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Abstract

We show a sharp fractional Moser-Trudinger type inequality in dimension 1, i.e. for an
interval I b R, p 2 (1,1) and some ↵p > 0

sup
u2H̃

1
p
,p
(I):k(��)

1
2p ukLp(I)1

Z

I

|u|ae↵p|u|
p

p�1
dx <1 if and only if a = 0.

Here H̃
1
p ,p(I) = {u 2 Lp(R) : (��)

1
2pu 2 Lp(R), supp(u) ⇢ Ī}.

Restricting ourselves to the case p = 2 we further consider for � > 0 the functional

J(u) :=
1

2

Z

R
|(��)

1
4u|2dx� �

Z

I

⇣

e
1
2u

2 � 1
⌘

dx, u 2 H̃
1
2 ,2(I),

and prove that it satisfies the Palais-Smale condition at any lever c 2 (�1,⇡). We use these
results to show that the equation

(��)
1
2u = �ue

1
2u

2

in I

has a positive solution in H̃
1
2 ,2(I) if and only if � 2 (0,�1(I)), where �1(I) is the first

eigenvalue of (��)
1
2 on I. This extends to the fractional case some previous results proven

by Adimurthi for the Laplacian and the p-Laplacian operators.
Finally with a technique of Ruf we show a fractional Moser-Trudinger inequality on R.

MSC 2010. 26A33, 35R11, 35B33.

1 Introduction

Let s 2 (0, 1). We consider the space of functions Ls(R) defined by

Ls(R) =
⇢

u 2 L1

loc

(R) :
Z

R

|u(x)|
1 + |x|1+2s

dx <1
�

. (1)

For a function u 2 Ls(R) we define (��)su as a tempered distribution as follows:

h(��)su,'i :=
Z

R
u(��)s'dx, ' 2 S, (2)

⇤
The authors are supported by the Swiss National Science Foundation.
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where S denotes the Schwartz space of rapidly decreasing smooth functions and for ' 2 S we
set

(��)s' := F�1(| · |2s'̂).
Here the Fourier transform is defined by

'̂(⇠) ⌘ F'(⇠) := 1p
2⇡

Z

R
e�ix⇠'(x) dx.

Notice that the convergence of the integral in (2) follows from the fact that for ' 2 S one has

|(��)s'(x)|  C(1 + |x|1+2s)�1.

For s 2 (0, 1) and p 2 [1,1] we define the Bessel-potential space

Hs,p(R) :=
n

u 2 Lp(R : (��)
s
2u 2 Lp(R)

o

, (3)

and its subspace

H̃s,p(I) := {u 2 Lp(R) : u ⌘ 0 in R \ I, (��)
s
2u 2 Lp(R)}, (4)

where I b R is a bounded interval. Both spaces are endowed with the norm

kukpHs,p
(R)

:= kukpLp
(R)

+ k(��)
s
2ukpLp

(R)

. (5)

Remark 1 Notice that the standard Hs,p-norm defined in (5) is equivalent to the smaller norm
kuk⇤Hs,p

(R)

:= k(��)
s
2ukLp

(I) on H̃s,p(I), see for instance Theorem 7.1 in [15].

1.1 A fractional Moser-Trudinger type inequality

The first result that we shall prove is a fractional Moser-Trudinger type inequality:

Theorem 1.1 For any p 2 (1,+1) set p0 = p
p�1

and

↵p :=
1

2



2 cos

✓

⇡

2p

◆

�

✓

1

p

◆�p0

, �(z) :=

Z

+1

0

tz�1e�t dt. (6)

Then for any interval I b R and ↵  ↵p we have

sup

u2 ˜H
1
p ,p

(I), k(��)

1
2p ukLp(I)1

Z

I

⇣

e↵|u|
p0 � 1

⌘

dx = Cp|I|, (7)

and ↵ = ↵p is the largest constant for which (7) holds. In fact for any a > 0 we have

sup

u2 ˜H
1
p ,p

(I), k(��)

1
2p ukLp(I)1

Z

I
|u|a

⇣

e↵p|u|p
0
� 1

⌘

dx =1. (8)

Remark 2 Notice that in (7), instead of the standard H
1
p
,p-norm defined in (5), we are using

the smaller but equivalent norm kuk⇤
H

1
p ,p

(R)

:= k(��)
1
2pukLp

(I) (see Remark 1).
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Theorem 1.1 is a fractional version of the well-known Moser-Trudinger inequality

sup
u2W 1,n

0 (⌦), krukLn(⌦)1

Z

⌦

e↵|u|
n

n�1
dx  C|⌦|, for ↵  ↵n := n|Sn�1| 1

n�1 , (9)

where ⌦ ⇢ Rn is a domain of finite measure, see e.g. [25], [31], [32]. Recently A. Iannizzotto
and M. Squassina [16, Cor. 2.4] proved a subcritical version of (7) in Theorem 1.1 in the case
p = 2, namely

sup
u2 ˜H

1
2 ,2

(I) : k(��)

1
4 ukL2(R)1

Z

I
e↵u

2
dx  C↵|I|, for ↵ < ⇡.

1.2 Palais-Smale condition and critical points

In the rest of this paper we will focus on the case p = 2, and denote

H := H̃
1
2 ,2(I), kukH := k(��)

1
4ukL2

(R)

. (10)

By Remark 1 also this norm is equivalent to the full H
1
2 ,2-norm on H̃

1
2 ,2(I). This also follows

from the following Poincaré-type inequality (see [28, Lemma 6]):

kuk2L2
(I)  Ck(��)

1
4uk2L2

(R)

for u 2 H̃
1
2 ,2(I).

We now investigate the existence of critical points of inequality (7) in the case p = 2. Since we
often integrate by parts and (��)su is not in general supported in I even if u 2 C1

c (I), it is
more natural to consider the slightly weaker inequality

sup
u2H, kuk2H2⇡

Z

I

⇣

e
1
2u

2 � 1
⌘

dx = C|I|, (11)

where we use the slightly di↵erent norm given in (10). The reason for using the constant 1

2

instead of ↵
2

= ⇡ in the exponential and having kuk2H  2⇡ instead of kuk2H  1 is mostly
cosmetic, and becomes more clear when studying the blow-up behaviour of critical points of
(1.1), see e.g. [23] and [20].

We want to investigate the existence of critical points of (11), or more precisely solutions of
the non-local equation

(��)
1
2u = �ue

1
2u

2
in I, u ⌘ 0 in R \ I, (12)

which is the equation satisfied by critical points of the functional E : M
⇤

! R, where

E(u) =

Z

I

⇣

e
1
2u

2 � 1
⌘

dx, M
⇤

:= {u 2 H : kuk2H = ⇤},

⇤ > 0 is given, � is a Lagrange multiplier and E is well defined on M
⇤

thanks to Lemma 2.3
below. Since with this variational interpretation of (12) it is not possible to prescribe �, we will
follow the approach of Adimurthi and see solutions of (12) of critical points of the functional

J : H ! R, J(u) =
1

2
kuk2H � �

Z

I

⇣

e
1
2u

2 � 1
⌘

dx. (13)
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Again J is well-defined on H by Lemma 2.3. Moreover it is di↵erentiable by Lemma 2.5 below,
and its derivative is given by

hJ 0(u), vi := d

dt
J(u+ tv)

�

�

�

�

t=0

= (u, v)H � �
Z

I
uve

1
2u

2
dx,

for any u, v 2 H, where

(u, v)H :=

Z

R
(��)

1
4u(��)

1
4 v dx.

In particular we have that if u 2 H and J 0(u) = 0, then u is a weak solution of Problem (12) in
the sense that

(u, v)H = �

Z

I
uve

1
2u

2
dx, for all v 2 H. (14)

That this Hilbert-space definition of (12) is equivalent to the definition in sense of tempered
distributions given by (2) is discussed in the introduction of [20].

To find critical points of J we will follow a method of Nehari, as done by Adimurthi [3]. An
important point will be to understand whether J satisfies the Palais-Smale condition or not. We
will prove the following:

Theorem 1.2 The functional J satisfies the Palais-Smale condition at any level c 2 (�1,⇡),
i.e. any sequence (uk) with

J(uk)! c 2 (�1,⇡), kJ 0(uk)kH0 ! 0 as k !1 (15)

admits a subsequence strongly converging in H.

Theorem 1.3 Let I ⇢ R be a bounded interval and �
1

(I) denote the first eigenvalue of (��)
1
2

on H = H̃
1
2 ,2(I). Then for every � 2 (0,�

1

(I)) Problem (12) has at least one positive solution
u 2 H in the sense of (14). When � � �

1

(I) or �  0 Problem (12) has no non-trivial
non-negative solutions.

To prove Theorem 1.3 one constructs a sequence (uk) which is almost of Palais-Smale type
for J , in the sense that J(uk)! c̄ for some c̄ 2 R and hJ 0(uk), uki = 0. Then a modified version
of Theorem 1.2 is used, namely Lemma 3.1 below. In order to do so, it is crucial to show that
c̄ < ⇡ (Lemma 4.4 below) and this will follow from (8) with p = a = 2. Interestingly, in the
general case s > 1, n � 2, p = n

s , the analog of (8) is known only when s is integer or when
a > p0 (see [24] and Remark 3 below).

Both Theorems 1.2 and 1.3 were first proven by Adimurthi [3] in dimension n � 2 with

(��)
1
2 replaced by the n-Laplacian.

Let us briefly discuss the blow-up behaviour of solutions to (12). Extending previous works
in even dimension (see e.g. [4], [12], [23], [27]) the second and third authors and Armin Schikorra
[20] studied the blow-up of sequences of solutions to the equation

(��)
n
2 u = �ue

n
2 u

2
in ⌦ b Rn

with suitable Dirichlet-type boundary conditions when n is odd. The moving plane technique
for the fractional Laplacian (see [7]) implies that a non-negative solution to (12) is symmetric
and monotone decreasing from the center of I. Then it is not di�cult to check that in dimension
1 Theorem 1.5 and Proposition 2.8 of [20] yield:
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Theorem 1.4 Fix I = (�R,R) b R and let (uk) ⇢ H = H̃
1
2 ,2(I) be a sequence of non-negative

solutions to
(��)

1
2uk = �kuke

1
2u

2
k in I, (16)

in the sense of (14). Let mk := supI uk and assume that

⇤ := lim sup
k!1

kukk2H <1.

Then up to extracting a subsequence we have that either

(i) uk ! u1 in C`
loc

(I) \ C0(Ī) for every ` � 0, where u1 2 C`
loc

(I) \ C0(Ī) \H solves

(��)
1
2u1 = �1u1e

1
2u

2
1 in I, (17)

for some �1 2 (0,�
1

(I)), or

(ii) uk ! u1 weakly in H and strongly in C0

loc

(Ī \ {0}) where u1 is a solution to (17).

Moreover, setting rk such that �krkm2

ke
1
2m

2
k and

⌘k(x) := mk(uk(rkx)�mk) + log 2, ⌘1(x) := log

✓

2

1 + |x|2
◆

, (18)

one has ⌘k ! ⌘1 in C`
loc

(R) for every ` � 0 and ⇤ � ku1k2H + 2⇡.

The function ⌘1 appearing in (18) solves the equation

(��)
1
2 ⌘1 = e⌘1 in R,

which has been recently interpreted in terms of holomorphic immersions of a disk (or the half-
plane) by Francesca Da Lio, Tristan Rivière and the third author [10].

Theorem 1.4 should be compared with the two dimensional case, where the analogous equa-
tion ��u = �ueu

2
on the unit disk has a more precise blow-up behaviour, see e.g. [5], [4], [12],

[21].

1.3 A fractional Moser-Trudinger type inequality on the whole R
When replacing a bounded interval I by R, an estimate of the form (7) cannot hold, for instance

because of the scaling of (7), or simply because the quantity k(��)
1
2pukLp

(R)

vanishes on con-
stants. This suggests to use the full Sobolev norm including the term kukLp

(I) (see Remark 1).
This was done by Bernhard Ruf [30] in the case of H1,2(R2). We shall adapt his technique to

the case H
1
2 ,2(R).

Theorem 1.5 We have

sup
u2H

1
2 ,2

(R), kuk
H

1
2 ,2

(R)
1

Z

R

⇣

e⇡u
2 � 1

⌘

dx <1, (19)
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where kuk
H

1
2 ,2

(R)

is defined in (5). Moreover, for any a > 2,

sup
u2H

1
2 ,2

(R), kuk
H

1
2 ,2

(R)
1

Z

R
|u|a

⇣

e⇡u
2 � 1

⌘

dx =1. (20)

In particular the constant ⇡ in (19) is sharp.

A main ingredient in the proof of (19) is a fractional Pólya-Szegõ inequality which seems to
be known only in the L2 setting, being based mainly on Fourier transform techniques.

Open question 1 Does an Lp-version of Theorem 1.5 hold, i.e. can we replace H
1
2 ,2 with H

1
p
,p

in (19)?

The reason for taking a > 2 in (20) (contrary to (8)) is that the test functions for (20) will

be constructed using a cut-o↵ procedure, and due to the non-local nature of the H
1
2 ,2-norm,

giving a precise estimate for the norm of such test functions is di�cult.

Open question 2 In analogy with Theorem 1.1, can one also take a 2 (0, 2] in (20)?

In the following sections we shall prove Theorems 1.1, 1.2, 1.3 and 1.5. In the appendix we
collected some useful results about fractional Sobolev spaces and fractional Laplace operators.

2 Theorem 1.1

2.1 Idea of the proof

The following analog of (7)

sup
u=cpI 1

p
⇤f : supp(f)⇢¯I, kfkLp(I)1

Z

I
e↵p|u|p

0
dx = Cp|I|, I 1

p
(x) := |x| 1p�1 (21)

is well-known (also in higher dimension), since it follows easily from the Theorem 2 in [2], up to
choosing cp so that

cp(��)
1
2p I 1

p
= �

0

, (22)

compare to Lemma 2.1 below.

In (21) one requires that the support of f = (��)
1
2pu is bounded; following Adams [2] one

would be tempted to write u = I 1
p
⇤ (��)

1
2pu and apply (21), but the support of (��)

1
2pu is in

general not bounded, when u is compactly supported.
In order to circumvent this issue, we rely on a Green representation formula of the form

u(x) =

Z

I
G 1

2p
(x, y)(��)

1
2pu(y)dy,

and show that |G 1
2p
(x, y)|  I 1

p
(x � y) for x 6= y. This might infer from the explicit formular

of Gs(x, y), which is known on an interval, see e.g. [6] and [9], but we prefer to follow a more
self-contained path, only using the maximum principle.
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More delicate is the proof of (8). We will construct functions u supported in Ī with

(��)
1
2pu = f for some prescribed function f 2 Lp(I) suitably concentrated. Then with a

barrier argument we will show that u 2 H̃
1
p
,p(I), i.e. (��)

1
2pu 2 Lp(R). This is not obvious

because (��)
1
2p is a non-local operator and even if u ⌘ 0 in Ic, (��)

1
2pu does not vanish outside

I, and a priori it could even concentrate on @I.

Remark 3 An alternative approach to (8) uses the Riesz potential and a cut-o↵ function  ,
as done in [24] following a suggestion of A. Schikorra. This works in every dimension and for
arbitrary powers of ��, but is less e�cient in the sense that the k(��)s kLp is not su�ciently
small, and (8) (or its higher-order analog) can be proven only for a > p0. On the other hand,
the approach used here to prove (8) for every a > 0 does not work for higher-order operators,
since for instance if for ⌦ b R4 we take u 2 W 1,2

0

(⌦) solving �u = f 2 L2(⌦), then we do not
have in general �u 2W 2,2(R4).

2.2 Proof of Theorem 1.1

By a simple scaling argument it su�ces to prove (7) for a given interval, say I = (�1, 1).

Lemma 2.1 For s 2 �0, 1
2

�

the fundamental solution of (��)s on R is

Fs(x) =
1

2 cos(s⇡)�(2s)|x|1�2s
,

i.e. (��)sFs = �
0

in the sense of tempered distributions.

Proof. This follows easily e.g. from Theorem 5.9 in [19]. ⇤

Lemma 2.2 Fix s 2 �

0, 1
2

�

. For any x 2 I = (�1, 1) let gx 2 C1(R) be any function with

gx(y) = Fs(x� y) for y 2 Ic. Then there exists Hs(x, ·) 2 H̃s,2(I) + gx unique solution to
⇢

(��)sHs(x, ·) = 0 in I
Hs(x, ·) = gx in R \ I (23)

and the function
Gs(x, y) := Fs(x� y)�Hs(x, y), (x, y) 2 I ⇥ R

is the Green function of (��)s on I, i.e. for x 2 I it satisfies
⇢

(��)sGs(x, ·) = �x in I
G(x, y) = 0 for y 2 R \ I. (24)

Moreover
0 < Gs(x, y)  Fs(x� y) for y 6= x 2 I. (25)

Finally, for any function u 2 H̃2s,p(I) (p 2 [1,1)) we have

u(x) =

Z

I
Gs(x, y)(��)su(y)dy, for a.e. x 2 I, (26)

where the right-hand side is well defined for a.e. x 2 I thanks to (25) and Fubini’s theorem.
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Remark 4 The first equations in (23) above and in (24) below are intended in the sense of
distribution, compare to (2).

Proof. The existence and non-negativity of Hs(x, ·) for every x 2 I follow from Theorem A.2
and Proposition A.3 in the Appendix. The next claim, namely (24), follows at once from Lemma
2.1 and (23).

We show now that G(x, y) � 0 for every (x, y) 2 I ⇥ I. We claim that

lim
y!±1

Hs(x, y) = Hs(x,±1) = Fs(x⌥ 1), (27)

hence Gs(x, y) ! 0 as y ! @I, and by Silvestre’s maximum principle, Proposition A.6 below,
we also have Gs(x, ·) � 0 for every x 2 I, hence also (25) follows. For the proof of (27) notice
that

H̃s(x, ·) := Hs(x, ·)� gx 2 H̃s,2(I)

satifies
⇢

(��)sH̃s(x, ·) = �(��)sgx in I
H̃s(x, ·) = 0 in R \ I

and ((��)sgx)|I 2 L1(I) by Proposition A.7 (we are using that gx 2 C1(R)), hence Proposition
A.4 gives H̃s(x, y)! 0 as y ! @I, and (27) follows at once.

To prove (26), let us start considering u 2 C1
c (I). Then, according to (24), we have

u(x) = h�x, ui = h(��)sGs(x, ·), ui =
Z

I
Gs(x, y)(��)su(y)dy.

Given now u 2 H̃2s,p(I), let (uk)k2N ⇢ C1
c (I) converge to u in H̃2s,p(I), i.e.

uk ! u, (��)suk ! (��)su in Lp(R), hence in L1(I),

see Lemma A.5. Then

u
L1

(I) � uk =

Z

I
Gs(·, y)(��)suk(y)dy

L1
(I)�!

Z

I
Gs(·, y)(��)su(y)dy,

the convergence on the right following from (25) and Fubini’s theorem:

Z

I

�

�

�

�

Z

I
Gs(x, y) [(��)suk(y)� (��)su(y)] dy

�

�

�

�

dx


Z

I

Z

I
Fs(x� y) |(��)suk(y)� (��)su(y)| dxdy

 sup
y2I
kFskL1

(I�y)k(��)suk � (��)sukL1
(I) ! 0

as k !1. Since the convergence in L1 implies the a.e. convergence (up to a subsequence), (26)
follows. ⇤
Proof of Theorem 1.1. Set s = 1

2p . From Lemma 2.2 we get

0  (2↵p)
p�1
p Gs(x, y)  I 1

p
(x� y) = |x� y| 1p�1,

8



where Gs is the Green’s function of the interval I defined in Lemma 2.2. Choosing f :=

|(��)
1
2pu|��

I
and using (25) and (26), we bound

(2↵p)
p�1
p |u(x)|  (2↵p)

p�1
p

Z

I
Gs(x, y)f(y)dy  I 1

p
⇤ f(x)

and (7) follows at once from (21).

It remains to show (8). The proof is based on the construction of suitable test functions and
it is split into steps.

Step 1. Definition of the test functions. We fix q � 1 and set

f(y) = fq(y) :=
1

2q
|y|� 1

p�
[� 1

2 ,�r][[r, 12 ]
, r :=

e�q

2
. (28)

Notice that

kfkpLp =
2

(2q)p

Z 1
2

r

dy

y
=

1

(2q)p�1

.

Now let u = uq 2 H̃s,2(I) solve
⇢

(��)su = f in I
u ⌘ 0 in Ic.

(29)

in the sense of Theorem A.2 in the appendix.

Step 2. Proving that u 2 H̃2s,p(I). According to Proposition A.4 u satisfies

|u(x)|  CkfkL1(1� |x|)s for x 2 I. (30)

We want to prove that (��)su 2 Lp(R). Since by Proposition A.7

(��)su(x) = Cs

Z

I

�u(y)
|x� y|1+2s

dy, for |x| > 1

and u is bounded, we see immediately that

|(��)su(x)|  C

|x|1+2s
, for |x| � 2,

hence
k(��)sukLq

(R\[�2,2]) <1 for every q 2 [1,1). (31)

Now we claim that

(I) := k(��)sukLq
([�2,2]\[�1,1]) <1, q = max{p, 2}. (32)

Again using Proposition A.7, (30) and translating, we have

(I) =

 

Z

[�2,2]\[�1,1]

�

�

�

�

C

Z

1

�1

�u(y)dy
|y � x|1+2s

�

�

�

�

q

dx

!

1
q

 C

✓

Z

0

�1

�

�

�

�

Z

2

0

ysdy

(y � x)1+2s

�

�

�

�

q

dx

◆

1
q

,
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and using the Minkowski inequality

✓

Z

A1

�

�

�

�

Z

A2

F (x, y)dy

�

�

�

�

q

dx

◆

1
q


Z

A2

✓

Z

A1

|F (x, y)|qdx
◆

1
q

dy,

we get

(I)  C

Z

2

0

ys
✓

Z

0

�1

dx

(y � x)(1+2s)q

◆

1
q

dy  C

Z

2

0

dy

y1+s� 1
q

<1,

since 1 + s� 1

q < 1. This proves (32).
To conclude that (��)su 2 Lp(R) it remains to shows that (��)su does not concentrate on

@I = {�1, 1}, in the sense that the distribution defined by

hT,'i :=
Z

R
u(��)s'dx�

Z

I
f'dx�

Z

Ic
Cs

Z

R

�u(y)
|x� y|1+2s

dy '(x)dx

=: hT
1

,'i � hT
2

,'i � hT
3

,'i for ' 2 C1
c (R)

vanishes. Notice that hT,'i = 0 for ' 2 C1
c (R \ @I), since T

1

= (��)su, while

hT
2

,'i = h(��)su,'i, hT
3

,'i = 0 for ' 2 C1
c (I)

by (29), and
hT

2

,'i = 0, hT
3

,'i = h(��)su,'i for ' 2 C1
c (Ic)

by Proposition A.7, and for ' 2 C1
c (R \ @I) we can split ' = '

1

+ '
2

with '
1

2 C1
c (I) and

'
2

2 C1
c (Ic). In particular supp(T ) ⇢ @I.

It is easy to see that T
1

is a distribution of order at most 1, i.e.
�

�

�

�

Z

R
u(��)s'dx

�

�

�

�

 Ck'kC1
(R)

, for every ' 2 C1
c (R)

(use for instance Proposition A.7), and that T
2

and T
3

are distributions of order zero, i.e.

|hTi,'i|  Ck'kL1
(R)

for i = 2, 3.

Since supp(T ) ⇢ @I it follows from Schwartz’s theorem (see e.g. [8, Sec. 6.1.5]) that

T = ↵��1

+ ��
1

+ ↵̃D��1

+ �̃D�
1

, for some ↵,�, ↵̃, �̃ 2 R,

where hD�x0 ,'i := �h�x0 ,'
0i = �'0(x

0

) for ' 2 C1
c (R).

In order to show that ↵̃ = 0, take ' 2 C1
c (R) with

supp(') ⇢ (�1, 1), '0(0) = 1, '(0) = 0,

and rescale it by setting for '�(�1 + x) = �'(��1x) for � > 0. Since T
2

and T
3

have order 0 it
follows

|hTi,'�i|  C�! 0 as �! 0, for i = 2, 3.

10



As for T
1

, using Proposition A.7 we get

hT
1

,'�i
Cs

=

Z

(B2�(�1))

c

u(x)

Z

B�(�1)

�'�(y)

|x� y|1+2s
dydx

+

Z

B2�(�1)

u(x)

Z

(B4�(�1))

c

'�(x)

|x� y|1+2s
dydx

+

Z

B2�(�1)

u(x)

Z

B4�(�1)

'�(x)� '�(y)

|x� y|1+2s
dydx

=: (I) + (II) + (III).

Since k'�kL1
(R)

= C'� and u 2 L1(R), one easily bounds |(I)| + |(II)| ! 0 as � ! 0, and
using that supR |'0

�| = supR |'0| we get

|(III)| 
Z

B2�(�1)

|u(x)|
Z

B4�(�1)

supR |'0|
|x� y|2s dydx  C�1�2s

Z

B2�(�1)

|u(x)|dx! 0 as �! 0.

Since for � 2 (0, 1) we have hT,'i = �↵̃, by letting � ! 0 it follows that ↵̃ = 0. Similarly one
can prove that �̃ = 0.

We now claim that ↵,� = 0. Considering

ũ(x) := u(x)� ↵Fs(x+ 1)� �Fs(x� 1),

and recalling that (��)sFs = �
0

, one obtains that

(��)sũ = T
1

� ↵��1

� ��
1

= T
2

+ T
3

2 L2(R),

hence with Proposition A.1

Z

R

Z

R

|ũ(x)� ũ(y)|2
|x� y|1+2s

dxdy = [ũ]2W 2s,2
(R)

= Ck(��)sũk2L2
(R)

<1,

and this gives a contradiction if ↵ 6= 0 or � 6= 0 since the integral on the left-hand side does not
converge in these cases.

Then T = 0, i.e. (��)su =: T
1

= T
2

+ T
3

and from (29), (31) and (32) we conclude that
(��)su 2 Lp(R), hence u 2 H̃2s,p(I), as wished.

Step 3: Conclusion. Recalling that (��)su = f in I, from (26) we have for x 2 I

u(x) =

Z

I
Gs(x, y)f(y)dy

=
1

2q(2↵p)
p�1
p

Z

r<|y|< 1
2

1

|x� y|1� 1
p |y| 1p

dy �
Z

r<|y|< 1
2

Hs(x, y)f(y)dy

=: u
1

(x) + u
2

(x),

(33)

where Hs(x, y) is as in Lemma 2.2.
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We now want a lower bound for u in the interval [�r, r]. We fix 0 < x  r and estimate

u
1

(x) =
1

2q(2↵p)
p�1
p

 

Z 1
2

r

dy

(y � x)1�
1
p y

1
p

+

Z �r

� 1
2

dy

|y � x|1� 1
p |y| 1p

!

� 1

2q(2↵p)
p�1
p

 

Z 1
2

r

dy

y
+

Z 1
2

r

dy

y + x

!

=
1

2q(2↵p)
p�1
p

✓

2q + log

✓

1 + 2x

1 + x
r

◆◆

=
1

(2↵p)
p�1
p

+O(q�1).

Since Hs is bounded on [�r, r]⇥ [�1

2

, 1
2

], we have

|u
2

(x)|  C

Z 1
2

r
f(y)dy  Cq�1

Z 1
2

0

|y|� 1
pdy = O(q�1), x 2 [�r, r].

Then for |x| < r we have

u(x) � 1

(2↵p)
p�1
p

+O(q�1),

as q !1. We now set

wq := (2q)
p�1
p uq 2 H̃

1
p
,p(I),

so that k(��)swqkLp
(I) = 1, we compute for a > 0

Z

I
|wq|ae↵p|wq |p

0
dx �

Z r

�r

✓

q

↵p
+O(1)

◆a/p0

eq+O(1)dx � 2rqa/p
0
eq

C
=

qa/p
0

C
,

and we conclude by letting q !1. ⇤

2.3 A few consequences of Theorem 1.1

Lemma 2.3 Let u 2 H. Then uqepu
2 2 L1(I) for every p, q > 0.

Proof. Since |u|q  C(q)e|u|
2
, it is enough to prove the case q = 0. Given " > 0 (to be fixed

later), by Lemma A.5 there exists v 2 C1
c (I) such that

kv � uk2H < ".

Using
u2  (v � u)2 + v2 + 2vu

we bound
epu

2  ep(v�u)2epv
2
e2pvu, (34)

where clearly epv
2 2 L1(I). Using the inequality |ab|  1

2

(a2 + b2) we have

e2puv  e
1
"
p2kuk2Hv2e

"( u
kukH

)

2

,

12



and for " small enough the right-hand side is bounded in L2(I) thanks to Theorem 1.1. Still
by Theorem 1.1 we have ep(u�v)2 2 L2(I) if " > 0 is small enough, hence going back to (34) and
using that v 2 L1(I) is now fixed, we conclude with Hölder’s inequality that epv

2 2 L1(I). ⇤

Lemma 2.4 For any q, p 2 (1,+1) the functional

Eq,p : H ! R, Eq,p(u) :=

Z

I
|u|qepu2

dx

is continuous.

Proof. Consider a sequence uk ! u in H. By Lemma 2.3 (up to changing the exponents)
we have that the sequence fk := |uk|qepu2

k is bounded in L2(I). Indeed, it is enough to write
uk = (uk � u) + u and use the same estimates as in (34) with u instead of v and uk instead
of u. We now claim that fk ! f in L1(I). Indeed up to a subsequence uk ! u a.e., hence
fk ! f := |u|qepu2

a.e. Then considering that since fk is bounded in L2(I) we have

Z

{fk>L}
fk dx  1

L

Z

{fk>L}
f2

k dx 
C

L
! 0 as L! +1,

the claim follows at once from Lemma A.9. ⇤

Lemma 2.5 The functional J : H ! R defined in (13) is smooth.

Proof. This follows easily from Lemma 2.4, since the first term on the right-hand side of (13) is
simply 1

2

kuk2H , and the derivatives of the second term are continuous thanks to Lemma 2.4. ⇤
The following lemma is a fractional analog of a well-known result of P-L. Lions [22].

Lemma 2.6 Consider a sequence (uk) ⇢ H with kukkH = 1 and uk * u weakly in H, but not
strongly (so that kukH < 1). Then if u 6⌘ 0, e⇡u

2
k is bounded in Lp for 1  p < p̃ := (1�kuk2H)�1.

Proof. We split
u2k = u2 � 2u(u� uk) + (u� uk)

2.

Then vk := e⇡u
2
k = vvk,1vk,2, where v = e⇡|u|

2 2 Lp(I) for all p � 1 by Lemma 2.3, vk,1 =

e�2⇡u(u�uk) and vk,2 = e⇡(u�uk)
2
.

Notice now that from

�2p⇡u(u� uk)  ⇡
✓

p2

"2
u2 + "2(u� uk)

2

◆

,

we get from Lemma 2.3 and Theorem 1.1 that vk,1 2 Lq(I) for all q � 1 if " > 0 is small enough
(depending on q). But again from Theorem 1.1 v

2,k is bounded in Lp(I) for all p < p̃ since

kuk � uk2H = 1� 2huk, ui+ kuk2H ! 1� kuk2H .

Therefore by Hölder’s inequality we have that vk is bounded in Lp(I) for all p < p̃. ⇤
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3 Proof of Theorem 1.2

For the proof of Theorem 1.2 we will closely follow [3]. Set

Q(u) := J(u)� 1

2
hJ 0(u), ui = �

Z

I

✓✓

u2

2
� 1

◆

e
1
2u

2
+ 1

◆

dx. (35)

Remark 5 Notice that the integrand on the right-hand side of (35) is strictly convex and has
a minimum at u = 0; in particular

0 = Q(0) < Q(u) for every u 2 H \ {0}. (36)

Furthermore by Lemma 2.4 the functional Q is continuous on H and by convexity Q is also
weakly lower semi-continuous.

Let us also notice that

�

Z

I
u2e

1
2u

2
dx = �

Z

{|u|4}
u2e

1
2u

2
dx+ �

Z

{|u|>4}
u2e

1
2u

2
dx

 C + �

Z

{|u>4|}
u2e

1
2u

2
dx  C + C̃Q(u)

and hence we have

�

Z

I
u2e

1
2u

2
dx  C(1 +Q(u)) for every u 2 H. (37)

We consider a Palais-Smale sequence (uk)k�0

with J(uk)! c. From (15) we get

hJ 0(uk), uki = o(1)kukkH as k !1,

and

Q(uk) = J(uk)� 1

2
hJ 0(uk), uki = c+ o(1) + o(1)kukkH . (38)

Then with (37) we have

�

Z

I
u2ke

1
2u

2
kdx  C (1 + kukkH) ,

hence, using that Q(uk) � 0

�

Z

I

⇣

e
1
2u

2
k � 1

⌘

dx  C (1 + kukkH) ,

so that

J(uk) � 1

2
kukk2H � C(1 + kukkH).

This and the boundedness of (J(uk))k�0

yield that the sequence (uk)k�0

is bounded in H, hence
we can extracts a weakly converging subsequence uk * ũ in H. By the compactness of the
embedding H ,! L2 (see e.g. [11, Theorem 7.1]), up to extracting a further subsequence we can
assume that uk ! ũ almost everywhere. To complete the proof of the theorem it remains to
show that, up to extracting a further subsequence, uk ! ũ strongly in H.
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By Remark 5 we have

0  Q(ũ)  lim inf
k!1

Q(uk) = lim inf
k!1

✓

J(uk)� 1

2
hJ 0(uk), uki

◆

= c (39)

Thus necessarily c � 0. In other words the Palais-Smale condition is vacantly true when c < 0
because no sequence can satisfy (15).

Let us now consider the case c = 0. Clearly (39) implies Q(uk)! Q(ũ) = 0. We now claim
that

upke
1
2u

2
k ! ũpe

1
2 ũ

2
in L1(I) for 0  p < 2. (40)

Indeed, up to extracting a further subsequence, from (37) and (39) we get

Z

{|uk|>L}
upke

1
2u

2
kdx  1

L2�p

Z

{|uk|>L}
u2ke

1
2u

2
kdx = O

✓

1

L2�p

◆

,

and (40) follows from Lemma A.9 in the appendix. Then, also considering that Q(ũ) = 0, hence
ũ ⌘ 0, we get

lim
k!1

kukk2H = 2 lim
k!1

✓

J(uk) + �

Z

I

⇣

e
1
2u

2
k � 1

⌘

dx

◆

= 2�

Z

I

⇣

e
1
2 ũ

2 � 1
⌘

dx = 0, (41)

so that uk ! 0 is H and the Palais-Smale condition holds in the case c = 0 as well.

The last case is when c 2 (0,⇡). We will need the following result which is analogue to
Lemma 3.3 in [3].

Lemma 3.1 Consider a bounded sequence (uk) ⇢ H such that uk converges weakly and almost
everywhere to a function u 2 H. Further assume that:

1. there exists c 2 (0,⇡] such that J(uk)! c;

2. kuk2H � �
R

I u
2e

1
2u

2
dx;

3. supk
R

I u
2

ke
1
2u

2
kdx <1;

4. either u 6⌘ 0 or c < ⇡.

Then

lim
k!1

Z

I
u2ke

1
2u

2
kdx =

Z

I
u2e

1
2u

2
dx.

Proof. We assume u 6⌘ 0 (if u ⌘ 0 and c < ⇡ the existence of " > 0 in (42) below is obvious).
We then have Q(u) > 0. On the other hand from assumption 2 we get

J(u) =
1

2
kuk2H +Q(u)� �

2

Z

I
u2e

1
2u

2
dx � Q(u) > 0.

We also know from the weak convergence of uk to u in H, the weakly lower semicontinuity of
the norm and (40) that

J(u)  lim
k!1

J(uk) = c,
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where the inequality is strict, unless uk ! u strongly in H (in which case the proof is complete).
Then one can choose " > 0 so that

1 + 2"

⇡
<

1

c� J(u)
. (42)

Notice now that if we set � = �
R

I

⇣

e
1
2u

2 � 1
⌘

dx, then

lim
k!1

kukk2H = 2c+ 2�.

Then multiplying (42) by 1

2

kukk2H we have for k large enough

1 + "

2⇡
kukk2H  p̃ :=

1 + 2"

2⇡
lim
k!1

kukk2H <
c+ �

c� J(u)
=

✓

1� kuk2H
2(c+ �)

◆�1

.

By Lemma 2.6 below applied to vk := uk
kukkH , we get that the sequence exp(p̃⇡v2k) is bounded in

L1(I), hence e
(1+")

2 u2
k is bounded in L1.

Now we have that
Z

{|uk|>K}
u2ke

1
2u

2
kdx =

Z

{|uk|>K}

⇣

u2ke
� "

2u
2
k

⌘

e
1+"
2 u2

kdx

 o(1)

Z

{|uk|>K}
e

1+"
2 u2

kdx

with o(1)! 0 as K !1, and we conclude with Lemma A.9. ⇤
We now claim

kũk2H = �

Z

I
ũ2e

1
2 ũ

2
dx. (43)

First we show that ũ 6⌘ 0. So for the sake of contradiction, we assume that ũ ⌘ 0. By Lemma
3.1

lim
k!1

Z

I
u2ke

1
2u

2
kdx = 0.

Therefore, also using (40), we obtain limk!1Q(uk) = 0. It follows that

0 < c = lim
k!1

J(uk) = lim
k!1

✓

Q(uk) +
1

2
hJ 0(uk), uki

◆

= 0,

contradiction, hence ũ 6⌘ 0.
Fix now ' 2 C1

0

(I) \H. We have hJ 0(uk),'i ! 0 as k ! 1, since (uk) is a Palais-Smale
sequence. But, by weak convergence we have that

(uk,')H ! (ũ,')H .

Now (40) implies

Z

I
'uke

1
2u

2
kdx!

Z

I
'ũe

1
2 ũ

2
dx, for every ' 2 C1

0

(I).
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Thus we have

(ũ,')H = �

Z

I
'ũe

1
2 ũ

2
dx.

By density and the fact that ũe
1
2 ũ

2 2 Lp for all p � 1, we have that

(ũ, ũ)H = �

Z

I
ũ2e

1
2 ũ

2
dx,

hence (43) is proven. Therefore, we are under the assumptions of Lemma 3.1, which yields

kũk2H  lim inf
k!1

kukk2H

= 2 lim inf
k!1



J(uk) + �

Z

I

⇣

e
1
2u

2
k � 1

⌘

dx

�

= 2 lim inf
k!1



�

2

Z

I
u2ke

1
2u

2
kdx+

1

2
hJ 0(uk), uki

�

= �

Z

I
ũ2e

1
2 ũ

2
dx

= kũk2H .

(44)

By Hilbert space theory the convergence of the norms implies that uk ! ũ strongly in H, and
the Palais-Smale condition is proven.

4 Proof of Theorem 1.3

We start by proving the last claim of Theorem 1.3.

Proposition 4.1 Let u be a non-negative non-trivial solution to (12) for some � 2 R. Then
� < �

1

(I).

Proof. Let '
1

� 0 be as in Lemma A.8. Then using '
1

as a test function in (12) (compare to
(14)) yields

�
1

(I)

Z

I
u'

1

dx = �

Z

I
u'

1

e
1
2 |u|

2
dx > �

Z

I
u'

1

dx.

Hence � < �
1

. Using u as test function in (12) gives at once � > 0. ⇤
The rest of the section is devoted to the proof of the existence part of Theorem 1.3.

Define the Nehari manifold

N(J) :=
�

u 2 H \ {0}; hJ 0(u), ui = 0
 

.

Since, according to (35)-(36), J(u) = Q(u) > 0 for u 2 N(J), we have

a(J) := inf
u2N(J)

J(u) � 0.

Lemma 4.2 We have a(J) > 0.
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Proof. Assume that a(J) = 0, then there exists a sequence (uk) ⇢ N(J) such that

J(uk) = Q(uk)! 0 as k !1,

From (37) we infer

sup
k�0

Z

I
u2ke

1
2u

2
kdx <1, (45)

which, again using the fact that uk 2 N(J), implies that kukkH is bounded. Thus, up to
extracting a subsequence, we have that uk weakly converges to a function u 2 H. From the
weak lower semicontinuity of Q we then get

0  I(u)  lim inf
k!1

Q(uk) = 0,

thus I(u) = 0 and (36) implies u ⌘ 0. On the other hand, we have from (40) with ũ replaced
by u (which holds with the same proof thanks to (45))

lim
k!1

kukk2H = 2 lim
k!1

⇢

J(uk) + �

Z

I

⇣

e
1
2u

2
k � 1

⌘

dx

�

= 0, (46)

therefore we have strong convergence of uk to 0.
Now, if we let vk = uk

kukkH and up to a subsequence we assume vk ! v weakly in H and
almost everywhere, we have

1 = kvkk2H = lim
k!1

�

Z

I
e

1
2u

2
kv2kdx = �

Z

I
v2dx < �

1

Z

I
v2dx  1, (47)

where in the third equality is justified as follows: From the Sobolev imbedding vk ! v in all
Lp(I) for every p 2 [1,1), while from (46) and Theorem 1.1 we have e

1
2u

2
k 2 Lq(I) for any

q 2 [1,1) and k � k
0

(q), hence from Hölder’s inequality we have the desired limit. The last
inequality in (47) follows from the Poincaré inequality.

Clearly (47) is a contradiction, hence a(J) > 0. ⇤

Lemma 4.3 For every u 2 H \ {0} there exists a unique t = t(u) > 0 such that tu 2 N(J).
Moreover, if

kuk2H  �
Z

I
u2e

1
2u

2
dx, (48)

then t(u)  1 and t(u) = 1 if and only if u 2 N(J).

Proof. Fix u 2 H \ {0} and for t 2 (0,1) define the function

f(t) = t2
✓

kuk2H � �
Z

I
u2e

1
2 t

2u2
dx

◆

,

which can also be written as

f(t) = t2
✓

kuk2H � �
Z

I
u2dx

◆

� t2�

Z

I
u2

⇣

e
1
2 t

2u2 � 1
⌘

dx.

Notice that tu 2 N(J) if and only if f(t) = 0.
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From the inequality

u2
⇣

e
1
2 t

2u2 � 1
⌘

� t2u4

we infer

f(t)  t2
✓

kuk2H � �
Z

I
u2dx

◆

� t4�

Z

I
u4dx,

hence
lim

t!+1
f(t) = �1.

Now notice that the function t 7!
⇣

e
1
2 t

2u2 � 1
⌘

is monotone decreasing on (0,1), and by

Lemma 2.3 we have
⇣

e
1
2u

2 � 1
⌘

2 Lp(I) for all p 2 [1,1), so that

u2
⇣

e
1
2u

2 � 1
⌘

2 L1(I).

Then by the dominated convergence theorem we get

lim
t!0

Z

I
u2

⇣

e
1
2 t

2u2 � 1
⌘

dx = 0.

So one has

f(t) = t2
✓

kuk2H � �
Z

I
u2dx

◆

+ o(t2) as t! 0.

Hence, f(t) > 0 for t small, since for � < �
1

(I)

kuk2H � �
Z

I
u2dx > 0

(compare the proof of Lemma A.8). Therefore there exists t = t(u) such that f(t) = 0, i.e.
tu 2 N(J). The uniqueness of such t follows noticing that the function

t 7!
Z

I
u2e

1
2 t

2u2
dx

is increasing. Keeping this in mind, if we assume (48), then f(1)  0, hence f(t)  0 for all
t � 1. This implies at once that t(u)  1 and t(u) = 1 if and only if u 2 N(J). ⇤

Lemma 4.4 We have a(J) < ⇡.

Proof. Take w 2 H such that kwkH = 1 and let t = t(w) be given as in Lemma 4.3 so that
tw 2 N(J). Then

a(J)  J(tw)  t2

2
kwk2H =

t2

2
.

Now using the monotonicity of t 7! R

I w
2e

1
2 t

2w2
dx we have

�

Z

I
w2ea(J)w

2
dx  �

Z

I
w2e

1
2 t

2w2
dx =

t2kwk2H
t2

= 1.

Thus

sup
kwkH=1

�

Z

I
w2ea(J)w

2
dx  1,

and Theorem 1.1 implies that a(J) < ⇡. ⇤

19



Lemma 4.5 Let u 2 N(J) be such that J 0(u) 6= 0, then J(u) > a(J).

Proof. We choose h 2 H such that hJ 0(u), hi = 1, and for ↵ 2 R we consider the path
�t(↵) = ↵u� th, t 2 R. Remember that by Lemma 2.5 J 2 C1(H). By the chain rule

d

dt
J(�t(↵)) = �hJ 0(�t(↵)), hi,

therefore, if we let ↵! 1 and t! 0 we find

d

dt
J(�t(↵))

�

�

�

�

t=0,↵=1

= �hJ 0(u), hi = �1.

Hence, there exist, � > 0 and " > 0 such that for ↵ 2 [1� ", 1 + "] and t 2 (0, �]

J(�t(↵)) < J(�
0

(↵)) = J(↵u). (49)

Now we consider the function f defined by

ft(↵) = k�t(↵)k2H � �
Z

I
�t(↵)

2e
1
2�t(↵)2dx,

which is continuous with respect to t and ↵ by Lemma 2.4. Notice that since u 2 N(J) we have

f
0

(↵) = ↵2

Z

I
u2

⇣

e
1
2u

2 � e
1
2↵

2u2
⌘

dx

and f
0

(1) = 0. Since the function ↵ 7! u2(e
1
2u

2 � e
1
2↵

2u2
) is decreasing, by continiuity we can

find "
1

2 (0, ") and �
1

2 (0, �) such that

ft(1� "1) > 0, ft(1 + "
1

) < 0 for t 2 [0, �
1

].

Then if we fix t 2 (0, �
1

] we can find ↵t 2 [1�"
1

, 1+"
1

] such that ft(↵t) = 0, i.e. �t(↵t) 2 N(J),
and from (49) we get

a(J)  J(�t(↵t)) < J(↵tu).

Since
d

d↵
J(↵u) = f

0

(↵),

and f
0

(↵) > 0 for ↵ < 1 and f
0

(↵) < 0 for ↵ > 1, we get

J(↵u)  J(u) for ↵ 2 R,

and we conclude that
a(J)  J(�t(↵t)) < J(↵tu)  J(u).

⇤

Proof of Theorem 1.3 (completed). To complete the proof it is enough to show the existence of
u
0

2 N(J) such that J(u
0

) = a(J). We consider then a minimizing sequence (uk) ⇢ N(J).
We assume that uk changes sign. Then since uk 2 N(J) we have

k|uk|k2H < kukk2H = �

Z

I
u2ke

1
2u

2
kdx = �

Z

I
|uk|2e

1
2 |uk|2dx,
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where we used (62), hence by Lemma 4.3 there exists tk = t(|uk|) < 1 such that tk|uk| 2 N(J),
whence

J(tk|uk|) = Q(tk|uk|) < Q(|uk|) = Q(uk) = J(uk),

where the inequality in the middle depends on the monotonicity of Q. Hence up to replacing
uk with tk|uk| we can assume that the minimizing sequence (still denoted by (uk)) is made of
non-negative functions.

Since J(uk) = Q(uk)  C we infer from (37)
Z

I
u2ke

1
2u

2
kdx  C

and for uk 2 N(J) we get
kukkH  C.

Thus up to a subsequence uk weakly converges to a function u
0

2 H, and up to a subsequence
the convergence is also almost everywhere.

We claim that u
0

6⌘ 0. Indeed if u
0

⌘ 0, then from (40), we have that
⇣

e
1
2u

2
k � 1

⌘

! 0 in

L1(I). Thus

lim
k!1

kukk2H = 2 lim
k!1



J(uk) + �

Z

I

⇣

e
1
2u

2
k � 1

⌘

dx

�

= 2a(J).

Then according to Theorem 1.1, since a(J) < ⇡ we have that e
1
2u

2
k is bounded in Lp for some p >

1, hence weakly converging in Lp(I) to e
1
2u

2
0 . From the compactness of the Sobolev embeddings

(see [11, Theorem 7.1]), up to a subsequence u2k ! u2
0

strongly in Lp0(I), hence

lim
k!1

Z

I
u2ke

1
2u

2
kdx =

Z

I
u2
0

e
1
2u

2
0dx = 0,

and with Lemma 4.2 and (35) one gets

0 < a(J) = lim
k!1

J(uk) = lim
k!1

Q(uk) = 0,

which is a contradiction.
Next we claim that

ku
0

k2H  �
Z

I
u2
0

e
1
2u

2
0dx.

So we assume by contradiction that this is not the case, i.e.

ku
0

k2H > �

Z

I
u2
0

e
1
2u

2
0dx.

Then from Lemma 3.1, Lemma 4.4 and the weak convergence, we have that

ku
0

k2H  lim inf
k!1

kukk2H = lim inf
k!1

�

Z

I
u2ke

1
2u

2
kdx = �

Z

I
u2
0

e
1
2u

2
0dx,

again leading to a contradiction.
From Lemma 4.3, we have that there exists 0 < t  1 such that tu

0

2 N(J). Taking Remark 5
into account we get

a(J)  J(tu
0

) = Q(tu
0

)  Q(u
0

)  lim inf
k!1

Q(uk) = a(J).

It follows that t = 1, since otherwise the second inequality above would be strict. Then u
0

2
N(J) and J(u

0

) = a(J). By Lemma 4.5 we have J 0(u
0

) = 0 ⇤
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5 Proof of Theorem 1.5

For u 2 H
1
2 ,2(R) we set |u|⇤ : R ! R

+

to be its non-increasing symmetric rearrangement, whose
definition we shall now recall. For a measeurable set A ⇢ R, we define

A⇤ = {x 2 R : 2|x| < |A|}.
The set A⇤ is symmetric (with respect to 0) and |A⇤| = |A|. For a non-negative measurable
function f , such that

|{x 2 R : f(x) > t}| <1 for every t > 0,

we define the symmetric non-increasing rearrangement of f by

f⇤(x) =

Z 1

0

�{y2R:f(y)>t}⇤(x)dt.

Notice that f⇤ is even, i.e. f⇤(x) = f⇤(�x) and non-increasing (on [0,1)).
We will state here the two properties that we shall use in the proof of Theorem 1.5.

Proposition 5.1 Given a measurable function F : R ! R and a non-negative measurable
function f : R ! R it holds

Z

R
F (f)dx =

Z

R
F (f⇤)dx.

The following Pólya-Szegõ type inequality can be found e.g. in [17] (Inequality (3.6)) or [26].

Theorem 5.2 Let u 2 Hs,2(R) for 0 < s < 1. Then
Z

R
|(��)s|u|⇤|2dx 

Z

R
|(��)su|2dx.

Now given u 2 H
1
2 ,2(R), from Proposition 5.1 we get

Z

R

⇣

e⇡u
2 � 1

⌘

dx =

Z

R

⇣

e⇡(|u|
⇤
)

2 � 1
⌘

dx, k|u|⇤kL2 = kukL2 ,

and according to Theorem 5.2

k|u|⇤k2
H

1
2 ,2

(R)

= k|u|⇤k2L2
(R)

+

Z

R
|(��)

1
4 |u|⇤|2dx  kuk2L2

(R)

+

Z

R
|(��)

1
4u|2dx = kuk2

H
1
2 ,2

(R)

.

Therefore in the rest of the proof of (19) we may assume that u 2 H
1
2 ,2(R) is even, non-increasing

on [0,1), and kuk
H

1
2 ,2

(R)

 1.

We write
Z

R

⇣

e⇡u
2 � 1

⌘

dx =

Z

R\I

⇣

e⇡u
2 � 1

⌘

dx+

Z

I

⇣

e⇡u
2 � 1

⌘

dx =: (I) + (II),

where I = (�1/2, 1/2). We start by bounding (I). By monotone convergence

(I) =
1
X

k=1

Z

Ic
⇡k

u2k

k!
dx.
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Since u is even and non-increasing, for x 6= 0 we have

u2(x)  1

2|x|
Z |x|

�|x|
u2(y)dy  kuk

2

L2

2|x| , (50)

hence for k � 2 we bound

Z

Ic
u2kdx  21�kkuk2kL2

(R)

Z 1

1
2

1

xk
dx =

kuk2kL2
(R)

(k � 1)
.

It follows that
1
X

k=2

Z

Ic
⇡k

u2k

k!
dx 

1
X

k=2

(⇡kuk2L2)k

k!(k � 1)
.

Thus, since kukL2
(R)

 1 we estimate

(I)  ⇡kuk2L2
(R)

0

B

@

1 +
1
X

k=1

⇣

⇡kuk2L2
(R)

⌘k

(k + 1)!k

1

C

A

 C.

We shall now bound (II). We define the function v : R ! R as follows

v(x) =

(

u(x)� u(1
2

) if |x|  1

2

0 if |x| > 1

2

.

Then with (50) and the estimate 2a  a2 + 1, we find

u2  v2 + 2vu(1
2

) + u(1
2

)2

 v2 + 2vkukL2
(R)

+ kuk2L2
(R)

 v2 + v2kuk2L2
(R)

+ 1 + kuk2L2
(R)

 v2
⇣

1 + kuk2L2
(R)

⌘

+ 2.

(51)

Now, recalling that u is decreasing we have

Z

R

(v(x)� v(y))2

(x� y)2
dy =

Z

I

(u(x)� u(y))2

(x� y)2
dy +

Z

Ic

(u(x)� u(1
2

))2

(x� y)2
dy


Z

R

(u(x)� u(y))2

(x� y)2
dy <1 for a.e. x 2 I = [�1

2

, 1
2

],

the last inequality coming from Proposition A.1 and Fubini’s theorem. Similarly for a.e. x 2 Ic

Z

R

(v(x)� v(y))2

(x� y)2
dy =

Z

I

(u(1
2

)� u(y))2

(x� y)2
dy


Z

I

(u(x)� u(y))2

(x� y)2
dy


Z

R

(u(x)� u(y))2

(x� y)2
dy.
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Integrating with respect to x we obtain

k(��)
1
4 vk2L2

(R)

=
1

C2

s

Z

R

Z

R

(v(x)� v(y))2

(x� y)2
dydx

 1

C2

s

Z

R

Z

R

(u(x)� u(y))2

(x� y)2
dydx

= k(��)
1
4uk2L2

(R)

,

where Cs is as in Proposition A.1 below. Thus

k(��)
1
4 vk2L2

(R)

 k(��)
1
4uk2L2

(R)

 1� kuk2L2
(R)

.

Therefore, if we set w = v
q

1 + kuk2L2
(R)

, we have

k(��)
1
4wk2L2

(R)


⇣

1 + kuk2L2
(R)

⌘⇣

1� kuk2L2
(R)

⌘

 1,

hence, using the Moser-Trudinger inequality on the interval I = (�1/2, 1/2) (Theorem 1.1), one
has

Z

I
e⇡w

2
dx < C,

and using (51)
Z

I
e⇡u

2
dx  e2⇡

Z

I
e⇡w

2
dx  C,

which completes the proof of (19).

It remains to prove (20). Given q > 2 consider the function

f = fq :=
1

2q
p|x|�{x2R:r<|x|<�}, � :=

1

q
, r :=

1

qeq
.

Notice that kfk2L2
(R)

= (2q)�1. Fix a smooth even function  : R ! [0, 1] with  ⌘ 1 in [�1

2

, 1
2

]

and supp( ) ⇢ (�1, 1). For x 2 R we set

u(x) =  (x)(F 1
4
⇤ f)(x),

where F 1
4
(x) = (2⇡|x|)� 1

2 is as in Lemma 2.1. Clearly u ⌘ 0 in R \ I, and u is non-negative and

even everywhere.

In the rest of the proof s = 1

4

. Notice that (��)s(Fs ⇤ f) = f . This follows easily from
Lemma 2.1 and the properties of the Fourier transform, see e.g. [19, Corollary 5.10]. Then we
compute

(��)su = f + (��)s[( � 1)(Fs ⇤ f)] =: f + v, (52)

and set g(x, y) = ( � 1)(x)Fs(x� y). Notice that g is smooth in R ⇥ (�1

2

, 1
2

). We write

v(x) = (��)s
Z

R
g(x, y)f(y)dy

=

Z

{r<|y|<�}
(��x)

sg(x, y)f(y)dy,
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where we used Proposition A.7 and Fubini’s theorem. With Jensen’s inequality

kvk2L2
(R)

=

Z

R

�

�

�

�

�

Z

{r<|y|<�}
(��x)

sg(x, y)f(y)dy

�

�

�

�

�

2

dx

 2(� � r)

Z

{r<|y|<�}
f(y)2

Z

R
|(��x)

sg(x, y)|2 dxdy

 2�kfk2L2
(R)

sup
|y|2[r,�]

Z

R
|(��x)

sg(x, y)|2 dx

 C(�q�1) = O(q�2),

(53)

where we used that

sup
|y|2[r,�]

Z

R
|(��x)

sg(x, y)|2 dx <1.

This in turn can be seen noticing that (��x)sg(x, y) is smooth, hence bounded on [�R,R]⇥[r, �]
for every R, and for |x| large and r  |y|  �, using Proposition A.7

(��x)
sg(x, y) = Cs

Z

R

�Fs(x� y)� ( (z)� 1)Fs(z � y)

|z � x|1+2s
dz

= Cs

Z

1

�1

� (z)Fs(z � y)

|z � x|1+2s
dz � (��)sFs(x� y)

= O(|x|�1�2s) uniformly for |y|  1

2
,

where we also used that (��)sFs = 0 away from the origin, see Lemma 2.1. Actually, with the
same estimates we get

Z �

��
|v|2dx  2(� � r)kfk2L2

(R)

Z �

��
sup

(x,y)2[��,�]2
|(��x)

sg(x, y)|2 dx

 C�2kfk2L2
(R)

= O(q�3).

Therefore, using Hölder’s inequality and that supp(f) ⇢ [��, �] we get

k(��)suk2L2
(R)

= kfk2L2 + kvk2L2 + 2

Z �

��
fvdx =

1

2q
+O(q�2), as q !1. (54)

We now estimate u. For 0 < x < r, with the change of variable ỹ =
q

y
x we have

u(x) =
1

2q
p
2⇡

Z �

r

 

1
p

(y � x)y
+

1
p

(y + x)y

!

dy

=
1

q
p
2⇡

Z

q
�
x

p
r
x

 

1
p

ỹ2 � 1
+

1
p

ỹ2 + 1

!

dỹ

=
1

q
p
2⇡

0

@log(
p

ỹ2 � 1 + ỹ)

�

�

�

�

q
�
x

p
r
x

+ log(
p

ỹ2 + 1 + ỹ)

�

�

�

�

q
�
x

p
r
x

1

A

=
1p
2⇡

+O(q�1).
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Similarly for r < x < � we write

u(x)  1

q
p
2⇡

"

Z x

r

dy
p

(x� y)y
+

Z �

x

dy
p

(x� y)y

#

=
2

q
p
2⇡

"

Z

1

p
r
x

dỹ
p

1� ỹ2
+ log(

p

ỹ2 � 1 + ỹ)
�

�

�

q
�
x

1

#

=
1

q
p
2⇡



log

✓

�

x

◆

+O(1)

�

,

since
R

1

0

dỹp
1�ỹ2

<1.

When � < x < 1 similar to the previous computation, and recalling that 0    1,

u(x)  1

q
p
2⇡

Z �

r

dy
p

(x� y)y
=

2

q
p
2⇡

Z

q
�
x

p
r
x

dỹ
p

1� ỹ2
= O(q�1).

Thus
8

>

<

>

:

u(x) = 1p
2⇡

+O(q�1) for 0 < x < r

u(x)  2

q
p
2⇡

log
�

�
x

�

+O(q�1) for r < x < �

u(x) = O(q�1) for � < x < 1.

(55)

Of course the same bounds hold for x < 0 since u is even. We now want to estimate kuk2L2
(R)

.
We have

Z r

0

u2dx = r

✓

1

2⇡
+O(q�1)

◆

= O(q�2).

For x 2 [r, �] we have from (55)

u(x)2  C

q2

✓

log2
✓

�

x

◆

+ log

✓

�

x

◆

+ 1

◆

 2C

q2

✓

log2
✓

�

x

◆

+ 1

◆

.

Then, since

Z �

r
log2

✓

�

x

◆

dx = x

✓

log2
✓

�

x

◆

+ 2 log

✓

�

x

◆

+ 2

◆

�

�

�

�

�

r

 2� = O(q�1),

we bound
Z �

r
u2dx = O(q�3).

Finally, still using (55),
Z

1

�
u2dx = O(q�2).

Also considering (54), we conclude

kuk2L2
(R)

= 2kuk2L2
([0,1]) = O(q�2), kuk2

H
1
2 ,2

(R)

=
1

2q
+O(q�2). (56)
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Setting w = wq := ukuk�1

H
1
2 ,2

(R)

, and using (55) and (56), we conclude

Z

R
|w|a2

⇣

e⇡w
2 � 1

⌘

dx �
Z r

�r

✓

q +O(1)

⇡

◆

a
2 ⇣

eq+O(1) � 1
⌘

dx

� Crq
a
2 eq = Cq

a
2�1 !1,

as q !1 for any a > 2. ⇤

A Some useful results

We define

W s,p(R) :=

⇢

u 2 Lp(R) : [u]pW s,p
(R)

:=

Z

R

Z

R

|u(x)� u(y)|p
|x� y|1+sp

dxdy <1
�

. (57)

Proposition A.1 For s 2 (0, 1) we have, [u]W 2,s
(R)

< 1 if and only if (��)
s
2u 2 L2(R), and

in this case
[u]W s,2

(R)

= Csk(��)
s
2ukL2

(R)

,

where [u]W 2,s
(R)

is as in (57) and Cs depends only on s. In particular Hs,2(R) = W s,2(R).

Proof. See e.g. Proposition 4.4 in [11]. ⇤

Define the bilinear form

Bs(u, v) =

Z

R

Z

R

(u(x)� u(y))(v(x)� v(y))

|x� y|1+2s
dxdy, for u, v 2 Hs,2(R),

where the double integral is well defined thanks to Hölder’s inequality and Proposition A.1.
The following simple and well-known existence result proves useful. A proof can be found

(in a more general setting) in [13].

Theorem A.2 Given s 2 (0, 1), f 2 L2(I) and g : R ! R such that

Z

I

Z

R

(g(x)� g(y))2

|x� y|1+2s
dxdy <1, (58)

there exists a unique function u 2 H̃s,2(I) + g solving the problem

Bs(u, v) =

Z

R
fvdx for every v 2 H̃s,2(I). (59)

Moreover such u satisfies (��)su = Cs
2

f in I in the sense of distributions, i.e.

Z

R
u(��)s'dx =

Cs

2

Z

R
f'dx for every ' 2 C1

c (I), (60)

where Cs is the constant in Proposition A.7.

The following version of the maximum principle is a special case of Theorem 4.1 in [13].
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Proposition A.3 Let u 2 H̃s,2(I)+g solve (59) for some f 2 L2(I) with f � 0 and g satisfying
(58) and g � 0 in Ic. Then u � 0.

Proof. From Proposition A.1 it easily follows v := min{u, 0} 2 H̃s,2(I). Then according to (59)
we have

0 � Bs(u, v) =

Z

R

Z

R

(u+(x) + v(x)� u+(y)� v(y))(v(x)� v(y))

|x� y|1+2s
dxdy

=

Z

R

Z

R

(v(x)� v(y))2

|x� y|1+2s
dxdy,

where we used that u+v = 0. It follows at once that v ⌘ 0, hence u � 0. ⇤

Proposition A.4 Let u 2 H̃s,2(I) be as in Theorem A.2 (with g = 0), where we further assume
f 2 L1(I). Then

|u(x)|  CkfkL1
(I)(dist(x, @I))

s

for every x 2 I. In particular u is bounded in I and continuous at @I.

Proof. This proof is inspired from [27], where a much stronger result is proven, i.e. u/(dist(·, @I))s 2
C↵(Ī) for some ↵ > 0.

To prove the proposition we assume as usual that I = (�1, 1) and recall that

w(x) :=

⇢

(1� |x|2)s for x 2 (�1, 1)
0 for |x| � 1

belongs to H̃s,2(I) and solves (��)sw = �s for a positive constant �s, in the sense of Theorem
A.2, i.e. (59) holds with u = w and f ⌘ �s (see e.g. [14]). Then

�(��)sw

�s
 (��)su

kfkL1
(I)
 (��)sw

�s

and Proposition A.3 gives at once

�kfkL1
(I)

�s
w  u  kfkL1

(I)

�s
w in I.

We conclude noticing that 0  w(x)  2s(dist(x, @I))s. ⇤
The following density result is known for an arbitrary domain in Rn. On the other hand,

its proof is quite complex in such a generality, hence we provide a short elementary proof which
fits the case of an interval.

Lemma A.5 For s 2 (0, 1) and p 2 [1,1) the sets C1
c (I) (I b R is a bounded interval) is

dense in H̃s,p(I).

Proof. Without loss of generality we consider I = (�1, 1). Given u 2 H̃s,p(I) and � > 1, set
u�(x) := u(�x). We claim that u� ! u in H̃s,p(I) as �! 1. Indeed

ku� � ukpHs,p
(R)

= ku� u�kpLp
(R)

+ k�sf� � fkpLp
(R)

,
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where f = (��)
s
2u and f�(x) := f(�x). Since f 2 Lp(R) it follows that k�sf� � fkLp

(R)

! 0
as � ! 1, since this is obviously true for f 2 C0(R) with compact support, and for a general
f 2 Lp(R) it can be proven by approximation in the following standard way. Given " > 0 choose
f" 2 C0(R) with compact support and kf" � fkLp

(R)

 ". Then by the Minkowski inequality

k�sf� � fkLp
(R)

 k�sf� � �sf",�kLp
(R)

+ k�sf",� � f"kLp
(R)

+ kf" � fkLp
(R)

 "�s� 1
p + k�sf",� � f"kLp

(R)

+ ",

and it su�ces to let �! 1 and "! 0. Similarly ku� u�kpLp
(R)

! 0 as �! 1.

Now given � > 0 fix � > 1 such that ku��ukHs,p
(R)

< � and let ⇢ be a mollifying kernel, i.e.
a smooth non-negative function supported in I with

R

I ⇢dx = 1. Also set ⇢"(x) := "�1⇢("�1x).
Then noticing that u� is supported in [���1,��1] b I, for " > 0 su�ciently small we have that
⇢" ⇤ u� 2 C1

c (I). To conclude the proof notice that

⇢" ⇤ u� ! u� in H̃s,p(I) as "! 0,

since
(��)

s
2 (⇢" ⇤ u�) = ⇢" ⇤ (��)

s
2u� ! (��)

s
2u� in Lp(R) as "! 0,

and use the Minkowski inequality to conclude that ⇢" ⇤ u� ! u in H̃s,p(I) as "! 0 and � # 1.
⇤

Proposition A.6 Let I b R be a bounded interval and s 2 (0, 1). Let u 2 Ls(R) satisfy
(��)su � 0 in I (i.e. hu, (��)s'i � 0 for every ' 2 C1

c (I) with ' � 0), u � 0 in Ic and

lim inf
x!@I

u(x) � 0. (61)

Then u � 0 in I. More precisely, either u > 0 in I, or u ⌘ 0 in R.

Proof. This is a special case of Proposition 2.17 in [29]. ⇤

Remark 6 The statement of Proposition 2.17 in [29] is slightly di↵erent, since it assumes u to
be lower-semicontinuous in Ī. On the other hand, lower semicontinuity inside I already follows
from [29, Prop. 2.15]. What really matters is condition (61). That an assumption of this kind
(possibly weaker) is needed follows for instance from the example of Lemma 3.2.4 in [1].

The following way of computing the fractional Laplacian of a su�ciently regular function is
often used.

Proposition A.7 For an interval I ⇢ R, let s 2 (0, 1
2

) and u 2 Ls(R) \ C0,↵(I) for some ↵ 2
(2s, 1], or s 2 [1

2

, 1) and u 2 Ls(R)\C1,↵(I) for some ↵ 2 (2s�1, 1] . Then ((��)su)|I 2 C0(I)
and

(��)su(x) = CsP.V.

Z

R

u(x)� u(y)

|x� y|1+2s
dy := Cs lim

"!0

Z

R\[x�",x+"]

u(x)� u(y)

|x� y|1+2s
dy

for every x 2 I. This means that

h(��)su,'i = Cs

Z

R
'(x)P.V.

Z

R

u(x)� u(y)

|x� y|1+2s
dy dx, for every ' 2 C1

c (I).
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Proof. See e.g. [29, Prop. 2.4] ⇤

Lemma A.8 Let '
1

2 H = H̃
1
2 ,2(I) be an eigenfunction corresponding to the first eigenvalue

�
1

(I) of (��)
1
2 on I. Then '

1

does not change sign and the corresping eigenspace has dimension
1.

Proof. Recall that the first eigenvalue �
1

(I) can be characterised by minimizing the following
functional

F (u) =
kuk2H
R

I u
2dx

,

that is,
�
1

(I) = min
u2H\{0}

F (u).

On the other hand using Proposition A.1 we get that for any u 2 H

kuk2H =

Z

R

Z

R

(u(x)� u(y))2

(x� y)2
dxdy �

Z

R

Z

R

(|u(x)|� |u(y)|)2
(x� y)2

dxdy = k|u|k2H , (62)

hence, F (|u|)  F (u), and F (u) = F (|u|) if and only if u is non-negative or non-positive.
Therefore if F ('

1

) = �
1

, then '
1

does not change sign. Any other eigenfunction corresponding
to �

1

must also have fixed sign, hence it cannot be orthogonal to '
1

, therefore it is a multiple
of '

1

. ⇤

Lemma A.9 Consider a sequence (fk) ⇢ L1(I) with fk ! f a.e. and with

Z

{fk>L}
fkdx = o(1), (63)

with o(1)! 0 as L!1 uniformly with respect to k. Then fk ! f in L1(I).

Proof. From the dominated convergence theorem

min{fk, L}! min{f, L} in L1(I),

and the convergence of fk to f in L1 follows at once from (63) and the triangle inequality. ⇤
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