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O-MINIMALITY AND CERTAIN ATYPICAL INTERSECTIONS

P. HABEGGER AND J. PILA

Abstract. We show that the strategy of point counting in o-minimal struc-
tures can be applied to various problems on unlikely intersections that go
beyond the conjectures of Manin-Mumford and André-Oort. We verify the
so-called Zilber-Pink Conjecture in a product of modular curves on assuming
a lower bound for Galois orbits and a su�ciently strong modular Ax-Schanuel
Conjecture. In the context of abelian varieties we obtain the Zilber-Pink Con-
jecture for curves unconditionally when everything is defined over a number
field. For higher dimensional subvarieties of abelian varieties we obtain some
weaker results and some conditional results.

On démontre que la stratégie de comptage dans des structures o-minimales
est su�sante pour traiter plusieurs problèmes qui vont au-delà des conjectures
de Manin-Mumford et André-Oort. On vérifie la conjecture de Zilber-Pink
pour un produit de courbes modulaires en supposant une minoration assez
forte pour la taille de l’orbite de Galois et en supposant une version modulaire
du théorème de Ax-Schanuel. Dans le cas des variétés abéliennes on démontre
la conjecture de Zilber-Pink pour les courbes si tous les objets sont définis
sur un corps de nombres. Pour les sous-variétés de dimension supérieure on
obtient quelques résultats plus faibles et quelques résultats conditionnels.
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1. Introduction

The object of this paper is to show that the “o-minimality and point-counting”
strategy can be applied to quite general problems of “unlikely intersection” type
as formulated in the Zilber-Pink Conjecture (ZP; see Section 2 for various for-
mulations), provided one assumes certain arithmetic and functional transcendence
hypotheses. In these problems there is an ambient variety X of a certain type
equipped with a distinguished collection S of “special” subvarieties. The conjec-
ture governs the intersections of a subvariety V ✓ X with the members of S. In the
problems we consider, X will be either a product of non-compact modular curves
(for which it is su�cient to consider the case X = Y (1)n) or an abelian variety, but
the same formulations should be applicable more generally. In this paper, a subva-
riety is always geometrically irreducible and therefore in particular non-empty. A
curve is a subvariety of dimension 1.

Our most general results are conditional, but let us state first an unconditional
result in the abelian setting.

Say X is an abelian variety defined over a field K and K is a fixed algebraic
closure of K. For any r 2 R we write

X [r] =
[

codimXH�r

H(K)

where H runs over algebraic subgroups of X satisfying the dimension condition.

Theorem 1.1. Let X be an abelian variety defined over a number field K and
suppose V ✓ X is a curve, also defined over K. If V is not contained in a proper
algebraic subgroup of X, then V (K) \X [2] is finite.

This theorem is the abelian version of Maurin’s Theorem [29]. We will see a
more precise version in Theorem 9.14.

We briefly describe previously known cases of Theorem 1.1 under additional
hypotheses on V or X. Viada [49] proved finiteness for V not contained in the
translate of a proper abelian subvariety and ifX is the power of an elliptic curve with
complex multiplication. Rémond and Viada [45] then removed the hypothesis on
V . This was later generalised by Ratazzi [40] to when the ambient group variety is
isogenous to a power of an abelian variety with complex multiplication. Carrizosa’s
height lower bound [12, 13] in combination with Rémond’s height upper bound
[43] led to a proof for all abelian varieties with complex multiplication. Work of
Galateau [18] and Viada [50] cover the case of an arbitrary product of elliptic curves.

More generally we show, in the abelian and modular settings, that the Zilber-
Pink conjecture may be reduced to two statements, one of an arithmetic nature,
the other a functional transcendence statement. In general, the former statement
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remains conjectural in both settings. In the abelian setting, the functional transcen-
dence statement follows from a theorem of Ax [3], while in the modular setting a
proof of it has been announced recently by Pila-Tsimerman [34]. Both statements
are generalisations of statements which have been used to establish cases of the
André-Oort conjecture, and this aspect of our work is in the spirit of Ullmo [47].

The arithmetic hypothesis, which we formulate here, is the “Large Galois Orbit”
hypothesis (LGO) and asserts that, for fixed V ✓ X, certain (“optimal”) isolated
intersection points of V with a special subvariety T have a “large” Galois orbit
over a fixed finitely generated field of definition for V , expressed in terms of a
suitable complexity measure of T . Special subvarieties in our settings are described
in Section 2 for abelian varieties and Section 3.2 for Y (1)n and LGO is formulated
in Section 8.

In the context of the André-Oort Conjecture, the Generalised Riemann Hypoth-
esis (GRH) su�ces to guarantee LGO (see [46, 48]). However, it is not clear to
the authors if a variant of the Riemann Hypothesis leads to large Galois orbits for
isolated points in V \ T if dimT � 1. Indeed, in the Shimura setting, there seems
to be no Galois-theoretic description of isolated points in V \ T which is rooted
in class field theory. On the other hand, suitable bounds have been established
unconditionally for André-Oort in several cases, and perhaps LGO will be found
accessible without assuming GRH.

Associated with X is a certain transcendental uniformisation ⇡ : U ! X. The
functional transcendence hypothesis is the “Weak Complex Ax” hypothesis (WCA)
and is a weak form of an analogue for ⇡ of “Ax-Schanuel” for cartesian powers of the
exponential function. The latter result, due to Ax [2], a�rms Schanuel’s Conjecture
(see [24, p. 30]) for di↵erential fields. WCA is formulated in Section 5.

In the modular case X = Y (1)n our result is the following. A very special case
of it was established unconditionally by us in [21].

Theorem 1.2. If LGO and WCA hold for Y (1)n then the Zilber-Pink Conjecture
holds for subvarieties of Y (1)n defined over C. Moreover, if WCA holds for Y (1)n

and LGO holds with K = Q, then the Zilber-Pink Conjecture holds for subvarieties
of Y (1)n defined over Q.

In the case that X is an abelian variety, we establish the same result in Section
9. However, as mentioned above, in this case WCA is known, and LGO can be
established in the case that V is one-dimensional when X and V are defined over
Q. This allows us to prove the above unconditional result for curves.

All current approaches towards Theorem 1.1 require a height upper bound on
the set of points in question. Like many of the papers cited above we use Rémond’s
height bound [43] which relies on his generalisation of Vojta’s height inequality.

In contrast to previous approaches we do not rely on delicate Dobrowolski-
type [12,13,40] or Bogomolov-type [18] height lower bounds to pass from bounded
height to finiteness. These height lower bounds are expected (but not known) to
generalise to arbitrary abelian varieties. Instead we will use a variation of the strat-
egy originally devised by Zannier to reprove the Manin-Mumford Conjecture [36]
for abelian varieties. This approach relied on the Pila-Wilkie point counting result
in o-minimal structures. We will still require a height lower bound. However, the
robust nature of the method allows us to use Masser’s general bound [27] which



4 P. HABEGGER AND J. PILA

predates the sophisticated and essentially best-possible results of Ratazzi and Car-
rizosa that require the ambient abelian variety to have complex multiplication.

In her recent Ph.D. thesis, Capuano [11] counted rational points on suitable de-
finable subsets of a Grassmanian to obtain finiteness results on unlikely intersections
with curves in the algebraic torus.

In the next theorem we collect several partial results in the abelian setting for
subvarieties of arbitrary dimension.

Theorem 1.3. Let V ✓ X be a subvariety of an abelian variety, both defined over
a number field K. Let us also fix an ample, symmetric line bundle on X and its

associated Néron-Tate height ĥ.

(i) If S � 0 then
n

P 2 V (K) \X [1+dimV ]; ĥ(P )  S
o

is contained in a finite union of proper algebraic subgroups of X.
(ii) Suppose dim'(V ) = min{dimX/Y, dimV } for all abelian subvarieties Y ✓

X where ' : X ! X/Y is the canonical morphism. If dimV � 1 then
V (K) \X [1+dimV ] is not Zariski dense in V .

Theorem 9.15 refines this statement. A particularly simple example of a surface
that does not satisfy the hypothesis in (ii) is the square V ⇥ V of a curve V ( X.
The Zilber-Pink Conjecture remains open for surfaces in abelian varieties defined
over a number field. In Corollary 9.9 we show that a su�ciently strong height
upper bound leads to a proof of the Zilber-Pink Conjecture for abelian varieties
over number fields.

The burden of the theorems is that the o-minimality/point-counting strategy is
adequate to deal with “atypical intersections”, given these additional ingredients.
To some extent this is already demonstrated for curves by the work of Masser and
Zannier [28] and the authors’ earlier work [21]. Here we will handle subvarieties
of arbitrary dimension and confirm that the o-minimal method scales to this gen-
erality. Ullmo [47] shows that a “large Galois orbit” statement, “Ax-Lindemann”,
and a height upper bound for certain pre-images of special points, together with a
suitable definability result, enable a proof of the André-Oort Conjecture by point-
counting and o-minimality. In our setting, the special subvarieties generally have
positive dimension and are often una↵ected by the Galois action. Rather we must
count objects that arise when intersecting them with the given subvariety. More
generally, one can formulate results along the lines of the Counting Theorem of
[35] for “atypical intersections” of a definable set in an o-minimal structure with
linear subvarieties defined over Q (or indeed the members of any definable family
of subvarieties having rational parameters). Here (as in previous results by these
methods) o-minimality is used for more than point-counting.

For the basics about o-minimality see [15]. The definability properties required
in this paper are a↵orded by the result, due to Peterzil-Starchenko [31], that the
j-function restricted to the usual fundamental domain F0 for the SL2(Z) action
on the upper half plane H is definable in the o-minimal structure Ran,exp (see
[16]). Accordingly, in this paper “definable” will mean “definable in Ran,exp” unless
stated otherwise. However, the exponential function is superfluous when working
with abelian varieties. Here it is enough to work in Ran, the structure generated
by restricted real analytic functions, which was recognised as being o-minimal by
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van den Dries after work of Gabrielov. In Section 7 we will work with more general
o-minimal structures.

The reader who is mainly interested in Theorem 1.1 on curves in abelian varieties
can skip over several sections in this paper. Indeed, many steps required in the
higher dimensional case simplify considerably. So we briefly indicate a minimalist
approach to Theorem 1.1. A sketch of how our proof of the more general Theorem
9.14 plays out in the case of curves is given at the end of Section 9. A good starting
point is the description of basic properties of algebraic subgroups of an abelian
variety in Section 3.1. Next, Theorem 5.4 is a version of Ax’s Theorem which is
su�ently strong for our purposes; it is presented in Section 5.1. Corollary 7.2 of
Section 7 is a counting result in the spirit of the Theorem of Pila-Wilkie. We count
points on definable sets were a certain collection of coordinates is rational and of
bounded height and the remaining coordinates are unrestricted. These ingredients
are then mixed in Section 9 together with a height lower bound of Masser and a
height upper bound of Rémond to get Theorem 9.14, a stronger version of Theorem
1.1.

2. The Zilber-Pink Conjecture

The Zilber-Pink Conjecture is a far-reaching generalisation of the Mordell-Lang
and André-Oort Conjectures. Di↵erent formulations in di↵erent settings, but based
on the same underlying idea of “atypical” or “unlikely” intersections, were made by
Zilber [53], Pink [37, 38], and Bombieri-Masser-Zannier [10]. We will not address
aspects of uniformity over families of subvarieties here.

Bombieri-Masser-Zannier [8] show that all the versions are equivalent for Gn
m.

Essentially the same argument shows they are equivalent for Y (1)n, but in the
general case this is unclear. The version we give is in any case the strongest:
essentially it is the Zilber or Bombieri-Masser-Zannier statement in Pink’s general
setting, where the ambient variety is a mixed Shimura variety (see [38]). For an
introduction to the conjecture and the state-of-the-the-art see [52].

The general setting involves an ambient variety which is a mixed Shimura variety
(see [37]). A mixed Shimura variety X is endowed with a (countable) collection
S = SX of special subvarieties and a larger (usually uncountable) collection W =
WX of weakly special subvarieties. Special subvarieties of dimension zero are called
special points. We do not provide a general definition for such subvarieties but
rather refer to Pink’s paper [37] for details. This paper is only concerned with the
cases when X is an abelian variety or the product Y (1)n of the modular curve. In
the former case, the special subvarieties are defined below. A detailed description
of special subvarieties in the modular setting is given in section 3.2.

Say X is an algebraic torus Gn
m, an abelian variety, or even a semi-abelian

variety defined over C. In general, such X is not a mixed Shimura variety, but
rather appears as a weakly special subvariety of a family of semi-abelian varieties,
and shares enough formal properties with mixed Shimura varieties to formulate a
Zilber-Pink Conjecture on unlikely intersections. A weakly special subvariety
of X is a coset, that is the translate of a connected algebraic subgroup of X. A
special subvariety of X is a torsion coset, that is a coset of X that contains
a point of finite order. In particular a special point is a torsion point, that is
a point of finite order in the group. We thus write WX and SX for the set of all
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cosets and torsion cosets of X, respectively. We study torsion cosets in more detail
in Section 3.1.

Definition 2.1. Let X be a mixed Shimura variety or a semi-abelian variety defined
over C. Let V ✓ X be a subvariety. A subvariety A ✓ V is called atypical (for V
in X) if there is a special subvariety T of X such that A is an irreducible component
of V \ T and

dimA > dimV + dimT � dimX

i.e. A is an “atypical component” in Zilber’s terminology [53]. The atypical set
of V (in X) is the union of all atypical subvarieties, and is denoted Atyp(V,X).

A special subvariety T of a mixed Shimura variety X is itself a mixed Shimura
variety, with

ST = {A; A is an irreducible component of T \ S for some S 2 SX},
WT = {A; A is an irreducible component of T \ S for some S 2 WX}.

The following is a “CIT” (cf. Conjecture 2 [53]) version of Pink’s Conjecture,
and is on its face stronger than the statement conjectured by Pink. It is convenient
to frame it as a statement about all special subvarieties of a given mixed Shimura
variety X.

Conjecture 2.2 (Zilber-Pink (ZP) for X). Let X be a mixed Shimura variety or
a semi-abelian variety defined over C. If T is a special subvariety of X and if
V ✓ T is a subvariety, then Atyp(V, T ) is a finite union of atypical subvarieties.
Equivalently, V contains only a finite number of maximal atypical (for V in T )
subvarieties.

Now some subvarieties are more atypical than others. Since the collection of
special subvarieties is closed under taking irreducible components of intersections
and contains X, given A ✓ X there is a smallest special subvariety containing A
which we denote hAi. We abbreviate hP i = h{P}i for a singleton {P}. We define
(following Pink [38]) the defect of A as

�(A) = dimhAi � dimA.

Then A ✓ V is atypical for V in X if �(A) < dimX � dimV .
The atypical set is simply a union of atypical subvarieties of V , and it may

happen that an atypical subvariety is contained in some larger but less atypical
subvariety. A generalisation of the argument showing that ZP implies the André-
Oort Conjecture (which corresponds to subvarieties of defect 0) shows that ZP
implies a notionally stronger version in which one considers subvarieties of each
defect separately.

For a subvariety V ✓ X and a non-negative integer � denote by

Atyp�(V )

the union of subvarieties A ✓ V with �(A)  �. We observe that Atyp�(V ) = V if
� � �(V ) = dimhV i � dimV ; and so this case is of no interest.

If � < �(V ) and if A ✓ V satisfies �(A)  �, then A is contained in an irreducible
component of V \ hAi, which must be atypical for V in hV i and which has defect
 �. So for � in this range the set Atyp�(V ) is a union of such atypical subvarieties,
and we make the following conjecture (which is trivial for � � �(V )).
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Conjecture 2.3 (Articulated Zilber-Pink (AZP) forX). Let X be a mixed Shimura
variety or a semi-abelian variety defined over C. Let V ✓ X be a subvariety and
let � be a non-negative integer. Then Atyp�(V ) is a finite union of subvarieties of
V of defect  �.

The following implication uses only the formal properties of special subvarieties;
the reverse implication is immediate. A version of this result appears in [53].

Proposition 2.4. Let X be as in Conjecture 2.3. Then ZP for X implies AZP for
X.

Proof. The proof is by induction on the dimension of the ambient special subvariety
T = hV i ✓ X. AZP is clear if dimT = 0. So AZP holds for all proper special
subvarieties of T . Let V ✓ T . By ZP, there are finitely many atypical subvarieties
Ai, with associated special subvarieties hAii, such that every atypical subvariety A
of V for T is contained in some Ai. The hAii are evidently proper (V ✓ T is not
atypical for V in T ). Now fix � � 0; we may assume � < dimhV i � dimV . Then
with �i = �(Ai),

Atyp�(V ) =

0

@

[

i:�i�
Ai

1

A [
 

[

i:�i>�

Atyp�(Ai)

!

is a finite union by the induction hypothesis, which gives AZP for the Ai. ⇤
Let us formulate one last conjecture in the same spirit as those above. First we

require the notion of an “optimal” subvariety which proves to be quite useful in
the context of unlikely intersections and which will play an important role in the
following sections.

Definition 2.5. Let X be a mixed Shimura variety or a semi-abelian variety defined
over C. Let V ✓ X be a subvariety. A subvariety A ✓ V is said to be optimal
(for V in X) if there is no subvariety B with A ( B ✓ V such that

�(B)  �(A).

The specification of V and X will generally be suppressed, as no confusion should
arise. We write Opt(V ) for the set of all optimal subvarieties for V .

We will often use the following basic property. It is possible to enlarge a given
subvariety B ✓ V to an optimal subvariety A ✓ V with A ◆ B and �(A)  �(B).
It is illustrative to consider some more formal properties of an optimal subvariety
A 2 Opt(V ). Clearly, A is an irreducible component of V \ hAi. If A 6= V , then
�(A) < �(V ) or in other words

dimA > dimhAi+ dimV � dimhV i.
So A is atypical for V in hV i. We will see that the arithmetically interesting case
is when A = {P} is a singleton. Then P is contained in a special subvariety
of dimension strictly less than dimhV i � dimV . The whole subvariety is always
optimal, i.e. V 2 Opt(V ). So “maximal optimal subvariety” is a useless concept.
In a certain sense maximality is built into the notation of optimality. Indeed, if
�(A) = 0, then A is a maximal special subvariety contained completely in X.

Conjecture 2.6. Let X be a mixed Shimura variety or a semi-abelian variety
defined over C and let V ✓ X be a subvariety. Then Opt(V ) is finite.
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Lemma 2.7. Let X be a mixed Shimura variety or a semi-abelian variety defined
over C. Then the conclusions of Conjectures 2.2 and 2.6 are equivalent for X.

Proof. Let V be a subvariety of X.
First we suppose that Opt(V ) is finite. Let T be a special subvariety of X

containing V . We may assume hV i = T , as Atyp(V, T ) = V otherwise. Let A be
atypical for V in T and let B ◆ A be an optimal subvariety for V with �(B)  �(A).
Then �(B) < dimT � dimV and so B is also atypical for V in T . Conjecture 2.2
follows for X as B is contained in a member of the finite set Opt(V ) r {V } of
proper optimal subvarieties for V .

Let us now assume conversely that Conjecture 2.2 holds for V with T = hV i. We
must show that there are only finitely many possibilities for A 2 Opt(V ). Clearly,
we may assume A ( V . But then �(A) < �(V ) = dimT � dimV by optimality.
So A is also atypical for V in T . It is contained in a subvariety B that is maximal
atypical for V in T . So B comes from a finite set. We observe that dimB < dimV
and that A lies in Opt(B), which is finite by induction on the dimension. ⇤

A product of modular curves, in particular Y (1)n, is a (pure) Shimura variety.
Another example of a (pure) Shimura variety is the moduli space Ag of principally
polarised abelian varieties of dimension g. It is a special subvariety of a larger mixed
Shimura variety Xg which consists of Ag fibered at each point by the corresponding
abelian variety.

Conjecture 2.2 for an abelian variety X and its special subvarieties is equivalent
to ZP as formulated for subvarieties V ✓ X ✓ Xg (see [38, 5.2] where the equivalence
is proved for Pink’s Conjecture; with obvious modifications the argument proves
the equivalence in the version we have given).

3. Special subvarieties

In the next two sections we discuss in more detail the special subvarieties of an
abelian variety and of Y (1)n.

3.1. The abelian setting. In the case of abelian varieties, the special subvarieties
are the torsion cosets, i.e. the irreducible components of algebraic subgroups or
in other words, translates of abelian subvarieties by points of finite order. In this
section we recall some basic facts on torsion cosets and we define their “complexity”.

An inner-product on an R-vector space W is a symmetric, positive definite
bilinear form h·, ·i : W ⇥ W ! R. The volume vol(⌦) of a finitely generated
subgroup ⌦ of W with respect to h·, ·i is vol(⌦) = | det(h!i,!ji)|1/2 for any Z-
basis (!1, . . . ,!⇢) of ⌦. The volume is independent of the choice of basis. The
orthogonal complement of a vector subspace U ✓ W is U? = {w 2 W ; hw, ui =
0 for all u 2 U}.

Let X be an abelian variety defined over C with dimX = g � 1 and suppose
that L is an ample line bundle on X. The degree of X with respect to L is the
intersection number degL X = (Lg[X]) � 1.

The line bundle L defines a hermitian form

H : T0(X)⇥ T0(X) ! C
on the tangent space T0(X) of X at the origin. This form is positive definite since
L is ample. It is C-linear in the first argument and satisfies H(v, w) = H(w, v) for
v, w 2 T0(X). The real part Re(H) is an inner-product h·, ·i on T0(X) taken as an
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R-vector space of dimension 2g. Thus we obtain a norm kvk = hv, vi1/2 on T0(X).
The imaginary part E = Im(H) is a non-degenerate symplectic form V ⇥ V ! R.

Let ⌦X ✓ T0(X) denote the period lattice of X. It is a free abelian group of
rank 2g and generates T0(X) as an R-vector space. Therefore, vol(⌦X) > 0 where
vol denotes the volume with respect to the inner-product h·, ·iL. The subgroup ⌦X

is discrete in T0(X).

Lemma 3.1. We have degL X = g!vol(⌦X).

Proof. This is a well-known consequence of the Riemann-Roch Theorem for abelian
varieties, see Chapter 3.6 [6]. ⇤

Now suppose that Y ✓ X is an abelian subvariety of dimension dimY � 1. The
pull-back L|Y of L by the inclusion map Y ,! X is an ample line bundle on Y . We
treat T0(Y ) as a vector subspace of T0(X). The hermitian form on T0(Y ) induced
by L|Y is just the restriction of H. Let ⌦Y ✓ T0(Y ) denote the period lattice of Y .
Then degL|Y Y = (dimY )!vol(⌦Y ) by the previous lemma. The projection formula

implies degL|Y Y = (LdimY [Y ]). We will abbreviate this degree by degL Y .
The next lemma uses Minkowski’s Second Theorem from the Geometry of Num-

bers.

Lemma 3.2. There exists a constant c > 0 depending only on (X,L) with the
following properties.

(i) There exist linearly independent periods !1, . . . ,!2 dimY 2 ⌦Y with k!ik 
c degL Y for 1  i  2 dimY and k!1k · · · k!2 dimY k  c degL Y .

(ii) If z 2 ⌦X + T0(Y ) there exist ! 2 ⌦X with z � ! 2 T0(Y ) and k!k 
kzk+ c degL Y .

Proof. Let 0 < �1  . . .  �2 dimY be the successive minima of ⌦Y with respect to
the closed unit ball {z 2 T0(Y ); kzk  1}. By Minkowski’s Second Theorem we
have

(3.1) �1 · · ·�2 dimY  22 dimY vol(⌦Y )

µ(2 dimY )

where µ(n) > 0 denotes the Lebesgue volume of the unit ball in Rn. There exist
independent elements !1, . . . ,!2 dimY 2 ⌦Y with k!ik  �i  �2 dimY . Let ⇢ =
⇢(X,L) > 0 denote the minimal norm of a non-zero period in ⌦X . Using (3.1) and
�i � ⇢ we estimate

k!ik  �2 dimY  22 dimY

µ(2 dimY )⇢2 dimY�1
vol(⌦Y ).

The first inequality of (i) follows from Lemma 3.1 applied to Y . The second in-
equality follows easily from (3.1).

Now say z = !0 + y is as in part (ii) where !0 2 ⌦X and y 2 T0(Y ). The
periods !1, . . . ,!2 dimY generate T0(Y ) as an R-vector space. So y = ↵1!1 + · · ·+
↵2 dimY !2 dimY for some ↵1, . . . ,↵2 dimY 2 R. For each i we fix ai 2 Z with
|↵i � ai|  1/2. Then !00 = a1!1 + · · ·+ a2 dimY !2 dimY is a period of X and

z = !0 + !00 +
2 dimY
X

i=1

(↵i � ai)!i.

Part (ii) follows with ! = !0 + !00, the inequalities from (i), and the triangle
inequality. ⇤
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Replacing L by another ample line bundle leads to a notion of degree that is
comparable to the old one.

Lemma 3.3. Let M be an ample line bundle on X. There exists a constant c � 1
depending only on X,L, and M but not on Y such that c�1 degL Y  degM Y 
c degL Y .

Proof. To distinguish the norms and volumes coming from both line bundles we
write k · kL, k · kM and volL, volM. Let !1, . . . ,!2 dimY be as in Lemma 3.2(i),
so k!1kL · · · k!2 dimY kL  c degL Y . As all norms on T0(X) are equivalent there
exists c0 � 1 with kvkM  c0kvkL for all v 2 T0(X). So k!1kM · · · k!2 dimY kM 
c02 dimY k!1kL · · · k!2 dimY kL and Hadamard’s inequality implies

volM(⌦Y )  k!1kM · · · k!2 dimY kM  cc0
2 dimY

degL Y.

The second inequality in the lemma follows from volM(⌦Y ) = (degM Y )/(dimY )!.
The first one follows by symmetry. ⇤

Definition 3.4. If A is a torsion coset of X which is the translate of an abelian
subvariety Y of X by a torsion point, we define its arithmetic complexity as

�arith(A) = min{order of T ; A = T + Y and T has finite order}
and its complexity as

�(A) = max
�

�arith(A), degL Y
 � 1

where degL Y is the degree of Y with respect to L.
We do not emphasise the choice of L in the complexity. According to Lemma

3.3 changing the line bundle leads to an arithmetic complexity which is comparable
to the original one up to a controlled factor. For our application it is enough to fix
once and for all a line bundle on the ambient abelian variety.

3.2. The modular setting. In this section we describe the special subvarieties of
Y (1)n together with some additional definitions and notations that will be used in
the sequel.

Let j : H ! Y (1) denote the j-function. By ⇡ we denote the cartesian power of
this map

⇡ : Hn ! Y (1)n.

Two-by-two real matrices with positive determinant act on H by fractional linear
transformations. If g 2 GL+

2 (Q) then the functions j(z) and j(gz) on H are related
by a modular polynomial

�N (j(z), j(gz)) = 0

for a suitable positive integer N = N(g) (in fact N(g) is the determinant if g is
scaled to have relatively prime integer entries; see [25, Ch. 5, §2]).
Definition 3.5. A strongly special curve in Hn is the image of a map of the
form

H ! Hn, z 7! (g1z, . . . , gnz)

where g1 = 1, g2 . . . , gn 2 GL+
2 (Q).

By a strict partition we will mean a partition in which one designated part
only is permitted to be empty.
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Definition 3.6. Let R = (R0, R1, . . . , Rk) be a strict partition of {1, . . . , n} in
which R0 is permitted to be empty (and k = 0 is permitted). For each index j we let
HRj denote the corresponding cartesian product. A weakly special subvariety
(of type R) of Hn is a product

Y =
k
Y

j=1

Yj

where Y0 2 HR0 is a point and, for j = 1, . . . , k, Yj is a strongly special curve in
HRj . We have dimY = k.

Definition 3.7. A weakly special subvariety is called a special subvariety if each
coordinate of Y0 is a quadratic point of H.

With a quadratic z 2 H we associate its discriminant �(z), namely �(z) =
b2 � 4ac where aZ2 + bZ + c is the minimal polynomial for z over Z with a > 0.

Definition 3.8. The complexity of a special subvariety Y is defined to be

�(Y ) = max
�

�(z), N(g)
�

over all the coordinates z of Y0 and all g = gkg
�1
` 2 GL+

2 (Q) where gk, g` are
involved in the definition of some constituent strongly special curve Yi, i � 1.

Note that a weakly special subvariety has a certain number of “non-special con-
ditions”, namely the number of coordinates of Y0 which are not quadratic, and is
special just if this number is zero.

Further, weakly special subvarieties come in families. Given a strict partition
R = (R0, R1, . . . , Rk) we may form a new strict partition S in which the elements
previously in R0 are made into individual parts, the parts R1, . . . , Rk are retained,
but S0 is empty. Now a weakly special subvariety W of type R comes with a choice
of some #Rj elements in GL+

2 (Q) for the parts Rj if j � 1. This same choice
determines a weakly special subvariety T of type S which is in fact special (even
strongly special, as there are no fixed coordinates). The variety W now lies in
the family of weakly special subvarieties of T corresponding to choices for the fixed
coordinates R0. It is thus a family of weakly special subvarieties of T parameterised
by HR0 . We will call the members of the family translates of the strongly special
subvariety T ✓ HR1[...[Rk corresponding to the given elements in GL+

2 (Q), the
space of translates being HR0 . The translate of T by t 2 HR0 we denote Tt.

We apply the same terminology to the images in Y (1)n. In particular, we have
the following.

Definition 3.9. A weakly special subvariety of Y (1)n is the image j(Y ) where
Y is a weakly special subvariety of Hn, and is special if Y is special (for some or
equivalently all possible choices for Y ). The complexity of a special subvariety
T ✓ Y (1)n, denoted �(T ), is equal to the complexity of Y (any choice will give the
same complexity due to the SL2(Z) invariance).

As observed the weakly special subvariety Y ✓ Hn is a fibre in a family of weakly
special subvarieties of some special subvariety T . Thus, the image under j of Y
and the other translates are algebraic subvarieties of j(T ).
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4. Geodesic-optimal subvarieties

Throughout this section and if not further specified let X be a mixed Shimura
variety or a semi-abelian variety defined over C.

The collection of weakly special subvarieties, like the collection of special subvari-
eties, is closed under taking irreducible components of intersection and contains the
ambient variety, so there is a smallest weakly special subvariety hAigeo containing
a subvariety A ✓ X. We denote by

�geo(A) = dimhAigeo � dimA

the geodesic defect of A.

Definition 4.1. Let V ✓ X be a subvariety. A subvariety A ✓ V is said to be
geodesic-optimal (for V in X) if there is no subvariety B with A ( B ✓ V such
that

�geo(B)  �geo(A).

As for the defect, the specification of V and X will generally be suppressed.

What we call “geodesic-optimal” has been termed “cd-maximal” (co-dimension
maximal) in the multiplicative context by Poizat [39]; see also [4].

Again, if A ✓ V is geodesic-optimal then it is an irreducible component of
V \ hAigeo. Further, as special subvarieties are weakly special, we have, for any V
and A ✓ V , hAigeo ✓ hAi and so �geo(A)  �(A). In contrast to the defect, the
geodesic defect of a singleton is always 0. Therefore, a singleton is geodesic-optimal
for V if and only if it is not contained in a coset of positive dimension contained in
V .

Definition 4.2. We say that X has the defect condition if for any subvarieties
A ✓ B ✓ X we have

�(B)� �geo(B)  �(A)� �geo(A).

Proposition 4.3. The defect condition holds

(i) if X = Gn
m is an algebraic torus,

(ii) or if X is an abelian variety,
(iii) or if X = Y (1)n.

Proof. Let A ✓ B ✓ X be as in Definition 4.2. For (i) let B ✓ Gn
m and let

L = {(a1, . . . , an) 2 Zn; xa1
1 · · ·xan

n is constant on B},
M = {(a1, . . . , an) 2 Zn; xa1

1 · · ·xan
n is constant and a root of unity on B}

be free abelian groups. Then codimhBi = rankM and codimhBigeo = rankL, so
that

�(B)� �geo(B) = rankL/M

is the multiplicative rank of constant monomial functions on B. Such functions
remain constant and multiplicatively independent on A.

To prove (ii) let A and B be nested subvarieties of X. The coset hBigeo is a
translate of an abelian subvariety Y of X. Let us write ' : X ! X/Y for the
quotient morphism. We fix an auxiliary point P 2 A(C).
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We remark that hP i + Y is a torsion coset that contains P + Y . As P 2 B(C)
we also have B ✓ P + Y and thus hBi ✓ hP i + Y . We apply ', which has kernel
Y , to find '(hBi) ✓ '(hP i) ✓ '(hAi). We conclude

(4.1) dimhBi � dimhBigeo = dimhBi � dimY = dim'(hBi)  dim'(hAi)
where the fact that hBi contains a translate of Y and basic dimension theory are
used for the second equality.

The torsion coset hAi is the translate of an abelian subvariety Z of X by a
torsion point. The fibres of '|hAi : hAi ! '(hAi) contain translates of Y \ Z.
Using dimension theory we find dim'(hAi)  dimhAi � dimY \ Z. We observe
dimY \ Z � dimhAigeo and so dim'(hAi)  dimhAi � dimhAigeo. Now let us
combine this bound with (4.1) to deduce

dimhBi � dimhBigeo  dimhAi � dimhAigeo.
This inequality enables us to conclude

�(B) = dimhBi � dimB

 dimhAi+ dimhBigeo � dimhAigeo � dimB

= �geo(B)� �geo(A) + �(A),

as desired.
In case (iii), �(B) � �geo(B) is just the number of constant and non-special

coordinates of hBigeo. Then any weakly special subvariety containing A (which is
non-empty) but contained in hBigeo, and in particular hAigeo, has also at least that
many non-special constant coordinates. ⇤
Conjecture 4.4. Every mixed Shimura variety (and every weakly special subvari-
ety) has the defect condition.

Proposition 4.5. Let X have the defect condition, e.g. X is an abelian variety
or Y (1)n, and let V ✓ X be a subvariety. An optimal subvariety for V is geodesic-
optimal for V .

Proof. Let A ✓ V be an optimal subvariety and consider a subvariety B with
A ✓ B ✓ V such that �geo(B)  �geo(A). Then �(B) � �geo(B)  �(A) � �geo(A)
and so

�(B) = �geo(B) + �(B)� �geo(B)  �geo(A) + �(A)� �geo(A) = �(A).

Since A is assumed optimal we must have B = A, and so A is geodesic optimal.
Finally, the proposition applies to abelian varieties and Y (1)n because of Propo-

sition 4.3. ⇤

5. Weak complex Ax

In this section we formulate various Ax-Schanuel type conjectures. In the con-
text of abelian varieties, these conjectures will be theorems. But their modular
counterparts are largely conjectural.

As a warming-up let us recall a consequence of “Ax-Schanuel” [2] in the complex
setting.

Let now A 6= ; be an irreducible complex analytic subspace of some open U ✓ Cn

such that locally the coordinate functions z1, . . . , zn and exp(z1), . . . , exp(zn) are
defined and meromorphic on A.
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Definition 5.1. The functions z1, . . . , zn on A are called linearly independent
over Q mod C if there are no non-trivial relations of the form

Pn
i=1 qizi = c on

A where qi 2 Q and c 2 C.

The linear independence of the zi over Q mod C on A is equivalent to the
multiplicative independence of the exp(zi) on A.

Theorem 5.2 (Ax). If the functions z1, . . . , zn on A are linearly independent over
Q mod C then

trdeg CC(z1, . . . , zn, exp(z1), . . . , exp(zn)) � n+ dimA.

5.1. The abelian setting. We will state two variants on Ax’s Theorem that are
su�cient to treat unlikely intersections in abelian varieties.

LetX be an abelian variety defined over C. We write T0(X) for the tangent space
of X at the origin. Moreover, there is a complex analytic group homomorphism
exp : T0(X) ! X(C). Here we use the symbol exp instead of ⇡ to emphasise the
group structure.

Theorem 5.3 (Ax). Let U ✓ T0(X) be a complex vector subspace and z 2 T0(X).
Let K be an irreducible analytic subset of an open neighborhood of z in z + U . If
B is the Zariski closure of exp(K) in X, then B is irreducible and

�geo(B)  dimU � dimK.

Proof. See Corollary 1 in [3]. ⇤
The following statement is sometimes called the Ax-Lindemann-Weierstrass The-

orem for abelian varieties. Theorem 5.3 will be used in Section 6.1 whereas Ax-
Lindemann-Weierstrass makes its appearance near the end in Section 9 where we
apply it in connection with a variant of the Pila-Wilkie Theorem. Ax-Lindemann-
Weierstrass is su�cient to prove Theorem 1.1, but Theorem 1.3, situated in higher
dimension, requires both statements. The reason seems to be that certain technical
di�culties disappear in low dimension.

We may also consider T0(X) as a real vector space of dimension 2 dimX. Af-
ter fixing an isomorphism T0(X) ⇠= R2 dimX it makes sense to speak about semi-
algebraic maps [0, 1] ! T0(X).

Theorem 5.4 (Ax). Let � : [0, 1] ! T0(X) be real semi-algebraic and continuous
with �|(0,1) real analytic. The Zariski closure in X of the image of exp �� is a coset.

Proof. Clearly, we may assume that � is non-constant. The Zariski closure B of
the image exp(�([0, 1])) is irreducible since exp �� is continuous and real analytic
on (0, 1).

By considering Taylor expansions around points of (0, 1), the restriction �|(0,1)
extends to a holomorphic map � with target T0(X) and defined on a domain
in C which contains (0, 1). By analyticity the image of exp �� lies in B and
trdeg CC(exp ��)  dimB.

As � is real algebraic on [0, 1] we find trdeg CC(�)  1 and therefore,

trdeg CC(�, exp ��)  trdeg CC(�) + trdeg CC(exp ��)  1 + dimB.

Let us apply the one variable case of Ax’s Theorem 3 [3] to the holomorphic
function t 7! �(t + 1/2) � �(1/2) defined in a neighborhood of 0 2 C. According
to the inequality of transcendence degrees, the smallest abelian subvariety H ✓ X
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containing all values exp(�(t + 1/2) � �(1/2)) as t runs over U has dimension at
most dimB. Therefore, B = exp(�(1/2)) +H which is what we claimed. ⇤
5.2. A product of modular curves. Now we suppose that X = Y (1)n and that
⇡ : Hn ! X(C) is the n-fold cartesian product of the j-function.

Let again A 6= ; be an irreducible complex analytic subspace of some open
U ✓ Hn, so that locally the coordinate functions z1, . . . , zn and j(z1), . . . , j(zn) are
defined and meromorphic on A, and we have a finite set {Dj} of derivations with
rank(Djzi) = dimA, the rank being over the field of meromorphic functions on A.

Definition 5.5. The functions z1, . . . , zn on A are called geodesically indepen-
dent if no zi is constant and there are no relations zi = gzj where i 6= j and

g 2 GL+
2 (Q).

The geodesic independence of the zi is equivalent to the j(zi) being “modular
independent”, i.e. non-constant and no relations �N (j(zk), j(z`)) where k 6= ` and
�N (X,Y ) is a modular polynomial.

The following conjecture might be considered the analogue of “Ax-Schanuel” for
the j-function in a complex setting.

Conjecture 5.6 (Complex “Modular Ax-Schanuel”). In the above setting, if the
zi are geodesically independent then

trdeg CC(z1, . . . , zn, j(z1), . . . , j(zn)) � n+ dimA.

It evidently implies a weaker “two-sorted” version that, with the same hypothe-
ses, we have the weaker conclusion

trdeg CC(z1, . . . , zn) + trdeg CC(j(z1), . . . , j(zn)) � n+ dimA.

This conjecture is open beyond some special cases (“Ax-Lindemann” [32] and “Mod-
ular Ax-Logarithms” [21]).

We pursue now some more geometric formulations. To frame these we need some
definitions.

Definition 5.7. By an (algebraic) subvariety of Hn we mean an irreducible
component (in the complex analytic sense) of W \Hn for some algebraic subvariety
W ✓ Cn.

Definition 5.8. A subvariety W ✓ Hn is called geodesic if it is defined by some
number of equations of the forms

zi = ci, ci 2 C; zk = gk`z`, g 2 GL+
2 (Q).

These are the “weakly special subvarieties” in the Shimura sense.

Definition 5.9. By a component we mean a complex-analytically irreducible com-
ponent of W \ ⇡�1(V ) where W ✓ Hn and V ✓ X are algebraic subvarieties.

Let A be a component of W \⇡�1(V ). We can consider the coordinate functions
zi and their exponentials as elements of the field of meromorphic functions (at least
locally) on A, and we can endow this field with dimA derivations in such a way
that rank(Dzi) = dimA. Then (with Zcl indicating the Zariski closure)

dimW � dimZcl(A) = trdeg CC(z1, . . . , zn),

dimV � dimZcl(⇡(A)) = trdeg CC(j � z1, . . . , j � zn)
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and the “two-sorted” Modular Ax-Schanuel conclusion becomes

dimW + dimV � dimX + dimA

provided that the functions zi are geodesically independent.
This condition is equivalent to A being contained in a proper geodesic subvariety.

Let us take U 0 to be the smallest geodesic subvariety containing A. LetX 0 = expU 0,
which is an algebraic subtorus of X, and put W 0 = W \ U 0, V 0 = V \X 0. We can
choose coordinates zi, i = 1, . . . , dimA which are linearly independent over Q mod
C and derivations such that rank(Dzi) = dimA. We get the following variant of
Ax-Schanuel in this setting.

Conjecture 5.10 (Weak Complex Ax (WCA): Formulation A.). Let U 0 be a geo-
desic subvariety of U . Put X 0 = expU 0 and let A be a component of W \ ⇡�1(V ),
where W ✓ U 0 and V ✓ X 0 are algebraic subvarieties. If A is not contained in any
proper geodesic subvariety of U 0 then

dimA  dimV + dimW � dimX 0.

I.e. (and as observed still more generally by Ax [3]), the intersections of W and
⇡�1(V ) never have “atypically large” dimension, except when A is contained in a
proper geodesic subvariety.

It is convenient to give a di↵erent (equivalent) formulation.

Definition 5.11. Fix a subvariety V ✓ X.

(i) A component with respect to V is a component of W \ ⇡�1(V ) for
some algebraic subvariety W ✓ U .

(ii) If A is a component we define its defect by �(A) = dimZcl(A)� dimA.
(iii) A component A with respect to V is called optimal (for V ) if there is no

strictly larger component B w.r.t. V with �(B)  �(A).
(iv) A component A with respect to V is called geodesic if it is a component

of W \ ⇡�1(V ) for some weakly special subvariety W = Zcl(A).

Conjecture 5.12 (WCA: Formulation B.). Let V ✓ X be a subvariety. An optimal
component for V is geodesic.

Formulation B is the statement we need. However, the two formulations are
equivalent, and the proof of their equivalence is purely formal and applies in the
semiabelain setting and indeed quite generally.

Proof that formulation A implies formulation B. We assume Formulation A and sup-
pose that the component A of W \⇡�1(V ) is optimal, where W = Zcl(A). Suppose
that U 0 is the smallest geodesic subvariety containing A, and let X 0 = ⇡(U 0). Then
W ✓ U 0. Let V 0 = V \ X 0. Then A is optimal for V 0 in U 0, otherwise it would
fail to be optimal for V in U . Since A is not contained in any proper geodesic
subvariety of U 0 we must have

dimA  dimW + dimV 0 � dimX 0.

Let B be the component of ⇡�1(V 0) containing A. Then B is also not contained in
any proper geodesic subvariety of U 0, so, by Formulation A,

dimB  dimV 0 + dimZcl(B)� dimX 0.
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But dimB = dimV 0, whence dimZcl(B) = dimX 0, and so Zcl(B) = X 0, and B is
a geodesic component. Now

�(A) = dimW � dimA � dimX 0 � dimV 0 = �(B)

whence, by optimality, A = B. ⇤
Proof that formulation B implies formulation A. We assume Formulation B. Let
U 0 be a geodesic subvariety of U , put X 0 = ⇡(U). Suppose V ✓ X 0,W ✓ U 0 are
algebraic subvarieties and A is a component of W 0 \ ⇡�1(V 0) not contained in any
proper geodesic subvariety of U 0. There is some optimal component B containing
A, and B is geodesic, but since A is not contained in any proper geodesic, B must
be a component of ⇡�1(V 0) with Zcl(B) = U 0 and we have

dimW � dimA � �(A) � �(B) = dimX 0 � dimV

which rearranges to what we want. ⇤
As already remarked, WCA holds for (semi-)abelian varieties, by Ax [3] (see also

[23]).
To conclude we note that a true “Modular Ax-Schanuel” should take into account

the derivatives of j. A well-known theorem of Mahler [26] implies that j, j0, j00 are
algebraically independent over C as functions on H, and it is well-known too that
j000 2 Q(j, j0, j00) (see e.g. [5]).

Conjecture 5.13 (Modular Ax-Schanuel with derivatives). In the setting of “Mod-
ular Ax-Schanuel” above, if zi are geodesically independent then

trdeg CC(zi, j(zi), j0(zi), j00(zi)) � 3n+ dimA.

6. A finiteness result for geodesic-optimal subvarieties

6.1. The abelian case. Suppose X is an abelian variety defined over C. In this
section we prove the following finiteness statement on geodesic-optimal subvarieties
for a fixed subvariety of X. We recall that geodesic-optimal subvarieties were
introduced in Definition 4.1.

Proposition 6.1. For any subvariety V ✓ X there exists a finite set of abelian
subvarieties of X with the following property. If A is a geodesic-optimal subvariety
for V , then hAigeo is a translate of a member of the said set.

Any positive dimensional, geodesic-optimal subvariety A ( V is “µ-anormal
maximal” for a certain µ in Rémond’s terminology [44]. His Lemme 2.6 and Propo-
sition 3.2 together imply that hAigeo is a translate of an abelian subvariety coming
from a finite set that depends only on V . Thus our proof Proposition 6.1 can be
regarded as an alternative approach to Rémond’s Theorem using the language of
o-minimal structures. The reader interested only in the proof of Theorem 1.1 can
safely skip this section.

We retain the meaning of the symbol T0(X) from Section 3 and we further
write exp : T0(X) ! X(C) for the exponential map. It is a holomorphic group
homomorphism between complex manifolds whose kernel is the period lattice of X.
We choose a basis of the period lattice and identify T0(X) with R2g as a real vector
space. However, we continue to use both symbols T0(X) and R2g; the former is
useful to emphasise the complex structure and the latter is required as an ambient
set for an o-minimal structure.
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The open, semi-algebraic set (�1, 1)2g contains a fundamental domain for the
period lattice Z2g ✓ R2g in real coordinates. Under the identification R2g ⇠= T0(X)
we fixed above, we may consider (�1, 1)2g as a domain in T0(X).

Let V be a subvariety of X. Then

V = exp |�1
(�1,1)2g (V (C))

is a subset of R2g and definable in Ran. But under the identification mentioned be-
fore, V is also a complex analytic subset of (�1, 1)2g ✓ T0(X). Thus it is a complex
analytic space. The interplay of these two points of view will have many conse-
quences. For an in-depth comparision between complex and o-minimal geometry
we refer to Peterzil and Starchenko’s paper [30].

Indeed, suppose Z is an analytic subset of a domain in T0(X) and z 2 Z.
Then some open neighborhood of z in Z is definable in Ran as Z is defined by the
vanishing of certain holomorphic functions. So the dimension dimz Z of Z at z as
a set definable in Ran is well-defined. But there is also the notion of the dimension
of Z at z as a complex analytic space [19].

In this section we will add the subscript C to the dimension symbol to signify
the dimension as a complex analytic space.

As dimC = 2 = 2dimC C the following lemma not surprising.

Lemma 6.2. Let Z be an analytic subset of a finite dimension C-vector space. If
z 2 Z then dimz Z = 2dimC,z Z.

Proof. Locally at z the complex analytic space Z is a finite union of prime compo-
nents, each of which is analytic in a neighborhood of z in Z. Without loss of gener-
ality we may assume that Z is irreducible at z. After shrinking Z further we may
suppose that Z is irreducible, definable in Ran, and satisfies dimz Z = dimZ. We fix
a decomposition of Z into cells D1 [ · · ·[DN and write Z 0 = Z r

S

dimDi<dimZ Di

where the bar signifies closure in Z. Then Z 0 is an open and non-empty subset of Z.
So it must contain a smooth point z0 of the complex analytic space Z. Around z0 we
find dimz0 Z = 2dimC,z0 Z = 2dimC,z Z since Z, as an analytic space, is equidimen-
sional. But z0 is contained in a cell Di of dimension dimZ. So dimZ = 2dimC,z Z.
Our claim now follows from dimZ = dimz Z. ⇤

We fix an isomorphism of End(T0(X)), the endomorphisms of T0(X) as a C-
vector space, with R2g2

as an R-vector space. Let O ✓ End(T0(X)) be definable in
Ran and satisfy the following 2 properties.

(i) We have 0 2 O.
(ii) If M 2 O and if Y ✓ X is an abelian subvariety of X, then T0(Y ) \ kerM

is the kernel of an element in O.

In particular, O contains an element whose kernel is the tangent space of any given
abelian subvariety of X.

Suppose 0  r  g is an integer. We set

Fr =
�

(z,M) 2 V ⇥O; dimC kerM = r and for all N 2 O with kerM ( kerN :

dim kerM � dimz V \ (z + kerM) < dimkerN � dimz V \ (z + kerN)
 

.

Then Fr is definable in Ran by standard properties of o-minimal structures, for
example by Proposition 1.5, chapter 4 [15] taking local dimensions is definable. We
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set

Er =
�

(z,M) 2 Fr; for all M 0 2 O with kerM 0 ( kerM :

dimz V \ (z + kerM 0) < dimz V \ (z + kerM)
 

which is also definable in Ran.
Ax’s Theorem 5.3 for abelian varieties will be used in

Lemma 6.3. (i) If (z,M) 2 Er there is an abelian subvariety Y ✓ X with
T0(Y ) = kerM .

(ii) The set

{kerM ; (z,M) 2 Er}
is finite.

(iii) Let A be a geodesic-optimal subvariety for V and let hAigeo be a translate
of an abelian subvariety Y . If r = dimC Y and M 2 O with T0(Y ) = kerM
then (z,M) 2 Er for some z 2 (�1, 1)2g.

Proof. Say (z,M) 2 Er is as in (i). We apply Ax’s Theorem 5.3 to U = kerM . For
this we fix a prime component (in the complex analytic sense) K ✓ V \ (z + U)
with dimC,z K = dimC,z V \ (z + U). By shrinking K to an open neighborhood of
z we may assume that K is irreducible and definable in Ran. Let B ✓ X be as in
Ax’s theorem.

If hBigeo is a translate of the abelian subvariety Y ✓ X then K ✓ z+T0(Y ) and
so

K ✓ z + T0(Y ) \ U.

Observe that T0(Y )\U is the kernel of an element in O by property (ii) above. By
the definition of Er we must have T0(Y ) \ U = U . Therefore, U ✓ T0(Y ).

Next we prove that equality holds. Indeed, if U ( T0(Y ), then we may test U
against any N 2 O with kerN = T0(Y ) in the definition of Fr. Therefore,

dimU � dimz K = dimU � dimz V \ (z + U)

< dimT0(Y )� dimz V \ (z + T0(Y ))

 dimT0(Y )� dimz exp |�1
(�1,1)2g (B(C))

where the final inequality required B ✓ V \ (exp(z) + Y ). On passing to complex
dimensions we obtain dimC U � dimC,z K < dimC Y � dimC,z B = �geo(B) which
contradicts the conclusion of Ax’s Theorem. So we must have kerM = U = T0(Y )
and part (i) follows.

Now we prove (ii) by showing that only finitely many possible kernels kerM
can arise from (z,M) 2 Er. The image of Er under the projection T0(X) ⇥
End(T0(X)) ! End(T0(X)) is definable in Ran. By part (i) the kernel of M is
the tangent space of an abelian subvariety of X. But X has at most countably
many abelian subvarieties which leaves us with at most countably many possible
kernels. We fix a C-basis for T0(X) and identify each M with the corresponding
g ⇥ g matrix. The Plücker coordinates of a submatrix of M with maximal rank
are in a countable set of an appropriate projective space. Plücker coordinates are
algebraic expressions in the entries of M . So we end up with an at most countable
and definable subset on each member of some a�ne covering of projective space.
But an at most countable and definable set is finite. So there are at most finitely
many kerM .
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Let A and Y be as in (iii). Since A is a geodesic-optimal subvariety for V it must
be an irreducible component of V \ hAigeo. Let us fix z 2 V such that exp(z) is a
smooth complex point of A that is not contained in any other irreducible component
of V \ hAigeo.

We first prove (z,M) 2 Fr by contradiction. So suppose there exists N 2 O
with T0(Y ) ( kerN and

(6.1) dimT0(Y )� dimz V \ (z + T0(Y )) � dimkerN � dimz V \ (z + kerN).

As in (i) we fix a prime component K of V \ (z + kerN) that passes through z
with dimC,z K = dimC,z V \ (z + kerN) and is irreducible. Let B be the Zariski
closure of exp(K), then Ax’s Theorem implies �geo(B)  dimC kerN � dimC K. As
exp is locally biholomorphic our choice of z implies that z is a smooth point of the
complex analytic set V \ (z+T0(Y )) which has dimension dimC A at this point. So

(6.2) �geo(A) = dimC T0(Y )� dimC A � dimC kerN � dimC K � �geo(B)

follows from (6.1) after dividing by 2.
By smoothness, the intersection V \ (z + T0(Y )) has a unique prime component

K 0 passing through z. The dimension inequality for intersections, cf. Chapter 5,
§3 [19], implies

dimC,z K \ (z + T0(Y )) � dimC,z K + dimC T0(Y )� dimC kerN.

Inequality (6.1) and dimC,z V \ (z + T0(Y )) = dimC A imply that the right-hand
side is at least dimC A. But K \ (z + T0(Y )) ✓ V \ (z + T0(Y )) and on compar-
ing dimensions at z we find that K \ (z + T0(Y )), and a fortiori K, contains a
neighborhood of z in K 0. This implies A ✓ B. But (6.2) and the fact that A is a
geodesic-optimal subvariety forces A = B. So dimC K  dimC A and (6.2) applied
again yields dimC T0(Y ) � dimC kerN , a contradiction.

Second, we will show (z,M) 2 Er. Suppose on the contrary that there is M 0 2 O
with kerM 0 ( T0(Y ) and

dimz V \ (z + kerM 0) � dimz V \ (z + T0(Y )).

The set on the right is a complex analytic space, smooth at z, and contains the
former. So V\(z+kerM 0) and V\(z+T0(Y )) coincide on an open neighborhood of
z in (�1, 1)2g. Therefore, an open neighborhood of 0 in A(C)� exp(z) is contained
in the group exp(kerM 0); here and below we use the Euclidean topology. Said
group need not be algebraic or even closed, but it does contain an open, non-empty
subset of the complex points of

(A� exp(z)) + · · ·+ (A� exp(z))
| {z }

dimX terms

.

This sum equals hA� exp(z)i = Y = exp(T0(Y )). Hence T0(Y ) ✓ kerM 0, which is
the desired contradiction. ⇤

Proof of Proposition 6.1. We will work with O = End(T0(X)). Suppose that A is
a geodesic-optimal subvariety for V . Let us fix M 2 O such that hAigeo is the
translate of an abelian subvariety whose tangent space is kerM . Then kerM lies
in a finite set by Lemma 6.3 parts (ii) and (iii). So hAigeo is the translate of an
abelian subvariety of X coming from a finite set. ⇤
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Recall that V is a subvariety of X. We brief discussion the connection between
Proposition 6.1 and anomalous subvarieties as introduced by Bombieri, Masser, and
Zannier [10] for subvarieties of the algebraic torus.

Definition 6.4. With X and V as above, a subvariety A ✓ V is called anomalous
if

(6.3) dimA � max{1, dimhAigeo + dimV � dimX + 1}.
If in addition A is not contained in any strictly larger anomalous subvariety of V ,
then we call A maximal anomalous. The complement in V of the union of all
anomalous subvarieties of V is denoted by V oa.

Any maximal anomalous subvariety A of V is geodesic-optimal. Indeed, af-
ter enlargening there is a geodesic-optimal subvariety B for V with A ✓ B and
�geo(B)  �geo(A). So

dimB � dimhBigeo � dimhAigeo + dimA � dimhBigeo + dimV � dimX + 1

due to (6.3). Since dimB � dimA � 1 we see that B is anomalous. As A is
maximal anomalous we find B = A. So A is geodesic-optimal for V .

According to Proposition 6.1, hAigeo is the translate of an abelian subvariety
coming from a finite set which depends only on V . Let Y be such an abelian
subvariety. By a basic result in dimension theory of algebraic varieties the set of
points V (K) at which X ! X/Y restricted to V has a fibre greater or equal to
some prescribed value is Zariski closed in V . It follows that V oa is Zariski open in
V ; we may thus use the notation V oa(K) for K-rational points in V oa.

Openness of V oa was previously known due to work of Rémond [44] and proved
earlier in the toric setting by Bombieri, Masser, and Zannier [10].

We remark that V oa is possibly empty. Moreover, V oa = ; if and only if there
exists a Y as above such that

dim'(V ) < min{dimX/Y, dimV }
where ' : X ! X/Y is the canonical morphism.

6.2. Mobius varieties. Let X = Y (1)n.
It is convenient to introduce a family subvarieties of Hn parameterised by choices

of elements of H and GL+
2 (R) in which weakly special subvarieties are the fibres cor-

responding to the GL+
2 (R) parameters having their image under scaling in SL2(R)

lying in the image of GL+
2 (Q). Observe that this image is a countable set. In [32]

these were termed “linear subvarieties” but the denotation “Mobius” seems to be
more appropriate.

We take zi as coordinates in Hn and gi, i = 2, . . . , n as coordinates on GL+
2 (R)n�1

The family of Mobius curves in Hn is the locus

M{1,...,n} ✓ Hn ⇥GL+
2 (R)

n�1

defined by the equations zi = giz1, i = 2, . . . , n. We view this as a family of curves
in Hn parameterised by g = (g2, . . . , gn) 2 GL+

2 (R)n�1. For a subset R ✓ {1, . . . , n}
we define MR to be the family of Mobius curves on the product of factors of Hn over
indices in R, parameterised by the corresponding factors of GL+

2 (R)n excluding the
smallest one which plays the role of z1, which we will denote GL+

2 (R)Ri .
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Let R = (R0, R1, . . . , Rk) be a strict partition as near Definition 3.6. Define the
family of Mobius subvarieties of type R to be the locus

MR ✓ Hn ⇥HR0 ⇥
k
Y

i=1

GL+
2 (R)

Ri

defined by equations placing the HRi ⇥ GL+
2 (R)Ri point in MRi for i = 1, . . . , k,

and each R0-coordinate in Hn is set equal to the corresponding coordinate in HR0 .
For each choice of parameters

t 2 MR = HR0 ⇥
k
Y

i=1

GL+
2 (R)

Ri

the corresponding fibre MR
t is a Mobius subvariety Hn.

Like weakly special subvarieties, Mobius subvarieties come in families of “trans-
lates”. For a fixed g 2 Qk

i=1 GL+
2 (R)Ri , the choices of z 2 HR0 give a family of

Mobius subvarieties, the “translates” of the corresponding “strongly Mobius sub-
variety” Mg of the appropriate subproduct of Hn, and the totality of the translates
form a Mobius subvariety with no fixed coordinates.

A component A ✓ Hn is contained in some smallest Mobius subvariety LA, has
a Mobius defect

�M (A) = dimLA � dimA

A component A ✓ j�1(V ) will be called Mobius optimal (for V in X) if there is
no component B with A ✓ B ✓ j�1(V ) and �M (B)  �M (A).

Proposition 6.5. Assume WCA. Let V ✓ X be a subvariety. Then the set of

g 2
k
Y

i=1

GL+
2 (R)

Ri

such that some translate of Mg intersects j�1(V ) in a component which is Mobius
optimal for V is finite modulo the action by

Q

i SL2(Z)Ri .

Proof. The condition is
Q

i SL2(Z)Ri invariant, so the assertion is that such g come
in finitely many

Q

i SL2(Z)Ri orbits. By WCA, any such g corresponds to a weakly
special subvariety, and so the g in question belong to a countable set. However,
every such g has a translate under

Q

i SL2(Z)Ri for which the optimal component
has points of its full dimension in some fixed fundamental domain, say Fn

0 , and there
the condition of optimality may be checked definably by considering dimensions of
the intersection of ⇡�1(V ) \ Fn

0 with Mobius subvarieties over the whole space of
them, which is definable. Thus, there is a definable (in Ran,exp) countable and
hence finite set of g which contains a representative of every

Q

i SL2(Z)Ri orbit of
such g. ⇤

As observed, the g above all correspond to weakly special families; however,
every g corresponding to a weakly special family having a translate with a geodesic-
optimal intersection will also appear in this set, as such g (byWCA) are in particular
optimal among Mobius varieties. We conclude a modular version of Proposition 6.1.

Proposition 6.6. Assume WMA. Let V ✓ X be a subvariety. Then there is
a finite set of basic special subvarieties such that every weakly special subvariety
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which has a geodesic-optimal component in its intersection with V is a translate of
one of these.

Finally, we observe that special subvarieties of type R arise as fibres of MR of
points of MR with suitable rationality properties. Specifically, the coordinates in
GL+

2 (R)Ri are rational and those in HR0 are quadratic; let us call these “special
points”. Of course the same fibre arises from non-special choices of the parameter
too.

Proposition 6.7. There is an absolute constant c > 0 with the following property.
Let T ✓ Y (1)n be a special subvariety with complexity �(T ) containing a point
P 2 Y (1)n with pre-image Q 2 Fn

0 . Then there exists a “special point” t 2 MR with

H(t)  c�(T )10

such that MR
t is a component of the pre-image of T and Q 2 MR

t .

Proof. This follows from Lemmas 5.2 and 5.3 of [21]. ⇤

7. Counting semi-rational points

In this section we will work in a fixed o-minimal structure over R. Our goal is to
count points on a definable set where certain coordinates are algebraic of bounded
height and degree and the rest are unrestricted. We will use our result to study
unlikely intersections in abelian varieties.

Let us first fix some notation. Let k � 1 be an integer. We define the k-height
of a real number y 2 R as

Hk(y) = min
�

max{|a0|, . . . , |ak|}; a0, . . . , ak are coprime integers, not all zero,

with a0y
k + · · ·+ ak = 0

 

using the convention min ; = +1. A real number has finite k-height if and only if
it has degree at most k over Q. Let m � 0 be an integer. For y = (y1, . . . , ym) 2 Rm

we set
Hk(y) = max{Hk(y1), . . . , Hk(ym)}

and abbreviate H (y) = H1(y) if y 2 Rm. If Z ✓ Rm is any subset, we define

Z(k, T ) = {y 2 Z; Hk(y)  T}
for T � 1.

If ↵ is a mapping between two sets, then �(↵) will denote the graph of ↵. Suppose
n � 0 is an integer. A family parametrised by Rm is a subset Z ✓ Rm ⇥ Rn. In
this case Zy stands for the projection of ({y}⇥ Rn) \ Z to Rn if y 2 Rm.

Let Z ✓ Rm⇥Rn be a family parametrised by Rm. Our goal is to determine the
distribution of points (y, z) 2 Z where y has k-height at most T without restricting
z. For a real number T � 1, we define

Z⇠(k, T ) = {(y, z) 2 Z; Hk(y)  T} .
For technical reasons it is sometimes more convenient to work with

Z⇠,iso(k, T ) = {(y, z) 2 Z⇠(k, T ); z is isolated in Zy} .
Let l � 0 be an integer. We will use the second-named author’s generalisation,

stated below, of the Pila-Wilkie Theorem [35] to prove the following result for
definable families. We refer to [32] for the definition of definable block and definably
block family.
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Theorem 7.1. Let F ✓ Rl ⇥ Rm ⇥ Rn be a definable family parametrised by Rl

and ✏ > 0. There is a finite number J = J(F, k, ✏) of definable block families

W (j) ✓ Rkj ⇥ Rl ⇥ Rm, j 2 {1, . . . , J}
parametrised by Rkj ⇥ Rl, for each such j a continuous, definable function

↵(j) : W (j) ! Rn,

and a constant c = c(F, k, ✏) with the following properties.

(i) For all j 2 {1, . . . , J} and all (t, x) 2 Rkj ⇥ Rl we have

�(↵(j))(t,x) ✓ {(y, z) 2 Fx; z is isolated in F(x,y)}.
(ii) Say x 2 Rl and Z = Fx. If T � 1 the set Z⇠,iso(k, T ) is contained in

the union of at most cT ✏ graphs �(↵(j))(t,x) for suitable j 2 {1, . . . , J} and

t 2 Rkj .

What follows is a useful corollary of the result above. Its assertion deals with
Z⇠(k, T ) and not Z⇠,iso(k, T ) which appears in the theorem.

Corollary 7.2. Let F and ✏ be as in Theorem 7.1. We let ⇡1 and ⇡2 denote the
projections Rm ⇥ Rn ! Rm and Rm ⇥ Rn ! Rn, respectively. There exists a
constant c = c(F, k, ✏) > 0 with the following property. Say x 2 Rl and let Z = Fx.
If T � 1 and ⌃ ✓ Z⇠(k, T ) with

#⇡2(⌃) > cT ✏,

there exists a continuous and definable function � : [0, 1] ! Z such that the follow-
ing properties hold.

(i) The composition ⇡1 � � : [0, 1] ! Rm is semi-algebraic and its restriction
to (0, 1) is real analytic.

(ii) The composition ⇡2 � � : [0, 1] ! Rn is non-constant.
(iii) We have ⇡2(�(0)) 2 ⇡2(⌃).
(iv) If the o-minimal structure admits analytic cell decomposition, then �|(0,1)

is real analytic.

Here is the second-named author’s counting theorem involving blocks.

Theorem 7.3 (Theorem 3.6 [32]). Let F ✓ Rl⇥Rm be a definable family parametrised
by Rl and ✏ > 0. There is a finite number J = J(F, ✏) of definable block families

W (j) ✓ Rkj ⇥ Rl ⇥ Rm, j = 1, . . . , J,

each parametrised by Rkj ⇥ Rl, and a constant c = c(F, k, ✏) with the following
properties.

(i) For all (t, x) 2 Rkj ⇥ Rl and all j 2 {1, . . . , J} we have W(t,x) ✓ Fx.

(ii) For all x 2 Rl and T � 1 the set Fx(k, T ) is contained in the union of at

most cT ✏ definable blocks of the form W (j)
(t,x) for suitable j = 1, . . . , J and

t 2 Rkj .

Proof of Theorem 7.1. We refer to van den Dries’s treatment of cells in Chapter
3 [15]. His convention for a cell C ✓ Rm ⇥ Rn has the following advantage when
considering it as a family parametrised by Rm. If y 2 Rm then Cy ✓ Rn is either
empty or a cell of dimension dimC � 1.
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We begin the proof of the theorem with a reduction step. Let us consider the
set

F 0 = {(x, y, z) 2 F ; z is isolated in F(x,y)}.
We claim that it is definable. Indeed, let C1 [ · · · [ CN be a cell decomposition of
F . Then F(x,y) = (C1)(x,y) [ · · · [ (CN )(x,y) and each (Ci)(x,y) is either empty or
a cell. The dimension of a non-empty (Ci)(x,y) does not depend on (x, y) and is
the same locally at all points. Therefore, F 0 is a union of a subclass of the Ci and
hence definable.

Since F 0 is definable it su�ces to complete the proof with F replaced by F 0. We
thus assume that z is isolated in F(x,y) for all (x, y, z) 2 F .

By general properties of an o-minimal structure, the number of connected com-
ponents in a definable family is finite and bounded from above uniformly. So
#F(x,y)  c1 for all (x, y) 2 Rl ⇥ Rm where c1 is independent of x and y.

Let ⇡ : Rl⇥Rm⇥Rn ! Rl⇥Rm denote the natural projection. Then E(1) = ⇡(F )
is a definable set. By Definable Choice, Chapter 6 Proposition 1.2(i) [15], there is
a definable function f (1) : E(1) ! Rn whose graph �(f (1)) lies in F . This graph is
definable and so is F r �(f (1)).

The cardinality of a fibre of F r �(f (1)) considered as a family over Rl ⇥ Rm

is at most c1 � 1. If F 6= �(f1), Definable Choice yields a definable function
f (2) : E(2) ! Rn on E(2) = ⇡(F r �(f1)) whose graph is inside F r �(f1). The
fibre above (x, y) of F r (�(f1) [ �(f2)) has at most c1 � 2 elements.

This process exhausts all fibres of F after c2  c1 steps. We get definable families
E(1), . . . , E(c2) ✓ Rl ⇥ Rm parametrised by Rl and definable functions

(7.1) f (i) : E(i) ! Rn for i 2 {1, . . . , c2} with
c2
[

i=1

�(f (i)) = F.

We can decompose each E(i) into finitely many cells on which f (i) is continuous.
So after possibly increasing c2 we may suppose that each f (i) is continuous and
definable.

If x 2 Rl, not all coordinates of a point in F⇠
x (k, T ) need to be algebraic. But

the first m coordinates are and lead to points of k-height at most T on some E(i)
x .

These points can be treated using Theorem 7.3 applied to the family E(i). For
every i 2 {1, . . . , c2} we obtain Ji definable block families W (i,j) ✓ Rki,j ⇥Rl ⇥Rm

parametrised by Rki,j ⇥ Rl where j 2 {1, . . . , Ji}. They satisfy W (i,j)
(t,x) ✓ E(i)

x for

(t, x) 2 Rki,j ⇥ Rl and account for all points of k-height at most T on E(i)
x .

Note that if (t, x, y) 2 W (i,j), then (x, y) 2 E(i). We consider the function

↵(i,j) : W (i,j) ! Rn defined by (t, x, y) 7! f (i)(x, y).

It is definable, being the composition of two definable functions: a projection and
f (i). Moreover, ↵(i,j) is continuous by our choice of the E(i). Observe �(↵(i,j))(t,x) ✓
Fx for all (t, x) 2 Rki,j ⇥ Rl and this will yield (i).

Suppose x 2 Rl and (y, z) 2 Z⇠(k, T ) with Z = Fx. The point (x, y, z) 2 F
lies on the graph of some f (i) by (7.1). Hence z = f (i)(x, y) with (x, y) 2 E(i).

By definition we have y 2 E(i)
x . So y 2 E(i)

x (k, T ) since y has k-height at most
T . Suppose c(E(i), k, ✏) is the constant from Theorem 7.3. Then y is inside some

W (i,j)
(t,x) where j and t are allowed to vary over c(E(i), k, ✏)T ✏ possibilities. Therefore,
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(t, x, y) 2 W (i,j) and (t, x, y, z) 2 �(↵(i,j)) or equivalently, (y, z) 2 �(↵(i,j))(t,x).

Part (ii) and the theorem follow after renumbering the ↵(i,j) and W (i,j) using a
single index. ⇤
Proof of Corollary 7.2. The constant c from the this corollary comes from Theorem
7.1 applied to F, k, and ✏.

Let x 2 Rl and Z = Fx ✓ Rm ⇥ Rn. Suppose T � 1 satisfies

(7.2) #⇡2(⌃) > cT ✏

with ⌃ ✓ Z⇠(k, T ) as in the hypothesis.
First, let us assume ⌃ ✓ Z⇠,iso(k, T ). By our Theorem 7.1 the set ⌃ is contained

in the union of at most cT ✏ graphs of continuous and definable functions. The
Pigeonhole Principle and (7.2) yield two (y, z), (y0, z0) 2 ⌃ on the same graph with

(7.3) z = ⇡2(y, z) 6= ⇡2(y
0, z0) = z0.

From Theorem 7.3 we obtain a definable block family W ✓ Rk ⇥ Rl ⇥ Rm and a
continuous, definable function ↵ : W ! Rn with (y, z), (y0, z0) 2 �(↵)(t,x) for a
certain t 2 Rk. Moreover, �(↵)(t,x) ✓ Z.

The fibre W(t,x) is a definable block containing y and y0. A definable block is
connected by definition. As above this means that there is a continuous, definable
function � : [0, 1] ! W(t,x) with �(0) = y and �(1) = y0. But W(t,x), being a
definable block, is locally a semi-algebraic set. That is, for any s 2 [0, 1] the point
�(s) has a semi-algebraic neighborhood in W(t,x). Because [0, 1] is compact we may
assume that � is semi-algebraic.

We set
�(s) = (�(s),↵(t, x, �(s)))

and this yields a function � : [0, 1] ! Z which we show to satisfy all points in the
assertion.

The function � is continuous and definable as � and ↵ possess these properties.
We note that ⇡1 � � = � is semi-algebraic by construction. This yields the first

statement in (i).
We also note ↵(t, x, y) = z, so �(0) = (y, z) 2 ⌃ and (iii) follows.
We find �(1) = (y0, z0) in a analog manner. Therefore, (7.3) implies ⇡2(�(0)) 6=

⇡2(�(1)) and (ii) follows from this.
To complete the proof of (i) we use the fact that Ralg admits analytic cell

decomposition. There exist 0 = a0 < a1 < · · · < ak+1 = 1 such that each
⇡1 � �|(ai,ai+1) : (ai, ai+1) ! Rm ⇥ Rn is real analytic. By continuity and (ii)
the restriction of ⇡2 � � to some interval (ai, ai+1) is non-constant. If i is minimal
with this property, then ⇡2(�(ai)) = ⇡2(�(0)) = z. This will preserve (iii) after a
linear reparametrisation of (ai, ai+1) to (0, 1). Thus we may suppose that ⇡1��|(0,1)
is real analytic and this completes (i).

To prove (iv) we must assume that the ambient o-minimal structure admits
analytic cell decomposition. As before we cover [0, 1] by finitely many open intervals
and points, such that ⇡2 � � restricted to each open interval is real analytic. We
again linearly rescale the first open interval on which ⇡2�� is non-constant to (0, 1).
So �(0,1) : (0, 1) ! Rm ⇥ Rn is real analytic.

Second and finally, let us suppose ⌃ 6✓ Z⇠,iso(k, T ). We fix any (y, z) 2 ⌃ r
Z⇠,iso(k, T ); then Hk(y)  T and the connected component of Zy containing z
has positive dimension. This component is definably connected. So we may fix a
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definable and continuous path ↵ : [0, 1] ! Zy connecting ↵(0) = z with any other
point ↵(1) 6= z of said component. Properties (i)-(iii) follow with the function
�(t) = (y,↵(t)) 2 Z for t 2 [0, 1]. As above, rescaling implies (iv). ⇤

Say Z ✓ Rm is a definable. The corollary applied (with m = n) to the diagonal
embedding F = {(z, z); z 2 Z} ✓ Rm ⇥ Rm recovers Pila and Wilkie’s Theorem
1.8 [35].

8. Large Galois orbits

Let X be Y (1)n or an abelian variety defined over a field K which we take to
be finitely generated over Q. Recall that we have a notion of complexity of special
subvarieties of X, cf. Sections 3.1 and 3.2 for the abelian and modular cases,
respectively. Suppose V ✓ X is a subvariety defined over K. We consider various
assertions.

(GO1) There exist c, ⌘ > 0 such that, if P is a point of V defined over a field
extension of K, then

[K(P ) : K] � c�(hP i)⌘.
(GO2) There exist c, ⌘ > 0 such that if the singleton {P} ✓ V is an optimal

subvariety for V , then

[K(P ) : K] � c�(hP i)⌘.
(GO3) There exist c, ⌘ > 0 such that, if W is an irreducible component of V \hW i,

then

[K(W ) : K] � c�(hW i)⌘.
Now GO3 is simply too strong: e.g. if V = X = Y (1)n then a component of

V \W is W and hW i = W for any special subvariety W . But some specials have
large complexity and small Galois orbits. Indeed, any strongly special subvariety
of Y (1)2 is defined by a geometrically irreducible polynomial in integer coe�cients.
It would be interesting to know if GO3 is at least true in the case where W is a
point.

Also GO1 seems to be very strong. Taking V = X = Y (1)n and P 2 Qn, the
existence of c, � means that �(hP i) is bounded as P runs over all rational points,
so that only finitely many hP i arise. But this could be true. E.g. in Y (1)2 we
know that there are only finitely many modular curves with non-CM, non-cuspidal
rational points by a result of Mazur. It is however stronger than we need.

For V = Y (1)n and if P is a special point, then statement of GO2 reverts to
the conjecture on Galois orbits of special points. In this case GO2 follows from
the Brauer-Siegel Theorem. However, we have no proof of the general case of GO2
at the moment. Also, GO1 is odd if P is transcendental, while in GO2 it must
be algebraic over K; indeed, {P} must be an irreducible component of V \ hP i if
P is an optimal singleton for V . For positive dimensional components in GO3 we
must depend on o-minimality (and WCA) to bring us to finitely many families, and
reduce to considering their translates.

Definition 8.1. Let K be a field that is finitely generated over Q. Suppose X is
Y (1)n or an abelian variety defined over K and V ✓ X is a subvariety also defined
over K. Let s � 0. We say that LGOs(V ) is satisfied if there exists a constant
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 > 0 with the following property. For any P 2 V (K) such that {P} is an optimal
singleton for V with dimhP i  s we have

(8.1) �(hP i)  (2[K(P ) : K]).

If r � 0, we say that X satisfies LGOr
s , if LGOs(V ) is satisfied for all V ✓ X

defined over K above with dimV  r.
Finally, we say that X satisfies LGO if it satisfies LGOr

s for all r, s � 0.

Conjecture 8.2. Let K be finitely generated over Q. If X is an abelian variety
defined over K or if X = Y (1)n, then X satisfies LGO.

One might expect an analog conjecture to hold in any mixed Shimura variety
(or perhaps even any weakly special subvariety thereof).

Suppose K is a number field. For special points of Shimura varieties the best
results known are those of Tsimerman [46]: lower bounds of the above form for the
size of the Galois orbit for special points in the coarse moduli space of principally
polarised abelian varieties of dimension g, Ag, for g  6 (or on GRH for all g; see
also [48]). For unlikely intersections of curves with special subvarieties of Y (1)n

partial results are obtained in [21].
To prove a uniform version (which one could frame as a ZP for Y (1)n⇥Ck where

the second factor is viewed with rational structure, as done in [33]), one would want
that, for a family of subvarieties {Vt}, i.e. the fibres of some V ✓ Y (1)n ⇥ Ck, the
constant  for Vt in the family depends only on [Q(Vt) : Q], i.e. on the degree of
the parameter t over Q.

9. Unlikely intersections in abelian varieties

9.1. The arithmetic complexity of a torsion coset. In this section we will
prove an upper bound on the arithmetic complexity of a torsion coset as introduced
in Definition 3.4. Our main tool is a height lower bound due to Masser.

Suppose X is an abelian variety of dimension g � 1 defined over a number field
K and L is an ample line bundle on X. To simplify notation we will suppose that
K is a subfield of C. For example, this enables us to consider the tangent space
T0(X) as a C-vector space. We let K denote the algebraic closure of K in C.

After replacing L by L⌦ [�1]⇤L, where [�1] denotes inversion on the algebraic
group X, we may assume that L is symmetric. Let ĥ be the Néron-Tate height
on X(K) attached to L. We recall that the group of homomorphisms between two
abelian varieties is a finitely generated, free abelian group. Let d be the dimension
of an abelian subvariety of X. For the next proposition we require

�X(d) = sup{rankHom(X,X/H) · dim(X/H); H ✓ X is an abelian subvariety

over K with dimH = d} < +1
where rank denotes the rank of a free abelian group and Hom(·, ·) the group of
homomorphisms over K.

We observe that �X(d) = 0 if and only if d = dimX.

Proposition 9.1. There exists a constant c > 0 depending on X and L such that

�arith(hP i)  c[K(P ) : K]6g+1

and
degL H  c[K(P ) : K]60g

4

max{1, ĥ(P )}�X(dimhP i)
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for all P 2 X(K) where H = hP i � P . In particular,

�(hP i)  c[K(P ) : K]60g
4

max{1, ĥ(P )}�X(dimhP i).

Bombieri, Masser, and Zannier [9] employed essentially best-possible height lower
bound due to Amoroso and David [1] to prove a weak form of the Zilber-Pink
Conjecture for curves in Gn

m. Later, Rémond [42] developed this approach for
abelian varieties using the geometry of numbers. We will follow a similar line of
thought in this section. However, lower bounds of the same quality as Amoroso and
David’s result are not known for a general abelian variety. One advantage of the
o-minimal approach is that it can cope with a height lower bound as long as it is
polynomial in the reciprocal of the degree. Below, we will use such a lower bound
due to Masser [27] that applies to any abelian variety defined over a number field.
For the sake of simplicity we state the estimates in a form that is weaker than what
Masser proved.

Theorem 9.2 (Masser). There exists a constant c > 0 depending only on X,K,
and L with the following property. Suppose P 2 X(K) and D = [K(P ) : K] with
ĥ(P ) < c�1D�2g�9, then P is a torsion point of order at most cD6g+1.

Proof. This follows from the main theorem of [27] and the comments that follow
it. ⇤

Given P 2 X(K), a first consequence of Masser’s theorem is a lower bound for
the [K(P ) : K] in terms of the arithmetic complexity of hP i. We do not yet need
the Néron-Tate height.

Lemma 9.3. There exists a constant c3 > 0 such that �arith(hP i)  c3[K(P ) :
K]6g+1 for all P 2 X(K).

Proof. We note that the conclusion becomes stronger when replacing K by a field
extension. So we may assume that all abelian subvarieties of X are defined over K.

Bertrand proved that there is an integer c1 � 1 such that any abelian subvariety
Y ✓ X has a companion abelian subvariety Z ✓ X with Y + Z = X such that
Y \ Z is finite and contains at most c1 elements. Ratazzi and Ullmo published a
proof [41] of Bertrand’s Theorem. The point here is that c1 does not depend on Y .

Suppose that hP i is a translate of Y by a torsion point. Let us write P = Q+R
with Q 2 Y (K) and R 2 Z(K). A positive multiple of P lies in Y (K). This and
#Y \ Z < 1 imply that R has finite order, say M . Masser’s theorem implies
M  c2[K(R) : K]6g+1.

By definition we have �arith(hP i)  M and thus �arith(hP i)  c2[K(R) :
K]6g+1. It remains to bound [K(R) : K] from above in terms of [K(P ) : K].

Suppose �,�0 2 Gal(K/K) with �(R) 6= �0(R). If �(P ) = �0(P ) then P = Q+R
yields �0(Q)��(Q) = �(R)��0(R). This point is in Y \Z as Y and Z are defined
over K. This leaves at most c1 possibilities for �(R)� �0(R). We conclude

[K(P ) : K] = #{�(P ); � 2 Gal(K/K)}
� 1

c1
#{�(R); � 2 Gal(K/K)}

=
[K(R) : K]

c1
.

The lemma follows from the lower bound for [K(R) : K] we obtain above. ⇤
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We setup some additional notation before we come to the proof of Proposition
9.1.

Say Y is a second abelian variety, also defined over K, equipped with an ample
and symmetric line bundle. Thus we have another Néron-Tate height ĥY : Y (K) !
[0,1). We will assume that all elements in Hom(X,Y ) are already defined over
K. We set ⇢ = rankHom(X,Y ). To avoid trivialities we shall assume ⇢ � 1, so in
particular dimY � 1. We set

Hom(X,Y )⇤R = { 2 Hom(X,Y )⌦ R; there is ' 2 Hom(Y,X)⌦ R with  ' = 1}
and fix a norm k · k on the finite dimensional vector space Hom(X,Y ) ⌦ R. For
example, we could take the norm induced by the Rosati involution coming from
the two line bundles. We consider Hom(X,Y ) ⌦ R with the topology induced by
k · k. An element  2 Hom(X,Y )⌦R lies in Hom(X,Y )⇤R precisely when the linear
map Hom(Y,X) ⌦ R ! Hom(Y, Y ) ⌦ R given ' 7!  ' is surjective. Therefore,
Hom(X,Y )⇤R is an open, possibly empty, subset of Hom(X,Y )⌦ R.

Below, c4, c5, . . . denote positive constants that depend only on these two abelian
varieties, K, and the choosen line bundles.

The upper bound for the geometric part of the complexity involves the Néron-
Tate height.

Lemma 9.4. Suppose Q > 1 and let P 2 X(K) be in the kernel of a surjective
element of Hom(X,Y ). There is a surjective ' 2 Hom(X,Y ) with

ĥY ('(P ))  c4Q
�2/⇢ĥ(P ) and k'k  c4Q.

Proof. By Lemmas 2 and 5 [20] there is a compact subspace K ✓ Hom(X,Y )⇤R,' 2
Hom(X,Y ),'0 2 K, and an integer q with 1  q  Q such that ĥY ('(P )) 
c4Q�2/⇢ĥ(P ) and

(9.1) kq'0 � 'k  c4Q
�1/⇢.

We emphasise that c4 does not depend on P or Q.
The norm is bounded from above on the compact space K. So we obtain k'k 

kq'0 � 'k+ qk'0k  c4Q after increasing c4, if necessary.
We must show that ' is surjective. Recall that Hom(X,Y )⇤R is open. Therefore,

there is Q0 � 1 such that Q > Q0 implies '/q 2 Hom(X,Y )⇤R by (9.1). In particular
' has a right inverse in Hom(Y,X) ⌦ R. In this case it must already have a right
inverse in Hom(Y,X)⌦Q by basic linear algebra. So ' is surjective.

Now if Q  Q0 it su�ces to fixed in advance a surjective homomorphism for '.
By general properties of the Néron-Tate height ĥY ('(P )) is bounded from above
linearly in ĥ(P ), cf. expression (8) in Section 2 [20]. The lemma follows after
increasing c4 a final time. ⇤

Lemma 9.5. Suppose P 2 X(K) is in the kernel of a surjective element of
Hom(X,Y ) and D = [K(P ) : K]. There exists a surjective ' 2 Hom(X,Y ) with
'(P ) = 0 and

k'k  c6D
6 dimY+1+(2 dimY+9)⇢/2 max{1, ĥ(P )}⇢/2.

Proof. Suppose P is as in the hypothesis and let us abbreviate h = max{1, ĥ(P )}.
We suppose that ' is a surjective morphism with '(P ) = 0 and with k'k minimal
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among all such morphisms. Let c5 > 0 be the constant from Masser’s Theorem
applied to Y . We will assume

(9.2) k'k > 2(c4c5)
1+⇢/2D6 dimY+1+(2 dimY+9)⇢/2h⇢/2,

with c4 from Lemma 9.4, and derive a contradiction. This implies the proposition
with c6 = 2(c4c5)1+⇢/2.

Let us define the integer

N = [c5D
6 dimY+1].

Without loss of generality we have c4 � 1 and c5 � 1, so N � 1. We define further

Q =
k'k
2c4N

.

Our assumption implies k'k > 2c4c5D6 dimY+1 � 2c4N and so Q > 1. We apply
Lemma 9.4 to find a surjective � 2 Hom(X,Y ) with ĥY (�(P ))  c4Q�2/⇢h and
k�k  c4Q.

Say 1  n  N , then

kn�k  Nk�k  c4NQ =
k'k
2

< k'k.
By minimality of k'k we conclude n�(P ) 6= 0. So �(P ) is either non-torsion
or has finite order strictly greater than N . Masser’s Theorem excludes the second
alternative and provides ĥY (�(P )) � c�1

5 D�2 dimY�9. We combine this bound with
the upper bound from Lemma 9.4 to deduce c4c5D2 dimY+9h � Q2/⇢. Inserting our
choice for Q and N gives

c4c5D
2 dimY+9h �

✓ k'k
2c4N

◆2/⇢

�
✓ k'k
2c4c5D6 dimY+1

◆2/⇢

.

The incompatibility with (9.2) is the desired contradiction. ⇤

Proof of Proposition 9.1. The bound for the arithmetic part of the complexity fol-
lows from Lemma 9.3. The complexity of hP i is the maximum of �arith(hP i) and
degL Y and so it su�ces to prove the second bound.

Without loss of generality we may assume H 6= X. By Poincaré’s Complete
Reducibility Theorem 5.3.5 [6] there are up-to K-isogeny only finitely many possi-
bilities for X/H. So we may assume that there is an abelian variety Y , coming from
a finite set independent of P , and a surjective homomorphism X ! Y whose kernel
contains H as a connected component. After multiplying said homomorphism by a
positive integer we may assume P lies in its kernel. We observe that the assertion of
the proposition becomes stronger when enlarging K, so we may assume that H,X,
and all elements in Hom(X,Y ) are defined over K.

We apply Lemma 9.5 to find a surjective homomorphism ' : X ! Y with
'(P ) = 0 and whose norm is bounded from above by c6D6 dimY+1+(2 dimY+9)⇢/2h⇢/2

with D = [K(P ) : K] and ⇢ > 0 the rank of Hom(X,Y ). We have dimH =
dimX � dimY by a dimension counting argument.

Let ⌦X ✓ T0(X) denote the period lattice and tangent space of X at the origin.
We use the same norm k · k on T0(X) as introduced in Section 3.1. If ⌦Y ✓ T0(Y )
denotes the period lattice of Y , then ' induces a linear map ⌦X ! ⌦Y . Say
g0 = dimH.
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To proceed we apply an adequate version of Siegel’s Lemma to solve '(!i) = 0
in linearly independent periods !1, . . . ,!2g0 2 ⌦X with controlled norm. Indeed,
we may refer to Corollary 2.9.9 [7], however the numerical constants there will not
matter for us. Siegel’s Lemma yields the first inequality in
(9.3)

k!1k · · · k!2g0k  c7k'k2(g�g0) = c7k'k2 dimY  c8D
58g4

max{1, ĥ(P )}⇢ dimY ,

the second one follows from the bound for k'k we deduced further up and

(12 dimY + 2 + (2 dimY + 9)⇢) dimY  (12g + 2 + (2g + 9)4g2)g  58g4

as ⇢  4g dimY and dimY  g.
Lemma 3.1 and Hadamard’s Inequality yield

[ker' : H] degL H = (dimH)![ker' : H]vol(⌦H)  (dimH)!k!1k · · · k!2g0k.
As [ker' : H] � 1 we get an upper bound for degL H which yields the assertion
when combined with (9.3). ⇤
9.2. LGO and the Néron-Tate height. We begin by exhibiting a connection
between LGO, Definition 8.1, and height upper bounds on abelian varieties

Let X be an abelian variety defined over a number field K and suppose L is a
symmetric, ample line bundle on X. Let ĥ denote the associated Néron-Tate height
function. Observe that any optimal subvariety for a subvariety of X defined over
K is defined over K.

Definition 9.6. Let V ✓ X be a subvariety defined over K. Let S � 0. We define
Opt(V ;S) to be the set of those A 2 Opt(V ) which contain a P 2 A(K) with

ĥ(P )  (2[K(A) : K])S; here K(A) denotes the smallest subfield of K containing
K over which A is defined.

In order to apply the counting strategy to study optimal subvarieties we must
find a polynomial upper bound for the complexity of a torsion coset in terms of its
arithmetic degree. Since the inequality in Proposition 9.1 also involves the height
we make the following observation.

Proposition 9.7. Let V ✓ X be a subvariety defined over K and let s � 0. Then
LGOs(V ) is satisfied if there exist ✏ > 0 and S � 0 such that

ĥ(P )  (2[K(P ) : K])S (degL(hP i � P ))
1

�X (dimhPi)�✏

for all optimal singletons {P} ✓ V with �X(dimhP i) > 0 and dimhP i  s. In
particular, LGOs(V ) is satisfied if the Néron-Tate height of an optimal singleton
for V with defect at most s is bounded from above uniformly.

Proof. Observe that �X(dimhP i) = 0 if and only if hP i = X. In this case {P} can
only be an optimal singleton for V if V = {P} in which case the claim is trivial.

If �X(dimhP i) > 0 the claim is direct consequence of Proposition 9.1. ⇤
The main result of this section states that a lower bound for the Galois orbit as in

(8.1) is su�cient to prove that there are only finitely many optimal subvarieties for
V . Although we believe (8.1) to always hold, we are not able to prove it. However,
we can show unconditionally that Opt(V ;S) is finite for any fixed S � 0.

Theorem 9.8. Let X be an abelian variety defined over a field K which is finitely
generated over Q. Let V ✓ X be a subvariety defined over K.
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(i) Say r, s � 0 and suppose that all quotients of X defined over a finite exten-
sion of K satisfy LGOr

s . Then

(9.4) {A 2 Opt(V ); codimV A  r and dimhAi � dimhAigeo  s}
is finite.

(ii) If K is a number field, then Opt(V ;S) is finite for all S � 0.

We obtain 2 corollaries, the first one follows from Lemma 2.7 which states that
Conjectures 2.2 and 2.6 are equivalent.

Corollary 9.9. Let us suppose that the height bound in Proposition 9.7 holds for
all subvarieties of all abelian varieties defined over any number field. Then the
Zilber-Pink Conjecture 2.2 holds for all subvarieties of all abelian varieties defined
over any number field.

Corollary 9.10. Let X and V be as in Theorem 9.8. We suppose that all quotients
of X defined over a finite extension of K satisfy LGOr

s for all r, s � 0. Then Opt(V )
is finite for any subvariety V of X defined over K.

Let us look more closely at the case when K is a number field and s is small. The
Néron-Tate height of a torsion point vanishes. So by Proposition 9.7 any abelian
variety over a number field satisfies LGOr

0 for all r � 0. Part (i) of the theorem
implies that V contains only finitely many maximal torsion cosets as such subva-
rieties are necessarily optimal. We recover the conclusion of the Manin-Mumford
Conjecture. Of course in this special case, our argument does not di↵er significantly
from the Pila-Zannier approach [36]. But part (i) of our theorem applied to s = 0
yields the following strengthening.

Corollary 9.11. Let X be an abelian variety defined over a number field K and
let V ✓ X be a subvariety defined over K. Then

{A 2 Opt(V ); hAi = hAigeo}
is finite.

The next case is s = 1; the corresponding case of the Zilber-Pink Conjecture
concerns subvarieties of codimension 2. So say {P} ✓ V is an optimal singleton
with dimhP i  1. If dimhP i = 0, then P is of finite order and we are back in the
case s = 0. So we assume dimhP i = 1. We know that {P} is geodesic-optimal
for V by Proposition 4.5. In other words, P is not contained in a coset of positive
dimension contained completely in V . In this setting it would be interesting to
know if ĥ(P ) is bounded from above in terms of V only. The analogous statement
in the context of algebraic tori was proved by Bombieri and Zannier, cf. Theorem
1 [51]. Moreover, Checcoli, Veneziano, and Viada [14] showed a related result inside
a product of elliptic curves with complex multiplication.

Proof of Theorem 9.8. We can almost prove parts (i) and (ii) simultaneously. How-
ever, at times we will branch o↵ the main argument to specialise to the two state-
ments. The proof will be by induction on dimV . Our theorem is trivial if V is a
point. Say dimV � 1. After replacing K by a finite extension we may suppose that
all abelian subvarieties of X and all relevant homomorphisms below are defined over
K. We may assume that K is a subfield of C. We fix L an ample, symmetric line
bundle on X to make sense of the complexity �(·).
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Suppose A is an element of Opt(V ) or Opt(V ;S) depending on whether we are
in case (i) or (ii) of the theorem.

In case (i) we suppose codimV A  r and dimhAi � dimhAigeo  s; in case (ii)
we suppose that A contains a point of height at most (2[K(A) : K])S .

By Proposition 4.5 the subvariety A is geodesic-optimal for V and thus an ir-
reducible component of V \ hAigeo. By Proposition 6.1 the coset hAigeo is the
translate of an abelian subvariety Y ✓ X that comes from a finite set depending
only on V . We observe that this finiteness statement is trivial if dimV = 1; we do
not require Proposition 6.1 if V is a curve. We will also fix an ample and symmetric
line bundle on the abelian variety X/Y in order to speak of the Néron-Tate height
ĥ.

Let ' : X ! X/Y be the canonical morphism. As we are in characteristic 0,
there is a Zariski open and dense subset V 0 ✓ V such that '|V 0 : V 0 ! '(V 0) is a
smooth morphism of relative dimension n and '(V 0) is Zariski open in '(V 0), cf.
Corollary III.10.7 [22].

If A \ V 0 = ;, then A is contained in an irreducible component of V r V 0 and
A is an optimal subvariety for this irreducible component. In both case (i) and (ii)
we may apply induction on the dimension as dim(V r V 0) < dimV ; for case (i)
we observe that the codimension in (9.4) drops. So there are only finitely many
possibilities for A.

Let us assume A\V 0 6= ;. We note that A\V 0 is an irreducible component of a
fibre of '|V 0 . The fibres of '|V 0 are equidimensional of dimension n. So dimA = n
and ' maps A to some P 2 (X/Y )(C).

Since P lies in the torsion coset '(hAi) we find hP i ✓ '(hAi) and thus '�1(hP i) ✓
'�1('(hAi)) ✓ hAi + Y . But Y is contained in a translate of hAi and thus
hAi+ Y = hAi. We conclude

(9.5) dimY + dimhP i = dim'�1(hP i)  dimhAi.
Next we claim that the singleton {P} is an optimal subvariety for '(V ). If

the contrary holds there is a subvariety B0 of '(V ) containing P , with positive
dimension, and defect at most dimhP i. We fix an irreducible component B, that
meets V 0, of the pre-image of B0 under '|V with A ✓ B. As '|V 0 is smooth of
relative dimension n = dimA we have

(9.6) dimB = dimB0 + dimA > dimA.

We remark hBi ✓ '�1(hB0i), so dimhBi  dimY +dimhB0i. Since �(B0)  dimhP i
we find

dimhBi  dimY + dimB0 + dimhP i.
Optimality of A and B ) A, a consequence of (9.6), imply

dimhAi < dimA+ dimhBi � dimB  dimA+ dimY + dimB0 + dimhP i � dimB.

We use the equality in (9.6) to find dimhAi < dimY + dimhP i. This contradicts
(9.5) and so {P} must be an optimal subvariety for '(V ).

Let us suppose dimA > 0 for the moment. Then dim'(V ) = dimV � dimA <
dimV .

We first branch into case (i). Any singleton in '(V ) has codimension dim'(V ) =
codimV A  r. The bound (9.5) and dimY = dimhAigeo together yield dimhP i 
dimhAi�dimhAigeo. So dimhP i�dimhP igeo = dimhP i  s by (9.4). As dim'(V ) <
dimV there are only finitely many possibilities for P by induction. Recall that
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'|�1
V 0 (P ) contains A \ V 0 as an irreducible component. This leaves at most finitely

many possibilities for A.
In case (ii) we also want to use induction, but doing so requires a control of

the height. By definition there exists P 0 2 A(K) with ĥ(P 0)  (2[K(A) : K])S .
Recall that ' comes from a finite set depending only on V . Now P = '(P 0) and
by properties of the Néron-Tate height we have

(9.7) ĥ(P ) = ĥ('(P 0))  c1ĥ(P
0)  c1(2[K(A) : K])S

here and below c1, c2, . . . are positive constants that depend only on X,V, and L
but not on A,P, or P 0. By Bertrand’s Theorem, which we already used in the proof
of Lemma 9.3, there exists an abelian subvariety Z ✓ X such that '|Z : Z ! X/Y
is an isogeny of degree at most c2. As ' is defined over K we have [K(P 00) : K] 
c2[K(P ) : K] for any P 00 2 Z with '(P 00) = P . The intersection V \ (P 0 + Y ) =
V \(P 00+Y ) contains A as an irreducible component. Say � 2 Gal(K/K), then �(A)
is an irreducible component of V \ (�(P 00)+Y ). By Bézout’s Theorem the number
of irreducible components of this intersection is at most a constant depending only
on V and Y . So we have [K(A) : K]  c6[K(P 00) : K]  c2c6[K(P ) : K]. Inequality
(9.7) yields

ĥ(P )  c1(2c2c6[K(P ) : K])S .

So {P} 2 Opt('(V );S0) for an appropriately chosen S0. As in (i) we conclude by
induction that A is in a finite set depending only on V .

It remains to treat the case dimA = 0. Then Y = 0, ' is the identity, and A
consists only of P . Thus {P} ✓ V is an optimal singleton.

In case (i) we first note dimV = codimV {P}  r. So LGOs(V ) holds as X
satisfies LGOr

s . We get

(9.8) �(hP i)  (2[K(P ) : K])

where  > 0 depends only on X because dimhP i = dimhP i � dimhP igeo  s.

In case (ii) we note that {P} 2 Opt(V ;S) implies the height bound ĥ(P ) 
(2[K(P ) : K])S . We use this bound in connection with Proposition 9.1 and arrive
again at an inequality of the form (9.8).

So in any case, we have found a lower bound for the size of the Galois orbit of
P . Next we set the stage for the o-minimal machinery. All choices in the following
paragraphs are made independently of P unless stated otherwise.

Let us fix a basis !1, . . . ,!2g of the period lattice ⌦X ✓ T0(X) as in Section 6.1,
here g = dimX. We use it to identify T0(X) with R2g as an R-vector space. In
these coordinates, exp : R2g ! X(C) is a real-analytic group homomorphism with
kernel Z2g.

By the discussion above the set

F = {( , w, z) 2 Mat2g(R)⇥ R2g ⇥ R2g; z 2 exp |�1
[0,1)2g (V (C)) and  (z � w) = 0}

is definable in Ran where we identify Mat2g(R) with R(2g)2 . We will consider F as a
definable family parametrised by Mat2g(R). The kernel of each matrix in Mat2g(R)
is a vector subspace of R2g. In our application, the kernel will be the tangent space
of the abelian subvariety determined by hP i.

Indeed, let us write hP i = Q+ Z with Z an abelian subvariety of X and where
Q has minimal finite order N , i.e. �(hP i) = max{N, degL Z}. As opposed to Y ,
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we do not yet know that Z comes from a finite set; so we must keep in mind that
Q and Z depend on P .

Let � 2 Gal(K/K), then �(P ) 2 �(Q) + Z. We write �(P ) = exp(z�) and
�(Q) = exp(q�) with z�, q� 2 [0, 1)2g. Now exp(z� � q�) = �(P � Q) 2 Z implies
z� � q� 2 exp�1(Z(C)) = ⌦X + T0(Z).

Let k ·k be a norm on T0(X) as in Section 3.1. According to Lemma 3.2(ii) there
exists !� 2 Z2g with z� � q� � !� 2 T0(Z) and

k!�k  kz� � q�k+ c4 degL Z.

But kz�k  c5 and kq�k  c5 as these elements are in the bounded set [0, 1)2g.
Thus k!�k  c6 degL Z. Now !� is integral, hence H(!�)  c7 degL Z where the
height is as in Section 7 and c7 � 1.

As �(Q) has order N we find q� 2 1
NZ2g. The coordinates of q� lie in [0, 1) and

so H(q�)  N .
Basic height properties yield H(q� + !�)  2H(q�)H(!�). So

H(q� + !�)  2c7N degL Z  2c7�(hP i)2.
The tangent space T0(Z) ✓ T0(X) is the kernel of some  2 Mat2g(R). By

construction, (q� + !�, z�) lies on the fibre F . The number of distinct z� is
[K(P ) : K] as � ranges over the Galois group. This degree is bounded from below
by (9.8). The q� + !� are rational with height at most T = 2c7�(hP i)2 � 1.

There are only finitely many torsion cosets B for with �(B) is bounded by a
constant. The singleton {P}, being optimal for V , is an irreducible component
of V \ hP i. As our aim is to prove that there are only finitely many P we may
assume that �(hP i) is su�ciently large with respect to the fixed data. Under
this hypothesis and with for example ✏ = 1/(4) we can apply Corollary 7.2. We
proceed to show that this leads to a contradiction.

There is � : [0, 1] ! F as in Corollary 7.2 with ⌃ the set {(q� + !�, z�);� 2
Gal(K/K)}. The o-minimal structure Ran admits analytic cell decomposition by a
result of van den Dries and Miller [17]. So we may assume that � is real analytic
on (0, 1). The first projection �1 = ⇡1 � � : [0, 1] ! T0(X) is semi-algebraic and
the second one �2 = ⇡2 � � : [0, 1] ! T0(X) is non-constant. The path �2 begins at
�2(0) = z� for some � 2 Gal(K/K). The image of �2 � �1 lies in ker = T0(Z) by
our choice of  . So � � exp ��1 = � � exp ��2 where � : X ! X/Z is the quotient
morphism.

We claim that � � exp ��1 is non-constant. Let us assume the contrary, then
� � exp ��2 is constant too. As exp ��2(0) = �(P ) we have (exp ��2)([0, 1]) ✓
�(P ) + Z = �(hP i). But this image of [0, 1] lies in V (C) by the definition of F .
So (exp ��2)([0, 1]) ✓ V \ �(hP i) = �(V \ hP i). Recall that {P} is an optimal
singleton for V . So P is isolated in V \hP i and thus �(P ) is isolated in �(V \hP i).
This contradicts the fact that �2 is continuous and non-constant.

Let R ✓ X(C) denote the image of exp ��1, it is an uncountable set by the
previous paragraph. The di↵erential d� : T0(X) ! T0(X/Z) of � is a linear map.
So �(R) is the image of the semi-algebraic map d� ��1 composed with T0(X/Z) !
(X/Z)(C). The Ax-Lindemann-Weierstrass Theorem 5.4 implies that �(Zcl(R)) =
Zcl(�(R)) ✓ X/Z is a positive dimensional coset. We abbreviate C = ��1(Zcl(R))
which contains P as a point. Then C must be irreducible, as �1|(0,1) is real analytic,
and of positive dimension. The image �(C) is a translate of Z 0/Z where Z 0 ✓ X is
an abelian subvariety that contains Z. Now C is contained in the coset ��1(�(C)) =
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P + Z 0. This is even a torsion coset because P + Z 0 ◆ P + Z = hP i contains a
point of finite order. Therefore,

hCi ✓ P + Z 0.

Basic dimension theory yields the inequality in dimZ 0/Z = �(C)  dimC. Thus

�(C) = dimhCi�dimC  dim(P+Z 0)�dimC  dimZ 0�dimZ 0/Z = dimZ = �(P ).

But dimC � 1 and this contradicts the optimality of {P}. ⇤

9.3. Intersecting with algebraic subgroups. In this section we prove that a
height upper bound for curves due to Rémond in combination with the o-minimal
machinary is strong enough to establish LGO1

s for all abelian varieties and all
s � 0. In turn this will yield Theorem 1.1, the Zilber-Pink Conjecture for curves in
abelian varieties when all geometric objects are defined over an algebraic closure of
the rationals. We also prove some partial results in the direction of this conjecture
for higher dimensional subvarieties.

Theorem 9.12 (Rémond). Let X be an abelian variety defined over a number field
K, equipped with an ample, symmetric line bundle and its associated Néron-Tate
height. Suppose that V is a curve in X that is not contained in any proper abelian
subvariety of X. Then the Néron-Tate height is bounded from above on V (K)\X [2].

Proof. This is Rémond’s corollaire 1.6 [43]. ⇤

Corollary 9.13. Any abelian variety defined over a number field satisfies LGO1
s

for all s � 0.

Proof. Let V ✓ X be a subvariety with dimV  1. We may clearly assume that
V is a curve. If {P} ✓ V (K) is an optimal singleton, then dimhP i = �({P}) <
�(V ) = dimhV i � 1. After translating V by a torsion point it is contained in the
abelian subvariety of X determined by hV i. Without loss of generality it su�ces to
verify LGO1

s with X replaced by this abelian subvariety. Now hV i = X and P is
contained in an abelian subvariety of X of codimension at least 2. So the height of
P is bounded from above by Rémond’s Theorem. On inserting this height bound
in Proposition 9.1 we find that LGOs(V ) is satisfied. ⇤

We combine the corollary with results from the previous section to obtain the
following strengthening of Theorem 1.1.

Theorem 9.14. Let X be an abelian variety defined over a number field K. Sup-
pose V ✓ X is a subvariety defined over K.

(i) The set

{A 2 Opt(V ); codimV A  1}
is finite.

(ii) If V is a curve then Opt(V ) is finite.
(iii) If V is a curve that is not contained in a proper algebraic subgroup of X,

then V (K) \X [2] is finite.

Proof. Part (i) follows from the corollary above and from Theorem 9.8(i). Part (ii)
is a special case of (i) and to see (iii) we note that any point in the intersection
defines an optimal singleton for V . ⇤
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The next theorem improves on Theorem 1.3 stated in the introduction. The open
anomalous set V oa was introduced in Definition 6.4, we use it in part (iii) below.
Parts (iii) and (iv) rely on a height bound of the first-named author whereas parts
(v) and (vi) use a result of Rémond.

Theorem 9.15. Let X be an abelian variety defined over a number field K, equipped

with an ample, symmetric line bundle and its associated Néron-Tate height ĥ. Sup-
pose V ✓ X is a subvariety defined over K.

(i) If S � 0 then
n

P 2 V (K) \X [1+codimXhV i+dimV ]; ĥ(P )  S
o

is not Zariski dense in V .
(ii) If S � 0 then

n

P 2 V (K) \X [1+dimV ]; ĥ(P )  S
o

is contained in a finite union of proper algebraic subgroups of X.
(iii) The set V oa(K) \X [1+dimV ] is finite.
(iv) Suppose dimV � 1 and dim'(V ) = min{dimX/Y, dimV } for all abelian

subvarieties Y ✓ X where ' : X ! X/Y is the canonical morphism. Then
V (K) \X [1+dimV ] is not Zariski dense in V .

(v) Let � ✓ X(K) be a finitely generated subgroup and

� = {P 2 X(K); there is an integer n � 1 with nP 2 �}.
Then

(9.9)
[

H✓X
H algebraic subgroup

codimXH�1+dimV

V oa(K) \ (H + �).

is finite.
(vi) Let V be as in (iv) and � be as in (v). Then

[

H✓X
H algebraic subgroup

codimXH�1+dimV

V (K) \ (H + �)

is not Zariski dense in V .

Proof. For part (i) let P 2 V (K) \X [1+codimXhV i+dimV ] with ĥ(P )  S. We can
enlargen {P} to an optimal subvariety A for V with �(A)  dimhP i. As A contains
a point of height at most S  (2[K(A) : K])S we find A 2 Opt(V ;S). But the
latter set is finite according to Theorem 9.8(ii). To prove (i) it su�ces to establish
A 6= V . This follows from �(A)  dimhP i < dimhV i � dimV .

Part (ii) is a consequence of (i). Indeed, there is nothing to show if V is contained
in a proper algebraic subgroup of X or if V is a point. Otherwise we have hV i = X
and by (i) the set in the assertion is contained in V1 [ · · · [ Vn where Vi ( V are
subvarieties of V . We conclude (ii) by induction on dimV > dimVi.

To show (iii) we may assume V 6= X and that V is not contained in a proper
abelian subvariety of X. Indeed, if the second condition fails, then V oa = ;. We
know from the main result of [20] that the Néron-Tate height is bounded from above
by S, say, on V oa(K) \ X [dimV ] and thus in particular on V oa(K) \ X [1+dimV ].
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Rémond [43, 44] independently obtained a height bound for the latter set, in his

notation we have V r V oa = Z(1+dimV )
V,an . Say P is in the intersection in part

(iii). If A is an optimal subvariety for V containing P with �(A)  dimhP i then
dimX�dimV �1 � dimhP i � dimhAi�dimA. But P 2 V oa(K) entails dimA = 0.
So A = {P} 2 Opt(V ;S) and the (iii) follows as (i) because Opt(V ;S) is finite.

We recall that V oa is Zariski open in V . Part (iv) follows from (iii) since the
condition on V entails V oa 6= ; by the final comment in Section 6.1.

For part (v) we will require Rémond’s height bound in his Théorème 1.2 [43]
combined with his Théorème 1.4 [44]. Together they imply that there is an upper
bound for the Néron-Tate height of the points in V oa(K) \ (�+X [1+dimV ]).

We proceed by following the argumentation in the proof of Pink’s Theorem 5.3
[38] which we briefly sketch. Suppose P1, . . . , Pt are Z-independent elements that
generate a subgroup of finite index in �. After replacing (P1, . . . , Pt) 2 Xt(K) by
a positive multiple, we may assume that this point generates a subgroup of Xt(K)
whose Zariski closure in Xt is an abelian subvariety Y . Let V 0 = V ⇥{(P1, . . . , Pt)},
this is a subvariety of Xt+1. Now any point P in (9.9) is a Z-linear combination
of the Pi modulo an algebraic subgroup of codimension at least dimV 0 + 1. So

the augmented point P 0 = (P, P1, . . . , Pt) lies in V 0(K)\ (X ⇥ Y )[dimV 0+1] because
dimV 0 = dimV . The Néron-Tate height of P 0 is bounded by a constant S that
only depends on V and the Pi.

We proceed as in the end of (iii). Let A0 be an optimal subvariety for V 0 that
contains the point P 0 and with �(A0)  �({P 0}). So dimhA0i�dimA0  dimhP 0i 
dimX ⇥ Y � dimV 0 � 1. The projection of hA0i ✓ X ⇥ Y to Y is an irreducible
component of an algebraic group which contains (P1, . . . , Pt); so it must equal Y .
Therefore, each fibre of this projection is a coset of dimension dimhA0i � dimY .
We observe that A0 = A⇥ {(P1, . . . , Pt)} is contained in such a fibre, thus

dimhAigeo  dimhA0i�dimY  dimA0+dimX�dimV 0�1 = dimA+dimX�dimV�1

and hence
dimA � dimV + dimhAigeo � dimX + 1.

Recall that P 2 A(K); we must have dimA = 0 because P 2 V oa(K). Thus
A0 = {P 0}. Part (v) follows as A0 lies in the set Opt(V 0;S) which is finite by
Theorem 9.8(ii).

The claim in (vi) follows from (v) as V oa is Zariski open in V and non-empty. ⇤

The case of curves. We give a brief sketch of how the argument plays out for
curves, as several aspects become simpler.

Sketch proof of Theorem 1.1. We consider a curve V contained in an abelian variety
X of dimension g, both defined over a number field K. We suppose that V is not
contained in any proper special subvariety of X. Then an optimal proper subvariety
of V is a point which lies in a special subvariety of X of codimension � 2.

By Corollary 9.13, using the result 9.12 of Rémond, X satisfies LGO1
s, so if

P 2 V (K) with {P} optimal then �(hP i)  (2[K(P ) : K]) for a suitable positive
.

Now the intersection of V with a codimension 2 special subvariety gives rise to
a rational point on the projection to the middle factor R2g of the definable set

{( , w, z) 2 M ⇥ R2g ⇥ R2g : z 2 exp |�1
[0,1)2g (V (C)) and  (z � w) = 0}
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where  is in a real semi-algebraic set M parameterising the subspaces of Cg of
complex codimension 2, and w 2 R2g parameterises translations of these subspaces.

The height in the space of translations R2g of the point corresponding to P 2 hP i
is ⌧ �(hP i)2, and so P and its conjugates give rise to “many” rational points on
R2g.

If �(hP i) is su�ciently large, then Corollary 7.2 implies that there is a semi-
algebraic curve in R2g, parameterised by some real parameter t say, for which the
corresponding linear varieties have a non-constant intersection with exp |�1

[0,1)2g (V (C)).
Here we use the fact that all estimates are uniform over M . The linear varieties
are all translates of the tangent space of a single abelian subvariety Z of X with
codimXZ � 2. The point P lies in the translate of Z by a point of finite order.
Composing the said semi-algebraic curve with R2g ! X(C) ! (X/Z)(C) gives us
a non-constant mapping that can be analysed using Ax-Schnauel in the guise of
Theorem 5.3. The image of this semi-algebraic curve lies in V +Z, the image of V
under the quotient map X ! X/Z. So V + Z is a coset. But it contains P + Z, a
point of finite order, and so it is even a torsion coset.

The torsion coset has dimension 1 and this contradicts the assumption on V as
dimV = 1 < dimX/Z. Hence �(hP i) is bounded for optimal P , and hence only
finitely many special subvarieties (and hence optimal points) may arise. ⇤

10. Unlikely intersections in Y (1)n

Theorem 10.1. Assume LGO and WCA for Y (1)n. Let X ✓ Y (1)n be a special
subvariety and V ✓ X. Then Opt(V ) is a finite set.

Proof. We prove the theorem by induction on V , the case dimV = 0 being trivial.
So we assume that dimV � 1 and the theorem holds for all V of smaller dimension.
Let K be a field of definition for V which is finitely generated over Q.

By Proposition 4.5, an optimal component is geodesic-optimal. By Proposition
6.6 the set of “basic special subvarieties” that have a translate which is geodesic-
optimal is finite. So the subvarieties comprising Opt(V ) are components of the
intersection of V with the translates of finitely many basic special subvarieties
T ✓ X. One such T may of course be the whole of Y (1)n, with XT being also
Y (1)n parameterising individual points of Y (1)n.

Fix such T . It evidently su�ces now to show that only finitely many translates
of T are such that V \ T has components which are optimal. Let XT denote the
translate space of T , which is a suitable Y (1)m.

We have a “quotient map” � : T ! Y (1)m, the fibre over t 2 Y (1)m being
Tt. Write ⌧ for the dimension of these fibres. By [22, Corollary III.10.7], as we
are in characteristic 0, there is a Zariski-open (in V ) and dense V 0 ✓ V on which
the restriction �|V 0 : V 0 ! �(V 0) is a smooth morphism of relative dimension ⌫.
We may further assume that �(V 0) is Zariski open in its Zariski closure, which we
denote VT ✓ XT .

Now suppose C is an optimal component of dimension d and geodesic defect �, a
component of V \Ty for some y. If C\V 0 = ; then C is contained in an irreducible
component of V �V 0, and is an optimal component for this irreducible component.
As this irreducible component has lower dimension than V we conclude by the
induction on dimV that there are only finitely many such C.

So we may suppose C \ V 0 6= ;. Since C \ V 0 is an irreducible component of a
fibre of �|V 0 we have n = dimC; also the image of C in VT under � is the point y.
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We further observe that if y 2 A ✓ VT is contained in a special subvariety S ✓ XT

then ��1(A) is contained in a special subvariety ��1(S) of dimension dimS+ ⌧ . If
we take A to be a component of �|�1

V 0 containing C we see that

�(A)  dimS + ⌧ � dimA = dimS + ⌧ � (dimA0 + dimC).

Next we claim that {y} is an optimal subvariety for VT . Note that �(hCi) is
special of dimension dimC + �(C) � ⌧ and contains y. Now suppose that A is a
component of VT with {y} ✓ A and

dimhAi � dimA  dimC + �(C)� ⌧.

Let B be the component of ��1(A) containing C. Then

dimB = dim
�

��1(A) \ V 0� = dimA+ ⌫

and

�(B)  dim��1hAi � dimB  dimA+ dimC + �(C)� (dimA+ ⌫) = �(C)

and so by optimality of C we must have B = C and A = {y}.
By induction, if dimVT < dimV then VT has only finitely many optimal sub-

varieties. We are reduced to the case dimVT = dimV , which is the case that T is
the family of points. We take a finite extension field L of K over which all optimal
subvarieties of positive dimension are defined.

Now suppose that there is a special subvariety S intersecting V optimally in a
point {y}. Let MR be the family of Mobius subvarieties containing the compo-
nents of ⇡�1(S) (note that the family of all Mobius subvarieties is definable). Let
Z ✓ MR ⇥ Y (1)n be the (definable) set of pairs (t, u) such that {u} is an optimal
component of V \ ⇡(MR

t \ Fn
0 ). Let  be the constant a↵orded by LGO for V .

We apply Corollary 7.2 (with ` = 0) and ✏ = (20)�1 to get c = c(Z, 2, ✏). Let
⌃ = Z⇠(2, T ).

Let T � 1 and suppose #⇡2(⌃) > cT ✏. Then we have a curve � in one of
the constituent definable blocks such that ⇡1 � � is semialgebraic and ⇡2 � � is
non-constant. The union of the Mobius subvarieties over the complexification of
⇡1 � � meets ⇡�1(V ) in an uncountable set, hence in a set of complex dimension
at least one. This union of Mobius varieties is thus a larger algebraic subvariety
of Hn with the same defect (in the sense of 5.11) as each fibre. By WCA there is
a geodesic component containing this subvariety of the same defect. The weakly
special subvariety is however special, as it contains some of the special subvarieties
(conjugates of S) corresponding to {y} and its conjugates. This contradicts the
assumption that {y} and its conjugates are optimal.

Therefore #⇡2(⌃)  cT ✏. But if T = �(hyi)10 we have #⇡2(⌃) � T 2✏/(2[L : K])
by LGO and Proposition 6.7. Therefore �(hyi) is bounded. This completes the
proof of Theorem 10.1. ⇤
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