive coprime r, s we see that r

s

M

is in Zd; but as s

s

M is too, so is 1
s

M in Zd. Thus s = 1. Similarly r = 1 so M = M#

proving the uniqueness.

Here is the main result of this paper.

Theorem. Given a prime ideal P of R with P \ Z = pZ (p > 0) the smallest order

n + 1 = n(R/P) + 1 < 1 of non-mixing can be e↵ectively determined. Further if n � 2

then there are only finitely many equivalence classes of non-(n+1)-mixing sets, and these

can be e↵ectively determined.

The discussion above shows that the condition n � 2 is important for the finiteness. In

fact the arguments above make it clear that a non-mixing action in positive characteristic
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can have infinitely many equivalence classes of non-mixing sets, but that this happens if

and only if the rank r of the analogue of the group
p
B1 satisfies r � 2. For example this

happens when P in R2 contains both u1 � 1 and u2 � 1, but not when P in R1 contains

u1 � 1.

We note that there is usually no trouble to find an e↵ective upper bound for the

smallest order of non-mixing, for example if P is explicitly given in terms of generators.

Just pick any P in P not in pR, so that P (u1, . . . , ud

) = 0 in K, and take the k = pe powers

(e = 0, 1, 2, . . .); the resulting equations then show by (1.1) that ↵ is not (N + 1)-mixing,

where N+1 � 2 is the number of non-zero terms in P reduced modulo p. So n(R/P)  N .

Thus it would seem that our work has something to do with the problem of finding

the “shortest” polynomial in a given ideal; see also [S] p.282. In zero characteristic this

problem is surprisingly di�cult and probably there is in general no e↵ective algorithm. In

one variable it is related to a conjecture of Posner and Rumsey; see for example the article

[SV] of Schlickewei and Viola, which makes use of the Subspace Theorem in the form of an

S-unit equation. However the latter was one of the key objects in [D],[M] and [DM1], and

the lesson there is that things are much easier in positive characteristic. In this case it is

quite likely that the work in [DM1] leads to an e↵ective solution of the shortest polynomial

problem, although we do not investigate this in the present paper. But actually there is an

extra twist here, which arises from the main result of [M]. Namely we may have to extend

the Laurent ring to a Puiseux ring.

A nice example of this is given in [S] (p.278). Here P is generated by p = 2 and

P = 1 + u1 + u3
1 + u5

1 + u6
1 + u2 = (1 + u1 + u2

1)
3 + u2, (1.4)

where the shortest polynomial is probably P ; at any rate ↵ is not 6-mixing. But P ,

although irreducible in F2[u1, u
�1
1 , u2, u

�1
2 ], is clearly divisible by

Q = 1 + u1 + u2
1 + u

1
3
2

in F2[u1, u
1
3
2 ]. Now the Qp

e

show equally well that ↵ is not 4-mixing (see section 4). The

general situation for principal ideals P (when considered mod p) is clarified in terms of

non-mixing sets by Proposition 28.9 of [S] (p.276). This shows how to find all non-mixing

sets that are minimal in a certain sense. But it does not show how to find the ones of

smallest cardinality. Here we illustrate our techniques by proving that ↵ is 3-mixing with

exactly five classes of non-mixing sets of cardinality 4.

5



The other examples in [S] all concern principal ideals. Here we consider also a non-

principal ideal. It is generated by 2 and

P1 = 1 + u1 + u2
1 + u2, P2 = 1 + u1 + u3

1 + u3. (1.5)

Again there is certainly no 4-mixing, and again we will prove that there is 3-mixing. But

this time there are exactly 134 classes of non-mixing sets of cardinality 4. The most

complicated one comes from the fact that our ideal happens to contain

u25
1 + u20

1 u2u3 + u12
2 + u4

3.

These examples should make it clear that the determination of the smallest order

of non-mixing and the equivalence classes of corresponding non-mixing sets is not only

e↵ective but also fairly practical. By using the estimates in [DM1] it should also be

possible to give explicit bounds for the sets in terms of P or more precisely its generators.

Our proof uses observations from [M] as well as one of the main results of [DM1].

More precisely let V be a variety in projective n-space defined by linear equations in

X0, . . . , Xn

over positive characteristic. The work of [DM1] shows how to find all points of

V whose coordinates are in a given finitely generated group. The precise description can

be complicated, involving (as we mentioned) as many as n � 1 independently operating

Frobenius maps, as well as cosets defined by equations X
i

= aX
j

(see for example Theorem

1 of [DM1] p.1049).

But for an action ↵ = ↵R/P as above with n = n(↵), the hyperplane V
n

defined by

the single equation X0 + · · ·+X
n

= 0, and the group as the radical inside K of the group

generated by u1, . . . , ud

in K, the description is much simpler. In particular only a single

Frobenius turns up, and apart from cosets we see only points (⇠p
e

0 , . . . , ⇠p
e

n

) (e = 0, 1, . . .)

for a finite set ⇧ of (⇠0, . . . , ⇠n). This is proved in Lemma 5. It also shows that ⇧ is closely

related to the desired equivalence classes; for that we need the concept of “broad set” used

in [M], which is crucial to control the coe�cients a0, . . . , an in (1.1).

Our paper is arranged as follows. In section 2 we prove four lemmas as preparation

for the fifth. Our Theorem follows quickly in section 3. Then section 4 treats the example

(1.4) and section 5 the much more di�cult (1.5).

We wish warmly to thank Klaus Schmidt for his interest in our work on orders of

non-mixing and his encouragement to go further with the non-mixing sets themselves.
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2. Preliminaries. Let k be any field (even of zero characteristic) and let L be a vector

space of linear forms L in variablesX0, . . . , Xn

. We say that L =
P

i2I

c
i

X
i

in L is minimal

if there is no non-empty subset I 0 6= I of I such that some non-zero L0 =
P

i2I

0 c0
i

X
i

is in

L.

Lemma 1. The space L is generated by its minimal forms.

Proof. Compare Lemma 4 of [BM] (p.431). It su�ces to prove that every non-zero form L

in L can be written as a linear combination of minimal forms. This will be by induction on

the length l of L, that is, the number of non-zero coe�cients. The case l = 1 is trivial. So

assume for some l � 2 that this holds for all forms of L of length strictly less than l. Take

L in L of length exactly l. After a permutation we can suppose L = c0X0+ · · ·+c
l�1Xl�1.

If L is already minimal we are done. Otherwise we can assume after another permutation

that some L0 = c00X0 + · · · + c0
m�1Xm�1 lies in L with some m < l and c00 6= 0. Then

L0 and L00 = c00L � c0L
0 6= 0 are both of length strictly less than l, and so the induction

hypothesis can be applied to L = (c0/c00)L
0 +(1/c00)L

00 giving the required assertion for L.

This proves the lemma.

With R and P as the Theorem, we work in the quotient field K of R/P; then F =

F
p

\K is a finite field. We also work with the group G generated in K⇤ by the images of

u1 6= 0, . . . , u
d

6= 0. We write
p
G for the radical of G inside K. This is well-known to be

finitely generated (see for example [M] p. 195). It clearly also has rank d; let v1, . . . , vd

be basis elements modulo torsion (that is, modulo F⇤). For m = (m1, . . . ,md

) in Zd we

abbreviate vm1
1 · · · vmd

d

as above to vm.

We write P
n

(
p
G) for the points of projective n-space P

n

whose coordinates can be

taken in
p
G. For a variety V in P

n

defined by linear equations we write V (
p
G) for the

intersection V \P
n

(
p
G). We are going to use some results of [DMI], in which we say that  

from P
n

to P
n

is a
p
G-isomorphism if it is defined by  (X0, . . . , Xn

) = (g0X0, . . . , gnXn

)

for g0, . . . , gn in
p
G; and that V is

p
G-isotrivial if there is such a  with  (V ) defined over

F. We say that a variety is tranversal if each one of the projective variables X0, . . . , Xn

occurs in the defining equations with non-zero coe�cient. We say that a variety is a torsion

coset if it is defined by equations of the form X
i

= ⇣X
j

(i 6= j) with ⇣ in F⇤. A transversal

torsion coset Z leads to a partition I1[ · · ·[I
h

of {0, 1, . . . , n} into parts of size at least two

together with ⇣0, . . . , ⇣n in F⇤, such that for each j = 1, . . . , h the equality of the quotients

X
i

/⇣
i

(i 2 I
j

) defines Z. We define the variety V
n

by X0 + · · ·+X
n

= 0.
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Lemma 2. Suppose for some n � 1 that ↵ is (n + 1)-mixing. Then there exists a finite

collection Z of transversal torsion cosets Z in V
n

such that

V
n

(
p
G) =

[

Z2Z
Z(

p
G).

Proof. This bears some resemblance to the Descent Step (a) over
p
G of [DM1] (p.1047).

However we cannot apply it here because V
n

is not only
p
G-isotrivial but even defined

over F
p

. The proof that follows is self-contained. Take any point (⇠0, . . . , ⇠n) of Vn

(
p
G),

and write ⇠
i

= ⇣
i

vri for torsion ⇣
i

(i = 0, 1, . . . , n). Frobenius leads to

⇣0v
r0q + · · ·+ ⇣

n

vrnq = 0

for infinitely many prime powers q = pe. We convert this into powers um by a standard

argument. Let s = [
p
G : G]. There is some r such that q is congruent to r modulo s for

infinitely many q, and we get

a0u
m0k + · · ·+ a

n

umnk = 0 (k = (q � r)/s) (2.1)

(in K) for these q, where

a0 = ⇣0v
r0r, . . . , a

n

= ⇣
n

vrnr

and m0, . . . ,mn

are defined by

vr0s = um0 , . . . ,vrns = umn .

As k ! 1 in (2.1) this looks suspiciously like non-(n + 1)-mixing (1.1), even with a

non-(n + 1)-mixing set M = {m0, . . . ,mn

}. The only way out is that M has cardinality

h < n + 1. Writing M = {m0
1, . . . ,m

0
h

} and I
j

for the set of i with m
i

= m0
j

we get a

partition I1 [ · · · [ I
h

of {0, 1, . . . , n}. Then

0 =
nX

i=0

a
i

umik =
hX

j=1

b
j

um0
jk

with b
j

=
P

i2Ij
a
i

. Even then this looks like non-h-mixing; but this time the only way

out is b1 = · · · = b
h

= 0.

In particular each I
j

has cardinality at least two, and the quantities vris = umi =

um0
j (i 2 I

j

) are equal, so also the r
i

(i 2 I
j

), say to m00
j

. So also the

⇠
i

⇣
i

= vri = vm00
j (i 2 I

j

).
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Thus our point (⇠0, . . . , ⇠n) lies in the corresponding transversal torsion coset Z. Also

X

i2Ij

⇣
i

=
X

i2Ij

a
i

v�rir = v�m00
j r

X

i2Ij

a
i

= 0 (j = 1, . . . , h),

and this implies that Z lies in V
n

. That completes the proof.

If ↵ is only n-mixing, then we cannot expect a conclusion as strong as that of Lemma

2. But the following is not too much weaker, where for ⇡ = (⇠0, . . . , ⇠n) we write ⇡l =

(⇠l0, . . . , ⇠
l

n

).

Lemma 3. Suppose for some n � 2 that ↵ is n-mixing. Then there exists a finite collection

Z of transversal torsion cosets Z in V
n

and a finite set ⇧ in P
n

(
p
G) such that

V
n

(
p
G) =

[

Z2Z
Z(

p
G) [

[

⇡2⇧

1[

e=0

⇡p

e

.

Proof. We apply the Descent Step (b) over
p
G of [DM1] (p.1047) with  there as the

identity and q there as p. Because V
n

is not a coset, we obtain a finite collection W of

proper
p
G-isotrivial linear subvarieties W 6= V

n

of V
n

, also defined over K, such that

V
n

(
p
G) =

[

W2W

1[

e=0

W (
p
G)p

e

. (2.2)

It will turn out that all theW here which are positive-dimensional can be taken as transver-

sal torsion cosets.

Consider any W in (2.2), and pick a
p
G-isomorphism  with  (W ) defined over F.

We call W minimal if

W (
p
G) 6=

[

W

02W0

W 0(
p
G)

for a finite collection W 0 of
p
G-isotrivial linear subvarieties W 0 6= W of W with  (W 0)

defined over F. If some W is not minimal then we can replace it in (2.2) by lower-

dimensional varieties. So we can assume here that all W are minimal and of course that

all W (
p
G) are non-empty.

Consider such a W with W̃ =  (W ) defined over F. Say

 (X0, . . . , Xn

) = (g0X0, . . . , gnXn

) = (X̃0, . . . , X̃n

)
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for g0, . . . , gn in
p
G. We know from Lemma 1 that the ideal of W̃ is generated by the

minimal forms. Let
P

i2I

⇣
i

X̃
i

be one of these, with of course ⇣
i

6= 0 in F. As dim W̃ <

dimV
n

= n�1, any n from X̃0, . . . , X̃n

are dependent over F on W̃ , and so I has cardinality

at most n. Pick any (⇠0, . . . , ⇠n) in W (
p
G). We get

P
i2I

⇣
i

g
i

⇠
i

= 0. So by Lemma 2 (in

lower dimension) some (⇣
i

g
i

⇠
i

)/(⇣
j

g
j

⇠
j

) (i, j 2 I, i 6= j) lies in F⇤, say ⇣. It follows that

W (
p
G) =

[

ij⇣

W
ij⇣

(
p
G),

where W
ij⇣

is defined by ⇣
i

g
i

X
i

= ⇣⇣
j

g
j

X
j

in W . If all W
ij⇣

here are 6= W , we contradict

the minimality of W . So some W
ij⇣

= W . This means that ⇣
i

X̃
i

� ⇣⇣
j

X̃
j

vanishes on W̃ .

Thus that must have been the minimal form from the start.

Therefore W̃ is a torsion coset. As it lies in the transversal  (V
n

) it must be itself

transversal. Thus it comes from a partition I1 [ · · · [ I
h

of {0, 1, . . . , n} into parts of size

at least two together with ⇣̃
i

in F⇤, such that for each j = 1, . . . , h the equality of the

quotients X̃
i

/⇣̃
i

(i 2 I
j

) defines W̃ . So W is defined by the corresponding equality of the

X
i

/g̃
i

(i 2 I
j

), where the g̃
i

= ⇣̃
i

/g
i

are still in
p
G.

Now the fact that W lies in V
n

is easily seen to imply the equations

X

i2Ij

g̃
i

= 0 (j = 1, . . . , h). (2.3)

If h = 1 then of course W is the point ⇡ = (g̃0, . . . , g̃n), and we define ⇧ as the finite

set of points arising in this way.

So we assume h � 2 from now on. Now every sum in (2.3) involves at most n terms, so

Lemma 2 is applicable as above. It yields a further partition I
j

=
S
I
jk

into parts of size

at least two together with more ⇣ 0
i

in F⇤ such that the g̃
i

/⇣ 0
i

(i 2 I
jk

) are equal. Further

just as in (2.3) we get
P

i2Ijk
⇣ 0
i

= 0.

Consider now the linear variety Z
W

defined by the equality of the X
i

/⇣ 0
i

(i 2 I
jk

)

for each choice of j, k. It is a transversal torsion coset contained in V
n

. It is not di�cult

to check that W lies in Z
W

(but there might be more equations defining W , for example

those connecting X
i

in I
jk

for di↵erent k). At any rate we have for each ⇡ in ⇧

W (
p
G) [ {⇡} ✓ Z

W

(
p
G) [ {⇡} ✓ V

n

(
p
G).

Raising to the power pe and taking the union over all positive-dimensional W in W , all

⇡ in ⇧, and e = 0, 1, 2, . . ., we get V
n

(
p
G) not only on the right but also on the left, by

10



(2.2). It follows that this is also the middle term

[

W

1[

e=0

Z
W

(
p
G)p

e

[
[

⇡2⇧

1[

e=0

⇡p

e

.

Now this completes the proof since each Z
W

has only a finite set Z
W

of conjugates over

F
p

, and
1[

e=0

Z
W

(
p
G)p

e

=
[

Z2Zw

Z(
p
G).

The following observation is crucial to get information about the coe�cients arising

from non-mixing. It seems convenient to work a�nely for a bit. Recall from [M] (p.189)

that a set ⌃ in
p
G

n

is called broad if

(i) ⌃ is infinite,

(ii) for each g in
p
G and each i = 1, . . . , n there are at most finitely many (x1, . . . , xn

)

in ⌃ with x
i

= g,

(iii) if n � 2 then for each g in
p
G and each i, j = 1, . . . , n with i 6= j there are at

most finitely many (x1, . . . , xn

) in ⌃ with x
i

/x
j

= g.

Lemma 4. Suppose for some n � 2 that ↵ is n-mixing, and that there exist a1, . . . , an in

K such that the equation a1x1 + · · · + a
n

x
n

= 1 has a broad set of solutions in (
p
G)n.

Then a1, . . . , an lie in

p
G.

Proof. The a1, . . . , an lie in K⇤ otherwise we would have non-n-mixing. This can be seen

by writing the solutions as x
i

= ⇣
i

vmi (i = 1, . . . , n) for ⇣
i

in F⇤ and then getting into G

by reducing the exponents modulo s according to m
i

= m
i0+ sq

i

; then vsqi = upi . If say

a
n

= 0 we get equations a01u
p1 + · · ·+ a0

n�1u
pn�1 = 1 (in K) and now these give n-mixing

(see [S] p.263) unless some p
i

or some p
i

� p
j

(i 6= j) does not tend to infinity. But this

would contradict the broadness.

Therefore a1, . . . , an satisfy the hypotheses of Lemma 5 of [M] (p.197) with
p
G in

place of G.

Thus either (aa) or (bb) of Lemma 5 holds. But (aa) would also lead to non-n-mixing.

So (bb) holds.

Now apply Lemma 5 to the new equation (16) of [M] (p.198). Again (bb) must hold.

And so on for ever. By Lemma 2 of [M] (p.193) this means that a1, . . . , an must lie

in
p
G. This proves the present lemma.

11



We call the projective (⇠0, . . . , ⇠n) with non-zero coordinates pre-broad if no ⇠
i

/⇠
j

(i 6=
j) lies in F⇤. We call two such points ⇡,⇡# proportional if there are positive integers l, l#

with ⇡l

#

= ⇡#l.

We note that the equation defining V
n

is invariant under the symmetric group S
n+1

on n + 1 elements, so that this also acts on points of V
n

. It also acts on proportionality

classes.

Lemma 5. Suppose for some n � 2 that ↵ is n-mixing but not (n + 1)-mixing. Then

there exists a finite collection Z of transversal torsion cosets Z in V
n

, and a finite set ⇧

in P
n

(
p
G), containing at least one pre-broad element, such that

V
n

(
p
G) =

[

Z2Z
Z(

p
G) [

[

⇡2⇧

1[

e=0

⇡p

e

.

Further ↵ has only finitely many equivalence classes of non-(n+1)-mixing sets, and these

are in one-to-one correspondence with the S
n+1-orbits of the proportionality classes of the

pre-broad ⇡ in ⇧.

Proof. Because ↵ is non-(n+1)-mixing, there certainly exist non-(n+1)-mixing sets. Pick

any such set. It is equivalent to some {0,m1, . . . ,mn

} in Zd and then there are a1, . . . , an

in K and an infinite set of positive integers k such that

a1u
m1k + · · ·+ a

n

umnk = 1

(in K). As there is 2-mixing, the u1, . . . , ud

are multiplicatively independent in K, and in

particular the hypotheses of Lemma 4 are satisfied. It follows that a1, . . . , an lie in
p
G.

With the basis elements v1, . . . , vd of
p
G modulo torsion we can write a

i

= ⇣
i

vpi (i =

1, . . . , n) and

u
h

= ⇣ 0
h

vqh (h = 1, . . . , d) (2.4)

for ⇣
i

, ⇣ 0
l

in F⇤. Putting the rows q1, . . . ,qd

together to make an invertible integral matrix

Q, so that um = ⇣mvmQ for ⇣m in F⇤, we obtain the points

(⇠(k)0 , ⇠
(k)
1 , . . . , ⇠(k)

n

) = ⇡(k) = (�1, ⇣(k)1 vp1+m1Qk, . . . , ⇣(k)
n

vpn+mnQk)

on V
n

as in Lemma 3, with ⇣(k)
i

in F⇤. We are going to prove that there cannot exist two

di↵erent k, k0 such that ⇡(k),⇡(k0) lie in the same Z.

12



If ⇡(k) lies in Z then some ⇠(k)
i

/⇠
(k)
j

(i 6= j) would be in F⇤. If for example i 6= 0, j 6= 0

then this implies that (⇣(k)
i

vpi+miQk)/(⇣(k)
j

vpj+mjQk) lies in F⇤ and so p
i

+ m
i

Qk =

p
j

+m
j

Qk, that is, p
i

�p
j

= �(m
i

�m
j

)Qk. Writing the same equation for k0 6= k and

subtracting gives a contradiction as m
i

6= m
j

. A similar argument works if i = 0 or j = 0

(with m0 = 0).

Thus for all su�ciently large k the points ⇡(k) must be the ⇡q for ⇡ in ⇧ and q = pe (e =

0, 1, 2, . . . , ). So we can find two di↵erent k, k0 and two q, q0 with ⇡(k) = ⇡q, ⇡(k0) = ⇡q

0
for

the same ⇡ = (�1, ⇠1, . . . , ⇠n) in ⇧. Writing ⇠
i

= ⇣̃
i

vri for ⇣̃
i

in F⇤, we get as above

p
i

+m
i

Qk = r
i

q, p
i

+m
i

Qk0 = r
i

q0 (i = 1, . . . , n).

Thus

m
i

Q(k � k0) = r
i

(q � q0) (i = 1, . . . , n). (2.5)

In particular q 6= q0, and so our set {0,m1, . . . ,mn

} is equivalent to

±{0, r1, . . . , rn}Q�1. (2.6)

As Q is fixed and there are only finitely many possibilities for {0, r1, . . . , rn} corresponding

to the finite set ⇧, the finiteness assertion in the present lemma for non-mixing sets follows.

The existence of some pre-broad ⇡ in ⇧ also follows, because the point

⇡ = (�1, ⇠1, . . . , ⇠n) = (�1, ⇣̃1v
r1 , . . . , ⇣̃

n

vrn)

is pre-broad if and only if the set {0, r1, . . . , rn} has cardinality n+ 1.

But to prove the one-to-one assertion we must tighten things up a bit.

We first show how to eliminate the minus possibility in (2.6). We can suppose that

the k, k0 above are just two elements of an infinite set. We fix k and then make k0 tend to

infinity. Using heights as in [M],[DM1] we can easily see (from m
n

6= 0 for example) that

the height of ⇡(k0) tends to infinity. Thus the corresponding q0 tends to infinity. Therefore

we can assume k < k0 and q < q0. So indeed we can improve (2.6) to {0, r1, . . . , rn}Q�1.

We described above how a non-mixing set M gives rise to ⇡. Suppose two such sets

M,M# give rise to ⇡,⇡# in the same S
n+1-orbit of proportionality classes. We show that

M,M# are equivalent.

Say ⇡#l = ((�1)l, ⇣̃#l

1 vr#1 l, . . . , ⇣̃#l

n

vr#n l) comes, for example, from permuting the first

two coordinates of ⇡l

#

= ((�1)l
#

, ⇣̃l
#

1 vr1l
#

, . . . , ⇣̃l
#

n

vrnl
#

). Then

⇣̃#l

1 vr#1 l = (�1)l
#�l⇣̃�l

#

1 v�r1l
#

13



⇣̃#l

i

vr#i l = (�1)�l⇣̃�l

#

1 v�r1l
#

⇣̃l
#

i

vril
#

(i = 2, . . . , n).

In particular

r#1 l = �r1l
#

r#
i

l = �r1l
# + r

i

l# (i = 2, . . . , n).

Thus looking at the improved (2.6) we see that M# is equivalent to

{0,�r1,�r1 + r2, . . . ,�r1 + r
n

}Q�1

in turn equivalent to {r1, 0, r2, . . . , rn}Q�1 and so to M .

A similar argument works for any permutation, and thus the number of classes of

non-mixing sets is at most the number of orbits.

To prove the opposite inequality we note as in the proof of Lemma 2 that a pre-broad

⇡ = (�1, ⇣̃1vr1 , . . . , ⇣̃
n

vrn) gives rise to a potential non-mixing set via

⇣̃1v
r1q + · · ·+ ⇣̃

n

vrnq = 1

and k = (q � r)/s to get

a1u
m1k + · · ·+ a

n

umnk = 1

(in K) for

a
i

= ⇣̃
i

vrir, umi = vris (i = 1, . . . , n).

Using (2.4) we see that um = ⇣mvmQ for some torsion ⇣m, and it follows that

m
i

Q = r
i

s (i = 1, . . . , n) (2.7)

consistent with (2.5). As ⇡ is pre-broad, the set M = {0,m1, . . . ,mn

} has cardinality

n+ 1 and is therefore indeed non-mixing.

As above it is now rather easy to see that if ⇡,⇡# give rise to equivalent M,M# then

they are in the same orbit, so we get the desired opposite inequality. Here it is convenient

to note that any ⇡ is in the same orbit as some power ⇡l = (1,vs1 , . . . ,vsn) and so the

roots of unity play no role.

3. Proof of Theorem. Because n � 2, our ↵ = ↵R/P is 2-mixing. In the notation of the

previous section, we look first at V2(
p
G). From Lemma 3 we get Z and ⇧.
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If some ⇡ = (⇠0, ⇠1, ⇠2) in ⇧ is pre-broad, then ↵ is non-3-mixing, else Lemma 2 would

show that this ⇡ lies in some transversal torsion coset, forcing some ⇠
i

/⇠
j

(i 6= j) in F⇤.

So 3 is the smallest order of non-mixing, and by Lemma 5 there are only finitely many

classes.

Otherwise no ⇡ in ⇧ is pre-broad, and now Lemma 5 shows that ↵ must be 3-mixing.

We then jump to V3(
p
G) and repeat the process. Eventually we must find some pre-broad

point in some ⇧ corresponding to some V
n

(
p
G), and this leads to non-(n+1)-mixing. This

n+1 is the required smallest order of non-mixing. And as explained in section 1, an a priori

upper bound can be found in the usual way simply by taking any non-zero polynomal in

P. This completes the proof of the Theorem.

The e↵ectivity follows at once from the e↵ectivity of [DM1].

4. An example. Before starting with this, we consider briefly the original Ledrappier

example [Led], which is 2-mixing but not 3-mixing. It corresponds to P generated by 2

and 1 + u1 + u2 in R = Z[u1, u
�1
1 , u2, u

�1
2 ]. The group G has generators the images of

u1, u2 in the quotient field K of R/P. We may identify K with F2(t) and the generators

with t, 1+ t respectively. As these are clearly multiplicatively independent, we see already

that ↵ is 2-mixing. Equally clearly
p
G has generators t, 1 + t. To go further we need the

field C = F2(t2) of di↵erential constants.

Now Leitner in Theorem 1 (p.327) of [Lei] shows that

V2(
p
G) =

[

⇡2S3(⇡0)

1[

e=0

⇡2e

for ⇡0 = (1, t, 1 + t). Thus we see at once from Lemma 5 and (2.7) that there is exactly

one class of non-mixing sets of order 3, with representative {(0, 0), (1, 0), (0, 1)}. See also

Lemma 5.6 (p.348) of the paper [ABB] of Arenas-Carmona, Berend and Bergelson (which

is however more concerned with higher order mixing for Ledrappier away from this shape).

It might be fun to try P generated by 2 and 1+u1+u2+u3 in Z[u1, u
�1
1 , u2, u

�1
2 , u3, u

�1
3 ].

But perhaps one should glance at section 5 before starting. And one would have to work

with two variables t, t0.

We return to the example of [S] (p.278). Here P is generated by 2 and (1.4) in

R = Z[u1, u
�1
1 , u2, u

�1
2 ]. As already remarked, the factor 1 + u1 + u2

1 + u
1
3
2 in F2[u1, u

1
3
2 ]

shows that ↵ is not 4-mixing, because in the quotient we have

0 = 1 + u2e

1 + u2.2e

1 + u
2e/3
2 = 1 + a1u

3k
1 + a2u

6k
1 + a3u

k

2

15



for all even e, with a1 = u1, a2 = u2
1, a3 = u

1
3
2 = 1 + u1 + u2

1 in K and k = (2e � 1)/3; and

so the non-mixing set

{(0, 0), (3, 0), (6, 0), (0, 1)}. (4.1)

We will prove here that ↵ is 3-mixing and that there are exactly five equivalence classes

for non-mixing sets of size 4.

The group G has generators the images of u1, u2 in the quotient field K of R/P. We

may again identify K with F2(t) and the generators with t, (1 + t + t2)3 respectively. As

these are clearly multiplicatively independent, we see already that ↵ is 2-mixing. It is easy

to see that
p
G has generators t, 1 + t+ t2.

Already by Lemma 5 above with n = 2, the next lemma shows that ↵ is 3-mixing.

Lemma 6. The set V2(
p
G) is empty.

Proof. It su�ces to deduce a contradiction from the existence of x and y in
p
G with

x+ y = 1. We follow the methods of [Lei].

Assume first that the C-vector space Cx + Cy has dimension 2. Using a dot to

indicate the derivative with respect to t, we deduce ẏ/y 6= ẋ/x. We get in the usual way

the identities

x =
ẏ

y

ẏ

y

� ẋ

x

, y =
� ẋ

x

ẏ

y

� ẋ

x

. (4.2)

Now if z = ta(1 + t+ t2)b is a typical element of
p
G, then

ż

z
=

a

t
+

b

1 + t+ t2

takes just four values

0,
1

t
,

1

1 + t+ t2
,

(1 + t)2

t(1 + t+ t2)
. (4.3)

Since ẏ

y

� ẋ

x

in (4.2) is ż

z

for z = y

x

, it follows that x and y are non-zero quotients of these.

But the presence of the “stranger” (1+ t)2 means that the only possibilities for x 6= 1 and

y 6= 1 are
1 + t+ t2

t
,

t

1 + t+ t2
.

However then x+ y 6= 1.

If Cx+Cy has dimension 1, then as x+y = 1 we see that x and y lie in C. There is a

biggest power q of 2 with x = x0q and y = y0q for x0 and y0 not both in C. Now x0+ y0 = 1
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with x0 and y0 still in
p
G, and Cx0 + Cy0 has dimension 2; but we have just seen this to

be impossible. Thus the present lemma is proved.

To go further we welcome the above stranger into the bigger group H with generators

t, 1 + t+ t2, (1 + t)2. Here
p
H has generators t, 1 + t+ t2, 1 + t.

Lemma 7. We have

V2(
p
H) =

[

⇡2S3(⇧2)

1[

e=0

⇡2e

for the set ⇧2 consisting of

(1, t, 1 + t), (1, t(1 + t), 1 + t+ t2), (1, t3, (1 + t)(1 + t+ t2)), (1, (1 + t)3, t(1 + t+ t2)),

(t, (1 + t)2, 1 + t+ t2), (t2, 1 + t, 1 + t+ t2), (t3, (1 + t)3, 1 + t+ t2).

Proof. Again it su�ces to consider x and y in
p
H with x+ y = 1.

Assume first that Cx + Cy has dimension 2. Now if z = ta(1 + t + t2)b(1 + t)c is a

typical element of
p
H, then

ż

z
=

a

t
+

b

1 + t+ t2
+

c

1 + t
.

These are the elements in (4.3) together with their sums with 1/(1 + t); that is,

1

1 + t
,

1

t(1 + t)
,

t2

(1 + t)(1 + t+ t2)
,

1

t(1 + t)(1 + t+ t2)
. (4.4)

Therefore x and y are non-zero quotients of elements of (4.3) and (4.4). This time we

find no strangers; and in fact each of the possible 42 values for x in
p
H leads also to

y = 1� x in
p
H. We verify without di�culty that the resulting 42 solutions (x, y, 1) fall

in 7 orbits under S3 as stated in the present lemma. As in the proof of Lemma 6, the case

of dimension 1 supplies the exponents 2e, and this completes the proof.

Next we move to V3. We define the torsion coset Z01 in V3 by x0 = x1, x2 = x3.

Lemma 8. We have

V3(
p
G) =

[

Z2S4(Z01)

Z(
p
G) [

[

⇡2S4(⇧3)

1[

e=0

⇡2e (4.5)
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for the set ⇧3 consisting of

(1, t, t2, 1 + t+ t2), (1, t3, t2(1 + t+ t2), (1 + t+ t2)2), (1, t3, 1 + t+ t2, t(1 + t+ t2)),

(t, t4, 1 + t+ t2, (1 + t+ t2)2), (1, t6, t(1 + t+ t2)2, (1 + t+ t2)3).

Proof. Take a point (x0, x1, x2, x3) of V3(
p
G) not in any Z(

p
G) in (4.5). Write d for the

dimension of Cx0 + Cx1 + Cx2 + Cx3 over C. Since [K : C] = 2 we have d = 1 or d = 2.

Assume first that d = 2. We will prove that our point lies in S4(⇧3).

To this end define i, j to be equivalent if x
i

/x
j

lies in C. We show that at least one of

the classes is a singleton. This is clear if the number h of classes is 4 or even 3. As d = 2

we cannot have h = 1. So assume h = 2 and there is no singleton.

Now both classes must have two elements. But if say x0/x1 and x2/x3 lie in C, then

neither quotient can be 1 and the identity

x0

x3
=

1 + x2
x3

1 + x1
x0

shows that x0/x3 lies in C. Thus h = 1, a contradiction which shows that there must

indeed be a singleton.

We can assume that this singleton consists of x3. That means that

y
i

=
ẋ
i

x
i

� ẋ3

x3
6= 0 (i = 0, 1, 2).

Further each y
i

is itself a logarithmic derivative of something in
p
G, and so it lies in a

finite subset of
p
H by (4.3). Also the equation

y0x0 + y1x1 + y2x2 = 0

follows from x0 + x1 + x2 + x3 = 0 and its derivative. This remark is in fact a condensed

version of the arguments of [M] (pp.198,199). Therefore we have a point of V2(
p
H).

Thus there are q = 2e and ⇡ = (⇠0, ⇠1, ⇠2) as in Lemma 7 such that

y1x1

y0x0
=

✓
⇠1
⇠0

◆
q

,
y2x2

y0x0
=

✓
⇠2
⇠0

◆
q

.
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Already this leads to an algorithm for finding our point of V3(
p
G). Namely for each

⇡ we know from Lemma 6 that not both of ⇠1/⇠0, ⇠2/⇠0 lie in
p
G. So there is at most one

q such that
x1

x0
=

y0
y1

✓
⇠1
⇠0

◆
q

,
x2

x0
=

y0
y2

✓
⇠2
⇠0

◆
q

(4.6)

both lie in
p
G. Further we can easily see by considering powers of 1+ t that q = 1, 2. For

example by Lemma 6 at least one of ⇠1/⇠0, ⇠2/⇠0 must involve 1 + t; but then by (4.3) a

resulting (1 + t)4 could not be cancelled in (4.6). If there is such a q, then we need only

check whether
x3

x0
= 1 +

x1

x0
+

x2

x0

also lies in
p
G. Here we are still allowed to permute x0, x1, x2 and so we can use the

symmetry to reduce the work by factor of six.

The case d = 1 is dealt with as in the proof of Lemma 6 by reducing to x+ y+ z = 1

and using x = x0q, y = y0q and now z = z0q.

All this means that the left-hand side of (4.5) is contained in the right-hand side. As

the converse assertion is quickly checked, this completes the proof.

Now thanks to the one-to-one assertion in Lemma 5 we can find all the non-mixing

sets of size 4. As ⇧3 has five pre-broad elements, all in di↵erent proportionality classes,

there are five equivalence classes. We can identify generators v1, v2 of
p
G with t, 1+ t+ t2

respectively (so that Q =

✓
1 0
0 3

◆
in the proof). We find the integral representatives

{(0, 0), (3, 0), (6, 0), (0, 1)}

{(0, 0), (9, 0), (6, 1), (0, 2)}

{(0, 0), (9, 0), (0, 1), (3, 1)}

{(3, 0), (12, 0), (0, 1), (0, 2)}

{(0, 0), (18, 0), (3, 2), (0, 3)}

the first of which appears in [S] (p.278) and (4.1) above.

5. Another example. Here we deal with a non-principal ideal, of which there are no

examples in the mixing Chapter 28 of [S]. It is the P generated by 2 and (1.5) in R =
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Z[u1, u
�1
1 , u2, u

�1
2 , u3, u

�1
3 ]. Each of the displayed generators shows that the corresponding

↵ is not 4-mixing by providing the non-mixing sets

{(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0)}, {(0, 0, 0), (1, 0, 0), (3, 0, 0), (0, 0, 1)}. (5.1)

We will prove here that ↵ is 3-mixing and that there are exactly 134 equivalence classes

for non-mixing sets of size 4.

The group G has generators the images of u1, u2, u3 in the quotient field K of R/P.

We may identify K with F2(t) and the generators with t, 1+ t+ t2, 1+ t+ t3 respectively.

As these irreducible polynomials are clearly multiplicatively independent, we see already

that ↵ is 2-mixing. It is easy to see that G =
p
G. To go further we need again the field

C = F2(t2) of di↵erential constants.

Already by Lemma 5 above with n = 2, the next lemma shows that ↵ is 3-mixing.

Lemma 9. The set V2(
p
G) is empty.

Proof. It su�ces to deduce a contradiction from the existence of x and y in
p
G with

x+ y = 1.

Assume first that the C-vector space Cx + Cy has dimension 2. We get again (4.2).

Now if z = ta(1 + t+ t2)b(1 + t+ t3)c is a typical element of
p
G, then

ż

z
=

a

t
+

b

1 + t+ t2
+

c(1 + t2)

1 + t+ t3

takes eight values, which are

0,
1

t
,

1

1 + t+ t2
,

(1 + t)2

t(1 + t+ t2)
(5.2)

as in (4.3) together with

(1 + t)2

1 + t+ t3
,

1

t(1 + t+ t3)
,

t4

(1 + t+ t2)(1 + t+ t3)
,

(1 + t)4

t(1 + t+ t2)(1 + t+ t3)
. (5.3)

The presence of strangers leads now to 14 possibilities for quotients x 6= 0, 1 in
p
G.

However it is quickly checked that then y = 1 + x is not among them.

The case of dimension 1 follows just as in the proof of Lemma 6.
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To go further we need the bigger group H with generators t, 1+t+t2, 1+t+t3, (1+t)2.

Here
p
H has generators t, 1 + t+ t2, 1 + t+ t3, 1 + t. For an element e = (a, b, c, d) of F4

2

we write

P (e) = t(1 + t+ t2)(1 + t+ t3)(1 + t)

✓
a

t
+

b

1 + t+ t2
+

c(1 + t2)

1 + t+ t3
+

d

1 + t

◆
(5.4)

in F2[t]. Write 0 = (0, 0, 0, 0) and 1 = (1, 1, 1, 1).

Lemma 10. We have

V2(
p
H) =

[

⇡2⇧

1[

e=0

⇡2e

for the set ⇧ consisting of the 168 elements (P (e0), P (e1), P (e2)) with

e0 + e1 + e2 = 0, e0 6= 0,1, e1 6= 0,1, e2 6= 0,1.

Proof. Now if z = ta(1 + t+ t2)b(1 + t+ t3)c(1 + t)d is a typical element of
p
H, then

ż

z
=

a

t
+

b

1 + t+ t2
+

c(1 + t2)

1 + t+ t3
+

d

1 + t

as in (5.4). And (4.2) shows that projectively (x, y, 1) is (ẏ/y,�ẋ/x, ẏ/y � ẋ/x), so

after multiplication of all coordinates by t(1 + t)(1 + t + t2)(1 + t + t3) we get ⇡ =

(P (e0), P (e1), P (e2)) with e0 + e1 + e2 = 0. We certainly have to avoid P (0) = 0,

but all other P (e) turn out to be in
p
H with the single exception of P (1) = (1+ t2+ t3)2.

Then we check that the resulting ⇡ are all di↵erent (however that is not crucial to the rest

of the argument). This completes the proof.

For the move to V3 we use as above the torsion coset Z01 defined by x0 = x1, x2 = x3.

But if we had known the outcome we might have never started on this example.

Lemma 11. We have

V3(
p
G) =

[

Z2S4(Z01)

Z(
p
G) [

[

⇡2S4(⇧3)

1[

e=0

⇡2e

for a set ⇧3 consisting of 134 elements containing

(1, t, t2, 1 + t+ t2), (1, t, t3, 1 + t+ t3),
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(t2, t3, 1 + t+ t2, 1 + t+ t3), (t, 1 + t+ t2, t(1 + t+ t2), 1 + t+ t3)

through to the Baby Gremlin

(t21(1 + t+ t3), t20(1 + t+ t2), (1 + t+ t2)12, (1 + t+ t3)4)

and the Gremlin

(t25, t20(1 + t+ t2)(1 + t+ t3), (1 + t+ t2)12, (1 + t+ t3)4).

Proof. As in the proof of Lemma 8 we take a point (x0, x1, x2, x3) of V3(
p
G) not in any

Z(
p
G) with d = 1 or d = 2 for the dimension of Cx0 + Cx1 + Cx2 + Cx3 over C.

Assume first that d = 2. Just as in the proof of Lemma 8 we can assume that

y
i

=
ẋ
i

x
i

� ẋ3

x3
6= 0 (i = 0, 1, 2).

Further each y
i

is itself a logarithmic derivative of something in
p
G, and so it lies in a

finite subset of
p
H by (5.2) and (5.3). We also get the equation

y0x0 + y1x1 + y2x2 = 0

and so a point of V2(
p
H).

Thus there are q = 2e and e0, e1, e2 satisfying the conditions of Lemma 10 such that

y1x1

y0x0
=

✓
P (e1)

P (e0)

◆
q

,
y2x2

y0x0
=

✓
P (e2)

P (e0)

◆
q

.

Already this leads to an algorithm for finding our point of V3(
p
G). Namely for each

e0, e1, e2 we know from Lemma 9 that not both of P (e1)/P (e0), P (e2)/P (e0) lie in
p
G.

So there is at most one q such that

x1

x0
=

y0
y1

✓
P (e1)

P (e0)

◆
q

,
x2

x0
=

y0
y2

✓
P (e2)

P (e0)

◆
q

(5.5)

both lie in
p
G. Further we can easily see that q = 1, 2, 4. For example by Lemma 9 at

least one of P (e1)/P (e0), P (e2)/P (e0) must involve 1 + t; but then by (5.2) and (5.3) a
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resulting (1 + t)8 could not be cancelled in (5.5). If there is such a q, then we need only

check whether
x3

x0
= 1 +

x1

x0
+

x2

x0

also lies in
p
G. This was originally carried out in 2010 by means of an interactive pro-

cedure on Maple. With mounting horror we realized that the many solutions were not

obligingly organizing themselves into a few classes. After 20 hours we drew up a list of

representative solutions numbered from 1 to the Eddingtonian 137. But Alexandre Warin

in his 2012 Master Thesis observed that seven solutions appeared twice, then found four

more solutions, and showed that there are no others involving exponents at most 21. Fi-

nally in 2016 the interactive procedure was repeated more carefully over 60 hours to show

that Warin’s list is indeed complete. The resulting 134 is just about Beethovenian.

The case d = 1 is dealt with as in the proof of Lemma 8 using x = x0q, y = y0q, z = z0q.

This completes the present proof.

Again thanks to the one-to-one assertion in Lemma 5 we can find all the non-mixing

sets of size 4. It is quickly checked that every ⇡ in ⇧3 is pre-broad. Also the corresponding

non-mixing set M = {m0,m1,m2,m3} turns up naturally in semi-reduced form. Further-

more the coordinates of m0,m1,m2,m3 are all coprime and so M is reduced. So we have

the unique representative, and we only have to check that they are all di↵erent (itself not

entirely painless).

Two ⇡ come immediately from the generators, namely the polynomials

1 + u1 + u2
1 + u2, 1 + u1 + u3

1 + u3

with respective non-mixing sets

{(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0)}, {(0, 0, 0), (1, 0, 0), (3, 0, 0), (0, 0, 1)}

as in (5.1).

The next two simplest polynomials are perhaps

u2
1 + u3

1 + u2 + u3, u1 + u2 + u3 + u1u2

with

{(2, 0, 0), (3, 0, 0), (0, 1, 0), (0, 0, 1)}, {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}.
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The two most complicated are

u21
1 u3 + u20

1 u2 + u12
2 + u4

3, u25
1 + u20

1 u2u3 + u12
2 + u4

3

with

{(21, 0, 3), (20, 1, 0), (0, 12, 0), (0, 0, 4)}, {(25, 0, 0), (20, 1, 1), (0, 12, 0), (0, 0, 4)}.
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Theory in Progress (eds. K. Györy, H. Iwaniec, J. Urbanowicz), Walter de Gruyter 1999

(pp.445-450).

[W] T. Ward, Three results on mixing shapes, New York J. Math. 3A (1997), 1-10.

H. Derksen: Department of Mathematics, University of Michigan, East Hall 530 Church

Street, Ann Arbor, Michigan 48104, U.S.A. (hderksen@umich.edu)

D. Masser: Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1,

4051 Basel, Switzerland (David.Masser@unibas.ch).

21.10.2016

revised 21.11.2016

25



LATEST PREPRINTS

No. Author:    Title

2016-06 M. Dambrine, I. Greff, H. Harbrecht, B. Puig
Numerical solution of the homogeneous Neumann boundary value problem 
on domains with a thin layer of random thickness

2016-07 G. Alberti, G. Crippa, A. L. Mazzucato
Exponential self-similar mixing by incompressible flows

2016-08 M. Bainbridge, P. Habegger, M. Möller
Teichmüller curves in genus three and just likely intersections in Gn

m × Gn
a

 
2016-09 Gabriel A. Dill

Effective approximation and Diophantine applications

2016-10 J. Blanc, S. Zimmermann
Topological simplicity of the Cremona groups

2016-11 I. Hedén, S. Zimmermann
The decomposition group of a line in the plane

2016-12 J. Ballani, D. Kressner, M. Peters
Multilevel tensor approximation of PDEs with random data

2016-13 M. J. Grote, M. Kray, U. Nahum
Adaptive eigenspace method for inverse scattering problems in the frequency
domain

2016-14 H. Harbrecht, M. Peters, M. Schmidlin
Uncertainty quantification for PDEs with anisotropic random diffusion 

2016-15 F. Da Lio, L. Martinazzi
The nonlocal Liouville-type equation in � and conformal immersions of the

disk with boundary singularities

2016-16 A. Hyder
Conformally Euclidean metrics on �⇥⇤⇤⌅⇧⌃⌥⇤� ⌦⇧⌃ � ↵⇤⌃�⌃��⇤�✏⇣⌘ ✓�⌃⌘ ◆⇤

2016-17 G. Mancini, L. Martinazzi
The Moser-Trudinger inequality and its extremals on a disk via energy 
estimates

2016-18 R. N. Gantner, M. D. Peters
Higher order quasi-Monte Carlo for Bayesian shape inversion

__________________________________________________________________________

Preprints are available under https://math.unibas.ch/research/publications



LATEST PREPRINTS

No. Author:    Title

2016-19 C. Urech
Remarks on the degree growth of birational transformations 

2016-20 S. Dahlke, H. Harbrecht, M. Utzinger, M. Weimar
Adaptive wavelet BEM for boundary integral equations: Theory and 
numerical experiments

2016-21 A. Hyder, S. Iula, L. Martinazzi
Large blow-up sets for the prescribed Q-curvature equation in the Euclidean 
space

2016-22 P. Habegger
The norm of Gaussian periods

2016-23 P. Habegger
Diophantine approximations on definable sets

2016-24 F. Amoroso, D. Masser
Lower bounds for the height in Galois extensions

2016-25 W. D. Brownawell, D. W. Masser
Zero estimates with moving targets

2016-26 H. Derksen, D. Masser
Linear equations over multiplicative groups, recurrences, and mixing III

__________________________________________________________________________

Preprints are available under https://math.unibas.ch/research/publications


