
 
 

 
 
 
 
 
 
 
 
 
 

Numerical Solution  
of Elliptic Diffusion Problems  

on Random Domains 
 

Hemut Harbrecht, Michael Peters, 
Markus Siebenmorgen 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Institute of Mathematics      Preprint No. 2014-08 
University of Basel June, 2014 
Rheinsprung 21 
CH - 4051 Basel 
Switzerland      www.math.unibas.ch 

Revised on 
06.02.2015

 



NUMERICAL SOLUTION OF ELLIPTIC DIFFUSION PROBLEMS ON

RANDOM DOMAINS

HELMUT HARBRECHT, MICHAEL PETERS, AND MARKUS SIEBENMORGEN

Abstract. In this article, we provide regularity results for the solution to elliptic di↵usion

problems on random domains. Especially, based on the decay of the Karhunen-Loève expansion

of the domain perturbation field, we establish decay rates for the derivatives of the random

solution that are independent of the stochastic dimension. By taking into account only univariate

derivatives, these regularity results can considerably be sharpened. For the implementation of a

related approximation scheme, like quasi-Monte Carlo quadrature, stochastic collocation, etc.,

we propose parametric finite elements to compute the solution of the di↵usion problem on each

particular realization of the domain generated by the perturbation field. This simplifies the

implementation and yields a non-intrusive approach. Having this machinery at hand, we can

easily transfer it to stochastic interface problems. The theoretical findings are complemented

by numerical examples for both, stochastic interface problems and boundary value problems on

random domains.

1. Introduction

Many problems in science and engineering lead to boundary value problems for an unknown func-

tion. In general, the numerical simulation is well understood provided that the input parame-

ters are given exactly. Often, however, the input parameters are not known exactly. Especially,

the treatment of uncertainties in the computational domain has become of growing interest, see

e.g. [6, 19, 34, 37]. Here, we consider the elliptic di↵usion equation

(1) � div
�
↵ru(!)

�
= f in D(!), u(!) = 0 on @D(!),

as a model problem where the underlying domain D ⇢ Rd or respectively its boundary @D are

random. For example, one might think of tolerances in the shape of products fabricated by line

production or shapes which stem from inverse problems, like e.g. tomography. Besides the ficti-

tious domain approach considered in [6], one might essentially distinguish two approaches: the

perturbation method and the domain mapping method.

The perturbation method starts with a prescribed perturbation field

V(!) : @Dref ! Rd

at the boundary @Dref and uses a shape Taylor expansion with respect to this perturbation field

to represent the solution to (1), cf. [15, 19]. Whereas, the domain mapping method requires that

the perturbation field is also known in the interior of the domain Dref , i.e.

V(!) : Dref ! Rd.

This research has been supported by the Swiss National Science Foundation (SNSF) through the project

“Rapid Solution of Boundary Value Problems on Stochastic Domains”.
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Then, the problem may be transformed to the nominal, fixed domain Dref . This yields a partial

di↵erential equation with correlated stochastic di↵usion matrix and right hand side, cf. [7, 28, 34,

37].

The major drawback of the perturbation method is that it is only feasible for relatively small

perturbations. Thus, in order to treat larger perturbations, the domain mapping method is the

method of choice. Nevertheless, it might in practice be much easier to obtain measurements from

the outside of a workpiece to estimate the perturbation field V(!) rather than from its interior. If

no information of the vector field inside the domain is available, it has to be extended appropriately,

e.g. by the Laplacian, as proposed in [28, 37].

We would like to point out that the two approaches are in fact not comparable at all. In the

perturbation method, we use a problem description in terms of Eulerian coordinates, which means

that we keep the points fixed and perturb just the domain’s boundary. When considering the

domain mapping method, we change to Lagrangian coordinates, which means that we keep track of

the movement of each point. The correspondence between those two approaches can be expressed

in terms of the local shape derivative �u[V(!)] and the material derivative u̇[V(!)] of a given

function u which di↵er by a transport term, cf. [33]:

u̇[V(!)] = �u[V(!)] + hru,V(!)i.

In this article, we focus on the domain mapping method. In [7], it is shown for a specific class of

variation fields that the solution to (1) provides analytic regularity with respect to the stochastic

parameter. We will generalize the result from [7] to arbitrary domain perturbation fields which

are described by their mean E[V] : Dref ! Rd, E[V](x) =
⇥
E[v1](x), . . . ,E[vd](x)

⇤|
and their

(matrix-valued) covariance function

Cov[V] : Dref ⇥Dref ! Rd⇥d, Cov[V](x,x0) =

2

664

Cov1,1(x,x0) · · · Cov1,d(x,x0)
...

...

Covd,1(x,x0) · · · Covd,d(x,x0)

3

775 .

Taking the Karhunen-Loève expansion of V(!) as the starting point, we show decay rates for the

derivatives of the solution to (1) with respect to the stochastic parameter. Given that the Karhunen-

Loève expansion decays fast enough, our results imply the dimension independent convergence of

the quasi-Monte Carlo method based on the Halton sequence, cf. [14, 17, 35]. Moreover, our results

are convenient for the convergence theory of the anisotropic sparse collocation, cf. [29], and best

N -term approximations, cf. [9]. The decay estimates can yet be sharpened in case of univariate

derivatives, as they enter the error estimates in the stochastic collocation, cf. [3]. Although the

presented results allow for a broad variety of methods for the stochastic approximation, we employ

the quasi-Monte Carlo method in our numerical examples for the sake of simplicity.

For the spatial approximation, we propose to use parametric finite elements. Then, we are able to

approximate the mean and the variance of the solution to (1) by computing each sample on the

particular realization D(!i) = V(Dref ,!i) of the stochastic domain rather than on the reference

domainDref . This yields a non-intrusive approach to solve the problem under consideration. In fact,

any available finite element solver can be employed to compute the particular samples. Following

this approach rather than mapping the di↵usion problem always to the reference domain, we can

easily treat also stochastic interface problems, cf. [15].
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The rest of this article is organized as follows. In Section 2, we introduce some basic definitions

and notation. Section 3 is dedicated to the vector-valued Karhunen-Loève decomposition. Although

this is a straightforward adaption of the state of the art literature [30], we think that it is useful to

explicitly introduce the related spaces, norms and operators. In Section 4, we present the essential

contribution of this article: the regularity of the solution to the model problem defined in Section 2

with respect to the Karhunen-Loève expansion of the perturbation field. The results from Section 4

can considerably be sharpened if only univariate derivatives are taken into account. This topic is

discussed separately in Section 5. Section 6 introduces parametric finite elements which are the

basic ingredient for the numerical realization of our approach. In Section 7, we extend our approach

to stochastic interface problems. Finally, Section 8 provides numerical examples to validate and

quantify the theoretical findings.

In the following, in order to avoid the repeated use of generic but unspecified constants, by C . D

we mean that C can be bounded by a multiple of D, independently of parameters which C and D

may depend on. Obviously, C & D is defined as D . C,and C h D as C . D and C & D.

2. Problem formulation

Let Dref ⇢ Rd for d 2 N (of special interest are the cases d = 2, 3) denote a domain with Lipschitz

continuous boundary @Dref and let (⌦,F ,P) be a complete probability space with �-field F ⇢ 2⌦

and probability measure P. In order to guarantee that L2
P(⌦) exhibits an orthonormal basis, we

further assume that ⌦ is a separable set. Let V : Dref⇥⌦ ! Rd be an invertible vector field of class

C2, i.e.V is twice continuously di↵erentiable with respect to x for almost every ! 2 ⌦. Moreover, we

impose the uniformity condition kV(!)kC2(Dref ;Rd), kV�1(!)kC2(Dref ;Rd)  C for some C 2 (0,1)

and almost every ! 2 ⌦.1 Thus, V defines a family of domains D(!) := V(Dref ,!).

For the subsequent analysis, we restrict ourselves to the case of the Poisson equation, i.e. ↵ ⌘ 1,

(2) ��u(x,!) = f(x) in D(!), u(x,!) = 0 on �(!).

This considerably simplifies the analysis and the extension to non-constant di↵usion coe�cients

is straightforward, cf. Remark 4.8. In order to guarantee solvability for almost every ! 2 ⌦, we

consider the right hand side to be defined on the hold-all domain

(3) D :=
[

!2⌦

D(!).

From the uniformity condition, we infer for almost every ! 2 ⌦ and every x 2 D that the singular-

values of the vector field V’s Jacobian J(!,x) satisfy

(4) 0 < �  min
�
�
�
J(x,!)

� 
 max

�
�
�
J(x,!)

� 
 � < 1.

In particular, we assume without loss of generality that �  1 and � � 1.

1Regard that for the analysis it is su�cient to assume that V is a C1-di↵eomorphism and satisfies the

uniformity in C1(Dref ;Rd). Nevertheless, in order to obtain H2-regularity of the model problem, we make

this stronger assumption.
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2.1. Reformulation on the reference domain. In the sequel, we consider the spaces H1
0

�
D(!)

�

and H1
0 (Dref) to be equipped with the norms k · kH1(D(!)) := kr · kL2(D(!);Rd) and k · kH1(Dref ) :=

kr · kL2(Dref ;Rd), respectively. Furthermore, we assume that the related dual spaces H�1
�
D(!)

�

and H�1(Dref) are defined with respect to these norms. The main tool we use in the convergence

analysis for the model problem (2) is the one-to-one correspondence between the problem which

is pulled back to the reference domain Dref and the problem on the actual realization D(!). The

equivalence between those two problems is described by the vector field V(x,!). For an arbitrary

function v on D(!), we denote the transported function by v̂(x,!) := (v �V)(x,!). According to

the chain rule, we have for v 2 C1
�
D(!)

�

(5) (rv)
�
V(x,!)

�
= J(x,!)�|rv̂(x,!).

For given ! 2 ⌦, the variational formulation for the model problem (2) is given as follows: Find

u(!) 2 H1
0

�
D(!)

�
such that

(6)

Z

D(!)
hru,rvi dx =

Z

D(!)
fv dx for all v 2 H1

0

�
D(!)

�
.

Thus, with

(7) A(x,!) :=
�
J(x,!)|J(x,!)

��1
detJ(x,!)

and

(8) fref(x,!) := f̂(x,!) detJ(x,!),

we obtain the following variational formulation with respect to the reference domain: Find û(!) 2
H1

0 (Dref) such that

(9)

Z

Dref

hA(!)rû(!),rv̂(!)i dx =

Z

Dref

fref(!)v̂(!) dx for all v̂(!) 2 H1
0 (Dref).

Here and afterwards, h·, ·i denotes the canonical inner product for Rd.

Remark 2.1. Since V is assumed to be a C2-di↵eomorphism, we have for almost every ! 2 ⌦

that

V�1 �V = Id ) J�1J = I ) detJ�1 detJ = 1 for all x.

Herein, I 2 Rd⇥d denotes the identity matrix. Especially, we infer detJ�1, detJ 6= 0. The con-

tinuity of J,J�1 and of the determinant function imply now that either detJ�1, detJ > 0 or

detJ�1, detJ < 0 for all x. Therefore, without loss of generality, we will assume the positiveness

of the determinants.

Notice that equation (9) contains for fixed v 2 H1
0

�
D(!)

�
the related transported test function

v̂(!).

The connection between the spaces H1
0 (Dref) and H1

0

�
D(!)

�
is given by the following

Lemma 2.2. The spaces H1
0 (Dref) and H1

0

�
D(!)

�
are isomorphic by the isomorphism

E : H1
0 (Dref) ! H1

0

�
D(!)

�
, v 7! v �V(!)�1.

The inverse mapping is given by

E�1 : H1
0

�
D(!)

�
! H1

0 (Dref), v 7! v �V(!).
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Proof. The proof of this lemma is a consequence of the chain rule (5) and the ellipticity assumption

(4). ⇤ ⇤

This lemma implies that the space of test functions is not dependent on ! 2 ⌦ at all: Obviously,

we have H1
0

�
D(!)

�
= {E(v) : v 2 H1

0 (Dref)}. Thus, for an arbitrary function E(v) 2 H1
0

�
D(!)

�
it

holds dE(v) = E(v) � V = v � V�1 � V = v 2 H1
0 (Dref) independent of ! 2 ⌦. In particular, the

solutions u to (6) and û to (9) satisfy

(10) û(!) = u �V(!) and u(!) = û �V(!)�1.

3. Karhunen-Lo

`

eve expansion

In order to make the stochastic vector field V(x,!) feasible for computations, we consider here its

Karhunen-Loève expansion, cf. [27]. This section shall give a brief overview of the relevant facts

concerning the Karhunen-Loève expansion of vector valued random fields. Especially, we introduce

here the related function spaces which are used in the rest of this article. For further details on the

Karhunen-Loève expansion in general and also on computational aspects, we refer to [11, 12, 18, 30].

Let D ⇢ Rd always denote a domain. Then, we define L2(D;Rd) to be the Hilbert space which

consists of all equivalence classes of square integrable functions v : D ! Rd equipped with the

inner product

(u,v)L2(D;Rd) :=

Z

D

hu,vi dx for all u,v 2 L2(D;Rd).

We assume that the vector field V satisfies

V(x,!) = [v1(x,!), . . . , vd(x,!)]
| 2 L2

P
�
⌦;L2(D;Rd)

�
.

Here and in the sequel, given a Banach space B and 1  p  1, the Lebesgue-Bochner space

Lp
P(⌦;B) consists of all strongly measurable functions v : ⌦ ! B whose norm

kvkLp
P (⌦;B) :=

8
>>><

>>>:

✓Z

⌦
kv(·,!)kpB dP(!)

◆1/p

, p < 1

ess sup
!2⌦

kv(·,!)kB , p = 1

is finite. If B = H is a separable Hilbert space and p = 2, then the Lebesgue-Bochner space is

isomorphic to the tensor product space L2
P(⌦)⌦H equipped with the inner product

(u, v)L2
P(⌦;H) :=

Z

⌦

�
u(·,!), v(·,!)

�
H
dP(!),

cf. [2, 26].

The mean of V is given by E[V](x) =
⇥
E[v1](x), . . . ,E[vd](x)

⇤|
with

E[vi](x) :=
Z

⌦
vi(x,!) dP(!), i = 1, 2, . . . , d.

From the theory of Bochner integrals, see e.g. [26], it follows that E[vi](x) 2 L2(D) and thus

E[V](x) 2 L2(D;Rd). Furthermore, the (matrix-valued) covariance function of V is given by

Cov[V](x,y) = [Covi,j(x,y)]di,j=1 with

Covi,j(x,y) = E
⇥�
vi(x,!)� E[vi](x)

��
vj(y,!)� E[vj ](y)

�⇤
.



6 HELMUT HARBRECHT, MICHAEL PETERS, AND MARKUS SIEBENMORGEN

We have Covi,j(x,y) 2 L2(D⇥D) which also follows from the properties of the Bochner integral and

the application of the Cauchy-Schwarz inequality. We therefore conclude Cov[V](x,y) 2 L2(D ⇥
D;Rd⇥d) where we endowed the space Rd⇥d with the inner product

A : B :=
dX

i,j=1

ai,jbi,j for A,B 2 Rd⇥d with A = [ai,j ]
d
i,j=1, B = [bi,j ]

d
i,j=1.

This particularly induces the inner product on L2(D ⇥D;Rd⇥d) given by

(A,B)L2(D⇥D;Rd⇥d) :=

Z

D

Z

D

A : B dx dy for A,B 2 L2(D ⇥D;Rd⇥d).

Now, we shall introduce the operator

(11) S : L2
P(⌦) ! L2(D;Rd), (SX)(x) :=

Z

⌦

�
V(x,!)� E[V](x)

�
X(!) dP(!)

and its adjoint

(12) S? : L2(D;Rd) ! L2
P(⌦), (S?u)(!) :=

Z

D

�
V(x,!)� E[V](x)

�|
u(x) dx.

Then, there holds the following

Lemma 3.1. The operators S and S? given by (11) and (12), respectively, are bounded with

Hilbert-Schmidt norms kSkHS = kS?kHS = kV � E[V]kL2
P(⌦;L2(D;Rd)). Moreover, the covariance

operator

C : L2(D;Rd) ! L2(D;Rd), (Cv)(x) :=
Z

D

Cov[V](x,y)v(y) dy = (SS?v)(x)

is a non-negative, symmetric, trace class operator with trace kV � E[V]k2
L2

P(⌦;L2(D;Rd)).

Proof. The statement on the norms of S and S? follows by the application of Parseval’s identity,

see last part of the proof. Moreover, we have for all u 2 L2(D;Rd) that

(SS?u)(x) =

Z

⌦

�
V(x,!)� E[V](x)

� Z

D

�
V(y,!)� E[V](y)

�|
u(y) dy dP(!)

=

Z

D

✓Z

⌦

�
V(x,!)� E[V](x)

��
V(y,!)� E[V](y)

�|
dP(!)

◆
u(y) dy

=

Z

D

Cov[V](x,y)u(y) dy = (Cu)(x).

In particular, C is non-negative and symmetric according to

(Cu,u)L2(D;Rd) = (S?u,S?u)L2
P(⌦) = kS?uk2L2

P(⌦) � 0.

Finally, to show that C is of trace class, let {'k}k be an arbitrary orthonormal basis in L2(D;Rd).

We thus have
X

k

(C'k,'k)L2(D;Rd) =
X

k

kS?'kk2L2
P(⌦) =

Z

⌦

X

k

(S?'k)
2 dP(!)

=

Z

⌦

X

k

✓Z

D

�
V(x,!)� E[V](x)

�|
'k dx

◆2

dP(!)

=

Z

⌦

Z

D

hV(x,!)� E[V](x),V(x,!)� E[V](x)i dx dP(!)

= kV � E[V]k2L2
P(⌦;L2(D;Rd)),
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where we employed Parseval’s identity in the second last step. ⇤ ⇤

Trace class operators are especially compact, see e.g. [23, 31], and exhibit hence a spectral decom-

position.

Theorem 3.2. Let C : L2(D;Rd) ! L2(D;Rd) be the covariance operator related to V(x,!) 2
L2
P
�
⌦;L2(D;Rd)

�
. Then, there exists an orthonormal set {'k}k and a sequence �1 � �2 � . . . � 0

such that C'k = �k'k for all k = 1, 2, . . .. Furthermore, it holds

Cu =
X

k

�k(u,'k)L2(D;Rd)'k for all u 2 L2(D;Rd).

Proof. For a proof of this theorem, we refer to [2]. ⇤ ⇤

We have now all prerequisites at hand to define the Karhunen-Loève decomposition of the vector

field V(x,!) 2 L2
P
�
⌦;L2(D;Rd)

�
.

Definition 3.3. Let V(x,!) be a vector field in L2
P
�
⌦;L2(D;Rd)

�
. The expansion

(13) V(x,!) = E[V](x) +
X

k

�k'k(x)Xk(!)

with �k =
p
�k and Xk = S?'k/�k, where {(�k,'k)}k is the sequence of eigenpairs of the under-

lying covariance operator C = SS?, is called Karhunen-Loève expansion of V(x,!).

The space L2(D;Rd) served as pivot space for our considerations in the preceding derivation of the

Karhunen-Loève expansion. In order to control the error of truncating the expansion after M 2 N
terms, i.e.

(14)

����V(x,!)� E[V](x)�
MX

k=1

�k'k(x)Xk(!)

����
L2(⌦;L2(D;Rd))

=

✓ 1X

k=M+1

�k

◆ 1
2

,

one has to study the decay of the singular values �k in the representation (13). The particular rate

of decay is known to depend on the spatial regularity of V(x,!). To that end, we consider the

Sobolev space Hp(D;Rd) for p > 0. The related inner product is given by

(u,w)Hp(D;Rd) :=
X

|↵|p

Z

D

h@↵u, @↵wi dx

for p 2 N and

(u,w)Hp(D;Rd) := (u,w)Hbpc(D;Rd) +
X

|↵|=bpc

Z

D

Z

D

k@↵u(x)� @↵w(y)k22
kx� ykd+2s

2

dx dy

for p = bpc+ s with s 2 (0, 1). Its dual space with respect to the L2-duality pairing ist denoted as

H̃�p(D;Rd).

For given V(x,!) 2 L2
P
�
⌦;Hp(D;Rd)

�
, it obviously holds

Covi,j(x,y) 2 Hp(D)⌦Hp(D) for i, j = 1, . . . , d,

cf. [12]. Therefore, the following theorem is a straightforward modification of [12, Theorem 3.3] for

the vector valued case.

Theorem 3.4. Let V(x,!) 2 L2
P
�
⌦;Hp(D;Rd)

�
. Then, the eigenvalues of the covariance operator

C : H̃�p(D;Rd) ! Hp(D;Rd) decay like �k . (k/d)�2p/d as k ! 1.
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We may summarize the results of this section as follows. If the mean E[V](x) and the covariance

function Cov[V](x,y) as well as the distribution of V(x,!) are known or appropriately estimated,

cf. [30], we are able to reconstruct the vector field V(x,!) from its Karhunen-Loève expansion. In

the following, in order to make the Karhunen-Loève expansion feasible for numerical computations,

we make some common assumptions:

Assumption 3.5.

(1) The random variables {Xk}k are centered and take values in [�1, 1], i.e. Xk(!) 2 [�1, 1]

for all k and almost every ! 2 ⌦.

(2) The random variables {Xk}k are independent and identically distributed.

(3) The sequence {�k}k :=
�
k�k'kkW 1,1(D;Rd)

 
k
is at least in `1(N). We denote its norm by

c� :=
P1

k=1 �k.

Here and hereafter, we shall equip the spaceW 1,1(D;Rd) with the equivalent norm kvkW 1,1(D;Rd) =

max
�
kvkL1(D;Rd), kv0kL1(D;Rd⇥d)

 
, where v0 denotes the Jacobian of v and kv0kL1(D;Rd⇥d) :=

ess sup
x2D kv0(x)k2. Herein, k · k2 corresponds to the usual 2-norm of matrices, i.e. the largest

singular value.

4. Regularity of the solution

In this section, we assume that the vector field V(x,y) is given by a finite rank Karhunen-Loève

expansion, i.e.

V(x,y) = E[V](x) +
MX

k=1

�k'k(x)yk,

otherwise it has to be truncated appropriately. Nevertheless, we provide in this section estimates

which are independent of M 2 N. Thus, we explicitly allow M to become arbitrarily large.

For the rest of this article, we will refer to the randomness only via the coordinates y 2 2 :=

[�1, 1]M , where y = [y1, . . . , yM ]. Notice that due to the independence of the random variables,

the related push-forward measure P
X

:= P �X�1 where X(!) := [X1(!), . . . XM (!)] is of product

structure. Furthermore, we always think of the spaces Lp(2) for p 2 [1,1] to be equipped with

the measure P
X

. Moreover, we set � = [�k]Mk=1.

Without loss of generality, we may assume that E[V](x) = x is the identity mapping. Otherwise,

we replace Dref by

eDref := E[V](Dref) and e'k :=
p
det(E[V]�1)0'k � E[V]�1.

Therefore, we obtain

(15) V(x,y) = x+
MX

k=1

�k'k(x)yk and J(x,y) = I+
MX

k=1

�k'
0
k(x)yk.

In the subsequent regularity results, we shall refer to the following Lebesgue-Bochner spaces. We

define the space L1�
2;L1(Dref ;Rd)

�
as the set of all strongly measurable functions V : 2 !

L1(Dref ;Rd) with finite norm

|||V|||d := ess sup
y22

kV(y)kL1(Dref ;Rd).
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Furthermore, the space L1�
2;L1(Dref ;Rd⇥d)

�
consists of all strongly measurable functionsM : 2 !

L1(Dref ;Rd⇥d) with finite norm

|||M|||d⇥d := ess sup
y22

kM(y)kL1(Dref ;Rd⇥d).

We start by providing bounds on the derivatives of
�
J(x,y)|J(x,y)

��1
.

Lemma 4.1. Let J : Dref ⇥2 ! Rd⇥d be defined as in (15). Then, it holds for the derivatives of

�
J(x,y)|J(x,y)

��1

under the conditions of Assumption 3.5.3 that

������@↵
y

(J|J)�1
������

d⇥d
 |↵|!�

↵

�2

✓
2(1 + c�)

�2 log 2

◆|↵|
.

Proof. We define B(x,y) := J(x,y)|J(x,y) and Ã(x,y) :=
�
B(x,y)

��1
. Expanding the expres-

sion for B(x,y) yields

B(x,y) = I+
MX

k=1

�k

�
'0

k(x) +'0
k(x)

|�yk +
MX

k,k0=1

�k�k0'0
k(x)

|'0
k0(x)ykyk0 .

Thus, the first order derivatives of B(x,y) are given by

(16) @yiB(x,y) = �i

�
'0

i(x) +'0
i(x)

|�+
MX

k=1

�i�k

�
'0

i(x)
|'0

k(x) +'0
k(x)

|'0
i(x)

�
yk

and the second order derivatives according to

(17) @yj@yiB(x,y) = �i�j

�
'0

i(x)
|'0

j(x) +'0
j(x)

|'0
i(x)

�
.

Obviously, all higher order derivatives with respect to y vanish.

The ellipticity assumption (4) now yields the following bounds:

�2  |||B|||d⇥d  �2 and
1

�2 
������Ã

������
d⇥d

 1

�2
,

respectively. Furthermore, we derive from (16) that

������@yiB
������

d⇥d
 2�i + 2�i

MX

k=1

�k  2(1 + c�)�i

and from (17) that
������@yj@yiB

������
d⇥d

 2�i�j . Thus, we have

(18)
������@↵

y

B
������

d⇥d


8
<

:
2(1 + c�)�↵, if |↵| = 1, 2

0, if |↵| > 2.

Since Ã = v �B is a composite function with v(x) = x�1, we may employ Faà di Bruno’s formula,

cf. [10], which is a generalization of the chain rule, to compute its derivatives. For n = |↵| Faà di
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Bruno’s formula formally yields2

(19) @↵
y

Ã(x,y) =
nX

r=1

(�1)rr!Ã(x,y)r+1
X

P (↵,r)

↵!
nY

j=1

�
@
�j
y

B(x,y)
�kj

kj !(�j !)
kj

.

Here, the set P (↵, r) contains restricted integer partitions of a multiindex ↵ into r non-vanishing

multiindices, i.e.

P (↵, r) :=

⇢�
(k1,�1), . . . , (kn,�n)

�
2 (N0 ⇥ NM

0 )n :
nX

i=1

ki�i = ↵,

nX

i=1

ki = r,

and 9 1  s  n : ki = 0 and �i = 0 for all 1  i  n� s,

ki > 0 for all n� s+ 1  i  n and 0 � �n�s+1 � · · · � �n

�
.

Herein, for multiindices �,�0 2 NM
0 , the relation � � �0 means either |�| < |�0| or, if |�| = |�0|,

it denotes the lexicographical order which means that it holds that �1 = �0
1, . . . ,�k = �0

k and

�k+1 < �0
k+1 for some 0  k < m.

Taking the norm in (19), we derive the estimate

������@↵
y

Ã
������

d⇥d


nX

r=1

r!
������Ã

������r+1

d⇥d

X

P (↵,r)

↵!
nY

j=1

������@�j
y

B
������kj

d⇥d

kj !(�j !)
kj


nX

r=1

r!

✓
1

�2

◆r+1 X

P (↵,r)

↵!
nY

j=1

�
2(1 + c�)�

�j
�kj

kj !(�j !)
kj

= �↵
nX

r=1

r!

✓
1

�2

◆r+1�
2(1 + c�)

�r X

P (↵,r)

↵!
nY

j=1

1

kj !(�j !)
kj
.

From [10] we know that

X

P (↵,r)

↵!
nY

j=1

1

kj !(�j !)
kj

= Sn,r,

where Sn,r are the Stirling numbers of the second kind, cf. [1]. Thus, we obtain

������@↵
y

Ã
������

d⇥d
 �↵

�2

nX

r=1

r!

✓
2(1 + c�)

�2

◆r

Sn,r  �↵

�2

✓
2(1 + c�)

�2

◆|↵| nX

r=1

r!Sn,r.

The term b̃(n) :=
Pn

r=0 r!Sn,r coincides with the n-th ordered Bell number. The ordered Bell

numbers satisfy the recurrence relation

(20) b̃(n) =
n�1X

r=0

 
n

k

!
b̃(r) with b̃(0) = 1,

2With “formally” we mean that we ignore here the fact that the product of matrices is in general not

Abelian. Nevertheless, a di↵erentiation yields exactly the appearing products in a permuted order. The

formal representation is justified since we only consider the norm of the representation in the sequel.
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see [13], and may be estimated as follows3, cf. [4],

(21) b̃(n)  n!

(log 2)n
.

This finally proves the assertion. ⇤ ⇤

The next lemma bounds the derivatives of detJ(x,y).

Lemma 4.2. Let J : 2 ! L1(Dref ;Rd⇥d) be defined as in (15). Then, it holds for the derivatives

of detJ(x,y) under the conditions of Assumption 3.5.3 that

��@↵
y

detJ
��
L1(2;L1(Dref ))

 Cdet|↵|!�d

✓
4

�

◆|↵|
�̃↵

with the modified sequence �̃k = �kk
1+"/c" for arbitrary " > 0 with a normalization constant c" > 0

and a constant Cdet depending on the modified sequence and the dimension d.

Proof. We start from the identity

(22) det exp(M) = exp(trM),

which holds for any matrix M 2 Rd⇥d, cf. [22]. From this, we derive

(23) detM = exp(tr logM),

where the matrix logarithm exists, whenever M is non-singular, cf. [22]. Now, the derivatives of

the Jacobian J(x,y) with respect to yi satisfy
������@yiJ

������
d⇥d

 �i.

Faà di Bruno’s formula yields formally with @↵
y

tr log J(x,y) = tr @↵
y

log J(x,y) that

@↵
y

tr log J(x,y) = tr

✓ nX

r=1

(�1)r�1(r � 1)!J(x,y)�r
X

P (↵,r)

↵!
nY

j=1

�
@
�j
y

J(x,y)
�kj

kj !(�j !)
kj

◆
.

Taking into account that | trM|  dmax{�(M)}, we obtain
��@↵

y

tr log J
��
L1(2;L1(Dref ))

 d

����

����

����
nX

r=1

(�1)r�1(r � 1)!J�r
X

P (↵,r)

↵!
nY

j=1

�
@
�j
y

J
�kj

kj !(�j !)
kj

����

����

����
d⇥d

.

Furthermore, we may estimate

����

����

����
nX

r=1

(�1)r�1(r � 1)!J�r
X

P (↵,r)

↵!
nY

j=1

�
@
�j
y

J
�kj

kj !(�j !)
kj

����

����

����
d⇥d


nX

r=1

(r � 1)!
������J�1

������r
d⇥d

X

P (↵,r)

↵!
nY

j=1

������@�j
y

J
������kj

d⇥d

kj !(�j !)
kj

 (|↵|� 1)!

✓
1

�

◆|↵|
�↵.

3A more rigorous bound on the ordered Bell numbers is provided by [36]. There, it is shown that

b̃(n) =
n!

2(log 2)n+1
+O�

(0.16)nn!
�
.

Nevertheless, for our purposes, the bound from [4] is su�cient.
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The last inequality holds due to the fact that all derivatives of J vanish for |�j | > 1. Thus, only if

�j = 0 or �j = ei, where ei is the i-th unit vector, the related summand does not vanish. Due to

the definition of P (↵, r), this choice of �j is only possible if r = |↵|. Thus, we arrive at

(24)
��@↵

y

tr log J
��
L1(2;L1(Dref ))

 d|↵|!
✓
1

�

◆|↵|
�↵.

By spending a convergent series, i.e. {c"/k1+"}k, with normalization constant c", we have by

Lemma .1 from the Appendix that

(25)
��@↵

y

tr log J
��
L1(2;L1(Dref ))

 dc̃↵!

✓
1

�

◆|↵|
�̃↵

with c̃ = 1/(1� c").

The combination of (23) and (25) provides
��@↵

y

detJ
��
L1(2;L1(Dref ))

=
��@↵

y

exp
�
tr log J

���
L1(2;L1(Dref ))

=

����
nX

r=1

exp
�
tr log J

� X

P (↵,r)

↵!
nY

j=1

�
@
�j
y

tr log J
�kj

kj !(�j !)
kj

����
L1(2;L1(Dref ))

 kdetJkL1(2;L1(Dref ))

nX

r=1

X

P (↵,r)

↵!
nY

j=1

⇣
dc̃�j !

�
1
�

�|�j |�̃�j

⌘kj

kj !(�j !)
kj

= k detJkL1(2;L1(Dref ))

✓
1

�

◆|↵|
�̃↵

nX

r=1

(dc̃)r
X

P (↵,r)

↵!
nY

j=1

1

kj !
.

Now, the application of Lemma .3 from the Appendix gives us
��@↵

y

detJ
��
L1(2;L1(Dref ))

 kdetJkL1(2;L1(Dref ))

✓
1

�

◆|↵|
�̃↵

nX

r=1

(dc̃)r
|↵|!
r!

✓
|↵|+ r � 1

r � 1

◆
.

It holds by the ellipticity assumption (4) that

(26) �d  detJ(x,y)  �d

for almost every y 2 2. Noticing in addition that
nX

r=1

(dc̃)r
1

r!

✓
|↵|+ r

r

◆


nX

r=1

(dc̃)r

r!

nX

r=1

✓
|↵|+ r

r

◆
 edc̃22|↵|,

we end up with the assertion due to

��@↵
y

detJ
��
L1(2;L1(Dref ))

 |↵|!�d

✓
4

�

◆|↵|
edc̃�̃↵.

⇤ ⇤

The application of the Leibniz rule now yields a regularity estimate for the di↵usion matrixA(x,y).

Theorem 4.3. The derivatives of the di↵usion matrix A(x,y) defined in (7) satisfy

������@↵
y

A
������

d⇥d
 Cdet(|↵|+ 1)!

�d

�2

✓
4(1 + c�)

�2 log 2

◆|↵|
�̃↵,

where �̃ is the modified sequence from the previous Lemma.
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Proof. The Leibniz rule for @↵
y

A(x,y) reads as

@↵
y

A(x,y) =
X

↵0↵

 
↵

↵0

!
@↵0

y

�
J(x,y)|J(x,y)

��1
@↵�↵0

y

detJ(x,y).

Inserting the results of Lemma 4.1 and Lemma 4.2 yields
������@↵

y

A
������

d⇥d


X

↵0↵

 
↵

↵0

!
|↵0|!�

↵0

�2

✓
2(1 + c�)

�2 log 2

◆|↵0|
|↵�↵0|!�dCdet

✓
4

�

◆|↵�↵0|
�̃↵�↵0

 �d

�2

✓
4(1 + c�)

�2 log 2

◆|↵|
�̃↵

X

↵0↵

 
↵

↵0

!
|↵0|!|↵�↵0|!.

Now, we employ the combinatorial identity

(27)
X

↵0↵
|↵0|=j

 
↵

↵0

!
=

 
|↵|
j

!

and obtain

X

↵0↵

 
↵

↵0

!
|↵0|!|↵�↵0|! =

|↵|X

j=0

j!(|↵|� j)!
X

↵0↵
|↵0|=j

 
↵

↵0

!

=

|↵|X

j=0

j!(|↵|� j)!

 
|↵|
j

!
= |↵|!

|↵|X

j=0

1 = (|↵|+ 1)!.

⇤ ⇤

In order to prove regularity results for the right hand side fref in (9), we have to assume that f is

a smooth function.

Lemma 4.4. Let f 2 C1(D) be analytic, i.e. k@↵
x

fkL1(D;Rd)  ↵!⇢�|↵|cf for all ↵ 2 Nd
0 and

some ⇢ 2 (0, 1], and let Assumption 3.5.3 be satisfied. Then, the derivatives of f̂ = f � V are

bounded by

��@↵
y

f̂
��
L1(2;L1(Dref ))

 |↵|!cf
✓

d

⇢ log 2

◆|↵|
�↵.

Proof. In view of (15), di↵erentiation of V(x,y) yields @yiV(x,y) = �i'i(x). Thus, all higher

order derivatives with respect to an arbitrary direction yj vanish. The norm of the first order

derivatives is bounded by
������@yiV

������
d
 �i.

The rest of the proof is also based on the application of Faà di Bruno’s formula. Nevertheless, we

have this time to consider the multivariate case. To that end, we define the set P (↵,↵0) given by

P (↵,↵0) :=

⇢�
(k1,�1), . . . , (kn,�n)

�
2 (Nd

0 ⇥ NM
0 )n :

nX

i=1

|ki|�i = ↵,

nX

i=1

ki = ↵0,

and 9 1  s  n : |kj | = |�a| = 0 for all 1  i  n� s,

|ki| 6= 0 for all n� s+ 1  i  n and 0 � �n�s+1 � · · · � �n

�
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with n = |↵|. The application of the multivariate Faà di Bruno formula yields now
��@↵

y

f̂
��
L1(2;L1(Dref ))


X

1|↵0|n

��@↵0

x

f
��
L1(2;L1(D))

X

P (↵,↵0)

↵!
nY

j=1

���@�j
y

V
�
kj
��
L1(2;L1(Dref ))

kj !(�j !)
|kj |


X

1|↵0|n

↵0!⇢�|↵0|cf
X

P (↵,↵0)

↵!
nY

j=1

�
��j

�
kj

kj !(�j !)
|kj |

= cf�
↵

X

1|↵0|n

↵0!⇢�|↵0|
X

P (↵,↵0)

↵!
nY

j=1

1

kj !(�j !)
|kj |

.

From [10], we know that

X

|↵0|=r

X

P (↵,↵0)

↵!
nY

j=1

1

kj !(�j !)
|kj |

= drSn,r,

where again Sn,r is the Stirling number of the second kind. Thus, we obtain

��@↵
y

f̂
��
L1(2;L1(Dref ))

 cf�
↵

nX

r=1

✓
d

⇢

◆r

r!Sn,r  cf�
↵

✓
d

⇢

◆|↵| nX

r=0

r!Sn,r.

Analogously to the proof of Lemma 4.1, we finally arrive at the assertion. ⇤ ⇤

Now, in complete analogy to Theorem 4.3, we have the following regularity result for the right

hand side fref .

Theorem 4.5. The derivatives of the right hand side fref(x,y) defined in (8) satisfy

��@↵
y

fref
��
L1(2;L1(Dref ))

 (|↵|+ 1)!cfCdet�
d

✓
4d

�⇢ log 2

◆|↵|
�̃↵,

where �̃ is the modified sequence from Lemma 4.2.

Finally, we establish the dependency between the solution û to (9) and the data fref .

Lemma 4.6. Let û(y) be the solution to (9) and fref 2 L1�
2;L1(Dref)

�
. Then, there holds

(28) kû(y)kH1(Dref ) 
�2

�d
cDkfrefkL1(2;L1(Dref ))

with a constant cD only dependent on Dref for almost every y 2 2.

Proof. The bilinear form

(Ar · ,r · )L2(Dref ;Rd) : H
1
0 (Dref)⇥H1

0 (Dref) ! R

is coercive and bounded according to (4) and (26). It holds

�d

�2 kûk
2
H1(Dref )

 (Arû,rû)L2(Dref ;Rd)

and

(Arû,rv̂)L2(Dref ;Rd) 
�d

�2
kûkH1(Dref )kv̂kH1(Dref )



NUMERICAL SOLUTION OF ELLIPTIC DIFFUSION PROBLEMS ON RANDOM DOMAINS 15

for all û, v̂ 2 H1(Dref) and almost every y 2 2. The assertion follows now by the application of

the Lax-Milgram Lemma and the observation that

kfrefkL1(2;H�1(Dref )) 
p
|Dref |cP kfrefkL1(2;L1(Dref )),

where cP denotes the Poincaré constant of Dref . ⇤ ⇤

Combining the constants provided by Theorem 4.3 and Theorem 4.5 leads to the modified sequence

{µk}k :=

⇢
2Cdet max

✓
4d�d

�⇢ log 2
,
4�d(1 + c�)

�4 log 2

◆
�̃k

�

k

.

Notice that we ignore here the fact that the constant Cdet�
d/�2 in the estimate for the di↵usion

matrix and the constant Cdet�
d in the estimate for the right hand side do only occur with multi-

plicity 1. Moreover, we introduce the additional factor 2 in order to obtain the factor |↵|! in the

derivatives instead of the factor (|↵|+ 1)!. Nevertheless, for the sake of readability, we also insert

them into the sequence {µk}k.

Theorem 4.7. The derivatives of the solution u to (9) satisfy under the assumptions of Lemma 4.1

and 4.5 that
��@↵

y

û(y)
��
H1(Dref )

 |↵|!µ↵

✓
4�2

�d
max{1, cfcD}

◆|↵|+1

,

where cD denotes the constant from the previous theorem.

Proof. Di↵erentiating the variational formulation (9) with respect to y leads to
⇣
@↵
y

�
A(y)r

x

û(y)
�
,r

x

v̂
⌘

L2(Dref ;Rd)
=
�
@↵
y

fref(y), v̂
�
L2(Dref ;R).

The isomorphism of the spaces H1
0 (Dref) and H1

0

�
D(y)

�
from Lemma 2.2 allows us to consider the

test functions v to be independent of y. Furthermore, the application of the Leibniz rule for the

expression @↵
y

�
A(y)r

x

û(y)
�
results in

@↵
y

�
A(y)r

x

û(y)
�
=
X

↵0↵

 
↵

↵0

!
@↵0

y

A(y)@↵�↵0

y

r
x

û(y).

Thus, rearranging the preceding expression and using the linearity of the gradient, we arrive at
Z

Dref

A(y)r
x

@↵
y

û(y)r
x

v dx

=

Z

Dref

@↵
y

fref(y)v dx�
X

↵ 6=↵0↵

 
↵

↵0

!Z

Dref

@↵�↵0

y

A(y)r
x

@↵0

y

û(y)r
x

v dx.

By choosing v = @↵
y

û(y) and by employing the estimates from Theorem 4.3 and Theorem 4.5, it

follows that

�d

�2

��@↵
y

û(y)
��2
H1(Dref )


Z

Dref

@↵
y

fref(y)@
↵
y

û(y) dx�
X

↵ 6=↵0↵

 
↵

↵0

!Z

Dref

@↵�↵0

y

A(y)r
x

@↵0

y

û(y)r
x

@↵
y

û(y) dx

 |↵|!cfcDµ↵
��@↵

y

û(y)
��
H1(Dref )

+
X

↵ 6=↵0↵

 
↵

↵0

!
|↵�↵0|!µ↵�↵0��@↵0

y

û(y)
��
H1(Dref )

��@↵
y

û(y)
��
H1(Dref )

.
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From this, we obtain

��@↵
y

û(y)
��
H1(Dref )

 C

4
|↵|!µ↵+

C

4

X

↵ 6=↵0↵

 
↵

↵0

!
|↵�↵0|!µ↵�↵0��@↵0

y

û(y)
��
H1(Dref )

by setting

C :=
4�2

�d
max{1, cfcD}.

The proof is now by induction on |↵|. The induction hypothesis is given by
��@↵

y

û(y)
��
H1(Dref )

 |↵|!µ↵C |↵|+1.

For |↵| = 0, we conclude just the stability estimate (28), where the right hand side of the inequality

is scaled by the factor 4. Therefore, let the assertion hold for all |↵|  n� 1 for some n � 1. Then,

we have
��@↵

y

û(y)
��
H1(Dref )

 C

4
|↵|!µ↵ +

C

4

X

↵ 6=↵0↵

 
↵

↵0

!
|↵�↵0|!µ↵�↵0

|↵0|!µ↵0
C |↵0|+1

 C

4
|↵|!µ↵ +

C

4
µ↵

X

↵ 6=↵0↵

 
↵

↵0

!
|↵�↵0|!C |↵0|+1

=
C

4
|↵|!µ↵ +

C

4
µ↵

n�1X

j=0

X

↵0↵
|↵0|=j

 
↵

↵0

!
|↵�↵0|!|↵0|!C |↵0|+1.

Again, we make use of the combinatorial identity (27) and obtain the estimate

��@↵
y

û(y)
��
H1(Dref )

 C

4
|↵|!µ↵ +

C

4
|↵|!µ↵

n�1X

j=0

 
|↵|
j

!
(|↵|� j)!j!C |↵0|+1

=
C

4
|↵|!µ↵ +

C

4
|↵|!µ↵C

n�1X

j=0

C |↵0|

=
C

4
|↵|!µ↵ +

C

4
|↵|!µ↵C

C |↵|

C � 1
.

Now, the application of Lemma .4 from the Appendix gives us

C

2

C |↵|

C � 1
 C |↵|

Since C > 1, we conclude

��@↵
y

û(y)
��
H1(Dref )

 C

4
|↵|!µ↵ + C

C |↵|

2
|↵|!µ↵  C |↵|+1|↵|!µ↵.

This completes the proof. ⇤ ⇤

Taking into account the additional factor provided by the theorem, we end up with the sequence

{µk}k :=

⇢
8�2

�d
Cdet max{1, cfcD}max

✓
4d�d

�⇢ log 2
,
4�d(1 + c�)

�4 log 2

◆
�̃k

�

k

which yields in view of Theorem 4.7 that
��@↵

y

û(y)
��
H1(Dref )

 C|↵|!µ↵
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with a constant C > 0 independent of the dimension M . Moreover, we observe µk h �kk
1+".

Therefore, we obtain for �k . k�2�� the analyticity of û by Lemma .1 from the Appendix for any

" < �.

Remark 4.8. The discussion in this section only refers to the case of the Poisson equation. Of

course, the analysis presented here straightforwardly applies also to the more general di↵usion

problem

� div
�
↵(x)ru(x,y)

�
= f(x) for x 2 D(y).

In this case, one has to impose the restriction that ↵(x) is an analytic function which is bounded

from above and below away from 0. Then, an estimate analogous to Lemma 4.4 applies for ↵̂(x,y).

The proof of a related Theorem 4.3 for ↵̂(x,y)A(x,y) then involves an additional application of

the Leibniz rule.

Remark 4.9. We can obtain similar approximation results for the moments of û, i.e. for ûp with

p 2 N, possibly with worse constants. To that end, one has to bound the derivatives of ûp with

respect to y, too. This is also achieved by the application of Faà di Bruno’s formula. For an idea

of the related proofs, we refer to [17] where this topic is discussed in case of a stochastic di↵usion

coe�cient.

5. Decay of the univariate derivatives

The results from the preceding section can be considerably sharpened if we only consider univariate

derivatives @↵
yi
û of the solution û to (9). The major obstruction in deriving estimates without powers

of the term |↵|! in the estimates is the knowledge of proper bounds on the term |↵|!/↵!. To that

end, we have only Lemma .1 at hand which tells us, that we have to spend a convergent series in

order to bound the term |↵|!/↵!. The situation changes if one only considers univariate derivatives

since then |↵|! = ↵! holds. This gives rise to a separate discussion of this situation.

We begin by sharpening the result on the derivatives of the Jacobian’s determinant.

Lemma 5.1. For the univariate derivatives of detJ(x,y) it holds under the condition of Assump-

tion 3.5.3 that
��@↵

yi
detJ

��
L1(2;L1(Dref ))

 ↵!�d

✓
2d

�

◆↵

�↵
i .

Proof. The univariate Faà di Bruno formula, cf. [10], yields

��@↵
yi
detJ

��
L1(2;L1(Dref ))

=

����
↵X

r=1

exp
�
tr log J

� X

P (↵,r)

↵!
↵Y

j=1

�
@j
yi
tr log J

�kj

kj !(j!)kj

����
L1(2;L1(Dref ))

with

P (↵, r) :=

⇢
(k1, . . . , k↵) 2 N↵

0 :
↵X

i=1

ki = r,

↵X

i=1

iki = ↵

�
.
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It holds by estimate (24) that
����

↵X

r=1

exp
�
tr log J

� X

P (↵,r)

↵!
↵Y

j=1

�
@j
yi
tr log J

�kj

kj !(j!)kj

����
L1(2;L1(Dref ))


↵X

r=1

�� exp
�
tr log J

���
L1(2;L1(Dref ))

X

P (↵,r)

↵!
↵Y

j=1

⇣
dj!
�
1
�

�j
�j
i

⌘kj

kj !(j!)kj

 �d

✓
d

�

◆↵

�↵
i

↵X

r=1

X

P (↵,r)

↵!
↵Y

j=1

1

kj !
.

Now, the assertion is easily obtained from the identity, cf. [10],

r!
X

P (↵,r)

↵Y

j=1

1

kj !
=

 
↵� 1

r � 1

!

and the estimate
↵X

r=1

↵!

r!

 
↵� 1

r � 1

!
 2↵↵!.

⇤ ⇤

The sharpened estimate for the Jacobian’s determinant yields together with Lemma 4.1 an im-

proved estimate for the univariate derivatives of the di↵usion matrix A(x,y).

Theorem 5.2. It holds for the univariate derivatives of the di↵usion matrix A(x,y) that

������@↵
yi
A
������

d⇥d
 (↵+ 1)!

�d

�2

✓
2d(1 + c�)

�2 log 2

◆↵

�↵
i .

Proof. The Leibniz rule for @↵
yi
A(x,y) yields

@↵
yi
A(x,y) =

↵X

r=0

 
↵

r

!
@r
yi

�
J(x,y)|J(x,y)

��1
@↵�r
yi

detJ(x,y).

Inserting the estimates from Lemmata 4.1 and 5.1 yields

������@↵
yi
A
������

d⇥d


↵X

r=0

 
↵

r

!
r!
�r
i

�2

✓
2(1 + c�)

�2 log 2

◆r

(↵� r)!�d

✓
2d

�

◆↵�r

�↵�r
i

 �d

�2

✓
2d(1 + c�)

�2 log 2

◆↵

�↵
i

↵X

r=0

 
↵

r

!
r!(↵� r)! = (↵+ 1)!

�d

�2

✓
2d(1 + c�)

�2 log 2

◆↵

�↵
i .

⇤ ⇤

In complete analogy to the previous theorem, we obtain a bound for the univariate derivatives of

the right hand side fref .

Theorem 5.3. It holds for the univariate derivatives of the right hand side fref(x,y) that

��@↵
yi
fref
��
L1(2;L1(Dref ))

 (↵+ 1)!cf�
d

✓
2d

�⇢ log 2

◆↵

�↵
i .

The results provided by Theorem 5.2 and Theorem 5.3 are su�cient to show that the solution û to

(9) exhibits an analytic expansion into the complex plane with respect to each particular direction

yk. For a proof of this statement, see [3, Lemma 3.2]. This shows the applicability of the stochastic

collocation method, cf. [3].
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6. Curved domains and parametric finite elements

For the analysis of the regularity in the preceding section, we have exploited that there exists a one-

to-one correspondence between the deterministic problem on the random domain and the random

problem on the reference domain. For the computations, in contrast to [7, 37], we do however not

aim at mapping the equation to the reference domain Dref but rather to solve the equation on

each particular realization D(yi) = V(Dref ,yi) for a suitable set of samples {yi}Ni=1 ⇢ 2. A first

step towards this approach is made by [28], where a random boundary variation is assumed and

a mesh on the realization D(yi) is generated via the solution of the Laplacian. Here, under the

assumption that the random domain is obtained by a su�ciently smooth mapping V(yi), we will

employ parametric finite elements to map the mesh on Dref onto a mesh on D(yi).

(0, 0) (1, 0)

(0, 1)

j

V(x,yi)

Figure 1. Construction of parametric finite elements.

We assume that the domainDref is given as a collection of simplicial smooth patches. More precisely,

let 4 denote the reference simplex in Rd. We assume that the domain Dref is partitioned into K

patches

(29) Dref =
K[

j=1

⌧0,j , ⌧0,j = j(4), j = 1, 2, . . . ,K,

where each j : 4 ! ⌧0,j defines a di↵eomorphism of 4 onto ⌧0,j . Thus, we have especially that

(30)
sup{k0

j(s)xk2 : s 2 4, kxk2 = 1}
inf{k0

j(s)xk2 : s 2 4, kxk2 = 1}  ⇢j for all j = 1, . . . ,K,

where 0
j denotes as before the Jacobian of j . Since there are only finitely many patches, we may

set ⇢ := maxKj=1 ⇢j . The intersection ⌧0,j \⌧0,j0 , j 6= j0, of any two patches ⌧0,j and ⌧0,j0 is supposed

to be either ;, or a common lower dimensional face.

A mesh on level ` on Dref is now obtained by regular subdivisions of depth ` of the reference

simplex into 2`d sub-simplices. This generates the 2`d elements {⌧`,j}j . In order to ensure that the

triangulation T` := {⌧`,j}j on the level ` forms a regular mesh on Dref , the parametrizations {j}j
are assumed to be C0 compatible in the following sense: there exists a bijective, a�ne mapping

⌅ : 4 ! 4 such that for all x = i(s) on a common interface of ⌧0,j and ⌧0,j0 it holds that

j(s) = (j0 � ⌅)(s). In other words, the di↵eomorphisms j and j0 coincide at the common

interface except for orientation. An illustration of such a triangulation is found in Figure 1. Notice

that in our construction the local element mappings 4 ! ⌧`,j satisfy the same bound (30) by

definition. Therefore, especially the uniformity condition for (iso-) parametric finite elements is

fulfilled, cf. [5, 24].
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Finally, we define the finite element ansatz functions via the parametrizations {j}j in the usual

fashion, i.e. by lifting Lagrangian finite elements from 4 to the domain Dref by using the mappings

j . To that end, we define on the `-th subdivision 4` of the reference domain the standard

Lagrangian piecewise polynomial continuous finite elements �` = {'`,i : i 2 I`}, where I` denotes
an appropriate index set. The corresponding finite element space is then given by

V4,` = span{'`,j : j 2 I`} = {u 2 C(4) : u|⌧ 2 ⇧n for all ⌧ 2 4`}

with dimV4,` h 2`d and ⇧n denoting the space of polynomials of degree at most n. Continuous

basis functions whose support overlaps with several patches are obtained by gluing across patch

boundaries, using the C0 inter-patch compatibility. This yields a (nested) sequence of finite element

spaces

Vref,` := {v 2 C(Dref) : v|j(4) = ' � �1
j ,' 2 V4,`, j = 1, . . . ,K} ⇢ H1(Dref)

with dimVref,` h 2`d. It is well known that the spaces Vref,` satisfy the following Jackson and

Bernstein type estimates for all 0  s  t < 3/2, t  q  n+ 1

(31) inf
v`2Vref,`

ku� v`kHt(Dref ) . hq�t
` kukHq(Dref ), u 2 Hq(Dref),

and

(32) kv`kHt(Dref ) . hs�t
` kv`kHs(Dref ), v` 2 Vref,`,

uniformly in `, where we set h` := 2�`. Note that, by construction, h` scales like the mesh size

maxk{diam ⌧`,k}, i.e. it holds h` h maxk{diam ⌧`,k} uniformly in ` 2 N due to (30).

We can employ the same argumentation to map the finite elements from the reference domain Dref

to the particular realization D(y) = V(Dref ,y) for y 2 2. The ellipticity condition (4) on the

Jacobian J(x,!) of the random vector field guarantees that (30) is satisfied with ⇢ = �/�. Also

the Jackson and Bernstein type estimates (31) and (32) are still valid, where the only limitation

is imposed by the smoothness of V(x,y). If for example V(x,y) is of class C2, then we have the

restriction q  2 such that

inf
v`2V`(y)

ku� v`kHt(D(y)) . hq�t
` kukHq(D(y))

for all 0  t  3/2, t  q  2 where V`(y) := {' �V(y)�1 : ' 2 Vref,`} ⇢ H1
�
D(y)

�
.

The one-to-one correspondence between the solution u`(y) 2 V`(y) to (6) and the solution û`(y) 2
Vref,` to (9) is given by the following

Theorem 6.1. Let u`(y) 2 V`(y) be the Galerkin solution to (6) and û`(y) 2 Vref,` the Galerkin

solution to (9), respectively. Then, it holds

û`(y) = u` �V(y) and u`(y) = û` �V(y)�1.

Proof. The proof is a straightforward consequence of the construction of the spaces V`(y) and the

equivalence of the problems (6) and (9), see also (10). ⇤ ⇤

Remark 6.2. The H2-regularity of the mapped problem, i.e. on D(y), follows from the H2-

regularity of the problem on the reference domain Dref if the vector field V(x,y) is at least a

C2-di↵eomorphism. Especially, if V(x,y) = x + V0(x,y) is a perturbation of the identity as

in (15) and V0(x,y) is of class C2, then V(x,y)�1 is also a C2-di↵eomorphism provided that

kV0(·,y)kC2(Dref ) < 1/2, cf. [32].
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7. Stochastic interface problems

As a special case of a di↵usion problem on a random domain, we shall focus on the stochastic

interface problem as already discussed in e.g. [15].

�(y)

D�(y)

D+(y)

Figure 2. Visualization of the domain D and the random interface �(y).

7.1. Problem formulation. Let the hold-all D ⇢ Rd, cf. (3), be a simply-connected and convex

domain with Lipschitz continuous boundary @D. Inscribed into D, we have a randomly varying

inclusion D�(y) ( D for y 2 2 with a C2-smooth boundary �(y) := @D�(y). The complement of

D�(y) will be denoted by D+(y) := D \D�(y). A visualization of this setup is found in Figure 2.

For given y 2 2, we can state the stochastic elliptic interface problem as follows:

� div
�
↵(x,y)ru(x,y)

�
= f(x) in D \ �(y),(33)

[[u(x,y)]] = 0 on �(y),(34)

↵(x,y)

@u

@n
(x,y)

��
= 0 on �(y),(35)

u(x,y) = 0 on @D.(36)

Here, n denotes the outward normal vector on �(y). Furthermore, the di↵usion coe�cient is given

by

↵(x,y) := �D+(y)(x)↵
+(x) + �D�(y)(x)↵

�(x) for x 2 D,

where �D�(y) is the characteristic function ofD�(y) and ↵+,↵� are smooth deterministic functions

with

0 < ↵  ↵�(x),↵+(x)  ↵ < 1 for almost every x 2 D.

By [[u(x,y)]] := u+(x,y) � u�(x,y), we denote the jump of the solution u across �(y), where

u�(x,y) := u|D�(y) and u+(x,y) := u|D+(y), respectively. Analogously, we define the jump of the

co-normal derivative across �(y) via

↵(x,y)

@u

@n
(x,y)

��
:= ↵+(x)

@u

@n
(x,y)� ↵�(x)

@u

@n
(x,y).

Remark 7.1. This formulation of the stochastic interface problem also covers the case of elliptic

equations on stochastic domains. For example, for ↵+(x) ⌘ 0 and ↵�(x) ⌘ 1 (perfect insulation),

we have the Poisson equation on D�(y) with homogeneous Neumann data on �(y) while, for

↵+(x) ⌘ 1 and ↵�(x) ⌘ 1 (perfect conduction), we have the Poisson equation on D�(y) with

homogeneous Dirichlet data on �(y).
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7.2. Modeling the stochastic interface. Instead of solving the stochastic interface problem by a

perturbation method by means of shape sensitivity analysis as in [15, 19], we propose here to apply

the domain mapping approach. To that end, let �ref ⇢ D denote a reference interface of class C2

and co-dimension 1 which separates the interior domainD�
ref and the outer domainD+

ref . We assume

that �(y) is prescribed by the application of a vector field V : D ⇥2 ! D, i.e. �(y) = V(�ref ,y),

which is a uniform C2-di↵eomorphism in the sense of Section 2. Furthermore, let the Jacobian of

V satisfy the ellipticity condition (4).

As an example, we can consider here an extension of the vector field in [15], which only prescribes

the perturbation at the boundary: If �ref is of class C3, then its outward normal n is of class C2.

Thus, given a stochastic field  : �ref ⇥ 2 ! R which satisfies |(x,y)|   < 1 almost surely,

we can define V(x,y) := x + (x,y)n(x) for x 2 �ref . A suitable extension of this vector field to

the whole domain D is given by V(x,y) := x + (Px,y)n(Px)B(kx � Pxk2), where Px is the

orthogonal projection of x onto �ref and B : [0,1) ! [0, 1] is a smooth blending function with

B(0) = 1 and B(t) = 0 for all t � c for some constant c 2 (0,1). Notice that, if �ref is of class C3,

the orthogonal projection P onto �ref and thus V(x,y) is at least of class C2, cf. [21].

7.3. Reformulation for the reference interface. For y 2 2, the variational formulation of the

interface problem (33)–(36) is given as follows: Find u 2 H1
0 (D) such that

Z

D�(y)[D+(y)
↵hru,rvi dx =

Z

D
fv dx for all v 2 H1

0 (D).

As in Section 2, we can reformulate this variational formulation relative to the reference interface.

As we have for the transported coe�cient

↵̂(x,y) = �
V(D+

ref ,y)

�
V(x,y)

�
↵̂+(x,y) + �

V(D�
ref ,y)

�
V(x,y)

�
↵̂�(x,y)

= �D+
ref
(x)↵̂+(x,y) + �D�

ref
(x)↵̂�(x,y),

we obtain the following variational formulation with the definition (7) of the di↵usion matrix

A(x,y): Find û(y) 2 H1
0 (D) such that

(37)

Z

D�
ref[D+

ref

↵̂(y)hA(y)rû(y),rvi dx =

Z

D
f̂(y)v detJ(y) dx

for all v 2 H1
0 (D). Since ↵̂(x,y) is a smooth function with respect to y, the regularity results from

Section 4 remain valid here.

7.4. Finite element approximation for the stochastic interface problem. The application

of parametric finite elements yields especially an interface-resolved triangulation for the discretiza-

tion of the interface stochastic problem (33)–(36). By “interface-resolved” we mean that the vertices

of elements around the interface lie exactly on the interface, cf. [8, 25]. Thus, the approximation

error for a particular realization u(yi) of the solution u(y) to the stochastic interface problem

(33)–(36) can be quantified by the following theorem adopted from [25, Theorem 4.1].

Theorem 7.2. For y 2 2, let {T`}`>0 be a family of interface resolved triangulations for V(D,y)

and {V`(y)}`>0 the associated finite element spaces. Let u`(y) be the finite element solution corre-

sponding to the realization u(y) of the solution to the elliptic problem (33)–(36). Then, for s = 0, 1,

there holds that

(38) ku(y)� u`(y)kHs(D) . h2�s
` ku(y)kH2(D�(y))[H2(D+(y)) ,
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where H2
�
D�(y)

�
[H2

�
D+(y)

�
is the broken Sobolev space equipped by the norm

k · kH2(D�(y))[H2(D+(y)) :=
q
k · k2H2(D�(y)) + k · k2H2(D+(y)).

In view of Theorem 6.1, the statement of the previous theorem is also valid for the realization of

the solution which is pulled back to the domain D relative to the reference interface �ref .

8. Numerical examples

In this section, we consider two examples for boundary value problems on random domains. On

the one hand, we consider a stochastic interface problem, and on the other hand, we consider

the Laplace equation on a random domain. In both examples, we employ the pivoted Cholesky

decomposition, cf. [16, 18], in order to approximate the Karhunen-Loève expansion of V. The

spatial discretization is performed by using piecewise linear parametric finite elements on the

mapped domain V(Dref ,yi) for each sample yi. It would of course be also possible to perform the

computations on the reference domain. In this case, the di↵usion matrix A has to be computed

from Karhunen-Loève expansion of V for each particular sample.

For the stochastic approximation, we employ a quasi-Monte Carlo quadrature based on N Halton

points {⇠i}Ni=1, i.e.

E[û](x) ⇡ (Qû)(x) :=
1

N

NX

i=1

u(x, ⇠i).

Following our results, this quadrature method converges independent of the dimension if �k .
k�4�", cf. [17, 35]. Then, for all � > 0, there exists a constant such that the quasi-Monte Carlo

quadrature based on N points for approximating the mean of the solution û to (9) satisfies

kE[û]�QûkH1(Dref ) . N ��1

with a constant only dependent on � which grows for � ! 0. Moreover, a similar result is valid for

the variance of û, cf. [17].

All computations have been carried out on a computing server consisting of four nodes4 with up

to 64 threads.

8.1. The stochastic interface problem. We consider the stochastic interface problem from [15]

where the hold-all is given as D = [�1, 1]2 and the reference interface is given as �ref = {x 2 D :

kxk2 = 0.5}. Thus, the outward normal is n(x) = [cos(✓), sin(✓)]| where x = r[cos(✓), sin(✓)]| is

the representation of x in polar coordinates. The random field under consideration reads

(✓,!) =
1

30

5X

k=0

cos(k✓)X2k(!) + sin(k✓)X2k+1(!).

Here,X1, . . . , X11 are independent, uniformly distributed random variables with variance 1, i.e. their

range is [�
p
3,
p
3]. We extend this random field onto D as described in Subsection 7.2 by using

4Each node consists of two quad-core Intel(R) Xeon(R) X5550 CPUs with a clock rate of 2.67GHz

(hyperthreading enabled) and 48GB of main memory.
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Figure 3. Mean (left) and variance (right) of the solution û to the stochastic

interface problem.

the appropriately scaled quadratic B-spline as blending function, i.e. B(x) = 4
3B2(3kx � Pxk2).

This yields the covariance

Cov[V](x,y) = B(x)B(y) Cov(✓x, ✓y)

"
cos(✓

x

) cos(✓
y

) cos(✓
x

) sin(✓
y

)

sin(✓
x

) cos(✓
y

) sin(✓
x

) sin(✓
y

)

#

with

Cov(✓x, ✓y) =
1

900

5X

k=0

cos(k✓
x

) cos(k✓
y

) + sin(k✓
x

) sin(k✓
y

).

Furthermore, we set E[V](x) := x. A visualization of the reference interface with a particular

displacement field V(x,yi)� x and the resulting perturbed interface is found in Figure 4. Finally,

the di↵usion coe�cient is chosen as ↵�(x) ⌘ 2, ↵+(x) ⌘ 1 and the right hand side is chosen as

f(x) ⌘ 1.

Figure 4. Realization of the displacement (left) and the related mapped interface (right).

A visualization of the mean and the variance computed by N = 106 quasi-Monte Carlo samples

and 1048576 finite elements (level 8) is shown in Figure 3. This approximation serves as a reference

solution in order to examine the convergence behavior of the quasi-Monte Carlo method. As a

comparison and in order to validate the reference solution, we have also computed the approximate

mean and variance on each level by the Monte Carlo method. According to [17, 35] and our

regularity results, the Quasi-Monte Carlo method with N Halton points converges with the rate

N ��1 for any � > 0. In our experiments, we thus apply N` = 2`/(1��) Halton points on the finite
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element level ` = 1, . . . , 7 for the choices � = 0.5, 0.4, 0.3, 0.2. For the Monte Carlo method, we

averaged five approximations each of which being computed with N` = 22` samples. Figure 5

depicts the error of the solution’s mean measured in the H1-norm on the right hand side and the

error of the solutions variance measured in the W 1,1-norm on the left hand side. As can be seen, the

error of the solution’s mean provides the expected linear rate of convergence for each of the choices

of �. For the solution’s variance, we observe a certain o↵set for the choices � = 0.3 and � = 0.2

until the asymptotic rate of convergence is achieved. The choices � = 0.5 and � = 0.4 as well as the

Monte Carlo approximation yield even better rates of convergence than the expected linear rate. At

least the error for the solution’s mean seems to be dominated by the finite element discretization.

Therefore, we found it instructive to present also the respective errors measured in the L2-norm.

They are plotted in Figure 6. Here, the error is dominated by the stochastic discretization and we

can observe that the rate of convergence increases as � increases even for the solution’s mean.
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Figure 5. Error in the mean measured in H1 (left) and in the variance measured

in W 1,1 (right).
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Figure 6. Error in the mean (left) and in the variance (right) measured in L2.

8.2. The Poisson equation on a random domain. For our second example, we consider an

infinite dimensional random field described by its mean E[V](x) = x and its covariance function

Cov[V](x,y) =
1

100

"
5 exp(�4kx� yk22) exp(�0.1k2x� yk22)
exp(�0.1kx� 2yk22) 5 exp(�kx� yk22)

#
.
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Figure 7. Mean (left) and variance (right) of the solution û to the Laplace equa-

tion on the randomly varying disc.

Furthermore, we consider the random variables in the Karhunen-Loève expansion to be uniformly

distributed. The unit disc Dref = {x 2 R2 : kxk2 < 1} serves as reference domain and the load is

set to f(x) ⌘ 1. Figure 8 shows the reference domain with a particular displacement field and the

resulting perturbed domain.

Figure 8. Realization of the displacement V(x,yi) � x (left) and the related

mapped domain (right).

In Figure 7, a visualization of the mean and the variance computed by N = 106 quasi-Monte Carlo

samples 1048576 finite elements (level 9) are found. Here, the Karhunen-Loève expansion has been

truncated after M = 303 terms which yields a truncation error, cf. (14), smaller than 10�6. For the

convergence study, however, we have coupled the truncation error of the Karhunen-Loève expansion

to the spatial discretization error of order 2�` on the finite element level `. It is observed that the

truncation rank M linearly grows in the level `, namely it holds M = 10, 23, 37, 49, 64, 79, 91, 108

for ` = 1, 2, 3, 4, 5, 6, 7, 8.

The number of samples of the quadrature methods under consideration has been chosen in de-

pendence on the finite element level ` as in the previous example. Figure 9 shows the error of

the solution’s mean and variance measured in the H1-norm and the W 1,1-norm, respectively. For

the mean, we observe again the expected linear rate of convergence with a slight deterioration

for � = 0.3 and � = 0.2 on level 4. For the variance, we observe linear and even better rates of

convergence except for � = 0.2. Again, we have also provided the respective errors with respect to
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the L2-norm. The related plots are found in Figure 10. Here, the error is also dominated by the

stochastic. For increasing values of �, we again observe successively better rates of convergence.
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Figure 9. Error in the mean measured in H1 (left) and in the variance measured

in W 1,1 (right).
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Figure 10. Error in the mean (left) and in the variance (right) measured in L2.

Appendix

Lemma .1. Let � = {�k}k 2 `1(N) with finite support I ⇢ N and �k � 0. Moreover, assume that

c� :=
P

k2I �k < 1. Then, it holds

X

↵

|↵|!
↵!

�↵ =
1

1� c�

and therefore there exists a constant with |↵|!/↵!�↵  c for all ↵ 2 NM
0 , where we set M := |I|

and 00 = 1.

Proof. It holds

X

↵

|↵|!
↵!

�↵ =
1X

i=0

X

|↵|=i

i!

↵!
�↵ =

1X

i=0

✓ MX

k=1

�k

◆i

=
1X

i=0

ci� =
1

1� c�

by the multinomial theorem and the limit of the geometric series. ⇤
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Lemma .2. For all ↵,�, r 2 N0 with r > 0 it holds
✓
↵+ r � 1

r � 1

◆✓
� + r � 1

r � 1

◆
 (↵+ �)!

↵!�!

✓
↵+ � + r � 1

r � 1

◆
.

Proof. It holds
✓
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r � 1

◆✓
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r � 1

◆
 (↵+ �)!

↵!�!
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↵+ � + r � 1

r � 1

◆

()
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↵+ r � 1

r � 1
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�!(r � 1)!
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(↵+ � + r � 1)!

(↵+ �)!(r � 1)!
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(� + r � 1)!  (↵+ � + r � 1)!

↵!

()
✓
↵+ r � 1

r � 1

◆


✓
↵+ � + r � 1

� + r � 1

◆
.

The last inequality is true due to the monotonically increasing diagonals in Pascal’s triangle. This

proves the assertion. ⇤

Lemma .3. It holds for ↵ 2 NM
0 and r 2 N with r  |↵| that

↵!
X
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|↵|Y
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.

Proof. From [10], we have the identity
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X
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|↵|Y

i=1

1

ki!
= |s+(↵, r)|,

where

s+(↵, r) :=
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�1, . . . ,�r

�
: |�i| 6= 0 and

rX
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�
.

To bound the cardinality of the set s+(↵, r) we use the identity for the number of weak integer

compositions, see e.g. [20]: It holds

|{(�1, . . . ,�r) : �i 2 N and �1 + . . .+ �r = ↵}| =
✓
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r � 1

◆
.

Thus, we estimate |s+(↵, r)|, by the product of the number of weak compositions in each compo-

nent. This yields
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MY

i=1

✓
↵i + r � 1

r � 1

◆
.

The proof is now by induction on M . The induction hypothesis is given by
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For M = 1, we have ✓
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which holds with equality. Let the induction hypothesis be valid for M � 1 and set ↵M�1 =

[↵1, . . . ,↵M�1]. Then, we derive with the previous lemma that
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We therefore arrive at
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Rearranging this expression yields the assertion. ⇤

Lemma .4. Let c,m 2 R with m � 2 and c � m/(m� 1). It holds for n 2 N that

c

m

cn � 1

c� 1
 cn.

Proof. It holds

c

m

cn � 1

c� 1
 cn

() cn+1 � c  m(cn+1 � cn)

() mcn  (m� 1)cn+1 + c

() m

m� 1
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1

(m� 1)cn�1

Omitting the second summand together with the condition c � m/(m�1) yields the assertion. ⇤
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