LIE SUBALGEBRAS OF VECTOR FIELDS ON AFFINE 2-SPACE
AND THE JACOBIAN CONJECTURE

ANDRIY REGETA

ABSTRACT. We study Lie subalgebras L of the vector fields Vec®(A2) of affine
2-space A2 of constant divergence, and we classify those L which are isomorphic
to the Lie algebra affy of the group Affa(K) of affine transformations of A2.
We then show that the following statements are equivalent:

(a) The Jacobian Conjecture holds in dimension 2;

(b) All Lie subalgebras L C Vec®(A?) isomorphic to aff, are conjugate under

Aut(A2);

(c) All Lie subalgebras L C Vec®(A?) isomorphic to aff, are algebraic.
Finally, we use these results to show that the automorphism groups of the Lie
algebras Vec(A2), Vec?(A?) and Vec®(A2) are all isomorphic to Aut(A?).

1. INTRODUCTION

Let K be an algebraically closed field of characteristic zero. It is a well-known
consequence of the amalgamated product structure of Aut(A?) that every reductive
subgroup G C Aut(A?) is conjugate to a subgroup of GLo(C) C Aut(A?), i.e.
there is a ¢ € Aut(A?) such that ¥Gyp~1 C GL2(C) ([Kam79], cf. [Kra96]). The
“Linearization Problem” asks whether the same holds for Aut(A"). It was shown
by Schwarz in [Sch89] that this is not the case in dimensions n > 4 (cf. [Kno91]).

In this paper we consider the analogue of the Linearization Problem for Lie
algebras. It is known that the Lie algebra Lie(Aut(A?)) of the ind-group Aut(A?)
is canonically isomorphic to the Lie algebra Vec®(A?) of vector fields of constant
divergence ([Sha66, Sha81], cf. [Kumo02]). We will see that the Lie subalgebra

L= K(20, — 22y9,) ® K (20, — y0,) ® K9, C Vec®(A?)
where 9, := a% and 0, := 6%7 is isomorphic to sly, but not conjugate to the
standard sly C Vec®(A?) under Aut(A?) (Remark 4.3). However, for some other
Lie subalgebras of Vec®(A?), the situation is different. Let Affy(K) C Aut(A?) be
the group of affine transformations and SAffs(K) C Affo(K) the subgroup of affine
transformations with determinant equal to 1, and denote by affy, respectively saff,
their Lie algebras which we consider as subalgebras of Vec®(A?). The first result

we prove is the following (see Proposition 3.9). For f € K[z,y] we set Dy :=
[20y — [0z € Vec(A?).

Theorem A. Let L C Vec®(A?) be a Lie subalgebra isomorphic to affy. Then there
is an étale map ¢: A®2 — A? such that L = ¢*(aff,). More precisely, if (D, D) is
a basis of the solvable radical of [L, L], then

L =(Dy,Dy,Dys>,Dgy2, fDgy,gDy),
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and one can take ¢ = (f,g).

The analogous statements hold for Lie subalgebras isomorphic to saff,. As a
consequence of this classification we obtain the next result (see Theorem 4.1 and
Corollary 4.4). Recall that a Lie subalgebra of Vec(A?) is algebraic if it acts locally
finitely on Vec(A?).

Theorem B. The following statements are equivalent:

(i) The Jacobian Conjecture holds in dimension 2;
(ii) All Lie subalgebras L C Vec®(A?) isomorphic to affy are conjugate under
Aut(A?);
(iii) All Lie subalgebras L C Vec®(A?) isomorphic to saffy are conjugate under
Aut(A?%);
(iv) All Lie subalgebras L C Vec®(A?) isomorphic to affy are algebraic;
(v) All Lie subalgebras L C Vec®(A?) isomorphic to saff, are algebraic.

Finally, as a consequence of the theorem above, we can determine the automor-
phism groups of the Lie algebras of vector fields (Theorem 4.5).
Theorem C. There are canonical isomorphisms
Aut(A?) =5 Autpa(Vec(A?)) =5 Autpa(Vec®(A?)) =5 Autpa(Vec’(A?)).
(Here Vec?(A2) denotes the vector fields with zero divergence, see section 2).

Acknowledgement: The author would like to thank his thesis advisor HANSPETER
KRAFT for constant support and help during writing this paper.

2. THE POISSON ALGEBRA

Definitions. Let K be an algebraically closed field of characteristic zero and let
P be the Poisson algebra, i.e., the Lie algebra with underlying vector space K|z, y]
and with Lie bracket {f,g} := fagy — fyg= for f,g € P. If Jac(f,g) denotes the
Jacobian matriz and j(f, g) the Jacobian determinant,

sacr.g) = |F I r.9) = dengects ),
9z Gy
then {f,g} = 7(f,g). Denote by Vec(A?) the polynomial vector fields on affine
2-space A% = K2, i.e. the derivations of K|x,]:
Vec(A?) := {pd, + 40y | p,q € K[z,y]} = Der(K[z,y]).
There is a canonical homomorphism of Lie algebras
p: P — Vec(A?), h— Dy, := hyOy — hyOy,

with kernel ker yp = K.

The next lemma lists some properties of the Lie algebra P. These results are

essentially known, see e.g. [NN88]. If L is any Lie algebra and X C L a subset, we
define the centralizer of X by

cent(X):={z€L|[z,2]=0forall z € X},
and we shortly write cent(L) for the center of L.

Lemma 2.1. (a) The center of P consists exactly of the constants K C P.
(b) If f,g € P are such that {f,g} =0, then f,g € K[h] for some h € K|z,y].
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(¢) If f,g € P such that {f,g} # 0, then f,g are algebraically independent in
K[z,y], and centp(f) Ncentp(g) = K.
(d) P is generated, as a Lie algebra, by {x,x3,3}.

Proof. (a) is easy and left to the reader.

(b) Consider the morphism ¢ = (f,g): A2 — A% Then C := ¢(A2) C A% is an

irreducible rational curve, and we have a factorization
@: A2 Al 1 0 cA?
where 7 is the normalization of C. It follows that f, g € K[h].

(c) It is clear that f,g are algebraically independent, i.e. tdeg; K(f,g) = 2.
Equivalently, K (z,y)/K(f,g) is a finite algebraic extension. Now assume that
{h, f} = {h,g} = 0. Then the derivation Dj, vanishes on K[f, g], hence on K|[z,y].
Thus D), =0 and so h € K.

(d) Denote by P, := KJz,y|s the homogeneous part of degree d. Let L C P be
the Lie subalgebra generated by {z, 2, y*}. We first use the equations

{z,y} =1, {z,y*} =2y, {=°,y} =327 {2*,y°} =4ay, {°,4°} =627y

to show that K ® P, @ P, C L and that 2%y € L. Now the claim follows by induction
from the relations

h

+1 s+1

{z" 2%y} = na™T' and {z"y*, 5y} = 2ra" "y

O

Divergence. The next lemma should also be known. Recall that the divergence
Div D of a vector field D = pd, + 8, € Vec(A?) is defined by Div D :=p, + ¢, €
K[z, y]. Define

Vec’(A?) := {D € Vec(A?) | Div D = 0} C Vec®(A?) := {D € Vec(A?) | DivD € K}.

The Lie algebra homomorphism u: P — Vec(A?), f Dy, has its image in
Vec”(A?), because Div Dy = 0.

Lemma 2.2. Let D be a non-trivial derivation of K|z, y].

(a) The kernel K|z, y|P is either K or K[f] for some f € K|x,y].
(b) If DivD = 0, then D = Dy, for some h € Klz,y|. In particular, pn(P) =
Vec?(A?).
Now assume that D = Dy for some non-constant f € K|z,y] and that D(g) = 1
for some g € K|x,y].
(c) Then K[z,y|P = K|[f].
(d) If D is locally nilpotent, then K|x,y] = K[f,g].

Proof. (a) See [NN88] Theorem 2.8.

(b) Let D = f0, + g0y, then DivD = f, + g, = 0 implies that there exists
h € K[z,y] such that f = h,, g = —h,.

(c) Tt is obvious that ker(D) D K[f], hence, by (a), one has ker(D) = K[h] D
K[f]. Thus f = F(h) for some F' € K[t] and then D¢(g) = Dpn)(g) = F'(h)Dn(g) =
1 which implies that F' is linear.

(d) Let G be an affine algebraic group, X an affine variety and ¢: X — G a
G-equivariant retraction. Then one has O(X) = ¢*(O(G)) ® O(X)Y. In our case
we get K[z,y] = O(A?) = O(G) ® O(A?%)Y = K[g] ® K[f]. O
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Automorphisms of the Poisson algebra. Denote by Auty4(P) the group of
Lie algebra automorphisms of P. There is a canonical homomorphism

p: Autpa(P) —» K*, ¢ o(1),

which has a section s: K* — Autp4(P) given by s(t)| gz, = t'""idk[s,y), Where
Klx,y], C K[z,y] denotes the subspace of homogeneous polynomials of degree n.
Thus Autz4(P) is a semidirect product Autya(P) = SAutp4(P) x K* where

SAutpa(P) :=kerp = {a € Autpa(P) | (1) = 1}.

Lemma 2.3. Every automorphism « € Autya(P) is determined by (1), a(x) and
a(y), and then Kz, y] = Kla(z), a(y)].

Proof. Replacing a by the composition avo s(a(1)~1) we can assume that a(1) = 1.

We will show that a(z") = a(z)™ and a(y™) = a(y)™ for all n > 0. Then the
first claim follows from Lemma 2.1(d).

By induction, we can assume that a(z?) = a(z)’ for j < n. We have {2",y} =
nz" 1 and so {a(z"),a(y)} = na(z"!) = na(z)"~!. On the other hand, we
get {a(z)", a(y)} = na(x)" " Ha(x),a(y)} = na(z)" !, hence the difference h :=
a(z™) — a(z)" belongs to the kernel of the derivation Dy : f = {f, a(y)}. Since
Dy y) is locally nilpotent, we get from Lemma 2.2(c)—(d) that ker Do) = K[a(y)]
and that K[a(x),a(y)] = K[z,y]. This already proves the second claim and shows
that h is a polynomial in a(y).

Since {a(z"), a(z)} = a({z", 2}) = 0 and {a(z)", a(z)} = na(zx)" " Ha(z), a(z)}
we get {h, a(x)} = 0 which implies that h € K.

In the same way, using {z, zy} = = and {y, 2y} = —y, we find a(zy) —a(r)a(y) €
K. Hence

na(z") = {a(z"), a(zy)} = {a(x)", a(z)aly)} = na(z)",
and so a(z™) = a(x)™. By symmetry, we also get a(y"™) = a(y)". O

Automorphisms of affine 2-space. Denote by Aut(K|z,y]) the group of K-
algebra automorphisms of K|[x,y]. We have a canonical identification Aut(AZ) =
Aut(K[z,y])°P given by ¢ — ¢*. For p € Aut(K|[z,y]) we will use the notation
p = (f,g) in case p(z) = f and p(y) = g, which implies that K[z, y] = K[f, g]. Note
that the Jacobian determinant defines a homomorphism

g Aut(Klz,y]) = K7, p = j(p) = j(p(x), p(y))
whose kernel is denoted by SAut(K[x,y]).

We can consider Aut(K |z, y]) and Autza(P) as subgroups of the K-linear auto-
morphisms GL(K [z, y]).

Lemma 2.4. As subgroups of GL(K|x,y]) we have SAutpa(P) = SAut(K|[z,y]).
Proof. (a) Let u be an endomorphism of K[z, y] and put Jac(u) := Jac(u(z), u(y)).
For any f,g € K[z,y] we have Jac(u(f), pu(g)) = p(Jac(f, g)) Jac(p), because
0 0 0 0 0
o) = S @) 5 + S ), ) 252
of \ Ou(x) of \ only)

(8x) Jr ’u(ay) ox
It follows that {u(f),n(9)} = u({f,g})j(r). This shows that SAut(K|[z,y]) C
SAutLA(P).



LIE ALGEBRAS OF VECTOR FIELDS AND THE JACOBIAN CONJECTURE 5

(b) Now let @ € SAut4(P). Then j(a(x), a(y)) = {a(z),a(y)} = a(l) =1 and,

by Lemma 2.3, K[a(z),a(y)] = K|z,y]. Hence, we can define an automorphism
p € SAut(Klz,y]) by p(x) := a(z) and p(y) := a(y). From (a) we see that p €
SAutpa(P), and from Lemma 2.3 we get o = p, hence o € SAut(K [z, y]). O

Remark 2.5. The first part of the proof above shows the following. If f,g € P are
such that {f, g} = 1, then the K-algebra homomorphism defined by z — f and
y — ¢ is an injective homomorphism of P as a Lie algebra. (Injectivity follows,
because f, g are algebraically independent.)

Lie subalgebras of P. The subspace
P =KoPoP=KoKroKyo Ko’ ® Kry® Ky* C P

is a Lie subalgebra. This can be deduced from the following Lie brackets which we
note here for later use.

(1) {2, 2y} = 202, {a®,y°} = 4wy, {v°, 2y} = —2¢%;
(2) {2%,2} =0, {zy, 2} = —=, {y?, 2} = -2y,
(3) {2%,y} =2z, {zy,y} =y, {¥*y} =0;

(4) {z.y} =1

Moreover, Py, = Kz? @ Kzy @ Ky? is a Lie subalgebra of P<y isomorphic to sls,
and P; = Kz @ Ky is the two-dimensional simple P>-module.
From Remark 2.5 we get the following lemma.

Lemma 2.6. Let f,g € K|[x,y] such that {f,g} = 1. Then (1, f, g, f%, fg,9°>) C P
is a Lie subalgebra isomorphic to P<o. An isomorphism is induced from the K-
algebra homomorphism P — P defined by x — f,y +— g.

Definition 2.7. For f,g € K|z, y] such that {f, g} € K* we put

Pf79 = <17fvg7f25f9792> -y
We have just seen that this is a Lie algebra isomorphic to P<s. Clearly, P4 = Py, 4,
if (1, f,9) = (1, f1,91). Denoting by tad L the solvable radical of the Lie algebra L
we get
tad Py gy = (1, f,g) and Py g/vad Py g~ sly.

Proposition 2.8. Let Q C P be a Lie subalgebra isomorphic to P<s. Then K C @,
and Q = Py g for every pair f,g € L such that (1,f,g9) = taDZ), In particular,
{f.g} e K.
Proof. We first show that cent(Q)) = K. In fact, @ contains elements f, g such that
{f,9} #0.If h € cent(Q), then h € centp(f) Ncentp(g) = K, by Lemma 2.1(c).
Now choose an isomorphism 6: P<y — Q. Then §(K) = K, and replacing 6 by
00 5(t) with a suitable ¢ € K* we can assume that 6(1) = 1. Setting f := 0(z), g :=
0(y) we get {f,g} = 1, and putting fo := 0(2?), f1 := 0(zy), f2 := 0(y?) we find
{f1, [} = 0{ay, 2} = 0(—x) = —f ={fg, [}

Similarly, {f1,9} = {fg, 9}, hence fg = fi + ¢ € Q, by Lemma 2.1(c). Next we
have

{fo, [} =0 and {fo,g} =0({z* y}) = 6(2x) = 2f = {f*, 9}
Hence f? = fy +d, and thus f? € Q. A similar calculation shows that ¢ € Q, so
that we finally get Q = Py 4. (Il
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Characterization of P<;. The following lemma gives a characterization of the
Lie algebras isomorphic to P<s.

Lemma 2.9. Let Q be a Lie algebra containing a subalgebra Qqy isomorphic to sls.
Assume that

(a) Q=Qo®Va® Vi as a Qo-module where the V; are simple of dimension i,
(b) Vi is the center of @, and
(c) [V2, V2] = Vi

Then Q is isomorphic to P<s.

Proof. Choosing an isomorphism of P, = (2%, xy,3?) with Qo we find a basis
(ag, a1, az) of Qo with relations
(1) [ao, a1] = 2aq, lao,az] = 4a1, [az,a1] = —2az

(see (1) above). Since V3 is a simple two-dimensional Q)o-module and Kz @& Ky a
simple two-dimensional Py-module we can find a basis (b, ¢) of V4 such that

(2) [ao,b] =0, [a1,b] = —=b, [az,b] = —2¢,

(3" [ag,c] = 2b, [a1,c] =¢, [az,c] =0

(see (2) and (3) above). Finally, the last assumption (c) implies that
(4') d = [b,c] # 0, hence V; = Kd.

Comparing the relations (1)—(4) with (1’)—(4") we see that the linear map P<o — @
given by 22 — ag, 2y — a1, y> — ag, ¢ — b, y — ¢, 1 — d is a Lie algebra
isomorphism. ([

3. VECTOR FIELDS ON AFFINE 2-SPACE

The action of Aut(A?) on vector fields. The group Aut(A?) acts on the vector
fields Vec(A?). If » € Aut(A?) and if the vector fields Vec(A?) are regarded as
sections £: A2 — TA? of the tangent bundle, then p*(€) := (dp) ! o & o . Writing
g :paa: +qay and Y= (fvg>7 we get

1
(x) (€)= ) (999" (P) = [y (@) Ou + (—ga0" (P) + fo0" () Oy) -
In particular,
. b _ nd o (0) = - (—
©*(0z) = i(9) (9y0r — 9:0,) and ©*(9,) ](90)( JyOz + f20y)
In fact, for every u = (a,b) € A% we have dp, 0¢* (§)y = Euu)- If ©*(§) = P02+ G0y,

this means that -
H [fxm) @(u)} {pw)} _ mw ,

and the claim follows.

Remark 3.1. If & € Vec(A?) is considered as a derivation D of K[z,y], and if
a = ¢* € Aut(K|z,y]), then the derivation corresponding to ¢*(§) is given by
axD=aoDoa™".
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Remark 3.2. If o: A2 — A? is étale, i.e. j(p) € K*, then the pull-back ©*(¢) is well-
defined for every vector field £: A% — TA2. Tt satisfies the equation dpop*(£) = Eop
and it is given by the formula (x). In terms of derivations, this corresponds to the
well-known fact that for an étale extension «: A — B every derivation D of A
extends uniquely to a derivation of a.(D) of B satisfying a.(D)oa = ao D.

It is not difficult to see that the map

©*: Vec(AQ) — Vec(AQ)7 & (&),

is an injective homomorphism of Lie algebras. In fact, if o = ¢* € End(K|[z,y])
and D the derivation of K|z, y] that corresponds to &, then we find
a.([D1,D3])oac = «o[Dy,Ds]=ao0DjoDy—caoDyoDy
= a.(D1)oaoDy—a,(D3)oaoD
= a.(D1)oa.(Ds)oa— ai(D2)oa,(Di)oa
= [a*(D1)7a*(D2)]oa7

hence the claim.

Recall that Vec®(A?) C Vec(A?) are the vector fields D with Div D € K. Clearly,
the divergence Div: Vec®(A?) — K is a character with kernel Vec’(A?), and we
have the decomposition

Vec®(A?) = Vec’(A?) ® KE where E := xd, +yd, is the Euler field.

Lemma 3.3. If p: A*> — A? is étale, then ¢*(Dp) = j(¢) ' Dye (). Moreover,
Div(p*(E)) = 2, and so ¢*(Vec’(A?)) C Vec®(A?) and p*(Vec®(A?)) C Vec(A2).
In particular, the homomorphism p: P — Vec(A?) is equivariant with respect to
the group SAut(K|[z,y]) = SAutpa(P).

Proof. Put a := ¢* € End(K|[xz,y]). We have a(D}y) o o« = aw 0 Dy, hence
a(Dn)(a(f)) = a(Dn(f) = a(j(h, £)) = j(a) " j(a(h), a(f)) =
= j(a) " Damy(alf)).

From formula (x) we get a(E) = ﬁ ((gyf — fy9)0z + (=gxf + f29)0y) which im-
plies that Diva(F) = 2. d

2

Remark 3.4. Let @: A2 — A2 be étale. If p*: Vec®(A?) — Vec’(A?) is an iso-
morphism, then so is ¢. In fact, ¢*(De.p) = Dg-p) for ¢ := j(¢) € K*, show-
ing that every f € Klz,y] is of the form ¢*(h) up to a constant. It follows that
©*: K|x,y] = K|z,y] is surjective, hence an isomorphism.

Remark 3.5. The lemma above implies that we have canononical homomorphisms

Aut(K[z,y]) — Autpa(Vec(A?)),
Aut(K [z, y]) — Autpa(Vect(A?)),
Aut(K [z, y]) — Autpa(Vec®(A?)).

We will see in Theorem 4.5 that these are all isomorphisms.
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Lie subalgebras of Vec(A?). Let Aff(A2) denote the group of affine transforma-
tions of A2, x — Ax +b, where A € GLy(K) and b € K2. The determinant defines
a character det: Aff(A%) — K* whose kernel will be denoted by SAff(A?). For the
corresponding Lie algebras we write saff, := Lie SAff(A?) C aff, := Lie Aff(A?).
There is a canonical embedding aff, C Vec(A?) which identifies aff, with the Lie
subalgebra

(0, 0y, 205 + YOy, 20y, — YOy, 10y, ydy) C Vect(A?),
and saff, with

M(Pr,y) - <am7 ayv xax - yaya xayv yaﬂﬂ> c VeCO(AQ)'
Note that the Euler field £ = 20, + y9, € aff, is determined by the condition that

E acts trivially on sly and that [E, D] = —D for D € vad(saff,) = K0, ® K0d,. We
also remark that the centralizer of saff, in Vec(A?) is trivial:

centVec(AZ)(sa'ﬁ%) = (0)
In fact, centyee(az)({0s,0y)} = K8, ® K0,, and (K0, ® K9,)*2 = (0).

Let ¢ = (f,g): A2 — A? be étale, and assume, for simplicity, that j(f,g) = 1.
From formula (x) we get

¢ (02) = 9yOz — 920y = =Dy,  ¢*(9y) = = fyOu + [0y = Dy,
¢ (20y) = fDf = D2, ¢ (y0z) = gDy = =3 Dy,
" (20;) = —fDg, ¢"(ydy) =gDys, ¢"(20; —y0y) = —Dy,.
This shows that for an étale map ¢ = (f, g) we obtain
¢*(affy) = (Dy, Dy, Dy2, Dg2, fDg, g Dy),
@*(saffy) = (Dy, Dg, Dy2, Dg2, Dyg) = pu(Py.g)

Proposition 3.6. Let L C Vec®(A?) be a Lie subalgebra isomorphic to saff,. Then
there is an étale map ¢ such that L = ¢*(saffy). More precisely, if (Dy, Dg) is a
basis of vad(L), then L = (Dy, Dy, D2, D2, Dyg), and one can take ¢ = (f,g).

Proof. We first remark that L C Vec’(A?), because saff, has no non-trivial charac-
ter. By Proposition 2.8 it suffices to show that Q := p~1(L) C P is isomorphic to
P<,. We fix a decomposition L = Ly & tad(L) where Ly =~ sly. It is clear that the
Lie subalgebra Q := p~!(Lg) C P contains a copy of sly, i.e. Q = Qo & K where
Qo = sly. Hence, as a Qg-module, we get Q = Q¢ @ Vo @ K where V5 is a two-
dimensional irreducible Qo-module which is isomorphically mapped onto tad(L)
under p. Since {vad(L),tad(L)} = (0) we have {V5, 2} C K. Now the claim follows
from Lemma 2.9 if we show that {V5, Vo} # (0).

Assume that {V3,V2} = (0). Choose a sly-triple (e, ho, fo) in Qo and a basis
(f,g) of V5 such that {eg, f} = ¢ and {eg,g} = 0. Since {f, g} = 0 we get from
Lemma 2.1(b) that f,¢g € K[h] for some h € K[z,y], i.e. f = p(h) and g = q(h)
for some polynomials p,q € K[t]. But then 0 = {eg, g} = {eo, q(h)} = ¢'(h){eo, h}
and so {eg, h} = 0. This implies that g = {eg, f} = {eo,p(h)} = p'(h){eo,h} =0, a
contradiction. d

Remark 3.7. The above description of the Lie subalgebras L isomorphic to saffy
also gives a Levi decomposition of L. In fact, (Ds, D) is a basis of tad(L) and
Lo := (Dy2,Dz2,Dy,) is a subalgebra isomorphic to sly. The following corollary
shows that every Levi decomposition is obtained in this way.
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Corollary 3.8. Let L C Vec®(A?) be a Lie subalgebra isomorphic to saffy, and
let L =rtad(L) ® Lo be a Levi decomposition. Then there exist f,g € Klx,y] such
that vad(L) = (Dy,Dy) and Lo = (D2, Dyg4, Dy2). Moreover, if L' C Vec®(A?) is
another Lie subalgebra isomorphic to saffy and if L' D Ly, then L' = L.

Proof. We can assume that L = saffy = (D, Dy, Dy2, D2, Dyy). Then every Lie
subalgebra Lo C L isomorphic to sly is the image of sl = (D,2, Dy2, D,,) under
conjugation with an element « of the solvable radical R of SAff5. As a subgroup of
Aut(K[x,y]) the elements of R are the translations a = (z + a,y + b), and we get
tad(L) = (Dyya, Dyyp) and a(slzy) = (D(gqa)2, Diy+1)2s D(ata)y+b) as claimed.
For the last statement, we can assume that L' = (D, Dy, Dy2, Dy, Dyg) such
that (D2, Dg2, Dyg) = slp. This implies that (f2,¢%, fg,1) = (22,y* zy,1), and
the claim follows. O

Proposition 3.9. Let M C Vec®(A?) be a Lie subalgebra isomorphic to affy. Then
there is an étale map ¢ such that M = *(affy). More precisely, if (Ds, Dg) is a
basts of vad([M,M]), then M = (D¢, Dy, fDs,9Dgy,9Dy¢, fDg), and one can take

¢ =(f9)

Proof. The subalgebra M’ := [M, M] is isomorphic to saff, hence, by Proposi-
tion 3.6, M’ = ¢*(saff,) for an étale map ¢ = (f,g) where we can assume that
jla) = 1. We want to show that ¢*(affy) = M. Consider the decomposition
M = J& My ® KD where J = tad(M’), My is isomorphic to slp, and D is the
Euler-element acting trivially on My. We have ¢*(affy) = M’ @ KE where E is
the image of the Euler element of aff,. Since Vec®(A?) = Vec’(A?) @ KD’ for any
D' € Vec®(A?) with Div D’ # 0 we can write D = aE + F with some a € K and
F € Vec’(A?), i.e. F = Dy, for some h € K|z,

By construction, F' = D — aE commutes with My. Since My = (D2, Dg2, Dyg)
we get {h, f?} = ¢ where ¢ € K. Thus ¢ = {h, f2} = 2f{h, f} which implies that
{h, f} = 0. Similarly, we find {h,g} = 0, hence h is in the center of u=(M’) =
P4 C P. Thus, by Lemma 2.1(c), h € K and so Dj, = 0 which implies D = ¢F. O

4. VECTOR FIELDS AND THE JACOBIAN CONJECTURE

The Jacobian Conjecture. Recall that the Jacobian Conjecture in dimension n
says that an étale morphism p: A™ — A” is an isomorphism.

Theorem 4.1. The following statements are equivalent.

(i) The Jacobian Conjecture holds in dimension 2.
(ii) All Lie subalgebras of P isomorphic to P<o are equivalent under Autp(P).
(iii) All Lie subalgebras of Vec®(A?) isomorphic to saff, are conjugate under
Aut(A?).
(iv) All Lie subalgebras of Vec®(A?%) isomorphic to affy are conjugate under
Aut(A?).

For the proof we need to compare the automorphisms of P with those of the
image u(P) = Vec’(A?) ~ P/K. Since K is the center P, we have a canonical
homomorphism F': Autpa(P) = Autpa(P/K), ¢ — @.

Lemma 4.2. The map F: Autpo(P) = Autpa(P/K) is an isomorphism.
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Proof. If ¢ € ker F, then p(z) = x+a, p(y) = y+b where a,b € K. By Lemma 2.4,
the K-algebra automorphism « of K[z,y| defined by x — z+a, y — y+bis a Lie
algebra automorphism of P, and ¢ = a by Lemma 2.3. But then p(2?) = (z+a)? =
22 4 2az + a?, and so @(22) = 22 + 2aF. Therefore, a = 0, and similarly we get
b =0, hence ¢ = idp.

Put P := P/K and let p: P = P be a Lie algebra automorphism. Then L :=
p(P<3) C P is a Lie subalgebra isomorphic to saff, and thus L := p~1(L) is
a Lie subalgebra of P isomorphic to P<g, by Proposition 2.8. Choose f,g € L
such that f = p(z) and § = p(y). Then (1, f,g) = vad(L), and so L = Py, by
Proposition 2.8. It follows that the map pu: P — P defined by z — f,y — ¢
is an injective endomorphism of P (Remark 2.5), and that & = p. Since p is an
isomorphism the same holds for pu. [

Proof of Theorem 4.1. (i)=-(ii): If L C P is isomorphic to P<g, then L = Pj 4 for
some f,g € K[z,y] such that {f,g} = 1 (Proposition 2.8). By (i) we get K[z,y] =
K|[f,g], and so the endomorphism z +— f,y +— g of K[z,y| is an isomorphism of P,
mapping P<s to L.

(ii)=(iii): If L C Vec®(A?) is a Lie subalgebra isomorphic to saff,, then L =
w(Py,q) for some f,g € Klx,y|, by Proposition 3.6. By (ii), Py, = a.(P<2) for
some a € SAutpa(P) = SAut(K[z,y]). Hence L = u(a.(P<2)) = a(saff,), by
Lemma 3.3.

(iii)=(iv): Let M C Vec®(A?) be a Lie subalgebra isomorphic to aff,, and set
M’ := [M, M] =~ saff,. By (iii) there is an automorphism ¢ € Aut(A?) such that
M’ = p*(saff,). It follows that ¢*(aff,) = M since M is determined by vad(M’) as
a Lie subalgebra, by Proposition 3.9.

(iv)=(i): Let ¢ := (f, g): A2 — A? be an étale morphism. Then M := ¢*(aff,) C
Vec®(A?) is a Lie subalgebra isomorphic to aff, (see Lemma 3.3). By assumption
(iv), there is an automorphism ¢ € Aut(A?) such that ¥*(affy) = M. It follows
that 9 =1 o ¢ is an étale morphism which induces an automorphism of aff,, hence
of saff,, and thus of vad(saff,) = K9, ® K0,. This implies that 1)~ o ¢ is an
automorphism, and the claim follows. O

Remark 4.3. Tt is not true that the Lie subalgebras of P or of Vec®(A?) isomorphic
to sly are equivalent, respectively conjugate. This can be seen from the example
S = Kz?y ® Kzy @ Ky C P which is isomorphic to sly, but not equivalent to
Kz? @ Koy @ Ky? under Autz(P). In fact, the element 2%y does not act locally
finitely on P.

Algebraic Lie algebras. If an algebraic group G acts on an affine variety X we
get a canonical anti-homomorphism of Lie algebras ®: Lie G — Vec(X) defined in
the usual way:

LieG 3 A &4 with (£4), := dps(A) for x € X,

where ¢, : G — X is the orbit map g — gz. A Lie algebra L C Vec(X) is called
algebraic if L is contained in ®(Lie G) for some action of an algebraic group G on
X. It is shown in [CDO03] that L is algebraic if and only if L acts locally finitely on
Vec(X). With this result we get the following consequence of our Theorem 1.

Corollary 4.4. The following statements are equivalent.

(i) The Jacobian Conjecture holds in dimension 2.
(ii) All Lie subalgebras of Vec®(A?) isomorphic to saff, are algebraic.
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(iii) All Lie subalgebras of Vec®(A?) isomorphic to affy are algebraic.

Proof. Tt is clear that the equivalent statements (i), (ii) or (iii) of Theorem 1 imply
(ii) and (iii) from the corollary. It follows from the Propositions 3.6 and 3.9 that
every Lie subalgebra L isomorphic to saff, is contained in a Lie subalgebra @
isomorphic to aff,, hence (iii) implies (ii). It remains to prove that (ii) implies (i).

We will show that (ii) implies that L is equivalent to saff,. Then the claim follows
from Theorem 1. By (ii), there is a connected algebraic group G acting faithfully
on A? such that ®(LieG) contains L. Therefore, Lie G contains a subalgebra s
isomorphic to sls, and so G contains a closed subgroup S such that Lie S = s. Since
every action of SLy on A? is linearizable (see [KP85]), there is an automorphism ¢
such that ¢*(s) = sly = (20, yd,, xd; — yIy). But this implies, by Corollary 3.8,
that p*(L) = saff,. O

Automorphisms of vector fields. We have seen in Lemma 2.4 that SAut 4 (P) =
SAut(K[x,y]). In this last section we describe the automorphism groups of the Lie
algebras Vec(A?), Vec®(A2) and Vec”(A?).

Theorem 4.5. There are canonical isomorphisms
Aut(AQ) = Autra (Vec(AQ)) = Autra (VGCC (A2)) = Autra (VeCO (A2))

For the proof we need the following two results. The first one is certainly well-
known. Recall that saffy = [affy, affy] C affy is invariant under all automorphisms
of the Lie algebra affs.

Lemma 4.6. The canonical homomorphisms
Ad res
Affy — Autya(affy) — Auty 4 (saffs)

are isomorphisms.

Proof. We write the elements of Affy in the form (v,g) with v € T = (K*)? and
g € GLy where (v, g)x = gz+v for z € A2 Tt follows that (v, g)(w, h) = (v+gw, gh).
Similarly, (a, A) € aff, means that a € t = (K)? and A € gly, and (a, A)z = Az +a.
For the adjoint representation of g € GLy and of v € T on aff, we get

Ad(g)(a, A) = (ga,9Ag™") and Ad(v)(a, 4) = (a — Av, A),
and thus, for (b, B) € aff,,
(%) ad(B)(a,A) = (Ba,[B, A]) and ad(b)(a, A) = (a — Ab, A).

Now let 6 be an automorphism of the Lie algebra saff,. Then 6(t) = t, because t is
the solvable radical of saff,. Since g := 0|y € GLg, composing 6 with Ad(g~1), we

can assume that ¢ is the identity on t. This implies that 6(a, A) = (a +£(A),0(A))
where ¢: sl — t is a linear map and 0: sl — sl is a Lie algebra automorphism.
From (xx) we get ad(b, B)(a,0) = ad(B)(a,0) = (Ba,0) for all a € t, hence

(Ba,0) = 0(Ba,0) = 6(ad(B)(a,0)) =
= ad(0(B))(a,0) = ad(8(B))(a,0) = (6(B)a,0).
Thus §(B) = B, i.e. 0(a, A) = (a + £(A), A). For ¢ := {(E) we obtain
0(a, \E) = (a + Ac, \E) = Ad(—c)(a, \E).
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Thus we can assume that 6 is the identity on KE C aff,. Since M,, is the cen-
tralizer of K'E in aff, this implies that 6(M,,) = M,,, hence (0, A) = (0,0(A)) =
(0,6(A)) = (0, A). As a consequence, § = id, and the claim follows. O

Lemma 4.7. If 0 is an endomorphism of the Lie algebra VeCO(AQ) which is the
identity on saffy, then 0 is the identity.

Proof. Tt follows from Lemma 2.1(d) and Lemma 2.2(b) that Vec’(A?) is generated
by the vector fields d,, z29,, and yd,. So it suffices to show that §(zdy) = z2dy.
Put D := 0(zdy). Since [0y, D] = 0([0,,2?0,]) = 0 we see that D = h(z)d, +
f(2)0y. But 0 = DivD = h,, and so D = a0, + f(x)0y.
Now [0y, D] = 0([0y,ad, + x20,]) = 0(220,) = 220, = [0y, 2°9,]. Hence D =

ady + 120, + b0y. Finally, [20,, D] = —ad, = 0([zd,,2?9,]) = 0, hence a = 0,
and similarly, [yd,, D] = 220, — b0, = 0([yd,z%9,]) = 0(220,) = 2x0,, hence
b=0. (]

Proof of Theorem 4.5. (a) The fact that Aut(A?) — Autya(Vec(A?)) is an isomor-
phism goes back to KULIKOV (see proof of theorem 4, [Kul92]). For another proof
see [Bavl13].

(b) It follows from (a) that we have a canonical homomorphism, by restriction,
Autp4(Vec(A?)) — Autya(Vec®(A?)),

and since Vec?(A?) C Vec®(A?) is an ideal of finite codimension and is simple as a
Lie algebra we also get a homomorphism

Autp s (Vect(A?)) — Autpa (VGCO(AQ))

which is easily seen to be injective. Thus it remains to show that the canonical
homomorphism w: Aut(A?) — Autz(Vec’(A?)) is an isomorphism.

(¢) Tt is clear that w is injective. Let @ be an automorphism of Vec’(A?). Tt
follows from Proposition 3.6 that there is an étale map ¢ such that ¢*(saff,) =
(saff,). Hence the homomorphism 01 o ¢* maps saff, isomorphically onto itself.
This implies, by Lemma 4.6, that (67! o ¢©*)|sas5, = Ad(¢)) that for a suitable
¢ € Aff,. By definition, ¢*[sa;, = Ad(¥)) !, and so the composition 671 o ¢* o *
is the identity on saffs, hence the identity on Vec’(A?), by Lemma 4.7. Therefore,
by Remark 3.4, ¢ is an isomorphism, and so § = ¢* o ¢* belongs to the image of
w: Aut(A?) — Autpa(Vec”(A?)). O

Remark 4.8. In [KRegl4] our Theorem 4.5 is generalized to any dimension, using
a completely different approach.
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