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NOVEL RESULTS FOR THE ANISOTROPIC SPARSE QUADRATURE AND

THEIR IMPACT ON RANDOM DIFFUSION PROBLEMS

A.-L. HAJI-ALI, H. HARBRECHT, M. PETERS, AND M. SIEBENMORGEN

Abstract. This article is dedicated to the anisotropic sparse Gaussian quadrature for functions
which are analytically extendable into an anisotropic tensor product domain. Based on a novel
estimate for the cardinality of the anisotropic index set, we are able to substantially improve
the error versus cost estimates of the anisotropic sparse quadrature. To validate the theoretical
findings, we use the anisotropic sparse Gaussian quadrature to compute the moments of elliptic
partial differential equations with random diffusion.

1. Introduction

This article is dedicated to the construction of anisotropic sparse quadrature methods, where
we emphasize on Gaussian type quadratures. Anisotropic sparse quadrature methods methods
can be seen as a generalization sparse Smolyak type quadratures, cf. [21], since they are explicitly
tailored to the anisotropic behaviour of the underlying integrand. Exploiting these anisotropies
leads to a remarkable improvement in the complexity of the sparse quadrature.

The main task in estimating the quadrature’s complexity is the estimation of the number of
multi-indices which are contained in the sparse tensor product index set. For the isotropic variant,
the number of indices can easily be determined by combinatorial arguments, see e.g. [7, 18]. Things
get more involved if one considers weighted sparse tensor product spaces. In this case, to the best
of our knowledge, only very rough estimates on the cardinality of the index set are known, although
several estimates can be found in the literature, see e.g. [4]. In fact, this problem is equivalent to
the estimation of the number of integer solutions of linear Diophantine inequalities (see [19] and
the references therein), which is a problem in number theory, or to the calculation of the integer
points in a convex polyhedron. Current estimates are not sharp and do not provide improved
complexity results for the anisotropic sparse quadrature in comparison with the anisotropic full
tensor product quadrature. In this article, we prove a novel formula to estimate the cardinality of
the sparse tensor product index set in the weighted case. This formula is much sharper than the
other established formulae.

A very popular application that requires efficient high-dimensional quadrature rules are para-
metric partial differential equations. They are obtained, for example, from partial differential
equations with random data by truncating the series expansions of the underlying random fields
and parametrizing with respect to the random fields’ distribution. As a representative for such
problems, we will consider here elliptic diffusion problems with random coefficients as a specific
example to quantify the performance of the anisotropic sparse quadrature. The resulting quad-
rature approach is very similar to the anisotropic sparse collocation method based on Gaussian
collocation points which has been introduced in [16, 17]. This method interpolates the random
solution in certain collocation points and represents it in the parameter space with the aid of poly-
nomials. Thus, it belongs to the class of non-intrusive methods, cf. [1]. Instead of representing
the random solution, the anisotropic sparse quadrature can be employed to directly compute the
solutions statistics, i.e. its moments, and functionals of the solution.

The remainder of this article is organized as follows. Section 2 specifies the quadrature problem
under consideration and provides the corresponding framework. The subsequent Section 3 is ded-
icated to the sparse anisotropic Gaussian quadrature method. Here, we present the construction
of the sparse quadrature and provide related error estimates based on a one dimensional, generic
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estimate. Section 5 deals with the cost complexity of the anisotropic sparse quadrature. In par-
ticular, we state here a novel estimate on the number of indices in the weighted sparse tensor
product and provide a proof of this estimate. In Section 6, we introduce diffusion problems with
random coefficients as a relevant application that profits from the improved quadrature methods.
A couple of numerical examples that are related to the application under consideration are given
in Section 7. Note that, in order to show the asymptotic convergence behaviour of the anisotropic
quadrature, we restricted ourselves to one-dimensional examples. This is to avoid dealing with the
increased computational complexity of our solver in higher spatial dimensions. Finally, we state
concluding remarks in Section 8.

Throughout this article, in order to avoid the repeated use of generic but unspecified constants,
by C ! D we mean that C can be bounded by a multiple of D, independently of the parameters
which C and D may depend on. Obviously, C " D is defined as D ! C, and C ! D as C ! D
and C " D.

2. Problem setting

Let Γ ⊂ R be a bounded or unbounded interval and denote by Γ∞ the set of all sequences
ψ : N → Γ, where ψ = {ψn}n. For a function f : Γ∞ → R and a suitable product density function
ρ(ψ), we are interested in the efficient approximation of the integral

(1)

∫

Γ∞

f(ψ)ρ(ψ) dψ.

At first, we have to state more precisely how this integral has to be understood. To that end, we
endow Γ∞ with the structure of a probability space

(

Γ∞,B∞, ρ(ψ) dψ
)

in the usual way: Let B
denote the Borel σ-field on Γ. Then, the Borel σ-field B∞ on Γ∞ is induced by the generating sets

{ψ ∈ Γ∞ : ψ1 ∈ B1, . . . ,ψm ∈ Bm} for m ≥ 1 and Bi ∈ B.

With this construction of B∞ at hand, the measure ρ(ψ) dψ with

ρ(ψ) :=
∞
∏

n=1

ρn(ψn), where

∫

Γ
ρn(ψn) dψn = 1 for all n = 1, 2, . . .,

defines a probability measure on B∞.
In order to approximate (1) numerically, we assume that there exists a sequence fm : Γm → R

such that

(2)

∣
∣
∣
∣

∫

Γ∞

f(ψ)ρ(ψ) dψ −
∫

Γm

fm(y)ρm(y) dy

∣
∣
∣
∣
! ε(m),

where ρm(y) =
∏m

n=1 ρn(yn), with a strictly decreasing null sequence ε(m). In the sequel, we aim
at approximating

(3) Ifm :=

( m
⊗

n=1

I(n)
)

fm :=

∫

Γm

fm(y)ρm(y) dy

by the anisotropic sparse tensor product quadrature. It is evident that the precision of the applied
quadrature has to increase when m increases. Moreover, the complexity usually scales exponen-
tially in m, which is referred to as the “curse of dimensionality”. Therefore, we have to keep track
of the impact of the dimension m on the error estimates. To make this impact as mild as possible,
we have to impose a special structure of the function f and the approximations fm, respectively.

Assumption 2.1. Let Σn = Σ(Γ, τn) := {z ∈ C : dist(z,Γ) ≤ τn} and assume that f is analyti-
cally extendable into Σ(τ ) :=×∞

n=1 Σn for an isotone sequence τn → ∞. In addition, we suppose
that fm is analytically extendable into Σ(τ ).

The sequence {τn}n measures the anisotropic dependence of the function f on the different
dimensions. Especially, in accordance with e.g. [14, 22] and Section 6, Assumption 2.1 guarantees
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that an N -point Gaussian quadrature formula constructed with respect to the densities ρn satisfies
an one-dimensional error estimate of the form

(4)

∣
∣
∣
∣

∫

Γ
fm(yn,y

⋆)ρn(yn) dyn−
N∑

k=1

ωkfm(ηk,y
⋆)

∣
∣
∣
∣
≤ g(τn) exp

(

−h(τn)(2N−1)
)

∥fm(y⋆)∥Cσn(Σn)

for some functions g, h : R+ → R+ and y⋆ := [y1, . . . , yn−1, yn+1, . . . , ym]. Here and in the sequel,
we set

∥fm(y⋆)∥Cσn(Σn) := max
z∈Σn

|σn(Re(z))fm(z,y⋆)|

for a suitable weight function σn : Γ → R+. In the following presentation, we restrict ourselves
to sparse Gaussian quadrature formulae. Even so, we emphasize that the approach under consid-
eration is not limited to them. Any quadrature is feasible that satisfies a one dimensional error
estimate which is similar to (4).

3. Anisotropic sparse Gaussian quadrature

We shall introduce anisotropic sparse Gaussian quadrature formulae which extend the original
idea of Smolyak’s construction from [21]. To that end, we start by considering an increasing
sequence of univariate Gaussian quadrature points

(5) θj :=
{

ηi,j
}Nj

i=1
⊂ R, Nj ∈ N, j = 1, 2, . . . ,

where N1 ≤ N2 ≤ · · ·. The associated Gaussian quadrature weights are denoted by
{

ωi,j

}Nj

i=1
and

the associated Gaussian quadrature operators are denoted by Qj .
Following the notation of [18], we introduce for j ∈ N the difference quadrature operator

(6) ∆j := Qj −Qj−1, where Q−1 := 0.

With the telescoping sum Qj =
∑j

ℓ=0 ∆ℓ, the isotropicm-fold tensor product quadrature operator,
which uses in each direction Nj quadrature points, can be written by

(7) Q(1)
j ⊗ · · ·⊗Q(m)

j =
∑

∥α∥∞≤j

∆(1)
α1

⊗ · · ·⊗∆(m)
αm

,

where the superscript index indicates the particular dimension.
The cost of applying the isotropic full tensor product quadrature operator (7) is obviously

given by the number of points Nm
j contained in it. Thus, this isotropic tensor product quadrature

extremely suffers from the curse of dimensionality. The classical sparse Gaussian quadrature,
cf. [5, 7], can overcome this problem up to a certain extent. It is based on linear combinations
of tensor product quadrature formulae of relatively small size. To define the sparse Gaussian
quadrature, we introduce as in [2, 16] for each approximation level q the sets of multi-indices

X(q,m) :=

{

0 ≤ α ∈ N
m :

m
∑

n=1

αn ≤ q

}

and

Y (q,m) :=

{

0 ≤ α ∈ N
m : q −m+ 1 ≤

m∑

n=1

αn ≤ q

}

.

The Smolyak quadrature operator, cf. [2, 7, 21], is then given by

(8) A(q,m) :=
∑

α∈X(q,m)

∆(1)
α1

⊗ · · ·⊗∆(m)
αm

.

An equivalent expression is obtained by the combination technique [10]

(9) A(q,m) =
∑

α∈Y (q,m)

(−1)q−|α|
(
m− 1

q − |α|

)

Qα, where Qα := Q(1)
α1

⊗ · · ·⊗Q(m)
αm

.

A visualization of the set of indices X(q,m) is given in Figure 1.
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Figure 1. The 21 indices contained in the sparse grid X(5, 2) on the left and
the 56 indices contained in X(5, 3) on the right.

The number of quadrature points used in (8) or (9) is considerably reduced compared to the full
tensor product quadrature. However, the Smolyak quadrature operator does not take into account
the fact that the different parameter dimensions are of different importance to the integrand fm.
Indeed, the cardinality of the set X(q,m) is given by

#X(q,m) =

(
q +m

m

)

which still grows exponentially in the dimension m. Thus, we assign a weight to each parameter
dimension and use a weighted version of the Smolyak quadrature operator.

Let w ∈ Rm
+ denote a weight vector for the different parameter dimensions. We assume in

the following that the weight vector is sorted in ascending order, i.e. w1 ≤ w2 ≤ . . . ≤ wm.
Otherwise, we would rearrange the parametric dimensions accordingly. We modify the sparse grid
sets X(q,m) and Y (q,m) in the following way, see also [17],

(10) Xw(q,m) :=

{

0 ≤ α ∈ N
m :

m
∑

n=1

αnwn ≤ q

}

and

(11) Yw(q,m) :=

{

0 ≤ α ∈ N
m : q − ∥w∥1 <

m
∑

n=1

αnwn ≤ q

}

.

With this notation at hand, the anisotropic Smolyak quadrature operator of level q ∈ N is defined
by

(12) Aw(q,m) :=
∑

α∈Xw(q,m)

∆(1)
α1

⊗ · · ·⊗∆(m)
αm

which can equivalently be expressed as, cf. [17],

(13) Aw(q,m) =
∑

α∈Yw(q,m)

cw(α)Qα, with cw(α) :=
∑

β∈{0,1}m

α+β∈Xw(q,m)

(−1)|β|.

The formula (13) can be regarded as the anisotropic combination technique quadrature. For the
evaluation of this formula, we only need to determine the coefficients cw(α) and to apply tensor
product quadrature formulae of relatively small size. Thus, in order to compute the approximation
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Figure 2. The 10 indices contained in the weighted sparse grid X(1,2.5)(5, 2) on
the left and the 16 indices contained in X(1,2,3)(5, 3) on the right.

to (3) with the anisotropic Smolyak quadrature (13), it is sufficient to evaluate the integrand fm
on the anisotropic sparse grid

Jw(q,m) :=
⋃

α∈Yw(q,m)

θα1 × · · ·× θαm .

Note that the Smolyak quadrature operator (8) coincides with the anisotropic Smolyak quadrature
operator (12) for the special weight vector w = 1 := [1, 1, . . . , 1].

In Figure 2, the indices of the weighted sparse grid X(1,2.5)(5, 2) and of the weighted sparse
grid X(1,2,3)(5, 3) are visualized. We observe that the number of indices is drastically reduced in
comparison to the according isotropic sparse grids visualized in Figure 1.

The computation of the anisotropic sparse quadrature formula (12) depends on the choice of
the weight vector w and the sequence

{

Nj

}

j
in (5). In view of the one-dimensional error estimate

(4), the sequence
{

Nj

}

j
of the number of quadrature points is chosen in accordance with

(14) Nj =

⌈
1

2
(j + 2)

⌉

.

Then, we can estimate the error of the difference Gaussian quadrature operator∆j = Qj−Qj−1

for all j ≥ 1 and for all functions f1 : Γ → R which are analytically extendable in Σ(Γ, τ) by

(15)

|∆jf1| ≤ |f1 −Qjf1|+ |f1 −Qj−1f1|

≤ g(τ)
(

e−h(τ)(j+1) + e−h(τ)j
)

∥f1∥Cσ(Σ(Γ,τ))

≤ g(τ)
(

1 + e−h(τ)
)

e−h(τ)j∥f1∥Cσ(Σ(Γ,τ))

≤ 2g(τ)e−h(τ)j∥f1∥Cσ(Σ(Γ,τ)).

For j = 0, the difference Gaussian quadrature operator coincides with the function evaluation at
a particular point z of Γ which implies that

(16) |∆0f1| = |Q0f1| = |f1(z)| ≤ e−h(τ)·0∥f1∥Cσ(Σ(Γ,τ)).

Note that this estimate is only valid in case that σ(z) ≥ 1 as it is case for the Gauss-Hermite and
the Gauss-Legendre quadrature. Analogously, it follows from (14) and (4) that

(17) |Iv −Qjf1| ≤ g(τ)e−h(τ)(j+1)∥f1∥Cσ(Σ(Γ;τ)).

Next, let us consider the multivariate integrand fm : Γm → R which can analytically be extended
into the region Σ = Σ(τ ). Then, it follows that the error of the tensor product of the operators



6 A.-L. HAJI-ALI, H. HARBRECHT, M. PETERS, AND M. SIEBENMORGEN

∆j is bounded by the product of the one-dimensional errors. Indeed, we obtain for a multi-index
α ∈ Nm that

(18)

∣
∣
∣

(

∆(1)
α1

⊗ · · ·⊗∆(m)
αm

)

fm
∣
∣
∣

≤ (2g(τ1))
min(1,α1)e−h(τ1)α1 sup

z∈Σ1

σ1(Re(z))
∣
∣
∣

(

∆(2)
α2

⊗ · · ·⊗∆(m)
αm

)

fm(z)
∣
∣
∣

≤
(

m
∏

n=1

(2g(τn))
min(1,αn)

)

e−
∑m

n=1 h(τn)αn∥fm∥Cσ(Σ)

with ∥v∥Cσ(Σ) := supz∈Σ σ(Re(z))|v(z)| and σ(Re(z)) :=
∏m

n=1 σn(Re(zn)). In addition, we take
the minimum in (18) in order to ensure that the constant is 1 if αn = 0 in accordance with (16).

4. Error estimation for the anisotropic sparse Gaussian quadrature

For the estimation of the quadrature error of the anisotropic sparse Gaussian quadrature, we
employ the following lemma.

Lemma 4.1. Let {ψn}n ∈ ℓ1(N) be a summable sequence of positive real numbers. Then, there
exists for each δ > 0 a constant C(δ) independent of q ≥ 1 such that

(19)
∞
∏

n=1

(qψn + 1) ≤ C(δ) exp(δq).

Proof. Let 0 < δ1, δ2 < δ be arbitrary such that δ1 + δ2 = δ. From the summability of {ψn}n, it
follows that there exists a j0 = j0(δ1) ∈ N such that

(20)
∞
∑

n=j0+1

ψn ≤ δ1.

We now split the left-hand side in (19) into

(21)
∞
∏

n=1

(qψn + 1) =
j0∏

n=1

(qψn + 1)
∞
∏

k=j0+1

(qψn + 1).

Then, the second factor can simply be estimated by

∞
∏

n=j0+1

(qψn + 1) = exp

( ∞
∑

n=j0+1

log(qψn + 1)

)

≤ exp(δ1q).

The number of factors j0 in the first product in (21) is fixed and depends only on the choice of
δ1 and on the decay properties of {ψk}k. Since j0 is a fixed natural number, there exists for all
δ2 > 0 a constant C(δ1, δ2) such that

j0∏

k=1

(qψn + 1) ≤ C(δ1, δ2) exp(δ2q).

Hence, we obtain that
∞
∏

n=1

(qψn + 1) ≤ C(δ1, δ2) exp(δq).

Since 0 < δ1, δ2 < δ can be chosen arbitrary with the only limitation that δ1 + δ2 = δ, the choice
C(δ) = infδ1+δ2=δ C(δ1, δ2) yields the desired estimate. #

With the above preliminaries, we are able to establish error estimates for the anisotropic sparse
Gaussian quadrature. To that end, we have additionally to exploit some properties of the function
g and the sequence {τn}n in (4).
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Assumption 4.2. The sequence {τn}n which describes the regions of analytic extendability of the
function f fulfills

τn " nr

for some r > 1. Hence, the sequence {τ−1
n }n is summable. Additionally, we suppose that the

sequence {g(τn)}n is summable. Moreover, the function h is strictly monotone increasing and
satisfies h(x) " log(x+ 1).

For the error estimation, we adapt some parts of the analysis in [17], but then conclude in a
different way.

Lemma 4.3. Let the sequence of quadrature points be chosen as in (14) and let the weight vector
w be given by wn = h(τn). Then, there exists for each δ > 0 a constant C(δ) independent of m
such that the error of the anisotropic sparse Gaussian quadrature (8) is bounded by

(22)
∣
∣
(

I−Aw(q,m)
)

fm
∣
∣ ! C(δ)e−q(1−δ)∥fm∥Cσ(Σ)

The constant hidden in (22) depends on the continuity constant of I and on ∥{g(τn)}n∥ℓ1(N). Note
that the constant C(δ) tends to infinity as δ tends to 0.

Proof. In the same way as in [17], the error of the sparse quadrature is rewritten, with the notation
I =

⊗m
n=1 I

(n), by

(23) I−Aw(q,m) =
m
∑

n=1

R(q, n)
m
⊗

k=n+1

I(k).

The quantity R(q, n) is defined for n ≥ 2 by

R(q, n) :=
∑

α∈Xw1:n−1(q,n−1)

n−1
⊗

k=1

∆(k)
αk

⊗
(

I(n) −Q⌊(
q−

∑n−1
k=1 αkwk

)

/wn

⌋

)

and for n = 1 by

R(q, 1) := I(1) −Q⌊q/w1⌋.

For n > 2, each summand in (23) can be estimated with (17), (18) and with the continuity of the
integration operator by
∣
∣
∣
∣
∣

(

R(q, n)
m
⊗

k=n+1

I(k)
)

fm

∣
∣
∣
∣
∣
!

∑

α∈Xw1:n−1(q,n−1)

(
n−1
∏

k=1

(

2g(τk)
)min(1,αk)

)

e−
∑n−1

k=1 αkh(τk)

· g(τn)e−h(τn)
(⌊(

q−
∑n−1

k=1 αkwk

)

/wn

⌋

+1
)

∥fm∥Cσ(Σ)

! g(τn)
∑

α∈Xw1:n−1(q,n−1)

e−h(τn)
(⌊(

q−
∑n−1

k=1 αkwk

)

/wn

⌋

+1
)

−
∑n−1

k=1 αkh(τk)

·
(

n−1
∏

k=1

(

2g(τk)
)min(1,αk)

)

∥fm∥Cσ(Σ).

With the choice wk = h(τk) for all k = 1, . . . ,m, it follows that
∣
∣
∣
∣
∣

(

R(q, n)
m⊗

k=n+1

I(k)
)

v

∣
∣
∣
∣
∣

! g(τn)
∑

α∈Xw1:n−1 (q,n−1)

e−q−
∑n−1

k=1 αkwk+
∑n−1

k=1 αkwk

(
n−1
∏

k=1

(

2g(τk)
)min(1,αk)

)

∥v∥Cσ(Σ)

= g(τn)
∑

α∈Xw1:n−1 (q,n−1)

e−q

(
n−1
∏

k=1

(

2g(τk)
)min(1,αk)

)

∥v∥Cσ(Σ).
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For n = 1, we have that R(q, 1) = I(1) −Q⌊q/w1⌋. We thus deduce that
∣
∣
∣
∣
∣

(

R(q, 1)
m
⊗

k=2

I(k)
)

v

∣
∣
∣
∣
∣
! g(τ1)e

−h(τ1)(⌊q/w1⌋+1)∥v∥Cσ(Σ) ! g(τ1)e
−q∥v∥Cσ(Σ).

It remains to estimate

∑

α∈Xw1:n−1(q,n−1)

(
n−1
∏

k=1

(

2g(τk)
)min(1,αk)

)

≤
∑

α∈Xw(q,m)

(
m
∏

k=1

(

2g(τk)
)min(1,αk)

)

.

The maximum inside the product is 2g(τk) except for the case αk = 0. Hence, it follows that

∑

α∈Xw(q,m)

(
m
∏

k=1

(

2g(τk)
)min(1,αk)

)

≤
⌊ q
w1

⌋
∑

α1=0

(2g(τ1))
min(α1,1)

⌊ q
w2

⌋
∑

α2=0

(2g(τ2))
min(α2,1) · · ·

⌊ q
wm

⌋
∑

αm=0

(2g(τm))min(αm,1)

≤
m
∏

k=1

(
2g(τk)q

wk
+ 1

)

≤ C(δ) exp(δq).

The last inequality holds since {2g(τn)/wn}n is summable and, thus, Lemma 4.1 is applicable.
Combining our findings yields the estimate (22). #

Lemma 4.3 implies that the anisotropic sparse Gaussian quadrature converges exponentially
with respect to the level q. The convergence in Lemma 4.3 is nearly as good as the convergence of
the anisotropic tensor product Gaussian quadrature on level q, with ⌈ q

2wn
+ 1

2⌉ quadrature points
in the n-th direction.

5. Cost complexity of the anisotropic sparse Gaussian quadrature

5.1. A preliminary estimate on the cost. In order to find an error estimate in terms of the
number of quadrature points, we additionally have to estimate the cost of the sparse Gaussian
quadrature method on level q. We exploit that the weight vectorw is ordered ascendingly, i.e. w1 ≤
w2 ≤ · · · ≤ wm. In the following, we establish a bound on the number of quadrature points used
in the combination technique formula (13). This number is given by

(24)

cost
(

Aw(q(ϵ),m)
)

=
∑

α∈Yw(q,m)

m∏

n=1

Nαn =
∑

α∈Yw(q,m)

m∏

n=1

⌈
1

2

(

(αn + 2)
)
⌉

≤
∑

α∈Yw(q,m)

m
∏

n=1

(αn + 1).

Then, we simply use that Yw(q,m) ⊂ Xw(q,m), cf. (10) and (11), and estimate the maximum
value of the summands in (24). For this, we have to solve the optimization problem

max
α∈Xw(q,m)

m
∏

n=1

(

αn + 1
)

.

This is equivalent to the problem

max
α∈Nm

m
∏

n=1

(

αn + 1
)

s.t.
m
∑

n=1

wnαn ≤ q.

We get an upper bound for this optimization problem if we extend the admissible set of multi-
indices to arbitrary m-dimensional vectors with positive coefficients

sup
α∈Rm

m
∏

n=1

(αn + 1) s.t.
m
∑

n=1

wnαn ≤ q and αn ≥ 0 for n = 1, . . . ,m.
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The problem’s solution can be calculated by solving the equivalent optimization problem

sup
α∈Rm

+

m
∑

n=1

log(αn + 1) s.t.
m
∑

n=1

wnαn ≤ q and αn ≥ 0 for n = 1, . . . ,m.

We solve it by means of Lagrangian multipliers and get the optimal solution

αn =

{
q+

∑n0
k=1 wk

n0wn
− 1, if n ≤ n0,

0, if n > n0,

where n0 is determined by

(25) n0 = argmax
n=1,...,m

{

q +
n
∑

ℓ=1

wℓ ≥ nwn

}

.

This implies the following lemma on the upper bound for (24).

Lemma 5.1. Let the weight vector w = [w1, . . . , wm] be ascendingly ordered. Then, the cost
complexity of the anisotropic sparse Gaussian quadrature on level q is, with n0 from (25), bounded
by

(26) cost
(

Aw(q,m)
)

≤ #Xw(q,m)
n0∏

n=1

(
q +

∑n0

k=1 wk

n0wn

)

.

The product on the right-hand side in (26) can further be estimated.

Lemma 5.2. Let the weight vector w = [w1, . . . , wm] be ascendingly ordered and m ≤ n0. Then,
it holds that

(27)
n0∏

n=1

(
q +

∑n0

k=1 wk

n0wn

)

≤
m∏

n=1

(
q

nwn
+ 1

)

.

Proof. We show for n = 1, 2, . . . , n0 − 1 that

(28)

(

q +
∑n0−n

k=1 wk + nwn0

n0wn0

)(

q +
∑n0

k=1 wk

n0wn0−n

)

≤
(

q +
∑n0−n−1

k=1 wk + (n+ 1)wn0

n0wn0

)(

q +
∑n0−1

k=1 wk

(n0 − 1)wn0−n

)

.

The successive application of this inequality for n = 1, 2, . . . , n0 − 1 leads to

n0∏

n=1

(

q +
∑n0

k=1 wk

n0wn

)

≤
(

q

n0wn0

+ 1

)
n0−1
∏

n=1

(

q +
∑n0−1

k=1 wk

(n0 − 1)wn

)

.

Then, it follows by proceeding in the same way for n0 − 1, n0 − 2, . . . , 2 that

n0∏

n=1

(

q +
∑n0

k=1 wk

n0wn

)

≤
(

q

n0wn0

+ 1

)(

q

(n0 − 1)wn0−1
+ 1

)
n0−2
∏

n=1

(

q +
∑n0−2

k=1 wk

(n0 − 2)wn

)

≤
n0∏

n=1

(

q

nwn
+ 1

)

.

Since n0 < m, this would immediately imply the assertion.
To prove (28), we use the abbreviation q̃ := q +

∑n0−n−1
k=1 wk and rewrite this inequality by

(n0 − 1)
(

q̃ + wn0−n + nwn0

)

(

q̃ +
n0∑

k=n0−n

wk

)

− n0

(

q̃ + (n+ 1)wn0

)

(

q̃ +
n0−1
∑

k=n0−n

wk

)

≤ 0.
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After expanding the products, some of the terms vanish and we can simplify this expression to

n0

(

q̃wn0−n + (n+ 1)w2
n0

+ (wn0−n − wn0)
n0∑

k=n0−n

wk

)

−
(

q̃

(

q̃ +
n0∑

k=n0−n

wk

)

+ (wn0−n + nwn0)

(

q̃ +
n0∑

k=n0−n

wk

))

≤ n0

(

q̃(wn0−n − wn0) + (wn0−n − wn0)
n0∑

k=n0−n

wk + (n+ 1)w2
n0

− (wn0−n + nwn0)wn0

)

≤ n0

(

n0wn0

(

wn0−n − wn0

)

− wn0

(

wn0−n − wn0

)
)

= n0(n0 − 1)
(

wn0−n − wn0

)

≤ 0.

Here, the first and second inequality follow from q̃ +
∑n0

k=n0−n wk = q +
∑n0

k=1 wk ≥ n0wn0 and
from wn0−n ≤ wn0 . This completes the proof. #

Next, we can deduce, in view of (26) and (27), that the complexity of the anisotropic sparse
Gaussian quadrature is bounded by

(29) cost
(

Aw(q,m)
)

≤
(

m
∏

n=1

(
q

nwn
+ 1

)
)

#Xw(q,m).

5.2. A sharp estimate on the anisotropic sparse index set. In order to complete the con-
vergence analysis, it remains to estimate the number of indices in the set Xw(q,m). Therefore,
we require the following lemma.

Lemma 5.3. For L ∈ N, m ∈ N and δ ∈ R+, there holds the inequality

L−1
∑

j=0

m
∏

n=1

(n+ δ + j) ≤ 1

m+ 1

m
∏

n=0

(L+ δ + n)

with equality when δ = 0.

Proof. We prove the assertion by induction on L. For L = 1, we verify
m
∏

n=1

(n+ δ) =
1

m+ 1 + δ

m+1
∏

n=1

(n+ δ) ≤ 1

m+ 1

m
∏

n=0

(n+ δ + 1).

Let the assertion be fulfilled for L. Then, we conclude for L+ 1 that
L
∑

j=0

m
∏

n=1

(n+ δ + j) ≤ L+ δ

m+ 1

m
∏

n=1

(L+ δ + n) +
m
∏

n=1

(L+ δ + n)

=

(
L+m+ 1 + δ

m+ 1

) m
∏

n=1

(L + n+ δ)

=

(
1

m+ 1

)m+1
∏

n=1

(L+ n+ δ)

=

(
1

m+ 1

) m
∏

n=0

(L+ 1 + n+ δ).

#

Lemma 5.4. The cardinality of the set Xw(q,m) in (10), where the weight vector w = [w1, . . . , wm]
is ascendingly ordered, i.e. w1 ≤ w2 ≤ · · · ≤ wm, is bounded by

(30) #Xw(q,m) ≤
m
∏

n=1

(
q

nwn
+ 1

)

.
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Proof. The prove is performed by induction on m. For m = 1, the assertion is obviously fulfilled,
since

#Xw(q, 1) =

⌊ q
w1

⌋
∑

α1=0

1 =
⌊ q

w1

⌋

+ 1.

Let us assume that (30) is true for m−1. For m ∈ N, the cardinality of Xw(q,m) can be calculated
by

#Xw(q,m) =

⌊ q
wm

⌋
∑

j=1

#Xw1:m−1
(q − jwm,m− 1).

Inserting the induction hypothesis yields that

(31)

#Xw(q,m) ≤
⌊ q
wm

⌋
∑

j=0

m−1
∏

n=1

(

1 +
q − jwm

nwn

)

=

(
m−1
∏

k=1

(

1 +
q

kwk

)
) ⌊ q

wm
⌋

∑

j=0

m−1
∏

n=1

1 + q−jwm

nwn

1 + q
nwn

=

(
m−1∏

n=1

(

1 +
q

nwn

)
) ⌊ q

wm
⌋

∑

j=0

m−1∏

n=1

(

1− jwm

nwn + q

)

=

(
m−1
∏

n=1

(

1 +
q

nwn

)
)(

1 +

⌊ q
wm

⌋
∑

j=1

m−1
∏

n=1

(

1− jwm

nwn + q

))

.

Focusing on the last term and since wm ≥ wn for all 0 ≤ n ≤ m, we conclude that

⌊ q
wm

⌋
∑

j=1

m−1
∏

n=1

(

1− jwm

nwn + q

)

≤
⌊ q
wm

⌋
∑

j=1

m−1
∏

n=1

(

1− jwm

nwm + q

)

=
m−1
∏

n=1

(

n+
q

wm

)−1 ⌊ q
wm

⌋
∑

j=1

m−1
∏

n=1

(

n+
q

wm
− j

)

.

Applying the previous lemma with L = ⌊ q
wm

⌋ and δ = q
wm

− L leads to

L
∑

j=1

m−1
∏

n=1

(n+ L+ δ − j) =
L−1
∑

j=0

m−1
∏

n=1

(n+ δ + j) ≤ 1

m

m−1
∏

n=0

(L + δ + n).

Thus, we obtain that

⌊ q
wm

⌋
∑

j=1

m−1∏

n=1

(

1− jwm

nwn + q

))

≤ L+ δ

m
=

q

mwm
.

Inserting this into (31) finishes the proof. #

Remark 5.5. (1) We would like to point out that estimate (30) is sharp in the isotropic case,
that is, for the weight w = 1. Moreover, the ordering of the weight vector is crucial in
this estimate. There are examples where this estimate does not hold if the weights are not
in ascending order.

(2) At first glance one might claim that even the estimate

#Xw(q,m) ≤
m∏

n=1

⌊ q
wn

⌋

+ n

n

is valid. This is true in a lot of cases which we investigated. Nevertheless, there are
examples where this estimate fails.
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5.3. Convergence in terms of the number of quadrature points. The findings of the previ-
ous two sections can be summarized to the error estimate of the anisotropic sparse grid quadrature

∣
∣
(

I−Aw(q,m)
)

fm
∣
∣ ! C(δ)e−q(1−δ)∥v∥C0

σ(Σ)

and the complexity estimate

(32) cost
(

Aw(q,m)
)

≤
(

m
∏

n=1

(
q

nwn
+ 1

)
)2

.

In view of our application to parametric partial differential equations, we have to examine the
cost complexity with respect to the properties of the sequence {h(τn)}n. In particular, under
certain conditions on this sequence, the convergence rate in terms of the number of quadrature
points is dimension-independent and algebraic of arbitrary order.

Theorem 5.6. If the sequence {(nh(τn))−1}n is summable, then there exists a constant C(δ, η),
which does not dependent on the dimension m for all δ, η > 0 but tends to ∞ if δ → 0 or η → 0,
such that

(33)
∣
∣
(

I−Aw(q,m)
)

fm
∣
∣ ! C(δ, η)N(q)−

1−δ
2η ∥fm∥Cσ(Σ)

where N(q) denotes the total number of quadrature points in Aw(q,m). The constant hidden in
the estimate coincides with the constant in Lemma 4.3.

Proof. From the definition of the weights wn, cf. Lemma 4.3, we know that wn = h(τn). Since
{(nh(τn))−1} is summable, it follows with Lemma 4.1 that there exists for each η > 0 a constant
C(η) independent of m such that

(34)
m−1
∏

n=1

(
q

nwn
+ 1

)

≤ C(η) exp
(

qη
)

.

Inserting this into (32) implies that

N(q) := cost
(

Aw(q,m) ≤ C(η)2 exp(2qη) ⇐⇒ q ≥ 1

2η
log

(
N(q)

C(η)2

)

.

This yields that the error in terms of N(q) is bounded by

∣
∣
(

I−Aw(q,m)
)

fm
∣
∣ ! C(δ) exp

(

− 1− δ

2η
log

(
N(q)

C(η)2

))

∥fm∥Cσ(Σ)

= C(δ)C(η)
1−δ
η

︸ ︷︷ ︸

=:C(δ,η)

N(q)−
1−δ
2η ∥fm∥Cσ(Σ).

#

Remark 5.7. The condition that {(nh(τn))−1}n is summable implies that h(τn) increases stronger
than log(n). In particular, a rate log(n)1+δ for arbitrary δ > 0 would be sufficient. Unfortunately,
since h(τn) ! log(cτn) for the Gauss-Legendre and Gauss-Hermite quadrature, cf. (41) and (43),
any algebraic increase of τn is not sufficient for the summability of {(nh(τn))−1}n. Nevertheless, if
τn increases subexponentially, i.e. τn ! exp(nδ) for arbitrary δ > 0, summability of {(nh(τn))−1}n
is guaranteed, cf. [9].

In view of this remark, we investigate in the rest of this section how fast the convergence rate
deteriorates for an algebraic increase, i.e. τn " nr.

Lemma 5.8. Let the sequence {h(τn)}n increase as h(τn) ≥ log(cnr) for some c > 1 and r ∈ R+.
Then, we obtain that the number of indices in the anisotropic sparse grid is bounded by

(35) #Xw(q,m) ! exp

(
q

r
log(log(m))

)

with a constant which is independent of m.
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Proof. From Lemma 5.4, we know that

#Xw(q,m) ≤
m
∏

n=1

(
q

nwn
+ 1

)

.

Next, we split the product into

(36)
m
∏

n=1

(
q

nwn
+ 1

)

=

(
q

w1
+ 1

)(
q

2w2
+ 1

)(
q

3w3
+ 1

) m
∏

n=4

(
q

nwn
+ 1

)

.

We estimate the last term by
m
∏

n=4

(
q

nwn
+ 1

)

≤ exp

( m
∑

n=4

log

(
q

nwn
+ 1

))

≤ exp

( m
∑

n=4

q

nwn

)

.

Due to wn ≥ log(nr), the sum in this estimate can be bounded by the following integral:
m
∑

n=4

q

nwn
≤
∫ m

3

q

x log(xr)
dx =

q

r

∫ m

3

1

x log(x)
dx

=
q

r

∫ log(m)

log(3)

1

z
dz =

q

r

(

log(log(m))− log(log(3))
)

.

The first three factors in (36) define a cubic polynomial in q and can thus be estimated by the
exponential function according to

(
q

w1
+ 1

)(
q

2w2
+ 1

)(
q

3w3
+ 1

)

≤ C exp

(
log(log(3))

r
q

)

.

Hence, putting all together, we end up with
m
∏

n=1

(
q

nwn
+ 1

)

≤ C exp

(
log(log(3))

r
q

)

exp

(
q

r

(

log(log(m))− log(log(3))
)
)

! exp

(
q

r

(

log(log(m))

)

.

#

With Lemma 5.8 at hand, we are able to quantify how the dimensionality m compromises the
convergence rate of the anisotropic sparse Gaussian quadrature. In fact, the dimensionality enters
only with a factor log(log(m)) in case of algebraic increasing regions of analyticity.

Theorem 5.9. Let the conditions of Lemma 4.3 be satisfied and let the assumptions of Lemma
5.8 be fulfilled. Then, the error of the anisotropic sparse Gaussian quadrature Aw(q,m) is bounded
in terms of the total number of quadrature points by

(37) ∥v −Aw(q,m)v∥X ! N(q)−
r

2 log(log(m)) ∥v∥C0
σ(Σ(Rm,τ);X).

Proof. Inserting (35) into (32), leads to the complexity estimate

N(q) = cost
(

Aw(q,m)
)

! e2q
(

log(log(m))
r

)

.

Combining this with the error estimate (22) implies the desired bound (37). #

6. Application to diffusion problems with random coefficient

6.1. Problem setting. As a practical application of the sparse anisotropic Gaussian quadrature,
we consider random diffusion problems with either uniformly or lognormally distributed diffusion
coefficients. Since we lay our emphasis on the convergence behavior of the Gaussian quadrature,
we will deal here only with one-dimensional problems. Even so, we want to emphasize that all
results remains valid also in two and three spatial dimensions.

Let (Ω,F ,P) be a complete and separable probability space. We consider the diffusion equation

(38) −∂x
(

a(x,ω)∂xu(x,ω)
)

= 1 in D = (0, 1) for almost every ω ∈ Ω
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with homogenous boundary conditions, i.e. u(0,ω) = u(1,ω) = 0. The first step towards the
solution for this class of problems is the parameterization of the stochastic parameter. To that
end, one decomposes the diffusion coefficient with the aid of the Karhunen-Loève expansion. Let
the covariance kernel of a(x,ω) be defined by the positive semi-definite function

C(x, x′) :=

∫

Ω

(

a(x,ω)− E[a](x)
)(

a(x′,ω)− E[a](x′)
)

dP(ω).

Herein, the integral with respect to Ω has to be understood in terms of a Bochner integral, cf. [13].
Now, let (λk,ϕk) denote the eigenpairs obtained by solving the eigenproblem for the diffusion
coefficient’s covariance, i.e.

∫ 1

0
C(x, x′)ϕk(x

′) dx′ = λkϕk(x).

Then, the Karhunen-Loève expansion of a(x,ω) is given by

a(x,ω) = E[a](x) +
∞∑

n=1

√

λnϕn(x)Xn(ω),

where Xn : Ω → Γ ⊂ R for n = 1, 2, . . . are centered, pairwise uncorrelated and L2-normalized
random variables. In the uniformly distributed case, we have Xn ∼ U([−1, 1]) and in the log-
normally distributed case, we have Xn ∼ N (0, 1). Note that we compute in the latter case the
Karhunen-Loève expansion of log

(

a(x,ω)
)

rather than of a(x,ω) itself and set E[log(a)](x) = 0. In
the lognormal case, the knowledge of C(x, x′) together with E[log(a)](x) = 0 provides the unique
description of log

(

a(x,y)
)

since the underlying random process is Gaussian. In the uniform case,
we have additionally to assume that the random variables are independent and that E[a](x) > 0
such that a(x,ω) becomes uniformly elliptic.

By substituting the random variables with their image in Γ, we arrive in the uniformly dis-
tributed case at the parameterized Karhunen-Loève expansion

a(x,ψ) = E[a](x) +
∞
∑

n=1

√

λnϕn(x)
√
3ψn,

where ψn ∈ [−1, 1] and ρn(ψn) = 1/2. Note that the scaling factor
√
3 stems from the normaliza-

tion of the random varibles’ variance. For the lognormally distributed case, we obtain in complete
analogy

log
(

a(x,ψ)
)

=
∞
∑

n=1

√

λnϕn(x)ψn,

where ψn ∈ R and ρn(ψn) = 1/
√
2π exp(−ψ2

n/2). We define γn =
√
λn∥ϕn∥L∞(D). The decay of

the sequence {γn}n is important in order to determine the region of analytical extendability of
the solution u, cf. Lemma 6.1.

Truncating the respective Karhunen-Loève expansion after m ∈ N terms, yields the parametric
and truncated diffusion problem

(39) −∂x
(

am(x,y)∂xum(x,y)
)

= 1 in D = (0, 1) for almost every y ∈ Γm.

The impact of truncating the Karhunen-Loève expansion on the solution is bounded by

∥u− um∥L2
ρ(Γ

∞;H1
0 (D)) ! ∥a− am∥L2

ρ(Γ
∞;L∞(D)) = ε(m),

where ε(m) → 0 montonically as m → ∞, see e.g. [6, 20]. Herein, the Bochner spaces L2
ρ(Γ

∞;X ),
where X is a separable Banach space, consist of all equivalence classes of measurable functions
f : Γ∞ → X with bounded norm

∥f∥L2
ρ(Γ

∞;X ) :=

(∫

Γ∞

∥f(ψ)∥2Xρ(ψ) dψ
) 1

2

,

see [13] for more details on Bochner spaces and Bochner integrable functions. Since the L2-norm
is stronger than the L1-norm, this especially yields the approximation estimate (2) for u and um,
where the modulus has to be replaced by the H1

0 (D)-norm.
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Given the parametric solution um(x,y), we are interested in determining proporties of its
distribution. In our numerical examples, we focus on the computation of the solution’s moments.
These are given by the Bochner integral

Mp
u(x) :=

∫

Γm

up
m(x,y)ρ(y) dy.

Especially, there holds M1
u(x) = Eu(x).

6.2. Regularity estimates. In order to apply the presented quadrature theory to our parametric
diffusion problems, we have to provide the related regularity results that allow for an analytic
extension of um into the complex plane. The extendability is guaranteed by the following lemma
from [3], which has slightly been modified to fit our purposes.

Lemma 6.1. The solution um to (39) in the uniformly elliptic case admits an analytic extension
into the region Σ([−1, 1]m, τ ) for all τ with

τk <
a

C(δ)k1+δγk
, where C(δ) =

∞
∑

k=1

k−1−δ for arbitrary δ > 0.

In addition, it holds that

∥um∥C(Σ([−1,1]m,τ);H1
0 (D)) ! ∥f∥L2(D).

In the lognormal case, the solution um to (39) is analytically extendable into Σ(Rm, τ ) provided
that

τk <
log 2

C(δ)k1+δγk
.

Moreover, the solution is bounded in accordance with

∥um∥Cσ(Σ(Rm,τ);H1
0 (D)) ! ∥f∥L2(D)

for the weight function σ(y) = exp
(

− 2
∑m

n=1 γk|yk|
)

.
The constants which are involved in the estimates depend on the choice of τ , but are independent

of m.

Lemma 6.1 characterizes the region of analyticity and the according weight function σ(y)
and, therefore, Assumption 2.1 is satisfied in these cases. It remains to investigate the one-
dimensional error estimates of the Gauss-Legendre and the Gauss-Hermite quadrature for functions
v : Γ → H1

0 (D) which are analytically extendable into a region around the parameter domain
Γ. Therefore, we provide the following two lemmata on the best polynomial approximation for
analytic extendable and Banach space valued functions, see [1, 14], and the continuity of the
Gaussian quadrature operator.

From [1], we have the following result for the Gauss-Legendre quadrature.

Lemma 6.2. Let X be a Banach space. Suppose that v ∈ C([−1, 1];X) admits an analytic
extension in Σ([−1, 1], τ) for some τ > 0. Then, the error of the best approximation by polynomials
of degree at most n can be bounded by

(40) inf
w∈Pn([−1,1])⊗X

∥v − w∥C([−1,1];X) ≤
2

κ− 1
e−n log κ∥v∥Cσ(Σ([−1,1],τ);X)

with κ = τ +
√
1 + τ2.

Thus, in view of our generic error estimate (4), we end up with

(41) Γ = [−1, 1], σ(y) ≡ 1, g(τ) =
4

κ− 1
and h(τ) = log(κ)

In case of the Gauss-Hermite quadrature, we employ the next lemma from [14].
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Lemma 6.3. Suppose that v ∈ C0
σ(R;X) admits an analytic extension in Σ(R, τ) for some 1/

√
2 <

τ < 1/γ. Then, the error of the best approximation by polynomials of degree at most n can be
bounded by

(42) inf
w∈Pn(R)⊗X

∥v − w∥CG(R;X) ≤
C√

2τ − 1
e− log(

√
2τ)n∥v∥Cσ(Σ(R,τ);X),

where C > 0 is a constant and the weight function G(y) is given by G(y) := exp(−y2/4).

Similarly to the Gauss-Legendre quadrature, we obtain the generic error estimate (4) for the
Gauss-Hermite quadrature with

(43) Γ = R, σ(y) = exp(−2τ |y|), h(τ) = log(
√
2τ) and g(τ) = C/(

√
2τ − 1).

Finally, we would like to point out that, with the new estimate (30) on the number of indices
Xw(q,m), we are able to get significantly improved results in comparison with the convergence
of the anisotropic tensor product Gaussian quadrature. More precisely, we are able to show
dimension-independent convergence with an arbitrarily algebraic rate if the regions of analyticity
of the integrand grow exponentially like τk " exp(kδ) for arbitrary δ > 0. This covers the
important case of diffusion coefficients which are derived from Gaussian covariance kernels. In
addition, we analyzed the case when τk grows algebraically, which covers the case of covariance
kernels of the Matèrn class, and obtain that the dimensionality m compromises the convergence
rate at most by the term log(log(m)).

7. Numerical results

7.1. Setup. In this section, we present numerical examples to validate the theoretical findings. As
a practical application of the sparse anisotropic Gaussian quadrature, we consider random diffusion
problems with either uniformly or lognormally distributed diffusion coefficients as defined in the
previous section.

In our numerical experiments, we employ two covariance kernels of the Matérn class for ν = 5/2
and ν = 7/2, cf. [15], i.e.

C5/2(r) :=
1

4

(

1 +

√
5r

ℓ
+

5r2

3ℓ2

)

exp

(

−
√
5r

ℓ

)

and

C7/2(r) :=
1

4

(

1 +

√
7r

ℓ
+

14r2

5ℓ2
+

49
√
7r3

15ℓ2

)

exp

(

−
√
7r

ℓ

)

,

where r := |x−x′|. The correlation length is in both cases set to ℓ = 1/2. The spatial discretization
is performed with piecewise linear finite elements an a mesh with mesh size h = 2−14, which
results from 16384 equidistant sub-intervals. A numerical approximation to the Karhunen-Loève
expansion is computed by the pivoted Cholesky decomposition of the covariance operator with
a trace error of ε = 2−28. This yields an approximation error of the underlying random field of
ε = 2−14, see [12] for the details. The related truncation rank is given by m = 64 for C5/2 and
m = 30 for C7/2. In the uniformly distributed case, we set E[a](x) = 2.5. From [8], we know that
τn " n3 for C5/2 and τn " n4 for C7/2.

Since the solution of (38) is not known analytically, we have to provide a reference solution. The
error with respect to the reference solution is measured in the H1(D)-norm for the approximation
of the mean and in the W 1,1(D)-norm for the approximations of the higher order moments,
respectively. This reference solution is computed by the quasi-Monte Carlo quadrature with Halton
points and N = 10 · 220 ≈ 107 samples.

For the anisotropic sparse Gaussian quadrature, we set the weights wn according to wn =
h(τn) with the same functions h(τ) and the same quantities τn as for a related anisotropic tensor
product quadrature for the lognormal and the uniformly elliptic case, respectively. Hence, our
anisotropic sparse Gaussian quadrature is essentially a sparsification of the anisotropic tensor
product Gaussian quadrature, cf. [11] for more details on the anisotropic tensor product Gaussian
quadrature. To choose the same quantity τn for the region of analyticity as for the tensor product
quadrature seems to be a violation of Lemma 6.1. Indeed, the assertion of this lemma is that
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the quantities τn, which describes the region of analytic extendability in each direction Σ(Γn, τn),
should be rescaled to τ̃n = τn/(C(δ)n1+δ) in order to ensure analytic extendability into the tensor
domain Σ(τ̃ ). Nevertheless, our experience suggests that the sparsification of the anisotropic
Gaussian quadrature yields an error which is nearly as good as the error of the anisotropic Gaussian
quadrature itself.

For nearly all numerical examples, it turns out that the convergence rates slightly decrease from
the computation of the mean to the computation of the second moment and even successively for
the higher order moments. Therefore, we state for all examples the actually obtained convergence
rate for the mean and for the fourth moment. The convergence rate of the second and third
moment is then between these two convergence rates.

In addition to the convergence studies for the sparse anisotropic Gaussian quadrature, we also
provide results on the estimated number of quadratures contained in the sparse grid. We compare
the tensor product estimate

(TP Formula) #Xw(q,m) ≤
m
∏

n=1

(⌊
q

wn

⌋

+ 1

)

,

the novel estimate proposed in this article

(SG Formula) #Xw(q,m) ≤
m
∏

n=1

q
wn

+ n

n

and finally the well established formula by Beged-Dov, cf. [4],

(BD Formula) #Xw(q,m) ≤
m
∏

n=1

q + ∥w∥1
nwn

.
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Figure 3. Errors for ν = 5/2 with uniformly distributed coefficient (left) and
lognormally distributed coefficient (right)

7.2. The Matérn kernel for ν = 5/2. For the smoothness parameter ν = 5/2, we end up with
a Karhunen-Loève expansion of length m = 64. Figure 3 depicts the convergence rates for both
diffusion coefficients. On the left, we see the convergence of the Gauss-Legendre quadrature and
on the right the convergence of the Gauss-Hermite quadrature. For the anisotropic sparse Gauss-
Legendre quadrature, the convergence rate decreases slightly from N−1 to N−0.91 for the first
to the fourth moment. In case of the Gauss-Hermite quadrature for the lognormally distributed
diffusion coefficient, the observed rate is considerably better. For the mean, we observe N−1.25

and still N−1 for the fourth moment. Note that the stagnation in the convergence might be caused
by the accuracy of the reference solution, which is only of order 10−7.

In Figure 4, we see the different estimates for the number of indices in the anisotropic sparse
tensor product space. On the left, we have the estimates for the uniformly distributed coefficient
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Figure 4. Estimates ν = 5/2 with uniformly distributed coefficient (left) and
lognormally distributed coefficient (right).

and on the right for the lognormally distributed coefficient. As it turns out, for the uniformly
distributed case as well as for the lognormal case, the considered formulae exhibit qualitatively
the same behavior. The novel estimate proven in this article only slightly overestimates the number
of indices and reflects perfectly the growth of the index set with increasing q. Although the formula
of Beged-Dov is asymptotically much better than the crude tensor product estimate, it heavily
overestimates the actual number of indices.
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Figure 5. Errors for ν = 7/2 with uniformly distributed coefficient (left) and
lognormally distributed coefficient (right).

7.3. The Matérn kernel for ν = 7/2. In this example, we have to deal with a 30-dimensional
integration problem. The convergence rates for the computation of the first four moments of the
anisotropic sparse Gaussian quadrature method are depicted in Figure 5. On the left hand side
of this figure, we find the convergence rates in case of the uniformly distributed coefficient and on
the right hand side for the lognormally distributed coefficient. In the uniformly distributed case,
we obtain a convergence rate which is essentially the same for the computation of all considered
moments and of order N−1. In the lognormally distributed case, we obtain convergence rates that
are considerably higher. For the mean, we observe a rate of N−1.6 and still a convergence rate of
N−1.2 for the fourth moment. Note that the stagnation in the convergence might be caused by
the accuracy of the reference solution, which is theoretically only of order 10−7.

In Figure 6, we see the different estimates for the number of indices in the anisotropic sparse
tensor product space. On the left, we have the estimates for the uniformly distributed coefficient
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Figure 6. Estimates ν = 7/2 with uniformly distributed coefficient (left) and
lognormally distributed coefficient (right).

and on the right for the lognormally distributed coefficient. Again, as in the example with ν = 5/2,
there is no significant difference between the lognormally distributed and the uniformly distributed
case. Again, the novel estimate only slightly overestimates the number of indices and reflects
perfectly the growth of the index set with increasing q, whereas the formula by Beged-Dov heavily
overestimates the number of indices in Xw(q,m).

8. Conclusion

In the present article, a novel complexity estimate for the anisotropic sparse grid quadrature
has been proven. Under the assumption that the dimension weights {τn} are increasing at least
logarithmically, i.e. wn ! log(cnr) for some c > 1 and r ∈ R+, we can prove essentially dimen-
sion independent convergence. Our theory has been applied for elliptic diffusion problems with
uniformly elliptic random coefficient or lognormally distributed random coefficient. Here, the
anisotropic sparse Gauss-Legendre quadrature and the anisotropic sparse Gauss-Hermite quad-
rature have to be applied, respectively. Nevertheless, the presented results remain also valid for
other quadrature rules like e.g. Clenshaw-Curtis or Gauss-Kronrod quadrature formulae.
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