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On the conver gence of the combination
technique

Michael Griebel and Helmut Harbrecht

Abstract Sparse tensor product spaces provide an efficient tool ¢oadize higher
dimensional operator equations. The direct Galerkin netthaguch ansatz spaces
may employ hierarchical bases, interpolets, wavelets diileuel frames. Besides,
an alternative approach is provided by the so-called coatioin technique. It prop-
erly combines the Galerkin solutions of the underlying peabon certain full (but
small) tensor product spaces. So far, however, the combmggchnique has been
analyzed only for special model problems. In the presenépayge provide now the
analysis of the combination technique for quite generataipe equations in sparse
tensor product spaces. We prove that the combination tgalamroduces the same
order of convergence as the Galerkin approximation witheesto the sparse ten-
sor product space. Furthermore, the order of the cost catityle the same as for
the Galerkin approach in the sparse tensor product spaceh@aretical findings
are validated by numerical experiments.

1 Introduction

The discretization in sparse tensor product spaces yi#fldeat numerical methods
to solve higher dimensional operator equations. Neverfiseh Galerkin discretiza-
tion in these sparse tensor product spaces requires Hiaarbases, interpolets,
wavelets, multilevel frames, or other types of multilewstems [9, 12, 18] which

make a direct Galerkin discretization in sparse tensoryrbspaces quite involved
and cumbersome in practical applications. To avoid theseeisof the Galerkin dis-
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cretization, thecombination techniquias been introduced in [14]. There, only the
Galerkin discretizations and solutions in appropriatélgsen, full, but small, tensor
product spaces need to be computed and combined.

In [16], it has been shown that, in the special case of opeeafoations which
involve a tensor product operator, the approximation pcedwby the combination
technique indeed coincides exactly with the Galerkin sofuin the sparse tensor
product space. However, for non-tensor product operatasss no longer the case.
Nevertheless, it is observed in practice that still the sander of approximation
error is achieved. But theoretical convergence resulterlyeavailable for specific
applications, see for example [3, 14, 20, 21, 22, 24]. Moeeca general proof of
convergence is so far still missing for the combination teghe.

In the present paper, we prove optimal convergence rateleo€@ambination
technique for arbitrary elliptic operators. To keep theation and the proofs simple,
we restrict ourselves to the case of operator equationshvarie defined on a two-
fold product domaim2; x Q5. We allow the domain®; c R™ andQ, c R™ to be
of different spatial dimensions and will therefore consithe so-calledjeneralized
sparse tensor product spacesich have been introduced in [10]. Nevertheless,
our proofs can be generalized without further difficultiesitbitraryL-fold product
domainsQ; x Q, x --- x QL by employing the techniques from [11] and [24].

The remainder of this paper is organized as follows. We fiestgnt the operator
equations under consideration in Section 2. Then, in Se&jave specify the re-
guirements of the multiscale hierarchies on each indivisuladomain. In Section 4,
we define the generalized sparse tensor product spacesaaiidineir basic prop-
erties. The combination technique is introduced in Secii@and its convergence
is proven in Section 6. Section 7 is dedicated to numericaégrents. They are
in good agreement with the presented theory. Finally, irnti&ed, we give some
concluding remarks.

Throughout this paper, the notion “essential” in the cont#xcomplexity es-
timates means “up to logarithmic terms”. Moreover, to avihid repeated use of
generic but unspecified constants, we signifythy, D thatC is bounded by a mul-
tiple of D independently of parameters whi€handD may depend on. Obviously,
C 2 Dis defined a® < C, andC ~ D asC <D andC = D.

2 Operator equations

We consider two sufficiently smooth, bounded domaihse R™ and Q, € R"2,
whereng, n, € N. Moreover, on the product domai®y x Q,, let the Hilbert space
¢ be given such that

HCL2(Qyx Q) A

forms a Gelfand triple. Now, lef : 2# — 27’ denote a differential or pseudo-
differential operator. It is assumed that it maps the Hillspaces# continuously
and bijectively onto its dua¥?”, i.e.,
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[|AU[| 5 ~ |Jul| s~ for allu e 2.

The Hilbert space# is thus theenergy spacef the operator under consideration.
For the sake of simplicity, we further assume tAas 7 -elliptic. Consequently,
the resulting bilinear form

a(u,v) == (AUV) 2.0, 0, H X H — R
is continuous
a(u,v) < |lullz||v]] s forall u,v e 22

and elliptic
a(u,u) > ||u||%, foralluec 7.

In the following, for givenf € 7, we want to efficiently solve the operator
equationAu= f or, equivalently, the variational formulation:
findu € 72 such thag(u,v) = (f,V) 2, « o, forallve 7. (1)

Of course, since we like to focus on conformal Galerkin diizations, we should

tacitly assume that, for alj;, j» > 0, the tensor produc\lj(ll) V2 of the ansatz

spaceS/-(l) andv? is contained in the energy spag&. Moreover, for the solution

u e s of (1), we will need a stronger regularity to hold for obtaigidecent con-
vergence rates. Therefore, &rs, > 0, we introduce the following Sobolev spaces
of dominant mixed derivatives with respect to the undedyspace#”

aa+ﬁ

|lagap

We shall illustrate our setting by the following specific exales.

H < oo forall |a| < s, and|B| gsg}.

Example 1A first simple example is the operatar. L?(Q; x Q) — L?(Q1 x Q3)
which underlies the bilinear form

auv) = [ [ atxypuixyvicy) ey,
2 JQ;
where the coefficient functioa satisfies

O<a<a(xy)<aforall (x,y) € Q1 x Q. 2

Here, it holds#” = L?(Q; x Q,). Moreover, our space,%”n‘:‘}xSz coincide with the

standard Sobolev spaces of dominant mixed derivatives, i.e
HEZ = HAZ (Q1 x Qo) 1= H(Qq) @ H2(Qy).

Example 2A second order diffusion equation on the product dom@inx Q,
yields the bilinear form
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a(u,v) = /Q /Q a (X, y){Oxu(x,y) Oxv(x,y) + Oyu(x,y) Oyv(X,y) } dxdy.
1322

If the coefficienta satisfies (2), then the associated operater known to be con-
tinuous and elliptic with respect to the spagé = H3(Q; x Q). Moreover, our

space 3% now coincides with72L% — H(Q; x Q) NHL2(Q) x Qy) N

HE2 Q1 x Qp).

Example 3Another example appears in two-scale homogenization. Idimig ([4])
gives raise to the product of the macroscopic physical dofaiand the periodic
microscopic domairf2, of the cell problem, see [19]. Then, for the first order cor-
rector, one arrives at the bilinear form

a(u,v) = /521 '/;22a(x,y)Dyu(x,y)Dyv(x,y) dxdy.

The underlying operatok is continuous and elliptic as a operator in the related en-
ergy space?’ = L2(Q;) @ H}(Q,) provided that the coefficient satisfies again (2).
Furthermore, our spac#’> e now coincides with/Z 5% = (L%(Q1) @ H3(Q22)) N

1 mix mix
Sl S+
m|x (Ql X QZ)

3 Approximation on the individual subdomains

On each domai®;, we consider a nested sequence

Véi) CVl(i) c... CVj(i) C--C L) 3)

of finite dimensional spaces
(i) (). (i)
Vi =sparf¢;, ke A}

(the setA denotes a suitable index set) of piecewise polynomial arfgattions,
such thatdlmlj ~ 21" and

2(Q)) = U ij.
jeNg

We will use the space\%j(i> for the approximation of functions. To this end, we
assume that the approximation property

inf ||U VJHHq (Q)) h$7q|‘u|‘HS(Qi)7 uc HS(Qi)v (4)
vJeV<>
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holds forg < y, g < s<rj uniformly in j. Here we seh; := 271, i.e.,h; corresponds
to the width of the mesh associated with the subspé@eon Q;. The parameter

v > 0 refers to theegularity of the functions which are contained\'ﬂﬁi), ie.,

yi :=sup{se R:ij C H3(Qi)}.

The integer; > O refers to thepolynomial exactnesshat is the maximal order of
polynomials which are locally contained in the sp&(#'é.

Now, let Q" : L2(@)) — V.V denote the.2(Qi)-orthogonal projection onto the
i i

finite element spacvj“). By settingQ@1 := 0, we can define for all > 0 the com-
plementary spaces

W= Q" - Q" L2y c v,
They satisfy

Vil =vilew, vl nw = {0},

which recursively yields
. J .
vy’ = pw?. (5)
j=0

A given functionf € H9(€;), where|q| < y, admits the unique multiscale de-
composition

f= Z)fj with f;:= (Q\ — Q" ) f e w/).
j=
Especially, it holds the well-known norm equivalence
[laia) ~ 3 2@ - Q) oy lal<
HA(Q) 20 j i-1) Mz a <,
J:

see [5]. Finally, for anyf € HS(Q;) and|q| < ¥, the approximation property (4)
induces the estimate

1@ = Q) Flaoy S 279 fllusay. a<s<r.

4 Generalized sparse tensor product spaces

The canonical approximation method in the Hilbert spac€es the approximation
in full tensor product spacés

1 Here and in the following, the summation limits are in gehaemnatural numbers and must of
course be rounded properly. We leave this to the reader id aumbersome floor/ceil-notations.
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V.]/o ®VJ0 @

j10<d
j2/0<d

Here,o > 0is a given parameter which can be tuned to optimize the cosptexity.
There are 31/9 . 2I%0 degrees of freedom in the spa\l#(), ®VJ(2). Moreover, for

g
f e A0 (Q1 % Qo) N AN (Qu % Q2) andfy = (QF), @ Q) f V7 @ViZ), an

mix
error estimate of the type

I — fallp S 27IMMs/ @20 £ A0 0% (6)

mix

holds for all 0< s; < p; and 0< s, < p,. Note that the upper boungs andp, are
the largest values such th#?L% © H/1'2(Q; x Q,) and.#5 € HIL2(Qy x Q,),
respectively.

Alternatively, based on the multiscale decomposition®(B@ach individual sub-
domain, one can define the so-callgeheralized sparse tensor product spasee
[1] and [10],

97 1 2 1 2
We @ wiewPo s vPev® @
j10+]j2/0< j10+]2/0=J

Thus, a functionf € 27 is represented by the Boolean sum

fy:= S AR feVf (8)

j10+]2/0<

where, for allj1, j» > 0, the detail projectionAj?’j2 are given by
) 1 1 2 2
a3 1= Q) - Qo @F - Q). ©)

Here, we use the conventi@ﬁ =0 andQ(ﬂ := 0. For further detail on sparse
grids we refer the reader to the survey [1] and the referethezsin.

The dimension of the generalized sparse tensor producesA/gfats essentially
equal to the dimension of the finest univariate finite elerspates which enter its
construction, i.e., it is essentially equal to the value aﬁx@dlmv/ ,dimv21.
Nevertheless, by considering smoothness in terms of mipdoI8v spaces, its ap-
proximation power is essentially the same as in the fulldepsoduct space. To be
precise, we have

Theorem 1 ([10]). The generalized sparse tensor product spﬁﬁepossesses

dim\70 2Jmax{n1/or,n20}7 if nl/a +£ny0,
J ZJHZUJ, if I"Il/G = N0,
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degrees of freedom. Moreover, for a given functien. -5 and its >-orthonormal
projection fye \7f, defined by(8), where0 < ; < p; and0 < s, < pg, there holds

the error estimate

N 2-Imin{s1/0.90} 1 f|| s, ifs1/0+# S0,
N Vs TEVAT R TS ifs1/0 = 0.

The optimal choice of the parameterhas been discussed in [10]. It turns out
that the best cost complexity rate among all possible vatfies, s, is obtained
for the choiceo = /n1/ny. This choice induces an equilibration of the degrees of

freedom in the extremal spacfﬁ?!gc)r andvfcz,).

We shall consider the Galerkin discretization of (1) in treneralized sparse
tensor product spadé’, that is we want to

finduy € \7J" such thag(uy,v;) = (f,vJ)Lz(QIXQZ) forallv; \73". (10)

In view of Theorem 1, we arrive at the following error estimdtie to Céa’s lemma.

Corollary 1. The Galerkin solutiorf10) satisfies the error estimate

2 I /020 |ul| s, if $1/0 # %0,

U—Uullor Sllu—Uslle S
o=l 5 J"f~{zdsl/vﬁ||u||ﬁm, 51/0 = %0,
““mix

forall 0 < s; < p; and0 < s, < p; provided that us 72:5%(Q; x Qo).

mix

Nevertheless, for the discretization of (10), hierarcHieaes, interpolets, wavelets,
multilevel frames, or other types of multilevel systemsq;112, 13, 17, 18, 23, 25]
are required which make a direct Galerkin discretizatiosparse tensor product
spaces quite involved and cumbersome in practical apjitsat

5 Combination technique

The combination technique is a different approach for ttserétization in sparse
tensor product spaces. It avoids the explicit need of hibieal bases, interpolets,
wavelets or frames for the discretization of (10). In facte@nly has to compute

the Galerkin solutions with respect to certain full tensaduct space\saij(l1 ) ®Vj(22)
and to appropriately combine them afterwords. The relataldi®in solutions;j, j,
are given by

D

1

)

2

finduj, j, €V}, ®@V;;” such that
1 2
a(Ujy,jo5Visjz) = (F,Vjs,in)2(0, <0y fOrallvj, j, € Vj(1> ®Vj( )

P

This introduces the Galerkin projection
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Pisjo - —>VJ-(1) ®V-(2)

1 jo Pi1.iU = Ujy,j,

which especially satisfies the Galerkin orthogonality

1 2
a(u—Pj,j,u,vj,.j,) =0forallvj, j, € Vj(l ) ®Vj(2).
The Galerkin projectio®;, j, is well defined for allj, j» > 0 due to the elliptic-

ity of the bilinear forma(-,-). Moreover, as in (6), we conclude the error estimate

1 2 —min{j151,]
lu=Pijpulle S llu— Q) @ Q)ull s < 27 mMistizdju| s 0

0.8y
mix mjfmix

forall0 < s < p; and 0< s, < p provided thau € jfrﬁiﬁ(’o ﬂ%nﬂf. In particular,
for fixed j; > 0 andj, — o, we obtain the Galerkin projectid?), . onto the space
Vi i= (Q%? ®1)s C 7. It satisfies the error estimate

. B
lu—Pyetlle < Ju— QY @ Ul <271 ul| g0 (12)
1 jfmlx

for all 0 < 51 < pz. Likewise, for fixedj, > 0 andj; — o, we obtain the Galerkin
projectionP,, j, onto the spac¥s j, := (I ®Q§§>)jf C . Analogously to (11),
we find

Ju=Po pullr < flu— (@ QN )ullr £ 2722 ull 00, (12)

forall0< s, < po.
With the help of the Galerkin projections, we can define

P -
Aj jpui= (P2 = Pii-1j = Pip.jp-1+ Pjy-1,j,-1)u (13)
where we especially s&, _1:=0,P_1j, := 0, andP_; 1 := 0. Then, the combi-
nation technique is expressed as the Boolean sum (cf. [§) 7, 8
b=y AP u=u-— > AP u. (14)

. j1.j2 . j1.j2
j10+]2/0<3 j10+]j2/0>J

Straightforward calculation shows

el
U= z (PJ'MJU*J&UZW o PJ'rHJU*hUZ])u (19)
j1=0
if j1 < j20% and
[Jo]
W= 3 (Pujo-ip/o2)i» = Plajo-is/02),i-1)U (16)

Jo=!

if j1 > j202. A visualization of the formula (16) is found in Fig. 1.



A note on the combination technique 9

L

Ja'\

OS5
/
OIS
/
0/E
/

D
ON

D
oD |
@\\@ Ja

J/o

Fig. 1 The combination technique W’ combines all the indicated solutioRg j,u with positive
sign (“@”) and negative sign (5").

>
o=

Our goal is now to show that the erriou — U;|| ,» converges as good as the error
of the true sparse tensor product Galerkin solution giveddrollary (1).

6 Proof of Convergence

To prove the desired error estimate for the combinationrtiegle (15) and (16),
respectively, we shall prove first the following two helpleinmata.

Lemmal. Forall 0< s < p;and0< s < py, it holds
1(Piy.j = Pi-1ip)uller S 271 U0,
) mix
1(Pis.j2 = Pivio-1)Ullr S 2722 |Ull 00,
provided that u is sufficiently smooth and provided that
00 Py U= Py ,07U, AP P}, wU =P}, w0 u 17)
hold for all |a| < s; and|B]| < s,.

Proof. We shall prove only the first estimate, the second one follomsmplete
analogy. To this end, we split

[(Pijo = Pir—1,)Ullor < [[(Piy,jp — Poo,jp)Ullz + [ (Peo,j, — Piy—1, i) Ul oz
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Due toVj, 1 ,,Vj;,i, C Vew,j,, the associated Galerkin projections satisfy the identi-
tiesPj, j, = Pj;,j,Px,j, andPj, 1 j, = Pj; 1 j,Pw,j,- Hence, we obtain

[ (Pis.iz = Pis—1.j)Ulloe < 1 (Pig,jp — 1) Pes joull e =+ [ (1 = Pjy—1,j,) Peo, Ul [ -

By employing now the fact that the Galerkin projectid?s_, j,u andPj, j,u are
. . . 1 2 . .
quasi-optimal, |..e.,|\(l — Piy iUl S0 — le) ®Q§2))u||jf and likewise for

Pj,—1,j,U, we arrive at
1(Piz.iz = Pia—vjp)ull~

1 2 1 2
<SR @ QP —1)Pujyulle + 11— QY @ Q)P j,u e

The combination OQE? ®Q§§> = (Qﬁ) @)l ®Q§§>) and(l ®Q§§>)Pm7,-2 =P j,
yields the operator identity
(Qﬁ) ® Qg))Pm,iz = (Qﬁ) ® l)P°°~,12’
and likewise
(Qﬁ)fl ® QE?)P‘”,J’z = (Qﬁll & |)Pm)j2.
Hence, we conclude

[ (Piz.j> = Pja—1,j,)ull 2
(1) _ (1) ‘
S 27”51||P°°,J'zu||jfnslilxvo-
The condition (17) implies the stability estimate

, <

which finally yields the desired estimate. |

Remark 1Condition (17) holds ifA : 5# — 2#” is also continuous and bijective
as a mapping\ : %rﬁilx’o — (%’)Smii’f for all 0 < 51 < p; and also as as a mapping
A 22 5 (#7)22 for all 0 < s, < py, respectively. Then, the Galerkin projec-
tioNS P j, : 2 = Voo j, C AL and Py oo : At — Vi C Ak are both
continuous, which, due to the linearity of the Galerkin prtjon, indeed implies
condition (17).

Lemma 2. If u € 4%, then it holds

P Q —j1S51— 2%
H(AJ'LJ'z_AJ'LJz)uH%”SZ el Hqufni.lxsz

foral0<s < prand0< s < p2 whereAj?‘j2 is given by(9) andAJ-PLj2 is given
by (13), respectively. ' '
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Proof. Due tonl,jz(QE? ®Q§§)) = QE? ®Q§§) forall j1,j2 > 0, we obtain

1 2
A=Ak = Ptz — Q) © Q) P11 - Q) 0 Q) (18)
—mﬁﬂa—@?®qﬁg+aﬁkm—qg4®q29

We shall now make use of the identity
- 9Qf =181-Q) 9 Q]
=le(-Q)+1-Q)el- (- el -qp).

Inserting this identity into (18) and reordering the ternelds

2
AE 2™ 11 i2 = (Pjpjz — PJ'rLiz)(I ® (- Q( >))
= (Pipjp-1— Pjrl,iz*l)(l (1 _ng) 1))
1
+ (Piyj> — le,jzfl) ((I - le)) ® l)
_(Pjrljz_Pil 1j2— 1)((' Qll 1) )
(2)
PJlJZ(( ) (I Qz))
+PJ'1*112(( ]1 1) (l—Q ))
1
+le)j271(( - ( ) I sz l))
2)
~Pi 1,1 ((1-Q D@ (1-Q ).
The combination of the error estimates
1(Pia.io = Pru-vi)ull e S 271 ] z0,
||(PJ'1,J'2 - Pil,jzfl)u”if S 27]232”””%&:27
cf. Lemma 1, and
10© @ =Q)ull 50 S 2722l 4.
(0 =@y @ 1)u] o0 S27 5% Jul 210
leads to
1(Praie = Pi-22) (12 (1 = QD) S 27197122l syca,

H(leij - Pilyizfl)((l _le)) )uHJzﬂ S 2 e JZSQHUH S

Similarly, from the continuity
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[Pz j2ullz < llulle

and

1(0-QPy® (- Q) S 2 3tz u)| s,

we deduce
1 2 -
P (1 - Q)@ (1 = Q] S 271522 ase.  (20)

With (19) and (20) at hand, we can estimate each of the eifflerelnt terms which
yields the desired error estimate

P _AQ —i1s1-J2%
(A5, = Al S 270702 Ul 2
Now, we arrive at our main result which proves optimal cogeeice rates.

Theorem 2. The solution(15) and (16), respectively, of the combination technique
satisfies the error estimate

27IMIN(S/ 080} |y|| s, i S1/0 # S0,

2*351/0\/j||u||%r§i1x,s2, ifs;/0 =50,

[u=Tslle < {

forall 0 < s < py and0 < s, < pp provided that us H %% (Qg x Qo).

Proof. In view of (14), we have

a2 P
u—Usl[5% = z Aj,,j,u

j10+]j2/0>d

s
The Galerkin orthogonality implies the relation

2

2
~ oy ARl
o 110+])2/0>]

z AJ'PLJ'zu

j10+]2/0>d

Thus, we arrive at

lu-wl s Y a2+ Y ll@h a2l
j10+]2/0>J j10+]2/0>d

We bound the first sum on the right hand side in complete aga@dl0] from
above by
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Q 2 —2j181—2j 2
DN L PSR e Lt
j10+72/0>3 j10+J2/0>J
2 BN /TSN U2 i 51/ 520,
Z“mix
~ 2722902 s, if $1/0 =0
jfmix

Likewise, with the help of Lemma 2, the second sum on the rigirtd side is
bounded from above by

P 0 2 —2j181-2] 2
> @Al s Y 2R
j10+])2/0>3 j10+)2/0>J

< 272Jmin{sl/0-,520}||u||ifn5“1)292, if s1/0 # %0,
~ 272.151/0‘]HUHijr:r527 if 51/0 =0,

iX

which, altogether, yields the desired error estimate. |

7 Numerical results

We now validate our theoretical findings by numerical experits. Specifically, we
will apply the combination technique for the three examplagh were mentioned
in Section 2. To this end, we consider the most simple caselaooseQ; = Q, =
(0,1), i.e.,ny = np = 1. The ansatz space,g(l) ande<2) consist of continuous,
piecewise linear ansatz functions on an equidistant sigidivof the interval0, 1)

into 2 subintervals. This yields the polynomial exactnesses r, = 2. For the
sake of notational convenience, we et (0,1) x (0,1).

Example 1First, we solve the variational problem
find u € L2(0J) such thag(u,v) = £(v) for all v € L?(C])

where
a(uy) = [ a(yueyvey)dxy)
and _
(W) = [ Fouyvixy) dxy). D)

The underlying operatdk is the multiplication operator

(AU)(x,y) = a(x,y)u(x,y)

which is of the order 0. Hence, we hav& = L?(0). If the multiplier a(x,y) is a
smooth function, thei arbitrarily shifts through the Sobolev scales which implie
the condition (17).
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Let the solutionu be a smooth function, i.ey € %%, which holds if the
right hand sidef is sufficiently regular. Then, the best possible approxiomatate
for the present discretization is obtained far=r; = 2 ands, =r, = 2, i.e., for
LR = Hrf;if((D). Thus, theregular sparse tensor product space

gl _ (1) (2 _ (1) (2
Vi = EB \le ®V\/Jz - Z le ®ij : (22)
j1tj2<d jit]2=d

(cf. (7)) is optimal for the discretization, see [10] for aalked derivation. In partic-
ular, with Theorem 2, the combination technique yields tiiereestimate

&~ —-J
Ju=Gsllizm) S 47 VIlull o -
For our numerical tests, we choose

a(xy) =1+ x+y)?%  fxy) =axyuxy), uxy)=sinmx)sin(my).

The resulting convergence history is plotted as the redecimFig. 2. As can be
seen there, the convergence raté¢J, indicated by the dashed red line, is indeed
obtained in the numerical experiments.

Convergence rates

10° | 1
_ 107} 1
S
5]
c
K]
T 1074 1
£ 10
x
S
Q.
<
10° :
—o— Example 1: a’=1
- — ~ Asymptotics 47512
1078 — Example 2: o’=1 |
-~ ~ Asymptotics 2733172
I Il

0 5 10 15
Discretization level J

Fig. 2 Convergence rates in case of the first and second example.
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Example 2This example concerns a second order diffusion problemeddmain
0. In its weak form, it is given by the variational problem

find u € H3(OJ) such thag(u,v) = £(v) for all v € Hg (0)
where

a(uy) = [ aten{ G Gey+ S 3olx) fdxy

and/(v) as in (21). The diffusion operat@ under consideration is of the order
2 and maps# = H(D) bijectively onto#”’ = H~1(0). Since the domaifl is
convex, this second order boundary value probleR?segular, which implies that
A:L%2(0) — HY(O)NH2(D) is also bijective. By interpolation arguments, we find

thatA: 70 — () ;o is continuous and bijective since

H=Y(0) ¢ (#")k2 c L2(0) andH (D) ¢ A2 ¢ H3(D) NHo(D)).

Likewise, A : jfn?lxl — (jf/)?nﬁ( is continuous and bijective. Hence, the condition
(17) holds and Lemma 1 applies. Again, the regular sparssteproduct space
(22) is optimal for the present discretization. Consedygeiheorem 2 implies as
the best possible convergence estimate

< J
U= Bl S 27Vt iz o

provided thatu € HZ:(0) N H-2(0)). Here, we exploited thatZ; = Ha(0) N
H%&(D) H,%,i(D). Nevertheless, in general, we only have H?(0J) ¢ H%I}((D)
H#“f(( 0) and can thus only expect a reduced convergence rate.

In our particular numerical computations, we use

a(xy) =1+ (x+y)>2  u(xy) = sin(mx)sin(my).

(%) = 2200y Toxy) + 22 (xy)a (xy) — a(x.y)Au(x.y).

Therefore, due to € Hmlx(D) N Hm,X(D), we should observe the convergence rate
2-J/J. The computational approximation errors are plotted asbtbe graph in
Figure 2. The dashed blue line correspondsth2J and clearly validates the pre-
dicted convergence rate. We even observe the sllghty etz which can be
explained by the fact that the solutions even mHmIX(D) see [2] for the details.

Example 3We shall finally consider the variational problem
find u € L2(0,1) ® H3(0,1) such that(u,v) = £(v) for all v e L?(0,1) ® H3(0,1)

where
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auy) = [ a<x,y>g—;<x,y>g—;<x,y>d<x,y>

and £(v) is again given as in (21). It holds#” = L2(0,1) ® H}(0,1) C Hr?;ii(D)
and .7’ = L?(0,1) ® H=1(0,1). In particular, the operatoh shifts as a operator
A2 ()32 for arbitrarys;, s, > 0 provided that the coeffcient is
smooth enough. Thus, Theorem 2 holds and predicts the besibf@convergence
estimate for our underlying discretizationufies in the spacHﬁ;&(D).

According to the theory presented in [10], the optimal castplexity with re-

spect to the generalized sparse tensor product spgcsobtained for the choice

oo ]

In order to be able to compare the convergence rates instéagl @ost complexities

for different choices o0&, we have to consider the generalized sparse tensor product
spacea7j‘7, whereJ := ¢J. Then, for all the above choices of, we essentially
expect the convergence rate

_n < -J/o -~ —J
fJu Lﬁ”H%&(D)NZ HuHH%;(D) 2 HuHH%;(D)

while the degrees of freedom ﬁf essentially scale like’29 ~ 27, This setting is
employed in our numerical tests, where we further set

a(xy) =1+ (x+y)%  u(xy) = sin(rx)sin(my),
da du d%u

f(X,y) = E(Xay)a_y(xvy) - a(xvy)a—yz(xvy)'

We apply the combination technique for the particular cesic

e 0 =1, which yields an equilibration of the unknowns in all therermal tensor
product spacéﬁ/j(ll) aw?

J-j102’
e 0 =/2, which yields an equilibration of the approximation in tlé extremal
tensor product spacmg(ll) W2 and

J—jr02’
e 0 =./3/2, which results in aequilibrated cost-benefit ratsee [1, 10] for the
details.

The computed approximation errors are found in Fig. 3, wileeered curve cor-
responds taor = 1, the black curve corresponds to= v/2, and the blue curve
corresponds t@ = \/72 In the casesr = 1 ando = /2, we achieve the pre-
dicted convergence rate 2which is indicated by the dashed black line. In the case
o = /2 the predicted convergence rate is only?J which is also confirmed by
Fig. 3.
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Convergence rates

=
C)I

Approximation error
N

1080 Example 3: o’=1 |
—— Example 3: 0%=3/2
—o— Example 3: 0%=2
- - - Asymptotics 277 ' N
-4 N
10 I 1
0 5 10 15

Discretization level o J

Fig. 3 Convergence rates in case of the third example.

8 Conclusion

In the present paper, we proved the convergence of the catidrirtechnique in a
rather general set-up. Especially, we considered the gmatibi technique in gen-
eralized sparse tensor product spaces. We restrictedi\eesdeere to the case of
two-fold tensor product domains. Nevertheless, all owltsgan straightforwardly
be extended to the case of generalizedld sparse tensor product spaces by apply-
ing the techniques from [11] and [24].
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