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Abstract

In the present paper, we introduce theH2-wavelet method for the fast solution of nonlocal operator equations
on unstructured meshes. On the given mesh, we construct a wavelet basis which provides vanishing moments
with respect to the traces of polynomials in the space. With this basis at hand, the system matrix in
wavelet coordinates is compressed to O(N logN) relevant matrix coefficients, where N denotes the number
of boundary elements. The compressed system matrix is computed with nearly linear complexity by using
the fast H2-matrix approach. Numerical results in three spatial dimensions validate that we succeeded in
developing a fast wavelet Galerkin scheme on unstructured triangular or quadrangular meshes.

Keywords: boundary element method, unstructured mesh, wavelet matrix compression

1. Introduction

Plenty of problems from physics can be modeled by means of partial differential equations. As only few
of those problems can be solved analytically, computational means have to be employed. Notable examples
are the finite element method (FEM) and finite difference method, which are based on a discretization of the
entire simulation domain. Another approach is to transfer the partial differential equations to equivalent
boundary integral equations which only need to be solved on the boundary of the original domain. This has
the advantage of reducing the method’s inherent dimensional complexity (as the boundary has one dimension
less than the domain it encloses) as well as other desirable properties (like the possibility to obtain solutions
on the – possibly unrestricted – exterior of the boundary).

The boundary element method (BEM) has emerged as a popular framework to solve boundary integral
equations. Its concept is similar to that of the finite element method: the integral equation is reformulated
as a variational problem, which is then solved for finite-dimensional subspaces of the original ansatz space.
One notable drawback of the classic BEM, however, is that the underlying integral operator is in general
non-local, which results in fully populated system matrices. Consequently, the required computation time
and memory scale quadratically with the number of degrees of freedom.

Several methods have been developed to avoid this cost by providing an approximation of the matrix-
vector multiplications necessary to solve the discretized problem. Examples are multipole and clustering
methods [9, 13] and the closely related H- and H2-matrix methods [3, 11] as well as the adaptive cross
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approximation [1]. Another class of methods are wavelet methods [2, 7, 23, 27] which are based on expressing
the system matrix in terms of a multi-scale basis where it can be compressed to a sparse matrix without loss of
accuracy. Unfortunately, most wavelet methods require a piecewise smooth parametrization of the boundary
and are thus not applicable to arbitrary unstructured meshes. The so-called Tausch-White wavelets [30] are
not affected by this problem, but still require the single-scale system matrix to be set up first.

The present paper introduces the H2-wavelet method. This method makes it possible to avoid assembling
the single-scale matrix by employing H2-matrices to directly set up a quasi-sparse version of the system
matrix in the Tausch-White wavelet basis. It can be adapted to a variety of problems and uses significantly
less memory than the regular H2-matrix method. In addition, providing a quasi-sparse version of the system
matrix (rather than just an approximation of the matrix-vector product) results in significantly faster matrix-
vector multiplications and an easy means to employ preconditioning, which speeds up the solving process
even further.

We mention that the theoretical foundation of the H2-wavelet method has been developed in [14, 20].
In this paper, we present its algorithmical realization with an emphasis on boundary integral equation in
three spatial dimensions. In order to keep the scope of this paper narrow, its focus lies on solving the
three-dimensional Laplace equation via the single-layer potential operator. This will allow us to make a few
simplifications (mostly due to the symmetry of the operator and correspondingly the system matrix) in the
underlying theory which helps to present the method in a straightforward way. The method can nevertheless
be extended to other boundary integral operators and the key insights presented here are applicable to
the method in general. In particular, more emphasis was spent on investigating the effectiveness of the
preconditioner as well as finding optimal parameters for the algorithm. In addition, the algorithm was
studied on an actual unstructured mesh for which no parameterization is available.

We will begin by introducing the boundary element method and the corresponding traditional Galerkin
scheme in the next section. Tausch-White wavelets will be exposed in Section 3, followed by the H2-matrix
method in Section 4. We will combine both in Section 5 and finally study the resulting algorithm’s behavior
in Section 6.

In order to reduce the use of insignificant constant factors throughout this paper, C . D shall mean that
C can be bounded by a multiple of D, independently of any parameters for C and D. C & D is equivalent
to D . C and C ∼ D is defined as C . D and C & D.

2. The Boundary Element Method

This section is dedicated to a short overview of the elementary components of the boundary element
method. It also contains an explanation of the traditional Galerkin scheme usually employed to solve
boundary integral equations.

2.1. The geometry

We begin by posing a few conditions on the boundary Γ ⊂ Rn+1. It should be a closed, Lipschitz-
continuous surface. We assume that a discretized representation ΓN =

⋃N
i=1 πi is available, consisting of

n-dimensional convex simplices πi, which we require to be either triangles or quadrangles. The intersection
of two simplices should be empty or a lower-dimensional surface (e.g. a point or an edge). Points in the
interior of quadrangles are obtained by bilinear interpolation. Therefore if a quadrangle’s corners do not all
lie in the same plane, the resulting simplices will be curved.

We also require quasi-uniformity of the discretization, i.e. the radii of the inscribed circles of all simplices
should scale proportional to the step width hN , which itself scales like N−

1
n . In addition, all simplices shall

be oriented such that their normals are pointing outward.

2.2. The boundary integral operator

This paper is concerned with boundary integral equations of the form

Aρ = f on Γ, (2.1)
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Figure 2.1: Quadrangulation of the sphere with three refinements (left) and five refinements (right).

where the boundary integral operator A can be written as

(Aρ)(x) :=

∫
Γ

k(x, y)ρ(y)dσy.

It should be a continuous and strictly coercive operator of order 2q, i.e. map from Hq(Γ) to H−q(Γ) and
fulfill

‖ρ‖2Hq(Γ) . 〈Aρ, ρ〉L2(Γ), 〈Aρ, v〉L2(Γ) . ‖ρ‖Hq(Γ)‖v‖Hq(Γ)

for all ρ, v ∈ Hq(Γ). In addition, the kernel function should satisfy the decay condition∣∣∣∣∣∂αx ∂βy k(x, y)

(|α|+ |β|)!

∣∣∣∣∣ . (s‖x− y‖)−(n+2q+|α|+|β|), s > 0 (2.2)

uniformly in α, β ∈ Nn+1. In particular, k(x, y) is analytic in x and y except for a possible singularity at
x = y. Note that we shall assume q < 1

2 throughout the paper since we will restrict ourselves to a piecewise
constant discretization.

One of the simplest and most popular examples for a partial differential equation that can be transferred
to a boundary integral equation is the following: For a given f ∈ H 1

2 (Γ), find a function u ∈ H1(Ω) which
fulfills

∆u = 0 in Ω, u = f on Γ. (2.3)

We introduce the single layer potential operator by

(Vρ)(x) :=

∫
Γ

kS(x, y)ρ(y)dσy, x ∈ Γ

with kS(x, y) := 1
4π‖x−y‖ for n = 2 and kS(x, y) := − 1

2π ln ‖x − y‖ for n = 1. According to [25, 28], V
is a symmetric and positive definite operator of order −1 that continuously maps from H−

1
2 (Γ) to H

1
2 (Γ)

provided that Γ is Lipschitz continuous (and for n = 1: diam(Ω) < 1). Observing that the related single
layer potential

ΦV (x) :=

∫
Γ

kS(x, y)ρ(y)dσy, x ∈ Ω,

always satisfies ∆ΦV (x) = 0, one can make the ansatz u(x) = ΦV (x) to solve (2.3). By taking the trace, it
is seen that the density function ρ is the solution of the Fredholm integral equation of the first kind

Vρ = f on Γ. (2.4)
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This is called the indirect approach as the solution function u is determined in two steps: first, the density
function is determined, which is then used to evaluate the single layer potential. In the rest of this paper,
we will mainly focus on the fast solution of (2.4). There are, of course, plenty of other boundary integral
operators available, but treating them as well would exceed the scope of this paper.

2.3. The Galerkin method

In order to obtain a means of solving the integral equation (2.1), we employ the Galerkin method. It is
based on the corresponding variational formulation:

Find ρ ∈ Hq(Γ) such that 〈Aρ, v〉L2(Γ) = 〈f, vN 〉L2(Γ) for all v ∈ Hq(Γ).

For a suitable finite-dimensional subspace of VN ⊂ Hq(Γ), one obtains a discrete variant of the problem:

Find ρN ∈ VN such that 〈AρN , vN 〉L2(Γ) = 〈f, vN 〉L2(Γ) for all vN ∈ VN . (2.5)

We will use piecewise constant ansatz functions to constitute the space

VN := {vN : ΓN → R | ∀i : vN |πi = const.}.

In view of Céa’s Lemma, [25] provides then the following error estimate for these spaces:

Proposition 2.1. For the exact solution ρ ∈ Ht(Γ) of (2.1) and the corresponding solution ρN ∈ VN (with
the related step width hN ),

‖ρ− ρN‖Hq(Γ) . ht−qN ‖ρ‖Ht(Γ)

holds for q ≤ t ≤ 1. In particular, for q = − 1
2 and t = 1, we have

‖ρ− ρN‖
H−

1
2 (Γ)

. h
3
2

N‖ρ‖H1(Γ).

Note that by employing the Aubin-Nitsche trick (see e.g. [24, 25]), we can double the rate of convergence
by measuring the error in H−2(Γ). Therefore, for the approximation ΦV,N (x) of the single layer potential
ΦV (x) at a particular point x ∈ Ω, we finally obtain the estimate

|ΦV (x)− ΦV,N (x)| =
∣∣∣∣ ∫

Γ

kS(x, y)
(
ρ(y)− ρN (y)

)
dσy

∣∣∣∣
≤ ‖kS(x, ·)‖H2(Γ) ‖ρ− ρN‖H−2(Γ)

. h3
N ‖kS(x, ·)‖H2(Γ) ‖ρ‖H1(Γ).

It remains to present a suitable basis for the space VN . We choose the L2-normalized single-scale basis,
i.e. each basis function φi, 1 ≤ i ≤ N , is supported only on a single simplex:

φi(x) :=

{
1√
|πi|

, x ∈ πi,

0, otherwise.

Here, |πi| is defined as the area of πi, leading to the desired L2-orthonormality. Making the ansatz ρN =∑N
j=1 ρ

N
j φj and testing with the basis in equation (2.5), we arrive at a system of linear equations

Aφρφ = fφ (2.6)

where
Aφ := [〈Aφj , φi〉]Ni,j=1, ρφ := [ρNi ]Ni=1, fφ := [〈f, φi〉]Ni=1.

Aφ is called system matrix in the single-scale basis. Setting up the system matrix (but not necessarily
in this basis) or approximating the matrix-vector product Aφρφ is one of the most involved aspects of the
boundary element method and will concern us in the following sections.
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2.4. Determining the entries of the system matrix

With the previous considerations, solving the discretized version of the boundary integral equation is
reduced to setting up and solving the system of linear equations (2.6). The second part can be performed
easily by means of iterative solvers, e.g. in the case of symmetric positive-definite matrices (as with the
single-layer potential operator’s matrix) the conjugate-gradient (CG) method.

The assembly of Aφ is significantly more complicated. Its entries are of the form

〈Aφj , φi〉 =

∫
Γ

∫
Γ

φj(y)k(x, y)φi(x)dσxdσy.

The kernel function does not vanish for distant panels, making the integral operator non-local. Consequently,
Aφ will be fully populated, resulting in O(N2) nonzero entries, which also provides a lower bound for the
necessary computation time and memory requirements. In addition, these entries cannot be computed
analytically in many cases, necessitating the use of quadrature formulae. The quadrature order needs to be
adapted to the distance of the simplices in order to accommodate for the singularity at x = y. In the case of
adjacent or identical panels, classic quadrature formulae cannot be used due to the singularity being inside
the integration domain. This can be avoided by employing the Duffy trick. For all details concerning the
numerical quadrature, we refer to [25].

3. Tausch-White Wavelets

In contrast to traditional wavelet constructions on surfaces (see [16] and the references therein) we cannot
use a refinement strategy since the representation of the geometry automatically limits the finest level of
any finite consideration to a single simplex. Hence, we will follow [30] and employ a coarsening procedure
to define a multi-scale hierarchy

V0 ⊂ V1 ⊂ · · · ⊂ VJ−1 ⊂ VJ ≡ VN . (3.7)

3.1. The cluster tree

The multi-scale hierarchy will be linked to the discretization of the boundary by a cluster tree. Here,
a cluster ν denotes the non-empty union ν =

⋃
i∈Iν πi of a set of simplices πi. The number of simplices

contained by a cluster ν is written as #ν and called its cardinality.

Definition 3.1 (Cluster tree). For a finite set T of clusters, a cluster ν is called father cluster of ν′ (written
ν′ ≺ ν), if ν′ ( ν holds and there are no other clusters ν′′ ∈ T with ν′ ( ν′′ ( ν. ν′ is then called the son
of ν. If a cluster has no sons, it is called a leaf cluster. The set of all leaf clusters is denoted by L(T ).

T combined with the hierarchical ordering imposed by ≺ is called a cluster tree of ΓN , if the following
additional conditions hold:

1. ΓN ∈ T is the only cluster in T without a father cluster (called the root ν̂ of T ).

2. The intersection of two clusters with the same father cluster is either empty or a lower-dimensional
set.

3. Each non-leaf cluster ν is identical to the union of its son clusters, i.e. ν =
⋃
ν′≺ν ν

′.

The level of a cluster is the number j, such that clusters {νi}j−1
i=0 with ν ≺ νj−1 ≺ · · · ≺ ν0 = ΓN exist.

In particular, ΓN is the only cluster with level 0 and there is a maximum level J , called the cluster tree’s
depth. For each level j, Tj denotes the set of all clusters belonging to that level.

Remark 3.2. The index sets Iν for non-leaf clusters ν will be ordered such that all indices from the index
set Iν′ of a corresponding son cluster ν′ are adjacent in Iν .

Definition 3.1 is sufficient for obtaining a hierarchy of clusters, but it does not provide estimates for the
sizes and cardinalities of clusters as demanded above. For this, we have another
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Figure 3.2: Example of a cardinality balanced clustering on the sphere. Different colors correspond to different clusters.

Definition 3.3 (Balanced 2n-cluster tree). Let T be a cluster tree on ΓN ⊂ Rn+1 with depth J . It is called
a balanced 2n-tree, if its clusters ν all satisfy the following conditions (with jν being the level of ν):

1. ν has exactly 2n sons (written `ν = 2n) if jν < J . It has no sons if jν = J (by definition of the depth),

2. diam(ν) ∼ 2−
jν
n ,

3. #ν ∼ 2(J−jν)n.

There are several methods to create a cluster tree from a given boundary discretization. We will focus
on a technique called cardinality balanced clustering. Here, the root cluster is split into two son clusters
of identical (or similar) cardinality. This process is repeated recursively for the resulting son clusters until
their cardinality falls below a certain threshold #leaf,max, called the leaf size. It remains to explain how
a cluster’s simplices are split up between the new son clusters. This is performed geometrically by using
constructs from the following definition:

Definition 3.4 (Bounding box). Let ν be a cluster. Its bounding box Bν is defined as the smallest axis-
parallel cuboid that completely contains all its simplices.

For the subdivision, the bounding box for the cluster’s simplex midpoints simply is split along its longest
edge such that the resulting two boxes both contain the same number of simplex midpoints. As the cluster
cardinality halves thus with each level, we will obtain O(log(N)) levels in total. On each level, every simplex
is considered a constant number of times for determining the splitting plane, resulting in a total runtime of
O(N log(N)) for the clustering process. Examples for cluster trees created with this approach can be seen
in Figure 3.2.

We finally transform this binary cluster tree into a balanced 2n-tree by removing all clusters whose level
is not a multiple of k. The resulting tree satisfies only the first and third property of a balanced 2n-tree. But
for quasi-uniform discretizations, the condition on the cluster diameters will be guaranteed asymptotically.
This is sufficient for our computations. For sake of simplicity, for all subsequent proofs we will however
assume the particular cluster trees to be balanced.

3.2. Constructing the wavelet basis

Now that we have created a balanced cluster tree, we can move on to construct a wavelet basis on the
resulting hierarchical structure. To ensure that the diameters of the wavelet function’s supports halves
with each level, the support of a wavelet function on a specific level shall be restricted to a cluster of the
same level. In addition, as the key ingredient for the matrix compression, we ask for the resulting wavelet
functions to have vanishing moments.
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Definition 3.5 (Vanishing moments). A function ψ(x) has vanishing moments up to order d̃, if its moments

〈ψ, xα〉L2(Γ) =

∫
Γ

ψ(x)xαdσx

are zero for all α ∈ Nn+1
0 with |α| < d̃. We call md̃ := #{α ∈ Nn+1

0 : |α| < d̃} the number of vanishing
moments of ψ.

We begin by introducing a two-scale transform between basis functions on a cluster ν of level j. For this,
we create scaling functions Φν

j = {ϕνj,k} and wavelets Ψν
j = {ψνj,k} as linear combinations of the scaling

functions Φν
j+1 of ν’s son clusters. This results in the refinement relation

[Φν
j ,Ψ

ν
j ] := Φν

j+1[Qνj,Φ, Q
ν
j,Ψ]. (3.8)

Remark 3.6. We will frequently use the sets Φν
j and Ψν

j as row vectors by indexing them in a particular
order (see below).

In order to provide vanishing moments and an orthonormal basis, we have to choose the transformation
matrix carefully. A sensible choice is to obtain it from the QR-decomposition(

Mν
j+1

)T
= QR =: [Qνj,Φ, Q

ν
j,Ψ]R (3.9)

of the moment matrix

Mν
j+1 := 〈xα,Φν

j+1〉|α|<d̃ =

[∫
Γ

xαϕνj+1,k(x)dσx

]
|α|<d̃,k

of the son cluster’s scaling functions. The moment matrix for the cluster’s own scaling functions and wavelets
is then

[Mν,Φ
j ,Mν,Ψ

j ] = 〈xα, [Φν
j ,Ψ

ν
j ]〉|α|<d̃ = 〈xα,Φν

j+1[Qνj,Φ, Q
ν
j,Ψ]〉|α|<d̃ = Mν

j+1[Qνj,Φ, Q
ν
j,Ψ] = RT . (3.10)

As RT is a lower left triangular matrix, the first (k−1) entries in its k-th column are zero. This corresponds
to (k − 1) vanishing moments for the k-th function generated by the transformation matrix [Qνj,Φ, Q

ν
j,Ψ].

By defining the first md̃ functions as scaling functions and the remaining as wavelets, we obtain wavelets

with vanishing moments up to at least order d̃. In addition, the QR-decomposition also causes some scaling
functions to have a few vanishing moments.

Remark 3.7. Each cluster has an at most constant number CQ of scaling functions and wavelets: For a
particular cluster ν, their number is identical to the cardinality of Φν

j+1. For leaf clusters, this number is
bounded by the leaf size #leaf,max. For non-leaf clusters, it is bounded by the number of scaling functions
provided from all its son clusters. As there are at most 2n son clusters with a maximum of md̃ scaling
functions each, we obtain a bound of 2nmd̃ for non-leaf clusters. Note that, if Φν

j+1 has at most md̃

elements, a cluster will not provide any wavelets at all – all functions it provides will be scaling functions.

For leaf clusters, we take the single-scale basis functions Φν
J := {φi : i ∈ Iν} to make up for the lack of

son clusters that could provide scaling functions. The scaling functions of all clusters on a specific level j
then make up the function spaces

Vj := span{ϕνj,k : ν ∈ Tj}, (3.11)

while the wavelets are used to create the detail spaces

Wj := span{ψνj,k : ν ∈ Tj} = Vj+1

⊥
	 Vj . (3.12)

Combining the scaling functions of the root cluster with all clusters’ wavelets yields the final wavelet basis

ΨN := ΦΓN
0 ∪

⋃
ν∈T

Ψν
jν . (3.13)
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Writing ΨN = {ϑk : 1 ≤ k ≤ N} = {ϑk : k ∈ IΨN}, where ϑk is either a wavelet or a scaling function on
the root cluster, we can establish a unique indexing of all the functions in the wavelet basis. In a few cases,
this allows us to conveniently write ψk or ψj,k rather than ψνj,k. Analogously, we also collect all scaling
functions in the set

ΦN :=
⋃
ν∈T

Φν
jν = {ϑk : k ∈ IΦN}.

Note that ΦN is not a basis of VN – it contains scaling functions from all levels, although those on coarser
levels are just linear combinations of those on finer levels. The indexing naturally induces an order on
the function sets ΦN and ΨN , which we choose to be level-dependent: Functions belonging to a particular
cluster are grouped together, with those on finer levels having higher indices.

We collect the scaling function and wavelet indices for a particular cluster ν in the sets IΦν ⊂ IΦN and
IΨν ⊂ IΨN . This allows us to define vectors fΨ

µ =
[
〈f, ψi〉L2(Γ)

]
i∈IΨµ

and matrix blocks

AΦ,Φ
µ,ν =

[
〈Aϕi′ , ϕi〉L2(Γ)

]
i∈IΦµ ,i′∈IΦν

, AΦ,Ψ
µ,ν =

[
〈Aϕi′ , ψi〉L2(Γ)

]
i∈IΦµ ,i′∈IΨν

AΨ,Φ
µ,ν =

[
〈Aψi′ , ϕi〉L2(Γ)

]
i∈IΨµ ,i′∈IΦν

, AΨ,Ψ
µ,ν =

[
〈Aψi′ , ψi〉L2(Γ)

]
i∈IΨµ ,i′∈IΨν

of coefficients in the multi-scale basis. For a cluster pair (µ, ν) we call µ the row cluster, because the indices
in Iµ then correspond to rows of the matrix. Analogously, ν is called the column cluster.

Remark 3.8. In order to provide a uniform number of wavelets per cluster, each leaf cluster should contain
approximately 2nmd̃ simplices. This corresponds to setting #leaf,max ∼ 2nmd̃, respectively.

Therefore, each cluster’s moment matrix will also have at most CQ columns, which allows us to formulate
the following

Lemma 3.9. Constructing the wavelet basis on a balanced 2n-cluster tree has storage and computational
cost of O(N).

Proof. For each leaf cluster, we compute the corresponding moment matrix (whose row and column counts
are each bounded by a constant) in the single-scale basis, resulting in a constant effort per cluster. For non-
leaf clusters, collecting the son cluster’s moments (which have already been computed) also takes constant
time. Computing the QR decomposition of the constant-size moment matrix again takes O(1) operations,
as does multiplying it with Qνj,Φ. Employing finally that we have a total number of O(N) clusters and a
constant effort per cluster, we obtain a total runtime of O(N) operations.

3.3. Properties of the wavelets

By construction, the Tausch-White wavelets satisfy the following properties (cf. [14, 30]).

Theorem 3.10. The spaces Vj as defined in equation (3.11) fulfill the desired multi-scale hierarchy (3.7),

where the respective complement spaces Wj from (3.12) fulfill Vj+1 = Vj
⊥
⊕Wj for all j = 0, 1, . . . , J − 1.

The associated wavelet basis ΨN defined in (3.13) constitutes an L2-orthonormal basis of VJ . In particular:

1. The diameter of the support of a wavelet on level j behaves like 2−j.

2. The number of all wavelets on level j behaves like 2jn.

3. The wavelets have vanishing moments up to order d̃.

Remark 3.11. Due to Wj ⊂ VN and V0 ⊂ VN , we conclude that each basis function is a linear combinations
of the single-scale basis functions on the finest level. Especially, the related coefficient vectors ωj,k in

ψj,k =

N∑
i=1

ωj,ki φi and ϕ0,k =

N∑
i=1

ω0,k
i φi (3.14)

are pairwise orthonormal.
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Later on, the following bound for the wavelet’s L1-norm will be essential:

Lemma 3.12. A wavelet ψνj,k on the cluster ν fulfills∫
ΓN

|ψνj,k(x)|dσx . 2−j
n
2 .

The same holds for scaling functions ϕνj,k.

Proof. The Cauchy-Schwartz inequality implies(∫
ΓN

|ψνj,k(x)|dσx
)2

≤ ‖ψνj,k‖2L2(Γ)

∫
ν

1dσx =
∑
i∈Ij,k

∫
πi

1dσx.

For a quasi-uniform discretization we have |πi| ∼ hnN . For a 2n-tree of depth J , we also have hN ∼ 2−J ,
resulting in |πi| ∼ 2−Jn. The cluster ν has cardinality of ∼ 2(J−j)n, which provides the bound Ij,k . 2(J−j)n.
Combining these estimates finally yields(∫

ΓN

|ψνj,k(x)|dσx
)2

. 2(J−j)n2−Jn = 2−jn,

which is just the squared version of the claim.

3.4. Transforming between bases

In order to numerically switch between the multi-scale basis and the single-scale basis, we need to the
discrete wavelet transform and its inverse. Hence, given a representation f =

∑N
i=1 f

φ
i φi in the single-scale

basis, we are looking for the related representation in the f =
∑
k∈IΨN

fΨ
k ψk. For sake of a simpler notation,

let fφ := [fφi ]Ni=1 and fΨ := [fΨ
k ]k∈IΨN denote the associated coefficient vectors.

Remark 3.13. In order to represent f in the multi-scale basis, we also need the scaling functions ϕΓN
0,k of

the root cluster. For a more convenient notation, they are implicitly included when we write ψk, k ∈ IΨN .

We transform between bases by means of the discrete wavelet transform (DWT). It is based on recursively
applying the refinement relation (3.8) to the inner products

〈f, [Φν
j ,Ψ

ν
j ]〉L2(Γ) = 〈f,Φν

j+1[Qνj,Φ, Q
ν
j,Ψ]〉L2(Γ) = 〈f,Φν

j+1〉L2(Γ)[Q
ν
j,Φ, Q

ν
j,Ψ]. (3.15)

On the finest level, the elements 〈f,Φν
J+1〉L2(Γ) correspond to entries of fφ. Recursively applying equation

(3.15) yields all the coefficients 〈f,Ψν
j 〉L2(Γ) (plus 〈f,ΦΓN

0 〉L2(Γ)) required for a representation of f in the
wavelet basis. This concept is formulated in Algorithm 3.1.

Algorithm 3.1: Discrete wavelet transform

Data: Single-scale coefficient vector fφ of the function f =
∑N
i=1 f

φ
i φi, cluster tree T , and

transformation matrices Qνj,Φ, Qνj,Ψ.

Result: Multi-scale coefficient vector fΨ with f =
∑
k∈IΨN

fΨ
k ψk, stored as inner products

〈(ΦΓN
0 )T , f〉L2(Γ) and 〈(Ψν

j )T , f〉L2(Γ).

begin

store 〈(ΦΓN
0 )T , f〉L2(Γ) := transformForCluster(ΓN );

9



Function transformForCluster(ν)

begin
if ν is a leaf cluster with simplices {πi1 , . . . , πi#ν} then

read fνjν+1 :=
[
fφik
]#ν
k=1

;

else
for νson ≺ ν do

execute transformForCluster(νson) and append the result to fνjν+1;

store 〈(Ψν
jν

)T , f〉L2(Γ) := (Qνjν ,Ψ)T fνjν+1;

return (Qνjν ,Φ)T fνjν+1;

Remark 3.14. Algorithm 3.1 uses a transposed version of (3.15) in order to keep the column vector structure
of fφ and fΨ.

The inverse operation is executed by performing the DWT’s steps in the opposite order and direc-
tion: On each cluster, we compute 〈f,Φν

j+1〉L2(Γ) = 〈f, [Φν
j ,Ψ

ν
j ]〉L2(Γ)[Q

ν
j,Φ, Q

ν
j,Ψ]T to obtain either the son

clusters’ scaling function inner products or (for leaf clusters) coefficients of fφ. The necessary coefficients
〈(Ψν

j )T , f〉L2(Γ) (as well as 〈(ΦΓN
0 )T , f〉L2(Γ)) are stored in fΨ, while the 〈(Φν

j )T , f〉L2(Γ) for non-root clus-
ters have been computed in the father cluster’s recursion step. The corresponding algorithm is omitted for
sake of brevity.

Lemma 3.15. The transformation from the single-scale basis to the multi-scale basis or vice versa can be
performed in linear time.

Proof. Similarly to the proof of Lemma 3.9, Algorithm 3.1 performs two constant-size (and thus constant-
time) matrix-vector multiplications on each of the O(N) clusters in total. The runtime estimate for the
inverse transform is derived in complete analogy.

3.5. Matrix compression

As the wavelets already provide vanishing moments, we can employ the decay condition (2.2) which leads
to the estimate ∣∣〈Aψj′,k′ , ψj,k〉L2(Γ)

∣∣ . 2−(j+j′)(d̃+n
2 )

dist(Θj,k,Θj′,k′)n+2q+2d̃
.

Due to this estimate, the system matrix AΨ = [〈Aψj′,k′ , ψj,k〉]k,k′∈IΨN becomes numerically sparse in wavelet

coordinates. To indentify negligible entries before actually computing them, we formulate a criterion on the
distance of wavelet supports. We will remove all entries for which the distance of the corresponding wavelet
supports is larger than the cut-off parameter

Bj,j′ := amax

{
2−min{j,j′}, 2

2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q)

}
(3.16)

with a > 1 and 1 < d′ < d̃ + 2q. The requirement a > 1 is necessary for proving some of the following
properties, but can easily be avoided by re-scaling the entire mesh with a constant factor. Figure 3.3 shows
a system matrix in the multi-scale basis for which this compression scheme has been applied.

Theorem 3.16 (Cut-off condition). Let the cut-off parameter Bj,j′ given as in (3.16). Then, setting all
entries AΨ

(j,k),(j′,k′) to zero for which the cut-off condition dist(Θj,k,Θj′,k′) > Bj,j′ holds removes all but

O(N log(N)) entries. This does not affect the stability and convergence order of the wavelet Galerkin scheme.

Proof. For the stability and convergence proofs, we refer to [7, 27]. The other assertion is also proved there.
However, we present it here since we will refer to it later on. To this end, note that most wavelet supports
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Figure 3.3: System matrix for the sphere (after five refinements, i.e. N = 6144) before (left) and after (right) applying the
wavelet compression.

are identical to the corresponding cluster. Therefore, it is sufficient to count the cluster pairs closer than
the cut-off parameter, as each cluster provides at most CQ wavelets.

For a particular pair of levels j and j′, there are ∼ 2(j+j′)nBnj,j′ cluster pairs: For a cluster ν of level

j′ ≤ j, we can fit ∼
(Bj,j′

2−j

)n
= 2jnBnj,j′ clusters of level j (which each have diam ∼ 2−j) in a Bj,j′ -ball

around ν. We obtain the desired estimate by multiplying with 2nj
′
, which is the total number of clusters of

level j′.

With M := d′+d̃
2(d̃+q)

, we can write

2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q) = 2−J2(J−j)M2(J−j′)M

to formulate the cut-off parameter as

Bj,j′ = amax
{

2−min{j,j′}, 2−J2(J−j)M2(J−j′)M
}
.

In the case 2−min{j,j′} ≤ 2−J2(J−j)M2(J−j′)M , we thus have

J∑
j,j′=0

2(j+j′)n max
{

2−min{jn,j′n}, 2−Jn2(J−j)Mn2(J−j′)Mn
}
.

J∑
j,j′=0

2−Jn2(J−j)(M−1)n2(J−j′)(M−1)n . 2Jn,

thanks to M < 1 and thus 2(M−1)n < 1. In the other case, we get

J∑
j,j′=0

2(j+j′)n max
{

2−min{jn,jn′}, 2−Jn2(J−j)Mn2(J−j′)Mn
}
.

J∑
j,j′=0

2(j+j′)n2−min{jn,j′n} . J2Jn.

With 2Jn ∼ N and J ∼ log(N) we have in total O(N log(N)) cluster pairs closer than the corresponding
cut-off parameter, with a constant number of entries for each pair.

If dist(µ, ν) > Bj,j′ holds for a cluster pair (µ, ν) with corresponding levels j and j′, the pair is said to
satisfy the cut-off condition. Since, however, computing the distance between the convex hulls of wavelet sup-
ports (or clusters, which is equivalent) is not easy, we will therefore use the simplified criterion dist(Bµ, Bν) >
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Bj,j′ for wavelets ψµj,k and ψνj′,k′ . Thanks to ψµj,k ⊆ µ ⊂ Bµ, we have dist(Θj,k,Θj′,k′) ≥ dist(Bµ, Bν), re-
sulting in more remaining entries, i.e. preserved accuracy but weaker compression. Asymptotically, both
estimates will be identical, however, as comparing bounding boxes and convex hulls does not make a sub-
stantial difference.

Remark 3.17. By the nature of this compression scheme, only complete sub-blocks of the system matrix
in the wavelet basis are stored. It is therefore advisable to implement a block-sparse matrix data structure
which does not store single entries (with the corresponding indices) but rather entire matrix blocks. This
is significantly more efficient than a per-entry sparse matrix. On the other hand, this approach prohibits
an a-posteriori compression [7, 17], where all matrix entries (as opposed to matrix blocks) below a certain
level-dependent threshold are discarded, because it would destroy the block structure of the matrix. As the a-
posteriori compression does not improve the asymptotic memory cost of O(N log(N)), anyway, it will not be
employed in this paper. In addition, the overhead of having to use a per-entry sparse matrix implementation
can easily offset the benefits of a slightly better compression ratio.

3.6. Determining the sparsity pattern

For a given pair of clusters, we can now determine whether the corresponding entries need to be calcu-
lated. As there are O(N) clusters, naively checking the cut-off criterion for all pairs would still take O(N2)
operations, however. We therefore need a smarter means to enumerate the non-omittable cluster pairs. For
this purpose, we first state the transferability of the cut-off condition to son clusters (cf. [7]):

Lemma 3.18. Let µ and ν be clusters satisfying the cut-off criterion dist(Bµ, Bν) > Bjµ,jν . Then, for
possible son clusters µson ≺ µ and νson ≺ ν, we have dist(Bµson

, Bν) > Bjµson ,jν
, dist(Bµ, Bνson

) > Bjµ,jνson
,

and dist(Bµson
, Bνson

) > Bjµson ,jνson
.

This lemma allows us to avoid inspecting cluster pairs whose father clusters already satisfy the cut-off
condition. It leads to the following recursive scheme (see also Algorithm 3.2): For given clusters µ and ν,
we check if (µ, ν) satisfies the cut-off condition. If not, we recursively perform the same check with (µson, ν)
for each son µson of µ, until either the condition is fulfilled or we arrive at a leaf cluster. If we execute this
procedure for all possible column clusters ν ∈ T . The result is a list of all cluster pairs that do not satisfy
the cut-off condition (i.e. are not negligible). The efficient computation of these non-negligible entries is
then the topic of Section 5.

Algorithm 3.2: Recursive cut-off criterion check

Data: Cluster tree T , cut-off parameters a and d′.
Result: Sparse matrix ÃΨ with ones in all blocks where the cut-off condition is not satisfied.
begin

ÃΨ := [0]k,k′∈IΨN ;

for ν ∈ T do
checkCutOffCriterionRecursively(ΓN , ν);

Function checkCutOffCriterionRecursively(µ, ν)

begin
if dist(Bµ, Bν) ≤ Bjµ,jν then

ÃΨ
µ,ν := [1]k∈IΨµ ,k′∈IΨν ;

if µ is not a leaf cluster then
for µson ≺ µ do

checkCutOffCriterionRecursively(µson, ν);

Lemma 3.19. Algorithm 3.2 has runtime O(N log(N)).
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Proof. checkCutOffCriterionRecursively only gets called for each cluster pair closer than the cut-off
parameter (of which there are O(N log(N)) – see the proof of Theorem 3.16) and for the immediate sons of
the row clusters of such pairs. It does not get called for all cluster pairs.

Remark 3.20. In the case of symmetric system matrices (as with the single-layer potential operator),
determining the sparsity pattern can be sped up by only computing its upper right part. To achieve this, the
recursion is stopped when the levels of µ and ν are identical.

3.7. Wavelet preconditioning

If the boundary integral operator A under consideration has an order 2q which is different from zero,
then preconditioning becomes an issue for the iterative solver. Fortunatelty, wavelets offer a built-in pre-
conditioning. The following result has been proven in [14].

Lemma 3.21. Assume that |q| < 1
2 . Then, integral operator’s system matrix in the multi-scale basis AΨ

can be preconditioned by scaling with its diagonal:

cond
((

diag(AΨ)
)− 1

2AΨ
(

diag(AΨ)
)− 1

2

)
∼ 1.

It holds q = − 1
2 in case of the single layer operator. Here, the condition number of the preconditioned

system matrix grows like (log(N))2, cf. [22].

4. The H2-Matrix Method

This section consists of a short, but complete – in the sense that it explains all steps necessary for
approximating the matrix-vector product Aφfφ – description of the H2-matrix method. The focus will be
on the aspects that are useful for the H2-wavelet method explained in Section 5, however. In particular,
we will assume the clusters corresponding to rows and columns of the system matrix to belong to the same
tree (which is natural for symmetric matrices) and assume a fixed interpolation order for all clusters (as the
H2-wavelet method does not benefit from variable interpolation orders).

The matrix-vector product is approximated by splitting the system matrix into two parts Aφ ≈ Aφnear +

Aφfar. The nearfield Aφnear will be computed classically. It can be stored (and applied) efficiently via a block-

sparse matrix. The farfield matrix Aφfar is subdivided into several blocks corresponding to cluster pairs that
satisfy a certain admissibility condition. Each of these blocks will not be stored in full, but approximated as
a product of lower-rank matrices. This approach is based on the degenerated kernel expansion, in which the
kernel function k(x, y) is separated into a product of two functions solely depending on x and y, respectively.
The kernel expansion can be realized, for example, via spherical harmonics (as with the fast multipole
method) or Taylor polynomials. In this paper, we will resort to the more computationally intensive but also
more flexible means of polynomial interpolation.

4.1. Approximating the kernel function

A crucial aspect of the H2-method is the low-rank approximation of the kernel function for distant
evaluation points. Originally, a Taylor expansion of the kernel function was employed to accomplish this
task. In this paper, we will focus on Chebyshev interpolation in the bounding boxes Bµ and Bν of admissible
cluster pairs (see below).

To ensure optimal stability for interpolating on the interval [−1, 1] (see [25, 29]), we choose the roots

xs = cos

(
π

2s+ 1

2p+ 2

)
, s = 0, . . . , p

of the p-th order Chebyshev polynomial as interpolation nodes and define the associated Lagrange polyno-
mials of order p

Ls(x) :=

p∏
t=0,t6=s

x− xt
xs − xt

.
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These polynomials can be used for interpolating on an arbitrary interval [a, b] by employing an affine trans-
form (

T
[a,b]
aff

)−1
(x) := 2

x− a
b− a

− 1, x ∈ [a, b]

from [a, b] to [−1, 1] and computing the s-th Lagrange polynomial on [a, b] by means of

L[a,b]
s (x) := Ls

((
T

[a,b]
aff

)−1
(x)
)
.

This is equivalent to transforming the nodes xs to [a, b] via

x[a,b]
s := T

[a,b]
aff (xs) = a+ (b− a)

xs + 1

2
.

The interpolation can be extended from an one-dimensional interval [a, b] to an (n + 1)-dimensional box
Bν = [a1, b1]× · · · × [an+1, bn+1] by generating the tensor-product polynomials

Lνs (x) :=
(
L[a1,b1]
s1 ⊗ · · · ⊗ L[an+1,bn+1]

sn+1

)
(x) =

n+1∏
i=1

L[ai,bi]
si (xi)

with s ∈ K := {0, . . . , p}n+1 ⊂ Nn+1
0 . This allows us to interpolate a function f : Bν → R via(

Iνp [f ]
)

(x) =
∑
s∈K

f(xνs )Lνs (x),

where the xνs correspond to the interpolation points of Lνs , i.e.

xνs :=
(
x[a1,b1]
s1 , . . . , x[an+1,bn+1]

sn+1

)
, s ∈ K.

Remark 4.1. If one of the cluster’s dimensions is zero (i.e. ai = bi for some i ∈ {1, . . . , n + 1}), our
definition of interpolation polynomials does not make sense. Therefore, the interpolation polynomials in that
direction are then simply replaced with a single constant function.

We can extend the interpolation from above to functions that take two points in the (n+ 1)-dimensional
space as arguments. In particular, this can be applied to the kernel function, resulting in(

Iµ,νp [k]
)

(x, y) =
∑
s,t∈K

k(xµs , x
ν
t )Lµs (x)Lνt (y).

We can use this formula to approximate an entry of the system matrix, assuming that suppφi ⊂ µ and
suppφi′ ⊂ ν:

Aφi,i′ = 〈Aφi′ , φi〉L2(Γ) =

∫
ΓN

∫
ΓN

φi′(y)k(x, y)φi(x)dσxdσy

≈
∑
s,t∈K

k(xµs , x
ν
t )

(∫
ΓN

φi(x)Lµs (x)dσx

)(∫
ΓN

φi′(y)Lνt (y)dσy

)
.

(4.17)

This approximation will of course only be valid when the kernel function is sufficiently smooth, which
corresponds to the µ and ν being distant. We specify this in the following

Definition 4.2 (Admissibility condition). Two cluster µ and ν are said to satisfy the admissibility condition
with admissibility constant η, if max{diam(µ),diam(ν)} < η dist(µ, ν).

Similar to Subsection 3.5, the actual implementation will make use of the stronger condition

max{diam(Bµ),diam(Bν)} < η dist(Bµ, Bν) (4.18)

on the clusters’ bounding boxes. Cluster pairs (and corresponding matrix blocks) that fulfill this condition
will be called admissible.

In order to achieve our goal of providing a low-rank approximation of entire matrix blocks, we formalize
the terms in equation (4.17):
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Figure 4.4: Hierarchical subdivision of a system matrix into admissible (green) and inadmissible (red) blocks.

Definition 4.3 (Cluster basis). Let T be a cluster tree. We call the family of matrices
(
V µφ
)
µ∈T with

(
V µφ
)
i,s

:=

∫
ΓN

φi(x)Lµs (x)dσx, i ∈ Iµ, s ∈ K (4.19)

a cluster basis of T .

Note that the cluster basis is completely decoupled from the kernel function, which is taken care of in
the following

Definition 4.4. For admissible clusters µ and ν, the corresponding coupling matrix is defined as

(Sµ,ν)s,t := k(xµs , x
ν
t ), s, t ∈ K.

We can now write the entire matrix block corresponding to the clusters µ and ν as Aφµ,ν ≈ V
µ
φ S

µ,ν(V νφ )T ,

whose storage requires (#µ + #ν)#K + #K2 entries, which, for large clusters (i.e. #µ,#ν � #K), is
significantly lower than the original cost of #µ#ν. Moreover, the following proposition from [3, 4] allows us
to control the error introduced by this approximation.

Proposition 4.5 (Error estimate). Let k satisfy the decay condition (2.2). For two admissible clusters µ
and ν as well as corresponding stable p-th order interpolation operators Iµp and Iνp , the interpolation error
for k is bounded by∥∥k − (Iµp ⊗ Iνp )[k]

∥∥
L∞(Bµ×Bν)

. E(p, η) :=
1

dist(Bµ, Bν)2q+n

(
η

η + C

)p
for some constant C.

Remark 4.6. As the lower bound for dist(Bµ, Bν) scales with hN for admissible clusters, p needs to be
increased like log(N) in order to maintain sufficient accuracy. As our complexity estimates will depend on
#K = (p+ 1)n+1 ∼ (log(N))n+1, the overall complexity of the algorithm will be linear-polylogarithmic.

4.2. Determining nearfield and farfield

We have now obtained a low-rank approximation for large parts of the system matrix. Our next goal
is to efficiently determine where this approximation is applicable, i.e. to cover a large part of the system
matrix with admissible blocks.

On the one hand, the storage savings which can be obtained by the approximation improve with increasing
size of the individual blocks. On the other hand, when the two cluster bounding boxes in the admissibility
condition (4.18) differ significantly in size, the max-condition is quite inefficient. We will thus only consider
admissible blocks where both clusters have the same level (and thus should be of similar size). Due to this
reasoning, we obtain the list of admissible blocks by means of a recursive algorithm which is also illustrated
in Figure 4.4: Starting with (ΓN ,ΓN ), the current cluster pair is checked for admissibility and, if admissible,
added to a set Lfar storing the farfield. Otherwise, the admissibility check will be performed on all possible
pairs of son clusters for the two original clusters. When we arrive at a pair of inadmissible leaf clusters, it
is added to the nearfield set Lnear. This scheme provides us with a so-called block cluster tree [11].
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Remark 4.7. The low-rank approximation is only useful when its storage requirement ((#µ + #ν)#K +
#K2) is significantly smaller than #µ#ν, which corresponds to #µ,#ν � #K. To achieve this, we require
the leaf size to be of the same order of magnitude as #K. In contrast, #leaf,max ∼ md̃ was chosen for the
Tausch-White wavelets (cf. Remark 3.8).

Remark 4.8. The block cluster structure of the nearfield makes it possible to store it in a block-sparse
matrix as described in Remark 3.17.

Thanks to the use of the admissibility condition, the size of the block cluster tree generated this way is
bounded [8]:

Proposition 4.9. The cardinality of a block cluster tree (and therefore its leaf count, too) constructed as
described above is bounded by C(η, n)N . This also provides an upper bound for the algorithm’s runtime.

Each possible pair of simplices is contained in exactly one leaf block cluster, i.e.⋃̇
(µ,ν)∈Lnear∪Lfar

(µ, ν) = {πi : πi ⊂ ΓN} × {πi : πi ⊂ ΓN}.

Due to the second property, the matrix blocks corresponding to the leaf block clusters cover the entire
system matrix. Consequently, the following parts are already sufficient for a complete approximation:

1. The cluster basis V µφ for all clusters µ ∈ T ,

2. the nearfield blocks Aφµ,ν for all cluster blocks (µ, ν) ∈ Lnear and

3. the coupling matrices Sµ,ν for all cluster blocks (µ, ν) ∈ Lfar.

These coefficients will be computed once and reused for every application of the matrix-vector product.

Remark 4.10. Every coupling matrix consists of #K2 = (p+ 1)2(n+1) entries. For practical applications,
values in the range of p = 5 are not unusual and lead to large values of #K2. The whole method’s memory
requirements are therefore dominated by the coupling matrices.

4.3. Computing the matrix-vector product

We will now use the coefficients obtained in the previous subsections to actually approximate the matrix-
vector product. Using the block cluster structure from above, we can write it as

yφ = Aφxφ ≈ (Aφnear +Aφfar)x
φ =

∑
(µ,ν)∈Lnear

Aφµ,νx
φ
ν +

∑
(µ,ν)∈Lfar

V µφ S
µ,ν
(
V νφ
)T
xφν , (4.20)

where the products Aφµ,νx
φ
ν and V µφ S

µ,ν
(
V νφ
)T
xφν are meant to have the same index structure as yφµ, i.e. the

corresponding addition is performed as e.g. yφµ := yφµ +Aφµ,νx
φ
ν . This approach can be further optimized by

eliminating redundant computations: A naive approach will compute the product
(
V νφ
)T
xφν once per block

cluster rather than just once per cluster. Similarly, one can optimize the multiplication with V µφ to obtain

∑
(µ,ν)∈Lfar

V µφ S
µ,ν
(
V νφ
)T
xφν =

∑
µ∈T

V µφ

( ∑
(µ,ν)∈Lfar

Sµ,ν
(
V νφ
)T
xφν

)
.

This corresponds to computing the matrix-vector product in four distinct steps:

1. Forward transformation: Compute xν := (V νφ )Txφν for each cluster ν ∈ T .

2. Coupling: Apply the coupling matrices by means of yµ :=
∑

(µ,ν)∈Lfar
Sµ,νxν .

3. Backward transformation: Initialize yφ with zeroes and perform the addition yφµ := yφµ+V µφ y
µ for each

cluster µ ∈ T .

4. Nearfield: For each leaf cluster µ, add the corresponding nearfield blocks: yφµ := yφµ+
∑

(µ,ν)∈Lnear
Aφµ,νx

φ
ν .
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Remark 4.11. The vectors xν and yµ are not just re-indexed versions of xφ and yφ, but rather individual
temporary vectors for every single cluster. They each contain #K entries.

As both the nearfield and the farfield consist of a linear number of block clusters, steps 2 and 4 can be
performed with linear complexity [4]). In contrast, steps 1 and 3 operate on all basis functions for each
level, leading to linear-logarithmic cost. The upcoming subsection will be concerned with eliminating this
remaining logarithm.

4.4. Nested cluster basis

The cause for the linear-logarithmic cost in the matrix-vector product is the structure of the cluster basis:
the row count of a particular matrix of the cluster basis is equal to the corresponding cluster’s cardinality.
Therefore, computing the interactions for all clusters on a single level will already require O(N) interactions,
resulting in O(N log(N)) computations overall.

This obstacle can be overcome by harnessing the recursive nature of the cluster structure. Remember
that the cluster basis was constructed on the Lagrange interpolation polynomials up to a particular degree
p. Although the interpolation nodes differ between clusters, their span is always identical to the (n+ 1)-fold
tensor product of the space of one-dimensional polynomials of order p:

span {Lµs : s ∈ K} = span {Lνt : t ∈ K} ≡ Pn+1
p

In particular, the Lagrange polynomials from one cluster µ can be written as linear combinations of the
Lagrange polynomials from any other cluster ν:

Lµs =
∑
t′∈K

T ν,µt′,sL
ν
t′ , s ∈ K. (4.21)

To obtain actual values for these translation coefficients, we repeat the Lagrange polynomial’s interpolation
property:

Lνt′(xνt ) = δt′t, t, t′ ∈ K. (4.22)

Evaluating both sides of equation (4.21) at xνt and inserting the identity (4.22) into the right hand side
provides us with

Lµs (xνt ) =
∑
t′∈K

T ν,µt′,sL
ν
t′(x

ν
t ) =

∑
t′∈K

T ν,µt′,sδt′t = T ν,µt,s , s, t ∈ K.

Equation (4.19) for a cluster µ can then be rewritten in terms of the entries of a son cluster µ′ as:

(
V µφ
)
i,s

=

∫
ΓN

φi(x)Lµs (x)dσx =
∑
t′∈K

Tµ
′,µ

t′,s

∫
ΓN

φi(x)Lµ
′

t′ (x)dσx =
(
V µ
′

φ Tµ
′,µ
)
i,s

(4.23)

for s ∈ K, i ∈ Iµ′ ⊂ Iµ. Hence, V µφ can be constructed in its entirety from the son clusters µson,1, . . . , µson,`µ

via

V µφ =

 V
µson,1

φ Tµson,1,µ

...

V
µson,`µ

φ Tµson,`µ ,µ

 . (4.24)

It is thus possible to discard the cluster basis matrices for non-leaf clusters and store the translation matrices
Tµson,µ for µson ≺ µ instead to achieve a reduction in storage cost from #µ#K to `µ#K2. The cluster basis
of a non-leaf cluster can still be reconstructed recursively from its son clusters. We formalize this in the
following

Definition 4.12 (Nested cluster basis). Let T be a cluster tree. We call a corresponding cluster basis(
V µφ
)
µ∈T nested, if for each non-leaf cluster µ with son clusters µson,i transfer matrices Tµson,i,µ ∈ R#K×#K

exist such that equation (4.24) is satisfied.
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We can also use this structure to reduce the complexity of the matrix-vector product: The steps with

linear-logarithmic asymptotic complexity were the first, where xν :=
(
V νφ
)T
xφν is computed for each cluster

ν ∈ T and the third, which involves the operation yφµ := yφµ + V µφ y
µ for each cluster µ ∈ T . Using the

representation (4.24), the first step can be rewritten for non-leaf clusters ν as

xν =

 V
νson,1

φ T νson,1,ν

...
V
νson,`ν

φ T νson,`ν ,ν


T  x

φ
νson,1

...
xφνson,`ν

 =

`ν∑
i=1

(T νson,i,ν)
T (
V
νson,i

φ

)T
xφνson,i

=

`ν∑
i=1

(T νson,i,ν)
T
xνson,i .

This allows us to compute the coefficient vectors xν directly for all leaf clusters and then use those coefficients
to recursively compute the father cluster’s coefficient vectors. For each non-leaf ν cluster only a constant
number of operations is required (namely `ν multiplications of (#K ×#K)-matrices and #K-row vectors),
resulting in a total runtime and memory cost of O(N#K) [12] (provided #leaf,max ∼ #K, resulting in a
total number of ∼ N

#K clusters). This justifies the name fast forward transform.

Similarly, performing the operation yφµ := yφµ +V µφ y
µ for all clusters µ ∈ T is identical to just computing

yφ
µl

=
∑
µ∈T :µl⊂µ

(
V µφ y

µ
)
µl

for all leaf clusters µl ∈ L(T ), where
(
V µφ y

µ
)
µl

denotes the restriction of V µφ y
µ

to the entries corresponding to simplices from µl. For a cluster ν ⊃ µl (and corresponding son cluster
νson ≺ ν), this sum can be split into

yφ
µl

=
∑

µ∈T\{ν}:µl⊂µ

(
V µφ y

µ
)
µl

+
(
V νφ y

ν
)
µl

=
∑

µ∈T\{ν}:µl⊂µ

(
V µφ y

µ
)
µl

+
(
V νson

φ T νson,νyν
)
µl

=
∑

µ∈T\{ν,νson}:µl⊂µ

(
V µφ y

µ
)
µl

+
(
V νson

φ (yνson + T νson,νyν)
)
µl
.

This formulation gives rise to the recursive approach of the fast backward transform, which is essentially a
reverse fast forward transform (and therefore has the same asymptotic runtime). For a non-leaf cluster ν, the
products T νson,νyν can be computed for its son clusters νson and the results are added to the corresponding
vectors yνson . The recursion can be started at the root cluster and continued down to the leaf clusters. It is

then sufficient to compute yφ
µl

= V µ
l

φ yµ
l

for all leaf clusters µl ∈ L(T ), where the vectors yµ
l

contain their
father cluster’s coefficient vectors as described above.

5. The H2-Wavelet Method

We shall now introduce a method for directly setting up the compressed system matrix in the multi-
scale basis. With a naive approach, matrix blocks corresponding to coarser-scale wavelets would require
the computation of all corresponding single-scale entries. We will thus employ the far-field approximation
presented in the previous section to directly compute those blocks in the multi-scale basis.

The asymptotic complexity estimates in the following subsections can only be maintained under the
condition that the maximum number of scaling functions and wavelets provided by a particular cluster are
each bounded by a constant CQ. For a wavelet-optimized leaf size #leaf,max ∼ md̃, this is true (cf. Remark
3.7). For our numerical experiments, however, we will choose #leaf,max ∼ #K (cf. Subsection 6.1.1). This
leads to CQ ∼ #K (and thus introduces additional logarithms due to #K = (p+1)n+1 ∼ (log(N))n+1), but
decreases the overall computation time as there are significantly fewer cluster pairs for which the (#K×#K)-
coupling matrices need to be applied. It also introduces more non-negligible matrix entries, but we will see
in Section 6 that the algorithm’s memory usage is dominated by the size of the nearfield, anyway.
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5.1. Approximation of admissible blocks

Recall that the system matrix in the multi-scale basis consists of entries of the form AΨ
k,k′ = 〈Aϑk′ , ϑk〉

with k, k′ ∈ IΨN where ϑk and ϑk′ are wavelets or scaling functions of the root cluster, respectively. For our
further considerations, we require a fast method to determine these entries. Note that we will perform the
following calculations exemplarily for the wavelet-wavelet case ϑk ≡ ψµj,k and ϑk′ ≡ ψνj′,k′ . The other cases
(where ϑk and/or ϑk′ are scaling functions rather than wavelets) can be treated analogously.

In Subsection 4.1, equation (4.17) lead us to the approximation

Aφi,i′ = 〈Aφi′ , φi〉L2(Γ) ≈
∑
s,t∈K

k(xµs , x
ν
t )

(∫
ΓN

φi(x)Lµs (x)dσx

)(∫
ΓN

φi′(y)Lνt (y)dσy

)

for admissible clusters µ ⊃ supp(φi) and ν ⊃ supp(φi′). Extending this approximation to the wavelets
(which also fulfill supp(ψµj,k) ⊂ µ and supp(ψνj′,k′) ⊂ ν) yields

AΨ
k,k′ = 〈Aψνj′,k′ , ψ

µ
j,k〉 ≈

∑
s,t∈K

k(xµs , x
ν
t )

(∫
ΓN

ψµj,k(x)Lµs (x)dσx

)(∫
ΓN

ψνj′,k′(y)Lνt (y)dσy

)
.

With this representation, we can avoid setting up the single-scale matrix block Aφµ,ν in order to compute

the entry AΨ
k,k′ . To this end, we need the following

Definition 5.1 (Multi-scale cluster basis). Let T be a cluster tree and ΦN and ΨN the sets of all scaling
functions and wavelets, respectively. The scaling function and wavelet cluster bases are the families (V µΦ )µ∈T
and (V µΨ )µ∈T of matrices defined via

(V µΦ )k,s :=

∫
ΓN

ϕµj,k(x)Lµs (x)dσx, k ∈ IΦµ , s ∈ K,

(V µΨ )k,s :=

∫
ΓN

ψµj,k(x)Lµs (x)dσx, k ∈ IΨµ , s ∈ K.

Their combination is called multi-scale cluster basis.

Note that this formulation is very similar to Definition 4.3, but for a different choice of ansatz functions.
Hence, with the scaling function basis, we can write

ÃΦ,Φ
µ,ν := V µΦ S

µ,ν (V νΦ )
T
, ÃΦ,Ψ

µ,ν := V µΦ S
µ,ν (V νΨ)

T
, ÃΨ,Φ

µ,ν := V µΨS
µ,ν (V νΦ )

T
,

or, more general,
ÃΥ,Υ′

µ,ν := V µΥS
µ,ν (V νΥ′)

T
(5.25)

with Υ,Υ′ ∈ {Φ,Ψ}.

Lemma 5.2. Let k satisfy the decay condition (2.2) and (µ, ν) be a pair of admissible clusters on a 2n-tree
with levels j and j′. For corresponding stable p-th order interpolation operators Iµp and Iνp , the error of a
single approximated matrix entry is bounded by

∣∣AΥ,Υ′

k,k′ − Ã
Υ,Υ′

k,k′

∣∣ . 2−(j+j′)n2

dist(Bµ, Bν)2q+n

(
η

η + C

)p
, Υ,Υ′ ∈ {Φ,Ψ}

for some constant C > 0.

Proof. Without loss of generality let Υ = Υ′ = Ψ. This specialization is valid because the remainder of
the proof does not rely on any special properties (i.e. vanishing moments or orthogonality) of wavelets as
opposed to scaling functions.
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Writing the approximated kernel function as k̃ :=
(
Iµp ⊗ Iνp

)
[k], we obtain the following representation

of the error: ∣∣AΨ,Ψ′

k,k′ − Ã
Ψ,Ψ′

k,k′

∣∣ =

∣∣∣∣ ∫
ΓN

∫
ΓN

ψµj,k(x)ψνj′,k′(y)[k(x, y)− k̃(x, y)]dσydσx

∣∣∣∣.
For a more fine-grained control of the error, we insert the coefficient representation (3.14) to get

∣∣AΨ,Ψ′

k,k′ − Ã
Ψ,Ψ′

k,k′

∣∣ =

∣∣∣∣∣
∫

ΓN

∫
ΓN

N∑
i=1

ωj,ki φi(x)

N∑
i′=1

ωj
′,k′

i′ φi′(y)[k(x, y)− k̃(x, y)]dσydσx

∣∣∣∣∣
=

∣∣∣∣∣
N∑

i,i′=1

ωj,ki ωj
′,k′

i√
|πi||πi′ |

∫
πi

∫
πi′

[k(x, y)− k̃(x, y)]dσydσx

∣∣∣∣∣.
We can now use the estimate from Proposition 4.5 for another simplification:

∣∣AΨ,Ψ′

k,k′ − Ã
Ψ,Ψ′

k,k′

∣∣ . N∑
i,i′=1

|ωj,ki ||ω
j′,k′

i |√
|πi||πi′ |

∫
πi

∫
πi′

E(p, η)dσydσx =

N∑
i,i′=1

|ωj,ki ||ω
j′,k′

i |
√
|πi||πi′ |E(p, η).

To conclude this part of the proof, we use Lemma 3.12 and observe

2−j
n
2 &

∫
ΓN

|ψνj,k(x)|dσx =

N∑
i=1

|ωj,ki |
∫
πi

|φi(x)|dσx =

N∑
i=1

|ωj,ki |
√
|πi|.

Inserting this estimate yields∣∣AΨ,Ψ′

k,k′ − Ã
Ψ,Ψ′

k,k′

∣∣ . 2−(j+j′)n2 E(p, η) =
2−(j+j′)n2

dist(Bµ, Bν)2q+n

(
η

η + C

)p
.

As each matrix block has at most CQ rows and columns, we can state the following

Corollary 5.3 (Error estimate for matrix blocks). Under the conditions of Lemma 5.2, the error of an
approximated matrix block is bounded by∥∥AΥ,Υ′

µ,ν − ÃΥ,Υ′

µ,ν

∥∥
2
. CQ

2−(j+j′)n2

dist(Bµ, Bν)2q+n

(
η

η + C

)p
, Υ,Υ′ ∈ {Φ,Ψ} ,

with the same constant C > 0 as in Lemma 5.2.

We will now investigate the cost of approximating a single block:

Lemma 5.4. For given coupling matrices as well as multi-scale cluster basis matrices, a single admissible
block AΥ,Υ′

µ,ν can be approximated with O(#K2) operations.

Proof. The desired approximation consists of computing the matrix products ÃΥ,Υ′

µ,ν := (V µΥS
µ,ν) (V νΥ′)

T
,

where both V µΥ and V νΥ′ will each have exactly #K columns and at most CQ rows and Sµ,ν has exactly #K
rows and columns. Therefore the effort of computing V µΥS

µ,ν can be bounded by O(CQ#K2), while the

subsequent multiplication with (V νΥ′)
T

requires an additional O(C2
Q#K) operations. As CQ is considered

to be constant, we end up with a total effort of O(#K2).

Remark 5.5 (Cost reduction). Note that a single block ÃΥ,Υ′

µ,ν only consists of at most C2
Q entries, anyway.

The approximation (5.25) is nevertheless reasonable, as it avoids setting up (and transforming) the entire
single-scale block Aφµ,ν , which would take O(#µ#ν) operations.

Keep in mind that these approximations are only valid for admissible cluster pairs (µ, ν)! In particu-
lar, the pair (ΓN ,ΓN ) of root clusters will not be admissible. We will therefore have to develop a more
sophisticated method to determine arbitrary matrix blocks later.
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5.2. The multi-scale cluster basis
In order to take advantage of the possible effort reduction of the approximation technique presented in

the previous subsection, we still need an efficient way to determine the multi-scale cluster basis. For the
sake of brevity, we will only consider the wavelet cluster basis in this subsection, but the scaling function
cluster basis can be handled identically.

Computing a single entry (V µΨ )k,s could be performed by making use of the wavelet’s representation

(3.14) in the single-scale basis:

(V µΨ )k,s =

∫
ΓN

ψµj,k(x)Lµs (x)dσx =
∑
i∈Ij,k

ωj,ki

∫
ΓN

φi(x)Lµs (x)dσx =
∑
i∈Ij,k

ωj,ki
(
V µφ
)
i,s
.

This approach would require setting up the regular cluster basis (as opposed to the nested cluster basis),
however, which also would still need to be transformed to the multi-scale basis.

Fortunately, the hierarchical structures of the nested cluster basis and the wavelet basis are identical,
which makes it possible to combine both approaches in a recursive algorithm that computes the wavelet
cluster basis. We begin by making use of the refinement relation (3.8):

V µΨ =

[∫
ΓN

(Ψµ
J)
T

(x)Lµs (x)dσx

]
s∈K

=

[∫
ΓN

(
Φµ
J+1Q

µ
J,Ψ

)T
(x)Lµs (x)dσx

]
s∈K

=
(
QµJ,Ψ

)T [∫
ΓN

(
Φµ
J+1

)T
(x)Lµs (x)dσx

]
s∈K

=
(
QµJ,Ψ

)T
V µφ ,

as Φµ
J+1 := {φi : i ∈ Iµ} consists of the single-scale basis functions corresponding to µ. For a non-leaf

cluster, we obtain

V µΨ =
(
Qµj,Ψ

)T [∫
ΓN

(
Φµ
j+1

)T
(x)Lµs (x)dσx

]
s∈K

=
(
Qµj,Ψ

)T

∫

ΓN

(
Φ
µson,1

j+1

)T
(x)Lµs (x)dσx

...∫
ΓN

(
Φ
µson,`µ

j+1

)T
(x)Lµs (x)dσx


s∈K

(4.21)
=

(
Qµj,Ψ

)T

∫

ΓN

(
Φ
µson,1

j+1

)T
(x)
∑
t′∈K T

µson,1,µ
t′,s Lµson,1

t′ (x)dσx
...∫

ΓN

(
Φ
µson,`µ

j+1

)T
(x)
∑
t′∈K T

µson,`µ ,µ

t′,s Lµson,`µ

t′ (x)dσx


s∈K

(4.23)
=

(
Qµj,Ψ

)T

∑
t′∈K T

µson,1,µ
t′,s

∫
ΓN

(
Φ
µson,1

j+1

)T
(x)Lµson,1

t′ (x)dσx
...∑

t′∈K T
µson,`µ ,µ

t′,s

∫
ΓN

(
Φ
µson,`µ

j+1

)T
(x)Lµson,`µ

t′ (x)dσx


s∈K

(4.24)
=

(
Qµj,Ψ

)T  V
µson,1

Φ Tµson,1,µ

...

V
µson,`µ

Φ Tµson,`µ ,µ

 .
Therefore, the multi-scale cluster basis can be computed recursively by simply transforming the correspond-
ing son clusters’ scaling function bases in O(N#K2) operations. It has storage cost O(N#K).

5.3. Recursive computation of inadmissible matrix blocks
As mentioned before, we have yet to provide a fast method for approximating inadmissible blocks of

the multi-scale matrix. In that case, we can employ the refinement relation (3.8) write a block AΥ,Υ′

µ,ν

(Υ,Υ′ ∈ {Φ,Ψ}) in terms of the corresponding son clusters’ blocks:

AΥ,Υ′

µ,ν =
[
〈A(Υ′

ν
)T ,Υµ〉

]
=
(
QµΥ
)T  〈A(Φνson,1)T ,Φµson,1〉 · · · 〈A(Φνson,`ν )T ,Φµson,1〉

...
...

〈A(Φνson,1)T ,Φµson,`µ 〉 · · · 〈A(Φνson,`ν )T ,Φµson,`µ 〉

QνΥ′

= (QµΥ)
T

A
Φ,Φ
µson,1,νson,1

· · · AΦ,Φ
µson,1,νson,`ν

...
...

AΦ,Φ
µson,`µ ,νson,1

· · · AΦ,Φ
µson,`µ ,νson,`ν

QνΥ′ ,
(5.26)
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provided both µ and ν are non-leaf clusters.

Remark 5.6. As these considerations are not dependent of any levels, we will omit the level index j in the
following.

All admissible blocks for the son clusters can then be approximated by means of (5.25), while the
subdivision is repeated recursively for inadmissible blocks until one or both clusters are leaves. If only one
of the clusters is a leaf, the subdivision process can be continued with

AΥ,Υ′

µ,ν =
[
AΥ,Φ
µ,νson,1

, . . . , AΥ,Φ
µ,νson,`ν

]
QνΥ′ (5.27)

in the case of ν being a non-leaf cluster, or with

AΥ,Υ′

µ,ν = (QµΥ)
T


AΦ,Υ′

µson,1,ν

...

AΦ,Υ′

µson,`µ ,ν

 (5.28)

for a non-leaf cluster µ. In the case of two inadmissible leaf clusters, (µ, ν) will belong to the nearfield. It
is then possible to simply transform the corresponding single-scale nearfield block:

AΥ,Υ′

µ,ν = (QµΥ)
T
Aφµ,νQ

ν
Υ′ . (5.29)

Note that, in contrast to theH2-method, the multi-scale matrix also contains blocks where the corresponding
clusters’ levels differ. In this case, we refrain from immediately employing the symmetric subdivision (5.26)
but rather only subdivide ν as in (5.27) (for jµ > jν) or µ via (5.28) (for jµ < jν). These thoughts are
condensed in the following function:

Function recursivelyDetermineMatrixBlock(µ, ν, Υ, Υ′)

Result: Approximation of the block AΥ,Υ′

µ,ν .

begin
if (µ, ν) is admissible then

return V µΥS
µ,ν (V νΥ′)

T
;

else if µ and ν are leaf clusters then

return (QµΥ)
T
Aφµ,νQ

ν
Υ′ ;

else if ν is not a leaf cluster and (µ is a leaf cluster or jµ > jν) then
for νson ≺ ν do

compute AΥ,Φ
µ,νson

:= recursivelyDetermineMatrixBlock(µ, νson,Υ,Φ);

return
[
AΥ,Φ
µ,νson,1

, . . . , AΥ,Φ
µ,νson,`ν

]
QνΥ′ ;

else if µ is not a leaf cluster and (ν is a leaf cluster or jµ < jν) then
for µson ≺ µ do

compute AΦ,Υ′

µson,ν := recursivelyDetermineMatrixBlock(µson, ν,Φ,Υ
′);

return (QµΥ)
T


AΦ,Υ′

µson,1,ν

...

AΦ,Υ′

µson,`µ ,ν

;

else // (µ, ν) is an inadmissible pair of non-leaf clusters and jµ = jν
for µson ≺ µ and νson ≺ ν do

compute AΦ,Φ
µson,νson

:= recursivelyDetermineMatrixBlock(µson, νson,Φ,Φ);

return (QµΥ)
T

A
Φ,Φ
µson,1,νson,1

· · · AΦ,Φ
µson,1,νson,`ν

...
...

AΦ,Φ
µson,`µ ,νson,1

· · · AΦ,Φ
µson,`µ ,νson,`ν

QνΥ′ ;
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Remark 5.7. The expressions (5.25) to (5.29) can all be calculated in constant time, as the row and column
counts of all involved matrices are bounded by CQ. This does not mean that a call to recursivelyDeter-

mineMatrixBlock will always take constant time, however: we did not yet estimate how the impact of
recursivelyDetermineMatrixBlock calling itself recursively. This will be analyzed later.

Remark 5.8. As (µ, ν) is not always an element of the block cluster tree (e.g. when the levels of µ and
ν differ), the coupling matrix Sµ,ν might have not been precomputed. It can be computed on the fly in
O(#K2) operations. For the H2-wavelet method, it is in fact advisable not to prepare the coupling matrices
in advance, as each will be used only a few times while consuming large amounts of memory.

We shall prove an error estimate:

Lemma 5.9. Suppose that the submatrices AΦ,Φ
µson,i,µson,i′

from the complete subdivision formula (5.26) are

each approximated with an error of at most∥∥AΦ,Φ
µson,i,µson,i′

− ÃΦ,Φ
µson,i,µson,i′

∥∥
2
< ε, 1 ≤ i ≤ `µ, 1 ≤ i′ ≤ `ν .

Then, the error of the resulting approximation ÃΥ,Υ′

µ,ν is then bounded by
√
`µ`νε.

Proof. As the multi-scale transformation matrices are submatrices of orthogonal matrices, their spectral
norm will be at most 1. This leads to∥∥AΥ,Υ′

µ,ν − ÃΥ,Υ′

µ,ν

∥∥
2

=

∥∥∥∥∥∥∥∥(QµΥ)
T


AΦ,Φ
µson,1,νson,1

− ÃΦ,Φ
µson,1,νson,1

· · · AΦ,Φ
µson,1,νson,`ν

− ÃΦ,Φ
µson,1,νson,`ν

...
...

AΦ,Φ
µson,`µ ,νson,1

− ÃΦ,Φ
µson,`µ ,νson,1

· · · AΦ,Φ
µson,`µ ,νson,`ν

− ÃΦ,Φ
µson,`µ ,νson,`ν

QνΥ′
∥∥∥∥∥∥∥∥

2

≤
∥∥ (QµΥ)

T ∥∥
2︸ ︷︷ ︸

≤1

∥∥∥∥∥∥∥∥

AΦ,Φ
µson,1,νson,1

− ÃΦ,Φ
µson,1,νson,1

· · · AΦ,Φ
µson,1,νson,`ν

− ÃΦ,Φ
µson,1,νson,`ν

...
...

AΦ,Φ
µson,`µ ,νson,1

− ÃΦ,Φ
µson,`µ ,νson,1

· · · AΦ,Φ
µson,`µ ,νson,`ν

− ÃΦ,Φ
µson,`µ ,νson,`ν


∥∥∥∥∥∥∥∥

2

∥∥QνΥ′∥∥2︸ ︷︷ ︸
≤1

≤

√√√√ `µ∑
i=1

`ν∑
i′=1

∥∥AΦ,Φ
µson,i,µson,i′ − Ã

Φ,Φ
µson,i,µson,i′

∥∥2

2
<
√
`µ`νε2 =

√
`µ`νε.

The proof of the following corollary is almost identical:

Corollary 5.10 (Error estimate for equations (5.27) and (5.28)). Suppose that the submatrices from the
partial subdivision formulae (5.27) and (5.28) are each approximated with an error of at most ε. The error
of the resulting approximation ÃΥ,Υ′

µ,ν is then bounded by
√
`νε in the case of (5.27) and

√
`µε for (5.28).

Combined with Corollary 5.3, this allows us to provide a meaningful bound for the approximation error
of an arbitrary matrix block:

Theorem 5.11 (Error estimate for recursivelyDetermineMatrixBlock). Let T be a balanced 2n-cluster
tree with maximum level J and cdiam be the constant such that diam(µ) ∼ 2−jµ is fulfilled with

cdiam2−jµ ≤ diam(µ) (5.30)

for all clusters µ ∈ T . The error of a matrix block ÃΥ,Υ′

µ,ν ,Υ,Υ′ ∈ {Φ,Ψ} approximated by means of
recursivelyDetermineMatrixBlock is bounded by∥∥AΥ,Υ′

µ,ν − ÃΥ,Υ′

µ,ν

∥∥
2
≤ c0CQ2−

jµ+jν
2 n

(
η2J

cdiam

)2q+n(
η

η + C

)p
, (5.31)

provided that the error is not dominated by that of the nearfield Aφnear.
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Proof. In the case of two leaf clusters, the nearfield approximation (which by assumption is sufficiently
accurate) is employed.

The next case is that of an admissible pair (µ, ν) where no recursion is necessary. Then, Corollary 5.3
can be applied: ∥∥AΥ,Υ′

µ,ν − ÃΥ,Υ′

µ,ν

∥∥
2
≤ c0CQ

2−(jµ+jν)n2

dist(Bµ, Bν)2q+n

(
η

η + C

)p
. (5.32)

From the admissibility condition (4.18) and equation (5.30), we deduce

η dist(Bµ, Bν) > max{diam(µ),diam(ν)} ≥ cdiam max{2−jµ , 2−jν} = cdiam2−min{jµ,jν} ≥ cdiam2−J ,

which can be inserted into (5.32) for

∥∥AΥ,Υ′

µ,ν − ÃΥ,Υ′

µ,ν

∥∥
2
< c0CQ2−

jµ+jν
2 n

(
η2J

cdiam

)2q+n(
η

η + C

)p
=: εjµ+jν . (5.33)

In the remaining cases, one of the equations (5.26) to (5.28) is used and Lemma 5.9 and Corollary 5.10
(with `µ ≡ 2n, µ ∈ T , as we are considering a 2n-tree) can be employed. This allows us to use induction
over the cluster levels:

In the base case of jµ + jν = 2J , both µ and ν are leaves and the (sufficiently accurate) nearfield matrix

will be used. Thus (5.31) holds for all blocks ÃΥ,Υ′

µ,ν corresponding to two leaf clusters µ and ν.

Now let j̃ be such that (5.31) holds for all approximated blocks ÃΥ?,Υ′?

µ?,ν? belonging to any cluster pairs

(µ?, ν?) whose cluster levels fulfill jµ? + jν? ≥ j̃. We will show that equation (5.31) then also holds for all

approximated blocks ÃΥ,Υ′

µ,ν with jµ + jν = j̃ − 1.
Admissible cluster pairs and pairs of leaf clusters have already been treated above. The other cases are

as follows:

• When (5.26) is used, all pairs (µson, νson) of son clusters under consideration fulfill jµson
+ jνson

=
jµ + 1 + jν + 1 = j̃ + 1 and thus the induction assumption is applicable:∥∥AΦ,Φ

µson,νson
− ÃΦ,Φ

µson,νson

∥∥
2
< εjµson+jνson

= ε(jµ+1)+(jν+1).

Lemma 5.9 and (5.33) then provide

∥∥AΥ,Υ′

µ,ν − ÃΥ,Υ′

µ,ν

∥∥
2
< 2nε(jµ+1)+(jν+1) = c0CQ2−

jµ+jν
2 n

(
η2J

cdiam

)2q+n(
η

η + C

)p
= εjµ+jν .

• For (5.27), we have jµ + jνson
= jµ + jν + 1 = j̃ and thus∥∥AΥ,Φ′

µ,νson
− ÃΥ,Φ

µ,νson

∥∥
2
< εjµ+jνson

= εjµ+(jν+1),

yielding

∥∥AΥ,Υ′

µ,ν − ÃΥ,Υ′

µ,ν

∥∥
2
< 2

n
2 εjµ+(jν+1) = c0CQ2−

jµ+jν
2 n

(
η2J

cdiam

)2q+n(
η

η + C

)p
= εjµ+jν

with Corollary 5.10 and (5.33).

• Finally, the case of (5.28) is analogous to the previous one.
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5.4. Setting up the compressed system matrix

We are now able to approximate arbitrary blocks of the multi-scale system matrix. It remains to combine
this method with Algorithm 3.2 for an efficient means of setting up the a-priori compressed matrix.

As mentioned in Remark 5.7, calling recursivelyDetermineMatrixBlock for an arbitrary block can
have non-constant runtime. The naive approach of enumerating all non-negligible blocks by Algorithm
3.2 and then calling recursivelyDetermineMatrixBlock for each will therefore take unacceptably long.
Fortunately, it is possible to exploit the hierarchical structure of the cluster tree to reuse the matrix blocks
for the computation of the corresponding father cluster’s blocks, similar to the formulae (5.27) and (5.28).

The general structure of the algorithm is similar to that of Algorithm 3.2, but we now need to examine
the column clusters in a particular order: As we reuse the son clusters’ matrix blocks, they need to be
computed before their father’s. Therefore, the column clusters will not simply be iterated over, but instead
traversed recursively according to the cluster tree in the function setupColumn. For each column cluster,
a second recursion setupRow similar to checkCutOffCriterionRecursively is then performed in order to
cover all corresponding non-negligible row clusters. Each call to setupRow(µ, ν) will store the corresponding
matrix block ÃΨ,Ψ

µ,ν into the compressed system matrix ÃΨ and return ÃΦ,Ψ
µ,ν for reuse in the father clusters.

In the recursion for the row clusters ν, we distinguish between leaf and non-leaf column clusters µ,
which are treated in the functions handleRowClusterNonLeaf and handleRowClusterLeaf. Note that these
functions have only been introduced for clarity. They could be inlined into setupRow and they actually share
some variables (j, j′, ÃΦ,Ψ

µ,ν , Ã
Ψ,Ψ
µ,ν ) with that function.

In handleRowClusterNonLeaf, we iterate over µ’s son clusters µson and check if the corresponding cluster
pairs belong to non-negligible matrix blocks (i.e. dist(Bµson

, Bν) ≤ Bjµson ,jν
). If they do, the recursion is

continued by calling setupRow(µson, ν).
If the pair (µ, ν) is admissible, we then employ recursivelyDetermineMatrixBlock (which in the case

of admissible pairs uses the farfield approximation (5.25)) to directly compute ÃΦ,Ψ
µ,ν and ÃΨ,Ψ

µ,ν . Otherwise,

the remaining matrices ÃΦ,Ψ
µson,ν (i.e. those which haven’t yet been computed by calling setupRow(µson, ν))

are determined via recursivelyDetermineMatrixBlock(µson, ν) and used to calculate

[
ÃΦ,Ψ
µ,ν

ÃΨ,Ψ
µ,ν

]
:= [QµΦ, Q

µ
Ψ]
T


ÃΦ,Ψ
µson,1,ν

...

ÃΦ,Ψ
µson,`µ ,ν

 .
For leaf clusters µ, setupRow instead calls handleRowClusterLeaf, which in addition to ÃΦ,Ψ

µ,ν and ÃΨ,Ψ
µ,ν

(which are needed by setupRow) also computes ÃΦ,Φ
µ,ν and ÃΨ,Φ

µ,ν for reuse by ν’s father clusters. If (µ, ν)
is admissible or ν is a leaf cluster, these blocks are again computed by simply calling recursivelyDe-

termineMatrixBlock four times. For inadmissible pairs with ν being not a leaf, the blocks can be taken
from [

ÃΦ,Φ
µ,ν ÃΦ,Ψ

µ,ν

ÃΨ,Φ
µ,ν ÃΨ,Ψ

µ,ν

]
:=

[
ÃΦ,Φ
µ,νson,1

· · · ÃΦ,Φ
µ,νson,`ν

ÃΨ,Φ
µ,νson,1

· · · ÃΨ,Φ
µ,νson,`ν

]
[QνΦ, Q

ν
Ψ] .

The blocks ÃΦ,Φ
µ,νson

and ÃΨ,Φ
µ,νson

are provided by either loading them from the store (if they have been
stored in a previous call to handleRowClusterLeaf) or calling recursivelyDetermineMatrixBlock if the
clusters satisfy the cut-off condition. This will allow us to later estimate the recursion depth of the call to
recursivelyDetermineMatrixBlock. The last step consists of storing ÃΦ,Φ

µ,ν and ÃΨ,Φ
µ,ν for reuse.

Finally, it remains to compute the matrix entries ÃΦ,Φ
ΓN ,ΓN

and ÃΨ,Φ
µ,ΓN

, µ ∈ T corresponding to scaling

functions on the coarsest level. Fortunately, handleRowClusterLeaf has already stored the blocks ÃΦ,Φ
µ,ΓN

as

well as ÃΨ,Φ
µ,ΓN

for all leaf clusters µ ∈ L(T ). They can be used for the computation of the remaining blocks
by means of applying a discrete wavelet transform similar to Algorithm 3.1.

These steps are schematically described in Algorithm 5.1 and the subsequent functions.
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Algorithm 5.1: Recursive computation of the compressed multi-scale system matrix

Data: Cluster tree T , cut-off parameters a and d′, nearfield matrix Aφnear, multi-scale basis and
wavelet transformation matrices V µΦ , V µΨ , QµΦ, and QµΨ, µ ∈ T .

Result: Sparse matrix ÃΨ containing the compressed multi-scale system matrix.
begin

ÃΨ := [0]k,k′∈IΨN ;

setupColumn(ΓN );

store the blocks ÃΨ,Φ
µ,ΓN

, µ ∈ L(T ) (got in handleRowClusterLeaf) as part of ÃΨ;

apply a partial discrete wavelet transform (cf. Algorithm 3.1) to ÃΦ,Φ
µ,ΓN

, µ ∈ L(T ) (also got in

handleRowClusterLeaf) in order to compute the remaining blocks ÃΨ,Φ
µ,ΓN

, µ ∈ T \ L(T ) and

ÃΦ,Φ
ΓN ,ΓN

, then store them as part of ÃΨ and erase the blocks ÃΦ,Φ
µ,ΓN

, µ ∈ L(T );

Function setupColumn(ν)

begin
for νson ≺ ν do

setupColumn(νson);

store ÃΦ,Ψ
ΓN ,ν

:= setupRow(ΓN , ν) as part of ÃΨ;

Function setupRow(µ, ν)

begin
if µ is not a leaf then

handleRowClusterNonLeaf(µ, ν);
else

handleRowClusterLeaf(µ, ν);

store ÃΨ,Ψ
µ,ν as part of ÃΨ;

return ÃΦ,Ψ
µ,ν ;

Function handleRowClusterNonLeaf(µ, ν)

begin
for µson ≺ µ do

if dist(Bµson
, Bν) ≤ Bjµson ,jν

then

ÃΦ,Ψ
µson,ν := setupRow(µson, ν);

if (µ, ν) is admissible then

ÃΦ,Ψ
µ,ν := recursivelyDetermineMatrixBlock(µ, ν,Φ,Ψ);

ÃΨ,Ψ
µ,ν := recursivelyDetermineMatrixBlock(µ, ν,Ψ,Ψ);

else
for µson ≺ µ do

if dist(Bµson
, Bν) > Bjµson ,jν

then

ÃΦ,Ψ
µson,ν := recursivelyDetermineMatrixBlock(µson, ν,Φ,Ψ);

[
ÃΦ,Ψ
µ,ν

ÃΨ,Ψ
µ,ν

]
:= [QµΦ, Q

µ
Ψ]
T


ÃΦ,Ψ
µson,1,ν

...

ÃΦ,Ψ
µson,`µ ,ν

;
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Function handleRowClusterLeaf(µ, ν)

begin
if (µ, ν) is admissible or ν is a leaf cluster then

ÃΦ,Φ
µ,ν := recursivelyDetermineMatrixBlock(µ, ν,Φ,Φ);

ÃΨ,Φ
µ,ν := recursivelyDetermineMatrixBlock(µ, ν,Ψ,Φ);

ÃΦ,Ψ
µ,ν := recursivelyDetermineMatrixBlock(µ, ν,Φ,Ψ);

ÃΨ,Ψ
µ,ν := recursivelyDetermineMatrixBlock(µ, ν,Ψ,Ψ);

else
for νson ≺ ν do

if dist(Bµ, Bνson
) ≤ Bjµ,jνson

then

load stored ÃΦ,Φ
µ,νson

and ÃΨ,Φ
µ,νson

;

else

ÃΦ,Φ
µ,νson

:= recursivelyDetermineMatrixBlock(µ, νson,Φ,Φ);

ÃΨ,Φ
µ,νson

:= recursivelyDetermineMatrixBlock(µ, νson,Ψ,Φ);[
ÃΦ,Φ
µ,ν ÃΦ,Ψ

µ,ν

ÃΨ,Φ
µ,ν ÃΨ,Ψ

µ,ν

]
:=

[
ÃΦ,Φ
µ,νson,1

· · · ÃΦ,Φ
µ,νson,`ν

ÃΨ,Φ
µ,νson,1

· · · ÃΨ,Φ
µ,νson,`ν

]
[QνΦ, Q

ν
Ψ];

for νson ≺ ν do
if dist(Bµ, Bνson

) ≤ Bjµ,jνson
then

erase stored ÃΦ,Φ
µ,νson

and ÃΨ,Φ
µ,νson

;

store ÃΦ,Φ
µ,ν and ÃΨ,Φ

µ,ν ;

Remark 5.12. Algorithm 5.1 is not limited to symmetric matrices. To avoid unnecessary computations,
a slightly modified version of the algorithm (which takes the symmetry of the single-layer potential operator
into account) has been used for obtaining the numerical results in Section 6.

In order to maintain memory efficiency, the temporary matrix blocks stored by handleRowClusterLeaf

must not increase the overall storage requirements of the algorithm. This is validated by the following

Lemma 5.13. The temporary matrix blocks ÃΦ,Φ
µ,ν and ÃΨ,Φ

µ,ν for µ ∈ L(T ) that are stored at the end of
handleRowClusterLeaf require at most O(N log(N)) additional memory.

Proof. According to the proof of Theorem 3.16, there are O(N log(N)) cluster pairs that do not satisfy the
cut-off condition. As setupRow(µ, ν) (and thus handleRowClusterLeaf(µ, ν)) only gets called when µ and
ν are closer than the cut-off parameter and each call to handleRowClusterLeaf only stores two matrix
blocks, there will be at most O(N log(N)) temporary blocks in total. Each of these has at most CQ (i.e. a
constant number of) rows and columns, leading to an overall additional memory cost of O(N log(N)).

Remark 5.14. Storing these blocks ensures that recursivelyDetermineMatrixBlock will only be called
for blocks that satisfy the cut-off condition, which in turn is required for the following cost estimates.

In order to estimate the overall computation time of Algorithm 5.1, we first need to prove that the
recursion depth of all calls to recursivelyDetermineMatrixBlock made in handleRowClusterNonLeaf

and handleRowClusterLeaf will be bounded by a constant. This implies that the total runtime of each call
to recursivelyDetermineMatrixBlock is constant as well.

Lemma 5.15 (Recursion depth estimate for calls to recursivelyDetermineMatrixBlock). Let T be a
balanced 2n-cluster tree and Cdiam be the constant such that diam(Bµ) ∼ 2−jµ is fulfilled with

diam(Bµ) ≤ Cdiam2−jµ (5.34)
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for all clusters µ ∈ T . Let µ and ν be clusters which correspond to a negligible matrix block, i.e.

dist(Bµ, Bν) > Bj,j′ . (5.35)

Then the recursion depth of recursivelyDetermineMatrixBlock(µ, ν,Υ,Υ′) is bounded by a constant

δj :=

⌈
log2

(
Cdiam

ηa

)⌉
.

In particular, max{jµ? − jµ, jν? − jν} ≤ δj holds for all cluster pairs (µ?, ν?) that are visited by recursive
calls to recursivelyDetermineMatrixBlock.

Proof. We begin by proving that all pairs (µ?, ν?) of subclusters µ? ⊂ µ, ν? ⊂ ν which satisfy

min{jµ? , jν?} −min{jµ, jν} ≥ log2

(
Cdiam

ηa

)
will be admissible, provided that µ and ν fulfill equation (5.35). Therefore, for (µ?, ν?) the farfield approxi-
mation can be employed and the recursion ends. It could of course already have ended earlier, if µ? and ν?

already are leaf clusters, but this does not need to be considered here. To this end, we first insert

dist(Bµ, Bν) > Bjµ,jν = amax

{
2−min{jµ,jν}, 2

2J(d′−q)−(jµ+jν )(d′+d̃)

2(d̃+q)

}
≥ a2−min{jµ,jν}.

The admissibility condition (4.18) for subclusters µ? ⊂ µ, ν? ⊂ ν reads

max{diam(Bµ?),diam(Bν?)} < η dist(Bµ? , Bν?).

Applying equation (5.34) to the left-hand side yields

max{diam(Bµ?),diam(Bν?)} ≤ Cdiam max
{

2−jµ? , 2−jν?
}

= Cdiam2−min{jµ? ,jν?}.

As
dist(Bµ? , Bν?) ≥ dist(Bµ, Bν) > a2−min{jµ,jν}

holds, the condition

ηa2−min{jµ,jν}
!
≥ Cdiam2−min{jµ? ,jν?}

is sufficient for the admissibility of (µ?, ν?). With the definition δj = min{jµ? , jν?} −min{jµ, jν}, we can
rewrite this as

2min{jµ? ,jν?}−min{jµ,jν}
!
≥ Cdiam

ηa
⇐⇒ δj

!
≥ log2

(
Cdiam

ηa

)
.

Rounding up to the next integer gives

δj =

⌈
log2

(
Cdiam

ηa

)⌉
.

It remains to show that each recursion step actually corresponds to an increase of the minimum level
of the arguments. Otherwise, there could be more than δj recursion steps before the minimum level has
actually increased by δj. For this purpose, we show that if recursivelyDetermineMatrixBlock(µ, ν, . . . )
calls recursivelyDetermineMatrixBlock(µ, ν, . . . ), then min{jµ, jν} = min{jµ, jν}+ 1 holds. Recall that
there are three possibilities which result in a call to recursivelyDetermineMatrixBlock(µ, ν, . . . ):

1. ν is not a leaf cluster and (µ is a leaf cluster or jµ > jν).

2. µ is not a leaf cluster and (ν is a leaf cluster or jµ < jν).
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3. Otherwise: neither µ nor ν are leaves and jµ = jν .

In the first case, recursivelyDetermineMatrixBlock(µ, νson, . . . ) is called for a son cluster νson of ν. As T
is a balanced cluster tree, jµ > jν also holds in the case of µ ∈ L(T ). Therefore, due to jµ ≥ jν + 1, we have

min{jµ, jν} = min{jµ, jνson} = min{jµ, jν + 1} = jν + 1 = min{jµ, jν}+ 1.

The second case is almost identical. In the third case, recursivelyDetermineMatrixBlock(µson, νson, . . . )
is called for µson ≺ µ and νson ≺ ν with jµ = jν and jµson = jνson = jµ + 1. This leads to

min{jµ, jν} = min{jµson
, jνson

} = min{jµ + 1, jµ + 1} = jµ + 1 = min{jµ, jν}+ 1.

We are now ready to estimate the algorithm’s overall runtime and memory cost:

Theorem 5.16 (Overall cost estimate for Algorithm 5.1). Let T be a balanced 2n-tree and the nearfield
matrix Aφnear as well as the multi-scale cluster basis be given. Then, Algorithm 5.1 can then be executed in
O(N log(N)#K2) operations and with storage cost of O(N log(N)).

Proof. Note that, similar to Algorithm 3.2 the function setupRow is only called for cluster pairs that cor-
respond to non-negligible matrix blocks. There are therefore only O(N log(N)) calls to setupRow (and
thus handleRowClusterNonLeaf and handleRowClusterLeaf) in total (cf. Lemma 3.19). In addition, each
of these calls has constant runtime: setupRow itself only stores a few constant-size matrix blocks, while
handleRowClusterNonLeaf and handleRowClusterLeaf only call recursivelyDetermineMatrixBlock in
addition to setupRow and only perform a few multiplications of constant-size matrices otherwise. Thanks
to the storing of temporary matrix blocks, recursivelyDetermineMatrixBlock only gets called in three
cases:

1. (µ, ν) is admissible: the O(#K2)-effort farfield approximation can be employed.

2. Both µ and ν are leaf clusters: a block Aφµ,ν of the nearfield matrix can be transformed, taking constant
time.

3. The arguments of recursivelyDetermineMatrixBlock satisfy the cut-off condition: In this case,
Lemma 5.15 can be employed to guarantee a constant recursion depth and O(#K2) overall runtime.

Combining the O(#K2) bound for each call to recursivelyDetermineMatrixBlock with the O(N log(N))-
limit for the number of calls, we arrive at a total runtime of O(N log(N)#K2). The final DWT calls in
Algorithm 5.1 (of which there are only CQ many) do not change this estimate, as they have runtime O(N)
each.

Finally, according to Lemma 5.13, the algorithm only requires O(N log(N)) temporary memory in ad-
dition to the O(N log(N)) coefficients of ÃΨ.

As the formulae for computing matrix blocks are very similar in recursivelyDetermineMatrixBlock

and setupRow, we can also apply the error estimate (5.31) from Theorem 5.11 to each block computed by
Algorithm 5.1. This leads to the following

Theorem 5.17. Let the conditions of Theorem 5.11 be fulfilled. Then, for the difference between the system
matrix AΨ

C (compressed according to Theorem 3.16) and its approximated version ÃΨ determined by means
of Algorithm 5.1 the following error estimate holds:

∥∥AΨ
C − ÃΨ

∥∥
2
. J2Jn

(
η2J

cdiam

)2q+n(
η

η + C

)p
.

Proof. As we only compare two versions of the compressed system matrix, it is sufficient to consider the
error introduced by approximating non-negligible cluster pairs, of which there are ∼ J2Jn in total (cf. the
proof of Theorem 3.16). Multiplying this number with the per-cluster error estimate (5.31) yields the above
bound.
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In particular, this estimate is similar to those obtained for the H2-matrix method [4, 11, 25] and allows
us to control the total approximation by increasing p. Choosing p ∼ log(N) allows us to bound the total
matrix error with h3

N , thus guaranteeing the stability and convergence of the complete wavelet Galerkin
scheme [14].

6. Numerical Experiments

With an efficient method for setting up the compressed system matrix in the multi-scale basis available,
we will now employ the algorithm for actual computations. The algorithm has been implemented in C++,
using the Eigen library [10] for linear algebra computations. All tests were run single-threadedly on a
compute server which is equipped with one Terabyte of RAM and eight octo-core Intel Xeon X7560 CPUs
running at 2.27 GHz. The admissibility parameter was set to η = 1 for all computations.

We solve the interior Laplace problem with Dirichlet boundary conditions (2.3) by the indirect method
for the single layer potential. As the solid harmonics r`Y m` (xr ) are harmonic, they are a suitable choice
for the right hand side. In particular, they are eigenfunctions of the single layer potential operator on the
sphere with eigenvalues λ` = 1

2`+1 [5, 21]. This allows us to directly measure the relative L2(Γ)-error

EL2 =

∥∥ρN − λ−1
` f

∥∥
L2(Γ)∥∥λ−1

` f
∥∥
L2(Γ)

=
1

‖f‖L2(Γ)

√√√√ N∑
i=1

∫
πi

∣∣∣λ`ρφi φi(x)− f(x)
∣∣∣2 dσx

of the density on the sphere. For other geometries, only the `∞-error

E`∞ = max
x∈X
|ΦV (x)− ΦV,N (x)| = max

x∈X

∣∣∣∣f(x)−
∫

Γ

kS(x, y)ρN (y)dσy

∣∣∣∣
can be computed for suitable sets X of evaluation points.

Figure 6.5: A quadrangulation of the crankshaft with two refinements (left) and a triangulation of the Stanford bunny with
two pseudo-refinements (right).

Most of the preliminary experiments have been carried out on discretizations of a sphere and a crankshaft
(see Figures 2.1 and 6.5). In order to compare the algorithm’s performance on quadrangular and triangular
meshes, triangular versions of the sphere meshes were obtained by splitting each quadrangle along its diagonal
into two triangles.

In order to obtain more meaningful real-world results, the asymptotical behavior of the algorithm was
also studied on the so-called “Stanford bunny” [31, 32] (see Figure 6.5). The original bunny model contains
five holes at the bottom which were filled by postprocessing with the PolyMender software [18] based on an
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Figure 6.6: Quadrangulations of slit grates with four slits (left) and eight slits (right).

algorithm described in [19]. In addition, slit grates with different slit counts (see Figure 6.6) were generated
to study the behavior of the preconditioner.

To increase the accuracy of the boundary discretization, the sphere, crankshaft and slit grate meshes
were refined uniformly by splitting the pull-back of each quadrangle (i.e. its representation in the parameter
domain) into four new ones. As a result, N is quadrupled and hN is halved in each step. For the Stanford
bunny, the PolyMender package is able to output coarser versions of the original mesh which allow us to
introduce a pseudo-refinement level for this geometry as well. Its maximum refinement level is limited by
the accuracy of the underlying original polygonal representation, however.

All meshes were shifted and rescaled to fit into a 1-sphere around the origin. This does not impact the
overall results, but allows for a better comparison of the cut-off parameter a between different geometries.
In addition, it ensures that f attains similar values on all meshes – if a mesh’s center was far away from the
origin, for example, the values of f (which are proportional to ‖x‖2) would become much larger than for a
mesh centered at the origin.

In order to fully leverage all the benefits of the H2-matrix method, we employ the cardinality balanced
binary cluster tree (cf. Subsection 3.1) to define admissible cluster pairs in our particular implementation.
The Tausch-White wavelets have been defined on 2n-trees, however. Fortunately, it is possible to combine
both trees by using a binary cluster tree in general, but employing wavelet levels

⌊ jµ
n

⌋
(rather than regular

cluster levels) for the computation of the cut-off parameter.

6.1. Preliminary experiments

In order to obtain any meaningful results, we first need to determine suitable parameters for the al-
gorithm. This subsection is therefore concerned with optimizing the leaf size and the wavelet parameters.
In addition, we will make sure that the algorithm delivers comparable results for the quadrangular and
triangular discretizations of the same boundary.

6.1.1. Finding the optimal leaf size

The first step is to find a leaf size for which the algorithm’s runtime and memory usage are as low as
possible. For this purpose, Algorithm 5.1 has been executed for different leaf sizes on the sphere discretized
with N = 6 · 4M quadrangles for M = 7 and M = 9 with kernel interpolation orders p = 5 and p = 6,
respectively. The wavelet parameters were chosen as d̃ = 4, a = 0.5 and d′ = 2.8. Recall that the optimal
leaf size for the H2-matrix method was predicted to be #leaf,max ∼ #K = (p+ 1)n+1, while for the wavelets

#leaf,max ∼ 2md̃ (= 40 in the case of d̃ = 4) is expected to be optimal (cf. Remark 4.7).
The results of these tests are shown in Figures 6.7 and 6.8. We see that the memory usages of both, the

nearfield matrix as well as the compressed wavelet matrix, increase strongly with the leaf size. On the other
hand, the nearfield computation time also increases with the leaf size, while the runtime for assembling the
compressed system matrix (i.e. executing Algorithm 5.1) is optimal for leaf sizes #leaf,max ∼ #K. This is
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Figure 6.7: Assembly times for different leaf sizes on a sphere with M = 7 refinements and p = 5 (left) and with M = 9
refinements and p = 6 (right).
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Figure 6.8: Memory usage for different leaf sizes on a sphere with M = 7 refinements and p = 5 (left) and with M = 9
refinements and p = 6 (right).

to be expected as the computation of the (#K ×#K)-coupling matrices has a large impact on the system
matrix assembly time. The choice of #leaf,max ∼ #K decreases the total number of clusters to ∼ N

#K
and therefore significantly reduces the number of coupling matrices that have to be computed. As long as
memory is not a concern, it is therefore advisable to choose #leaf,max ∼ #K in order to minimize the overall
computation time. The algorithm’s total memory usage and computation time is then dominated by the
nearfield. This also reduces the reduce impact of tweaking the wavelet parameters on the algorithm’s overall
cost, as we will see in the next section.

6.1.2. Vanishing wavelet moments and cut-off parameters

Now that a sensible leaf size has been found, we still need to determine useful parameters for the wavelet
scheme. To this end, computation results for d̃ = 3 and d̃ = 4 were compared for different values of a on the
sphere and the crankshaft. It turns out that the error, runtime and matrix size are nearly independent of a
for the sphere. On the other hand, d̃ = 4 delivers better results on the crankshaft and optimal convergence
is only achieved for a ≥ 1.0.

The choice of d′ has a very low impact on the algorithm’s performance. This is plausible as the proof

of Theorem 3.16 shows that the d′-dependent part 2
2J(d′−q)−(j+j′)(d′+d̃)

2(d̃+q) of the cut-off parameter (3.16) only
provides O(N) non-negligible entries to the system matrix, while the 2−min{j,j′}-part is accountable for
O(N log(N)) entries.

For the remaining experiments, d̃ = 4, a = 0.5 (except for the crankshaft, where a = 1.5 was chosen)
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and d′ = 1.5 have been chosen as simulation parameters. Additional tests have shown that these values are
also suitable for the bunny and the slit grate geometries.

6.1.3. Comparison between triangular and quadrangular meshes

As the H2-wavelet method has been implemented for both triangular and quadrangular meshes, we are
able to directly compare both discretization types. For this purpose, a triangular version of the sphere’s
original quadrangular discretization was created by splitting each quadrangle into two triangles. Then, the
algorithm was run on both meshes with an otherwise identical set of parameters (p = 6, #leaf,max = 192).

The results are listed in Table 6.1. One can see that the memory usage and computation times for the
triangular mesh are each about twice as high as on the quadrangular mesh for the same discretization level.
This is to be expected as the triangular discretization provides twice as many degrees of freedom as the
quadrangular one.

quadrangular mesh
M N #near #wavelet Tnear/s Twavelet/s E`∞ EL2

3 384 1.11 · 105 1.04 · 105 0.11 0.02 1.74 · 10−3 1.24 · 10−1

4 1536 1.33 · 106 1.30 · 106 1.53 0.32 1.06 · 10−4 6.07 · 10−2

5 6144 1.59 · 107 6.11 · 106 17.01 4.75 1.18 · 10−5 3.02 · 10−2

6 24576 7.55 · 107 2.72 · 107 108.85 67.58 1.44 · 10−6 1.51 · 10−2

7 98304 3.15 · 108 1.22 · 108 827.85 391.19 1.84 · 10−7 7.54 · 10−3

8 393216 1.26 · 109 5.30 · 108 4388.2 1925.3 2.23 · 10−8 3.77 · 10−3

9 1572864 4.97 · 109 2.25 · 109 19422 9375.3 3.14 · 10−9 1.88 · 10−3

triangular mesh
M N #near #wavelet Tnear/s Twavelet/s E`∞ EL2

3 768 3.69 · 105 3.55 · 105 0.34 0.08 8.92 · 10−4 1.01 · 10−1

4 3072 5.01 · 106 3.23 · 106 4.56 0.86 3.79 · 10−5 4.97 · 10−2

5 12288 3.64 · 107 1.35 · 107 33.36 22.66 3.90 · 10−6 2.47 · 10−2

6 49152 1.61 · 108 5.82 · 107 225.89 161.37 3.51 · 10−7 1.23 · 10−2

7 196608 6.56 · 108 2.53 · 108 1700.2 894.01 5.48 · 10−8 6.17 · 10−3

8 786432 2.60 · 109 1.09 · 109 7280.1 4523.6 7.41 · 10−9 3.08 · 10−3

9 3145728 1.02 · 1010 4.65 · 109 35327 21236 1.92 · 10−9 1.54 · 10−3

Table 6.1: Matrix sizes, computation times and errors on the sphere for different refinement levels M with a triangular or a
quadrangular discretization.

The `∞-error is also by a factor of approximately 2
3
2 smaller for the triangular mesh, which corresponds

to the two-fold increase in N (and the corresponding decrease in hN by a factor of about
√

2). Nevertheless,
we observe the optimal convergence rate h3

N on both types of meshes. Similarly, the L2-error is also slightly
smaller for the triangular discretization compared with the quadrangular mesh on the same level. But again,
the expected convergence rate hN is obtained on both types of meshes.

In total, the algorithm’s behavior is very similar for triangular and quadrangular meshes. Therefore,
in the following tests a quadrangular discretization – which for the sphere and crankshaft (which contain
bilinear quadrangles) is closer to the original geometry than a discretization with flat triangles – will be used
where available (i.e. for the sphere, crankshaft and slit grates).

6.2. Asymptotic behavior

It is crucial that the algorithm scales well with the accuracy of the boundary discretization. To verify
this, the algorithm has been run on the crankshaft and bunny meshes for different refinement levels. The
parameters p = 4 was chosen which yields #leaf,max = 71 for the crankshaft and #leaf,max = 45 for the
bunny.
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crankshaft
M N #near #wavelet % classic Tnear/s Twavelet/s Ttotal/s E`∞

1 568 1.6 · 105 1.6 · 105 99.11% 0.13 0.02 0.38 1.0 · 10−2

2 2272 1.8 · 106 1.7 · 106 68.49% 3.06 0.33 4.44 4.4 · 10−3

3 9088 1.6 · 107 1.5 · 107 37.93% 44.88 4.13 54.31 3.5 · 10−4

4 36352 8.4 · 107 9.1 · 107 13.24% 355.29 48.09 429.93 5.7 · 10−5

5 145408 2.8 · 108 4.6 · 108 3.51% 1704.9 328.36 2173.7 9.4 · 10−6

6 581632 1.0 · 109 2.1 · 109 0.93% 10106 1711.8 12564 1.6 · 10−6

Stanford bunny
M N #near #wavelet % classic Tnear/s Twavelet/s Ttotal/s E`∞

1 1376 8.8 · 105 5.7 · 105 76.23% 1.1 0.23 1.81 7.0 · 10−5

2 5572 5.4 · 106 3.4 · 106 28.58% 10.39 6.75 20.13 2.2 · 10−5

3 22831 2.3 · 107 1.8 · 107 7.92% 65.09 52.67 155.43 5.6 · 10−6

4 91705 9.8 · 107 8.7 · 107 2.21% 388.57 295.29 842.67 1.2 · 10−6

Table 6.2: Matrix sizes, compression ratio, computation times and errors for different refinement levels M on the crankshaft
and on the bunny.

The results are shown in Table 6.2. Note that the cost for the general preparation and solution steps
is not listed separately as they are negligible compared to the cost of assembling and storing the nearfield
and compressed system matrices. On the crankshaft and the bunny, the convergence rate of the `∞-error
is somewhat lower than the best possible one which is h−3

N for smooth solutions. Namely, it is about
h−2.6
N ∼ 6−M and h−2

N ∼ 4−M , respectively. This is to be expected as these boundaries and the corresponding
right-hand side functions are not smooth enough to permit the error estimates given in Proposition 2.1.

The algorithm’s memory usage scales as expected. The nearfield’s size scales linearly with the number
of degrees of freedom (which is proportional to 4M ), while the compressed system matrix asymptotically
consists of O(N log(N)) ∼M4M entries (cf. Theorem 3.16). For the bunny, the compressed system matrix
actually requires less entries than the nearfield matrix. The additional log-term becomes apparent on the
crankshaft, however: There, the compressed system matrix requires more memory than the nearfield for
M ≥ 4. This effect is visible only due to the higher choice of a = 1.5 (compared to a = 0.5 for the other
geometries) which deteriorates the compression.

One can also see from Table 6.2 that the computation times for the nearfield entries is actually more
costly than determining the compressed matrix. In particular, one observes a polylog-linear behavior due
to the increase of the quadrature order as |log(hN )| per quadrature dimension for close panels [25]. The
increased computational cost for these close panels is partially offset by the lower quadrature orders (and thus
lower cost) for more distant panels, however. The O(N log(N)) ∼ M4M -asymptotics for the computation
of the compressed system matrix can only be seen for larger N as well, as the advantages of the farfield
approximation do not become apparent earlier.

Remark 6.1. On meshes with lower refinement levels, the algorithm’s runtime can be reduced by decreasing
the interpolation order p which directly affects the #K-part in the runtime estimates [4]. We do not make
use of this option, however, as we are only interested in the algorithm’s general scaling behavior and doing
so would distort its asymptotic complexity.

6.3. Wavelet preconditioning

We will now verify the viability of the wavelet preconditioning scheme. To this end, the condition
numbers of the compressed system matrices and their preconditioned versions

ÃΨ
p =

(
diag

(
ÃΨ
))− 1

2

ÃΨ
(

diag
(
ÃΨ
))− 1

2
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were computed by employing the Lanczos algorithm to calculate their smallest and largest eigenvalues [6].
In addition to the geometries studied so far, several slit grates with different slit counts were considered [26].

crankshaft

M N cond(ÃΨ) # iter cond(ÃΨ
p ) # iter

1 568 177.9 41 8.5 26
2 2272 377.1 66 13.6 30
3 9088 775.5 89 21.3 37
4 36352 1594 115 34.0 45
5 145408 3441 158 53.4 55
6 581632 7337 215 90.7 65

Stanford bunny

M N cond(ÃΨ) # iter cond(ÃΨ
p ) # iter

1 1376 9222 287 42.3 56
2 5572 1.564 · 105 943 1138 127
3 22831 ∼ 2.415 · 106 > 5000 6092 547
4 91705 ∼ 1.805 · 107 > 5000 6086 422

Table 6.3: Degrees of freedom, system matrix condition numbers and CG iteration counts for different refinement levels M on
the crankshaft and on the bunny.

First, we listed the condition numbers along with the number of CG iterations necessary to solve the
linear system up to a relative error of 10−8 in Table 6.3 for the crankshaft and the bunny, respectively. One
can see that the condition number of ÃΨ approximately doubles with each refinement step as predicted by
[25]. In the case of the bunny, the condition numbers increase even more quickly. For M ≥ 3, neither the CG
solver nor the Lanczos iteration converged after 5000 iterations. The effect of the preconditioner is clearly
seen for both, the crankshaft and the bunny. The condition numbers as well as the CG-iterations decrease
considerably when the wavelet preconditioner is applied. In particular, in case of the bunny, convergence is
established again and we arrive at much smaller condition numbers.

# slits N cond(ÃΨ) # iter cond(ÃΨ
p ) # iter

1 2048 177.1 43 8.30 24
2 4736 270.9 56 16.6 33
4 13184 456.1 72 17.8 34
8 42368 827.8 98 26.0 41

10 63104 1014 109 45.6 51
12 87936 1201 118 39.0 49
16 149888 1575 135 40.8 51
20 228224 1949 147 61.1 58
24 322944 2323 159 62.8 61
28 434048 2697 170 71.5 63
32 561536 3071 180 78.9 68

Table 6.4: Degrees of freedom, system matrix condition numbers and CG iteration counts for several slit grates after M = 3
refinements.

Next, we shall consider the slit grates with different slit counts for a fixed refinement level M = 3. We
observe that the condition numbers of ÃΨ for the slit grates with different slit counts are roughly proportional
to
√
N ∼ h−1

N (see Table 6.4). Accordingly, the number of CG iterations increases as well. The wavelet
preconditioner also works properly for larger slit counts but seems not to be completely robust in the slit
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counts (which, indeed, cannot be expected from the theory, see [14]). Nevertheless, the condition numbers
are still significantly lower than in the non-preconditioned case.

6.4. Comparison between the H2-matrix and H2-wavelet methods

It remains to show that the H2-wavelet method is actually more efficient than the established H2-matrix
method. Therefore, the calculations from Subsection 6.2 have been repeated using the H2-matrix method
with several appropriate leaf sizes, as can be seen in Table 6.5. The column entitled #extra contains the total
entry count of either the coupling matrices (in case of the H2-matrix method) or the compressed system
matrix in the multi-scale basis. The preparation time Tprep includes general preparations (like computing the
nested or multi-scale cluster basis and, for the H2-matrices, the coupling matrices) as well as the assembly
of the nearfield and (in case of the H2-wavelet method) compressed system matrices. Note that in order to
allow the treatment of the bunny geometry with the H2-matrix method at all, the diagonal of the nearfield
matrix was used as a preconditioner, reducing the number of CG iterations from more than 5000 to about
250. This preconditioning scheme did not reduce the number of CG iterations the crankshaft, however.

crankshaft with M = 5 refinements
Parameters #near #extra #total Tprep/s Tsolve/s Ttotal/s

H2-m., #leaf = 71 2.85 · 108 3.70 · 109 3.99 · 109 1927.8 2259.0 4186.8
H2-m., #leaf = 142 6.23 · 108 1.64 · 109 2.26 · 109 2812.0 939.5 3751.5
H2-m., #leaf = 284 1.28 · 109 6.41 · 108 1.92 · 109 4508.5 635.7 5144.2

wavelets, #leaf = 71 2.85 · 108 4.57 · 108 7.42 · 108 2094.7 79.0 2173.7

Stanford bunny with M = 4 refinements
Parameters #near #extra #total Tprep/s Tsolve/s Ttotal/s

H2-m., #leaf = 90 1.91 · 108 1.21 · 109 1.40 · 109 663.3 1216.5 1879.8
H2-m., #leaf = 180 3.59 · 108 5.74 · 108 9.33 · 108 980.0 933.0 1913.0
H2-m., #leaf = 360 7.19 · 108 2.31 · 108 9.50 · 108 1455.8 1107.9 2563.7

wavelets, #leaf = 45 9.81 · 107 8.74 · 107 1.86 · 108 712.8 129.9 842.7

Table 6.5: Memory usage and computation times for the H2-matrix and H2-wavelet methods on the crankshaft and on the
bunny.
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Figure 6.9: Computation times and memory usage for the H2-matrix and H2-wavelet methods on the crankshaft with M = 5
refinements (left) and on the bunny with M = 4 pseudo-refinements (right).

Figures 6.9 illustrate that theH2-matrices need significantly more memory than the wavelet method. The
additional memory is occupied by the coupling matrices (cf. Remark 4.10) – they are used in each matrix-
vector multiplication and thus need to be kept in memory. It also becomes apparent that the solution step
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is much faster for the wavelet method, as multiplying a (relatively small) block-sparse matrix with a vector
is much faster than applying the procedure described in Subsection 4.3. On the crankshaft, this effect is
reinforced by a reduction in the number of CG iterations due to the preconditioner employed in the wavelet
method. In fact, the additional preparation cost of having to set up the compressed system matrix in the
multi-scale basis is already offset after a single solve operation.

We can therefore conclude that the H2-wavelet method is more time- and memory-efficient than the
H2-matrix method in its current implementation. In order for the H2-matrices to catch up, additional
optimizations (e.g. making use of recompression techniques [3] or a more effective preconditioner for the
single-scale matrix [26]) would need to be implemented.

7. Conclusion

In the present paper, we demonstrated the practicability of the H2-wavelet Galerkin method originally
introduced in [14, 20] on actual unstructured meshes in three spatial dimensions. The algorithm’s excellent
asymptotic behavior for large mesh sizes has been pointed out and its applicability for both triangular and
quadrangular meshes has been shown. In addition, its other key advantages became apparent: The H2-
wavelet method has turned out to be both faster and more memory-efficient than the H2-matrix method.
Its very fast matrix-vector multiplication combined with an effective preconditioning scheme result in sig-
nificantly lower solving times.

Although the algorithm’s runtime will probably never match the times presented in [15] (as a parameter-
ization of the geometry allows for several optimizations not applicable in the case of arbitrary geometries),
it has been established as a viable tool for computations on geometries where a parametric representation
is not available. In future works, the algorithm’s behavior could be studied on even larger mesh sizes and
different geometries. The Lagrange polynomials employed for the kernel expansion could also be replaced
with spherical harmonics. This would reduce the logarithmic terms in the algorithm’s complexity estimate
and make smaller maximum leaf sizes feasible, thus also reducing the size of the nearfield.
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