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on I'. The measures with finite energy are thus elements from the Sobolev space
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1 Introduction

The classical Gauss problem of minimizing the Coulomb energy to solve the prob-
lem of Thomson and its generalization to Riesz potentials together with the dis-
cretization is the basic problem of many applications (in [3] are listed coding theory,
cubature formulas, tight frames and packing problems). In the works [2], [3], [6],
[10], the discretization is obtained by approximating the minimizing charges by
nonnegative linear combinations of Dirac measures on the given manifold.

If the number of Dirac points tends to infinity, then the minimizing densities
approach distributions in the form of Sobolev space elements. Therefore, in [8],
[9], [17], the minimizing measures are considered as distributions in Hilbert spaces
of finite Riesz energy. This continuous setting is simpler and more efficient from
the numerical point compared to the discrete approach in [2], [3], [6], [10].

For potentials with Riesz kernel [x —y|“™", where 1 < o < n, and Borel mea-
sures supported on a given (n — 1)-dimensional manifold I" immersed into R", a
surface potential is generated, which on I'" defines a boundary integral operator
with weakly singular kernel. This boundary integral operator is a pseudodiffer-
ential operator of negative order § = 1 — « if I' € C°°. The energy space of this
pseudodifferential operator on I' is thus the Sobolev space Hﬁ/Q(F) of distribu-
tions and the minimizing measure of finite energy is an element of this Sobolev
space. Hence, the determination of the minimizer is reduced to an optimization
problem with a quadratic functional which is defined in terms of the single layer
Riesz potential on I'. The strong ellipticity of the corresponding pseudodifferential
operator in R™ and its trace on I" then provides the coerciveness of the associated
quadratic functional. For o = 2, which corresponds to the Newtonian kernel, the
Riesz energy of the single layer potential is just its Dirichlet integral over R™ \ I'.

In this paper, however, we consider the Riesz kernels with a € (—1,1). For a =
0, in classical potential theory, the energy of the harmonic double layer potential in
R™\I" now equals the Riesz energy if we define the latter as to be Hadamard’s partie
finie integral of the hypersingular potential — which is the natural distributional
regularization (see Section 2 where I' is a (n — 1)-dimensional planar bounded
domain in R").

Let I' = g It where I, i € I, are finitely many compact, connected (n — 1)-
dimensional C'*°-manifolds immersed into R™. In Section 3, we then consider the
Riesz potential as a pseudodifferential operator just on I' since we cannot use
its extension to R™ (for o # 0, the transmission conditions [12, Theorem 8.3.11]
are not satisfied). We call the bilinear form with the strongly singular partie finie
integral of the Riesz kernel the energy of the Riesz potential. The partie finie inte-
gral operator with the hypersingular Riesz kernel defines now a strongly elliptic
pseudodifferential operator Vg of positive order = 1—«a on I'.

In contrast to the analysis of weakly singular Riesz kernels provided earlier
by the authors in [8], [9], in the case under consideration, the trace theorem in
HB2(r) = VﬁHﬁ/Q(F) is not valid anymore, because of the negativity of the
order —3/2, cf. [1]. Nevertheless, we have succeeded in overcoming this difficulty,
and we have shown that all the Borel measures on I with finite Riesz energy whose
restriction on any I takes sign either +1 or —1 form a certain cone in the Sobolev
space Hﬁ/z(l“), 0 < B < 2. This is our main result in Section 3, Theorems 3.3
and 3.4. In this framework, the corresponding Gauss variational problem admits a
unique solution which belongs to H?/2(I"), which is a compact subspace of La(I").
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Fig. 1 Illustration of the geometrical setting.

These results have again a potential theoretic meaning in the particular situation
«a = 0 in relation to the harmonic double layer potential as explained in Section 5.

In the papers (3], [4], [6], [10], [11], for the approximation of the minimal
energy distribution with nonnegative linear combinations of Dirac distributions,
the Riesz energy with hypersingular Riesz potentials is formulated by excluding
the set x = y. In our paper, we analyze also this approach by cutting out the
set |[x —y| < ¢ of I' x I where § > 0. We first figure out the idea in Section 6
by studying a perturbed Riesz energy problem. Then, in Section 7, we perform
the computations in detail for the punched Riesz energy problem and give an
asymptotic expansion of the solution in the corresponding family of finite energy
spaces for § — 0. In particular cases (see Corollary 7.7 for details), the minimizers
tend to a constant distribution on I while the corresponding minimal energies
tend to infinity.

2 Motivation. The energy of the Laplacian’s double layer potential

We shall motivate our approach by an example from potential theory where a = 0,
i.e. 8 = 1. To this end, let I' ¢ R ! be a planar bounded domain in R™ and
X = (x'7 xn) € R™ with x € I' when z, = 0, see Figure 1 for an illustration.

The double layer potential of the Laplacian with given dipole charge density
@(y') is given by

Up(x) i= = (W) == [ (/) 5 ((',0).) &y
Yn=0
= —cn / %s@(ﬂdy'
y'er ’

for x € R" with z,, # 0 and ¢, = ﬁ = (2(n - 1)#)_1. The fundamental solution
for the Laplacian is given by

E(x,y) = ealx —y[*7".
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The vector en, = (0,...,1)7 is the n-th basis vector of R™ and the unit normal
vector on I'. If ¢ is continuous at x’, then there holds the jump relation

RY 5 x — (x/,0) :

(x—(,0)) -en o(y)dy' = x%w(x/) -0

Up(x) = ﬂF%w(x/) - RGO

y'er{x"}
since for x € I' and y € I'\ {x} the scalar product (x —y)-e, = 0 and, hence, the

integral vanishes. Consequently, the harmonic potential Uy (x) solves the trans-
mission problem in R™\ I’

(U := Up(x', 0) = Up(x', +0) = (x")

where ¢ is a given element of H'/2(T"), the closure of C§°(I') in H'/2(R"™1).
The energy of the harmonic field U, is given by its Dirichlet integral, and
Green’s theorem yields

|VU¢(X)\2dX

RO\

. / Uw(x',—l—())(%Uw(x',—f—O))dx'—i— / U¢(x',70)<%U¢(x',70))dx/
R =1 R =1

= [ 506 (G (WK -0)) ax' ~ [ Sot) (G (Wi +0)) dx
r

r

:70"./{590(’(/)1( / & S nen=y) on (w(y')ﬂO(X'))dy,)
r

Ozn |x" — xpen —y'|™

1

1 ne O (X,*$nen*yl)'en / /
* 2<p(x Oxn |x/ — xnen —y'|” dy dx
R'ﬂfl

+ Cn{%w(X')i ( / G mnen =) en (o) - () dy’)

Oxn 2" + znen — y'|"

Rn—

Rn—1

1 ne 0 (x' +anen—y')-en . /
+ 2‘P(X) O ( X' + znen — y'|" dy dx’.

Rn—1

We can interchange differentiation and integration in this expression by means of
Hadamard’s finite part integral. Namely, due to

(x/sznen —y/) “en dy' = :I:lw
. |xl F Tnen — y’I" Y 27"
Rn—l
with the constant w, = =, it holds

Cn ’

[ 90 dx = (0= 2)en [ o) [[I¥ =517 (06') = 0lx) dy' ax

RO\

r r
= (n=2) [ @) (De)(x)
r
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where

0 0 _
Dy(x') = - p.cn / (5o 7ol —¥P ")y a’
r

is Hadamard’s finite part integral with x = (x’,0), y = (y’,0) and with the hyper-
singular kernel function kp(x,y) = (n — 2)|x' — y'| "cn, that is

[ 0 ax = 0= 2)en [ pf. [ =y et)el ) ax @y @)
I

RA\T T

(For the definition of Hadamard’s partie finie integral operators, see [7] and [12,
Chapter 3.2].)

Hence, the finite part integral on the right of (2.1) which has the Riesz kernel
|x" —y'|7™ for x',y’ € ' ¢ R™"™! defines the energy of the harmonic double layer
potential in R™ \ I" given by the Dirichlet integral on the left of (2.1). Since the
Riesz kernel is a homogeneous function of degree —n, it defines on I' ¢ R"~! a
strongly elliptic pseudodifferential operator D of order 1 (see [12, Section 7.1.2]).

3 Strongly singular Riesz energy on a manifold

In all that follows, without stated otherwise, we fix n > 2 and —1 < a < 1, and
write g :=1— a.

In R", consider a strongly singular Riesz kernel |x — y|*~" and a manifold
I := Uyes I't, where I are finitely many compact, connected, mutually dis-
joint, boundaryless, (n—1)-dimensional, oriented C*°-manifolds, immersed into R".
Then, the surface measure ds on I' is well defined.

In what follows, (3, ¢) 12(;) will stand for the extension of the L2-scalar prod-
uct to dualities as ¢ € H P/2(I") and ¢ € H?/?(I') and also to the applications
of distributions 4 on I" operating on ¢ € C>(I").

We call the strongly singular partie finie integral of the Riesz kernel

(Vopr @) Loy = / pf. / I — Y " ()e(y) dsx dsy = Falp)  (3.1)
I I

with respect to |x —y| > g — 0, g9 > 0, operating on ¢ € C*°(I'), the energy of
the Riesz potential

Up(x) = pi. / x—yI*"o(y) dsy, x €R",
yerl

generated by the surface charge ¢ (see e.g. [12]). For ¢ € C*°(I"), the Hadamard
partie finie integral operator

Vae(x) = pi. / Ix —y|* "e(y) dsy, x€TI
yel
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which underlies (3.1), is for 0 < a < 1 given by

Vieb) = b [ =yl o) - g0 dsy + hx)e(x),
yel'A|x—y|>0
where
h(x) = p.f. lim / Ix —y|A~(»=1 dsy, (3.2)
6—0

YEINO<I<|x—y]|

and for —1 < a < 0 by

Vap(x) = p.v. / Ix =y o(y) — o(x) — (v — %) - Veo(x)} dsy
YEIA|x—y|>0
+ h(x)ep(x) + h(x) - Ve (x),

where
h(x) = p.f. lim Ix —y| 7D (y — x) dsy. (3.3)
5—0
YEINO<I<|x—y]|

The abbrevation p.v. stands for the Calderon—Mikhlin principal value integral (see
[16]). (See Appendix A for the explicit computation of the partie finie integrals
h(x) and h(x).)

Theorem 3.1 (see [12, Chapter 8]) The partie finie integral operator Vg is a
strongly elliptic pseudodifferential operator of order B = 1 — a € (0,2) on I'. The
principal symbol of this operator is given by the equivalence class associated with the
homogeneous function

re=%

r=s=)

a(€) = C(n—1,p)|¢|°, where C(n— 1,8) = 2 Pr" 7 and £ € R"L. (3.4)

Vp defines the linear and continuous mapping Vg = H*(I') — H*=B(T) for every
s € R. In particular, for s = 8/2, Vz maps HB/2(F) into HﬁB/Q(F) and there exist
0 < co <ca and c1 > 0 such that the inequalities

collelzrarzry = cillelizcry < (Vaws @) Loy < c2llelfrorzr (3:5)
are satisfied for any ¢ € Hﬁ/Q(I‘).

Proof For justifying the inequalities (3.5), recall that for each of the components
of the C*°-manifolds Iy, £ € I, immersed into R", we may associate a family of
finite-dimensional atlases 2, (see [13]). Each atlas 2, is a family of local charts
(Ogr,Upr, Xpy), where r ranges through a finite set Ry,. The open sets Oy C I
define an open covering of I;, while X, is a C°°-diffeomorphism of Oy, onto
Up, C R™ L. Let {By}rer, be a C*°-partition of unity of I'; which is subordinate
to the atlas 2,. In addition to the partition of unity, let {ys },cr, be a second
system of functions vy, € C5°(Oy,.) with the properties

Yer(x) = 1 for all x € supp B¢, and 0 < 7y,
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Thus, it holds that

Yer (%) Ber (%) = Ber(x) and B, (x)7¢r(x) = Ber(x) for all x € Iy

With respect to the atlas 2, let Xy, denote the corresponding pushforwards and
Xp,. the pullbacks. Then Xy, Be € C5° (Upy).

Without loss of generality, the local parametric representations can always be
chosen in such a way that at one point xp, € Oy where Sg.(x7,) = 1 we have
X (x3,) = 0 and, moreover, at this point the tangent bundle

ox

ox B 8/\’2;1 (x)
ox/

= = , where x" := X, (x),

x'=0

x'=0

forms a positively oriented system of n — 1 mutually orthogonal unit vectors. This
implies that the Riemannian tensor of Iy in the local coordinates at the point xg,
is the unity matrix. Hence, the surface measure satisfies

dsg(x) = Jgp(x") dx’ where X’ € Uy,., and Jp,.(0) = 1.
Given an atlas 2, on Iy, define

dp := min diam Uy,..
rERy

Thus, one can choose dp > 0 so that for any given 0 < § < dp there exists a finite-
dimensional atlas Ql‘g satisfying all the above formulated properties and d, = 4.
Hence, we have a whole family of finite atlases Ql‘g with 0 < 0 < §p which will be
under consideration. (We then shall omit the index ¢ in the notation.)

Note that the Jacobians Jy, depend on the geometric properties of I'; only, and
Jg together with their derivatives are uniformly continuous relative to § € (0, dp).

Corresponding to the partition of unity, the pseudodifferential operator Vg on I"
can be decomposed as

Vﬁ = Z Z BZTVﬁ'YZT + 71 = Z Z ’Ygrvﬁﬁé'r + Za

lel reRy lel reRy
and
VB = Z Z ﬁZTXZ"/ErXZT*'WT + 721 = Z Z vaX[;'W’I’XZT*ﬁgT + Za. (36)
el reRy (el reRy

Herein, Z;,Z5 are smoothing operators of order —oo in view of |x — y|*™" €
C®(I'p x I,) for p # k and supp (1 — v4,.) N supp (Ber) = 0 if x,y € I (see also
[12, Chapter 8]). Moreover,

Virp(x') = p-f-/u |, () =2, )| ey ) e (Y) Ay, @ € C5°(Uyy) (3.7)
or

are the localized operators in the parametric domains Up,., defined by the opera-
tor Vg.

The inequalities (3.5) now follow locally on each chart of the atlas 2, for the
localized operators Vp,. in local coordinates in Uy,.. With Martensen’s surface polar
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coordinates ((B.5), (B.9) in Appendix B), the kernel of V,, admits a pseudohomo-
geneous asymptotic expansion of the form

k(x',0) = Qﬁ(”l){l + ) ke (X 9)},

j=2
where
kzr,j(x',tg) = t]k‘gmﬂ(x', o) fort >0, p>0

since |x’ — x{|? satisfies the expansion (B9). Correspondingly, the symbol a(x’, ¢')
of Vp, has the asymptotic expansion

a(x,€) = s’ﬂ{l +> (x',g’>},
J>2

Then, Fourier transform and Parseval’s theorem yield

where aoj(x',tg') = t_ja(lj(x',é') with ¢t >0, ¢ # 0.

Vere, @) Lae,) = / €'1°12(e)* de’ + (A2, @) Lo Uppy T (Ber®: ©) Lohy,)

Rn—1
(3-8)

where Af;z is a pseudodifferential operator of order g — 2:

(AP720)(x') = / Xy, (€)E)7 Y (K, €)p(¢) de
Rn—1 j>2

Here, the function ¥,, € C*°(R"1) is arbitrary but fixed such that 0 < ¥,,.(¢') <
1 and

1
@, (¢)=0for|¢| < 5 and @y,.(¢') =1 for |¢'| > 1.

The remainder operator Ry, ¢(x) = [ R (x,y)e(y) dsy is a smoothing operator
with the smooth kernel function R,,. € C°°(I" x I'). Hence, there exists a constant
cpr > 0 such that

(Vere, ©) Laey) < Cor / (1+1¢')°1p(€)* de’ = C”‘PH?{MZ(L{“)
R’nfl
which implies with some constant co > 0 that
(Ve ©) La(r) < c2llellfrarry: (3.9)
Vice versa, from
Vow @i 2 [ A +EVIBERIE ~de [ (416D 2RI ae
Rn—l Rn—l

after summation over ¢ € I, we obtain the Garding inequality

(V. @) La(r) = COH‘PH?—[ﬁ/Z(r) - ClH‘PH%Q(F)-
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The embedding H?/2(I") < La(I') is compact since 0 < 8 < 2. For 8 = 1 €
No the Tricomi condition needs to be satisfied for V3 being a pseudodifferential
operator and reads here as

6% dw(©) =0for |a'| = 1

ej=1

(see [12, Theorem 7.1.7]). In addition, we have a® | (x, £') = 0. So, V} is a classical
pseudodifferential operator on I" of order 3 € (0,2). O

Now, we introduce a set of so-called admissible measures or charges located on I'.
Recall that I = {J,c; I, where the finitely many I, are compact, nonintersecting,
boundaryless, connected, (n— 1)-dimensional, orientable C°°-manifolds, immersed
into R™. With each Iy we associate a prescribed sign oy € {—1,1} where ap = +1
for{ eI anday=—1for{ecI . Then I=1TUI and ITNI =0, I =0
is admitted. Let 9(I") denote the o-algebra of signed Borel measures v on I’
equipped with the topology of pointwise convergence on C(I'), the class of all
real-valued continuous functions on I'.

Next, consider the manifold I" being loaded by charges of the form

=Y oy (3.10)

lel

where, for every £ € I, i’ is a nonnegative Borel measure on I';. The convex cone
of all signed measures g of the form (3.10) will be denoted by 9T (I").

The following theorem deals with absolutely continuous X € 9+ (1), i.e. dX =
o ds, with densities o € Kﬁ/z(l“),

Kﬁ/Q(F) = {o- = Z apo’, where of € Hﬁ/z(Fg) and o > O}.
lel

For brevity, we shall often identify an absolutely continuous Borel measure X' €
o+ (1) with o, its density. Likewise, the cone of all X € Mt (I") with o € K£#/2(I")
will be denoted by K7 / 2(I), provided that this will not cause any misunder-
standing. Similar to as it has been done in (3.1), we define the Riesz energy of
X =0eKk2(I) by

Ea(X) = (Vgo,0)r,(r) :/ p.f. /\X*y\a*” dX(x)dX(y).
r r

Theorem 3.2 For any ¥ =0 € ICﬂ/Q(F), the Riesz energy is finite and satisfies the
inequalities

Cé)HO'”?{ﬁ/wF) < Ea(X) = (Vgo,0) L, < C/1H0'||i16/2<r>7 (3.11)

the constants ¢ and ¢} being strictly positive and independent of X. This means that
Vg is continuously invertible on ICWQ(F).
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Proof Write

K(r) == {0' = Z ago’, where of € C®(I) and ¢* >0 on Fg}.
el

Let ¥(0) be a C§°(R)-function with (0) = 1 for 0 < p < 6§, 0 < ¢(9) < 1 and

¥(0) = 0 for ¢ > 26 > 0. Having the atlas 2 at hand, we use the decomposition

(3.6) and the representation in local coordinates (3.7) to arrive at

(Vero)(x') = pf. / X'~y [Ty (1%~ y Do (y) er(y') dy’
]R‘/L—l
+ / ¥ =y P (1 = (X — 3 D) oe(v) Ten (') A,
[x'—y'|>§

where 1, and o4 are the pushforwards of 1) and o, respectively. Summation gives

(@ Vao) L,y =D > > /p-f-/ X —y' TPy (X~ y))

Li€lr€Ry qERip, R
o (y) Jor (y") dy o (x') Jig (x') dx’

+ // I~y P (1~ (x — y)) o (y) dsyor(x) dss.
Ix—y|>6

Since the localized operators Vj, are all pseudodifferential operators of order
B with positive definite principal symbol (3.4), hence strongly elliptic, one finds
with Fourier transform and Parseval’s theorem the estimate

DIDIDY / p.f. / =y Dy (% — )
licelreR,;qeR; Rn—1 Rn—1
2o () e (y) dy o (x) Jig (x') dx’

/.

1 _
2 cbllolarery = ' g=50" oy 2 8l G2y

with ¢/ > 0 since H%/?(I") < La(I") compactly and if § > 0 is chosen sufficiently
small. The remaining quadratic form

// b~y P (1~ g(x — 1)) o (y) dsyor(x) dsx

[x—y|>6

has a strictly positive C*°-kernel. Hence the left inequality in (3.11) is satisfied for
o € K®(I'), o # 0. Since K®(I') is dense in K%/2(I"), the left inequality in (3.11)
also holds for o € K?/2(I'), & # 0 by completion. The right inequality in (3.11)
was already shown in (3.9) for o in place of ¢. This completes the proof. O

We next proceed by defining the notion of the Riesz energy for arbitrary (not
necessarily absolutely continuous) measures X € 9™ (I"). Since Vg is a classical
pseudodifferential operator on I', it maps the distribution given by the Radon
measure X € T (I') to Vg X which is a distribution again, and this linear mapping
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is continuous in the weak topology of distributions (see Theorem II.1.5 in [19]).
Therefore, the action of the measure V33 on functions ¢ € C°°(I") is well defined
and

(VaZ, @) o) = (2, Va9) 11

since Vg is symmetric.
Let &5 (') consist of all X € MT(I') which the property

sup |(V52,(p)L2(p)| < 00.
llell yo/2 <t

Hence, for X € &£f(I'), we can identify VX with an associated element ¢ €
H_B/Q(F) satisfying 4 ds = dV3 X and

Ml g—s5/2(ry = sup |(VaZ. @) 1)
el ys/2m<1

This leads us to the following theorem.

Theorem 3.3 (see also [8, Theorem 3]) For any X € £5 (I') there exists a unique
element o € KP/?(I') such that dX = o ds and

S(p) = /wz = (0.0)1(r for all g € C(I). (3.12)
r

Moreover, 5 (I') = KB/2(I'), and the Riesz energy Eo(X) of any X € £5(I') is equiv-
alent to the H?/?(I')-norm of the corresponding o € KP/2(I') in the sense of (3.11).

Proof Choose an arbitrary X' € &1 (I'). As has been observed just above, V3% €

H~8/2(I') is a linear functional on C*°(I"), and it is bounded on H?/?(I") because
of

VX (o)l = |(VaZ, @) r.(r))| < Va2 g-sr2ry |l 82 (ry-

Since C°°(I') is dense in HA/2(I"), according to the Fischer-Riesz lemma on the
representation of bounded linear functionals there exists a unique oo € H”/ 2(n)
with i i

[viwdz= [¢az =20 = [acds = @00,

r r r
where ¢ := V. If ¢ traces C*°(I"), so does ¢; hence, (3.12) holds for o = o €
HP/2(I") by replacing ¢ by . Since X € M (I'), we actually have o € K?/3(I'),
and the inclusion &5 (I") € K#/2(I") follows.

Now, let & € KK?/2(I"). Then v = Vgo € H=/2(I) and

el z-6r2ry = Vsl z-5/2(ry

= sup |(Vao, @) Loy | < cllollgoszcry < oo
el yo/2 St

due to the duality H#/2(I") x H?/>(I') of (-, )L,(rs Vs being a pseudodifferential
operator on I'. Hence, KP/2(I") C €4(I"), which completes the proof. o
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Although we have shown that the distributions in ICB/Q(F) all have finite Riesz
energy Eq(p), it is not clear yet whether there are no other measures in 9" (I")
whose Riesz energy is finite. To elaborate on this problem, we employ an idea by
J. Deny [5]. A measure on I" can be considered as a distribution on I" and, hence,
can be Fourier transformed. In connection with the localization of Vg on one chart
of the atlas on I', we have relation (3.8) where the pseudodifferential operator V;,.
is defined via Fourier transform.

If 3 € 9T (1) is given, then it becomes via the pushforward Xy, the localized
distribution X, := Xy, B¢ X with compact support in Uy, € R (see e.g. [8,
Lemma 5]), which can be Fourier transformed to X, (¢') on R"~!. The measures
in MT(I) for which

[ 1€P1Bu e <o (313)
Rn—l
are precisely all those having finite Riesz energy (cf. (3.8); observe that the first

summand on the left-hand side of (3.8) is the dominant one). Let £5(I") consist of
all X € MT(I) satisfying (3.13).

Theorem 3.4 There holds
£5(r) = K°*(I).

Proof Let X = o € KA/2(I"). Then, by Theorem 3.2,
(Vﬂaaa)Lz(F) = Ea(o') < 0.

With (3.8) and Parseval’s identity, together with X, € Hﬁ/Q(Z/{gT), we obtain
further

[ €PBueira
R?’L—l
< |Ver Zer, Zer) 2 | + (A0 2 S0, Ben) 2| + |(Rer Zer, Zor) 2wy

2 /
< dlZellysrzw,,) + 1 Zellgs2e-s @, 1 Z e lmerm @,

2
< CHHZZT‘HH/'}/Q(L{ZT) <00

since 2 — 3/2 > B/2. Consequently, it holds & = X € £4(I") and thus K#/2(I") C
En().

Next, suppose X € £3(I); then by localization inequality (3.13) holds. Since
€711+ 1€1%) 7772 < 1 we find

Werurlly-orray = [ 1€P0+IER) A Z0 (€)1 a€

R'n,—l
< [ PIZaE)r e <o
-
With pullback to I" this implies that

Ve 2N gg-5/2(ry < o0

Application of Theorem 3.3 then gives X € &1 (I') = KP/2(I'), which in view of
the arbitrary choice of X € £4(I") finally yields K%/2(I") = £4(I). o
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Theorem 3.5 (see also [8, Theorem 4]) Let X € IMMT(I") with Eqa(X) < oco.
Then there exists a sequence of absolutely continuous measures 3}, € ICE/2(F), where
Ay =3 icr il ds with o}, € C(Iy) N HP/2(I) and @i (x) = 0 for x € T}, such
that { Xy }ren converges weakly and strongly in the Hilbert space Hﬁ/Q(F) to X, t.e.,

k—o0

() — (p) forallp € C(I') and lim || — X[ gss2(ry = 0.
k—o0

Proof For X we have X = o € K*/2(I") due to Theorem 3.3. Hence, since C*°(I") C
HP/2(I") densely, there exists a sequence o), = Yier oy, € C°°(I) with |lo —
kllgerzry < % for all k € N. We define 3, € ¥ (") by

d¥, =o,ds with o= Z aiﬁ};,
icl
where 7% (x) := max{0, o} (x)}. Then, 7 € C(I3) N HP2(I) since 7l is piecewise
smooth and
lo =Tkllgsrry =llo—or+ ok =Tklgsr
<llo = oklluszry +llox —okllmsrr)

= llo = okllgarzry + Y ekl goriry-
il

Herein, it holds of(x) = min{0,0%(x)} < 0 for all x € I}, particularly ¢% €
() N HA/2(I3). From o > 0, it immediately follows that

H22||H6/2(Fi) < HUi - Ulic”Hﬁ/?(Fi)
for all ¢ € I and therefore

_ 2k
lo =Bkl orzry < 2lo = okl morry < 73 0

as desired. a

4 The Gauss problem

The Gauss variational problem is the problem of minimizing the Riesz energy
for particularly signed Borel measures on the given (n — 1)-dimensional manifold
I' ¢ R™, in the presence of an external field. Let g be a given continuous, positive
function on I' and a = (a;);ecs a given vector with a; > 0, ¢ € I. Then, the set of
admissible charges for the Gauss problem is defined as

Ea(Tya,g) = {uGICBm(F) : /gidui:ai for allie[}
I

where we set g; := g|,. Note that the set £a(I',a,g) is convex and weakly and
strongly closed in K%/2(I).
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The Gauss minimal energy problem reads as follows (see [18] and [14]): To given

ac RK‘, f € C(I') and g € C(I") such that g > 0, find the Borel measure p, €
Ea(I'ya,g) which is the minimizer of

inf  Ge(p) = Ge(pg) =: Ge(Ia,g) (4.1)
pe€a(la,g)

where the Gauss functional is given by
Grlp) = Eol) =2 [ £l
r

Since G¢(p) is on Ea (I, a,g) strictly convex and weakly and strongly continuous,
the Gauss problem admits a unique solution p, € €a(1 a, g).

Based on Theorem 3.2, the minimization problem (4.1) can also be formulated
as a variational problem in H’B/Q(F). Namely, minimize the functional

Ve(@) == (@, Vao) Lo(ry) — 2(6,0)1,(r), 9 € HYA(D), (4.2)
over the affine cone
K(Ia,g) = {cp = e’ where ¢’ € HP2(Iy),
iel
¢ >0and /gigpids:ai >0forallie]} CICB/Q(F) CHB/Q(F)
I

where f € C(I'),g > 0, g € C(I') and a € RL{' are given. This minimization
problem will be called the dual Gauss problem.

Theorem 4.1 To the unique solution py € Ea(I'a,g) of the Gauss problem (4.1),
there corresponds a unique element ¢y € K(I',a,g) C Hﬁ/z(l“) with the properties

Bo(#) = (@0, ) Ly(r) for all o € C™(I)

and
V(o) = Ge(pg) = Ge(I 2, g).

The element g is the minimizer of the functional V¢ over K(I',a,g), i.e.,

Ve(po) = min  Vi(p) = V¢(I}a,g). (4.3)
pek(la,g)

Proof By Theorems 3.2 and 3.3, to any Borel measure p = Zie[o‘i“i €éa(la,g),

there corresponds a unique element oy = 3 ;; aiO'L € KP/2(I") satisfying both
(3.11) and (3.12). Moreover, since C°°(I") is dense in C(I"), from (3.12) we get

(UZL,gi)Lz(pi) = ui(gi) =a; forall i€ 1.

Hence, o, € K(I',a,g).
Applying (3.11), for these p and o, we also obtain

Ve(ou) = (Vaou,ou)r2ry — 2(0n D r2(ry = Ea(p) = 2p(f) = Ge(p).  (4.4)
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Thus, the correspondence p — o, between £q(I',a,g) and K(I', a, g) is one-to-one
and satisfies (4.4), which immediately implies

Ge(I'a,g) = V(I a,g).

If now pg is the (unique) solution of the Gauss problem (4.1), then ¢, the
image of pg under this correspondence, is the unique solution of the minimizing
problem (4.3), and vice versa. o

5 The particular case o = 0

In the following, we will focus on the particular situation o = 0 from the potential
theoretic point of view. The double layer energy Eo of a function ¢ € H/2(I),
8 =1-a=1, which is harmonic in 2 (see [12, Equation (1.2.17)]) is given by

Eo(p) := (Dp, @) 1,1
with the hypersingular integral operator D:
Dep(x) := p.f. / kp(x,y)e(y) dsy,

I\{x}

n(x) -n(y) (y —x)-n(y)(x-y) n(x)
-y " — y[ 2 } '

kp(x,y) = kp(y,x) =cn {

The Hadamard partie finie integral operator is given by the finite part with respect
to 0 < — 0 of

kD (X, y)(p(y) dSy
yelAx—y|>6
= [ meiem ekt [ ) dye)
yEIN|x—y|>6 yEIN|x—y|>6
if o € C°°(I"). The limit
lm [ ey {em) et bdsy = b [ ey {e() - e6 b dsy
0<6<|x—y]| yeI'\{x}
exists (as a Cauchy principal value integral), whereas, from jixfy\>5 kp(x,y) dsy,

we have to take the finite part

lim p.f. / kp(x,y) dsy =: h(x).
0—0
[x—y|>6

(For the evaluation of h(x), see (A.1).) Hence, we finally arrive at

Do) = pv. [ kpley){e(y) - 000} dsy +hx)e(x).
I\{x}



16 Helmut Harbrecht et al.

6 A perturbed Riesz minimal energy problem

Dragnev, Hardin and Saff approximate in e.g. [6] and [10] the Riesz minimal en-
ergy problem by a finite number of Dirac measures on I'. The associated discrete
Riesz potential is just defined by removing the self-interactions. In our continuous
setting, this corresponds to integrating for a small § > 0 over (I'x I') \{|x—y| < §},
i.e., by cutting out a set with |x—y| < § near the singularity. In order to explain the
computations in the next section, we shall focus first on the following perturbation
problem which, for 0 < e = ¢(§) — 0, is essentially the minimization problem we
will finally get.

Theorem 6.1 For e > 0 sufficiently small, consider the minimization problem:

1 .
(Vﬁa',cr)LQ(F) + g(a, O')LQ(F) —2(f,0),(r) — min (6.1)
subject to
/giai ds=4d', jel. (6.2)
I

Let the given data satisfy the additional conditions:
fe X)), ge H??(IMNand0<d’ €R, i€ 1. (6.3)
Then, the minimizer o € La(I") admits the asymptotic expansion
0f =00 +co1 + 2o satisfying loilln. <e¢, 5=0,1,2 (6.4)
with a constant ¢ > 0 independent of €, and where
He = {p € HP2(D) with [lelf. == (Ve ) La(r) + @7,y } € HY2(D).

In particular, with f, := flpk, it holds
_ ke _ k -1
oo = (o0 ker = (akgka (gkvgk)Lz(pk))kE[,

o1 = (agot)rer = (akgk(gkvgk)Z;(pk)(gkv Voo — fk)LQ(Fk))kGI —Vgoo + 1.

Proof The quadratic form in (6.1) induces for ¢ > 0 the e-dependent family of
Hilbert spaces He. Let us denote by #H. the dual space to He whose norm is then
defined by
(£, W)L,
Iflp, == sup el
weHA/2(IM\{0} Iwll.

satisfying the estimate

f,w
e < sup e

= [l 6.5
wems/2(rn\(oy WL 1€l ¢y (6.5)

since HB/2(I’) — Lo(I") densely and the unit ball in H. is contained in the ball
Iwllzyry < 1.
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The problem (6.1) can also be written as to minimize

1
Je(o) = 5\"0“\3{5 —e(f, o)L,

subject to (6.2). It possesses the Lagrangian
1, :
La(0) = 5loli. —(f0) Ly + > adi(@) = (9,05) ar),
jer
where ¢ = 3" aj07 and ajaj ds = X|p,. Thus, the necessary conditions at the
Jjel ’
minimum read as

dgrLy(0c) = ey Vaok + ayol — oy f, — aphgr = 0,

or
EVﬁO’? + 0_§ —efi = A\pgr and (gk,af)LQ(Fk) = ak, kel (66)

Here, A # 0 since the constraints (6.3) are always active as it follows from (6.5)
and will also be seen below.
For o and X, we insert the expansion (6.4) into (6.6) and obtain the system

aVﬁag + ok — efi + EQVBO'lf +eok 4 EBV/;UIS +e2ok = (/\IS +exk+ 62)\§)gk on I,
k k k k
(91> T0) Lo (1) + €(98, 0T) Lo (1) + €7 (9105) Ly(ry) = 0, k€ L.

Equating equal order terms in ¢ yields with A} > 0:

Order £°: We find
op = 9;X and (97,00) Lo(ry) = (9595 La(ry) 20 = @’ > 0.
Thus, it follows
. B . _ 3
No= (gjvgj)Lzl(Fj)a] and o = gkak(gkagk)L;(Fk) € H27(I}), (6.7)

The assumptions (6.3) imply the properties alg > 0. Moreover,

k k
mUO NHE < ClHUO HH%/S(I}) <ec

Order e': It holds
—fi ot =Ag - Vﬁag

and
(Vﬂag7gk)L2(Fk) = (frr9%) Loy + (U]fvgk)h(r,c) = Allc(gkagk)Lz(Fk)-

This yields with (Ulf,gk)Lz(Fk) =0:

A= (gk,gk)Z;(Fk)(VﬁUg = Fhs 9) Lo (1)
k 1 ’ . , (6.8)
ot = 91(9k 98) 1, 1) (VBTG — Jies 9k) L1y + Fie = V50§ € HP2(1y,).
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Hence,
k k
loTllz. < calloollgsrn,) < c

Order e2: We derive the identities
Vgol + (eVoh +05) = Nsr,

(6.9)
e(Vsob, 91) o) + (VBT gk) La(re) = A5 (9K 9) La (1)
since (O'é;,gk;)Lz([‘k) = 0. Therefore, we conclude
k —
(Vs + D) i1,05 = 919k 9) Lo (1) (6.10)

. {6(V50§7gk)L2(Fk) + (Vﬁalfygk)Lz(m} — Vgot € 7 P2(1y).

For every fixed ¢ > 0 sufficiently small, the mapping eVg +1 : H: — HL
defines an isomorphism due to (3.5) and the Lax—Milgram lemma. Therefore, (6.10)
amounts to the estimate

- & k
loala. < e|(9k 9k 98) Loy £6(Va05, 98) Loy + (VBT 9k) a(rio) }) per — Vﬂo'lmg.ys
< Cl€(Z(Vﬁ0§,gk)L2<m)) + Vol g-a/2(ry
kel

with a constant ¢’ depending on I" and g due to (6.5) but not on e. With g € H?(I")
and Vj being a pseudodifferential operator of order 8 on I', we further have

Z(Vﬁglgvgk)Lg(Fk)
kel

i
<co2llLor)llellas

implying that

1

o2l < "eloallr,ry + evllonllms.

11
<c

ellozlls. +evllosllygsacry.

Consequently, since the constants do not depend on ¢, there exists an g > 0 such
that
lo2llw. < cvilollgsp forall0 <& <eo

and ¢y independent of e. . .
With f € H?/2(r), g € H3%(I'), we find o9 € H??(I') and o1 € HY/?(TI).
Hence, (6.4) is justified which completes the proof of Theorem 6.1. a

With the help of the previous theorem, we immediately find the following
asymptotic behaviour of the minimizer o if € tends to zero.

Corollary 6.2 Under the assumptions in Theorem 6.1, we find that
lo? = oolla(ry < s =20

with some constant c, independent of oo and € > 0, where o% is the minimizer (6.4)

of (6.1) fore > 0.
Proof Since of = oo + o1 + 202, with (6.4) we find
oz = oollL,ry < llot —oollu. < (e +¢%) <2de

as proposed. a
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7 Riesz minimal energy without finite part reduction

We consider next the punched hypersingular Riesz potential which is defined by
integrating for a small § > 0 only over (I" x I') \ {|x — y| < §}, i.e., by cutting out
a set with |x — y| < § near the singularity. Thus, the corresponding Riesz energy
is defined as

35(n) = / / b — ¥ da() ® day) — 2 / £ () du(x).
I'xI'N0<6<|x—y| r

In view of Theorems 3.3, 3.5 and 4.1, the associated minimal Riesz energy problem
is then equivalent to minimizing the punched functional

Js(p) = // |x—y|7m75<p(y)(p(x) dsy dsx — 2(f, ) 1),
IxTA0<6<|x—y]|

where m =n —1and 8 =1—«a € (0,2), over the affine cone K(I',a,g). Then, the
measures satisfy du(x) = ¢(x) ds with ds being the surface measure on I.

o
For Js() one has the following monotonicity property.

o
Lemma 7.3 Let 0 < 01 < 02 and @} , 5, € K(I',a,g) be the minimizers of Js, and

o
Js,, respectively. Then, it holds that

Js,(95,) = Js,(w5,) = I5,(#3,)- (7.1)

Proof Since 61 < 2, the minimizer o} = Ejel angf with <p§f > 0 is an admissible

o
element for minimizing Js,. In particular, it holds

—m—

T5(¢) = // I~y (x)gh, () dsy dix — 2(, 0%, ) 10

[x=y|>d1
> // e = y17 P 0, (x)ep, () dsy dsx — 2(8,05,) () = T, (05, ).
[x—y[>02
We further find
T5,(05,) > it 35, () = 35, (0%,),
as proposed in (7.1). O

]
In order to see the relation between Js5(¢) and Ve(¢p) in (4.2), let us introduce
the compensating quadratic functional

Po(e) = | { P

x -y Po(y) dSy}¢(X) dsx. (7.2)
r

[x—y|<s
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Then, we obtain

Ps(p) + 35(p) = / { P, / e~y P e(y) dSy}<p<x) dsx — 2(f, @) ()
I I
= (Vap, @), — 2(£,0) 0,y = Velop),

and thus

Js(p) = Ve(p) = Ps(p) = (Vae,0) L,ry — 2(F,9) 1, () — Ps()-
For the corresponding functional Pg, there holds
Lemma 7.4 Let ¢ € K(I',a,g). Then
11 4 2 /
Ps(p) = —5—5 lellz,ry +Psle),
Cm

where P () satisfies
IP5 ()| < cllelFraram

with a constant ¢ independent of §. Moreover
gin}) Pj(¢) = 0 for every ¢ € Hﬂ/Q(F). (7.3)
—

Proof Using Martensen’s coordinates of I" in the vicinity of x € I" (see Theorem B.2
in Appendix B), for every ¢ € C°°(I"), we have

Ps(p) = / { p.f. / e(x+r0)r P71 dr Adw

r 0<r<sA|@|=1

+ / (x—l—r@)a(x,r)r_ﬂJrl dr/\dw}cp(x) dsx

0<r<sn|@|=1

= { p.f. / Tﬁﬁ*ldr/\dw} / lo(x)]? dsx
T

0<r<8A|@|=1

+ / { pf. {p(x+r0) — p(x) }r7ﬁ71 dr A dw}cp(x) dsx
r 0<r<sn|O]=1
+/ { p.f. cp(x+r@)a(x,r‘)r—6+1dr/\dw}<p(x) dsx.
r 0<r<on|®|=1
Since
—B—1 1 1 -3
p.f. r drANdw =—=—96

Cm
0<r<sA|@|=1

and Ps(¢) in (7.2) is symmetric, we find

Ps() = —(Bem) 07 Pl 7,y + Ps(9).
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Herein, P (¢p) is given by
2P} () = / [0(x) () — 9(x)) + 9(¥) (9(x) = p(¥)) Hx — |77~ dsy dsx
[x—y|<s

- // (2(y) — @(x))aly,r)r™ 7T dr A dwep(x) dsx
[x—y|<8

- / / _, (600 e)ale T A dwply) dsy
X—Yy|=

+ // o(y)a(,r)r P dr A dw o(x) dsx
[x—y|<o

+ [ etatyrr ar ndwiply) sy, (7.4)
[x—y|<é

We rewrite P’(¢) according to

Pie) =5 [[ 100 - ) Plx =yl dsy dox

[x—y|<é
+ // b(x.y) () p(y) dsy dsx + / / (%, y) ()2 dsy dsx,
[x—y|<é [x—y|<é

where b(x,y) and ¢(x,y) are kernels which posess pseudohomogeneous expansions
of degree —f8 — m + 1. This means that

Pho) =5 [[ lot) = e)lthx -yl " dsy dse

[x—y|<6
+ [Baie) e dsx+ (€110 dsx
T T

with classical pseudodifferential operators Bg_; and Cg_; of degree 3 —1 on I.
Since the constant charge 1 is a smooth function on I" and Bg_; : HP2(r) —
H=B/2H1(1) — H=P/2(I') for p € HP/2(I"), we finally arrive at

2 2 2
P5(0)| < cillelorery + c2llelL,ry < cllellsrer,
as proposed.!

In order to show (7.3), consider first ¢ € C°°(I") and use Taylor’s expansion
about x € I' in (7.4). Then, all the integrals on the right hand side are weakly

L For B = 1, Bg is a singular Mikhlin-Calderon integral operator with principal part
b(x,x)@(w) which satisfies the Mikhlin condition b(x, x) f|@|:1 O(w)dw = 0.
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singular tending to zero with § — 0. For ¢ € HB/2(F) approximate ¢ by ¢. €
C>°(I'), satistying [l — .| gs/2 () < e. Then

|P5(0) — Ph(ee)]

S% // {lo(x) = () = lp=(x) = 0 (y) P} x — y| 777" dsy dsx
[x—y|<o

+|(Bp—190, ) Lo (1) — Bp—10c, Pe) Lo(1) |
+ ”Cﬂ—ll”Lz(F)‘”‘PH%Z(F) = llecll, -

With
H‘P”fqﬁ/zw) - ||895H?{H/2(p) < 3“‘/’”}16/2(1“) lle — ‘P5||H6/2(r)

for [l a2y < 20l125/2 . one has

’Pg(‘P) - Pg(‘Ps)|

3
< =
S 2{ '
[x—y|<é

+ }(Bﬁfl(CP - <P5), ¢)L2(1")| + ‘(Bﬁfl‘Pev (‘P - @5))L2(p)|
+3I1Cs—1UlL.(n)llell sz rylle — eell ey

1
2

(%) — 0. (x)||e(y) — . (y)|Ix —y| 77" dsy de} el oz

<cdlellgsrmylle = ecllaszry < cellellgsrry-

Then
R /!
;%}Pa(soﬂ < cellellgare
for any € > 0 which implies (7.3). |
Since

Js(p) = // x — y| 77 " (y)e(x) dsy dsx — 2(F,¢) 121
0<6<|x—y]| (75)

1
= gll@“i(m + (Vap, @) Loy — 2(F,0) L,y — Ps(9),
where & = Bemd” — 0 for § — 0, Lemma 7.3 implies

Corollary 7.5 Let By < 2 and 69 > 0 be given. Then, there exist positive constants
¢, >0 such that the estimate

° 1 1
Js5(p) - 3 Pl Pllell?,ry < cllellFzarz(ry + 20El oy lellLory < ¢

m

holds uniformly for ¢ € KP/2(I"), 0 < § < 8o and 0 < B < Bo.
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The functional (7.5) coincides with the functional from (6.1) except for the
perturbation term P%(¢). Hence, we can proceed in complete analogy to the proof
of Theorem 6.1.

The Lagrangian to the punched energy functional reads as

o 1
Ly(o) := 5((5‘/50' + U)’U)Lz(l“) — EPZ;(G‘) —e(f, U)Lz([‘)
+ Zaﬁ\j (o - (gj,Uj)Lz(F]))7
Jjel

where the first order necessary optimality condition is given by

o -
O,xLy (o) = sangog + apol — aakPga§ —eapfr — apAgr = 0,
(gk7U§)L2(I‘,¢) =d" kel
Again, A # 0 since the constraints (6.3) are active. Here,

Piot = 0,.Pj(oe) = (of(y) = ok () —y| " P dsy

[x—y|<dé
k * k k
+Bg_10c +Bj_q0: + 2c5_1(x)0c (x)
with
cp—1(x) = / c(x,y) dsy
YEIA|x—y|<é

and Bg_; and Bz_l being bounded linear operators:

B0t = b, y)ok (y) dsy : H2P(D) — HZP (),
YELA|-—y|<é
1 _1
Biack= [ ey dsy (D) 5 D)
YELA|-—y|<é
Under the assumptions of Theorem 6.1 and as in the proof of Theorem 6.1,

we finally obtain the asymptotic expansion of the minimizer o as well as of the
Lagrangian multipliers:

ol =00 +eo1 + %0y satistying oy, <e¢ j=0,1,2,
and A = Ao + €A1 + 22 where
(9/@705)142(&.) =d" kel

It turns out that of and \§ are exactly the same as in (6.7). Moreover, we
have to replace Vj by (Vg —Pj) in the equations (6.8) and (6.9), (6.10). Note that
oo € H%ﬂ(F) — H%B(F) and, hence, P{of for § — 0 tends to zero in HP2(I)
due to (7.3). (If 0o,01 € CH(I") for 0 < B < 1 or oo, 01 € C*(I') for 1 < g < 2,
then PYol and PYot = O(6'7), respectively 0(5277).)

Collecting these results, we have for the punched energy Riesz minimum prob-
lem the following result:
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Theorem 7.6 Under the same assumptions as for Theorem 6.1, the minimization
problem

5[] xeoyTemetodiydsc— [H0 (o dse s min, (76)
r

0<s<|x—y]|
x,yel'

subject to (6.2), has for every 6 > 0 a unique solution o%. It admits for e = Bemd® > 0
the asymptotic expansion

o0l =00+ co1 + 2oy satisfying loillu. <e j=0,1,2 (7.7)

with a constant ¢ independent of €. In particular, with &% = (ool +apot +opo’)rer
there holds

k __ k —1
00 = gka (gkvgk)Lz(pk)y
ot = Agr — (Vs — P§)ob + fi,

where
A = (gr.91) " (Vs — P§)ot — fk;?gk;)L2([‘k)
and
= (I +e(Vs—P) " {Nsgp — (V5 — P)ok}
with

NS = (98, 98) Loy { (Vs — P} ot + (Vs — P}')ob + ob}.
Corollary 7.7 For § — 0 and € = ﬁcm(;ﬂ one finds
lo® = ooll,cry < ce =50

with some constant c, independent of oo and € > 0, where o% is the minimizer (7.6).
Moreover, it holds

o 1 1 _ 5—0
Js(o?) = (Vg(a'g),a-g)h(m Pi(o%) + B 75 Hl"s||L2(r) = . (7.8)

Proof Due to (7.7), we obtain
2 2
loz —oollLyr) < llot = otln. < cloilh. +eloalln. <cle+e).

The conditions (6.3) imply that of > 0 and, hence, lofl o,y > %||00||L2(p) >0
for all € with 0 < ¢ < &7 with some &7 > 0. Thus, there holds

° 11
T5(08) = (Va(02),0%) 1,y = PiloD) + 5 =0 PllotllL, )
1 _
2 35 o L5 ool ) - el
with uniformly bounded |\|a§\|\3{5 Hence, 6 — 0 implies (7.8). O

Remark 7.8 For the torus I't in R3, considered in [6] and [10], where £ € HP/?(I),
at > 0, g1 = 1, the minimizers o% of the punched minimization problem tend to the
constant charge of — o := ﬁal
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A Explicit calculation of particular partie finie integrals

In this appendix, we shall compute the partie finie integrals which define the functions h(x)
and h(x) from (3.2) and (3.3), respectively.

Lemma A.1 (i) Let -1 < a <1, I' € C® and ¢ € C>°(I"). Then, one has

: _ | B—(n=1) _
lim p.f. / x -yl {o(y) — ¢(x)} dsy

|x—y[>§>0

- pv. / Ix — y| P~ (D {(y) — p(x)} dsy,
I\ {x}

where p.v. denotes the Mikhlin—Calderon principal value integral.
(i) The function h(x) from (3.2) is given by

e = [ (e e D sy () e
yEIN|x—y|<c
— p.v. / p—B—(n—1) {,rn—Q dr dw — dSy} (A1)
YEIA|x—y|<c
+ / |xfy|7/37("71) dsy
YELA|x—y|>c
with any ¢ > 0 sufficiently small.
(#ii) For the function h(x) from (3.3), one obtains
h(x) = p.v. / {Ix -y~ =Dy — x) — =A==V (y _ )} dsy
yEINO<|x—y|<c
— p.v. / riﬁf(”fn{(y —x)r" 2 drdw — (y — x) dsy} (A.2)
yEIA|x—y|<c
[ ke - dsy

yeIAO<|x—y|>¢

with any ¢ > 0 sufficiently small.

Proof (i) Locally on I' one has near x € I":
P(y) = @(x) + (y = %) - Vep(x) + O(r?), r =[x —yl;
1
O(r,w) == —(y — x) forx,y € I';
™

O(r,w) = O(0,w) + O(r), / ©(0,w) dw =0,
|0]=1
dsy = r""2(1 + O(r?)) dr dw.

|©(0,w)| = 1 describes the (n — 2)-dimensional unit sphere S”~2 and w is its polar coordinate
with dw its (n — 2)-dimensional surface measure. Consequently, with an appropriate constant
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¢ > 0 depending on I', one has

Jim pif. [ ey ) - e} dsy
YEINO<S<|x—y|
o _y|—B—(n—1)
6grg+ p.f. / [x -yl

YEINNO<I< |x—y|<c
x {(y =) Veo(x) + {(y) = 0(x) — (v = ) - Vep()} } dsy
+ / Ix —y| 7P~ D {p(y) — p(x)} dsy

YEIA|x—y|>c

. -8 .
52%1+ p.f. / r—Pdr / Odw(O) - Ve(x)

0<6<r<c |@|=1

+ p.v.{ / {|x—y|’37<”71)(y—x)dsy—riﬂ*l(y—x)drdw}

0<|x—y|<c
b [ ey ) - et — (v 9V »dsy}}
0<|x~y|<e
+ / Ix —y| 7P~ DL p(y) — p(x)} dsy.

YEI'AN|x—y|>c

The first integral on the right is zero because of f\@\:l © dw = 0. Whereas, the integrand of

the remaining integral has at y = x a weak singularity |y—x\’ﬁJrl with —1 < —f+1 < 1 whose
principal value integral exists. This follows by using e.g. Martensen’s surface polar coordinates,
cf. Theorem B.1 in Appendix B.

(#i) For the function

h(x) = lim p.f. \xfyrﬁ*("fl) dsy,
5§—=0
0<6<|x—y|Ayel’

we find

h(x) = 51% p.f. {\x— y‘fﬁf(nfl) _ Tﬁﬁ*(nil)}dsy
0<6<|x—y|<ec

c

Jrginb p.f. /7‘7’87(”71)7"72dr / dw
—

0<6 |@|=1
C
— lim p.f. A== =2 4 dw — d
5% P / / T {’l” T dw Sy}
0<6§ |@]=1
N (T

c<|x—y|AyeT

If we choose Martensen’s surface polar coordinates on I', then the integrand of the first integral
on the right is identical zero due to |x — y| = 7. For the second integral on the right, we have
with [ig_; dw = c; ' that

c

1 B
li f. B-1 = 1 iy SRl G 1,8
odim P /r dr / dw lim p { BC (enB) e

5 |@|=1
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For the third integral, Theorem B.2 in Appendix B implies
2 drdw — dsy = O(") dr dw.

Hence, the integrand is of order O(r—#+1) and the integral exists as a principal value integral.
Collecting these properties proves (A.1).

(#ii) We proceed with respect to the vector-valued function

b = pfJim [ oy Oy - xdsy,
§—0

yENAO<S< |x—y|

in the same manner as for h(x). Inserting (y — x) = r@® for Martensen’s surface polar coordi-
nates, we have:

h(x) :611_12% p.f. / {‘x,y‘—ﬁ—(n—l)(y,x),r—ﬁ—(n—l)(y,x)}dsy

0<6<|x—y|<e

c
+ lim p.f. /r’ﬁf("fl)rnfldr / @ dw
5§—0

0<s |@]=1
— lim p.f. EC -
lim p / / r o{r drdw — dsy }
5 |@|=1
+ / Ix —y|7#7 Dy — x) dsy.

0<|x—y|Ay€El
Here, the first integral on the right vanishes if Martensen’s surface polar coordinates are used,
and the second one vanishes because of f|@\:1 O dw = 0. The third integral contains an inte-

grand of order O(r#12). Hence, the integrand is bounded and the integral exists. Consequently,
also (A.2) holds. o

B Martensen’s surface polar coordinates

For n = 3, surface polar coordinates have been introduced by Martensen in [15, Chapter 2.1].
A graphical illustration of these coordinates are found in Figure 2. We generalize this approach
to arbitrary spatial dimension n > 2.

Fig. 2 Illustration of Martensen’s surface polar coordinates.
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The given surface has locally the parametric representation I' : x = x(u) € R*, u =

(ul,...,un )y e R"~1. For x = x= x(a)7 define the family of (n — 2)-dimensional manifolds
(level sets) as {x € C, C I given by |x — )o(| = o > 0}, where |x — )%\ denotes the Euclidian
distance in R™ and p is the radial parameter. Let

A(w) = [x(u) - x],
then

A2(u) = (x(u) - x) - (x(u) - %),

where - denotes the Euclidian scalar product in R™. In the local neighborhood of I', define
x(u) = % + F(u) + G(u)n(u)

with G(u) = (x(u) — )Oc) -n(u), where n(u) denotes the (exterior) unit normal vector of I" at
x = x(u). Then, on I, the vector F(u) is tangential to I" at x(u),

F-n=0, F=(x(u)— )Oc) — G(u)n(u) and A2 =F.F+ G2 (B.1)

Forx € I" chosen, the surface polar coordinates then locally are given by the family of

closed surfaces Cy, i.e., the level sets of the function A(u), and curved radial rays on I" through x
which are perpendicular to C, for constant g. Let us denote such a radial ray curve by cg € I',
given by u = u(s), 0 < s, where the parametric representation x(u(s)) at s = 0 starts in

x = x(lol) in the direction of the unit vector e(@) = X|i(&)9i, X|; = %, i=1,...,n—1;
ik = X[ " X|ks 9j07OF = 1. Hence, for the curve cg : x = x(u(s)), we require that

xu(ﬁ)ddi:(ﬁ) = e(@).

(Note that for n = 3 one usually uses ©1 = cos( and Oz = sin(.)

Without restriction of generality, we assume in what follows that at % we have Jjk (101) =k
(the Kronecker tensor). Since the radial ray curves cg € I" are perpendicular to the level sets,
which implicitly are given by A = p = const, they satisfy the ordinary differential equations
for fixed @:

dco dx du? Grad A

9s  dslee U ds T |Grad A2

() (B.2)

where Grad A = g“AMx‘k is the surface gradient and g”"gjk = d¢. Since (B.1) implies on I’
that

F, 1 1
AA;; = (xf)oc) ~x); = F; =F-x; and Grad A = gekfx‘k. = 7Fkx‘k. = ZF,

A
we find
1 1, 5 G?
Grad A - Grad A = EF.F: E(A -G ):1_ﬁ
and the differential equations (B.2) take the form
dx du’ Grad A G? -1
= =x;i—=—""_(1- = . B.3
Blee P35~ [Grad A2 ( A2 (“)) (B-3)
After multiplication with x‘kg[k, we thus arrive at
du’ 1 G? e ¢ _ ek
= = m(1— F(u)) Fl(u), F* = g F xpp, Lk=1,...,n—1.  (B4)
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Theorem B.1 To every X € I there exists a neighborhood of)oc on I' where the system (B.4)
admits a unique solution

ul(s,0) = s0° + O(s?)
for s > 0 which is the solution of the Volterra integral equations

s

ul(s, @) :ae+s@£+ F(u(,0)) 1— G (u(0,©)) )1 -6t do. (B.5)
IECE TR

A(u(o, @)) A2(u(o, @))

The transformation u — (0, @) to surface polar coordinates aboutl X is given by u(p, O), i.e.,
s=p2>0.

Proof Since
F=(x—-x)—((x—x)-n)n,

the expansion about x = X(lol) gives on the one hand

ok ok ot 20k

o o du n 1o du du 42 du 2
X—X=Xp— S+ R X|pt— — +Xp—s ¢S
‘kds 2 L ds ds ‘deQ
k 4 j k 4 k
L1 an’ dn dﬁj+30 2 du SLowh.  (B6)
—<{x — = — X ple—s — +Xp—= ¢S sh). .
6 U I gy ds ds 118352 ds LR

On the other hand, with the Gaussian equations
X|j|lk = ka,xMJrijn, {=1,...,n—1

and the Weingarten relations

n; = —L{X|m,
we obtain
xjikle = A ke + il 78 — Lk Ly 3%y + {Ljkje + Ljj Lre}n
where Ffj are the Christoffel symbols of the second kind of I" at x, Ffj\k = %Ft[] (u), and

L§ = g[kij with Lj; the second fundamental form of I" at x (see e.g. [13, p. 90]). Here and
in what follows, we abbreviate

k
di”  du o

)O(|k = x‘k(lol), )O{‘k‘g = x‘k‘g(lol) and Fr E(U) etc.
We get thus from (B.6)
o 1 oMM o ° o o d210Lk
x—x=e(O@)s+ = (Fng‘m-i-Lkgn)@k@e-i-X‘k s?
2 ds?

1 ot om ot o ot o om o .
+ E{([Fjw + Djiloe = LigLe| X+ [Ljgje + TjpLme| R)076FO¢ (B.7)

k t
o o
24 o d3u

d

ot o
+ 3(PM§’<“ + Lkglol>92

By combining this expansion with

a1 a2
o o o 5 o
n(w) =nny e 5{%‘%9’“@] 0 }82 O,
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we arrive at

G = (x—x)-n(u)
om . 1o dZO]
—Xji - XjmO" Lj 6757 + S L0+ 6's? - ]ke’“ e

ds 2
1 om o om og omot . E
+ {6( jkle + ijL'm/> - (L]mpké + Ly + Ly ka) }9]9169[35 +0(s*)

1o om 10Z 1omo

1o 1 .
= 5Lk keI 2 4 { Likte = 3Lim ke = 5 Ljk = 515 T }@J@’“@fﬁ

1 a2 .
- ngka 1s 57+ 0(s%),
a2g”
F = { ([Fux‘m + Lkgn] okt + % i ) 4= Lklekeé }92 +0O(s%),
A=s+ O(sz).
Hence, we conclude

F G2\ -1
= (1 - p) =e(@) + O(s)

for any C2-curve x(u(s)) through x. Consequently, the kernel function {...} of the Volterra
operator in (B.5) is continuous and there exists a solution u(s, @) for fixed given @ in some

vicinity of % on I'. This solution is in C1([0,S]) for some S > 0 and is as many times contin-
uously differentiable for s > 0 as is the manifold I".

The equation (B.3) implies

dud dud o dud du?  dA  do
1:GradA-x‘j£ =4 A‘kx‘e X|J =g gng|kd— =i, T 4

Thus, it holds A = s = p and u(p, @), the solution of (B.5), is the desired transformation
(0,0) — u.

By bootstrapping, it follows from (B.4) that u(g, @) is higher order differentiable up to
o = 0. To see this, consider the Taylor expansions of the left and the right hand sides of the

equations (B.4) about 4 up to the order two:

Left hand side of (B.4): (by using (B.3))

14 e 14 j
du® da o o A2 o du di’
= X1t 2 + X5 do do
14 14 k e j
+1{0 et o ant e o A28 au’
%

2 3
o = —— = O
‘d do do + 3%y i do }Q +0(e)

d2a
_o ot ° 05
= %6 +{x|zdg2 +<F[]X|M+ng )9 e }
1(o d3al om ot om o om omo ‘ &
+§{X\e$ +([kaJer]Fm*LeJLk]Xpn [Fz]Lmk+Lz]\k] )@ 6’6

ol

om o ~d2u E
+ 3(Fu’o‘\m + erﬂol>9J@ }92 +0(0%).
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Right hand side of (B.4): (see (B.7))

ok

1 1 om d2
o %) = %6" + { (Fux‘m + Lkgn)@k@" + Xy }g
1(o dB’LC;,e om ot om oMo 0 ik
+ E{XMQ + ([ka + Lol — Leng ]x\m [Fz]Lmk +Lmk] )9 e’e
om o d &Z
o o . P
+ 3(FZ_7.x|m + ngn)@]@ }92 + 0%,
- ,
n(u)fﬁ+ﬁ.ﬁj +l ﬁ ﬁﬁ +ﬁ.ﬁj 2+O( 3)
= li'de @ %40 do i g2 @ @

om ol om omo omd2 o

o
-L
1 ok
= 54 (L31s%im + Ly Pepin + L Lyh)eiok +1, i a7 Xjm t0% + 0(0%)

1 10 1o d2u
-G =-L,0%0% — -L,— o'
° 3 ke 0 B ﬂd2

1o 1omo lo o™ 1o
+ { Lojik — *Fe]Lmk - ingL Ik — *gmzL Ftk}@]ekezgz +0(e)
1 1 o o .
- — (= _ L. &I 3
( G)n(u) (gG) (n L] e x‘mg> + O(07)
oJ

1o 1o™mo . 1o d%u
= 1"151;“@’69%r ne® — S Liex|,n©70%0 9% — iLﬂ@ e'np? + 0(d%),

G? 1 52 1 b0 .
= (EG) = Z(LM@ 092 0% + 0(d®),

(-5 -1

= (LMO 09%0* + 0(®).

Comparing the coefficients of x|,0 gives:

0
d2u N 1of . o 1d2 &
lhs: @ +F]k9j8 and  rhs: EijQJQ +§d—2 .
Consequently, there holds
d2u 25
v (u)f—F ook,
Next, compare the coefficients of )O(MQZZ
Left hand side of (B.4):
4 m
1 d3u  10f ot of C 30l a2y
55+ 5( TS A P )@m@@ + 5Dy
1 a®8’ | 10t ot of

30
=55t 2( itk + Do Dok — Lm]Lk)@T’L@J@k - Ertjrkm@mefek.
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Right hand side of (B.4):

1, o 1 1,0
(E(x -%) - EGn) (1+ 30 Luebte")? + 0(")
o Lof o
=06 X‘gfgil—’km@ e X|e

1 a3’ 10t oo iok L LS Srkoinzaele
m
{é o (Ermjlk L-Lkm)@ eiok 4 Z(Lk.j@ e9)’e }xw.

Hence, from equating left hand side and right side, one obtains

d3ul ot ot ol 1o ot . 3 o .
W @) = { A SRS 7 A §LmJLk}@m@J@k L Z(ij@kej)zee.

ot 30l
With the expressions for d;;; and ‘{;Tlg, we recollect the relations for x — x and find
instead of (B.6):
1202 koo
(x —x0) = 0e(O) + 3¢ nlL,,0%6
3 ol

1 o o o ot . 4 o .
+ %{(— §§‘,3Lmij + [szﬂk - 3Ltjrmk]ﬁ)9m@@k + E(ijekca]f@} +O(>e%).

Collecting the first three derivatives of u at u implies that the first terms of the transform
(0,0) — u read as

ol 1 ol .
uwl(0,@) =10 +0%— 5ij@]@’992 (B.8)
1(10fo ol ot ot . P 1,0 i kN2
+ é{iLijm + 20 Ty — Fmﬂk}elek@mf + g(Lj,c@f@k) 0% + 0(a"),
for all £=1,...,n — 1. Whereas, the inverse mapping u — (g, @) can be obtained from

0= A(u) = [x(u) — x|
and the nonlinear equations for
1 ol 1 of .
el = E(uf —u )+ 5grjk@J@’“
1
6

10fo0 ol ot of . 1 [} .
- 92{5L1Lkm + 20 Ty, — me}@J@kc—)” -3¢ (Ljx@T0F)?0" + ..

forall £=1,...,n — 1 can, for p > 0 sufficiently small, be solved via successive iteration. O

Theorem B.2 Let I' € C*. Then, the surface measure dsp of I' in Martensen’s surface polar
coordinates satisfies

dsp = 0" ?do Adw + (,Q"a(@) + O(g"H'] )) do A dw (B.9)

where

n—1 (3 o & 2 oJo b ol o &

a(@) = Z @7{Z<(Lm@ 6"+ L;L,,,0'0™6 ) —©’L,,Ly,0™me }

j=1

and
do =3 (-1)’"1@I[d6" A --- Ac)(am ~oAdeml S elel =1
j=1 j=1

Here, dw is the surface measure of the unit sphere S*=2 in R*~ 1,
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Proof For the surface measure of I', we use the exterior Pfaffian products, defining the exterior
normal vector’s components times dsp (see [20, Chapter 11.4]. Then, we multiply scalarly with

the exterior unit normal n(x) = (n (x),...,n™ (x)) which yields
n
dsp = Z( )J+1 det A--- A %:]/\ -Adz™|n I (x). (B.10)
j=1

Expansions about x up to the order o? give
om . 1 om ol om ot om .
n(x) =n - oL; x|,,67 — 592{Lj|k + LTy — Ly }@J@’%‘E‘m
1 olo N . P
- EQzLjLZkQJQKS +0(0%)
and
. . . 1 3 o l1o0Jo
d! = de®’ + 06 + _o* de{;(%@’“@tf - ELkLmt@’“@m@t} +0(0%)
= dg&’ + 007 + ¢* dec! (@) + O(o*)

with )
. 1(3,0 10Jo
d(@) = 5{Z(th@k@‘)2 - §LkLmt6k6’”@‘}

forj=1,...,n—1and
[} . 1 [} o ot . )
da" = L;.076%0de + _ (2Lmjjk — BLes Ty ) O™ 670" g2 do + O(e?).
Inserting this into (B.10), yields

ntl 1 n—1 1 50mo i ok 3
dsp = ()" [da A+ Ada }(17 5¢°L; Luk®76" +0(e ))
n—1 )
+> [[dxl A A %JA dz" 1] /\dx"]
j=1
oJ 1 03 ol oJ ot .
«{ = 0l = 5 (Lo + Lo ot = T Jomeret + o} @

For the first term in (B.11), we obtain (modulo O(¢?) terms) with the relations for da’:
[dz' A Ada™ ] = [deO! + 0dO! + o* doct (©) A deO? + 0dO? + o* doc?(O)
A AdO™ ! 4 0dO" ! 4 g® doc" 1 (@)] = " [dOT A+ AdO™ ]

n—1
9”’2[@/\ S (=1){e7 + I (@)} [dO! A /\:%97/\ /\d@"*l]}

Since the variables ©7 vary on the (n — 2)-dimensional sphere S™~2, where

n—1

(©7)? =

we have
Y elde’ =0 (B.12)

on S~ 2. Hence, the differentials d®7 with j =1,...,n — 1 are linearly dependent and

[de'A---AdO™ 1] = 0.
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Moreover, on S"~2, we have that the exterior unit normal vector v to S™~2 satisfies

n—1 )
Ve = Z Oe;.
j=1
Therefore, it holds
vjdw= (=1 [dO* A+ A ()@3/\ “Ade™T1] = 09 dw,
and with (B.12) one obtains

dw_Z( 1)7*tlei[de! A /\%@U\ -AdemT 1.
Jj=1

For the first term in (B.11), we find therefore
nol . 10 o
dsh = (- 1)”“{ 24, ( S @) - ELngkaQk) T o(gn“)} do A dw.
j=1
For the remaining terms in (B.11), we have (modulo O(¢%) terms) that
. oJ 1
s = [[dxl A A 5(7:]/\ o Ada 1 /\dx"] (— oL,©" — S }9’"@’“)
= [[dg@l + 0dO! + % doct(©) A dpO? + 0dO? + ¢ doc?(O)
A A %zj/\ o Ade?en Tl 4 pden T 4+ p? dgcnfl(@)]
o R - ok 1 b
A (gdngk@JQ + 507 dol...}O™676 )] ( —oL,©' — {...}ome )
n—1
= ()M + O ) de A [d0! A A JEIA - 7 dE" L, 0708, o

=1

n-1l, oJ .
= ()" Y Lnk®MOFL, 007 (o + O(e"T)) do A dw.

Consequently, we finally get in (B.11)

dsp =ds} +ds? = 0" ?doAdw + (¢"a(@) + O™ 1)) do A dw

with
k Oj o k . Ol o k
Z@J{ (Lit©%0"? + Ly Lpi0'0™O% — ©I L, L10™0 }
This is the proposed relation (B.9) for the surface measure. o
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