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Abstract

We improve the sharpness of some fractional Moser-Trudinger type inequalities,
particularly those studied by Lam-Lu and Martinazzi. As an application, improving
upon works of Adimurthi and Lakkis, we prove the existence of weak solutions to
the problem

(—A)%u = e in Q0<A<A,b>0,
with Dirichlet boundary condition, for any domain 2 in R™ with finite measure.
Here ), is the first eigenvalue of (—A)z on Q.

1 Introduction to the problem

Let n > 2 and let 2 be a bounded domain in R™. The Sobolev embedding theorem
states that WyP(Q) C LI(Q) for 1 < ¢ < oy and kp < n. However, it is not true

that WP(Q) ¢ L®(Q) for kp = n. In the borderline case, as shown by Yudovich [28],
Pohozaev [21] and Trudinger [27], W, "(2) embeds into an Orlich space and in fact

sup / e dy < oo, (1)
Q

ueWy ™ (), |Vl n (o) <1

for some ae > 0. Moser [20] found the best constant « in the inequality (1), obtaining the
so called Moser-Trudinger inequality:

. (2)

n
n—1 —
sup /ea"”|" dr < 0o, a,=n|S""
ueWy ™ (), [|Vul| L (0)<1 72

*The author is supported by the Swiss National Science Foundation, project nr. PP00P2-144669.



The constant v, in (2) is the best constant in the sense that for any a > «v,, the supremum
in (1) is infinite. A generalized version of Moser-Trudinger inequality is the following
theorem of Adams [1]:

Theorem A ([1]) If k is a positive integer less than n, then there is a constant C' =
C(k,n) such that
sup / el g < C9|,
<1Jo

k k
weCk©), V5l g

where i ) .
r22kp(ELL) [ mm
|: r nl(c+12)):| y M= 0dd7
n 2
a=a(k,n) S
|51 nBokp(k) ] F
T(E) , m = even,
2

and V* .= VA5 for k odd and V* = A3 for k even. Moreover the constant « is sharp
in the sense that

sup Fupe™™ dz = oo, (3)
ueCk(Q), ||V’“u|\L%(Q <1JQ

)

for any f :[0,00) — [0, 00) with lim; ., f(t) = 0o.!

In a recent work Martinazzi [17] has studied the Adams inequality in a fractional
setting. In order to state its result first we recall the space

Ly(R") := {u e LL (R"): /R @l oo} .

n 14 |zt

The operator (—A)® can be defined on the space L (R") via the duality

(-8Vu. ) = [ u(-A)pds, peSE) )

n

where

(—A)ye=F"(*¢), »eSR,
F is the normalized Fourier transform and S(R™) is the Schwartz space. Notice that the
integral in (4) is well-defined thanks to [7, Proposition 2.1].

Now for an open set 2 C R" (possibly = R"), s > 0 and 1 < p < oo we define the
fractional Sobolev space H*?({2) by

H*P(Q) = {ueP(Q):u=00onR"\Q, (—A)2u e L*(R")}.

dentity (3) is proven in [1], although not explicitly stated.



Theorem B ([17]) For any open set Q C R™ with finite measure and for any p € (1, 00)
we have

/
p
sup emr Ul gy < Chpl€,
~n D n Q
ue€H P (Q),[[(=A) 2P ul|Lp(o)<1

where the constant o, ), is given by

n n nN\ P
oo (LG )
np — ’S"_1| F(np—n) :

2p

Moreover, the constant av, ), is sharp in the sense that we cannot replace it with any larger
one without making the above supremum infinite.

Notice that condition (3) in Theorem A is sharper than only requiring that the constant
« in the exponential is sharp, as done in Theorem B. In fact Martinazzi asked whether it
is true that

sup F(uleems” e = oo, (6)
weH PP (), [[(—A) 2 ull 1p () <1

for any f : [0,00) — [0, 00) with

lim f(t) = oo, f is Borel measurable, (7)
t—o0
and a,,, is given by (5).
The point here is that Adams constructs smooth and compactly supported test func-
tions similar to the standard Moser functions (constant in a small ball, and decaying

logarithmically on an annulus), and then he estimates their H(I; F _norms in a very precise
way. This becomes much more delicate when £ is not integer because instead of comput-
ing partial derivatives, one has to estimate the norms of fractional Laplacians (the term
|(—A) % ul| ooy in (6)). This is indeed done in [17], but the test functions introduced by
Martinazzi are not efficient enough to prove (6). As we shall see this has consequences
for applications to PDEs.

We shall prove that the answer to Martinazzi’s question is positive, indeed in a slightly
stronger form, namely the supremum in (6) is infinite even if we consider the full H »P-
norm on the whole space. More precisely we have:

Theorem 1.1 Let Q be an open set in R™ with finite measure and let f : [0,00) — [0, 00)
satisfy (7). Then

/
sup / f(\u])ea"@‘“w dr =00, 1<p< oo,
~n n P
w€ P (Q), ullhp gy I (=)l g <17

where the constant o, is given by (5).



The main difficulty in the proof of Theorem 1.1 is to construct test and cut-off functions
in a way that their fractional Laplacians of suitable orders can be estimated precisely. This
will be done in section 2.

Here we mention that using a Green’s representation formula, Iula-Maalaoui-Martinazzi
[9] proved a particular case of Theorem 1.1 in one dimension. Their proof, though, does
not extend to spaces H»” (©2) when 7 > 1 because the function constructed using the
Green representation formula do not enjoy enough smoothness at the boundary. Trying
to solve this with a smooth cut-off function at the boundary allows to prove (6) only when

f grows fast enough at infinity (for instance f(t) > t* for some a > p').

Now we move to Moser-Trudinger type inequalities on domains with infinite measure.
In this direction we refer to [23, 11, 19] and the references there in. For our purpose, here
we only state the work of Lam-Lu [11].

Theorem C ([11]) Let p € (1,00) and 7 > 0. Then for every domain Q C R™ with finite
measure, there exists C' = C(n,p,7) > 0 such that

sup / eonalul” gy < CQ,
Q

~ N n
u€H PP (R™), [|(T1=2) 2P ul| p (zny <1

and
sup / D (e, ,|ulf ) dz < oo,
]Rn

Wl ¥ PR, | (r1=8) Tl ) <1
where oy, is given by (5) and
Jp—2

v o .
O(t) = et_2ﬁ7 Jp =min{j € N:j > p}.
i=0 7

Furthermore, the constant oy, , is sharp in the above inequalities, i.e., if o, is replaced
by any o > ay,p, then the supremums are infinite.

In the spirit of Theorem 1.1 we prove a stronger version of the sharpness of the constant
in Theorem C.

Theorem 1.2 Let 2 C R” be a domain with finite measure and let f : [0,00) — [0, 00)
satisfy (7). Then for any 7 > 0 and for any p € (1,00) we have (with the notations as in
Theorem C)

/
p
sup Fu)e " dz = oo,
~ N n
u€H PP (R, |[(r1-A) 2P ul 1o ny <17

and
sup [ 1tz = .
Rn

) .
we AT P (R™), ||(T1—-A) P ul| o gny <1



As an application of Theorem 1.1 (in the case p = 2 and f(t) = t2, compare to
(19) below) we prove the existence of (weak) solution to a semilinear elliptic equation
with exponential nonlinearity. In order to state the theorem first we need the following
definition.

Definition 1.1 Let Q be an open set in R™ with finite measure. Let f € LP(Q) for some
p € (1,00). We say that u is a weak solution of

(=A)su=f inQ,
if u € H22(Q) satisfies
/ (=A)Tu(—A)Tvdr = / fudz  for every v e H?*(Q).
n Q

Theorem 1.3 Let Q2 be an open set in R™ with finite measure. Let 0 < A < Ay and b > 0.
Then there exists a nontrivial weak solution to the problem

w[3

(=A)2u = Mue™ in Q. (8)

Due to the fact that the embedding Hz2(Q) < L?(Q) is compact for any open set
2 with finite measure (see Lemma A.7 in Appendix), we do not need any regularity
assumption or boundedness assumption on the domain 2.

The equation (8) has been well studied by several authors in even and odd dimensions,
with emphasis both on existence and compactness properties see e.g. [3, 5, 8, 10, 14, 15,
16, 18, 22, 26]. For instance, Lakkis [10], extending a work of Adimurthi [2], proved
the existence of solution to (8) in any even dimension. In a recent work Iannizzotto-
Squassina [8] have proven existence of nontrivial weak solution of (8) with = (0,1)
under an assumption, which turns out to be satisfied thanks to our Theorem 1.1, applied
with p = 2 (see Lemma 3.5).

2 Moser type functions and proof of Theorems 1.1,
1.2

We construct Moser type functions as follows:
First we fix two smooth functions n and ¢ such that 0 <n, ¢ <1,

33
Cx(—1,1 =1lon(-2,°
,'76 C ( ) )7 77 On( 474)7

and
Y e Cso((_272)>7 Y= 17 on (_11 1)



For € > 0, we set

e(t) = { 717(;)%(15) E?ZSES .
and
weler) = <1ogi)’l’ (1 (£ 6t 10 () i) <,
where
pe(t) = w(é)

Our aim is to show that the supremums (in Theorems 1.1 and 1.2) taken over the
functions {v.}.so (up to a proper normalization) are infinite.
The following proposition is crucial in the proof of Theorem 1.1.

Proposition 2.1 Let

i) 1
2p" " T(g5)m

Then for 1 < p < oo there exists a constant C' > 0 such that

. Y
[(—=A)2ru|| o@ny < (1 +C (log 5) ) :

Proof. Since the proof of above proposition is quite trivial if 2”—p is an integer, from now
on we only consider the case when % is not an integer.

us(x) == \S”_1|_%2§W%F(

ve ().

From Lemmas 2.2 and 2.4 (below) we have

» N
=80 0l < € 02)
In order to estimate (—A)?v. on the domain {x : 3¢ < |z| < 2} we consider the function

Ru() = ve(x) - (1g1) log 17 = 1) +.00) @ € R,

where

£o(z) : { ve(z) — (log 5)7% logﬁ if |z] < 2e

0 if |z| > 2e,

1
1\ » 1 1
log = log = — log — | o,
<Og€> <Og€ 0g m) @e(|])



and

g.(z): = ve(x) — (logi) b logﬁ if |z| > %
0 if |z] < 5
1\
=l ) (nlle) = Dlog
It is easy to see that for any o > 0
. 1\ *

sup [(~A70.0)] < € (tog 1) o)
z€R™ £

With the help of Lemma A.8 and the triangle inequality we bound

8+ (10g2) | (o) 1og,x|‘

(=A) P u(2)| = ————
’Sn—l’pﬁmi

. N 11
< C|(-A)>»R.(x)| + <log €> S

|Sn-15 |a|7
Using the elementary inequality
a+0)1<al+Clb?+a’'), 1<qg<oo,a>0,b>0,
q

we get

/ (—A) B (2) Pde
3e<|z|<2

€ |Sn—1| W 3e<|z|<2

NN 11 "
< / log = de +C (—A)5 R.(2)]Pde
3e<|z|<2

+c<1og1>_;'/3 L (LAY R.(2)[da

n
€ c<lal<2 |z|¥

-1 -4
<1+C <log i) +C <log 1) / ! |(=A)% R.(x)|dx,
3

n
€ e<lz|<2 |z|¥

where the last inequality follows from Lemma 2.3 (below). Using the pointwise estimate
in Lemma 2.3 and (9) one can show that

[ sleaER @ <o ()

n
e<lal<2 |z|?’

which completes the proof. O



Lemma 2.2 Let p € (1,00). Then there exists a constant C = C(n,p,o) > 0 such that

1
1\ »
|(=A)7v.(x)] < C <log 5) e for|z| <3e,0<0< g

H— Ay, < <10g1)‘1,

Proof. We claim that for every nonzero multiindex o € N™ there exists C' = C(n,a) > 0
such that

Moreover,

1
N\
| D% (z)| < C (log 6) ’ el 2z eR™ (10)

The claim follows from the fact that D*(p. + ¢.) = 0 on B 1 and hence we have the
lemma if ¢ is an integer. In the case when o is not a integer then we write ¢ = m+s where
0 < s < 1 and m is an nonnegative integer. Then for |z| < 3¢ we have (the following
equivalent definition of fractional Laplacian can be found in [24, 4])

(=A)™v(z +y) + (A)"v(z — y) — 2(=A)"v.(z)
|y|r2s

(—A)7v.(x) = Ci, / ay.

n

1 1
Ay ={x:|z] <26}, Agz{x:2£<|x|<4} aundAg:{:U:|w|>4}7

we have ,
(_A)Uvs(x) = Cn,s Z [za
i=1
where
[ EA)" vz +y) + (=A) v (r —y) — 2(=A)"ve(x)
Iy = |y[rr2s dy.
A’L

For y € Ay, using (10) we have

|(—A)mv€(x + y) + (—A)mvs(x - Z/) - 2(—A)m05(x)| < |y|2||D2(_A)mU€HL°°

1
1\ »
< Clye™m? (log ) :
€
1 1
o 1\ 7 dy 1N 72 o,
|Il|§cg 2 2<log€> / W_C(log > (3 2 .

and hence



For m > 1, again by (10)

K—Avw4x+w—w—Aww4m|sc(ﬁgi)”e*m

Therefore,

1 1
1\ » d 1\ »
2+ I3 < 0g -~ T < 08 = T
L+ <0l 2m v o<o(1 2
€ ly|>e |yl €

Since on A, |z +y| < 3e+ 1 < i, one has

(log i)é [ve (2 + y) — ve(z)|

g (1) (oo + o) + e + 9D = o) - velol)
iog (1 ) welle-tol) = 1o () vl
=g (557 ) vttt o) = 1o () o)

og () o 40|

Hence, for m = 0, changing the variable y — €z

o o tog (12557 ) vl + )|
L] <C <10g 1) Ten 40 <1og 1) ”/ ‘ oyl ) Ve "
c e<|yl<3

c |y’n+25

1 1
1\ » 1\ "7 log |Z 4 -
R (TR P L
© j2>1 |2|m+2s
1 1
Ly 7 1\ log (3
(10g> 525+C<10g> g2 / L;Wdz
IS c |2[>1 ’Z‘" s
1
N
SC(log> e,
£

1
Finally, for m = 0, using that |v.| < C (log %)_5 on Bf, we bound
8

1 1
1\ » d 1\ »
|I;] < C <log ) p/ ny+28 <C (log > "
€ w1 1Yl €

1
1

<C+

IA
™

IN
Q

The lemma follows immediately.

dz



Lemma 2.3 For |z| > 3¢ we have

2 (=) o<o<t
(-8 o) < O (1oe) (%)

— |x’2o' n—2m )
(5> ifl<o=m+s<g3,

el

where m s a positive integer and 0 < s < 1. In particular

n 1
(-85 Rel oo < € (10g)

Proof. Notice that for every nonzero multiindex o € N we have

N lel‘f“ if |z| < e
|IDf.(x)| < C <log ) o dfe<|z] <2
c 0 if|z| > 2e.

First we consider 0 < ¢ < 1. Using that |p.| < 1, changing the variable y — ey and by
Holder inequality we obtain

[(=A)7 fe(x)| = C

fa(x) B fa(y) dy'

ge |T —y|"t

1\ 5 (logi —log j) we(lyl)
=C <log ) / dy
ly|<2e

c ’.T _ y‘n—O—ZJ

1 1
1\ » dy » / !
con(ol) ([t ([ o)
€ wi<e |7 —ey[rrreee lyl<2
) 1
ol N (a1 dy '
< Ce <log> n an+2pa/ | & — y|reteee |
€ en |a i< g 1fa7 — Y
1 (1N
SC i log* ;
|z[>7 \ |z| <

where in the second last inequality we have used a change of variable y — %y and the
last inequality follows from the uniform bound

=

2e

2] (11)

W < C for every |z] > 3¢, |y| <
T

10



For o > 1, changing the variable y — |z|y and by (11) we have

(=8)"fe(z) = (=A)"f(y) ,
“A f(x)] =
(=AY fua)| = o ay
(A" () ‘
_c /
‘ ly|<2e |ZL‘ - y|n+25
1 1
<C <10g ) / dy
€ wi<ae Y2 |z =yl +2
n—2m -1
<C ! £ log1 .
jz[?7 \ || €
We conclude the lemma by (9). O

Lemma 2.4 For 0 < o < § there exists a constant C' = C(n, o) such that

1
1y » 1
|(=A)v(z)| < C (log 6) T2 for every x € BS.
Moreover,
. AN
H= A, ey < C (1og ) |

Proof. If 0 < 0 < 1 then

Cayu@l-c [ (|y)dy 2] > 2 (12)

yl<1 "T -y

1
<o / oe(y)dy
‘x’n—&-Qa ly|<1

1
1y » 1
< C|log- —_— 1 log2)d
< (10s2) " e [ Conlul +1os2) dy

1
1\ » 1
< C|log- .
— (Og€> |x|n+20

Since the integral in the right hand side of (12) is a proper integral, differentiating under
the integral sign one can prove the lemma in a similar way. O

Proof of Theorem 1.1 Without loss of generality we can assume that By C 2. Let u. be
defined as in Proposition 2.1. We claim that there exists a constant § > 0 such that

. Oénp|us|p/ .
limsup [ exp ’ dx =: limsup I. > 6. (13)
e—0 - p e—0
(e gy + N=2) B2 o))

E1ES

11



Then Theorem 1.1 follows at once, since u, — oo on B, as € — 0 and

sup f(\u|)ean,p|u|p/dq; > I ing f(Jue(x)]).
. n n €
w€l PP (), lullfp g+ (=2) T ullf p gy <17 R

To prove (13) we choose ¢ = e7*. Noticing that

/

P ,
lim —k+k:<1+c> [

1\ !
HUEHI[),P(]R") <C (10g €> )

and using Proposition 2.1 we have

s[R

4
P

— |Bl|€—kn+kn(1+%)_ >4

- Y

Ie > |Bl|€n€nlogé<1+C(10g%>fl>

for some § > 0. O

In order to prove Theorem 1.2, first we prove the following proposition which gives a
similar type of estimate as in Proposition 2.1.

Proposition 2.5 Let 7 > 0 and 1 < p < oo. Then there exists a constant C' > 0 such
that
1
. AN
||(TI — A)EUEHLP(RTL) S (1 -+ C <10g 5) ) .

we(w) = (11 = A)Fu(z) — (—A) ().
We observe that there exists C' = C(p) > 0 such that

Proof. We set

h(t):(1+t)p—1—C(tp+tp_1+t%) <0, foreveryt>0,1<p< o0,

which follows from the fact that A(0) = 0 and A/(t) < 0 for every ¢t > 0. Therefore, there
holds o
(a+0b)P <a”+Cp(b +abP™! +b2a""2), a>0,b>0,1<p< o0,

12



for some constant €}, > 0 and using this inequality we bound

|(1 — A)2u(z)|Pdx

RTL
— [ )+ (0w
< [ u@p+0 [ u@rde+0 [ (A ue)p
R’VL n n
+C [ (=) Fuc(@) P () P de
R’ﬂ
:Il+12+]3+.[4

From Proposition 2.1 we have

1\ !
11§1+C<log> .
€

To estimate I, I3 and Iy we will use pointwise estimates on (—A)%u., (—A)%w. and LP
estimates on (—A)%w.. For 0 < 0 < § combining Lemmas 2.2 - 2.4, A.8, and (9) we get

N3 g% if |z| < 3e
[(=A)7u(z) < C <log > lz|72  if 3e < || < 2 (14)
c |lz|7"20if x| > 2.

With the help of (14) one can verify that

1

1 P
H(_A)UUEHLP(R") S C(nap70) <lOg €> ) 1 S p < oo, 0 S o < %7 (15)

1\ !
L, <C <log 5) .

We conclude the proposition by showing that

and together with Lemma A.2

p2

p+1

n 1\ !
/ [we|?|(=A) 2o, [P0dx < C(n, p,q) <log E) , 0<g< (16)
Rn
It follows from Lemma A.1 that

1

1 P
w.(z)| < C <log ) , zeR", <1,
€ 2p

13



and for 2£ >1
g

N3 e p ™2 if 2] < 3¢
lw.(z)| < C (log €> lz| 77T if 3e < |a] < 2
1 if |z| > 2,

thanks to (14) and (15).
Splitting R™ into

Ay ={z:|z] <2} and A3 = {z:|z| > 2},

we have

2
/ el (~ A ptde = S g ::/ ]| (= A) P9, i = 1,2,
R i=1 Ai

Using (14) one can show that J; < C (log %)71 and together with ¢ < pT21 one has

J; < C (log %)_1 , which gives (16). O
Proof of Theorem 1.2 Here also we can assume that B; C ). We choose M > 0 large
enough such that

Blanyt”) > seo” 1> M.

L\JM—*

Then we have
[ Fuel)® (e IT = )G )

> [ #ud)® (b 17T = )l ) d
ue>M

n_
> % f(lusl)e%,pmsw’uw A)?p uEHmumdx

for € > 0 small enough. Now the proof follows as in Theorem 1.1, thanks to Proposition
2.5. ([l

3 Proof of Theorem 1.3

Throughout this section we use the notation ||ul| = ||(=A)%ul|p2@n), H = H32(Q) and
Qg = Qp 2.

To prove Theorem 1.3 we follow the approach in [2, 10]. First we prove that A\; > 0,
which makes the statement of Theorem 1.3 meaningful.

14



Lemma 3.1 Let Q be an open set in R™ with finite measure. Then A1 > 0 and there
exists a function w € H such that

[ullr2) =1, and [lul]® = Ar.
Proof. We recall that
AL = inf{HuH2 cu € H, |ul 2@ = 1}.
Let {ux}32, C H be a sequence such that
Jim Jurl* = A1, Jlukllz2i) = 1 for every k.
Then up to a subsequence
up — ug in H, ug — ug in L*(Q),

where the latter one follows from the compact embedding H — L?(€2) (see Lemma A.7).
Therefore,
M < ol < liminf el = Ar, ol oy = 1

Let us now define the functional
1
J(u) = §Hu\|2 - / G(u)dx, wue€ H,
Q

where

t
G(t) = / g(r)dr, g(r) == Are”, 0<AX<M\,b>0.
0

Then J is C? and the Fréchet derivative of .J is be given by

DJ(u)(v) = / (—A)iu(—A) i vde — / g(wvde, v e H.
n Q
We also define

Fu) = D)) = lul} = [ guudz,  Itw) = Tt0) = 5F(w).

S={ueH:u#0,F(u)=0}.

Observe that if u € H is a nontrivial weak solution of (8) then u € S.
With the above notations we have:

Lemma 3.2 The set S is closed in the norm topology and

2 _ Qo — :
0<s" < 5 S /Qireng(u).

15



Proof. Since F is continuous (actually F'is C' as J is C?), it is enough to show that 0 is
an isolated point of S. If not, then there exists a sequence {u;} C S such that ||ug| — 0
as k — oo. We set v, = HZ—:” From the compactness of the embedding H — L9(Q2) for
any 1 < ¢ < oo, we can assume that (up to a subsequence) vy, — v in H and vy, — v
almost everywhere in Q. By Lemma 3.4 (below) we get

o0 1
1= /\/ il d LEEN )\/ vide < A—|v|* < 1,
Q Q A1

which is a contradiction. Hence S is closed.

Since,
1 1
f(t) = <t2—b> ebt2+5>0, for t >0,b >0,
which follows from f(0) =0 and f'(¢) > 0 for ¢t > 0, we have

I(u) = 2/9 <(u2—2> eb“2+11)> dz >0, if ue H\ {0}, (17)

and in particular J(u) = I(u) > 0 for u € S.

If possible, we assume that s = 0. Then there exists a sequence {u;} C S such that
J(ur) — 0 as k — oo. Moreover,

2 2 2
l|ug||? = )\/ uiekdr = )\/ up e dy + )\/ up e dy
Q u2>2 u

; 1<t
A 1 1
< 4/ w2 — =) et 4 =) da + )\/ uZ ek dx
2 Jeosz b b <2
k7 b k—=1b
< 4J(uy) + )\/2<2 ulerdr, (18)
UkS%

and hence uy, is bounded in H. Then up to a subsequence u, — u, a.e. in  and u — u.
Using Fatou lemma and i) in Lemma 3.4 we obtain

1 2 1
I(u) = /\/ uw? — — ) " 4 — ) do < liminf I(u;,) = liminf J(uz) = 0,
2 Q b b k—o00

k—o0

and hence u = 0, thanks to (17). It follows from (18) that uxy — 0 in H which is a
contradiction as S is closed.
We prove now s* < apb™!. First we fix u € H with |Jul| = 1. We consider the function

Fut) = F(tu) = [[tul]? — )\/ P2y 4> 0.
Q

F,(t) > t* <)\1 / u?dx — )\/ u26bt2“2dx> >0,
Q Q

16
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—o00. Hence, the continuity of F, implies

for t > 0 sufficiently small and lim;_,, F,(t) =
=0, ie., tyu € S. Thus

that there exists ¢, > 0 such that F,(t,)

52 1 1
= < J(tu) < =||tyul?* = =t2.

Again using that t,u € S we have

1 1
/Qu ebs u? dr < /\2)\/(t u)2€b(tuu dr — Wut UH2 X

which implies that

sup /u " dr < oo, (19)
Jul|<1,ueH JQ
and by Theorem 1.1 we deduce that s? < agb™. O

Lemma 3.3 Let u € S be a minimizer of J on S. Then DJ(u) =
Proof. We fix a function v € H \ {0} and consider the function

Fuo(vy,t) = Fyu+tv), v>0,teR.

Differentiating F, , with respect to v and using that F'(u) = 0, we get

Fuv
ok, 1,0) = —2bX | e dz < 0.
vy

Hence, by implicit function theorem, there exists § > 0 such that we can write v = (t)
as a C'! function of ¢ on the interval (—d, d) which satisfies

7(0) =1, Fu,(y(t),t) =0, for every t € (=9, 0).

Moreover, choosing ¢ > 0 smaller if necessary, we have y(t)u+tv € S for every t € (—0, 9).
We write

t—0 t
— Jim (J(W)“ +tv) = () J(y(t)u+tv) = J(u+ tv))
t—0 t P

Since J is C!, a first order expansion of J yields

J(y()u+tv) — J(u+tv) = J((u+tv) + (y(t) — Du) — J(u + tv)
= DJ(u+tv)((v(t) = Du) + o ((v(t) = 1)][ul])
= (v(t) = DI (u+ tv)(u) + (v(£) — )jullo(1).

~ ~—

17



Therefore, using that F'(u) = 0,

lim J(y(t)u 4 tv) — J(u + tv) — A (0) D (u) () = 0.

t—0 t

On the other hand, since u is a minimizer of J on S and y(t)u +tv € S,

Jyt)u+tv) —J(w) [ >0 ift>0
t 1 <0 ift <0,

implies that (since it exists)

J(y(t)u +tv) — J(u)

lim =0.
t—0 t
This shows that DJ(u)(v) = 0 for every v € H, i.e., DJ(u) = 0. O

Proof of Theorem 1.3 Let {ux} be a sequence in S such that limg_,o. J(uy) — % Then
by (18) uy is a bounded sequence in H and consequently, up to a subsequence

U — U,  Up — u, a.e. in Q= lm ||ug,
k—o0

for some u € H. First we claim that u # 0.
Assuming v = 0, by i7) in Lemma 3.4 (below) we get

A 2 o
: 2 _ bu? _ 2 0
klggoﬂukﬂ = klgglOQ <J(uk) t 5 /Q(e K 1)dx> 5 <

and hence by 4) in Lemma 3.4
lim |Jug|* = lim )\/ uZedr = 0,
k—o0 k—o0 Q

a contradiction as S is closed.

We claim that ¢ = |Ju||. Then u; — u in H and applying Lemmas 3.2 and 3.3 we have
Theorem 1.3.

If the claim is false then necessarily we shall have ¢ > ||ul|.

One has

. : A 2
I}Lrglo l|lul|? = kILI&Q <J(uk) +t3 /Q(eb k— 1)d:z>
32 )\ bu2
=57 —2J(u) + |Jul]*.

We divide the proof in two cases, namely J(u) < 0 and J(u) > 0.

18



Case 1. We consider that J(u) < 0. Since u # 0,

A
Jul|? < = (eb“2 —1)dz < A u?e™ d,
b
Q Q

where the second inequality follows from (17). It is easy to see that we can choose
0 < tg < 1 such that

ltoull? = A / (o) et .
Q

that means tou € S. Using that [(tu) is strictly monotone increasing in ¢, which follows
from the expression in (17), we obtain

2

2
< tou) = I(tow) < I(w) < liminf J(w) = 5

a contradiction.
Case 2. Here we assume that J(u) > 0. Then

£ = lim [Jugll? = 8* = 27(0) + ul]* < 8% + [uf]* < Z2 + ]l (20)
—00
Taking v, = HZ—’;” we see that (up to a subsequence)

u .
v = U= vy — v, a.e. in €

Za

and by Lemma A.5, for every p < (1 — [|v[|?)~*

2
sup/ ePY% dx < o0.
keN Jo

Taking (20) into account we have

0< 0 |[ul? = s* — 2J(u) < %

and therefore, we can choose 9 > 0 such that

-1

Q) 1 . 9 Qo Hqu
lheo=20  © e, P(1te) =20 (1)
+€O b EQ—HUHQ’ 1.e., ( +€0) b < EQ

For k large enough such that |jug|*> < £%(1+4 %) holds, we observe that bju||* < poayg for
some 1 < py < (1 — |[v]|*)~. Thus, for some p; > 1, py > 1 with pipapy < (1 — ||v|*)~!
we obtain

2 bu? P dr < 2p1 P1POCOVE
sup [ ()" do < sup [ 1y | 1 o) < o0,
keN JQ keN
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and together with Lemma A.9

. 2 2
lim [ wle™idr = / u?e™ dr.
Q Q

k—o0
Indeed,
. . 2 2
[ul]> < 2 = lim |lup||* = X lim | uie™do =\ [ w?e™ du,
k—oo k—o0
Q Q
and we can now proceed as in Case 1. O

Lemma 3.4 Let uy, v, € H such that up — w in H, up — u, a.e. inQ, vy = v in H
and vy — v, a.e. in ). Then
i) If
o
lim sup [Jugl|? < 22,
k—o00 b

then for every integer £ > 1

. 2 2
lim [ eovpde = [ ™ v'da.
k—oo o Q

i) If
li 2 bui
imsup [ upe’krdz < oo,
k—o0 Q

then
lim | e"dr = / " dx.
k—oo Jq Q
Proof. We prove the lemma with the help of Lemma A.9 (in Appendix).
We choose p > 1 such that for k large enough p|lug||* < 42 holds and together with
Theorem C we have

sup/ M dr < oo,
keN Jo
Since the embedding H72(Q) < L4(Q) is compact (see Lemma A.7) for every 1 < ¢ < oo,
we have

vl — v?in L*(Q).

Indeed,
bui ¢

2
sup "0 150y < okl " 1) < o0

and we conclude 7).
Now i) follows from

2 1 2 C
/ idy < — uieb“kdx < —,
ui>M M ui>]w M

20



which implies that the function fj := e satisfies the condition i7) in Lemma A.9. [

In the following lemma we prove that the assumption H’(v) in [8] is true under certain
conditions.

Lemma 3.5 Let ag > 0. Let f(t) = e®h(t) satisfies H(i) — (iii) in [8]. Let h > 0

on [0,00) and h(—t) = —h(t). Let s@ be a monotone increasing function with respect

tot on (0,00), s # 0. If limy_,o0 h(t)t = 0o then there exists u € Hz2((0,1)) such that
V27| (= A)3ul| 2@y = 1 and

t>0 >0 \4m Q

t2 ! w
sup @(tu) := sup ( —/ F(tu)dm) < o
0

where .
F(t) = [ #s)ds,
0
and w is as in [8].

Proof. For a given M > 0 we can choose u € Hz2((0,1)) such that

1 2 2 1
/ f <\/a7u> udx > M, \/%H(_A)ZUHLQ(R) =1,
o 0

thanks to Theorem 1.1. Differentiating with respect to ¢ one has

& (tu) = t (;ﬂ - /01 f(iu)ud:c> .

Hence, for t > 22 . to and 27 M > tg

/ 1 ! f(tOu)
@(tu)ﬁt(Qﬂ_/o i uda:) <0.

Thus @'(tu) < 0 on (ty — &, 00) for some € > 0 and therefore,

t2
supP(tu) = sup P(tu) < sup — < —.
>0 (tw) te(0, to—c) (tw) te(0,t0—2) 4T 20
Since w = 7, thanks to Theorem B, we conclude the lemma. O
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A Appendix

Lemma A.1 (Pointwise estimate) Lets > 0 and not an integer. Let m be the smallest
integer greater than s. Then for any 7 > 0

(7] = A)u(x) — (=4 |<cZ| AY (@) + Cll(~A) ull ey, w € SR,

where o € (max{% —m+s,0}, %), the constant C' depends only on n, s, o, T and for
m = 1 the above sum can be interpreted as zero.

Proof. We set f(t) =t* on RT. By Taylor’s expansion we have

7_ml

fE+1)=f)+7f )+ + — " 1(t)+—fm(§t) for some t < & <t+T.

(m —1)!

In particular
(T 4+ 12" =2 4 e t> 2 opt™ ™ - e 22 L B(1),
where the function F satisfies the estimate
|E#)| < C(1+t)*72" t>0.
Therefore, for u € S(R™)
F((rI = Ay u)(€) = (1 + [€*)
(Iags e 4 e €T+ E(E]))

Z 1%+ E(l¢))ag)

SH
LS

ij((—A)s’jU) + E([€])a($),

=0

<.

and hence
m—1

(1 — A)® c;(—=A) u(z) + FHEG) ().

=0

To estimate the term F~'(Eu) (unlformly in z) in terms of L'(R™) norm of (fractional)
derivative of u, we observe that

E(EDa(e)] = ] ()

=R
~A)7u(e)

(=A)7u(€)

1%
C

=Pt Epy
< C
S e )

1(=2)7ull L1 @)
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Thus
F (B (@)| < ClEllm@n < Cl(-A)ul|pn,

and we complete the proof. O

Lemma A.2 (L? Estimate) Let s > 0 be a noninteger. Let 7 > 0 be any fixed number.
Then for p € (1, 00) there exists C = C(n,s,p,7) > 0 such that

[[wll e e ifs <1

_ Su— (—A) p(Rn) < )
(] = A)’u — (=A)ul| Lr@ny < C{ Ju+ (—A)*ul|ppgny ifs > 1.

Proof. We have
F((rI = A)u)(§) = F((=A)"u)(§)

(7
(

T 2Vs _|¢|2s S— N .
= (L [P D) if s> 1

m(&)u(§) if s <1

[€1%)° — [€%%) (¢)

+
(r +1€%)* = [€*) a(€) if s <1

m(&)F (u+ (—A) ) (&) if s> 1.

Now the proof follows from the Hormander multiplier theorem (see [25, p. 96]). O
The following lemma appears already in [6, p. 46], but for the reader’s convenience
we give a more detailed proof.
Lemma A.3 (Equivalence of norms) Let 0 > 0. Then for p € (1,00) there exists a
constant C' > 0 such that for every u € S(R™)
1
= (el zeeey + 1(=2) ullzoeny) < I = A)7ull Loy
c
< C (Ilull ey + 1(=2)"ull o)) -

Gg(x):;a ! / eiﬁﬁe*ﬁt%@7
(4m)3 0(%) Jo ;

2
which is the Bessel potential of order o (see [25, p. 130]). Then

A 1 1
Gy(x)dr =1, Gy(z)= w a
e 7 " B

Proof. We set

Setting f = (I — A)°u we can write u = Go, * f and by Young’s inequality one has
|l oy < || f]lLr@ny. Again writing u = Gao * f and taking Fourier transform we obtain

1 . .

F((=A)u) = |§|20@ = \§|20Wf =:m(§)f,
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and by Hormander multiplier theorem we get ||(—A)%ul|zr@n) < C|| f||zr®n). Thus,
[ull Loy + [[(=2) 7wl Lo@my < CIT = A)7ull Lo @y
To conclude the lemma, it is sufficient to show that
[(=A)ullo@ny < C(n, s,0,p)(lullr@n) + [(=2) ullo@n), 0<s<o, (21)

thanks to Lemma A.2.
In order to prove (21) we fix a function ¢ € C°(B;) such that ¢ =1 on B;. Then

F((=A)7u) = €10 = [§]* ¢t + [§]*(1 = )i = ma ()i + ma(§) F((—A) ),

where my () = |£[*¢(€), ma(&) = |€]*727(1 — ¢(€)) are multipliers and we conclude (21)
by Hormander multiplier theorem. ]

Lemma A.4 (Embedding to an Orlicz space) Let () be an open set with finite mea-
sure. Then for every u € Hz?(Q)
2
/ e dr < oo.
Q

Proof. We set f = (—A)%u. By [17, Proposition 8] we have
Ch
[ Gla)fwdy. 0 <Gy < =
|z =yl

where G is a Greens function. 3 }
We choose M > 0 large enough such that || f||2C,, < ag, where f = f — fx{s<m}-

Then ~
u(@)] < COM) + Culs f(a), Tsf(a) = [ LWL g
’ ’ olr—yl2

and by [1, Theorem 2] we conclude the proof. O

As a consequence of the above lemma one can prove a higher dimensional generalization
of Lions lemma [13] (for a simple proof see e.g. [8, Lemma 2.6]), namely

Lemma A.5 (Lions) Let uy, be a sequence in H22(Q) such that

up = win H32(Q), 0 < [[(=A) ullpeen < 1, (=A) Fug] g = 1.

Then for every 0 < p < <1 - H(fA)%uH%Q(Rn)) . the sequence {e*""*}(° is bounded in
LY(9).
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Lemma A.6 (Poincaré inequality) Let Q be an open set with finite measure.
there exists a constant C' > 0 such that

l|lul L2y < C’H(—A)%uHLZ(Rn), for every u € PNIS’Q(Q).

Proof. We have

1

1
(27)3 |Q|2HuHL2(Q)7

. 1
[a(§)] < WHUHD(Q) <

and hence

il = / afPde = / jaPde + / jafde
R |€]<6 |&]>6

1
< Qlull22/0n| B 5”+525/ E1%|a)?de
(%)n\ [lwllZa) Bl lw\ %]l
1
<

e Bl + 672 [ Ry

Choosing § > 0 so that yz[Q|B1[0" = 5 we complete the proof.

Then

0

Lemma A.7 (Compact embedding) Let €2 be an open set in R™ with finite measure.
Then the embedding H**(Q) < H"*(Q) is compact for any 0 < r < s (with the notation

H2(Q) = L*(Q)). Moreover, Hz2(Q) < LP(Q) is compact for any p € [1,00).

Proof. We prove the lemma in few steps.
Step 1 The embedding H*?*(Q) < H"*(Q) is continuous for any 0 < r < s.
With the notation (—A)% = u we see that

1= A) b2, = / €T = / EPrafde + / €Prapde
R [€1<1 [€]>1

< [ japdes [ JePlaPde < ulla + 18 FulEagen,
lgl<1 lg1>1

which is Step 1, thanks to Lemma A.6

Step 2 For a given s > 0 and a given € > 0 there exists R > 0 such that
[ull ze@nms) < ellull gozq), for every u € H*(9).

To prove Step 2 it is sufficient to consider 0 < s < 1, thanks to Step 1.
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We fix ¢ € C°(By) such that ¢ =1 on By and 0 < ¢ < 1. Setting ¢, (z) = p(%£) we
get

11 = er)ullfa@ny = IF((1 = @r)w)l[72n)

- / F((L = oy )u)|2de + / F((1 - po)u)Pde
[¢] <Ry |€|>R1

([ 1a- wnuwx)? R R (RERIRE

< 1
— (@)
= Il +IQ

Using that supp (1 — ¢, )u C QN B¢ and by Holder inequality we bound

7«|HUH%2(Q)

1
I < 4 IBr,[I20 Bf|/ (1= or)ul
(2m) QNBg¢

From [4, Proposition 3.4] we have

251512
[ etaras = ctas) [ [ 1t o,

and hence

I < Ry g 1F((1 = g )u)|*dg

Rn

- C’OR128/ (1 = pr(@)u(z) = (1 = o(y))u(y))®

|z —y|"*+?

dxdy

_ CORl_zs/ (1 = or(@)) (u(z) = u(y)) — uly)(r(r) — @T(y)))Qdmdy

|z —y["?

2 (1 — (@) (u(z) —uly))?® | w*(y)(e(z) —or(y))? .
<o [ ( P T g ) ey
< 20, Ry™ /R . Wd dy + 20 Ry ™ / () / n (%\(;)_ —y ,fl(fs/)) dwdy

< CIR7*([(-A)° uH|L2(R") + |WH%2(Q))7
where in the last inequality we have used that

/ (@r(l‘) — ¢r<y>)2d

|z —y|" 2

r<C, yeR" r>1

Thus we have Step 2 by choosing R so that |Bg, || N B§| < £ where C1R; > = £.
Step 3 The embedding H*2() < L*(R2) is compact for any 0 < s < 1.
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Let us consider a bounded sequence {u;,}?2, in H*2(Q). Let ¢, ¢, be as in Step 2
(here ¢ € N). Then for a fixed £ the sequence {@puz}52, is bounded in H*2(2) (the proof
is very similar to the estimate of I3 in Step 2).

Since the embedding H*?(B,) < L?(B,) is compact (see e.g. [4, Theorem 7.1]), there
exists a subsequence {uj}?, such that pjui — u' in L?*(By). Inductively we will have
@euy — u’ in L?(By) where {u{™}5, is a subsequence of {u{}2, for £ > 1. Moreover,
we have u/*! = u’ on By. Setting v = limy_, u’ it follows that u’,z converges to u in

L*(Q), thanks to Step 2.

Step 4 The embedding H*2() < H"*(Q) is compact for any 0 < r < s.

Since the composition of two compact operators is compact, we can assume that
s—r <1

Let {uz}32, be a bounded sequence in H*2(2). Setting vy = (—A)Zu; we see that
{vp}32, is a a bounded sequence in H*~"2(Q). Then by Step 3 (up to a subsequence) vy
converges to some v in L?(Q) which is equivalent to saying that (up to a subsequence) uy
converges to some u in H"2(Q).

Finally, compactness of the embedding Hz2(Q) < L?(Q) follows from the compact-
ness of H22(Q) < L2(Q), Theorem B and Lemma A.9. O

Lemma A.8 (Exact constant) We set

1
f(z) =log—, xe€R"
]

Then r )
(o) 0<o< ﬁ,

—_AY° — n220—n -5
(=A)7f(z) = & (227) [a[? 2

‘ , —1)!
where T is the gamma function and 7, = %w’”]
Proof. Using a rescaling argument one can get (see for e.g. [7, Lemma A.5])

1
EEa

(=8)7f(x) = (=4)7f(e1)

To compute the value of (—A)?f(e;) we use the fact that %nlogﬁ is a fundamental

solution of (—A)? (see for instance [7, Lemma A.2)]) i.e.,

[ Jor -8 plahds = 2upl0), o€ SR,
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Using integration by parts, which can be verified, we obtain

1e0) = [ Fo)(-a)ke(o)is
— [ Ay @A) s
= [ ) e

’$|20
_ o 1 ! n—20
= arsen [ () © e
o ]_-\(n720') 1 R

_ —A o 1 on 20—73 2 n—2o0 d

( )7 f(er) F(%a) /Rn |¢[n—20 (|§| ‘P) §
- Ay ez T2 ) onyt ()

L(%)
where in the 4th equality we have used that
1 _ 9a—73 r (%) 1

in the sense of tempered distribution. Since in our case JF is the normalized Fourier
transform, the constant in the right hand side of (22) appears slightly different from [12,
Section 5.9].

Hence we have the lemma. O

The following lemma is the Vitali’s convergence theorem.

Lemma A.9 (Vitali’s convergence theorem) Let Q2 be a measure space with finite
measure f i.e., () < oo. Let fi be a sequence of measurable function on Q be such that

i) fr Lt f almost everywhere in €.

it) For e > 0 there exists § > 0 such that
/ |frldp < & for every Q € Q with u(Q) < 6.
Q

Or,
16") There exists p > 1 such that

sup [ [fuldy < o
keN JQ
Then fi. — f in LY(Q).
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