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Abstract Multilevel quadrature methods for parametric operator equations such
as the multilevel (quasi-) Monte Carlo method are closely related to the sparse ten-
sor product approximation between the spatial variable and the stochastic variable.
In this article, we employ this fact and reverse the multilevel quadrature method
via the sparse grid construction by applying di↵erences of quadrature rules to finite
element discretizations of di↵erent resolution. Besides being more e�cient if the
underlying quadrature rules are nested, this way of performing the sparse tensor
product approximation enables the use of non-nested and even adaptively refined
finite element meshes. Especially, the multilevel quadrature is non-intrusive and
allows the use of standard finite element solvers. Numerical results are provided
to illustrate the approach.

1 Introduction

The present article is concerned with the numerical solution of elliptic parametric
second order boundary value problems of the form

�div
�
a(y)ru(y)

�
= f(y) in D, u(y) = 0 on @D, y 2 ⇤, (1)

where D ⇢ Rn denotes the spatial domain and ⇤ ⇢ Rm denotes the parameter
domain. Prominent representatives of such problems arise from recasting boundary
value problems with random data, like random di↵usion coe�cients, random right
hand sides and even random domains. A high-dimensional parametric boundary

Michael Griebel
Institut für Numerische Simulation, Universität Bonn, Wegelerstr. 6, 53115 Bonn, Deutsch-
land und Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Bir-
linghoven, 53754 Sankt Augustin, Deutschland
E-mail: griebel@ins.uni-bonn.de

Helmut Harbrecht, Michael Peters
Departement Mathematik und Informatik, Universität Basel, Spiegelgasse 1, 4051 Basel,
Schweiz
E-mail: {helmut.harbrecht,michael.peters}@unibas.ch



2 Michael Griebel et al.

value problem of the form (1) is then derived by inserting the truncated Karhunen-
Loève expansion, see e.g. [2,3,10,22,30]. Thus, the computation of the solution’s
statistics amounts to a high-dimensional Bochner integration problem which can be
dealt with by quadrature methods. Any quadrature method requires the repeated
evaluation of the integrand in di↵erent sample or quadrature points, corresponding
to the solution of (1) with respect to a specific realization of the parameter y 2 ⇤.

An e�cient approach to deal with the quadrature problem is the multilevel
Monte Carlo method (MLMC) which has been developed in [4,14,16,24,25]. As
first observed in [12,20], this approach mimics a certain sparse grid approximation
between the physical space and the parameter space. Thus, the extension to the
multilevel quasi-Monte Carlo method and even more general multilevel quadrature
methods is obvious. In the latter cases, we require extra regularity of the solution
in terms of spaces of dominant mixed derivatives, c.f. [20,21,28] for example. This
extra regularity is available for important classes of parametric problems, see [9]
for the case of a�ne elliptic di↵usion coe�cients and [27] for the case of log-
normally distributed di↵usion coe�cients. In this article, for the sake of clarity in
presentation, we will focus on a�ne elliptic di↵usion problems as they occur from
the discretization of uniformly elliptic random di↵usion coe�cients. Nevertheless,
our ideas can be extended to more general parametric di↵usion problems in a
straightforward manner.

Based on the observation that a multilevel quadrature scheme resembles a
sparse tensor product approximation between the spatial variable and the para-
metric variable, we can exploit well-known techniques from the sparse tensor prod-
uct approximation theory. To explain our ideas, we recall the construction of sparse
tensor product approximation spaces. Let

V
(i)
0 ⇢ V

(i)
1 ⇢ · · · ⇢ V

(i)
j ⇢ · · · ⇢ Hi, i = 1, 2,

denote two sequences of finite dimensional sub-spaces with increasing approxima-
tion power in some linear spaces Hi. To approximate a given object of the tensor
product space H1 ⌦H2, one canonically considers the full tensor product spaces
Uj := V

(1)
j ⌦ V

(2)
j . However, the cost dimUj = dimV

(1)
j · dimV

(2)
j is often too

expensive. To reduce this cost, one might consider the approximation in so-called
sparse grid spaces, see e.g. [7,37]. For ` � 0, one introduces the complement spaces

W
(i)
`+1 = V

(i)
`+1  V

(i)
` , i = 1, 2,

which gives rise to the multilevel decompositions

V
(i)
j =

jM

`=0

W
(i)
` , W

(i)
0 := V

(i)
0 , i = 1, 2. (2)

Then, the sparse grid space is defined by

bUj :=
M

`+`0j

W
(1)
` ⌦W

(2)
`0 . (3)

Under the assumptions that the dimensions of
�
V

(1)
`

 
and

�
V

(2)
`

 
form geometric

series, (3) contains, at most up to a logarithm, only O
�
max

�
dimV

(1)
j ,dimV

(2)
j

 �

degrees of freedom. Nevertheless, it o↵ers nearly the same approximation power
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Fig. 1 Di↵erent representations of the sparse grid space.

as Uj provided that the object to be approximated has some extra smoothness by
means of mixed regularity. For further details, see [17].

In view of (2), factoring out with respect to the first component, one can
rewrite (3) according to

bUj =
jM

`=0

W
(1)
` ⌦

✓ j�M̀

`0=0

W
(2)
`0

◆
=

jM

`=0

W
(1)
` ⌦ V

(2)
j�`. (4)

Obviously, in complete analogy there holds

bUj =
jM

`0=0

✓ j�`0M

`=0

W
(1)
`

◆
⌦W

(2)
`0 =

jM

`=0

V
(1)
j�` ⌦W

(2)
` . (5)

We refer to Figure 1 for an illustration, where the left plot corresponds to the
representation (4) and the right plot corresponds to the representation (5). The
advantage of the representation (4) is that we can give up the requirement that the

spaces {V (2)
` } are nested. Likewise, for the representation (5), the spaces {V (1)

` }
need not to be nested any more.

In the context of the parametric di↵usion problem (1), one often aims at com-
puting Z

⇤
F
�
u(y)

�
⇢(y) dy,

where ⇢ is the density of some measure on ⇤ and F may denote a (linear) functional
or, as in the case of moment computation, it may be defined as F

�
u(y)

�
= up(y)

for p = 1, 2, . . .. Here, {V (1)
` } corresponds to a sequence of finite element spaces

and {V (2)
` } refers to a sequence of quadrature rules. If we denote the finite element

solutions of (1) by u`(y) 2 V
(1)
` and if we denote the sequence of quadrature rules

by Q`0 : C(⇤)! R, we arrive thus with respect to (4) at the decomposition

Z

⇤
F
�
u(y)

�
⇢(y) dy ⇡

jX

`=0

Qj�`�F`

�
u(y)

�
, (6)
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where

�F`

�
u(y)

�
:= F

�
u`(y)

�
� F

�
u`�1(y)

�
, F

�
u�1(y)

�
:= 0.

On the other hand, similarly to (5), we obtain the decomposition

Z

⇤
F
�
u(y)

�
⇢(y) dy ⇡

jX

`=0

�Q`F
�
uj�`(y)

�
, (7)

where

�Q` := Q` �Q`�1, Q�1 := 0.

Both representations are equivalent but have a di↵erent impact on its numerical
implementation.

Often multilevel quadrature methods are interpreted as variance reduction meth-
ods, a view which has originally been introduced for the approximation of para-
metric integrals, cf. [24,25]. Consequently, the representation (4), and thus the
decomposition (6), has been used in previous articles, see, for example, [14,15]
for stochastic ordinary di↵erential equations and [4,20,34] for partial di↵erential
equations with random data. To this end, a nested sequence of approximation
spaces is presumed such that the complement spaces

�
W

(1)
`

 
are well-defined. In

the context of partial di↵erential equations, these complement spaces are given via
the di↵erence of Galerkin projections onto subsequent finite element spaces. This
circumstance can be avoided in the case of F being a functional, cf. [34].

The decomposition (6) is well suited if the spatial dimension is small, as it is
the case for one-dimensional partial di↵erential equations with random data or
for stochastic ordinary di↵erential equations. Nevertheless, in two or three spatial
dimensions, the construction of nested approximation spaces might be di�cult or
even not be possible at all. Sometimes, in view of adaptive refinement strategies,
it might be favourable to give up nestedness. In the present article, we will employ
the decomposition (7) which is based on the representation (5). It allows for non-
nested finite element spaces. Thus, it is conceptually simpler and easy to implement
since a black-box finite element solver can be directly employed. Moreover, using
nested quadrature formulae, a considerable speed-up is achieved in comparison to
the conventional multilevel quadrature which is based on the representation (6),
see Theorem 2.

The rest of the article is organized as follows. We introduce the parametric,
elliptic model problem of interest in Section 2. It is motivated by considering ran-
dom di↵usion problems in Section 3. Then, the next two sections are dedicated to
the discretization, namely the quadrature rule for the parametric variable (Sec-
tion 4) and the finite element discretization for the physical domain (Section 5).
The multilevel quadrature for the model problem is discussed in Section 6. In par-
ticular, we show the equivalence of the two representations (6) and (7). Then, in
Section 7, we present the error analysis for the latter representation. Finally, in
Section 8, we provide numerical results to validate our approach.

Throughout this article, in order to avoid the repeated use of generic but
unspecified constants, we mean by C . D that C can be bounded by a multiple of
D, independently of parameters which C and D may depend on. Obviously, C & D

is defined as D . C, and C ⇠ D as C . D and C & D.
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2 Problem setting

For some m 2 N, let ⇤ := [�1, 1]m denote the parameter domain. Morever, we
introduce on ⇤ the measure ⇢(y) dy which is induced by the product density
function

⇢(y) :=
mY

k=1

⇢k(yk).

Next, let D ⇢ Rn, n = 2, 3, be either a convex, polygonal domain or a C2-domain
in order to allow for H2-regularity of our model problem in the first place. Then,
we consider the parametric di↵usion problem

find u 2 Lp
⇢

�
⇤;H1

0 (D)
�
such that

� div
�
↵(y)ru(y)

�
= f in D for almost every y 2 ⇤,

(8)

where ↵ : D ⇥⇤! R with

↵(x,y) = '0(x) +
mX

k=1

p
�k'k(x)yk (9)

and f 2 L2(D). Note that u 2 Lp
⇢

�
⇤;H1

0 (D)
�
guarantees finite p-th order moments

of the solution. Hence, p = 2 is su�cient for us in the sequel.
By the Lax-Milgram theorem, unique solvability of the parametric di↵usion

problem (8) in L2
⇢

�
⇤;H1

0 (D)
�
follows immediately if we impose the condition

0 < ↵min  ↵(y)  ↵max <1 in D (10)

for all y 2 ⇤ on the di↵usion coe�cient. Moreover, we obtain the stability estimate

ku(y)kH1(D) 
1

amin
kfkH�1(D) .

1
amin

kfkL2(D) for almost every y 2 ⇤.

Therefore, the solution to (8) is essentially bounded with respect to y 2 ⇤.
Here and in the sequel, for a given Banach space X , the space Lp

⇢(⇤;X ), 1  p 
1, denotes the Bochner space which contains all equivalence classes of strongly
measurable functions v : ⇤! X whose norm

kvkLp
⇢(⇤;X ) :=

8
>><

>>:

✓Z

⇤
kv(y)kpX ⇢(y) dy

◆1/p

, p <1

ess sup
y2⇤

kv(y)⇢(y)kX , p =1

is finite. If p = 2 and X is a separable Hilbert space, then the Bochner space is
isomorphic to the tensor product space L2

⇢(⇤) ⌦ X . Finally, the space C(⇤;X )
consists of all continuous mappings v : ⇤! X .

In [35], it has been proven that the solution u of (8) is analytical as mapping
u : ⇤ ! H1

0 (D). Moreover, it has been shown there that u is even an analyti-
cal mapping u : ⇤ ! W := H1

0 (D) \ H2(D) given that the {'k} in (9) belong
to W 1,1(D). This constitutes the necessary mixed regularity for a sparse tensor
product discretization, see e.g. [21]. A similar result for di↵usion problems with
coe�cients of the form exp

�
↵(x,y)

�
has been shown in [27].
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Since u is supposed to be in L2
⇢

�
⇤;H1

0 (D)
�
, we can compute its expectation

E[u] =
Z

⇤
u(y)⇢(y) dy 2 H1

0 (D) (11)

and its variance

V[u] = E[u2]� E[u]2 =

Z

⇤
u2(y)⇢(y) dy � E[u]2 2W 1,1

0 (D). (12)

We will focus in the sequel on the e�cient numerical computation of these possibly
high-dimensional integrals.

Remark 1 Note that, in this article, we restrict ourselves to the situation of a fixed
dimension m. This means that the constants which appear in our analysis may
depend on m. Nevertheless, we emphasize that the presented quadrature methods
are also feasible when m tends to infinity if proper modifications are made, see e.g.
[9,28,36] for details. In the latter case, one has to examine the decay of the sequence�
k
p
�k'kkW 1,1(D)

 
k
, cf. (9), in order to derive results that are independent of the

dimensionality m.

3 The underlying random model

Let (⌦,⌃,P) be a complete and separable probability space with �-field ⌃ ⇢ 2⌦

and probability measure P. We intend to compute the expectation

E[u] =
Z

⌦

u(!) dP(!) 2 H1
0 (D)

and the variance

V[u] =
Z

⌦

�
u(!)� E[u]

 2
dP(!) 2W 1,1

0 (D)

of the random function u(!) 2 H1
0 (D) which solves the stochastic di↵usion problem

�div
�
↵(!)ru(!)

�
= f in D for almost every ! 2 ⌦. (13)

For sake of simplicity, we assume that the stochastic di↵usion coe�cient is
given by a finite Karhunen-Loève expansion

↵(x,!) = E[↵](x) +
mX

k=1

p
�k'k(x) k(!) (14)

with pairwise L2-orthonormal functions 'k 2 L1(D) and stochastically indepen-
dent random variables  k(!) 2 [�1, 1]. Especially, it is assumed that the random
variables admit continuous density functions ⇢k : [�1, 1] ! R with respect to the
Lebesgue measure.

In practice, one generally has to compute the expansion (14) from the given
covariance kernel

Cov[↵](x,x0) =
Z

⌦

�
↵(x,!)� E[↵](x)

 �
↵(x0,!)� E[↵](x0)

 
dP(!).
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If the expansion contains infinitely many terms, it has to be appropriately trun-
cated which will induce an additional discretization error. For details, we refer the
reader to [13,23,29,33].

The assumption that the random variables { k(!)} are stochastically indepen-
dent implies that the respective joint density function and the joint distribution
of the random variables are given by

⇢(y) :=
mY

k=1

⇢k(yk) and dP⇢(y) := ⇢(y)dy.

Thus, we are able to reformulate the stochastic problem (13) as a parametric,
deterministic problem in L2

⇢(⇤). To this end, the probability space ⌦ is identified
with its image ⇤ with respect to the measurable mapping

 : ⌦ ! ⇤, ! 7!  (!) :=
�
 1(!), . . . , m(!)

�
.

Hence, the random variables  k are substituted by coordinates yk 2 [�1, 1]. This
leads to an a�ne di↵usion coe�cient of the form (9) and finally to the parametric
di↵usion problem (8).

4 Quadrature in the parameter space

Having the solution u 2 L2
⇢

�
⇤;H1

0 (D)
�
of (8) at hand, its expectation and variance

are then given by the integrals (11) and (12). To compute these integrals, we shall
provide a sequence of quadrature formulae {Q`} for the Bochner integral

Int : L1
⇢(⇤;X )! X , Int v =

Z

⇤
v(y)⇢(y) dy

where X ⇢ L2(D) denotes a Banach space. The quadrature formula

Q` : L
1
⇢(⇤;X )! X , (Q`v)(x) =

NX̀

i=1

!`,iv(x, ⇠`,i)⇢(⇠`,i) (15)

is supposed to provide the error bound

k(Int�Q`)vkX . "`kvkH(⇤;X ) (16)

uniformly in ` 2 N, where H(⇤;X ) ⇢ L2
⇢(⇤,X ) is a suitable Bochner space.

The following particular examples of quadrature rules (15) are considered in
our numerical experiments:

• The Monte Carlo method satisfies (16) only with respect to the root mean
square error. Namely, it holds

q
E
�
k(Int�Q`)vk2X

�
. "`kvkH(⇤;X )

with "` = N
�1/2
` and H(⇤;X ) = L2

⇢(⇤;X ).
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• The standard quasi Monte Carlo method leads typically to "` = N�1
` (logN`)

m

with the Bochner space H(⇤;X ) = W 1,1
mix(⇤;X ) of all equivalence classes of

functions v : ⇤! X with finite norm

kvkW 1,1
mix

(⇤;X )
:=

X

kqk11

Z

⇤

����
@kqk1

@yq11 @y
q
2

2 · · · @yqmm
v(y)

����
X
dy <1, (17)

see e.g. [31]. Note that this estimate requires that the densities satisfy ⇢k 2
W 1,1([�1, 1]). For the Halton sequence, cf. [19], it can even be shown that
"` = N��1

` for arbitrary � > 0 given that the spatial functions in (9) satisfy
k
p
�k'kkW 1,1(D) . k�3�" for arbitrary " > 0, see [28,36].

• Let the densities ⇢k be in W r,1([�1, 1]). If v : ⇤ ! X has mixed regularity of
order r with respect to the parameter y, i.e.

kvkW r,1
mix

(⇤;X ) := max
k↵k1r

��@↵y v
��
L1(⇤;X )

<1, (18)

then one can apply a (sparse) tensor product Clenshaw-Curtis quadrature rule.
This yields the convergence rate "` = 2�`r`m�1, where N` ⇠ 2``m�1 and
H(⇤;X ) = W r,1

mix (⇤;X ), see [32].1

For our purposes, we shall assume that the number N` of points of the quadra-
ture formula Q` is chosen such that the corresponding accuracy is

"` = 2�`. (19)

Then, for the respective di↵erence quadrature �Q` := Q`�Q`�1, we immediately
obtain by combining (16) and (19) the error bound

k�Q`vkX = k(Q` �Q`�1)vkX
 k(Int�Q`)vkX + k(Int�Q`�1)vkX
. 2�`kvkH(⇤;X ).

5 Finite element approximation in the spatial variable

In order to apply the quadrature formula (15), we shall calculate the solution
u(y) 2 H1

0 (D) of the di↵usion problem (8) in certain points y 2 ⇤. To this end,
consider a not necessarily nested sequence of shape regular and quasi-uniform
triangulations or tetrahedralizations {Tj} of the domain D, respectively, each of
which with the mesh size hj ⇠ 2�j . If the domain is not polygonal, then we obtain
a polygonal approximation Dj of the domain D by replacing curved edges and
faces by planar ones.

In order to deal only with the fixed domain D and not with the di↵erent
polygonal approximations Dj , we follow [5] and extend functions defined on Dj

by zero onto D \Dj . Hence, given the triangulation or the tetrahedralization {Tj},
we define the spaces

S1
j (D) := {v 2 C(D) : v|⌧ is a linear polynomial for all ⌧ 2 Tj

and v(x) = 0 for all nodes x 2 @D}

1 The Clenshaw-Curtis quadrature converges exponentially if the integrand v : ⇤ ! X and
the density ⇢ are analytic.
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of continuous, piecewise linear finite elements. Notice that it does hold S1
j (D) 2

H1(D) but not necessarily S1
j (D) 62 H1

0 (D). We shall further introduce the finite

element solution uj(y) 2 S1
j (D) of (8) which satisfies

Z

D

↵(x,y)ruj(x,y)rwj(x) dx =

Z

D

f(x)wj(x) dx for all wj 2 S1
j (D). (20)

If D 6= Dj , the bilinear form which underlies (20) is also well defined for functions
from S1

j (D) since S1
j (D) ⇢ H1(D). Nevertheless, in order to maintain the ellipticity

of the bilinear form, we shall assume that the mesh size h0 is su�ciently small to
ensure that functions in S1

j (D) are zero on a part of the boundary of D.

It is shown in e.g. [5,6] that the finite element solution uj(y) 2 S1
j (D) of (20)

admits the following approximation properties.

Lemma 1 Consider a convex, polygonal domain D or a domain with C2-smooth bound-

ary and let f 2 L2(D). Then, the finite element solution uj(y) 2 S1
j (D) of the di↵usion

problem (8) and respectively its square u2j (y) satisfy the error estimate

��up(y)� upj (y)
��
X . 2�jkfkpL2(D)

, (21)

where X = H1(D) for p = 1 and X = W 1,1(D) for p = 2. The constants hidden in

(21) depend on ↵min and ↵max, but not on y 2 ⇤.

Proof The parametric di↵usion problem (8) is H2-regular since D is convex or
C2-smooth and f 2 L2(D). Hence, the first error estimate for p = 1 immediately
follows from the standard finite element theory, see e.g. [5,6]. We further find by
the generalized Hölder inequality for p = 2 that

��u2(y)� u2j (y)
��
W 1,1(D)

=
���u(y)� uj(y)

��
u(y) + uj(y)

���
W 1,1(D)

 ku(y)� uj(y)kH1(D)

�
ku(y)kH1(D) + kuj(y)kH1(D)

 
.

By using

kuj(y)kH1(D)  ku(y)kH1(D) + ku(y)� uj(y)kH1(D) .
�
1 + 2�j�kfkL2(D),

we arrive at the desired estimate (21) for p = 2. ut

6 The multilevel quadrature method

Taking into account the results from the previous sections, we are now able to intro-
duce the multilevel quadrature in a formal way. To that end, let u 2 H(⇤;H2(D)),
where the underlying Bochner space is determined by the quadrature under con-
sideration. For the sequence {u`(y)}` of finite element solutions, there obviously
holds

lim
`!1

u`(y) = u(y)

uniformly in y 2 ⇤. Thus, if F is continuous, we obtain

lim
`!1

F
�
u`(y)

�
= F

�
u(y)

�
(22)
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also uniformly in y 2 ⇤. Moreover, we have for the sequence {Q`}` of quadrature
rules and for a su�ciently smooth integrand that

lim
`!1

Q`v =

Z

⇤
v(y)⇢(y) dy. (23)

The combination of the relations (22) and (23) leads to

Z

⇤
F
�
u(y)

�
⇢(y) dy =

1X

`=0

�Q`F
�
u(y)

�
=

1X

`=0

�Q`

1X

`0=0

�F`0
�
u(y)

�
.

Since �Q` is linear and continuous, we end up with

Z

⇤
F
�
u(y)

�
⇢(y) dy =

1X

`,`0=0

�Q`�F`0
�
u(y)

�
.

Truncating this sum in accordance with ` + `0  j then yields the multilevel
quadrature representation (6) if we recombine the operators �Q`. Analogously,
we obtain the representation (7) if we recombine the operators �F`. Note that
the sequence of the application of the operators �Q` and �F`0 is crucial here.
Moreover, we have repeatedly exploited the linearity of �Q`.

In the remainder of this section, for the sake of completeness, we explicitly
discuss our multilevel quadrature which is based on the representation (7). We
refer to Figure 2 for a graphical illustration of this realization of the multilevel
quadrature method. The following theorem shows that the representations (6)
and (7) are indeed mathematically equivalent if we set F

�
u�1(y)

�
:= 0.

?

re
so
lu
ti
o
n

S1
0

S1
1

S1
2

S1
3

S1
4

�Q4�Q3�Q2�Q1�Q0

Fig. 2 Combinations of the quadrature operators {�Q`} and the finite element spaces
{S1

` (D)} in the multilevel quadrature.

Theorem 1 There holds the identity

jX

`=0

Qj�`�F`

�
u(y)

�
=

jX

`=0

�Q`F
�
uj�`(y)

�
.
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Proof Straightforward calculation yields

jX

`=0

Qj�`�F`(u(y)
�
=

jX

`=0

Qj�`

⇣
F
�
u`(y)

�
� F

�
u`�1(y)

�⌘

=
jX

`=0

Qj�`F
�
u`(y)

�
�

jX

`=0

Qj�`F
�
u`�1(y)

�

=
jX

`=0

Qj�`F
�
u`(y)

�
�

j�1X

˜̀=�1

Qj�(˜̀+1)
F
�
u˜̀(y)

�
,

where we substituted ˜̀ := `�1. Next, we exploit for ˜̀= �1 that QjF
�
u�1(y)

�
= 0

and likewise for ˜̀= j that Q�1F
�
uj(y)

�
= 0, ending up with

jX

`=0

Qj�`F
�
u`(y)

�
�

j�1X

˜̀=�1

Qj�(˜̀+1)
F
�
u˜̀(y)

�

=
jX

`=0

Qj�`F
�
u`(y)

�
�

jX

˜̀=0

Qj�˜̀�1
F
�
u˜̀(y)

�
=

jX

`=0

�Qj�`F
�
u`(y)

�
.

ut
Thus, all available results for the representation (6) of the multilevel quadra-

ture, see e.g. [20,21] and the references therein, carry over to the representation
(7). Moreover, (7) now also allows for non-nested meshes and even for adaptively
refined meshes.

Besides being more flexible, we emphasize that a further advantage of (7) is
an improvement of the cost if nested quadrature formulae are employed. Using (6)
implies that each sample of �F`

�
u(y)

�
involves two solves of the di↵usion problem

(13) for a specific sample point y. In contrast to this, in (7), we have to solve (13)
for each sample point only once. More precisely, there holds the following result.

Theorem 2 Denote the cost of solving (8) for a specific y on level j, including the cost

of evaluating F , by Cj , where Cj ⇠ �jC0 for some � > 1. Moreover, assume that the

quadrature method satisfies Nj ⇠ ✓jN0 for some ✓ > 1. Then, the computational cost

to evaluate the representation (6) is of order (1 + 1
� )N0C0

Pj
`=0 ✓

j�`�`, whereas the

computational cost to evaluate the representation (7) is, in case of nested quadrature

rules, of order N0C0
Pj

`=0 ✓
j�`�`.

Proof For evaluating the representation (6), the cost is of the order

jX

`=0

Nj�`(C` + C`�1) ⇠
✓
1 +

1
�

◆
N0C0

jX

`=0

✓j�`�`.

Moreover, the cost for the computation of the di↵erence quadrature �Qj�` is
of the order Nj�`, since the quadrature points are nested. Thus, we obtain for
representation (7) that

jX

`=0

Nj�`C` ⇠ N0C0
jX

`=0

✓j�`�`.

ut
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For our setup with shape regular and quasi-uniform meshes, a finite element
solver2 with linear over-all complexity leads to � = 2, 4, 8 in one, two, there spatial
dimensions, respectively. Thus, in two spatial dimensions, we achieve a speed-up
of at least 25%. In three spatial dimensions, we achieve a speed-up of at least
12.5%. This gain stems only from the reordering of the terms in the multilevel
quadrature and the application of a nested quadrature method. Nevertheless, we
emphasize that non-nested quadrature formulae are feasible in the representation
(7) as well. This would result in a combination-technique-like representation of the
multilevel quadrature, cf. [18]. In this case, we would end up with the same cost
as for evaluating the representation (6).

7 Error analysis

In the sequel, we restrict ourselves for reasons of simplicity to the situations F(u) =
u and F(u) = u2 which yield the expectation and the second moment of the
solution to (8). This means that we consider

Intup ⇡
jX

`=0

�Q`u
p
j�` =

jX

`=0

Qj�`

�
up` � up`�1

�
for p = 1, 2. (24)

We derive a general approximation result for the multilevel quadrature based on
the generic estimate

��(Int�Q`)(u
p � up`0)

��
X . 2�(`+`0)kfkpL2(D)

for p = 1, 2 (25)

with f being the right hand side of (8). In particular, any quadrature rule that sat-
isfies this estimate gives rise to a multilevel quadrature method. In the sequel, we
provide this estimate for the multilevel (quasi-) Monte Carlo quadrature (MLMC
and MLQMC) as well as for the multilevel Clenshaw-Curtis quadrature (MLCC).

Obtaining the generic estimate (25) for the Monte Carlo quadrature is straight-
forward under the condition that the integrand is square integrable with respect to
the parameter y, cf. [4,20]. Nevertheless, since the Monte Carlo quadrature does
not provide deterministic error estimates, we have to replace the norm in X by
the L2

⇢(⇤;X )-norm. Since the multilevel Monte Carlo quadrature has extensively
been studied in numerous articles, see e.g. [4,8,20,34], we skip the error analysis
of the method here.

Things become a little more involved for quadrature methods that exploit
the smoothness of the integrand with respect to the parameter. The next lemma
from [21] provides the smoothness of the Galerkin projection with respect to the
parameter y 2 ⇤. Note that straighforward modifications have to be made in the
proof if D 6= Dj .

Lemma 2 For the error �`(y) := (u � u`)(y) of the Galerkin projection, there holds

the estimate

��@↵y �`(y)
��
H1(D)

. 2�`|↵|!c|↵|�↵kfkL2(D) for all |↵| � 0 (26)

2 Here we assume an algorithm with optimal complexity for the solution of the associated
discrete systems like e.g. a multiplicative or additive multigrid method etc.
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with a constant c > 0 dependent on amin and amax, where �k := k
p
�k'kkW 1,1(D),

cf. (9), and � := {�k}mk=1.

With this lemma, it is straightforward to show the following result related to
the second moment, cf. [21].

Lemma 3 The derivatives of the di↵erence u2 � u2` satisfy the estimate

��@↵y
�
u2 � u2`

�
(y)
��
W 1,1(D)

. 2�`|↵|!c|↵|�↵kfk2L2(D) for all |↵| � 0 (27)

with a constant c > 0 dependent on amin and amax.

With the aid of Lemmata 2 and 3 together with the results from [19], we obtain
the generic error estimate for the MLQMC with Halton points. Halton points are
nested and therefore well suited for our multilevel quadrature method.

Lemma 4 Let u 2 L2
⇢

�
⇤;H1

0 (D)
�
be the solution to (8) and u` the associated Galerkin

projection on level `. Moreover, let ⇢k 2W 1,1(�1, 1) for k = 1, . . . ,m. Then, for the

quasi-Monte Carlo quadrature based on Halton points, there holds

��(Int�Q`)(u
p � up`0)

��
X . 2�(`+`0)kfkpL2(D)

for p = 1, 2 (28)

with N` ⇠ 2`/(1��) for arbitrary � > 0.

Proof The quadrature error of the quasi-Monte Carlo quadrature based on the
point set PN = {⇠1, . . . , ⇠N} ⇢ [0, 1]m satisfies the Koksma-Hlawka inequality

|(Int�QPN
)v|  D?1(PN )VHK(v),

where the star discrepancy is given by

D?1(PN ) := sup
⇠2[0,1]m

����Vol
�
[0, ⇠)

�
� 1

N

NX

i=1

[0,⇠)(⇠i)

����

and the variation in the sense of Hardy and Krause is given by

VHK(v) :=
X

k↵k1=1

Z

[0,1]|↵|

��@↵⇠ v(⇠↵,1)
��d⇠↵,

cf. [31]. In the above definition, the vector (⇠↵,1) is an element of the |↵|-dimensio-
nal face {⇠ 2 [0, 1]m : ⇠k = 1 if ↵k = 0}. For the Halton sequence, it can be shown
that D?1(PN ) = O

�
N�1 logm(N)

�
, where the constant in the big-O-notation also

depends on m, cf. [1,31].
We parameterize the parameter domain ⇤ over [0, 1]m by the linear transform

⇠ 7! y := 2⇠� 1 and modify the quasi-Monte Carlo quadrature accordingly. Thus,
we obtain with û := u(2⇠ � 1) and û := u(2⇠ � 1) that

��(Int�Q2PN�1)(u
p � up`0)

��2
X =

��2m(Int�QPN
)(ûp � ûp`0)

��2
X

 [D?1(PN )]222m
��VHK(û

p � ûp`0)
��2
X .

(29)
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We estimate further by the triangle inequality and Bochner’s inequality

��VHK(û
p � ûp`0)

��2
X


✓ X

k↵k1=1

Z

[0,1]|↵|

��@↵⇠
⇥
(ûp � ûp`0)(⇠↵,1)⇢(⇠↵,1)

⇤��
X d⇠↵

◆2

.

The Leibniz rule together with Lemmata 2 and 3 yields then

��@↵⇠
⇥
(ûp � ûp`0)(⇠↵,1)⇢(⇠↵,1)

⇤��
X


X

↵0↵

 
↵
↵0

!
��@↵�↵0

⇠ (ûp � ûp`0)(⇠↵,1)
��
X
��@↵

0

⇠ ⇢(⇠↵,1)
��
L1([0,1]m)

. 2�`0
X

↵0↵

 
↵
↵0

!
|↵�↵0|!(2c)|↵�↵0|�↵�↵0

kfkpL2(D)
2|↵

0|⇢↵
0
,

where ⇢ := [k⇢1kW 1,1(�1,1), . . . , k⇢mkW 1,1(�1,1)]. With the identity

X

↵0↵
|↵0|=j

 
↵
↵0

!
=

 
|↵|
j

!
,

we thus arrive at

2�`0
X

↵0↵

 
↵
↵0

!
|↵�↵0|!(2c)|↵�↵0|�↵�↵0

kfkpL2(D)
2|↵

0|⇢↵
0

= 2�`0 |↵|!2|↵|kfkpL2(D)

|↵|X

j=0

c|↵�↵0|�↵�↵0
⇢↵

0

 2�`0(|↵|+ 1)!kfkpL2(D)
c̃|↵|

with c̃ = 2maxk=1,...,mmax{c�k, ⇢k}.

Next, by reorganizing the summands in the variation, we obtain

X

k↵k1=1

Z

[0,1]|↵|

��@↵⇠
⇥
(ûp � ûp`0)(⇠↵,1)⇢(⇠↵,1)

⇤��
X d⇠↵

. 2�`0kfkpL2(D)

mX

j=1

X

k↵k
1

=j

(j + 1)!c̃j =
mX

j=1

 
m

j

!
(j + 1)!c̃j

 C(m)2�`0kfkpL2(D)

with C(m) := (m+ 1)!1�c̃m+1

1�c̃ . Inserting this bound into (29) gives us finally

��(Int�Q2PN�1)(u
p � up`0)

��2
X

. [D?1(PN )]222m
�
C(m)2�`0kfkpL2(D)

�2
.
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Since it asymptotically holds logm(N) . N�� as N ! 1 for every � > 0, we
conclude with N` ⇠ 2`/(1��) that D?1(PN ) . 2�`. Inserting this into the last
inequality and taking square roots on both sides yields the desired assertion. ut

Finally, we show the respective result on the quadrature error for the sparse
grid quadrature based on the nested Clenshaw-Curtis abscissae, cf. [11,32]. These
are given by the extrema of the Chebyshev polynomials

⇠k = cos

✓
(k � 1)⇡
n� 1

◆
for k = 1, . . . , n,

where n = 2j�1 + 1 if j > 1 and n = 1 with ⇠1 = 0 if j = 1.

Lemma 5 Let u 2 L2
⇢

�
⇤;H1

0 (D)
�
be the solution to (8) and let u` be the associated

Galerkin projection on level `. Moreover, let ⇢k(yk) 2 Cr([�1, 1]) for k = 1, . . . ,m.

Then, for the sparse grid quadrature based on Clenshaw-Curtis abscissae, there holds

��(Int�Q`)(u
p � up`0)

��
X . 2�(`r+`0)`m�1kfkpL2(D)

for p = 1, 2 (30)

provided that N` ⇠ 2``d�1.

Proof It is shown in [32] that the number N` of quadrature points of the sparse
tensor product quadrature Q` with Clenshaw-Curtis abscissae is of the order
O(2``d�1). In addition, we have for functions v : ⇤ ! R with mixed regularity
the following error bound:

|(Int�Q`)v| . 2�`r`(m�1) max
k↵k1r

��@↵y v
��
L1(⇤)

.

Hence, to prove the desired assertion, we have to provide estimates on the
derivatives @↵y

�
up(y) � up(y)

�
⇢(y). This can be accomplished by the Leibniz for-

mula as in the proof of the previous lemma:
��@↵y

⇥
(ûp � up`0)(y)⇢(y)

⇤��
X


X

↵0↵

 
↵
↵0

!
��@↵�↵0

y (up � up`0)(y)
��
X
��@↵

0

y ⇢(y)
��
L1(⇤)

. 2�`0
X

↵0↵

 
↵
↵0

!
|↵�↵0|!c|↵�↵0|�↵�↵0

kfkpL2(D)
⇢↵

0

 2�`0(|↵|+ 1)!kfkpL2(D)
c̃|↵|

with c̃ = maxk=1,...,mmax{c�k, ⇢k}. We set C(r) := maxk↵k1r(|↵|+ 1)!c̃|↵| and
obtain

��(Int�Q`)(u
p � up`0)

��2
X .

�
2�`r`(m�1)2�`0C(r)kfkpL2(D)

�2
.

Then, exploiting that the integrand is independent of the parameter and taking
square roots on both sides completes the proof. ut

Remark 2 As for the quasi-Monte Carlo quadrature, by slightly decreasing r in the
convergence result for the sparse tensor product quadrature, we may remove the
factor `m�1 since `m�1 . 2`� for arbitrary � > 0.
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Estimates of the type (25) are crucial to show the following approximation
result for the multilevel quadrature. More general, every quadrature that satisfies
an estimate of type (25) is feasible for a related multilevel quadrature method.

Theorem 3 Let {Q`} be a sequence of quadrature rules that satisfy an estimate of

type (25), where u 2 L2
⇢

�
⇤, H1

0 (D)
�
is the solution to (8) that satisfies (21). Then,

the error of the multilevel estimator for the mean and the second moment defined in

(24) is bounded by

���� Intu
p �

jX

`=0

�Q`u
p
j�`

����
X

. 2�jjkfkpL2(D)
, (31)

where X = H1(D) if p = 1 and X = W 1,1(D) if p = 2.

Proof We shall apply the following multilevel splitting of the error

���� Intu
p �

jX

`=0

�Q`u
p
j�`

����
X

=

���� Intu
p �Qju

p +
jX

`=0

�Q`u
p �

jX

`=0

�Q`u
p
j�`

����
X


�� Intup �Qju

p
��
X +

jX

`=0

���Q`

�
up � upj�`

���
X .

(32)

The first term just reflects the quadrature error and can be bounded with similar
arguments as in Lemmata 4 and 5 according to

�� Intup �Qju
p
��
X . 2�jkfkpL2(D)

with a constant that depends on m. The term inside the sum satisfies with (25)
that

���Q`

�
up � upj�`

���
X


��(Int�Q`)

�
up � upj�`

���
X +

��(Int�Q`�1)
�
up � upj�`

���
X

. 2�(`+j�`)kfkpL2(D)
+ 2�(`�1+j�`)kfkpL2(D)

. 2�jkfkpL2(D)
.

Thus, we can estimate (32) as

���� Intu
p �

jX

`=0

�Q`u
p
j�`

����
X

. 2�jkfkpL2(D)
+

jX

`=0

2�jkfkpL2(D)

 2�j(j + 2)kfkpL2(D)
.

This completes the proof. ut

Remark 3 The factor j in the error estimate can obviously be avoided if the quadra-
ture accuracy is chosen in such a way that it provides an additional convergent
series, e.g. `�1�� for arbitrary � > 0.
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Remark 4 Note that we can achieve in our framework also nestedness for the sam-
ples in the Monte Carlo method. This is due to the fact that independent samples
have to be used only for the estimators Q` for ` = 0, . . . , j. But from the proof of
the previous theorem, we see that Q` has not to be sampled independently from
Q`0 for ` 6= `0. Thus, we may employ the same underlying set of sample points on
each level.

8 Numerical results

The numerical examples in this section are performed in three spatial dimensions.
For the finite element discretization, we employ Matlab and the Partial Di↵eren-
tial Equation Toolbox3. In both examples, the error is measured by interpolating
the obtained solutions on a su�ciently fine grid and comparing it there to a refer-
ence solution. In our examples, we consider the MLMC, the MLQMC based on the
Halton sequence and the MLCC. Moreover, we set for our problems the density
to ⇢(y) = (1/2)m.

8.1 An analytical example

With our first example, we intend to validate the proposed method. To this end,
we consider a simple quadrature problem on the unit ball D = {x 2 R3 : kxk2 <

1}. Figure 3 depicts di↵erent tetrahedralizations for this geometry, which are in
particular not nested. We aim at computing the expectation of the solution u to
the parametric di↵usion equation

�div
�
a(y)ru(y)

�
= 1 in D, u(y) = 0 on @D, y 2 ⇤,

where

↵(y) =

✓ 6Y

i=1

3
5

�
2� y2i

�◆�1

.

Since the di↵usion coe�cient is independent of the spatial variable, we can refor-
mulate the equation according to

��u(y) =
6Y

i=1

3
5

�
2� y2i

�
in D, u(y) = 0 on @D, y 2 ⇤.

Thus, since the Bochner integral interchanges with closed operators, see e.g. [26],
we obtain for the expectation of u the equation

��E[u(y)] = E
 6Y

i=1

3
5

�
2� y2i

��
= 1 in D, u(y) = 0 on @D, y 2 ⇤. (33)

Obviously, this equation is solved by

E[u](x) = 1
6
(1� kxk2)2.

3 Release 2015a, The MathWorks, Inc., Natick, Massachusetts, United States.
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Fig. 3 Tetrahedralizations of four di↵erent resolutions for the unit ball.

In order to measure the error to the approximate solution, we interpolate the
exact solution to a mesh consisting of 12 047 801 finite elements (this is level j = 8).
This involves a mesh size of h8 = 0.0047. For the levels j = 0, . . . , 7, the mesh sizes
are given in Table 1.

j 0 1 2 3 4 5 6 7
hj 1.2 0.6 0.3 0.15 0.075 0.0375 0.0188 0.0094

Table 1 Mesh sizes on the di↵erent levels for the unit ball.

On the left side of Figure 4, the error for the MLQMC, the MLCC and the
MLMC is visualized. It is plotted against the target mesh size for the meshing
algorithm in the Matlab Partial Di↵erential Equation Toolbox. For the MLMC,
in order to approximate the root mean square error, we average five realizations of
the related approximation error. It turns out that all quadrature methods provide
a linear rate of convergence. Especially, the logarithmic factor j from the error
estimate (31) is not observed here. Moreover, we chose N0 = 10 for the Monte
Carlo quadrature and for the quasi-Monte Carlo quadrature and set ✓ = 4 and
✓ = 2, i.e. N` = 10 · 4` and N` = 10 · 2`, respectively, cf. Theorem 2. For the
Clenshaw-Curtis quadrature, the number of samples are chosen with respect to
r = 1.4 The number of samples for the finest level of resolution, i.e. j = 7, including

4 The Clenshaw-Curtis quadrature converges exponentially since the integrand is analytic.
The choice r = 1 is conservative and reflects the pre-asymptotic regime.
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Fig. 4 H1-errors of the di↵erent quadrature methods (left) and number of samples on each
level in case of j = 7 (right) for the unit ball.

the sparse grid quadrature, is found on the right of Figure 4. It turns out that the
quasi-Monte Carlo quadrature requires the least number of quadrature points.
In contrast, the number of points for the Monte Carlo quadrature and for the
Clenshaw-Curtis quadrature are nearly the same. Nevertheless, for fixed m and
r = 1, we expect asymptotically ✓ = 2 for the Clenshaw-Curtis quadrature as well,
which is the same rate as for the quasi-Monte Carlo quadrature.

8.2 A more complex example

In our second example, the spatial domain is given by a model of the Zarya mod-
ule of the International Space Station (ISS), which was the first module to be
launched.5 Figure 5 shows di↵erent tetrahedralizations of this geometry with de-
creasing mesh size. Note that the geometry can be imbedded into a cylinder with
radius 0.52 and height 1.58.

j 0 1 2 3 4 5 6
hj 0.5 0.25 0.125 0.0625 0.0313 0.0156 0.0078

Table 2 Mesh sizes on the di↵erent levels for the Zarya geometry.

In this example, the parametric di↵usion coe�cient is given by

↵(x,y) = 1 +
exp(kxk22)

20

✓
sin(2⇡x1)y1 +

1
2
sin(2⇡x2)y2 +

1
4
sin(2⇡x3)y3

+
1
8
sin(4⇡x1) sin(4⇡x2)y4 +

1
16

sin(4⇡x1) sin(4⇡x3)y5

+
1
32

sin(4⇡x2) sin(4⇡x3)y6

◆

and f = 10. For x 2 D and y 2 ⇤, the di↵usion coe�cient varies approximately in
the range [0.19, 1.81]. Figure 6 shows the mean (left) and the variance (right) of the
reference solution. It has been computed on a mesh with 13 069 396 tetrahedrons

5 We thank Martin Siegel (Rheinbach, Germany) who kindly provided us with this model.
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Fig. 5 Tetrahedralizations of four di↵erent resolutions for the Zarya geometry.

Fig. 6 Mean (left) and variance (right) of the model problem on the Zarya geometry.

resulting in a mesh size of h = 0.0039 by 10 000 quasi-Monte Carlo samples based
on the Halton sequence. For the levels j = 0, . . . , 6, the mesh sizes are given in
Table 2.

Figure 7 visualizes the errors of the approximate expectation and second mo-
ment for the di↵erent multilevel quadrature methods under consideration. The
number of quadrature points for the presented methods are chosen as in the previ-
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ous example. In the mean, we observe for all methods the theoretical rate of j2�j .
However, for the second moment, the logarithm in the error seems not to show up.
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Fig. 7 H1-errors of the approximate mean (left) and W 1,1-errors of the approximate second
moment (right) on the Zarya geometry for di↵erent quadrature methods.

9 Conclusion

In the present article, we have reversed the construction of the conventional mul-
tilevel quadrature. This enables us to give up the nestedness of the spatial approx-
imation spaces. Hence, black-box finite element solvers can be directly applied to
compute the solution of the underlying boundary value problem. Another aspect
of our approach is that the cost is considerably reduced by the application of
nested quadrature formulae. Both features have been demonstrated by numerical
results for the Clenshaw-Curtis quadrature and the quasi-Monte Carlo quadra-
ture based on Halton points. Of course, other nested quadrature formulae like
the Gauss-Patterson quadrature can be used as well. The application of quadra-
ture formulae which are tailored to a possible anisotropy of the integrand is also
straightforward. If non-nested quadrature formulae are applied, one arrives at a
combination-technique-like representation of the multilevel quadrature. Note fi-
nally that adaptively refined finite element meshes could be used here as well.
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