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LOWER BOUNDS FOR THE HEIGHT IN GALOIS
EXTENSIONS

F. AMOROSO AND D. MASSER

Abstract: We prove close to sharp lower bounds for the height of an algebraic
number in a Galois extension of Q.

1. Introduction

For an algebraic number ↵ of degree d denote by h(↵) � 0 the absolute loga-
rithmic Weil height, that is

h(↵) =
1

d

 
log |a|+

X

i

max{log |↵i|, 0}
!
,

where a is the leading coe�cient of a minimal equation over Z for ↵ and ↵i are its
algebraic conjugates. Recall that h(↵) = 0 if and only if ↵ = 0 or ↵ is a root of
unity. The well-known Lehmer Problem from 1933 asks whether there is a positive
constant c such that

h(↵) � cd�1

whenever ↵ 6= 0 has degree d and is not a root of unity. This is still unsolved, but
the celebrated result of Dobrowolski [7] implies that for any " > 0 there is c(") > 0
such that h(↵) � c(")d�1�" (we will not worry about logarithmic refinements in
this note).

The inequality in the Lehmer Problem has been established for various classes
of ↵. Thus Breusch [5] proved it for non-reciprocal ↵, in particular whenever d is
odd (see also Smyth [14] for the best possible constant), and David with the first
author [1, Corollaire 1.7] proved it when Q(↵)/Q is a Galois extension. See also
their Corollaire 1.8 for a generalization to extensions that are “almost Galois”.

In this note we improve the result in the Galois case, and we even show that for
any " > 0 there is c(") > 0 such that

h(↵) � c(")d�"

when Q(↵)/Q is a Galois extension. This is related to a problem posed by Smyth
during a recent BIRS workshop (see [12, problem 21, p. 17]), who asks for small
positive values of h(↵) for ↵ 2 Q with Q(↵)/Q Galois.

2. Auxiliary results

We start with a lower bound for the height which is crucial in the proof of the
next section.

Theorem 2.1. Let K/Q be an abelian extension and let ↵1, . . . ,↵r be multiplica-

tively independent algebraic numbers. Then for any " > 0 there exists C(") > 0
such that

max
i

h(↵i) � C(")D�1/r�"
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where D = [K(↵1, . . . ,↵r) : K].

This deep result (which we have stated in a simplified form) was proved in sev-
eral steps. In the special cases K = Q and r = 1, it is the main result of [1] and [3]
respectively. The general case (see [6]) was the object of the Ph.D. Thesis of E.
Delsinne, under the supervision of the first author.

We now state a result whose proof is implicit in [1, Corollaire 6.1].

Lemma 2.2. Let F/Q be a Galois extension and ↵ 2 F⇥
. Let ⇢ be the multiplica-

tive rank of the conjugates ↵1, . . . ,↵d of ↵ over Q, and suppose ⇢ � 1. Then there

exists a subfield L ✓ F which is Galois over Q of degree [L : Q] = n  n(⇢) and

an integer e � 1 such that Q(⇣e) ✓ F (for a primitive eth root of unity ⇣e) and

↵e 2 L.

Proof. Let e be the order of the group of roots of unity in F , so that F contains
Q(⇣e). Define �i = ↵e

i (i = 1, . . . , d) and L = Q(�1, . . . ,�d). The Z-module

M = {�a1
1 · · ·�ad

d | a1, . . . , ad 2 Z}
is torsion free (by the choice of e) and so, by the Classification Theorem for abelian
groups, is free, of rank ⇢. This shows that the action of Gal(L/Q) over M defines
an injective representation Gal(L/Q) ! GL⇢(Z). Thus Gal(L/Q) identifies to a
finite subgroup of GL⇢(Z). But, by well-known results (see Remark 2.3 below),
the cardinalities of the finite subgroups of GL⇢(Z) are uniformly bounded by, say,
n = n(⇢).

⇤

Remark 2.3. To quickly see that the order of a finite subgroup of GL⇢(Z) is
uniformly bounded by some n(⇢) < 1, apply Serre’s result [13] which asserts that
the reduction mod 3 is injective on the finite subgroups of GL⇢(Z). This gives

the bound n(⇢)  3⇢
2
. More precise results are known. Feit [8] (unpublished)

shows that the orthogonal group O⇢(Z) (of order 2⇢⇢!) has maximal order for
⇢ = 1, 3, 5 and for ⇢ > 10. For the seven remaining values of ⇢, Feit characterizes
the corresponding maximal groups. See [9] for more details and for a proof of the
weaker statement n(⇢)  2⇢⇢! for large ⇢.

We finally recall a well-known estimate on the Euler’s totient function �(·) (see
for instance [10, Theorem 328, p.267]):

(2.1) lim inf
n!1

�(n) log log n

n
= e�� .

3. Main results

We now state two results about ↵ which merely lie in Galois extensions, so are
not necessarily generators.

Theorem 3.1. For any integer r � 1 and any " > 0 there is a positive e↵ective

constant c(r, ") with the following property. Let F/Q be a Galois extension of

degree D and ↵ 2 F⇥
. We assume that there are r conjugates of ↵ over Q which

are multiplicatively independent (so that ↵ is not a root of unity). Then

h(↵) � c(r, ")D�1/(r+1)�".
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Proof. The new ingredient with respect to Corollaire 1.7 of [1] is the main result
of Delsinne [6], which was not available at that time. We use standard abbrevia-
tions like ⌧",�r,".

Let ↵1, . . . ,↵d (with d  D) be the conjugates of ↵ over Q (so that they lie in
F ). Their multiplicative rank is at least r. If it is strictly bigger, then Theorem 2.1
(with K = Q) applied to r + 1 independent conjugates gives

h(↵) �r," D
�1/(r+1)�" .

Thus we may assume that the rank is exactly r.
By Lemma 2.2 there exists a number field L ✓ F of degree [L : Q] = n  n(r)

and an integer e � 1 such that Q(⇣e) ✓ F and ↵e 2 L.
Now let " > 0. Since ↵e 2 L and [L : Q]  n,

(3.1) h(↵) =
1

e
h(↵e) �r

1

e
.

On the other hand, the degree of F over the cyclotomic extension Q(⇣e) is
D/�(e) and ↵1, . . . ,↵r 2 F are multiplicatively independent. By Theorem 2.1
(with K = Q(⇣e)) we have

(3.2) h(↵) �r," (D/�(e))�1/r�" �r," e
1/rD�1/r�"

(use (2.1)). Combining (3.1) and (3.2) we get

h(↵)r+1 = h(↵)h(↵)r �r," D
�1�r".

⇤

Taking r = 1 we get

Corollary 3.2. For any " > 0 there is a positive e↵ective constant c(") with the

following property. Let F/Q be a Galois extension of degree D. Then for any

↵ 2 F⇥
which is not a root of unity we have

h(↵) � c(")D�1/2�" .

For a direct proof of this corollary, which uses [3] instead of the deeper result
of [6], see [11, exercise 16.23].

We remark that Corollary 3.2 is optimal: take for F the splitting field of xd�2,
with D = d�(d), and ↵ = 21/d. Nevertheless, as mentioned above, this result can
be strengthened for a generator ↵ of a Galois extension.

Theorem 3.3. For any " > 0 there is a positive e↵ective constant c(") with the

following property. Let ↵ 2 Q⇥
be of degree d, not a root of unity, such that

Q(↵)/Q is Galois. Then we have

h(↵) � c(")d�" .

Proof. Let r be the smallest integer> 1/". If r � d then d  1+1/" and h(↵) �"

1. So we can assume r < d. If r among the conjugates of ↵ are multiplicatively
independent, by Theorem 2.1 (with K = Q) we have

h(↵) �" d
�1/r�" �" d

�2" .

Otherwise, the multiplicative rank ⇢ � 1 of the conjugates of ↵ is at most r� 1 
1/". By Lemma 2.2 there exists a number field L ✓ Q(↵) of degree [L : Q] = n 
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n(") and an integer e � 1 such that Q(⇣e) ✓ Q(↵) and ↵e 2 L. As a consequence
L(↵)/L is of degree e0  e. The diagram

Q

k := L \Q(⇣e)

L Q(⇣e)

L(⇣e)

Q(↵) = L(↵)

shows that the degree of ↵ over Q(⇣e) is

[Q(↵) : L(⇣e)] · [L(⇣e) : Q(⇣e)] = e0
[L(⇣e) : Q(⇣e)]

[L(⇣e) : L]

which is

e0
[L : k]

[Q(⇣e) : k]
= e0

[L : Q]

[Q(⇣e) : Q]
=

e0

�(e)
n  e

�(e)
n ⌧" d

"

(use �(e)  d and (2.1)). By Theorem 2.1 (with K = Q(⇣e) and r = 1) we get

h(↵) �" d
�2" .

⇤

We note that Theorem 3.3 is nearly best possible in the sense that an inequality
h(↵) � d� would be false for any fixed � > 0. For example for ↵ = 1 + ⇣e with

d = �(e) one has h(↵)  log 2. Or ↵ = 21/e + ⇣e, whose degree is easily seen
to be e�(e), with h(↵)  2 log 2. But Smyth in [12] quoted above asked whether
even h(↵) � 1 is true, a kind of “Galois-Lehmer Problem”. We do not know, but
it would imply the main result of Amoroso-Dvornicich [2] on abelian extensions,
and a slightly weaker result of Amoroso-Zannier [4, Corollary 1.3] on dihedral
extensions.

References

1. F. Amoroso and S. David, “Le problème de Lehmer en dimension supérieure”, J. Reine

Angew. Math. 513 (1999), 145–179.
2. F. Amoroso and R. Dvornicich, “A Lower Bound for the Height in Abelian Exten-

sions.” J. Number Theory 80 (2000), no 2, 260–272.
3. F. Amoroso and U. Zannier, “A relative Dobrowolski’s lower bound over abelian ex-

tensions”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29 (2000), no. 3, 711–727.
4. F. Amoroso and U. Zannier, “A uniform relative Dobrowolski’s lower bound over

abelian extensions”. Bull. London Math. Soc., 42 (2010), no. 3, 489–498.
5. R. Breusch, “On the distribution of the roots of a polynomial with integral coe�-

cients”, Proc. Amer. Math. Soc. 2 (1951), 939–941.



LOWER BOUNDS FOR THE HEIGHT IN GALOIS EXTENSIONS 5

6. E. Delsinne, “Le problème de Lehmer relatif en dimension supérieure”, Ann. Sci.

´

Ecole

Norm. Sup. 42, fascicule 6 (2009), 981–1028.
7. E. Dobrowolski, “On a question of Lehmer and the number of irreducible factors of a

polynomial”, Acta Arith., 34 (1979), 391–401.
8. W. Feit, “The orders of finite linear groups”. Preprint 1995.
9. S. Friedland, “The maximal orders of finite subgroups in GLn(Q)”, Proc. Amer. Math.

Soc. 125 (1997), 3519–3526.
10. G. H. Hardy and E. M. Wright, “An introduction to the theory of numbers”. Fifth

edition. The Clarendon Press, Oxford University Press, New York, 1979. xvi+426 pp.
11. D. Masser, “Auxiliary Polynomials in Number Theory”. In Press.
12. F. Amoroso, I. Pritsker, C. Smyth and J. Vaaler, “Appendix to Report on BIRS

workshop 15w5054 on The Geometry, Algebra and Analysis of Algebraic Numbers:
Problems proposed by participants”.
Available at http://www.birs.ca/workshops/2015/15w5054/report15w5054.pdf
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