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Linear equations over multiplicative groups, recurrences, and mixing II

H. Derksen and D. Masser

Abstract. Let u1, . . . , um be linear recurrences with values in a field K of positive char-

acteristic p. We show that the set of integer vectors (k1, . . . , km) such that u1(k1) + · · ·+
um(km) = 0 is p-normal in a natural sense generalizing that of the first author, who proved

the result for m = 1. Furthermore the set is effectively computable if K is. We illustrate

this with an example for m = 4. We also show that the corresponding set for zero charac-

teristic is not decidable for m = 557844, thus verifying a conjecture of Cerlienco, Mignotte,

and Piras.

2010 MSC codes. 11B37, 14G17.

1. Introduction. In 2004 the second author published a paper [M] about linear equations

over multiplicative groups in positive characteristic. This was specifically aimed at an

application to a problem about mixing for dynamical systems of algebraic origin, and as

a result about linear equations it lacked some of the simplicity of the classical results in

zero characteristic. A new feature was the appearance of n − 1 independently operating

Frobenius maps; here n is the number of variables.

In 2007 the first author published a paper [D] about recurrences in positive char-

acteristic. He proved an analogue of the famous Skolem-Lech-Mahler Theorem in zero

characteristic. A new feature was the appearance of integer sequences involving combina-

tions of d− 2 powers of the characteristic; here d is the order of the recurrence.

It turns out that these two new features are identical. In positive characteristic the

vanishing of a recurrence with d terms can be regarded as an linear equation in d − 1

variables to be solved in a multiplicative group (so in particular n − 1 = d − 2). This

observation can be developed in three directions.

In Part I of this series [DM1] we gave an improved version of the result of [M] in a

form more closely related to that in zero characteristic. Here in Part II we show how to

recover the result of [D], and in fact we shall generalize it to sums of recurrences. In zero

characteristic there are rather few results on such sums, and indeed there is a conjecture

of Cerlienco, Mignotte, and Piras [CMP] to the effect that such problems are undecidable
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(see later). In positive characteristic we will establish not only the decidability but also

give completely effective algorithms to solve the problem. In Part III of the series [DM2]

we present some new applications to mixing problems for dynamical systems of algebraic

origin. We apply the linear equations result to give an effective algorithm for determining

the smallest order of non-mixing of any basic action associated with a given prime ideal

in a Laurent polynomial ring. We also show how to determine effectively all non-mixing

sets of that order.

Recall that a map u from N0 = {0, 1, 2, . . .} to a field K is called a recurrence sequence

if there exist d in N = {1, 2, . . .} and λ1, . . . , λd in K such that

u(k + d) = λ1u(k + d− 1) + · · ·+ λdu(k) (1.1)

for all k in N0. For example the Fibonacci sequence

u(0) = 0, u(1) = 1, u(k + 2) = u(k + 1) + u(k) (k = 0, 1, 2, . . .)

with d = 2, which proceeds

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,144, 233, 377, 610, . . . ,

where we have highlighted the largest perfect power u(12) = 144 = 122 [BMS] in the

sequence. In fact if we change this to π to get a “Pibonacci” sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, π, 233, 377, 610, . . . ,

then it remains a recurrence sequence, though now with d = 15 and u(k + 15) = u(k +

14) + u(k + 13) (k = 0, 1, 2, . . .). In particular λd = 0.

Or the Berstel sequence defined by

u(0) = u(1) = 0, u(2) = 1, u(k + 3) = 2u(k + 2)− 4u(k + 1) + 4u(k) (k = 0, 1, 2, . . .)

which starts

0, 0, 1, 2, 0,−4, 0, 16, 16,−32,−64, 64, 256, 0,−768,

and then after a gap of 36 terms continues

−884763262976, 0, 2731599200256, . . .

The more recent literature also considers maps u from Z to K satisfying (1.1) for all

k in Z. Then it is no restriction to assume λd 6= 0. For example the Fibonacci sequence
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can be infinitely extended backwards in a unique way (as in [S1] p.171); but the changed

sequence cannot be infinitely extended backwards at all.

We begin by recalling some results in zero characteristic. An infinite arithmetic pro-

gression is a set of the form a, a + b, a + 2b, . . . , with a ≥ 0 in Z and b in N. We could

include singletons by allowing b = 0, but we do not. The following is the Skolem-Lech-

Mahler Theorem.

Theorem A. Let K0 be a field of zero characteristic, and let u be a recurrence sequence

from N0 to K0. Then the set of k in N0 with u(k) = 0 is a union of finitely many

singletons and infinite arithmetic progressions.

Several authors have studied more elaborate equations involving recurrences. For

example, Evertse [E] considered solutions k, h of u(k) = u(h), and similarly Laurent [La1]

the equation

u(k) = v(h) (1.2)

where v is a second recurrence. In [La2] he also studied u(k) = Au(h) (note that constant

multiples of recurrence sequences are again recurrence sequences). His Théorème 2 (p.26)

there explicitly mentions the possibility of subgroups of Z2 showing up in the solution set.

This, generalized to Zm, will be a key feature of our present work in positive characteristic.

Then Schlickewei and Schmidt [SS1] treated (1.2) when u = Awr and v = Bws for fixed

constants A,B, fixed positive integers r, s and a fixed recurrence w (note also that powers

of recurrence sequences are again recurrence sequences). They mention the possibility

of one-parameter linear families, which again amount to subgroups of Z2. And finally

Schlickewei and Schmidt [SS2] considered solutions k, h, l of

Au(k) +Bu(h) + Cu(l) = 0 (1.3)

for fixed constants A,B,C. They also found that the solution set of (1.2) can be described

with linear or exponential families of a single integral parameter κ, and the same for (1.3)

as long as K0 is the field of all algebraic numbers. There seem to be no similar results for

sums of four or more recurrences. But they conjectured that an analogous description is

possible, even for quite general equations

u1(k1) + · · ·+ um(km) = 0. (1.4)

However Losert [Lo] has given the counterexample

2k + h.2h − l.2l = 0
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with a doubly exponential family of solutions

(k, h, l) = (κ+ 2.2κ + 2κ.22
κ

, 2κ.22
κ

, 2κ + 2κ.22
κ

).

A less elegant type of counterexample is

2k + (
√

2.2h − h) + (
√

3.2l −
√

2.l)−
√

3.j = 0

which can be written as

(2k − h) +
√

2.(2h − l) +
√

3.(2l − j) = 0 (1.5)

so leading to triply exponential solutions

(k, h, l, j) = (κ, 2κ, 22
κ

, 22
2κ

)

(compare [SS2] p.227).

Now to positive characteristic. Here Theorem A is false in characteristic p; for example

the map

u(k) = (t+ 1)k − tk − 1

is a recurrence sequence for the function field K = Fp(t) because

u(k + 3) = (2t+ 2)u(k + 2)− (t2 + 3t+ 1)u(k + 1) + (t2 + t)u(k).

However u(k) = 0 for all k = pf (f = 0, 1, 2, . . .), and it is easy to see (for example directly

by differentiation or by using the general techniques of [D] section 3) that there are no

other k with this property.

The correct versions in positive characteristic were found by the first author in [D]. As

well as singletons and infinite arithmetic progressions we need the notion of an elementary

nested set. However it is convenient first to do things over Z. This necessitates the notion

of a doubly infinite arithmetic progression a+ bZ; and we can again restrict to b in N.

Fix a prime p and a positive integer e, and put q = pe. For a positive integer g and

rational c0, c1, . . . , cg with (q− 1)c0, (q− 1)c1, . . . , (q− 1)cg in Z and c0 + c1 + · · ·+ cg in Z

we define Dq(c0; c1, . . . , cg) as the set of all c0 + c1q
f1 + · · ·+ cgq

fg (f1, . . . , fg = 0, 1, 2, . . .).

The conditions on c0, c1, . . . , cg easily imply (see [D] p.177) that Dq(c0; c1, . . . , cg) lies in

Z. We call it an elementary p-nested set in Z of order at most g (maybe it can be defined

with fewer summands). Then we define a p-normal set in Z of order at most g as a finite
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union of singletons, doubly infinite arithmetic progressions and elementary p-nested sets

in Z of order at most g. We can interpret this for g = 0 in the obvious way by omitting

the p-nested sets.

Finally we say that the recurrence satisfying (1.1) has order at most d. Now we can

state the first version in positive characteristic.

Theorem B1. Let K be a field of positive characteristic p, and let u be a recurrence

sequence from Z to K of order at most d ≥ 2. Then the set of k in Z with u(k) = 0 is

p-normal in Z of order at most d− 2.

In fact this assertion does not appear explicitly in [D], which is apparently restricted

to maps u from N0. But it can easily be deduced from the results in [D]. It is also the

special case m = 1 of our Theorem 1 below (whose proof is essentially independent of that

of [D]).

For the version over N0, denote by Sq(c0; c1, . . . , cg) (when g ≥ 1) the intersection

Dq(c0; c1, . . . , cg) ∩ N0. It is easy to see that this intersection is infinite if and only if

at least one of c1, . . . , cg is positive. In this case we call Sq(c0; c1, . . . , cg) an elementary

p-nested set in N0 of order at most g. We consider a union of a finite number of singletons

in N0, infinite arithmetic progressions in N0, and elementary p-nested sets in N0 of order

at most g, and we further allow the removal of finitely many singletons (another feature

special to positive characteristic); what remains will be called p-normal in N0 of order at

most g. Again we can interpret this for g = 0 in the obvious way. Thus the p-normal

sets in N0 are precisely what we get by intersecting N0 with p-normal sets in Z and then

removing a finite number of singletons.

Theorem B2. Let K be a field of positive characteristic p, and let u be a recurrence

sequence from N0 to K of order at most d ≥ 2. Then the set of k in N0 with u(k) = 0 is

p-normal in N0 of order at most d− 2.

This is the same as Theorem 1.8 of [D] (p.178).

In both these theorems the bounds d − 2 are best possible. This follows indirectly

from the observation in [DM1] (p.1079) that the corresponding bound n− 1 there is best

possible. But here we give a simple direct proof.

The main result of the present paper generalizes Theorems B1 and B2 to arbitrary

sums of recurrences u1, . . . , um and solutions of (1.4). Here the new feature involves addi-

tive subgroups, which makes it now especially convenient to do things first over Zm.
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Take p, e, q, g as above, at first with g ≥ 1. For c0, c1, . . . , cg in Qm with (q−1)c0, (q−
1)c1, . . . , (q − 1)cg in Zm and c0 + c1 + · · ·+ cg in Zm we define Dq(c0; c1, . . . , cg) as the

set of all c0 + c1q
f1 + · · ·+ cgq

fg (f1, . . . , fg = 0, 1, 2, . . .). The conditions on c0, c1, . . . , cg

easily imply that Dq(c0; c1, . . . , cg) lies in Zm. We call it an elementary p-nested set in

Zm of order at most g. Finally we define a p-normal set in Zm of order at most g as a

finite union of singletons and sums H +D, where H is a subgroup of Zm and D is either a

singleton or an elementary p-nested set in Zm of order at most g. Again we can allow also

g = 0. It is easy to see that this agrees with the earlier definition when m = 1, because if

H is non-zero then it has the form bZ with b in N, and now H + D is simply the finite

union of all doubly infinite arithmetic progressions a+ bZ with 0 ≤ a < b which meet D.

Theorem 1. Let K be a field of positive characteristic p, and let u1, . . . , um be recurrence

sequences from Z to K of respective orders at most d1, . . . , dm with d1 + · · · + dm ≥ 2.

Then the set of k = (k1, . . . , km) in Zm with

u1(k1) + · · ·+ um(km) = 0

is p-normal in Zm of order at most d1 + · · ·+ dm − 2.

There is no essential difficulty in deducing a version over Nm
0 . But it seems to be

not especially elegant; for example it is not quite sufficient merely to intersect everything

with Nm
0 and remove some singletons. Just for completeness we present such a version,

postponing the somewhat inelegant definition of p-normal in Nm
0 to section 5.

Theorem 2. Let K be a field of positive characteristic p, and let u1, . . . , um be recurrence

sequences from N0 to K of respective orders at most d1, . . . , dm with d1 + · · · + dm ≥ 2.

Then the set of k = (k1, . . . , km) in Nm
0 with

u1(k1) + · · ·+ um(km) = 0

is p-normal in Nm
0 of order at most d1 + · · ·+ dm − 2.

We should say something about effectivity.

In zero characteristic Theorem A remains ineffective, even for rational recurrences of

order 5 like

u(k) = (8 + i)k + (8− i)k − (7 + 4i)k − (7− 4i)k − 1, (1.6)

(for which we thank Maurice Mignotte), where we still cannot in principle find all the

k with u(k) = 0 (the trouble is |8 + i| = |8 − i| = |7 + 4i| = |7 − 4i|). But there
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are many estimates for the number of solutions. For example, Beukers [B] showed that

if a rational recurrence of order at most 3 has only finitely many zeros, then it has at

most 6, as in the Berstel sequence. The more recent estimates from [ESS] imply the

upper bound exp(2.189) = exp(396718580736) for the number of k in (1.6). Very recently

Amoroso and Viada [AV] have improved the results of [ESS], giving 241620 < exp(5149).

And more generally Schmidt [S2] showed in Theorem A for order at most d that at most

exp exp exp(20d) singletons and infinite arithmetic progressions are needed. The works

[SS1],[SS2] cited above, as well as [SS3] and [SS4], also contain explicit estimates for the

number of solutions.

In fact Cerlienco, Mignotte and Piras in [CMP] (p. 104) have conjectured that for

some m the existence of a solution of (1.4) in zero characteristic is undecidable in the logical

sense. It seems to us that this is true, but in a somewhat trivial fashion when u1, . . . , um

are just polynomials. In fact we prove here that m = 557844 suffices for undecidability over

the field of all algebraic numbers. By contrast our remarks below imply that in positive

characteristic this problem is always decidable (provided the underlying field K is).

In positive characteristic the first author had already noted in [D] that his method,

expressed in the language of automata, yielded fully effective results for Theorems B1 and

B2. For example Corollary 6.7 (p. 203) gives an explicit upper bound for all k with

u(k) = b1a
k
1 + · · ·+ bda

k
d = 0

when there are only finitely many; here b1, a1, . . . , bd, ad are arbitrary polynomials in Fq[t].

Our own proofs, based on [DM1], are equally effective. Thus in Theorem 1 we see a

finite union of H+D, and we could give estimates for generators of the subgroups H as well

as for the q and c0, c1, . . . , cg in the nested sets D = Dq(c0; c1, . . . , cg). These estimates

would involve certain heights of quantities like those generalizing b1, a1, . . . , bd, ad above.

In particular since H + Dq(c0; c1, . . . , cg) contains c0 + c1 + · · · + cg they would deliver

an explicit search bound for a single solution of (1.4) which would show that the analogue

of the Cerlienco-Mignotte-Piras Conjecture in positive characteristic is false. However we

give no such estimates in the present paper.

Instead we determine the complete set of solutions of (1.4) for several examples

u1, . . . , um. Thus we solve u(k) + v(h) = 0 in Z2 with

u(k) = ks((−1)k − 1k), v(h) = (h+ 1)
(
(t+ 1)h − th − 1h

)
(1.7)
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in Fp(s, t) for p ≥ 3 and independent variables s, t. Here we are able to argue directly

without the machinery of [DM1]. And following (1.2) and (1.3) for sums of two and three

recurrences we also treat a sum of four recurrences. This involves

u(k) = tk + (1− t)k (1.8)

which could be regarded as an analogue of the Fibonacci sequence.

Theorem 3. The set of (k, h, l, j) in N4
0 with

u(k) + u(h) + u(l) + u(j) = 0 (1.9)

for (1.8) in F2[t] is the union of seventeen sets N4
0 ∩ (H + D), where H is a subgroup of

Z4 and D is elementary 2-nested in Z4 of order at most four.

This can be interpreted as the determination of all non-mixing sets of a particular

shape of cardinality eight for the Ledrappier example [Led] (see also the paper [ABB] of

Arenas-Carmona, Berend and Bergelson). For the proof we also argue directly, but this

time using the basic method in [DM1], that of differentiating with respect to t, together

with an inductive argument. Leitner has also used differentiation in [Lei], where he deals

with equations that involve four terms; however (1.9) implicitly involves eight terms and

the approach in [Lei] might become too tedious, especially in low characteristics like 2.

Here is how this paper is arranged. In section 2 we prove a preliminary result about

nested sets in arbitrary finitely generated abelian groups. We apply this in section 3 to

deduce Theorem 1, and then we give some simple examples including (1.7) in section 4.

In section 5 we prove Theorem 2 after defining p-normal sets in Nm
0 , and in section 6

we prove Theorem 3 in a more precise form.

Then in Appendix 1 we give a simple direct proof that the bound d− 2 in Theorems

B1 and B2 (and so also in Theorems 1 and 2) is best possible. And in Appendix 2 we prove

that the Conjecture of Cerlienco, Mignotte and Piras is true, even for a sum of 557844

recurrences.

After writing the first draft of this paper, we became aware of the work [AB] of

Adamczewski and Bell. In their Theorem 2.1 (p.350) they show that the set in our Theorem

2 is p-automatic in a natural sense generalizing that of [D], and furthermore that it can

be effectively determined. However not all p-automatic sets are p-normal. We thank Boris

Adamczewski for showing us [AB].
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2. Nested sets in abelian groups. Let C be a finitely generated abelian group. For q a

power of a prime p, g ≥ 1 and C0, C1, . . . , Cg in C we define Uq(C0;C1, . . . , Cg) as the set

of all

C0 + C1q
f1 + · · ·+ Cgq

fg (f1 ≥ 0, . . . fg ≥ 0) (2.1)

in C. This can be extended to g = 0 to signify the singleton {C0}. It looks like a nested set;

however the coefficients C0, C1, . . . , Cg have no denominators. We call it an elementary

integral p-nested set of order at most g.

The main result needed to deduce our Theorems 1 and 2 from [DM1] is the following.

Proposition. Let B1, . . . , Bm be in C, let B be a subgroup of C, and denote by H the

subgroup of all (k1, . . . , km) in Zm such that k1B1 + · · · + kmBm lies in B. Let U be an

elementary integral p-nested set of order at most g in C. Then the set of all (k1, . . . , km)

in Zm such that k1B1 + · · ·+ kmBm lies in B+U is either empty or H +D, where D is a

finite union of singletons and elementary p-nested sets of order at most g in Zm.

We need some preliminary remarks.

Lemma 2.1. Suppose c0q
f0 + c1q

f1 + · · ·+ cgq
fg = 0 for integers c0, c1, . . . , cg not all zero.

Then there are i, j with 0 ≤ i 6= j ≤ g such that 1 ≤ qfi−fj ≤ |c0|+ |c1|+ · · ·+ |cg|.

Proof. This is essentially part of the proof of Lemma 9.3 of [D] (p. 214), which is used

there for a similar purpose. We can suppose that f0 ≤ f1 ≤ · · · ≤ fg and also cg 6= 0. Now

qfg ≤ |cgqfg | = |c0qf0 + c1q
f1 + · · ·+ cg−1q

fg−1 | ≤ (|c0|+ |c1|+ · · ·+ |cg−1|)qfg−1 .

So here we can take i = g, j = g − 1.

Lemma 2.2. Let A be a subgroup of C. Then there is a finite set Φ of φ in either

Hom(C,Z) or Hom(C,Z/rZ) for prime powers r such that A is the set of A in C with

φ(A) = 0 for every φ in Φ.

Proof. By the structure theorem on abelian groups the quotient C/A is isomorphic to

a product of copies of Z and Z/rZ for prime powers r, and so we can take φ as the

corresponding projections.

Lemma 2.3. Let A be a subgroup of C defined as above by a finite set Φ of φ in either

Hom(C,Z) or Hom(C,Z/rZ). Let U be a elementary integral p-nested set of order at most
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g in C defined by (2.1), and suppose that not all φ(Ci) (i = 0, 1, . . . , g) are zero for some φ

in Φ in Hom(C,Z). Then either A∩U is empty or there is a finite union U ′ of elementary

integral p-nested sets of order at most g − 1 inside U such that A ∩ U = A ∩ U ′.

Proof. If A∩U is non-empty let A = C0 +C1q
f1 + · · ·+Cgq

fg be an arbitrary element of

A∩U . Then c0 + c1q
f1 + · · ·+ cgq

fg = 0 for some φ in Φ and ci = φ(Ci) (i = 0, . . . , g) in Z

with at least one of c0, c1, . . . , cg non-zero. By Lemma 2.1 (with f0 = 0) there are distinct

i, j with 0 ≤ fi− fj ≤ L for some L independent of A. Suppose that fi− fj = l for some l

with 0 ≤ l ≤ L, with for example i < j. Now Ciq
fi + Cjq

fj = (qlCi + Cj)q
fj , and if i 6= 0

this means that A lies in the elementary integral p-nested set

U(i, j, l) = Uq(C0;C1, . . . , Ci−1, Ci+1, . . . , Cj−1, q
lCi + Cj , Cj+1, . . . , Cg)

of order at most g − 1 in C. It is just as easy to see that U(i, j, l) lies in U . If i = 0 we

use Uq(C0 + qlCj ;C1, . . . , Cj−1, Cj+1, . . . , Cg). Similar arguments work if i > j. Thus if

we define the finite union U ′ =
⋃
i 6=j
⋃L
l=0 U(i, j, l) then we see that A ∩ U lies in A ∩ U ′;

and since U ′ lies in U we deduce equality here. This completes the proof.

Lemma 2.4. Let A be a subgroup of C. Let s be a positive integer prime to p, and let

φ be in Hom(C,Z/sZ) with φ = 0 on A. Let U be a elementary integral p-nested set of

order at most g in C defined by (2.1). Then there is a finite union U of elementary integral

p-nested sets inside U of order at most g on which φ = 0 such that A ∩ U = A ∩ U .

Proof. Let w be the multiplicative order of q modulo s. For an element C0 + C1q
f1 +

· · · + Cgq
fg of U as in (2.1) we can write fi = f̃iw + di (i = 1, . . . , g) with f̃i ≥ 0 and

0 ≤ di < w. Accordingly U splits into a disjoint union of Ũ = Uq̃(C0; C̃1, . . . , C̃g) with

q̃ = qw ≡ 1 (mod s) and C̃i = qdiCi (i = 1, . . . , g). Thus φ takes on Ũ the constant value

φ(Ũ) = φ(C0) + φ(C̃1) + · · · + φ(C̃g); and in intersecting with A we can restrict to those

Ũ with φ(Ũ) = 0. This completes the proof.

Lemma 2.5. Let A be a subgroup of C. Let r be a positive integer which is a power of p,

and let φ be in Hom(C,Z/rZ) with φ = 0 on A. Let U be a elementary integral p-nested

set of order at most g in C defined by (2.1). Then if φ(C0) 6= 0 there is a finite union U ′

of elementary integral p-nested sets inside U of order at most g − 1 with A∩ U = A∩ U ′;
while if φ(C0) = 0 there is a finite union U ′ of elementary integral p-nested sets inside U

of order at most g − 1 and a elementary integral p-nested set Ũ inside U of order at most

g on which φ = 0 such that A ∩ U = (A ∩ U ′) ∪ (A ∩ Ũ).
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Proof. For an element C0+C1q
f1 + · · ·+Cgq

fg in A∩U we have c0+c1q
f1 + · · ·+cgq

fg = 0

with ci = φ(Ci) (i = 0, . . . , g). If c0 6= 0 in Z/rZ then this forces some efi < d, where

q = pe and r = pd. So in this case we can reduce to U ′ of lower order by replacing C0 by

C0 + Ciq
fi much as in the proof of Lemma 2.3.

If c0 = 0 then we have just c1q
f1 + · · ·+ cgq

fg = 0. Now we can split off the elements

with efi < d, if any, into U ′ as above. Those with efi ≥ d make up a elementary integral

p-nested set Ũ of order at most g, because this says fi ≥ l for some fixed l and we can

replace Ci by Ciq
l. It is clear that φ = 0 on Ũ . This completes the proof.

We can now prove the Proposition. We start with the special case B = 0. So we are

looking for the set K of all k = (k1, . . . , km) in Zm with k1B1 + · · ·+ kmBm in U , with U

defined say by (2.1). We use induction on g.

Suppose g = 0. We have to solve k1B1 + · · ·+ kmBm = C0. But this is clearly a coset

of H, so H + U for a singleton U .

Next assume it is done for g− 1 powers of q (g ≥ 1), still with B = 0. We are going to

use Lemmas 2.2, 2.3, 2.4, 2.5 above with A = ZB1 + · · ·+ZBm to reduce to the situation

when U already lies in A.

We use Lemma 2.2 for A to obtain Φ. If the conditions of Lemma 2.3 are satisfied,

then either A∩U is empty or there is a finite union U ′ of elementary integral p-nested sets

of order at most g − 1 in C such that A∩ U = A∩ U ′. In the first case K is empty, so we

are done. In the second case our condition on k says that k1B1 + · · ·+ kmBm lies in one

of the elementary integral p-nested sets of order at most g − 1 in U ′, and so the desired

conclusion follows by induction.

If the conditions of Lemma 2.3 are not satisfied, then φ(Ci) = 0 for all i and all φ in

Φ in Hom(C,Z). We want to deduce a similar assertion for the other φ in Hom(C,Z/rZ).

Assume first that r = s is prime to p. For a φ in Φ in Hom(C,Z/sZ) we use Lemma

2.4 to see that A ∩ U is a finite union of A ∩ Ũ for Ũ in U of order at most g with φ = 0

on Ũ . For a second such φ̃ we similarly reduce each Ũ to finitely many ˜̃U in Ũ with φ̃ = 0

on ˜̃U . And so on. We conclude that A ∩ U is a finite union of A ∩ U0 with φ = 0 on U0

for all φ in Φ in Hom(C,Z/sZ).

The upshot is that we can reduce to the case where all the φ in Φ in Hom(C,Z/sZ)

(s prime to p) vanish on the new U0. Still all the φ in Φ in Hom(C,Z) vanish on the new

U0, because the new U0 is a subset of the original U .

11



Otherwise if r is a power of p then for a φ in Φ in Hom(C,Z/rZ) we use Lemma 2.5.

If φ(C0) 6= 0 we can lower the order and use the induction hypothesis. If φ(C0) = 0 we can

either do this or reduce to the case when φ vanishes on U . Repeating this with the other

φ, we see that we can assume that all the φ in Φ in Hom(C,Z/rZ) vanish on the new U .

As above the other φ in Φ in Hom(C,Z/sZ) and in Hom(C,Z) vanish on the new U . But

this means that we have indeed reduced the Proposition to the situation when U already

lies in A!

This means that every element (2.1) lies in A. In particular

C0 + C1 + · · ·+ Cg = n1B1 + · · ·+ nmBm (2.2)

for n = (n1, . . . , nm) in Zm. Also C0 + C1 + · · · + Cgq is in A. Subtracting shows that

(q−1)Cg is in A. Similarly considering C0 +C1 + · · ·+Cg−1q+Cgq shows that (q−1)Cg−1

is in A. And so on until (q − 1)C1; but also by (2.2) (q − 1)C0 too. So we get equations

(q − 1)Ci = ni1B1 + · · ·+ nimBm (i = 0, . . . , g) (2.3)

for ni = (ni1, . . . , nim) (i = 0, . . . , g) in Zm. Putting these back into (2.2) gives l1B1 +

· · ·+ lmBm = 0 for l = (l1, . . . , lm) = n0 + n1 + · · ·+ ng − (q − 1)n. Thus by definition l

lies in H (still B = 0). We now define

ci =
1

q − 1
ni (i = 1, . . . , g), c0 =

1

q − 1
(n0 − l)

so that (q − 1)ci lies in Zm (i = 0, . . . , g) and c0 + · · ·+ cg = n lies in Zm too. So the set

of c0 + c1q
f1 + · · ·+ cgq

fg is an elementary p-nested set D0 in Zm of order at most g. We

now show that K is none other than H +D0.

Well, some k = (k1, . . . , km) is in K if and only if k1B1+· · ·+kmBm = C0+
∑g
i=1 Ciq

fi ;

and the right-hand side is by (2.2) and (2.3)

m∑
j=1

njBj +

g∑
i=1

Ci(q
fi − 1) =

m∑
j=1

njBj +

g∑
i=1

(
qfi − 1

q − 1

) m∑
j=1

nijBj .

So the condition on k is equivalent to

k ≡ n +

g∑
i=1

(
qfi − 1

q − 1

)
ni ≡ n +

g∑
i=1

ci(q
fi − 1) ≡ c0 +

g∑
i=1

ciq
fi mod H;

that is, just k in H+D0 as claimed. This settles the special case B = 0 of the Proposition.
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Now for the general case. We can write B = ZA1 + · · ·+ZAn. By the special case just

done, the set of (k1, . . . , km, j1, . . . , jn) in Zm+n with k1B1+· · ·+kmBm+j1A1+· · ·+jnAn
in U is either empty or H̃ + D̃, where D̃ is a finite union of singletons and elementary p-

nested sets of order at most g in Zm+n. Here H̃ is just the set of (k1, . . . , km, j1, . . . , jn)

with k1B1 + · · · + kmBm + j1A1 + · · · + jnAn = 0. We are interested in the projection ρ

of this to Zm corresponding to the first m factors. Now ρ(H̃ + D̃) = ρ(H̃) + ρ(D̃), and

the first summand is the set of (k1, . . . , km) with k1B1 + · · ·+ kmBm in B; this is exactly

what we need in the Proposition. Finally it is obvious that the projection of an elementary

p-nested set of order at most g in Zm+n is an elementary p-nested set of order at most g

in Zm. This completes the proof of the Proposition.

3. Proof of Theorem 1. As mentioned, we can assume λd 6= 0 in (1.1). Then we have

the familiar representation

u(k) =
r∑
i=1

ei−1∑
l=0

β
(l)
i

(
k

l

)
αki (3.1)

for any recurrence u from N0 to K of order at most d; here the β
(l)
i , αi are in the algebraic

closure of K, the
(
k
l

)
are binomial coefficients, and

∑r
i=1 ei ≤ d. One can consult [EPSW]

(p.4) with N instead of N0, or [CMP] (pp.70,71) with n0 = −1. In these two references

the binomial coefficients appear in two different forms
(
k+a
b

)
(b = 0, . . . , e − 1) but it is

well-known that these are all integer linear combinations of the above
(
k
l

)
(l = 0, . . . , e−1).

Further we have αi 6= 0 (i = 1, . . . , r) as they are the zeroes of the characteristic polynomial

([EPSW] p.1) whose constant term is −λd. Thus the right-hand side of (3.1) makes sense

for k < 0, and continues to satisfy the relation (1.1). It follows from the remarks in section

1 that (3.1) holds on all of Z.

Now there is a power Q of p such that all the
(
k
l

)
in (3.1) depend only on the values

of k modulo Q. This enables us to take each ei = 1 (related to the notion of simplicity in

Definition 2.3 of [D] p.182). Thus for all k in each fixed residue class k0 +QZ in Z we may

write (3.1) as u(k) =
∑d
i=1 βiα

k
i (this step is of course impossible in zero characteristic).

In proving Theorem 1 we can assume that each recurrence has this form. This is

because for any k0 in Zm and H +D in Theorem 1 the set k0 +Q(H +D) = H̃ + D̃ for

the subgroup H̃ = QH and the elementary p-nested set D̃ = k0 +QD.

Our basic equation (1.4) therefore becomes

m∑
j=1

dj∑
i=1

βijα
kj
ij = 0. (3.2)
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We are going to apply [DM1] to the linear variety V defined by the corresponding equation

m∑
j=1

dj∑
i=1

βijXij = 0. (3.3)

Thus we are in projective Pn with n = d1+ · · ·+dm−1. We work inside the field generated

by the βij , αij over Fp, and G as the radical (inside this field) of the group generated by

the αij . This G is also finitely generated (see for example [M] p.195). Now (3.2) gives

a point π on V (G). It has a diagonal form resulting from the special exponents. In fact

we may identify the group Gn with Pn(G) and define an isomorphism log from these to a

finitely generated additive abelian group C. Then

log π = k1B1 + · · ·+ kmBm, (3.4)

where Bj is the log of the point with Xij = αij (i = 1, . . . , dj) and Xrs = 1 elsewhere.

Now Theorem 2 (p.1049) of [DM1] shows that V (G) is a finite union of sets T =

(π0, π1, . . . , πd)qS(G) with points π0, π1, . . . , πd (0 ≤ d ≤ n− 1) defined over G and linear

subgroups S defined by equations Xij = Xrs. Here

(π0, π1, . . . , πd)q = π0

∞⋃
f1=0

· · ·
∞⋃
fd=0

(ϕf1π1) · · · (ϕfdπd),

with ϕ the Frobenius corresponding to the power q of p and of course the interpretation

π0 itself if d = 0. A point πT in T has

log πT = C0 + C1q
f1 + · · ·+ Cdq

fd +B (3.5)

with Ch = log πh (h = 0, 1, . . . , d) and B = log σ for some σ in S(G). Thus the set of all

such log πT forms a sum B+U , where U is an elementary integral p-nested set of order at

most

d ≤ n− 1 = d1 + . . .+ dm − 2 (3.6)

in C as in (2.1), and B = logS(G). This latter is a subgroup of C because S(G) is a group.

Comparing (3.4) and (3.5), we see that for each T the set of k = (k1, . . . , km) arising

is exactly as in our Proposition, a sum HT + DT . Here HT is the group of all k with

k1B1 + · · · + kmBm in B and DT is a finite union of singletons and elementary p-nested

sets in Zm, which by (3.6) are of order at most d1 + . . .+ dm − 2.

And now we see that Theorem 1 has dropped out.
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4. Some examples. The p-normal set in Theorem 1 involves a finite union of sums

H +D. In an earlier version of this result we had just a single subgroup H. The following

simple example shows that this must have been wrong. Write u(k) = tk + ( 1
t )
k and take

m = 2 with the second recurrence v(h) = −u(h) in K = Fp(t). It is easy to see that the

zero-sum set of (k, h) in Z2 with u(k) + v(h) = 0 is the union of the subgroups Z(1, 1) and

Z(1,−1).

We also worked out the following more elaborate example illustrating the same mis-

take.

Consider the two recurrences

u(k) = ks((−1)k − 1k), v(h) = (h+ 1)
(
(t+ 1)h − th − 1h

)
(4.1)

in K = Fp(s, t) for p ≥ 3 and independent variables s, t. Now the solutions depend on k

and h modulo p. There are seven cases.

(1) k 6≡ 0, h ≡ 0. Now u(k) + v(h) = 0 if and only if u(k) = v(h) = 0, thanks to the

factor s. Without the factors k, h + 1 in (4.1) we get the Cartesian product 2Z × Q in

Z× Z = Z2, where Q = {pe; e = 0, 1, 2, . . .}. This is the group sum H +D of H with an

elementary p-nested set D = (0, 1)Q in Z2, where H = 2Z× {0} in Z2. Taking account of

the factors k, h+ 1 and the congruences we see that k is restricted to one of the arithmetic

progressions k0 + 2pZ (0 ≤ k0 < 2p, k0 even) and h to e ≥ 1. We find H1 +D1 with

H1 = 2pZ× {0}, D1 = {(k0, 0) + (0, p)pf ; f = 0, 1, 2, . . .}.

(2) k ≡ 0, h ≡ 0. Now we find H2 +D2 with

H2 = pZ× {0}, D2 = {(0, p)pf ; f = 0, 1, 2, . . .}.

(3) k 6≡ 0, h ≡ 1. Again at first we get H + D above, and the congruences give k0 + 2pZ

and this time e = 0 in Q. We find H3 +D3 with

H3 = 2pZ× {0}, D3 = {(k0, 1)},

so that D3 is now a singleton.

(4) k ≡ 0, h ≡ 1. We find H4 +D4 with

H4 = pZ× {0}, D4 = {(0, 1)}.
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(5) k 6≡ 0, h ≡ −1. We find H5 +D5 with

H5 = 2pZ× pZ, D5 = {(k0,−1)},

so that H5 now has full rank 2.

(6) k ≡ 0, h ≡ −1. We find H6 +D6 with

H6 = pZ× pZ, D6 = {(0,−1)}.

(7) h 6≡ 0, 1,−1. Now h = pe; but this is 0 or 1 modulo p, so there are no solutions here.

Thus we see four different groups H1, H2, H5, H6. Maybe their number can be reduced

by noting that some are of finite index in others. They all happen to be Cartesian products

G1×G2 but this is due to the splitting effect of the variable s in (4.1). The simple example

u(k) = tk, v(h) = −th

also in K = Fp(t) has the zero-sum set H = Z(1, 1) which is not a Cartesian product.

For the version over Nm
0 we already remarked that it is not quite sufficient merely to

intersect everything with Nm
0 and remove some singletons, as is the case m = 1 in Theorem

B2. Consider the case m = 2 and the example

u(k) = tk + (1− t)k, v(h) = −th − (1− t)h

now in characteristic two with K = F2(t). It can be seen without too much trouble, for

example by exploiting the term k(−t)k−1 in u(k), or simply by referring to Lemma 6.2

below, that the zero-sum set of (k, h) in Z2 with u(k)+v(h) = 0 is the union of H = Z(1, 1)

and the points

(2e, 2f ) = (1, 0)2e + (0, 1)2f (e, f = 0, 1, 2, . . .);

the latter make up an elementary 2-nested set of order 2. This can also be deduced from

the work [Lei] of Leitner. If we change v(12), as in the Fibonacci sequence, to Carlitz’s

analogue π2 of π which is transcendental over K (see for example [G] pp.51,52), then

clearly the effect is indeed to remove the single point (12, 12). But if it is instead v(1) that

we change to π2, then we lose all the points

(2e, 1) = (0, 1) + (1, 0)2e (e = 0, 1, 2, . . .);
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which make up an elementary 2-nested set of order 1.

5. Proof of Theorem 2. In fact the last example above illustrates the arguments of this

proof. Generally to solve u(k) + v(h) = 0 on N2
0 we first change u, v on finite sets F,E so

that they can be extended backwards to Z. Off the finite set F × E usually k is not in F

and h is not in E, and we get in Z2 a p-normal set S then to be intersected with the set

N′′0 of (k, h) in N2
0 with k not in F and h not in E. Or h might be in E and then the set

S(h) of k is p-normal in Z (as now v(h) is a constant recurrence). Thus we get a union

of S(h) × h, and we must now intersect with N′0 × h, where N′0 is N0 with F removed.

Similarly if k is in F .

This leads us inexorably to the definition of p-normal in Nm
0 . To begin with it involves

a finite Cartesian product F = F1 × · · · × Fm, with F1, . . . , Fm finite in Z. This gives rise

to a disjoint union

Zm =
⋃
I

ZF (I) (5.1)

taken over all subsets I of {1, . . . ,m}, where ZF (I) is defined by requiring that ki lies in

Fi for i in I and ki does not lie in Fi for i not in I. For example the biggest ZF (I) comes

from the empty set I, when it is Zm minus some coordinate hyperplanes. When I is a

singleton, ZF (I) consists of some of these hyperplanes minus lower-dimensional coordinate

spaces, and so on, down to ZF (I) = F for the full set I = {1, . . . ,m}.

When I is not empty, each of the ZF (I) in turn splits into a disjoint union

ZF (I) =
⋃

f∈F (I)

ZF (I, f) (5.2)

where F (I) is the product of the Fi for i in I. However we take the ordering of Cartesian

products seriously or rather pedantically here and choose for each I a permutation σ = σI

with σ({m − l + 1, . . . ,m}) = I, where l = |I|, so that F (I) = Fσ(m−l+1) × · · · × Fσ(m).

Then ZF (I, f) is the subset of ZF (I) defined by (kσ(m−l+1), . . . , kσ(m)) = f .

This ZF (I, f) lies in the set ZF (I, f) defined by ignoring the requirements for i not

in I. Using also σ for the same permutation on coordinates, we have

ZF (I, f) ⊆ ZF (I, f) = σ(Zm−l × f). (5.3)

For empty I we can interpret (5.2) and (5.3) just by dropping f and taking σ as the

identity.
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For example if m = 1 and F = F1 = F (say) then ZF (I) = F for I = {1} and

ZF (I, f) = {f} for each f in F ; and ZF (I) for empty I is the complement of F in Z.

Next we have to repeat the whole thing over N0. If now F lies in Nm
0 , then we get a

disjoint union

Nm
0 =

⋃
I

⋃
f∈F (I)

NF (I, f) (5.4)

simply by intersecting (5.1) and (5.2) with Nm
0 . And of course still

NF (I, f) ⊆ σ(Zm−l × f)

as in (5.3).

Finally we say that a subset S of Nm
0 is p-normal in Nm

0 of order at most g if there is

a finite Cartesian product F as above and for each I and f in F (I) a p-normal set S(I, f)

in Zm−l of order at most g such that

S =
⋃
I

⋃
f∈F (I)

(NF (I, f) ∩ σ(S(I, f)× f)) (5.5)

with f and σ omitted when I is empty.

For example if m = 1 and F = F1 = F (say) then I = {1} in (5.5) contributes the

finite set F ∩N0 and the empty I contributes S0 ∩N0 with any points from F removed,

where S0 is p-normal in Z. Thus the resulting S is indeed p-normal in N0 in the sense of

[D].

We can now prove Theorem 2. Given recurrences u1, . . . , um on N0, we can change

ui on a finite set Fi to get a recurrence u∗i on Z. For by Lemma 2.4 of [D] (p.183) the

recurrence ui from some point onwards is basic. This means λd 6= 0 in (1.1) and so infinite

extension backwards is possible. Put F = F1 × · · · × Fm in Nm
0 . For each I and each f

in F (I) we get a fi in Fi for i in I. Consider the equation (
∑
i 6∈I u

∗
i (ki)) + u = 0 or more

pedantically

u∗σ(1)(kσ(1)) + · · ·+ u∗σ(m−l)(kσ(m−l)) + u = 0 (5.6)

with u =
∑
i∈I ui(fi). Regarding u as a constant recurrence of order at most 1, we see

from Theorem 1 that the solution set S(I, f) in Zm−l of (5.6) is a p-normal set in Zm−l

of order at most

(
∑
i 6∈I

di) + 1− 2 ≤ d1 + · · ·+ dm − 2, (5.7)
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at least if I is non-empty; however if I is empty then there is no u in (5.6) and so no 1 in

(5.7). Now we see that the zero-sum set of (1.4) in Nm
0 intersected with NF (I, f) is

NF (I, f) ∩ σ(S(I, f)× f). (5.8)

This is because on NF (I, f) we know that ki is not in Fi for i not in I (so i = σ(j) for some j

as in (5.6)) and ui(ki) = u∗i (ki) here, and ki = fi for i in I so
∑
i∈I ui(ki) =

∑
i∈I ui(fi) = u

here; thus we get precisely (5.6). Now Theorem 2 follows from (5.5) by taking the union

in (5.8) and remembering (5.4).

6. Proof of Theorem 3. In fact we will prove the following explicit version.

Theorem 3′. Up to permutations of the non-negative integers k, h, l, j, the set of solutions

of (1.9) is the union of the following five sets

{(k, k, l, l); k, l = 0, 1, 2, . . .}, (6.1)

{(k, k, 2λ, 2θ); k, λ, θ = 0, 1, 2, . . .}, (6.2)

{(2κ, 2η, 2λ, 2θ); κ, η, λ, θ = 0, 1, 2, . . .}, (6.3)

{(2α + 2β , 2β + 2γ , 2γ + 2α, 2θ); α, β, γ, θ = 0, 1, 2, . . .}, (6.4)

{(2α + 2γ , 2β + 2γ , 2α + 2δ, 2β + 2δ); α, β, γ, δ = 0, 1, 2, . . .}. (6.5)

To see the connexion with Theorem 3, we proceed to verify that each of the above

sets has the form N4
0 ∩ (H +D).

For (6.1) the H is defined by k = h, l = j; and D = 0.

For (6.2) the H is defined by k = h, l = j = 0; and D = D2(0; el, ej), where

el = (0, 0, 1, 0), ej = (0, 0, 0, 1)

are standard unit vectors.

For the remaining sets H = 0 and the sets D are respectively

D2(0; ek, eh, el, ej)
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D2(0; ek + eh, eh + el, el + ek, ej)

D2(0; ek + el, eh + ej , ek + eh, el + ej)

with

ek = (1, 0, 0, 0), eh = (0, 1, 0, 0).

After permutations the sets in Theorem 3′ give rise to respectively to 3,6,1,4,3 similar

sets, giving 17 in all. This proves Theorem 3.

For a positive integer k write ω(k) for the number of ones in the binary expansion of

k, with ω(0) = 0.

Lemma 6.1. The polynomial u(k) = tk + (1− t)k in F2[t] is the sum of 2ω(k) − 1 distinct

powers of t.

Proof. If k is the sum of distinct powers k1, . . . , kr of 2 then r = ω(k) and

(1− t)k = (1− t)k1+···+kr = (1− t)k1 · · · (1− t)kr = (1− tk1) · · · (1− tkr )

involves 2r distinct powers of t, one of which is tk1+···+kr = tk. The result follows.

Lemma 6.2. The set S2 of (k, h) in N2
0 such that

u(k) + u(h) = 0

is the union of

{(k, k); k = 0, 1, 2, . . .}, (6.2.1)

{(2κ, 2λ); κ, λ = 0, 1, 2, . . .}. (6.2.2)

Proof. This will set the pattern for the subsequent proofs. We write S?
2 for the union of

(6.2.1),(6.2.1). As u(2κ) = 1 it is clear that S?
2 lies in S2. We prove the opposite inclusion

by showing by induction on N that any (k, h) in S2 with size max{k, h} = N lies in S?
2 .

This is trivial for N = 0.

Thus assume it holds for all sizes less than some N ≥ 1. For a given (k, h) of size N

we consider the various parities of the coordinates.
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If h, k are both even then we can take square roots to get u( 1
2k) + u( 1

2h) = 0. So
1
2 (k, h) is in S2, with size 1

2N < N . Therefore by induction it is in S?
2 . And so clearly

(k, h) is also in S?
2 .

In the remaining cases we will need to differentiate, noting that

d

dt
u(k) = ku(k − 1).

If k is even and h is odd then differentiating gives u(h− 1) = 0. This implies h = 1.

But then u(k) = 1 which by Lemma 6.1 implies 2ω(k)− 1 = 1 so ω(k) = 1 so k = 2κ. Thus

(k, h) is in (6.2.2) and so S?
2 . A similar argument works for odd k and even h.

Finally suppose k, h are both odd. Then differentiation gives u(k−1)+u(h−1) = 0 so

(k− 1, h− 1) is in S2 with size N − 1 < N . Therefore by induction it is in S?
2 . If in (6.2.1)

then so is (k, h) and we are done. Else it is in (6.2.2), and then k = 2κ + 1, h = 2η + 1;

but now we calculate

0 = u(k) + u(h) = t2
κ

+ t2
η

.

This forces κ = η, k = h and so (k, h) is in (6.2.1) so S?
2 . That completes the proof.

Lemma 6.3. Up to permutations on k, h, the set S2t of (k, h, l) in N3
0 such that

u(k) + u(h) + tl = 0

is

{(2κ, 0, 0); κ = 0, 1, 2, . . .}. (6.3.1)

Proof. We follow the strategy of the previous proof, with S?
2t in (6.3.1) clearly contained

in S2t, and then inductively with (k, h, l) of size max{k, h, l} = N .

If h, k, l are all even then we deduce that 1
2 (k, h, l) is in S2t; and then by induction in

S?
2t so S2t.

If k, h are even and l odd then differentiation gives at once a contradiction.

If h, l are even and k is odd then differentiating gives u(k− 1) = 0 so k = 1. But then

0 = u(k) + u(h) + tl = 1 + u(h) + tl
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which by Lemma 6.1 implies 2ω(h)− 1 = 0 or 2, so ω(h) = 0 so h = 0 and l = 0 and we are

in S?
2t. A similar argument works for even k, l and odd h, and these cover all cases when

two of k, h, l are even.

If k is even and h, l are odd then differentiation gives u(h − 1) + tl−1 = 0. Now

2ω(h−1) − 1 = 1 so h− 1 = 2η and then l = 1. But now

0 = u(k) + u(h) + tl = u(k) + 1 + t2
η

impossible by Lemma 6.1. Similarly if h is even and k, l are odd.

If l is even and k, h are odd then differentiation gives u(k − 1) + u(h − 1) = 0 so

(k− 1, h− 1) is in the set S2 of Lemma 6.2. If k− 1 = h− 1 then 0 = u(k) + u(h) + tl = tl

impossible. So k = 2κ + 1, h = 2η + 1. But now

0 = u(k) + u(h) + tl = t2
κ

+ t2
η

+ tl

again impossible.

Finally suppose k, h, l are all odd. Then differentiation shows that (k− 1, h− 1, l− 1)

is in S2t. So by induction in S?
2t, and we can assume k = 2κ + 1, h = l = 1. But then

0 = u(k) + u(h) + tl = t2
κ

another contradiction. This completes the proof.

Lemma 6.4. Up to permutations, the set S3 of (k, h, l) in N3
0 such that

u(k) + u(h) + u(l) = 0

is the union of

{(k, k, 0); k = 0, 1, 2, . . .}, (6.4.1)

{(2κ, 2η, 0); κ, η = 0, 1, 2, . . .}. (6.4.2)

Proof. Again induction and parities, with S?
3 in S3 defined by (6.4.1) and (6.4.2).

If k, h, l are all even then we proceed via 1
2 (k, h, l) as above.

If k, l are even and h is odd then differentiation gives h = 1. Now

0 = u(k) + u(h) + u(l) = u(k) + u(l) + 1
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and so (k, l, 0) lies in the set S2t of Lemma 6.3. We deduce k = 2κ, l = 0. Now (k, h, l)

lies in (6.4.2). Similar arguments work if exactly two of k, h, l are even.

If l is even and k, h are odd then differentiation shows that (k − 1, h − 1) lies in S2

from Lemma 6.2. The case k − 1 = h − 1 leads to l = 0 and so (6.4.1). The other case

k − 1 = 2κ, h− 1 = 2η leads to

0 = u(k) + u(h) + u(l) = t2
κ

+ t2
η

+ u(l).

So by Lemma 6.1 we have 2ω(l) − 1 = 0 or 2, so l = 0, k = h and again we are in (6.4.1).

Similar arguments work if exactly one of k, h, l is even.

Finally if k, h, l are all odd then we get (k − 1, h − 1, l − 1) in S3 so by induction in

(6.4.1) or (6.4.2). The first leads to k = h, l = 1 clearly impossible. The second leads to

k = 2κ + 1, h = 2η + 1, l = 1 and so

0 = u(k) + u(h) + u(l) = t2
κ

+ t2
η

+ 1

also impossible. This completes the proof.

Lemma 6.5. Up to permutations, the set S31 of (k, h, l) in N3
0 such that

u(k) + u(h) + u(l) = 1

is the union of

{(k, k, 2λ); k, λ = 0, 1, 2, . . .}, (6.5.1)

{(2κ, 2η, 2λ); κ, η, λ = 0, 1, 2, . . .}, (6.5.2)

{(2α + 2β , 2β + 2γ , 2γ + 2α); α, β, γ = 0, 1, 2, . . .}. (6.5.3)

Proof. Again we verify that the set S?
31 defined by (6.5.1),(6.5.2),(6.5.3) is contained in

S31; here the equation

u(2α + 2β) = 1 + t2
α

+ t2
β

(6.6)

(which implies Lemma 6.1 for ω = 2 if α 6= β) is helpful. We again proceed by induction

to prove the opposite inclusion.

If k, h, l are all even then we proceed via 1
2 (k, h, l) as above.
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If k, h are even and l is odd then differentiation gives l = 1. Then (k, h) lies in the set

S2 of Lemma 6.2. If k = h then we are in (6.5.1), and if k = 2κ, h = 2η then in (6.5.2).

Similar arguments work if exactly two of k, h, l are even.

If l is even and k, h are odd then differentiation shows that now (k−1, h−1) lies in S2.

The case k−1 = h−1 leads to l = 2λ and so (6.5.1). The other case k−1 = 2κ, h−1 = 2η

leads to

1 = u(k) + u(h) + u(l) = t2
κ

+ t2
η

+ u(l).

So by Lemma 6.1 we have 2ω(l) − 1 = 1 or 3. The first case gives l = 2λ, k = h and again

we are in (6.5.1). The second case gives ω(l) = 2 so l = 2γ + 2α. But then (6.6) shows

that {κ, η} = {γ, α}. Thus we land in the new type of set (6.5.3) with β = 0. Similar

arguments work if exactly one of k, h, l is even.

Finally if k, h, l are all odd then we get (k − 1, h − 1, l − 1) in the set S3 of Lemma

6.4 so in (6.4.1) or (6.4.2). The first leads to k = h, l = 1 so (6.5.1). The second leads to

k = 2κ + 1, h = 2η + 1, l = 1 and now

1 = u(k) + u(h) + u(l) = t2
κ

+ t2
η

+ 1

forcing k = h and so also (6.5.1). This completes the proof.

Lemma 6.6. Up to permutations of k, h and of l, j, the set S2tt of (k, h, l, j) in N4
0 such

that

u(k) + u(h) + tl + tj = 0

is the union of

{(k, k, l, l); k, l = 0, 1, 2, . . .}, (6.6.1)

{(2κ, 2η, l, l); κ, η, l = 0, 1, 2, . . .}, (6.6.2)

{(2λ + 2θ, 2η, 2λ, 2θ); η, λ, θ = 0, 1, 2, . . .}, (6.6.3)

{(2λ + 2α, 2θ + 2α, 2λ, 2θ); α, λ, θ = 0, 1, 2, . . .}. (6.6.4)

Proof. The usual strategy with S?
2tt defined by the four sets above. But due to less

symmetry and more variables there are uncomfortably many parity cases to consider.

If k, h, l, j are all even then we proceed via 1
2 (k, h, l, j) as above.
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If k, l, j are even and h is odd then differentiation gives h = 1 so

0 = u(k) + u(h) + tl + tj = u(k) + 1 + tl + tj .

Thus 2ω(k) − 1 = 1 or 3. The first case gives k = 2κ and then l = j so we are in (6.6.2).

The second case gives k = 2α + 2β and then by (6.6) we see that {l, j} = {2α, 2β} so we

are in (6.6.3).

If k, h, l are even and j is odd then differentiation gives a contradiction. This covers

all cases when exactly three of k, h, l, j are even.

Next suppose that l, j are even and k, h are odd. We deduce that (k − 1, h − 1) is

in the set S2 of Lemma 6.2. If k − 1 = h − 1 then at once l = j and we land in (6.6.1).

Otherwise k = 2κ + 1, h = 2η + 1 and then

0 = u(k) + u(h) + tl + tj = t2
κ

+ t2
η

+ tl + tj .

Now l = j implies k = h so again (6.6.1); and l = 2κ, j = 2η lands in (6.6.4).

Next suppose that k, h are even and l, j are odd. We deduce that l = j so (k, h) is in

S2. If k = h we are in (6.6.1) and if k = 2κ, h = 2η we are in (6.6.2).

The remaining case when exactly two of k, h, l, j are even is essentially with h, j even

and k, l odd. This leads to u(k − 1) + tl−1 = 0 so 2ω(k−1) − 1 = 1 and k = 2κ + 1, l = 1.

So

0 = u(k) + u(h) + tl + tj = 1 + t2
κ

+ u(h) + tj . (6.7)

Therefore 2ω(h) − 1 = 1 or 3 and ω(h) = 1 or 2. In the first case h = 2η, j = 2κ and we

land in (6.6.3). Otherwise h = 2θ + 2α with 2θ 6= 2α and it follows from (6.6) and (6.7)

that {2κ, j} = {2θ, 2α}. Now we land in (6.6.4).

Next suppose j is even and k, h, l are odd. Then (k − 1, h− 1, l − 1) is in the set S2t

of Lemma 6.3. We can assume that h = l = 1 and k = 2κ + 1. Then

0 = u(k) + u(h) + tl + tj = t2
κ

+ tj

so j = 2κ and we are in (6.6.3).

Next suppose k is even and h, l, j are odd, so that u(h − 1) + tl−1 + tj−1 = 0. This

forces 2ω(h−1) − 1 = 0, h = 1, l = j. Now

0 = u(k) + u(h) + tl + tj = u(k) + 1
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so k = 2κ and we are in (6.6.2). This covers all cases with exactly one of k, h, l, j being

even.

Finally if k, h, l, j are all odd then we get (k − 1, h − 1, l − 1, j − 1) in S2tt so in

(6.6.1),(6.6.2),(6.6.3) or (6.6.4

If (k − 1, h− 1, l − 1, j − 1) is in (6.6.1) then (k, h, l, j) too and we are done.

If in (6.6.2) then k = 2κ + 1, h = 2η + 1, l = j and then

0 = u(k) + u(h) + tl + tj = t2
κ

+ t2
η

forces k = h so we land in (6.6.1) again.

If in (6.6.3) then we can assume

k = 2λ + 2θ + 1, h = 2η + 1, l = 2λ + 1, j = 2θ + 1.

Now using

u(1 + 2λ + 2θ) = 1 + t+ t2
λ

+ t2
θ

+ t2
λ+1 + t2

θ+1 + t2
λ+2θ (6.8)

we calculate

0 = u(k) + u(h) + tl + tj = t2
λ

+ t2
θ

+ t2
η

+ t2
λ+2θ .

This forces 2η = 2λ + 2θ. And then λ = θ, η = θ + 1, which brings us into (6.6.1).

Finally if in (6.6.4) then we can assume

k = 2λ + 2α + 1, h = 2θ + 2α + 1, l = 2λ + 1, j = 2θ + 1

and now

0 = u(k) + u(h) + tl + tj = t2
λ

+ t2
θ

+ t2
λ+2α + t2

θ+2α .

This forces λ = θ and so (6.6.1). The proof is at last complete.

We can now establish Theorem 3′, continuing our usual strategy but with the relief

of total symmetry. Write S4 for the set of all solutions, which using (6.6) we can verify to

contain (6.1),(6.2),(6.3),(6.4),(6.5).

If k, h, l, j are all even then we proceed via 1
2 (k, h, l, j).

If k, h, l are even and j is odd then at once j = 1 and then (k, h, l) lies in the set S31

of Lemma 6.5, so in one of (6.5.1),(6.5.2),(6.5.3). If in (6.5.1) then (k, h, l, j) = (k, k, 2λ, 1)
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is in (6.2). If in (6.5.2) then (k, h, l, j) = (2κ, 2η, 2λ, 1) and we land in (6.3). And if in

(6.5.3) then we land in (6.4).

If l, j are even and k, h are odd then we find that (k− 1, h− 1) lies in S2, so there are

two cases (6.2.1),(6.2.2). The first gives k = h, and now (l, j) is also in S2. This leads to

(6.1) or (6.2). The second gives k = 2κ + 1, h = 2η + 1 so that

0 = u(k) + u(h) + u(l) + u(j) = t2
κ

+ t2
η

+ u(l) + u(j)

and so (l, j, 2κ, 2η) is in the set S2tt of Lemma 6.6, leading to four cases.

If (l, j, 2κ, 2η) is in (6.6.1) then we land in (6.1).

If in (6.6.2) then l = 2λ, j = 2θ and κ = η and we land in (6.2).

If in (6.6.3) then l = 2κ + 2η, j = 2θ and we land in (6.4).

If in (6.6.4) then l = 2κ + 2α, j = 2η + 2α and we land in (6.5). This covers all cases

with exactly two of k, h, l, j being even.

Suppose now that j is even and k, h, l are odd. We find that (k − 1, h− 1, l − 1) is in

the set S3 of Lemma 6.4, leading to the cases (6.4.1),(6.4.2).

If (6.4.1) then k = h, l = 1 and we get u(j) = 1 so j = 2θ, landing in (6.2).

If (6.4.2) then k = 2κ + 1, h = 2η + 1, l = 1 and we get

0 = u(k) + u(h) + u(l) + u(j) = t2
κ

+ t2
η

+ 1 + u(j)

so 2ω(j) − 1 = 1 or 3. Thus either j = 2θ, k = h leading to (6.2), or j = 2α + 2β with

2α 6= 2β so that t2
κ

+ t2
η

+ t2
α

+ t2
β

= 0. This forces {2κ, 2η} = {2α, 2β} leading to (6.4).

Finally if k, h, l, j are all odd then we get (k−1, h−1, l−1, j−1) in S4 so by induction

in (6.1),(6.2),(6.3),(6.4) or (6.5). (The proof is soon over.)

If in (6.1) then we get at once (6.1) also for (k, h, l, j).

If in (6.2) then k = h so (l, j) is in S2 and by Lemma 6.2 we land in (6.1) or (6.2).

If in (6.3) then we get t2
κ

+ t2
η

+ t2
λ

+ t2
θ

= 0 which leads to (6.1) again.

If in (6.4) then we find using (6.8) the equation

t2
α+2β + t2

β+2γ + t2
γ+2α + t2

θ

= 0.
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So the exponents are equal in pairs, which implies that two of α, β, γ are equal. We may

assume α = γ, and then k = h, so (l, j) is in S2 and we land again in either (6.1) or (6.2).

Really finally if in (6.5) then we get in a similar way

t2
α+2γ + t2

β+2γ + t2
α+2δ + t2

β+2δ = 0.

Now for example 2α + 2γ = 2β + 2γ gives α = β so again k = h and (l, j) in S2 leading as

above to (6.1) or (6.2). Similarly for 2α+2γ = 2α+2δ. But what about 2α+2γ = 2β +2δ?

Then we must also have 2β + 2γ = 2α + 2δ and these two equations lead again to α = β

and the same conclusion.

This completes the proof of Theorem 3′ and so of Theorem 3.

Appendix 1

Here we show that the bounds d−2 in Theorems B1 and B2 are best possible for each

d ≥ 2.

In the following we assume d ≥ 3, although the construction works fine for d = 2 with

the obvious interpretations. Choose any prime p ≥ d, and define the recurrence

u(k) =

d−1∑
r=0

(−1)r
(
d− 1

r

)
(t+ r)k

of order at most d over Fp(t). We claim that it vanishes on the elementary p-nested set

Dp(0; c1, . . . , cg) in Z with g = d − 2 and c1 = · · · = cg = 1; in other words, at all

k = q1 + · · ·+ qd−2, where q1, . . . , qd−2 are any powers of p. In fact then

u(k) =
d−1∑
r=0

(−1)r
(
d− 1

r

) d−2∏
i=1

(t+ r)qi =

d−1∑
r=0

(−1)r
(
d− 1

r

) d−2∏
i=1

(tqi + r).

Expanding the product here as a sum of powers rm of r, we see that u(k) is a linear

combination of terms

um =

d−1∑
r=0

(−1)r
(
d− 1

r

)
rm (m = 0, 1, . . . , d− 2).

Now um for any m is the value at x = 1 of the function(
x

d

dx

)m d−1∑
r=0

(−1)r
(
d− 1

r

)
xr =

(
x

d

dx

)m
(1− x)d−1 (A1.1)
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which is clearly zero for m = 0, 1, . . . , d− 2. This proves the claim above.

We next check that u is not identically zero on N0. By the above observation

u(d− 1) =
d−1∑
r=0

(−1)r
(
d− 1

r

)
(t+ r)d−1 =

d−1∑
m=0

(
d− 1

m

)
td−1−mum = ud−1.

Expanding
(
x d
dx

)d−1
= xd−1

(
d
dx

)d−1
+ · · · in (A1.1), we see that ud−1 is the value at x = 1

of xd−1
(

d
dx

)d−1
(1− x)d−1. This is (−1)d−1(d− 1)! 6= 0 because p ≥ d.

Now we show that the zero set Z in N0 of u cannot be p-normal of order less than

d − 2; for this we use counting considerations as in [D] (p.179). Since p ≥ d it is obvious

that u is simple and non-degenerate in the sense of [D] (p.182). Thus by Theorem 2.7 of

[D] (p.184) Z cannot contain an infinite arithmetic progression. If now it were p-normal of

order less than d− 2 it would follow from Corollary 1.11 of [D] (p.179) that the number of

its elements with absolute value at most B has order of magnitude at most (logB)d−3 as

B → ∞. But already the number of elements in Dp(0; c1, . . . , cg) above clearly has order

at least (logB)d−2 as B →∞. This verifies that Theorem B2 is indeed best possible; and

a similar argument works for Theorem B1.

We may remark that it now follows from [D] that u cannot have order less than d

(this could of course be proved directly). So the order is exactly d.

Appendix 2

To prove the Cerlienco-Mignotte-Piras Conjecture in zero characteristic, we start with

the following probably well-known observation.

Lemma. Given positive integers n, d and independent variables x1, . . . , xn there are M =(
n+d
n

)
polynomials X1, . . . , XM in Q[x1, . . . , xn] of total degree at most 1 with

Z + Zx1 + · · ·+ Zxn = ZX1 + · · ·+ ZXM (A2.1)

such that every monomial xd11 · · ·xdnn of total degree at most d lies in QXd
1 + · · ·+ QXd

M .

Proof. It is certainly well-known that a generic set of M points in Cn lies in no hypersurface

of degree at most d; we get M homogeneous linear equations for the M coefficients defining

the hypersurface, and in general the determinant does not vanish. Thus this holds for some

set of M points π in Qn (in fact it holds for the special set of integer points (ξ1, . . . , ξn) with
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non-negative coordinates satisfying ξ1+· · ·+ξn ≤ d, although we could not find a reference).

By a translation we can suppose that one of the points is the origin, and then the remaining

points cannot lie on a hyperplane through the origin so by a linear transformation we can

also suppose that they include the standard basis vectors of Qn. Thus defining the vector

v(π) with M components ξd11 · · · ξdnn (d1 + · · · + dn ≤ d), we get π1, . . . , πM in Zn with

v(π1), . . . ,v(πM ) linearly independent. Now putting X(π) = 1+ξ1x1+· · ·+ξnxn and Xi =

X(πi) (i = 1, . . . ,M) we deduce that Xd
1 , . . . , X

d
M are themselves linearly independent.

They therefore span the whole space of polynomials of total degree at most d. And (A2.1)

holds because already we can choose X1 = 1 + x1, . . . , Xn = 1 + xn and XM = 1, so that

xj = Xj −XM (j = 1, . . . , n). This completes the proof.

Now Matijasevich proved (see for example [J] quoted below for references) that there

is a universal diophantine equation, say in n variables x1, . . . , xn with total degree d ≥ 2

and some additional parameters. This implies that one can specialize some parameters

to obtain a polynomial P (t;x1, . . . , xn) representing a family of undecidable diophantine

equations with respect to the parameters in t. We change the variables to X1, . . . , XM as

in the Lemma, so that we can write

P (t;x1, . . . , xn) = p1(t)Xd
1 + · · ·+ pM (t)Xd

M

with polynomials p1(t), . . . , pM (t) in Q[t]. Of course M > n+ 1 and so the new variables

are not independent, and there will be non-zero a = (a1, . . . , aM ) in QM such that

L(a;X1, . . . , XM ) = a1X1 + · · ·+ aMXM = 0.

However we can pick basis elements a1, . . . ,aN of the space of such a (including a = 0).

Thanks to (A2.1) the solvability of

p1(t)Xd
1 + · · ·+ pM (t)Xd

M = 0, L(a1;X1, . . . , XM ) = 0, . . . , L(aN ;X1, . . . , XM ) = 0

(A2.2)

in integers X1, . . . , XM is equivalent to the solvability of P (t;x1, . . . , xn) = 0 in integers

x1, . . . , xn. But the system (A2.2) is diagonal.

Now the standard trick with sums of squares to reduce a system to a single equation

will probably destroy the diagonal property. Instead we pick algebraic θ1, . . . , θN with

1, θ1, . . . , θN linearly independent over Q and take the appropriate linear combination of

(A2.2); compare (1.5). This yields a diagonal equation

P1(t;X1) + · · ·+ PM (t;XM ) = 0
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(and in fact each Pi(X) has the shape pXd + αX + β). Thus indeed (1.4) is undecidable

with m = M ; and since XM = 1 in the proof of the Lemma we could even take m = M−1.

Finally according to Theorem 4 (p. 552) of the paper [J] of J.P. Jones we can choose

n = 58, d = 4 giving M =
(
62
58

)
= 557845 and so m = 557844.
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