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Abstract

We improve the sharpness of some fractional Moser-Trudinger type inequalities,
particularly those studied by Lam-Lu and Martinazzi. As an application, improving
upon works of Adimurthi and Lakkis, we prove the existence of weak solutions to
the problem

(��)
n

2 u = �uebu
2
in ⌦, 0 < � < �

1

, b > 0,

with Dirichlet boundary condition, for any domain ⌦ in Rn with finite measure.
Here �

1

is the first eigenvalue of (��)
n

2 on ⌦.

1 Introduction to the problem

Let n � 2 and let ⌦ be a bounded domain in Rn. The Sobolev embedding theorem
states that W k,p

0

(⌦) ⇢ Lq(⌦) for 1  q  np
n�kp

and kp < n. However, it is not true

that W k,p
0

(⌦) ⇢ L1(⌦) for kp = n. In the borderline case, as shown by Yudovich [28],
Pohozaev [21] and Trudinger [27], W 1,n

0

(⌦) embeds into an Orlich space and in fact

sup
u2W 1,n

0 (⌦), kruk
L

n(⌦)1

Z

⌦

e↵|u|
n

n�1
dx < 1, (1)

for some ↵ > 0. Moser [20] found the best constant ↵ in the inequality (1), obtaining the
so called Moser-Trudinger inequality:

sup
u2W 1,n

0 (⌦), kruk
L

n(⌦)1

Z

⌦

e↵n

|u|
n

n�1
dx < 1, ↵n = n|Sn�1|

1
n�1 . (2)

⇤The author is supported by the Swiss National Science Foundation, project nr. PP00P2-144669.
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The constant ↵n in (2) is the best constant in the sense that for any ↵ > ↵n, the supremum
in (1) is infinite. A generalized version of Moser-Trudinger inequality is the following
theorem of Adams [1]:

Theorem A ([1]) If k is a positive integer less than n, then there is a constant C =
C(k, n) such that

sup
u2Ck

c

(⌦), krkuk
L

n

k (⌦)
1

Z

⌦

e↵|u|
n

n�k

dx  C|⌦|,

where

↵ = ↵(k, n) =
n

|Sn�1|

8
>>><

>>>:


⇡

n

2
2

k

�( k+1
2 )

�(n�k+1
2 )

� n

n�k

, m = odd,


⇡

n

2
2

k

�( k

2 )
�(n�k

2 )

� n

n�k

, m = even,

and rk := r�
k�1
2 for k odd and rk = �

k

2 for k even. Moreover the constant ↵ is sharp
in the sense that

sup
u2Ck

c

(⌦), krkuk
L

n

k (⌦)
1

Z

⌦

f(|u|)e↵|u|
n

n�k

dx = 1, (3)

for any f : [0,1) ! [0,1) with limt!1 f(t) = 1.1

In a recent work Martinazzi [17] has studied the Adams inequality in a fractional
setting. In order to state its result first we recall the space

Ls(Rn) :=

⇢
u 2 L1

loc(Rn) :

Z

Rn

|u(x)|
1 + |x|n+2s

dx < 1
�
.

The operator (��)s can be defined on the space Ls(Rn) via the duality

h(��)su, 'i :=
Z

Rn

u(��)s'dx, ' 2 S(Rn), (4)

where
(��)s' = F�1

�
|⇠|2s'̂

�
, ' 2 S(Rn),

F is the normalized Fourier transform and S(Rn) is the Schwartz space. Notice that the
integral in (4) is well-defined thanks to [7, Proposition 2.1].

Now for an open set ⌦ ✓ Rn (possibly ⌦ = Rn), s > 0 and 1  p  1 we define the
fractional Sobolev space H̃s,p(⌦) by

H̃s,p(⌦) :=
�
u 2 Lp(⌦) : u = 0 on Rn \ ⌦, (��)

s

2u 2 Lp(Rn)
 
.

1Identity (3) is proven in [1], although not explicitly stated.
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Theorem B ([17]) For any open set ⌦ ⇢ Rn with finite measure and for any p 2 (1, 1)
we have

sup
u2 ˜H

n

p

,p

(⌦), k(��)

n

2p uk
L

p(⌦)1

Z

⌦

e↵n,p

|u|p0dx  Cn,p|⌦|,

where the constant ↵n,p is given by

↵n,p =
n

|Sn�1|

 
�( n

2p
)2

n

p ⇡
n

2

�(np�n
2p

)

!p0

. (5)

Moreover, the constant ↵n,p is sharp in the sense that we cannot replace it with any larger
one without making the above supremum infinite.

Notice that condition (3) in Theorem A is sharper than only requiring that the constant
↵ in the exponential is sharp, as done in Theorem B. In fact Martinazzi asked whether it
is true that

sup
u2 ˜H

n

p

,p

(⌦), k(��)

n

2p uk
L

p(⌦)1

Z

⌦

f(|u|)e↵n,p

|u|p0dx = 1, (6)

for any f : [0,1) ! [0,1) with

lim
t!1

f(t) = 1, f is Borel measurable, (7)

and ↵n,p is given by (5).
The point here is that Adams constructs smooth and compactly supported test func-

tions similar to the standard Moser functions (constant in a small ball, and decaying

logarithmically on an annulus), and then he estimates their H
k,n

k

0

-norms in a very precise
way. This becomes much more delicate when k is not integer because instead of comput-
ing partial derivatives, one has to estimate the norms of fractional Laplacians (the term
k(��)

n

2pukLp

(⌦)

in (6)). This is indeed done in [17], but the test functions introduced by
Martinazzi are not e�cient enough to prove (6). As we shall see this has consequences
for applications to PDEs.

We shall prove that the answer to Martinazzi’s question is positive, indeed in a slightly
stronger form, namely the supremum in (6) is infinite even if we consider the full H

n

p

,p-
norm on the whole space. More precisely we have:

Theorem 1.1 Let ⌦ be an open set in Rn with finite measure and let f : [0,1) ! [0,1)
satisfy (7). Then

sup
u2 ˜H

n

p

,p

(⌦), kukp
L

p(⌦)+k(��)

n

2p ukp
L

p(Rn)1

Z

⌦

f(|u|)e↵n,p

|u|p0dx = 1, 1 < p < 1,

where the constant ↵n,p is given by (5).
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The main di�culty in the proof of Theorem 1.1 is to construct test and cut-o↵ functions
in a way that their fractional Laplacians of suitable orders can be estimated precisely. This
will be done in section 2.

Here we mention that using a Green’s representation formula, Iula-Maalaoui-Martinazzi
[9] proved a particular case of Theorem 1.1 in one dimension. Their proof, though, does
not extend to spaces H̃

n

p

,p(⌦) when n
p
> 1 because the function constructed using the

Green representation formula do not enjoy enough smoothness at the boundary. Trying
to solve this with a smooth cut-o↵ function at the boundary allows to prove (6) only when
f grows fast enough at infinity (for instance f(t) � ta for some a > p0).

Now we move to Moser-Trudinger type inequalities on domains with infinite measure.
In this direction we refer to [23, 11, 19] and the references there in. For our purpose, here
we only state the work of Lam-Lu [11].

Theorem C ([11]) Let p 2 (1,1) and ⌧ > 0. Then for every domain ⌦ ⇢ Rn with finite
measure, there exists C = C(n, p, ⌧) > 0 such that

sup
u2 ˜H

n

p

,p

(Rn

), k(⌧I��)

n

2p uk
L

p(Rn)1

Z

⌦

e↵n,p

|u|p0dx  C|⌦|,

and

sup
u2 ˜H

n

p

,p

(Rn

), k(⌧I��)

n

2p uk
L

p(Rn)1

Z

Rn

�(↵n,p|u|p
0
)dx < 1,

where ↵n,p is given by (5) and

�(t) := et �
j
p

�2X

j=0

tj

j!
, jp := min{j 2 N : j � p}.

Furthermore, the constant ↵n,p is sharp in the above inequalities, i.e., if ↵n,p is replaced
by any ↵ > ↵n,p, then the supremums are infinite.

In the spirit of Theorem 1.1 we prove a stronger version of the sharpness of the constant
in Theorem C.

Theorem 1.2 Let ⌦ ⇢ Rn be a domain with finite measure and let f : [0,1) ! [0,1)
satisfy (7). Then for any ⌧ > 0 and for any p 2 (1,1) we have (with the notations as in
Theorem C)

sup
u2 ˜H

n

p

,p

(Rn

), k(⌧I��)

n

2p uk
L

p(Rn)1

Z

⌦

f(|u|)e↵n,p

|u|p0dx = 1,

and

sup
u2 ˜H

n

p

,p

(Rn

), k(⌧I��)

n

2p uk
L

p(Rn)1

Z

Rn

f(|u|)�(↵n,p|u|p
0
)dx = 1.
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As an application of Theorem 1.1 (in the case p = 2 and f(t) = t2, compare to
(19) below) we prove the existence of (weak) solution to a semilinear elliptic equation
with exponential nonlinearity. In order to state the theorem first we need the following
definition.

Definition 1.1 Let ⌦ be an open set in Rn with finite measure. Let f 2 Lp(⌦) for some
p 2 (1,1). We say that u is a weak solution of

(��)
n

2 u = f in ⌦,

if u 2 H̃
n

2 ,2(⌦) satisfies

Z

Rn

(��)
n

4 u(��)
n

4 vdx =

Z

⌦

fvdx for every v 2 H̃
n

2 ,2(⌦).

Theorem 1.3 Let ⌦ be an open set in Rn with finite measure. Let 0 < � < �
1

and b > 0.
Then there exists a nontrivial weak solution to the problem

(��)
n

2 u = �uebu
2
in ⌦. (8)

Due to the fact that the embedding H̃
n

2 ,2(⌦) ,! L2(⌦) is compact for any open set
⌦ with finite measure (see Lemma A.7 in Appendix), we do not need any regularity
assumption or boundedness assumption on the domain ⌦.

The equation (8) has been well studied by several authors in even and odd dimensions,
with emphasis both on existence and compactness properties see e.g. [3, 5, 8, 10, 14, 15,
16, 18, 22, 26]. For instance, Lakkis [10], extending a work of Adimurthi [2], proved
the existence of solution to (8) in any even dimension. In a recent work Iannizzotto-
Squassina [8] have proven existence of nontrivial weak solution of (8) with ⌦ = (0, 1)
under an assumption, which turns out to be satisfied thanks to our Theorem 1.1, applied
with p = 2 (see Lemma 3.5).

2 Moser type functions and proof of Theorems 1.1,

1.2

We construct Moser type functions as follows:
First we fix two smooth functions ⌘ and ' such that 0  ⌘, '  1,

⌘ 2 C1
c (�1, 1), ⌘ = 1 on (�3

4
,
3

4
),

and
' 2 C1

c ((�2, 2)), ' = 1, on (�1, 1).

5



For " > 0, we set

 "(t) =

⇢
1� '"(t) if 0  t  1

2

⌘(t) if t � 1

2

,

and

v"(x) =

✓
log

1

"

◆� 1
p

✓
log

✓
1

"

◆
'"(|x|) + log

✓
1

|x|

◆
 "(|x|)

◆
x 2 Rn,

where

'"(t) = '(
t

"
).

Our aim is to show that the supremums (in Theorems 1.1 and 1.2) taken over the
functions {v"}">0

(up to a proper normalization) are infinite.
The following proposition is crucial in the proof of Theorem 1.1.

Proposition 2.1 Let

u"(x) := |Sn�1|�
1
p2

n

p

0 ⇡
n

2�(
n

2p0
)

1

�( n
2p
)�n

v"(x).

Then for 1 < p < 1 there exists a constant C > 0 such that

k(��)
n

2pu"kLp

(Rn

)


 
1 + C

✓
log

1

"

◆�1

! 1
p

.

Proof. Since the proof of above proposition is quite trivial if n
2p

is an integer, from now
on we only consider the case when n

2p
is not an integer.

From Lemmas 2.2 and 2.4 (below) we have

k(��)
n

2pu"kpLp

(B3"[Bc

2)
 C

✓
log

1

"

◆�1

.

In order to estimate (��)�v" on the domain {x : 3" < |x| < 2} we consider the function

R"(x) = v"(x)�
✓
log

1

"

◆� 1
p

log
1

|x| =: f"(x) + g"(x) x 2 Rn,

where

f"(x) : =

(
v"(x)�

�
log 1

"

�� 1
p log 1

|x| if |x| < 2"

0 if |x| � 2",

=

✓
log

1

"

◆� 1
p

✓
log

1

"
� log

1

|x|

◆
'"(|x|)
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and

g"(x) : =

(
v"(x)�

�
log 1

"

�� 1
p log 1

|x| if |x| > 1

2

0 if |x|  1

2

=

✓
log

1

"

◆� 1
p

(⌘(|x|)� 1) log
1

|x| .

It is easy to see that for any � > 0

sup
x2Rn

|(��)�g"(x)|  C

✓
log

1

"

◆� 1
p

. (9)

With the help of Lemma A.8 and the triangle inequality we bound

|(��)
n

2pu"(x)| =
1

|Sn�1|
1
p�n, n

2p

�����(��)
n

2pR"(x) +

✓
log

1

"

◆� 1
p

(��)
n

2p log
1

|x|

�����

 C|(��)
n

2pR"(x)|+
✓
log

1

"

◆� 1
p 1

|Sn�1|
1
p

1

|x|
n

p

.

Using the elementary inequality

(a+ b)q  aq + Cq(b
q + aq�1b), 1  q < 1, a � 0, b � 0,

we get
Z

3"<|x|<2

|(��)
n

2pu"(x)|pdx


Z

3"<|x|<2

✓
log

1

"

◆�1 1

|Sn�1|
1

|x|ndx+ C

Z

3"<|x|<2

|(��)
n

2pR"(x)|pdx

+ C

✓
log

1

"

◆� 1
p

0 Z

3"<|x|<2

1

|x|
n

p

0
|(��)

n

2pR"(x)|dx

 1 + C

✓
log

1

"

◆�1

+ C

✓
log

1

"

◆� 1
p

0 Z

3"<|x|<2

1

|x|
n

p

0
|(��)

n

2pR"(x)|dx,

where the last inequality follows from Lemma 2.3 (below). Using the pointwise estimate
in Lemma 2.3 and (9) one can show that

Z

3"<|x|<2

1

|x|
n

p

0
|(��)

n

2pR"(x)|dx  C

✓
log

1

"

◆� 1
p

,

which completes the proof. ⇤
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Lemma 2.2 Let p 2 (1,1). Then there exists a constant C = C(n, p, �) > 0 such that

|(��)�v"(x)|  C

✓
log

1

"

◆� 1
p

"�2� for |x|  3", 0 < � <
n

2
.

Moreover,

k(��)
n

2pv"kpLp

(B3")
 C

✓
log

1

"

◆�1

.

Proof. We claim that for every nonzero multiindex ↵ 2 Nn there exists C = C(n,↵) > 0
such that

|D↵v"(x)|  C

✓
log

1

"

◆� 1
p

"�|↵|, x 2 Rn. (10)

The claim follows from the fact that D↵('" +  ") = 0 on B 1
2
and hence we have the

lemma if � is an integer. In the case when � is not a integer then we write � = m+s where
0 < s < 1 and m is an nonnegative integer. Then for |x|  3" we have (the following
equivalent definition of fractional Laplacian can be found in [24, 4])

(��)�v"(x) = Cn,s

Z

Rn

(��)mv"(x+ y) + (��)mv"(x� y)� 2(��)mv"(x)

|y|n+2s
dy.

A
1

= {x : |x|  2"} , A
2

=

⇢
x : 2" < |x|  1

4

�
and A

3

=

⇢
x : |x| > 1

4

�
,

we have

(��)�v"(x) = Cn,s

3X

i=1

Ii,

where

Ii :=

Z

A
i

(��)mv"(x+ y) + (��)mv"(x� y)� 2(��)mv"(x)

|y|n+2s
dy.

For y 2 A
1

, using (10) we have

|(��)mv"(x+ y) + (��)mv"(x� y)� 2(��)mv"(x)|  |y|2kD2(��)mv"kL1

 C|y|2"�2m�2

✓
log

1

"

◆� 1
p

,

and hence

|I
1

|  C"�2m�2

✓
log

1

"

◆� 1
p

Z

A1

dy

|y|n+2s�2

 C

✓
log

1

"

◆� 1
p

"�2�.
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For m � 1, again by (10)

|(��)mv"(x+ y)� (��)mv"(x)|  C

✓
log

1

"

◆� 1
p

"�2m.

Therefore,

|I
2

+ I
3

|  C

✓
log

1

"

◆� 1
p

"�2m

Z

|y|>"

dy

|y|n+2s
 C

✓
log

1

"

◆� 1
p

"�2�.

Since on A
2

|x+ y|  3"+ 1

4

< 1

2

, one has

✓
log

1

"

◆ 1
p

|v"(x+ y)� v"(x)|

=

����log
✓
1

"

◆
('"(|x+ y|) +  "(|x+ y|)� '"(|x|)�  "(|x|))

+ log

✓
"

|x+ y|

◆
 "(|x+ y|)� log

✓
"

|x|

◆
 "(|x|)

����

=

����log
✓

"

|x+ y|

◆
 "(|x+ y|)� log

✓
"

|x|

◆
 "(|x|)

����

 C +

����log
✓

"

|x+ y|

◆
 "(|x+ y|)

���� .

Hence, for m = 0, changing the variable y 7! "z

|I
2

|  C

✓
log

1

"

◆� 1
p

"�2s + C

✓
log

1

"

◆� 1
p

Z

"<|y|< 1
4

���log
⇣

"
|x+y|

⌘
 "(|x+ y|)

���
|y|n+2s

dy

 C

✓
log

1

"

◆� 1
p

"�2s + C

✓
log

1

"

◆� 1
p

"�2s

Z

|z|>1

��log |x
"
+ z|

�� "("|x" + z|)
|z|n+2s

dz

 C

✓
log

1

"

◆� 1
p

"�2s + C

✓
log

1

"

◆� 1
p

"�2s

Z

|z|>1

log (3 + |z|)
|z|n+2s

dz

 C

✓
log

1

"

◆� 1
p

"�2s.

Finally, for m = 0, using that |v"|  C
�
log 1

"

�� 1
p on Bc

1
8
, we bound

|I
3

|  C

✓
log

1

"

◆� 1
p

Z

|y|� 1
4

dy

|y|n+2s
 C

✓
log

1

"

◆� 1
p

.

The lemma follows immediately.
⇤
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Lemma 2.3 For |x| � 3" we have

|(��)�f"(x)|  C
1

|x|2�

✓
log

1

"

◆� 1
p

8
><

>:

⇣
"
|x|

⌘n
if 0 < � < 1

⇣
"
|x|

⌘n�2m

if 1 < � = m+ s < n
2

,

where m is a positive integer and 0 < s < 1. In particular

k(��)
n

2pR"kLp

(B2\B3")  C

✓
log

1

"

◆� 1
p

.

Proof. Notice that for every nonzero multiindex ↵ 2 Nn we have

|D↵f"(x)|  C

✓
log

1

"

◆� 1
p

8
<

:

1

|x||↵| if |x| < "
1

"|↵| if " < |x|  2"
0 if |x| � 2".

First we consider 0 < � < 1. Using that |'"|  1, changing the variable y 7! "y and by
Hölder inequality we obtain

|(��)�f"(x)| = C

����
Z

Rn

f"(x)� f"(y)

|x� y|n+2�
dy

����

= C

✓
log

1

"

◆� 1
p

������

Z

|y|<2"

⇣
log 1

"
� log 1

|y|

⌘
'"(|y|)

|x� y|n+2�
dy

������

 C"n
✓
log

1

"

◆� 1
p

✓Z

|y|<2

dy

|x� "y|np+2p�

◆ 1
p

✓Z

|y|<2

|log |y||p
0
dy

◆ 1
p

0

 C"n
✓
log

1

"

◆� 1
p

 
|x|n

"n
1

|x|np+2p�

Z

|y|< 2"
|x|

dy

| x
|x| � y|np+2p�

! 1
p

,

 C
1

|x|2�

✓
"

|x|

◆n✓
log

1

"

◆� 1
p

,

where in the second last inequality we have used a change of variable y 7! |x|
"
y and the

last inequality follows from the uniform bound

1

| x
|x| � y|np+2p�

 C for every |x| � 3", |y|  2"

|x| . (11)

10



For � > 1, changing the variable y 7! |x|y and by (11) we have

|(��)�f"(x)| = C

����
Z

Rn

(��)mf"(x)� (��)mf"(y)

|x� y|n+2s
dy

����

= C

����
Z

|y|<2"

(��)mf"(y)

|x� y|n+2s
dy

����

 C

✓
log

1

"

◆� 1
p

Z

|y|<2"

1

|y|2m
1

|x� y|n+2s
dy

 C
1

|x|2�

✓
"

|x|

◆n�2m✓
log

1

"

◆� 1
p

.

We conclude the lemma by (9). ⇤

Lemma 2.4 For 0 < � < n
2

there exists a constant C = C(n, �) such that

|(��)�v"(x)|  C

✓
log

1

"

◆� 1
p 1

|x|n+2�
for every x 2 Bc

2

.

Moreover,

k(��)
n

2pv"kpLp

(Bc

2)
 C

✓
log

1

"

◆�1

.

Proof. If 0 < � < 1 then

|(��)�v"(x)| = C

Z

|y|<1

v"(y)

|x� y|n+2�
dy, |x| > 2 (12)

 C
1

|x|n+2�

Z

|y|<1

v"(y)dy

 C

✓
log

1

"

◆� 1
p 1

|x|n+2�

Z

|y|<1

(log |y|+ log 2) dy

 C

✓
log

1

"

◆� 1
p 1

|x|n+2�
.

Since the integral in the right hand side of (12) is a proper integral, di↵erentiating under
the integral sign one can prove the lemma in a similar way. ⇤
Proof of Theorem 1.1 Without loss of generality we can assume that B

1

✓ ⌦. Let u" be
defined as in Proposition 2.1. We claim that there exists a constant � > 0 such that

lim sup
"!0

Z

B
"

exp

0

BB@
↵n,p|u"|p

0

⇣
ku"kpLp

(Rn

)

+ k(��)
n

2pu"kpLp

(Rn

)

⌘ p

0
p

1

CCA dx =: lim sup
"!0

I" � �. (13)

11



Then Theorem 1.1 follows at once, since u" ! 1 on B" as "! 0 and

sup
u2 ˜H

n

p

,p

(⌦), kukp
L

p(⌦)+k(��)

n

2p ukp
L

p(Rn)1

Z

⌦

f(|u|)e↵n,p

|u|p0dx � I" inf
x2B

"

f(|u"(x)|).

To prove (13) we choose " = e�k. Noticing that

lim
k!1

�k + k

✓
1 +

C

k

◆� p

0
p

= �C
p0

p
,

ku"kpLp

(Rn

)

 C

✓
log

1

"

◆�1

,

and using Proposition 2.1 we have

I" � |B
1

|"nen log

1
"

⇣
1+C(log 1

"

)
�1

⌘� p

0
p

= |B
1

|e�kn+kn(1+C

k

)
� p

0
p � �,

for some � > 0. ⇤
In order to prove Theorem 1.2, first we prove the following proposition which gives a

similar type of estimate as in Proposition 2.1.

Proposition 2.5 Let ⌧ > 0 and 1 < p < 1. Then there exists a constant C > 0 such
that

k(⌧I ��)
n

2pu"kLp

(Rn

)


 
1 + C

✓
log

1

"

◆�1

! 1
p

.

Proof. We set
w"(x) = (⌧I ��)

n

2pu"(x)� (��)
n

2pu"(x).

We observe that there exists C = C(p) > 0 such that

h(t) = (1 + t)p � 1� C(tp + tp�1 + t
1
2 ) < 0, for every t > 0, 1  p < 1,

which follows from the fact that h(0) = 0 and h0(t) < 0 for every t > 0. Therefore, there
holds

(a+ b)p  ap + Cp(b
p + abp�1 + b

1
2ap�

1
2 ), a � 0, b � 0, 1  p < 1,

12



for some constant Cp > 0 and using this inequality we bound

Z

Rn

|(⌧I ��)
n

2pu"(x)|pdx

=

Z

Rn

|w"(x) + (��)
n

2pu"(x)|pdx


Z

Rn

|(��)
n

2pu"(x)|p + C

Z

Rn

|w"(x)|pdx+ C

Z

Rn

|(��)
n

2pu"(x)||w"(x)|p�1dx

+ C

Z

Rn

|(��)
n

2pu"(x)|p�
1
2 |w"(x)|

1
2dx

=: I
1

+ I
2

+ I
3

+ I
4

.

From Proposition 2.1 we have

I
1

 1 + C

✓
log

1

"

◆�1

.

To estimate I
2

, I
3

and I
4

we will use pointwise estimates on (��)�u", (��)�w" and Lp

estimates on (��)�w". For 0 < � < n
2

combining Lemmas 2.2 - 2.4, A.8, and (9) we get

|(��)�u"(x)|  C

✓
log

1

"

◆� 1
p

8
<

:

"�2� if |x| < 3"
|x|�2� if 3" < |x| < 2
|x|�n�2� if |x| > 2.

(14)

With the help of (14) one can verify that

k(��)�u"kLp

(Rn

)

 C(n, p, �)

✓
log

1

"

◆� 1
p

, 1  p < 1, 0  � <
n

2p
, (15)

and together with Lemma A.2

I
2

 C

✓
log

1

"

◆�1

.

We conclude the proposition by showing that

Z

Rn

|w"|q|(��)
n

2pv"|p�qdx  C(n, p, q)

✓
log

1

"

◆�1

, 0 < q <
p2

p+ 1
. (16)

It follows from Lemma A.1 that

|w"(x)|  C

✓
log

1

"

◆� 1
p

, x 2 Rn,
n

2p
< 1,

13



and for n
2p

> 1

|w"(x)|  C

✓
log

1

"

◆� 1
p

8
<

:

"�
n

p

+2 if |x| < 3"
|x|�

n

p

+2 if 3" < |x| < 2
1 if |x| > 2,

thanks to (14) and (15).
Splitting Rn into

A
1

= {x : |x|  2} and A
3

= {x : |x| > 2} ,

we have

Z

Rn

|w"|q|(��)
n

2pv"|p�qdx =
2X

i=1

Ji, Ji :=

Z

A
i

|w"|q|(��)
n

2pv"|p�qdx, i = 1, 2.

Using (14) one can show that J
1

 C
�
log 1

"

��1

and together with q < p2

p+1

one has

J
3

 C
�
log 1

"

��1

, which gives (16). ⇤
Proof of Theorem 1.2 Here also we can assume that B

1

✓ ⌦. We choose M > 0 large
enough such that

�(↵n,pt
p0) � 1

2
e↵n,p

tp
0
, t � M.

Then we have
Z

Rn

f(|u"|)�
⇣
↵n,p|u"|p

0k(⌧I ��)
n

2pu"k�p0

Lp

(Rn

)

⌘
dx

�
Z

u
"

�M

f(|u"|)�
⇣
↵n,p|u"|p

0k(⌧I ��)
n

2pu"k�p0

Lp

(Rn

)

⌘
dx

� 1

2

Z

B
"

f(|u"|)e↵n,p

|u
"

|p0k(⌧I��)

n

2p u
"

k�p

0
L

p(Rn)dx,

for " > 0 small enough. Now the proof follows as in Theorem 1.1, thanks to Proposition
2.5. ⇤

3 Proof of Theorem 1.3

Throughout this section we use the notation kuk = k(��)
n

4 ukL2
(Rn

)

, H = H̃
n

2 ,2(⌦) and
↵
0

= ↵n,2.
To prove Theorem 1.3 we follow the approach in [2, 10]. First we prove that �

1

> 0,
which makes the statement of Theorem 1.3 meaningful.

14



Lemma 3.1 Let ⌦ be an open set in Rn with finite measure. Then �
1

> 0 and there
exists a function u 2 H such that

kukL2
(⌦)

= 1, and kuk2 = �
1

.

Proof. We recall that

�
1

= inf
�
kuk2 : u 2 H, kukL2

(⌦)

= 1
 
.

Let {uk}1k=1

⇢ H be a sequence such that

lim
k!1

kukk2 = �
1

, kukkL2
(⌦)

= 1 for every k.

Then up to a subsequence

uk * u
0

in H, uk ! u
0

in L2(⌦),

where the latter one follows from the compact embedding H ,! L2(⌦) (see Lemma A.7).
Therefore,

�
1

 ku
0

k2  lim inf
k!1

kukk2 = �
1

, ku
0

kL2
(⌦)

= 1.

⇤
Let us now define the functional

J(u) =
1

2
kuk2 �

Z

⌦

G(u)dx, u 2 H,

where

G(t) =

Z t

0

g(r)dr, g(r) := �rebr
2
, 0 < � < �

1

, b > 0.

Then J is C2 and the Fréchet derivative of J is be given by

DJ(u)(v) =

Z

Rn

(��)
n

4 u(��)
n

4 vdx�
Z

⌦

g(u)vdx, v 2 H.

We also define

F (u) = DJ(u)(u) = kuk2 �
Z

⌦

g(u)udx, I(u) = J(u)� 1

2
F (u),

S = {u 2 H : u 6= 0, F (u) = 0} .
Observe that if u 2 H is a nontrivial weak solution of (8) then u 2 S.

With the above notations we have:

Lemma 3.2 The set S is closed in the norm topology and

0 < s2 <
↵
0

b
, s :=

q
2 inf
u2S

J(u).

15



Proof. Since F is continuous (actually F is C1 as J is C2), it is enough to show that 0 is
an isolated point of S. If not, then there exists a sequence {uk} ⇢ S such that kukk ! 0
as k ! 1. We set vk = u

k

ku
k

k . From the compactness of the embedding H ,! Lq(⌦) for

any 1  q < 1, we can assume that (up to a subsequence) vk * v in H and vk ! v
almost everywhere in ⌦. By Lemma 3.4 (below) we get

1 = �

Z

⌦

ebu
2
kv2kdx

k!1���! �

Z

⌦

v2dx  �
1

�
1

kvk2 < 1,

which is a contradiction. Hence S is closed.
Since,

f(t) :=

✓
t2 � 1

b

◆
ebt

2
+

1

b
> 0, for t > 0, b > 0,

which follows from f(0) = 0 and f 0(t) > 0 for t > 0, we have

I(u) =
�

2

Z

⌦

✓✓
u2 � 1

b

◆
ebu

2
+

1

b

◆
dx > 0, if u 2 H \ {0}, (17)

and in particular J(u) = I(u) > 0 for u 2 S.
If possible, we assume that s = 0. Then there exists a sequence {uk} ⇢ S such that

J(uk) ! 0 as k ! 1. Moreover,

kukk2 = �

Z

⌦

u2

ke
bu2

kdx = �

Z

u2
k

> 2
b

u2

ke
bu2

kdx+ �

Z

u2
k

 2
b

u2

ke
bu2

kdx

 4
�

2

Z

u2
k

> 2
b

✓✓
u2

k �
1

b

◆
ebu

2
k +

1

b

◆
dx+ �

Z

u2
k

 2
b

u2

ke
bu2

kdx

 4J(uk) + �

Z

u2
k

 2
b

u2

ke
bu2

kdx, (18)

and hence uk is bounded in H. Then up to a subsequence uk ! u, a.e. in ⌦ and uk * u.
Using Fatou lemma and ii) in Lemma 3.4 we obtain

I(u) =
�

2

Z

⌦

✓✓
u2 � 1

b

◆
ebu

2
+

1

b

◆
dx  lim inf

k!1
I(uk) = lim inf

k!1
J(uk) = 0,

and hence u = 0, thanks to (17). It follows from (18) that uk ! 0 in H which is a
contradiction as S is closed.

We prove now s2 < ↵
0

b�1. First we fix u 2 H with kuk = 1. We consider the function

Fu(t) := F (tu) = ktuk2 � �

Z

⌦

t2u2ebt
2u2

dx, t � 0.

Then

Fu(t) � t2
✓
�
1

Z

⌦

u2dx� �

Z

⌦

u2ebt
2u2

dx

◆
> 0,

16



for t > 0 su�ciently small and limt!1 Fu(t) = �1. Hence, the continuity of Fu implies
that there exists tu > 0 such that Fu(tu) = 0, i.e., tuu 2 S. Thus

s2

2
 J(tuu) 

1

2
ktuuk2 =

1

2
t2u.

Again using that tuu 2 S we have
Z

⌦

u2ebs
2u2

dx  1

�t2u
�

Z

⌦

(tuu)
2eb(tuu)

2
dx =

1

�t2u
ktuuk2 =

1

�
,

which implies that

sup
kuk1, u2H

Z

⌦

u2ebs
2u2

dx < 1, (19)

and by Theorem 1.1 we deduce that s2 < ↵
0

b�1. ⇤

Lemma 3.3 Let u 2 S be a minimizer of J on S. Then DJ(u) = 0.

Proof. We fix a function v 2 H \ {0} and consider the function

Fu,v(�, t) := F (�u+ tv), � > 0, t 2 R.

Di↵erentiating Fu,v with respect to � and using that F (u) = 0, we get

@Fu,v

@�
(1, 0) = �2b�

Z

Rn

u4ebu
2
dx < 0.

Hence, by implicit function theorem, there exists � > 0 such that we can write � = �(t)
as a C1 function of t on the interval (��, �) which satisfies

�(0) = 1, Fu,v(�(t), t) = 0, for every t 2 (��, �).

Moreover, choosing � > 0 smaller if necessary, we have �(t)u+tv 2 S for every t 2 (��, �).
We write

DJ(u)(v) = lim
t!0

J(u+ tv)� J(u)

t

= lim
t!0

✓
J(�(t)u+ tv)� J(u)

t
� J(�(t)u+ tv)� J(u+ tv)

t

◆
.

Since J is C1, a first order expansion of J yields

J(�(t)u+ tv)� J(u+ tv) = J((u+ tv) + (�(t)� 1)u)� J(u+ tv)

= DJ(u+ tv)((�(t)� 1)u) + o ((�(t)� 1)kuk)
= (�(t)� 1)DJ(u+ tv)(u) + (�(t)� 1)kuko(1).

17



Therefore, using that F (u) = 0,

lim
t!0

J(�(t)u+ tv)� J(u+ tv)

t
= �0(0)DJ(u)(u) = 0.

On the other hand, since u is a minimizer of J on S and �(t)u+ tv 2 S,

J(�(t)u+ tv)� J(u)

t
=

⇢
� 0 if t � 0
 0 if t  0,

implies that (since it exists)

lim
t!0

J(�(t)u+ tv)� J(u)

t
= 0.

This shows that DJ(u)(v) = 0 for every v 2 H, i.e., DJ(u) = 0. ⇤

Proof of Theorem 1.3 Let {uk} be a sequence in S such that limk!1 J(uk) ! s2

2

. Then
by (18) uk is a bounded sequence in H and consequently, up to a subsequence

uk * u, uk ! u, a.e. in ⌦, ` := lim
k!1

kukk,

for some u 2 H. First we claim that u 6= 0.
Assuming u = 0, by ii) in Lemma 3.4 (below) we get

lim
k!1

kukk2 = lim
k!1

2

✓
J(uk) +

�

2b

Z

⌦

(ebu
2
k � 1)dx

◆
= s2 <

↵
0

b
,

and hence by i) in Lemma 3.4

lim
k!1

kukk2 = lim
k!1

�

Z

⌦

u2

ke
bu2

kdx = 0,

a contradiction as S is closed.
We claim that ` = kuk. Then uk ! u in H and applying Lemmas 3.2 and 3.3 we have

Theorem 1.3.
If the claim is false then necessarily we shall have ` > kuk.
One has

lim
k!1

kukk2 = lim
k!1

2

✓
J(uk) +

�

2b

Z

⌦

(ebu
2
k � 1)dx

◆

= 2

✓
s2

2
+
�

2b

Z

⌦

(ebu
2 � 1)dx,

◆

= s2 � 2J(u) + kuk2.

We divide the proof in two cases, namely J(u)  0 and J(u) > 0.

18



Case 1. We consider that J(u)  0. Since u 6= 0,

kuk2  �

b

Z

⌦

(ebu
2 � 1)dx < �

Z

⌦

u2ebu
2
dx,

where the second inequality follows from (17). It is easy to see that we can choose
0 < t

0

< 1 such that

kt
0

uk2 = �

Z

⌦

(t
0

u)2eb(t0u)
2
dx,

that means t
0

u 2 S. Using that I(tu) is strictly monotone increasing in t, which follows
from the expression in (17), we obtain

s2

2
 J(t

0

u) = I(t
0

u) < I(u)  lim inf
k!1

J(uk) =
s2

2
,

a contradiction.
Case 2. Here we assume that J(u) > 0. Then

`2 = lim
k!1

kukk2 = s2 � 2J(u) + kuk2 < s2 + kuk2 < ↵
0

b
+ kuk2. (20)

Taking vk =
u
k

ku
k

k we see that (up to a subsequence)

vk * v :=
u

`
, vk ! v, a.e. in ⌦,

and by Lemma A.5, for every p < (1� kvk2)�1

sup
k2N

Z

⌦

ep↵0v2
kdx < 1.

Taking (20) into account we have

0 < `2 � kuk2 = s2 � 2J(u) <
↵
0

b
,

and therefore, we can choose "
0

> 0 such that

1 + "
0

=
↵
0

b

1

`2 � kuk2 , i.e., `2(1 + "
0

) =
↵
0

b

✓
1� kuk2

`2

◆�1

.

For k large enough such that kukk2  `2(1+ "0
2

) holds, we observe that bkukk2  p
0

↵
0

for
some 1 < p

0

< (1 � kvk2)�1. Thus, for some p
1

> 1, p
2

> 1 with p
1

p
2

p
0

< (1 � kvk2)�1

we obtain

sup
k2N

Z

⌦

⇣
u2

ke
bu2

k

⌘p1
dx  sup

k2N
ku2p1

k k
Lp

0
2
(⌦)

kep1p0↵0v2
kkLp2

(⌦)

< 1,
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and together with Lemma A.9

lim
k!1

Z

⌦

u2

ke
bu2

kdx =

Z

⌦

u2ebu
2
dx.

Indeed,

kuk2 < `2 = lim
k!1

kukk2 = � lim
k!1

Z

⌦

u2

ke
bu2

kdx = �

Z

⌦

u2ebu
2
dx,

and we can now proceed as in Case 1. ⇤

Lemma 3.4 Let uk, vk 2 H such that uk * u in H, uk ! u, a.e. in ⌦, vk * v in H
and vk ! v, a.e. in ⌦. Then

i) If

lim sup
k!1

kukk2 <
↵
0

b
,

then for every integer ` � 1

lim
k!1

Z

⌦

ebu
2
kv`kdx =

Z

⌦

ebu
2
v`dx.

ii) If

lim sup
k!1

Z

⌦

u2

ke
bu2

kdx < 1,

then

lim
k!1

Z

⌦

ebu
2
kdx =

Z

⌦

ebu
2
dx.

Proof. We prove the lemma with the help of Lemma A.9 (in Appendix).
We choose p > 1 such that for k large enough pkukk2 < ↵0

b
holds and together with

Theorem C we have

sup
k2N

Z

⌦

epbu
2
kdx < 1.

Since the embedding H̃
n

2 ,2(⌦) ,! Lq(⌦) is compact (see Lemma A.7) for every 1  q < 1,
we have

vqk ! vq in L1(⌦).

Indeed,
sup
k2N

kebu2
kv`kkLp

(⌦)

 kv`kkLp

0
(⌦)

kebu2
kkLp

(⌦)

< 1,

and we conclude i).
Now ii) follows from

Z

u2
k

>M

ebu
2
kdx  1

M

Z

u2
k

>M

u2

ke
bu2

kdx  C

M
,
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which implies that the function fk := ebu
2
k satisfies the condition ii) in Lemma A.9. ⇤

In the following lemma we prove that the assumption H 0(v) in [8] is true under certain
conditions.

Lemma 3.5 Let ↵
0

> 0. Let f(t) = e↵0t2h(t) satisfies H(i) � (iii) in [8]. Let h � 0
on [0,1) and h(�t) = �h(t). Let sf(st)

t
be a monotone increasing function with respect

to t on (0,1), s 6= 0. If limt!1 h(t)t = 1 then there exists u 2 H̃
1
2 ,2((0, 1)) such thatp

2⇡k(��)
1
4ukL2

(R) = 1 and

sup
t>0

�(tu) := sup
t>0

✓
t2

4⇡
�
Z

1

0

F (tu)dx

◆
<

!

2↵
0

,

where

F (t) =

Z t

0

f(s)ds,

and ! is as in [8].

Proof. For a given M > 0 we can choose u 2 H̃
1
2 ,2((0, 1)) such that

Z
1

0

f

 s
2⇡2

↵
0

u

!
udx > M,

p
2⇡k(��)

1
4ukL2

(R) = 1,

thanks to Theorem 1.1. Di↵erentiating with respect to t one has

�0(tu) = t

✓
1

2⇡
�
Z

1

0

f(tu)

t
udx

◆
.

Hence, for t �
q

2⇡2

↵0
=: t

0

and 2⇡M > t
0

�0(tu)  t

✓
1

2⇡
�
Z

1

0

f(t
0

u)

t
0

udx

◆
< 0.

Thus �0(tu)  0 on (t
0

� ",1) for some " > 0 and therefore,

sup
t>0

�(tu) = sup
t2(0, t0�")

�(tu)  sup
t2(0, t0�")

t2

4⇡
<

⇡

2↵
0

.

Since ! = ⇡, thanks to Theorem B, we conclude the lemma. ⇤
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A Appendix

Lemma A.1 (Pointwise estimate) Let s > 0 and not an integer. Let m be the smallest
integer greater than s. Then for any ⌧ > 0

|(⌧I ��)su(x)� (��)su(x)|  C

m�1X

j=1

|(��)s�ju(x)|+ Ck(��)�ukL1
(Rn

)

, u 2 S(Rn),

where � 2
�
max{n

2

�m+ s, 0}, n
2

�
, the constant C depends only on n, s, �, ⌧ and for

m = 1 the above sum can be interpreted as zero.

Proof. We set f(t) = ts on R+. By Taylor’s expansion we have

f(t+ ⌧) = f(t) + ⌧f 0(t) + · · ·+ ⌧m�1

(m� 1)!
fm�1(t) +

⌧m

m!
fm(⇠t), for some t < ⇠t < t+ ⌧.

In particular

(⌧ + t2)s = t2s + c
1

t2s�2 + c
2

t2s�4 + · · ·+ cm�1

t2s�2m+2 + E(t),

where the function E satisfies the estimate

|E(t)|  C(1 + t)2s�2m, t > 0.

Therefore, for u 2 S(Rn)

F((⌧I ��)su)(⇠) = (⌧ + |⇠|2)sû
=
�
|⇠|2s + c

1

|⇠|2s�2 + · · ·+ cm�1

|⇠|2s�2m+2 + E(|⇠|)
�
û

=
m�1X

j=0

cj|⇠|2s�2jû+ E(|⇠|)û(⇠)

=
m�1X

j=0

cjF((��)s�ju) + E(|⇠|)û(⇠),

and hence

(⌧I ��)su(x) =
m�1X

j=0

cj(��)s�ju(x) + F�1(Eû)(x).

To estimate the term F�1(Eû) (uniformly in x) in terms of L1(Rn) norm of (fractional)
derivative of u, we observe that

|E(|⇠|)û(⇠)| =
����E(|⇠|) 1

|⇠|2�
\(��)�u(⇠)

����

 C

|⇠|2�(1 + |⇠|2)m�s

��� \(��)�u(⇠)
���

 C

|⇠|2�(1 + |⇠|2)m�s
k(��)�ukL1

(Rn

)

.
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Thus ��F�1(Eû)(x)
��  CkEûkL1

(Rn

)

 Ck(��)�ukL1
(Rn

)

,

and we complete the proof. ⇤

Lemma A.2 (Lp Estimate) Let s > 0 be a noninteger. Let ⌧ > 0 be any fixed number.
Then for p 2 (1, 1) there exists C = C(n, s, p, ⌧) > 0 such that

k(⌧I ��)su� (��)sukLp

(Rn

)

 C

⇢
kukLp

(Rn

)

ifs < 1
ku+ (��)s�1ukLp

(Rn

)

ifs > 1.

Proof. We have

F((⌧I ��)su)(⇠)� F((��)su)(⇠) =
�
(⌧ + |⇠|2)s � |⇠|2s

�
û(⇠)

=

8
<

:

((⌧ + |⇠|2)s � |⇠|2s) û(⇠) if s < 1

(⌧+|⇠|2)s�|⇠|2s
1+|⇠|2s�2 (1 + |⇠|2s�2)û(⇠) if s > 1

=:

8
<

:

m(⇠)û(⇠) if s < 1

m(⇠)F (u+ (��)s�1u) (⇠) if s > 1.

Now the proof follows from the Hormander multiplier theorem (see [25, p. 96]). ⇤
The following lemma appears already in [6, p. 46], but for the reader’s convenience

we give a more detailed proof.

Lemma A.3 (Equivalence of norms) Let � > 0. Then for p 2 (1,1) there exists a
constant C > 0 such that for every u 2 S(Rn)

1

C

�
kukLp

(Rn

)

+ k(��)�ukLp

(Rn

)

�
 k(I ��)�ukLp

(Rn

)

 C
�
kukLp

(Rn

)

+ k(��)�ukLp

(Rn

)

�
.

Proof. We set

G�(x) =
1

(4⇡)
�

2

1

�(�
2

)

Z 1

0

e�⇡
|x|2
t e�

t

4⇡ t
�n+�

2
dt

t
,

which is the Bessel potential of order � (see [25, p. 130]). Then
Z

Rn

G�(x)dx = 1, Ĝ�(x) =
1

(2⇡)
n

2

1

(1 + |x|2)�

2
.

Setting f = (I � �)�u we can write u = G
2� ⇤ f and by Young’s inequality one has

kukLp

(Rn

)

 kfkLp

(Rn

)

. Again writing u = G
2� ⇤ f and taking Fourier transform we obtain

F((��)�u) = |⇠|2�û = |⇠|2� 1

(1 + |⇠|2)� f̂ =: m(⇠)f̂ ,
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and by Hormander multiplier theorem we get k(��)�ukLp

(Rn

)

 CkfkLp

(Rn

)

. Thus,

kukLp

(Rn

)

+ k(��)�ukLp

(Rn

)

 Ck(I ��)�ukLp

(Rn

)

.

To conclude the lemma, it is su�cient to show that

k(��)sukLp

(Rn

)

 C(n, s, �, p)(kukLp

(Rn

)

+ k(��)�ukLp

(Rn

)

), 0 < s < �, (21)

thanks to Lemma A.2.
In order to prove (21) we fix a function ' 2 C1

c (B
2

) such that ' = 1 on B
1

. Then

F((��)su) = |⇠|2sû = |⇠|2s'û+ |⇠|2s(1� ')û = m
1

(⇠)û+m
2

(⇠)F((��)�u),

where m
1

(⇠) = |⇠|2s'(⇠), m
2

(⇠) = |⇠|2s�2�(1� '(⇠)) are multipliers and we conclude (21)
by Hormander multiplier theorem. ⇤

Lemma A.4 (Embedding to an Orlicz space) Let ⌦ be an open set with finite mea-
sure. Then for every u 2 H̃

n

2 ,2(⌦)

Z

⌦

eu
2
dx < 1.

Proof. We set f = (��)
n

4 u. By [17, Proposition 8] we have

u(x) =

Z

⌦

G(x, y)f(y)dy, 0  G(x, y)  Cn

|x� y|n2
,

where G is a Greens function.
We choose M > 0 large enough such that kf̃kL2Cn < ↵

0

, where f̃ = f � f�{|f |M}.
Then

|u(x)|  C(M) + CnIn

2
f̃(x), In

2
f̃(x) :=

Z

⌦

|f̃(y)|
|x� y|n2

dy,

and by [1, Theorem 2] we conclude the proof. ⇤
As a consequence of the above lemma one can prove a higher dimensional generalization

of Lions lemma [13] (for a simple proof see e.g. [8, Lemma 2.6]), namely

Lemma A.5 (Lions) Let uk be a sequence in H̃
n

2 ,2(⌦) such that

uk * u in H̃
n

2 ,2(⌦), 0 < k(��)
n

4 ukL2
(Rn

)

< 1, k(��)
n

4 ukkL2
(Rn

)

= 1.

Then for every 0 < p <
⇣
1� k(��)

n

4 uk2L2
(Rn

)

⌘�1

, the sequence {e↵0pu
k}1

1

is bounded in

L1(⌦).
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Lemma A.6 (Poincaré inequality) Let ⌦ be an open set with finite measure. Then
there exists a constant C > 0 such that

kukL2
(⌦)

 Ck(��)
s

2ukL2
(Rn

)

, for every u 2 H̃s,2(⌦).

Proof. We have

|û(⇠)|  1

(2⇡)
n

2
kukL1

(⌦)

 1

(2⇡)
n

2
|⌦| 12kukL2

(⌦)

,

and hence

kuk2L2
(⌦)

=

Z

Rn

|û|2d⇠ =
Z

|⇠|<�

|û|2d⇠ +
Z

|⇠|��

|û|2d⇠

 1

(2⇡)n
|⌦|kuk2L2

(⌦)

|B
1

|�n + ��2s

Z

|⇠|��

|⇠|2s|û|2d⇠

 1

(2⇡)n
|⌦||B

1

|�nkuk2L2
(⌦)

+ ��2s

Z

Rn

|F((��)
s

2u)(⇠)|2d⇠.

Choosing � > 0 so that 1

(2⇡)n
|⌦||B

1

|�n = 1

2

we complete the proof. ⇤

Lemma A.7 (Compact embedding) Let ⌦ be an open set in Rn with finite measure.
Then the embedding H̃s,2(⌦) ,! H̃r,2(⌦) is compact for any 0  r < s (with the notation
H̃0,2(⌦) = L2(⌦)). Moreover, H̃

n

2 ,2(⌦) ,! Lp(⌦) is compact for any p 2 [1,1).

Proof. We prove the lemma in few steps.
Step 1 The embedding H̃s,2(⌦) ,! H̃r,2(⌦) is continuous for any 0  r < s.

With the notation (��)0u = u we see that

k(��)
r

2uk2L2
(Rn

)

=

Z

Rn

|⇠|2r|û|2d⇠ =
Z

|⇠|1

|⇠|2r|û|2d⇠ +
Z

|⇠|>1

|⇠|2r|û|2d⇠


Z

|⇠|1

|û|2d⇠ +
Z

|⇠|>1

|⇠|2s|û|2d⇠  kuk2L2
(⌦)

+ k(��)
s

2uk2L2
(Rn

)

,

which is Step 1, thanks to Lemma A.6

Step 2 For a given s > 0 and a given " > 0 there exists R > 0 such that

kukL2
(⌦\Bc

R

)

 "kuk
˜Hs,2

(⌦)

, for every u 2 H̃s,2(⌦).

To prove Step 2 it is su�cient to consider 0 < s < 1, thanks to Step 1.
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We fix ' 2 C1
c (B

2

) such that ' = 1 on B
1

and 0  '  1. Setting 'r(x) = '(x
r
) we

get

k(1� 'r)uk2L2
(Rn

)

= kF((1� 'r)u)k2L2
(Rn

)

=

Z

|⇠|<R1

|F((1� 'r)u)|2d⇠ +
Z

|⇠|�R1

|F((1� 'r)u)|2d⇠

 1

(2⇡)n
|BR1 |

✓Z

Rn

|(1� 'r)u|dx
◆

2

+R�2s
1

Z

|⇠|�R1

|⇠|2s|F((1� 'r)u)|2d⇠

=: I
1

+ I
2

.

Using that supp (1� 'r)u ⇢ ⌦ \ Bc
r and by Hölder inequality we bound

I
1

 1

(2⇡)n
|BR1 ||⌦ \ Bc

r|
Z

⌦\Bc

r

|(1� 'r)u|2dx  1

(2⇡)n
|BR1 ||⌦ \ Bc

r|kuk2L2
(⌦)

.

From [4, Proposition 3.4] we have

Z

Rn

|⇠|2s|û|2d⇠ = C(n, s)

Z

Rn

Z

Rn

|u(x)� u(y)|2

|x� y|n+2s
dxdy,

and hence

I
2

 R�2s
1

Z

Rn

|⇠|2s|F((1� 'r)u)|2d⇠

= C
0

R�2s
1

Z

Rn⇥Rn

((1� 'r(x))u(x)� (1� 'r(y))u(y))2

|x� y|n+2s
dxdy

= C
0

R�2s
1

Z

Rn⇥Rn

((1� 'r(x))(u(x)� u(y))� u(y)('r(x)� 'r(y)))
2

|x� y|n+2s
dxdy

 2C
0

R�2s
1

Z

Rn⇥Rn

✓
(1� 'r(x))2(u(x)� u(y))2

|x� y|n+2s
+

u2(y)('r(x)� 'r(y))2

|x� y|n+2s

◆
dxdy

 2C
0

R�2s
1

Z

Rn⇥Rn

(u(x)� u(y))2

|x� y|n+2s
dxdy + 2C

0

R�2s
1

Z

Rn

u2(y)

Z

Rn

('r(x)� 'r(y))2

|x� y|n+2s
dxdy

 C
1

R�2s
1

(k(��)su|k2L2
(Rn

)

+ kuk2L2
(⌦)

),

where in the last inequality we have used that

Z

Rn

('r(x)� 'r(y))2

|x� y|n+2s
dx  C, y 2 Rn, r � 1.

Thus we have Step 2 by choosing R so that |BR1 ||⌦ \Bc
R| < "

2

where C
1

R�2s
1

= "
2

.

Step 3 The embedding H̃s,2(⌦) ,! L2(⌦) is compact for any 0 < s < 1.
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Let us consider a bounded sequence {uk}1k=1

in H̃s,2(⌦). Let ', '` be as in Step 2
(here ` 2 N). Then for a fixed ` the sequence {'`uk}1k=1

is bounded in H̃s,2(⌦) (the proof
is very similar to the estimate of I

2

in Step 2).
Since the embedding H̃s,2(Br) ,! L2(Br) is compact (see e.g. [4, Theorem 7.1]), there

exists a subsequence {u1

k}1k=1

such that '
1

u1

k ! u1 in L2(B
2

). Inductively we will have
'`u

`
k ! u` in L2(B

2`) where {u`+1

k }1k=1

is a subsequence of {u`
k}1k=1

for ` � 1. Moreover,
we have u`+1 = u` on B`. Setting u = lim`!1 u` it follows that uk

k converges to u in
L2(⌦), thanks to Step 2.

Step 4 The embedding H̃s,2(⌦) ,! H̃r,2(⌦) is compact for any 0  r < s.
Since the composition of two compact operators is compact, we can assume that

s� r < 1.
Let {uk}1k=1

be a bounded sequence in H̃s,2(⌦). Setting vk = (��)
r

2uk we see that
{vk}1k=1

is a a bounded sequence in H̃s�r,2(⌦). Then by Step 3 (up to a subsequence) vk
converges to some v in L2(⌦) which is equivalent to saying that (up to a subsequence) uk

converges to some u in H̃r,2(⌦).
Finally, compactness of the embedding H̃

n

2 ,2(⌦) ,! Lp(⌦) follows from the compact-
ness of H̃

n

2 ,2(⌦) ,! L2(⌦), Theorem B and Lemma A.9. ⇤

Lemma A.8 (Exact constant) We set

f(x) = log
1

|x| , x 2 Rn.

Then

(��)�f(x) = �n2
2��n⇡�n

2
�(�)

�(n�2�
2

)

1

|x|2� , 0 < � <
n

2
,

where � is the gamma function and �n = (n�1)!

2

|Sn|.

Proof. Using a rescaling argument one can get (see for e.g. [7, Lemma A.5])

(��)�f(x) = (��)�f(e
1

)
1

|x|2� .

To compute the value of (��)�f(e
1

) we use the fact that 1

�
n

log 1

|x| is a fundamental

solution of (��)
n

2 (see for instance [7, Lemma A.2]) i.e.,

Z

Rn

log
1

|x|(��)
n

2'(x)dx = �n'(0), ' 2 S(Rn).
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Using integration by parts, which can be verified, we obtain

�n'(0) =

Z

Rn

f(x)(��)
n

2'(x)dx

=

Z

Rn

(��)�f(x)(��)
n

2��'(x)dx

=

Z

Rn

(��)�f(e
1

)

|x|2�
�
|⇠|n�2� b'

�_
(x)dx

= (��)�f(e
1

)

Z

Rn

✓
1

|x|2�

◆_

(⇠)
�
|⇠|n�2� b'

�
d⇠

= (��)�f(e
1

)2n�2��n

2
�(n�2�

2

)

�(2�
2

)

Z

Rn

1

|⇠|n�2�

�
|⇠|n�2� b'

�
d⇠

= (��)�f(e
1

)2n�2��n

2
�(n�2�

2

)

�(2�
2

)
(2⇡)

n

2'(0),

where in the 4th equality we have used that

F
✓

1

|x|n�↵

◆
= 2↵�

n

2
�
�
↵
2

�

�
�
n�↵
2

� 1

|x|↵ , 0 < ↵ < n, (22)

in the sense of tempered distribution. Since in our case F is the normalized Fourier
transform, the constant in the right hand side of (22) appears slightly di↵erent from [12,
Section 5.9].

Hence we have the lemma. ⇤
The following lemma is the Vitali’s convergence theorem.

Lemma A.9 (Vitali’s convergence theorem) Let ⌦ be a measure space with finite
measure µ i.e., µ(⌦) < 1. Let fk be a sequence of measurable function on ⌦ be such that

i) fk
k!1���! f almost everywhere in ⌦.

ii) For " > 0 there exists � > 0 such that
Z

˜

⌦

|fk|dµ < " for every ⌦̃ ⇢ ⌦ with µ(⌦̃) < �.

Or,

ii0) There exists p > 1 such that

sup
k2N

Z

⌦

|fk|pdµ < 1.

Then fk ! f in L1(⌦).
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