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InR", n > 2, we study the constructive and numerical solution of mizimg the energy relative to the Riesz
kernel|x — y|*™", wherel < a < n, for the Gauss variational problem, considered for finitagny com-
pact, mutually disjoint, boundaryle$s — 1)-dimensionab‘k’1’1-manifoldng, ¢ € L,wherek > (a—1)/2,
eachI', being charged with Borel measures with the sign:= +1 prescribed. We show that the Gauss
variational problem over a cone of Borel measures can atiegly be formulated as a minimum problem over

the corresponding cone of surface distributions belongirtge Sobolev—Slobodetski spabe =/2(I"), where
¢:=a—1landl' := J,., T',. Anequivalent formulation leads in the case of two manidtnla nonlinear sys-
tem of boundary integral equations involving simple layetemtial operators oR. A corresponding numerical
method is based on the Galerkin—Bubnov discretization pigcewise constant boundary elements. Wavelet
matrix compression is applied to sparsify the system matximerical results are presented to illustrate the
approach.
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1 Introduction

Carl Friedrich Gauss investigated in [12] the variatioralpem of minimizing the Newtonian energy evaluated
in the presence of an external field, nowadays called the Gamstional (or, in constructive function theory,
the weighted energy), over nonnegative chargés on the boundary surface of a given domain. For this prob-
lem, later on the sign condition was given up in connectiothvlioundary integral equation methods where
distributional boundary charges had been introduced floirspboundary value problems. (For the history, see
Costabel’s article [8].) A different generalization of theginal Gauss variational problem, maintaining the sign
restriction but employing Borel or Radon measuyiess charges and replacing the Newtonian kernel by a much
more general one (e.g., by the Riesz or Green kernel) hapémdiently grown into an eminent branch of modern
potential theory (see, e.g., [24] and the extensive wor&s{32] and [34]; for two dimensions, see [25]).

In this paper, we consider the Gauss variational problerh thié Riesz kerndlk — y|*™", 1 < a < n, on
I':= Upey, Te, wherel'y, £ € L, are finitely many compact, connected, mutually disjoioytdarylesgn — 1)-
dimensional orientable manifolds, immersed i&®, n > 2, which are assumed to be at least Lipschitz, Binsl
loaded by chargegs =3, agpt, whereay is a function off taking the valuer1 or —1 andy! is a nonnegative
Borel measure supported By. We first show that, if each, is aC*~1!-manifold (see, e.g., [13, 21]), where
k € Nandk > (« — 1)/2, then every Borel measureon I' with finite Riesz energy can be identified with
an element of the Sobolev—Slobodetski space’/?(I"), wheree := a — 1, in the sense that the functional
onC*>(T") can be extended by continuity to the whole sp&cé? (I') and, moreover, the Riesz energy normvof
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2 H. Harbrecht, W.L. Wendland, and N. Zorii: Riesz minimaéggy problems or* 11 -manifolds

and the corresponding one i —/2(T") are equivalent. Therefore, under proper assumptions on the external
field, for thesd,, the Gauss problem over Borel measures is equivalent torthgm of minimizing the Gauss
functional over the corresponding affine conefim/2(I"), and then the Gauss functional can be expressed in
terms of a simple layer boundary integral operatodorThis allows us to approximate the Gauss problem by
employing the boundary element method. The latter cormedpto a nonlinear variational problem on the convex
cone of allp = 3", asp’ wherep! € H=</2(T';) andy* > 0.

In [15, 23], under the assumptions admitted therein, we asgenalty formulation of the above-mentioned
nonlinear variational problem, whose discrete versioovald us the application of the gradient projection
method; corresponding convergence and error analysislsadaen provided. The convergence of the gra-
dient projection method depends on the degrees of freeddrtharpenalty parameter, and it becomes extremely
slow for higher accuracy; whereas with an active set styatieg solution can be obtained significantly faster.
As to the (much more general) case investigated in the pres@er, corresponding work applying an active set
strategy is in progress.

In this paper, numerical experiments are given in the cadev@foppositely signed manifolds; andT's,
immersed intdR?, and they are based on an alternative approach to the Gaalslsmpr provided in [32]. This
refers to distribution = 3, ap’ whose weighted potentials satisfy certain boundary cadit involving
the minimum weighted energy, but now witht € H~%/2(T';) not necessarily positive. In the special case
where the equilibrium weighted potential takes constahteson each of;, i = 1,2, we are led to a system of
nonlinear boundary integral equationslonThe corresponding numerical solution is found with a fegpstof
Newton'’s iteration employing wavelet matrix compressib@,[14].

In applications, the numerical solution of the Gauss vimial problem is of great interest if for practical
reasons in electrical engineering on some ofithenly nonnegative while on the others only nonpositive charg
are allowed (see "capacitors” in [18]). It also has applarat in approximation theory and the development of
efficient numerical integration (see [16]).

2 Gaussvariational problem

We consider the problem of minimizing the energy relativéh® Riesz kernellx — y|*~™ of ordera € (1,n)
for signed Borel measures on a given— 1)-dimensional (in general, non-connected) manifoid R™, n > 2,
in the presence of an external field. The corresponding ailofgsmeasures (or charges) are associated with a
(generalized) condenser, which is meant here as an ordelledton A = (A;);c; of finitely many mutually
disjoint platesA;, i € I, and eachy; is the finite union of compact, nonintersecting, bounday/eonnected
Lipschitz(n — 1)-dimensional orientable manifolds, ¢ € L;, immersed intR™. Thatis,I" = ( J,.; A;, where
A, = UéeLi T'y. Each plated;, i € I, is treated with the sign; prescribed, where; takes the value-1 for
ieltand—1forie I~.Here, ] =1TUIl~,I" NI~ =o,andl" is allowed to be empty.

Changing notations if necessary, we assume the indexisetisc I, to be mutually disjoint. Writel, :=
Uier Lin LT == U, e+ Li, L™ := ;- Li and definey, := +1forf € L™ andoy := —1forl e L.

To introduce notations and preliminary results, we conside Riesz kernel of arbitrary ordér< « < n.
Let 9t = M(R™) stand for ther-algebra of all Borel measureson R", equipped with theaguetopology, i.e.,
that of pointwise convergence on the clésgR") of all real-valued continuous functions @ with compact
support (see, e.g., [3]). For vy, € M, the mutual Riesz energy and the Riesz potential are given by

In(v,11) = / x —y|*"dr®uwm)(x,y) and UZ(x):= / |x —y|* "dr(y),
R'Vl XRnr n

respectively, provided the corresponding integral on thbktiis well defined (as a finite number arc). For
v = vy, we get the Riesz enerdy, (v) := I, (v,v) of v.

Let&, = E,(R™) consist of ally € 9t with finite energy. Since the Riesz kernel is strictly positdefinite
(see, e.g., [19]), the bilinear foriy, (1, 2) defines orf,, a scalar product and, hence, the norm

lleo = Va(v)-

1 In the case where two elements of two different topologigelces, respectively, can be identified in some sense, éViden the
context, they are denoted by the same symbol.
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The topology or€,, defined by the nornij - ||<, is calledstrong

As has been shown by H. Cartan [6], is, in general, strongly incomplétéand, hence, it is a pre-Hilbert
space), while, by J. Deny [11] (see also [18]),can be isometrically imbedded into its completion, the sfstic
of slowly increasing distributiong' € S* with finite energy

2 — O(n.a T(¢)>
I, = Cloo) [ S de. 1)
Here,
— oa_n2_ L(a/2)
C(n,a) :== 2% ﬂil"((n—a)/?)’ (2.2)

I'(-) being the Gamma function, afdd€), £ € R”, is the Fourier transform of € S*, i.e.

n

T(&) == (2m)~"/? / e 4T (x).

Observe that the constaél(n, «), appeared in (2.1), differs from that in [19, (6.1.3)] besawof the different
normalizing factors used in the definitions of the Riesz kéamd the Fourier transform.

Given a Borel seBB C R”, letM(B) consist of allv € M concentrated i3, and letht ™ (B) be the convex
cone of all nonnegative € M(B). Also write &,(B) := M(B) N &y, EF(B) := M (B) N &, and equip
M(B) and&,, (B) with the vague and strong topologies inherited frdrand&,, , respectively. Thed, (B) is a
pre-Hilbert (in general, strongly incomplete) space ad.wel

The condenseA = (4,);c;, defined above, is supposed to be loaded by charges

= Z a;pt,  where ' € £5(A;).
iel

The set of all thosg will be denoted by, (A ); itis a convex cone in the pre-Hilbert spatgl’) = &, (Uiel Ai).
Further, lety be a given continuous, positive function brand leta = (a;);c; be a given vector witl,; > 0,
1 € I. Then the set of admissible charges for the Gauss problegfiised by

Ea(Aja, g) = {,u € &.(A): /

gdp' =a; forall ie I}.
A

Note that€, (A, a, g) is an affine, convex cone i, (T").
In addition, letf be a given continuous function @i characterizing an exterior source of energy. Then

Gy(p) = Ia(u)+2/rfdu

defines the value of thBauss functionadt u € £,(A). The Gauss problem now reads as follows:
Problem 2.1 Leta € (1,n). Find A that minimizesG;(u) in £,(A, a,g), i.e.,A € E4(A, a, g) with

Gr(A) = ee ) G (1) =: Gs(A,a,g). (2.3)
A minimizer X is unique (if exists). This follows from the strict positidefiniteness of the Riesz kernel and
the convexity of the class of admissible measures; see RA]what about the existence &P
Assume for a moment that at least one of thegis noncompact. Then it is not clear at all whether the
equilibrium state in the Gauss variational problem can kesiredd. Moreover, it has been shown by the third
author that, in this case, a minimizing measiiia general does not exist; necessary and sufficient condifiar
A to exist were given in [28, 30, 31]. See also Section 10 betmvgdme related numerical experiments.

2 At least, this is the case far > 1 (see [19, Theorem 1.19]).
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However, in the case under consideration, where allthare assumed to be compact, the Gauss variational
problem has a (unique) solution Indeed, this follows from the vague compactnes§ dfA., a, g) when com-
bined with the fact that the Gauss functioftg! is vaguely lower semicontinuous &y (A); cf. [24].

If eachI', is aC*~!:!-manifold withk > (o — 1)/2 then, under proper additional restrictionsgand f, in
Section 6 we give an equivalent formulation of the Gaussatianal problem (2.3), now based on distributions
concentrated o’ with densities from the Sobolev—Slobodetski sp&te/?(T"), wheree := a — 1.3 This
becomes possible due to the fact that, for tigseveryv € &,(I") can be interpreted as an elementbfs/?(T")
in the sense that the functionalon C>(I") can be extended by continuity to the whole sp&€?(I") and,
moreover, its norm i€, (T') and the one iff —*/2(T") are equivalent; see Theorem 5.1.

3 Riesz potentialsin R"

Let D C R™ be a given bounded domain. For any 0, Ietﬁ*S(D) denote the Sobolev space of orderin D.
Recall thatH —*(D) consists of allp € H—*(R™) supported byD (see, e.g., [17, (4.1.17)]), whefé—*(R") is
the Sobolev space of orders in R™ (see, e.g., [1]). It also can be obtained as the closu€gdfD) with respect
to the Sobolev nornj - || - z~). Below, we shall also use the fact (see, e.g., [17, (4.1)283} the Sobolev
spaceH —*(R"™) consists of all slowly increasing distributiopsc S* with

lelwey = { [ (1+16%) “lot@)Pdg} " <oo 6

For the Riesz potentials of orderc (0,n) in R™, n > 2, we have the following
Lemma 3.1 The operatofV_,, given by the formula

V_ap(x) = / Ix —y|“"p(y)dy, whereyp e C5°(D) and x € R”,
Rn

is a strongly elliptic classical pseudodifferential optyaof order —a. Moreover, there exist positive constants
and ¢, depending orD only such that

Cl|‘¢”i~[—a/2(D) g (V*awa (p)Lz(D) g CQH<IO|‘%—(1/2(D) for a” 90 S ﬁfa/Q(D)- (32)

Proof. Observe that the Schwartz kernel of the integralatpeV _,, is homogeneous of degree—n < 0
and, by Seeley [26], the homogeneous symbdVaf, can be given by

a_a(X,E) = C(?’L,Oz)l{l_a, £ eRY,

whereC(n, «) is defined by (2.2). Since fd¢| = 1, a_,(x, &) is a positive constan¥ _,, is strongly elliptic
and, as a pseudodifferential operator on the (bounded) idofat is continuous. This yields the inequality on
the right in (3.2) with a constamrt depending orD only. The one on the left follows with the Fourier transform
and Parseval's equality (see [17, Section 7.1.1]); actualldoes not depend ab. O

Let S* (D) be the topological subspace §f consisting of alll” € §j; with supp 7' € D. We next establish
relationships between the pre-Hilbert spdgéD), the Sobolev spacH ~*/%(D), and the spacs? (D).

Lemma 3.2 The space$/ —*/2(D) and S* (D) are topologically equivalent.

Proof. Foranyl' € S’ (D) we get, by (2.1) and (3.1),

—a/2, _
|m@wmﬂ:40+m%/uwmﬁsammwmg,

3 These distributions define bounded linear functionalssi 2 ("), whereas Borel measurgsc 9(T") define bounded linear func-
tionals onC/(T"); however,C(T") ¢ H</2(T") ¢ C(T') (for more details, see Section 3 below).
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so thatl’ € H~*/2(D). Conversely, for any € H~*/2(D), we havey € S*(D) since, by the Parseval—
Plancherel formula and relation (2.1),

SE)(2
(V-a:0) gy = Cl) [ g — o3,

When combined with (3.2), the last relation also shows tianormsg| - Hﬁ—a/z(D) and|| - || s« (p) are equivalent
as claimed. O

Coroallary 3.3 The pre-Hilbert spacé, (D) is topologically equivalent to a certain subspaceﬁif“/?(D).
That is, eachs € &,(D) can be interpreted as an elementBf-/2(D) (we denote it by as wel) and

ClHVHH—a/z(D) < vlle, < CZHVHH—Q/z(D)a (3.3)

wherec; and ¢, are positive and independent of Moreover, H=*/2(D) is the completion of, (D) with
respect to the norrj - ||F1—a/2(D)- The same holds true f&’ (D) instead of H /(D).

Proof. Indeed, this is an i@mediate consequence of Dengrém (cf. Section 2 above), Lemma 3.2 and
the fact thatCs° (D) is dense inH —/2(D). O

4 Riesz potentialsin R™ and on C*~!!-manifolds

From now on, we shall always assumgthe order of the Riesz kernel, to satisfy the requirement o < n,
and we writes :=e(a) :=a — 1. Then0 <e <n — 1.

Also, we shall always tacitly assume that ¢ € L, are compact, connected, mutually disjoint, boundaryless
(n — 1)-dimensional orientabl€*~!-!-manifolds withk > (o — 1)/2, immersed intR", andl’ = |, T's.

Let Q ¢ R™ be the domain (bounded or unbounded) with the boun8asy2 = T and letF*/?(T") be the
space of traces of elements from the Sobolev sgae€ () onT (see [1, 13]). LetC>(T") be the trace space
of Cg°(R™) onT', and define forp € C>°(T")

ol zres2(ry := inf {HSBHHQ/?(Q)v where ¢ € Cg°(R") and ¢|r = 90}- (4.1)
SinceTl is Lipschitz, C>(I") is dense in the trace spaé&/?(I"), its closure with respect to the norm given

by (4.1) (see [1]).
Moreover, the surface measuteonT is well defined and generates 61i°(T") the L,-scalar product,

(%) = (0, P)1ary == / o ds, where g, € C(T). (4.2)

In fact, 75/%(I") is a Hilbert space equipped with the scalar product

o(y)) (V(x) —¥(y))

x —y[r—t+e

(os ) mere(ry = (%¢)L2(F)+/F/F (o) - ds(x) ds(y)

and the norms given by (4.1) and lg)é((go, ©)) =2 (ry are equivalent (see [1, Th. 7.48]).

TheL,-scalar product (4.2) continuously extends to the duatityleen/7=/?(I") and its dual spacH —=/%(T"),
which is equipped with the norm

[l sr—r2qry 2= sup { (. ¥)I, where v € H/2(T) and [ ge/ary < 1}

We denote that extension by the same synmho) = (-,-)., ). Note that the function spaag>(T") is also
dense in each of the spaces(I") andH —/2(I").
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We shall show below that, under proper additional restittiong and f, the solution to the Gauss prob-
lem (2.3) can be obtained with the help of the simple layeepiil

V_ot(x) = /P |x —y|* "(y)ds(y), wherex e R" andy e H /(D).

In our analysis, the operatdf defined by
Vi=v%V_a, (4.3)

where, is the Gagliardo trace operator oritqsee [13]), will play a decisive role. The operatgris character-
ized by the following slightly extended version of the trdlseorem (compare with [9, 21, 22]).

Theorem 4.1 GivenI of the clasgC*~ 11, let1/2 < s < k+ 1/2. Then, for the Gagliardo trace operatgy
and its adjointyg,

Yot HS(R™) = H*"3(I') and ~;: H? (') = H *(R"),
there exist positive constantsc’ andc” depending o, n, andI’ only such that

h0®l . ) < c1®lleey forall @ € O (),

* l—s
NPl e gy < I8y < 6y forall @& HEZ(D), (4.4)

and sovy, and~; are continuous.
Here, the adjoint operatay; is defined by

(Y1, ®) Ly (am) = (¥, 70®) L,ry,  Where & € C°(R™) and ¢ € H2*(T). (4.5)

Observe that thesupp (i) ¢ T forall € Hz2—5(T).
Remark 4.2 Ifin Theorem 4.1 is replaced byR" !, then its assertion holds true for alk> 1/2 (see [20]).
The proof of Theorem 4.1 will be given in the Appendix.

Theorem 4.3 Under the stated assumptions @randI’, the operatorV/, defined by4.3), is a linear, contin-
uous, invertible mapping

V. H /%) —» HT*(I).

Moreover, it isH ~</?(T")-elliptic; i.e., there exist positive constantsand ¢y depending om, T', and < only
such that

v [ lF-cray < 0N < cellllf-czry forall ¢ e H*/*(T), (4.6)
where
1913 == (&, V) Loy

Proof. Fixyy € H~%/?(I") and choose such thaf” ¢ B,, whereB, is an open ball of radius. Having
observedthat/2 < a/2 < k+1/2, from Theorem 4.1 withh = /2 we getyy) € H— 22 (R™) = H~% (R").
Actually,

i e H 3 (B,) (4.7)
because ofupp (75v) C I'. Therefore, in consequence of Lemma 3.1 with= B,

Va5 € H*(B,). (4.8)
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Repeated application of Theorem 4.1 with= «/2 then shows that the trace ¥_,~; onT exists and, due
to (3.2), (4.4) and (4.5),

* * * * 2
VY, )Ly = (0 V-0V, V) Loy = (VoW ¥, %0¥) La(B,) = 01||’Yo1/)||§§7a/2(Br) > e W2y

and also

72

Ve, ¥)ar) < 2l W8I wsap,) < 2 1¢l5—cr2(r)s

which is (4.6). Hereg1, co andd’, ¢”” are taken from (3.2) and (4.4), respectively.
The invertibility of V' then follows with the Lax—Milgram lemma. This completes fineof. O

Remark 4.4 If n = 2 orn = 3, then Theorem 4.3 is valid for any € (1,n) providedI is just Lipschitz.
See [9, Th. 3.6] and [21, pp. 98-102].
5 Relationsbetween &, (') and H~=/(T")

The main purpose of this section is to characterize the Boedsures o' with finite Riesz energy, namely
v € £,(T) wherel < a < n, via distributions inff —¢/2(T") with ¢ = o — 1. Recall thaf" is aC*~! -manifold
with k£ > (o — 1)/2. The characterization obtained is given by the followinggipal result (cf. Corollary 3.3).

Theorem 5.1 Under the stated assumptions arandT’, £, (I") is topologically equivalent to a certain sub-
space of H~¢/2(T"). Thatis, each € &,(T') can be interpreted as an element®f </2(T) in the sense that the
functionalv on C*>(I") can be extended by continuity to the whole spHE€* (T') and

allvllg-<r2ry < IVllen < c2llvllg-<r2(rys (5.1)

where the constantg and c, are positive and independent of Moreover,H ~=/%(T") is the completion of the
pre-Hilbert spacef,, (I') with respect to the nori- || 7 —</>(ry-

Proof. The proofis based on Theorem 4.3 and Corollary 3.3.
Chooser so thatl' C B,.. SinceV is invertible, for a givenp € C°°(T") there exists) € H~</?(T') such that

Vi = .

Hence, for any € &,(T),
v(p) = /F(Vz/f) dv = /Fv()(vfwz;w) dv = (V_a¥%v: V) 1,05,y (5.2)

the last equality being obtained with exploiting the facttth can be treated as an elementﬁjfa/Q(BT) (see
Corollary 3.3). Taking (4.7) and (4.8) into account, witte thelp of Lemma 3.1, relations (3.3) and (4.4), and
Theorem 4.3, from (5.2) we get

()] < Va5t rer2m) V] f-ar2 sy < WUl -aras,y IV ]ga

< AWlleall¥ll -2 ry < lIVllealll erz ),

which proves that, actually,can be identified with a distribution iif —=/2(T"). Therefore, applying Theorem 4.3
tov € £,(T), treated now as an element&f=/2(T), we have

Iz, = (Ve v) Loy = IVIF 2 V13- e (5.3)

which proves (5.1). Finally, combining (5.1) with the falsatC>°(T") is dense inff ~/2(I"), we see that, indeed,
H~¢/2(T") is the completion of,, (T') with respect to the norri - | zr-</2(r) @s claimed. O
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8 H. Harbrecht, W.L. Wendland, and N. Zorii: Riesz minimaéggy problems or* 11 -manifolds

Corollary 5.2 Under the stated assumptions @randT', for everyr € &, (T") there exist absolutely continu-
ous measures;, € &,(I'), k € N, with densitiesp, € C*°(T') (i.e.,dvy(x) = ¢i(x) ds(x)) such that, — v/
vaguely and strongly, i.&.

vi(p) = v(p) forall ¢ € C(T') and klim lve —v]le, = 0.
—00

Proof. Withoutloss of generality, we can assume &, (I') to be nonnegative, i.e: € £ (I'). We consider
it to be an element off ~*/2(T"), which is possible due to Theorem 5.1. Sine® (') is dense inH —=/2(T),
there exists a sequengg € C>(T), k € N, converging tov in H—</2(I") and, because of (5.1), also .
Since for the Riesz kernel the strong convergence of nonivegaeasures implies the vague convergence to the
same limit (see, e.g., Lemma 1.2 in [19]), the corollarydais. O

6 Variational formulation in the space H~</%(T")
From now on, for the given functionsand f we require thaff, g € C(I') N H*/?(T"). Define

Vf(%") = |‘(p|‘2V + 2(f7 (p)Lz(F)a where (2BS HiE/Q(F)'

The following theorem shows that the Gauss problem (2.3J dA, a, g) (for the Riesz kernelx — y|*~" of
ordera € (1,n)) can alternatively be formulated as the problem of minimgzhe functionaV ; over the affine
conek (A, a, g) in H=/%(T"), where

K(A,a,g):= {cp = Z appt st e H/2(Ty), ¢* >0 and Z (g,gol)b(p[) =q; forall i e I}.
leL leL;

Theorem 6.1 Under the stated assumptions ang, f, andT, the solution\ € £,(A,a,g) of the Gauss
problem(2.3), treated as an element df —=/2(T"), belongs toC(A., a, ) and satisfies the relation

Vi) =Gs(A) = Gy(A,a,g). (6.1)

This\ is the unique minimizer of the functiorid} overK(A, a, g), i.e.,
Vi(\) = i \Y =:V,(A,a,g). 6.2
r(A) o 1p) = Vy(A,a,g) (6.2)

Proof. By Theorem 5.1, any Borel measwre= ., ani’ € £4(A,a,g) can be treated as an element

of H—/2(T"), while all the’, ¢ € L, as elements off ~*/%(T;), correspondingly. The latter implies that,
actually,&, (A, a,g) C K(A,a, g). Furthermore, applying (5.3), one also gets

V() = [lully + 200 framy = pllz, +2u(f) = Gs(p) forall pe (A a,yg), (6.3)

which yields that the solutioi of the Gauss problem (2.3) satisfies (6.1). To establish),(&& observe that one
can construct a sequengg € C>°(T") N (A, a, g) converging to\ in H—¢/2(I"). Hence, by (6.1),

Viler) = Vi(A) =Gs(A a,g).
Moreover,pds € £,(A, a, g) forall o € C>*(T) N K(A, a, g) and so, by (6.3),

Gr(A,a,g) < Vi(p) < Vi(pr) forall k€N,

inf
pEK(A,a,9)NC>=(T)
which implies withk — oo

SOEIC(A&H}])F]COO(P) 1) A (A a,g)

Repeated application of the fact th@t° (I") is a dense subspace Hf</?(T") yields (6.2) as required. O

4 Compare with Lemma 1.2 and Corollary 2 in [19, Chapt. 1], wh@artan’s approximating measures have, in faetimensional
supports inR™.
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7 Alternative approach to the Gauss problem
For anyp € H—¢/2(T"), write
O = ipla, i€T;
then
v = Z aip'.
el

Note thaty’ belongs toH ~=/2(A;), but it is no longer necessarily positive — in contrast to twua have had
for elements fromiC(A, a, g). Giveny € H~</2(T") andi € I, define

a Voap(x) + f(x )
' g9(x)

Observe that, itb = p € £,(T), thenV_,u(x) = U (x) and, hence¥(x, 1) is well defined and finite nearly
everywhere (n.e.) iiR" (see, e.g., [19]), i.e., excepting at most a subs&t'oWith the Riesz capacity zero.
We denote by, (A, a, g) the cone of allp € &, (T") for which there exist);(¢) € R, i € I, such that

\Iji(xa (P) = (fa )L2 (T)>» x € R™.

a0 (x,0) > ami(p) n.e.in A, (7.1)
Z a;ni(p) = V(A a,g). (7.2)
icl

Then there holds the following assertion (cf. [32, Th. 2] §8@| Corollary 8.4]).

Theorem 7.1 The solution\ to the Gauss problem is also the unique minimizeWgfy) overG, (A, a, g),
ie.

A€ Gu(Aa,g), (7.3)
inf V(o) =V,(\) = V(A a,qg) o
wegir(lA,a,g) 7(#) £ (A, a,g) 7.4)

Proof. For brevity, writeS, := supp v. According to [29, Th. 1], for everye I,

Ui(x, ) = a;imi(N) n.e.in A, (7.5)
\Iﬂ’(x, ) < agmi(\) forall x € Sy, (7.6)

where
ni(A) = In (A, \) + 2 / FAN = (VX X)) + 2(F,A) o), (7.7)

the latter equality in (7.7) is obtained with the applicataf Theorems 4.3 and 5.1.
Hence, by (7.7) and Theorem 6.1,

> ami(N) = V(N = V(A a,g), (7.8)
i€l

which together with (7.5) proves inclusion (7.3). In tutmistyields

Vi(A) = inf v . 7.9
N> it Vi) 79)

To show that this inequality is, in fact, an equality, for agiveny € G, (A, a, g) andi € I we multiply (7.1)
by g(x) and then we integrate the inequality obtained with respekt,thaving used the fact that a set of capacity
zero is necessarily of exteriormeasure zero providedhas finite energy (see, e.g., [19]). This gives

Oéi[(v%)\i)Lg(F) +(fi A )LQ(P) +(f,¢" ), F)] aini(p), i€l
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Summing up these inequalities over ale I and then substituting (7.2) into the result obtained, afteple
transformations we get

Vi) = o =AY +Vy(N) 2 Vy(2) forall p € Go(A,a,g),
which together with (7.9) establishes (7.4). The proof imptete. O

Corollary 7.2 LetH(A, a, g) consist of allp € H—</%(T') for which there exist; () € R, i € I, satisfy-
ing (7.2)and, as well,

U(x,0) =ni(p) forall x € A;, whereic I,
and letA, a, g, and f be such that, instead of7.5), A satisfies this very last relatioh.Then\ can also be
obtained as théuniqug minimizer ofV(¢) over the coné{(A, a, g).
8 Two manifolds problem

If Lt = {1} andL~ = {2}, thenH(A,a, g) consists of allo € H~=/%(T") for which there exists(¢) € R such
that

\Ill(x, ©) =c(p) + %Vf(A,a, g) on Ty, (8.1)
U2 (x, p) = c(p) — %Vf(A,a, g) on Ty, (8.2)

Due to Corollary 7.2, we are led to the following theorem.

Theorem 8.1 Let L™ = {1}, L~ = {2}, g = 1, and letl'y, I'y, a1, a2 and f be such thaf\, the solution of
the corresponding Gauss problem, satisfies relati@)and(8.2)with C := ¢()\). Then, equivalently,

V)\l _ V)\2 _ al_l [C + %Vf(Avaa g) - (fv Al)Lg(I‘l)} - f on Iy, (8 3)
a2_1 [C - %Vf(Avaa g) - (.fv )\2)L2(I‘2)} - f on FQ.
If, moreover,
dy = az(}\l, Drymy) — 0L1(/'\27 1)1,y # 0, (8.4)

then the constanf’ can be written in the form

C= d(?l{aZ().\la Doy [(fsA) @y — V(AL a,9)] — ar (A2, D rara) [(fs A o) +3V5(A 8, 9)] }

(8.5)
where\i e H~¢/%(T;),i = 1, 2, solve the system of boundary integral equations
—1 1
. . a; 1= (f, A on TI'q,
V)\l _ V)\2 — { ];1[ (f .2)L2(F1)} 1 (86)
Qg [1 - (fa A )L2(F2)} on I.

Proof. Observe that for any € R there existy. € H~</3(T;), i = 1, 2, satisfying (8.3) with\’ andC
replaced byy? andc, respectively, i.e.

V(pl _ V<p2 _ { afl [C+ %Vf(A,a, 9) — (s <Pi)L2(r1)] —f on Ty,
) ) ay'[e—3Vi(Aa,9) = (f, 02 L,ra] —f on Ty,

and thesep!, i = 1, 2, are determined uniquely. Then := ¢! — ¢? € H(A,a, g), and therefore the cone
H(A,a,g) can be considered as a one-dimensional family with the peterme R.

(8.7)

5 In the general case of arbitra#y, a, g and f, this is not so.
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SinceX is the minimizer ofV ¢ (o.) = (oc, Vo) Loy + 2(f, ¢e)n,(ry Overc € R and bothp,. andV (¢.)
are continuously differentiable with respecitove conclude that
d

%Vf(%) =0={(Ge, V) Loy + (0 Vo) Loy + 2(f5 be) 1a(m) } ;
c=C c=C

wherey,. := dg./dc. Having denoted

A=l _, fori=1,2, (8.8)
we therefore get
0=+ VA = VA ey — AV = VA L,y
+ ()‘11 V)‘l - V}‘z)L2(F1) - (/\27 VAl - VA2)L2(F2) + 2(f7 }‘I)L2(F1) - 2(f7 ).‘2)L2(F2)‘ (89)

Differentiating (8.7) with respect to, in view of (8.8) we find the system of equations (8.6). Novgeiri-
ing (8.3) and (8.6) into (8.9) results in

0=+ (Al’afl[c + %Vf(Aaav g) - (fa /\1)L2(F1)])L2(F1) - (Alvf)Lg(Fl)
- (/.\2’a2_1[c - %Vf(A’av g) - (fa /\Q)Lz(rz)])L2(p2) + (/.\27f)L2(F2)
+ (Alaal_l[l - (fv).\l)Lg(lH)])Lz(Fl) - ()\230‘2_1[1 - (fv }‘2)L2(F2)])L2(1"2)

+2(f, /.\1)L2(l“1) —2(f, /.\Q)Lg(rg)-

Employing here the fact thah?, 1)r,(r,) = a; fori = 1, 2 and then multiplying the relation obtained byas,
one getg in the form (8.5) as was to be proved. O

Remark 8.2 In the casef = 0, assumption (8.4) does hold automatically since tthes alag(V}\, A) > 0.
In the remainder of this section we shall tacitly requiretladl assumptions of Theorem 8.1 to be satisfied.
Lemma8.3 If V;(A,a,g) is given, then the systems of equati¢8)and(8.6)are both uniquely solvable.

Proof. Indeed, since (8.3) and (8.6) are the gradient egusmtio the minimization of a strictly convex,
quadratic functional ove (A, a, g), which has a unique solution due to Corollary 7.2, the cpoasing linear
gradient equations are uniquely solvable. O

The solution of the linear equations (8.6) can be obtainék thie Sherman—Morrison formula [27].
Lemma 8.4 The following procedure provides us with the solutio(®f3)and (8.6).

i) Determines = o' — o2, wheres’ € H~</?(T;) for i = 1,2, as the solution of

1/a7 on T'q,
Vo= /o !
1/0,2 on FQ,

and lety = x' — x2, wherex’ € H—/2(T;) for i = 1, 2, be the solution of
Vx=1 onT.
i) Then the solution 0f8.6)is given by
A=o+diky onT, (8.10)
where
di = (0", a7 oy + (0703 ) ara),
—k7t =14 (X e Do) + (3 as D o)
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iii) For solving(8.3) determineC' from (8.5) by the use of\, the solution of(8.6), and also find; = ! — 72,
wheren’ € H—</(T;) for i = 1,2, by solving

Vi — a;'[C+3Vi(Aa,g)] = f on Ty,
a;l[C —1Vs(A,a,g)] = f on T
Then
A= n+ kd/gx

whered; = (771, a;lf)L2(F1) —+ (772, a;lf)b(m).
Proof. With

f:—{ ar'f on Ty,

—ay'f on Ty,
the equation (8.6) can be written as

1/0,1 on Fl,

MA:=VA+ ~,).\ =h:=
(f )LZ(F) {1/(12 on TI's.

HereM : H=</2(I') — H</?(T") is a linear Fredholm operator of index zero sifi¢és invertible and f, ) La(1)
is compact. Inserting as given by (8.10) and taking the definition/ointo account, we obtain

MA=Vo+k(f,0),m\Vx+ (f.o+k(f, U)Lg(F)X)Lz(F) = h,
which justifies ii).
Since the proof of iii) can be given in exactly the same manmeromit the details. O

In Theorem 8.1 and Lemmata 8.3 and 8.4, it is supposed#théA., a, g) is known. However, if the equa-
tion (8.5) for the constant is inserted into (8.3) antls (A, a, g) is replaced by

ViA) = (N VA ) Loy + 206N Loy

then we obtain the nonlinear system of boundary integrahtaojus for.
For brevity, define the nonlinear operator

Q(/\v ).‘7 f) = dal {GQ(}‘I’ 1)L2(F1) [(f’ /\1)L2(F1) - %V.f()‘)] - al().‘2’ 1)L2(F2) [(fa /\Z)Lz(rz) + %V.f()‘)] }
The nonlinear system of boundary integral equations\foow reads as follows:

al_1 [Q(/\7 ).‘7 f) - (fa /\1)L2(F1) + %Vf()‘)] - f on Fla

gy S (8.11)
az '[CA F) = (F, A 0 — 3V5(N)] = f on T

VAL - VA = {

Note that\ in (8.11) is already determined by means of (8.6), and (&4f)be solved via Newton’s iteration for
A€ Hs/2(T).
9 Example

The aim of this section is to provide an example where, in T&®®8.1, both the requirements (8.1) and (8.2) for
A do hold. To this end, we restrict ourselves to the case where 1, 2], o < n; then the following concepts of
Riesz equilibrium and balayage measures are well known ésge [19]).
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Given a compact sek c R”, let C,(K) denote the Riesz capacity & andyx € £F(K) its (Riesz)
equilibrium measure, uniquely determined by the followiafations:

’YK(Rn) = Ca(K)a (91)

Ul*(x)=1 n.e.in K. (9.2)

If v € £,(R™) is also given, then there exist§; v € &, (K), called the (Riesz) balayage, uniquely determined
by

P (x) =UY(x) ne.inK. (9.3)
Furthermore, one can see from [19], Sections 3 and 5 in Cisalptend IV, respectively, that
Sy = Spey, = K (9.4)
providedK is a connectedn — 1)-dimensional orientable manifold. If, moreover, this nfafi does not contain

any a-irregular points (which is the case if it is Lipschitz; s& [emma 10] or [7, Th. 2.2]), then, by [19], the
equalities in (9.2) and (9.3) hold everywherein

Example9.1 Letn > 2, Lt = {1}, L~ = {2}, g(x) = 1forallx e R", Ty = S, := {x e R" : [x| =},
f(x) =V_,0(x) =Ul(x) forall x € R",

6 being a nonnegative measure of total mége™) = ¢ > 0 that coincides up to a constant factor with the
(n — 1)-dimensional Lebesgue surface measurs,of and letl’s be a compact, connectéd — 1)-dimensional
orientableC*~11-manifold inR" \ Bg, wherek > (o —1)/2andR > r; > r > 0.

Under these requirements, there holds the following asse(df. [33, Corollary 10.1]).

Theorem 9.2 If, moreover]l < o < 2, < n, and
ay (Rr*1 — 1)"70‘ >a0 >a1+gq, (9.5)
then), the solution of the corresponding Gauss problem, satibii¢is(8.1)and(8.2). Furthermore, then
Sy =T i=1,2. (9.6)

Proof. Letn;(\), i =1, 2, be determined by (7.7); then (7.5), (7.6), and (7.8) hald.tr
Since, under the assumptions made, there existg) such that

f(x)=p forall x eIy, (9.7)
relations (7.5) and (7.6) yield

aUXN(x) > ¢ ne.inTy, (9.8)

aUNx) =¢; n.e.in Sy, (9.9)

whereci := n1()\) — 2pa;. The measure\! is nonzero and has finite energy; therefafg,(Sy:) > 0 and,
by (9.1)4! := vs,: # 0. Inview of (9.2), relation (9.9) can be rewritten in the form

aU) (x) = ciUY (x) = U (x) n.e.in Sy,

which means that, actually; \' — ciy! = a1Bg A2Z. This implies

aifar — (83, A?) (R™)]
L (R™)

ko
Cl_

(9.10)
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Since, due to (9.1)—(9.3),
(88, A (R") = /1dﬁg‘A1A2 =Ly, 88 A = L.(v", A?)

= dist (Sy1, Sye)nme T dist (Dq, Do) (R —r)n—o’

A2 (R™)y(R™) < @Ca(l) apr™

we conclude from (9.10) and the left-hand side of (9.5) tat 0.
Consequently;; +a1U(i‘2 (x) is ana-superharmonic function (see, e.g., [19, Chapter |, Se@&]p Therefore,

applying [19, Th. 1.29], we conclude from (9.9) that/ (x) < ¢} for all x € R™. Combined with (9.8), this
gives

aUXN(x) =¢; ne.inTy, (9.112)
and so

a N\ — cir, = a1y, A2 (9.12)

Sincel'; contains nax-irregular points, (9.12) yields that (9.11) holds, in fasterywhere iy, which together
with (9.7) proves (8.1). Furthermore, due to (9.4), (9.0®liesS,: =I'y, i.e. (9.6) fori = 1.
Further, by (7.5) and (7.6),

a UM (x) < ¢5 ne.inTy, (9.13)
asUMT0(x) = c5 n.e.in Sye, (9.14)
wherec; := n2(\) — 1,(0, \?). Hence, by (9.14),
aUN (x) = aUN (x) + 53U (x)  n.e.in Sy,
wherey? := 75 ,, o that
as)? + 377 = aafg , (A +0),
and consequently

. 85, (\' + 6)(R™) — az]
: P (R") '

In view of the right-hand side of (9.5) and the fact thigtv (R™) < v(R™) for any compac andv € £ (R")
(see, e.g., [19]), we therefore get < 0. Hence,a,U) T9(x) — ¢} is a-superharmonic, which due to [19,
Th. 1.29] enables us to conclude from (9.14) that 2 % (x) > ¢ for all x € R”. When combined with (9.13),
this gives

aUM?(x) = ¢5 n.e.in Ty, (9.15)
and so
asX? + ¢y, = agfp, (A" +6). (9.16)

Sincel'; is Lipschitz, (9.16) implies that (9.15) holds, in fact, smghere inl's, which proves (8.2). Furthermore,
due to (9.4), (9.16) yieldS= = 'z, which is (9.6) fori = 2. O
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10 Numerical results

We consider Example 9.1 far = 3 with I'; being the unit sphere (i.e:,= 1) andI'; being a rotational body of
length X, namely

Fg:{x:(x,y,z)eRg:y2+z2§1 for x = 3,
Y +z22=r%x) for 3<a<3+X, y¥*+22<r*B+X) fora=3+X}

In particular, for different lengths(, we focus on the rational functior{z) = 1/(1 + z) and the exponential
functionr(xz) = exp(—z). The distance of the bodids andT'; is 2 (i.e., R = 3). Thus, choosing; = 1,
as = 2,andqg = as — a; = 1 (in fact, we use the choice, = 1.5), the inequality (9.5) is satisfied for all
a € (1,2]. Theorem 9.2 implies that both (8.1) and (8.2) hold, anddfuee Theorem 8.1 applies. Lek denote
the solution of the corresponding Gauss problem.

We discretize the given manifolds, andI's by a quadrangulation with maximal mesh widith On the
guadrangulation we use the characteristic functions agpise constant boundary elements and define a corre-
sponding basis of vectors;  L*(T;),i = 1,2. Set

1 i .
(15 (I)i)L2(Fi)a thj = (V(I)ja (I)i)L2(F73)a ) = 172

£ = (f. )2, &)= P

Then, the Galerkin formulation of the nonlinear equatiod {§reads as follows. Find, = @1} ,— P2} |, €
Ly(T) € H~¢/%(T") such that

Vg v
2,1 2,2
_Vh Vh - gl%(fl%)T

A

F(\) =
(An) A2

{%Vj»(/\h)+€h()\h,/.\h,f)}g,1l] [ f}ll] Y
{3Vi(n) = €M, Ans f) )83 2 ;

(10.1)

whereV ¢ (A, ), the discrete version of the Gauss functional, is expreased
T
A} vt =V A £}
v =[] ([ v e ] +2| o
A7 B VS ol B Y —f7

Crn(An, /'\h, f) = {(g;ll)TA}lL - (gi)T}\i}_l

and

x (@) TALEDT AL = 3V, 0] — (&) AR ()X + v, 0] }-

In particular, the derivative,, = <I>1)'\,1L — %)\i of the solution)\;, satisfies the linear system of equations

M T e
X |-er

In order to solve the nonlinear system of equations (10.1yseethe Newton scheme. To this end, we note
that the derivativé” (\;,) of F()\;,) in the directiony;, = @11, — @217 is given by

1[’}1;| B {3V (An) o + €, (s Ay £) - ¥n }g)
Vi {3V () - n — €, (Ans Ay ) - ¥n b
where the real numbers involved in the last term are compasged

177 vil _yvLb2] [al £l
f : :
v, —vEh VRN |7

Vitegla)t Vi

, (10.2)
Vil Vg ()T

F'(An) - =

Vilbgl@)r v ]
Vv g
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—o.0=2s

H —o.03

—0.035

—O.0a

—0.0as

Fig. 2 Charge distribution in the case ofz) = 1/(1 + =) anda. = 1.5.

&0 1) o = { 7N - @)TR )

x {(@h) AL BT — 3V 0n) - vu] — (&2)T AL [ 7w} + SV () - n] |-

Then, the Newton scheme to solve (10.1) consists of theviollp steps:

1. Choose the initial approximatidrio) = %@11 — %%1-

2. Fork=0,1,..., repeat

(a) compute the derivativk" by solving (10.2) with the GMRES method with initial guels&’ = 0;
(b) solve the equatiof” (A\*) - v, = —F(A'") by the GMRES method with initial guess, = 0;
(c) updatekg’”l) = )\ﬁf) +Pp.

Note that we have used that density as initial approximatibith is constant on both manifolds and satisfies
there the constraintél, A 0)r2(r,) = a1 and (1, Ano)r2(r,) = —ao. To our experience, with this initial
approximation, the Newton scheme converges within a ratheall number of iteration steps. For example,
in all our numerical examples, we needed at most 5 iteratigpssto solve (10.1) up to an accuracyl6f-°,
independently ofv.

In Figures 1, 2, and 3, we have plotted the computed chargigbdisons fora = 2, o = 1.5, anda = 1.1,
respectively, where we considefz) = 1/(1 + =) and X = 4. These computations have been carried out
with piecewise constant boundary elements on a quadraigulay about 50000 elements. It is observed that
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Fig. 3 Charge distribution in the case ofz) = 1/(1 + =) anda = 1.1.

—— Density for a = 2.0
—=—Density fora = 1.9
3 Density fora = 1.7
f| —o— Density fora = 1.5 o
Density fora = 1.3 LT
—=—Density fora =1.1 ;

3 4 5 6 7 8 0
Length of the rotational surface

Fig. 4 Asymptotics forX — oo in the case of (x) = exp(—x).

X area a=20 . a=1.9 . a=1.1 _
charge density charge density | charge density
142107 94-1072 22-10°'| 11-107% 26-107'[1.1-107" 2.7-107"
2 58-1072| 34-1072 5.8-107'| 3.0-1072 5.2-107'|12-1072 2.1-10""
31781073 1.2 - 102 1.5 9.5-1073 1.2 1.7-107% 22.-10°!
4 {1.1-102| 3.9-1073 3.7 3.3.-107° 3.1 26-107* 2.5-107"
5|14-107*] 1.6-107% 1.1-10* | 1.2-1073 8.7 4.0-107° 2.8-107!
6 |19-107°| 6.6-10* 3.4-10' | 5.3-107* 2.7-10' | 6.9-107% 3.6-107!
7 126-1076| 32.-10°¢ 1.2 - 102 2.4-1074 9.3- 10" 1.2-107% 4.5-107!
8 |35-1077 | (1.7-107* 4.7-10%) | 1.0-107* 29-10> | 1.9-1077 5.3-107"
9 |48-107% | (83-107° 1.7-10%) | (4.3-107°> 8.9-10%) | 2.8-10°% 5.9-107"!

Tablel Asymptotics forX — oo in the case of (z) = exp(—=x).

for « — 1 the charge distribution becomes constant on each sub-ohéni¥ice versa, it becomes the more
inhomogeneous the moreincreases. Itis also seen from Figures 1, 2, and 3 that thmostgof the charges we
have computed coincide with the whole surfategandl’2, which is in agreement with the theoretical result (9.6).
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—v— Density fora = 2.0
—=—Density fora = 1.9
—<— Density fora = 1.7
10" [| —— Density fora = 1.5

Density fora = 1.3
—~—Density fora = 1.1

Density

107 T

A A

—A A

—A——A A A A
20 30 40 50 60
Length of the rotational surface

0 10

Fig. 5 Asymptotics forX — oo in the case of (z) = 1/(1 + z).

We next study the asymptotic behaviour)of if the length X of the rotational body tends to infinity. We
compute the module of the total charge at the tip'gfi.e.,

Ax = Nk ds, where Sy :={xeR®: y*+ 2% =r*X +3)},
Yx

as well as the densityx /|2 x|, whereg|X x| := fzx 1 ds. We are interested in their behaviours¥as— oo since,
as has been shown in [28, 30, 31, 34], the Gauss variatioollgmn for the noncompact condenger= (I'1, ')
can in general be nonsolvable, and then the infinfymA, a, ¢) is attained aty € £,(A) with fF2 gdv? < az,
whereas\x — - vaguely and strongly a& — oc.

According to [30, Theorems 4, 8], under our particular agstions, such a phenomenon of nonsolvability
occurs forA = (I'y,T's) with T’y being infinitely long, if and only ifC,, (I's) = co while T'; is a-thin atoogs,
the latter by [4, 5] means that the inversdgfrelative to the unit sphere ig-irregular at the origirx = 0. In the
caser(x) = exp(—z), both these conditions hold true far= 2 (hence, also fow close t02), so that then

lim Ax > 0, (10.3)
X —o0

while in the case(xz) = 1/(1 + x), T's is not a-thin atoogs for anya € (1, 2], so that for this geometry

lim Ay = 0. (10.4)
X —o0

In Figure 4, in the case ofz) = exp(—z), we have plotted the densitids; /|> x| for o = 2.0 (blue graph),

a = 1.9 (red graph)e = 1.7 (green graph)y = 1.5 (black graph)oe = 1.3 (cyan graph), and = 1.1 (magenta
graph) in the rangé < X < 9. In the case ofv = 2.0, we were able to compute the charge distribution only for
X < 7 and thus we have extrapolated the total chargeXfor 7. Likewise, in the case of = 1.9, we had to
extrapolate the total charge up X = 9.

The area of the tipX x |, the module of the corresponding total charge, and the densith x /|X x| are also
tabulated in Table 1 forx = 2.0, « = 1.9, anda = 1.1. One can see that the density for= 2 is unbounded
in X, as has been predicted by (10.3). The behaviour is quitdéasifor o« = 1.9, whereas fory = 1.1 it seems
to be bounded irX.

We have performed the same asymptotic study also in the ¢age)o= 1/(1+z) (see Figure 5 and Table 2).
Here, we were able to compute the total charges for a muchrlasgge ofX. The densityA x /|~ x| is now
always bounded, which is in agreement with the theoretiesillt (10.4). Also observe that the corresponding
upper bound is the smaller the smaller thés.
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a=2.0 a=1.9 a=1.1
charge density | charge density | charge density
8 39.-1072]16-1072 42-107'[14-1072 3.7-107'[46-1072 12-1071
16| 1.1-1072 | 5.7-1072 5.2-107' | 4.8-1072 4.1-107' | 2.0-10=2 1.1-107*'
24| 50-107313.0-1072 59-107' | 25-1072 4.7-107' | 6.9-107* 9.7-1072
32129-103]19-1002 65-107' | 15-1072 53-107' | 3.4-107* 9.2-1072
40119-107%]1.3-1072 7.0-107* | 1.0-107® 5.6-107' | 2.0-10* 8.8-1072
48 113-107%]96-107* 74-107' | 77-107* 59-107' | 1.1-107* 85-102
56| 9.7-107*|75-100* 7.7-107' | 6.0-10* 6.2-107' | 81-107° 84-1072

X area

Table2 Asymptotics forX — oo in case of the rational function(z) = 1/(1 + z).

Acknowledgments

The authors are greatly indebted to Professor K. Bogdan aofé$3or R. Song for helpful discussions and
drawing their attention to the papers [2, 7]. The authore alsknowledge the support of the DFG Cluster of
Excellence Simulation Technologies at the University afttgart and the Institute of Mathematics of National
Academy of Sciences of Ukraine for the mutual collaboration

A Proof of Theorem 4.1

For1/2 < s < k, the proof can be found in [13, Theorem 1.5.2] andfff2 < s < 3/2 see [9, Lemma 3.6].
Hence, it remains to consider the cdse s < k + 1/2; thenk > 2.

We follow closely the proof by Costabel in [9]. Sin€eis compact, by a partition of the unity the statement
of Theorem 4.1 is in fact local. Therefore, without any lobg@nerality, one can assurfieto be of the form

I={(x\z,): x' € Rz, = U(x)},
wherey is a function ofC*—!(R"~!) whose derivative§* ¢ are uniformly Lipschitz, i.e.,
||3k1/)||Loo(Rn71) < 0.

Foranyf € C5°(R") define
fo (X' zy) = f(x’,:cn + w(x’)).
Then the trace of onT' can be written as

(W) 2n) = fu(x',0) = f(x', ) (x)).

Denoted, := 9/0x;,,p=1,...,n—1,andd, := d/dx,. Then with the chain and product rules we get

ISy = (Opf)p + (Onf)y Opib,
0p0; fyy = (3p0;5 )iy + (OpOnf )y 059 + (0500 f )iy Opt) + (O f) g Bp0sth + (92 f )y D50 Dptp
forallp,j =1,...,n— 1, and, for the higher order derivatives,

|

02 fp =02+ Ol oS +> > (9508 )y Pa, (00), (A.1)

(=1 0<|B,I< |l

where the multi-index3; is obtained fromx by deleting some of its components, whifs, (9),+) are certain
products (depending qf) of at most/ derivativesd,«» with |y| < |e|, andPg, (9],¢) is to be zero if so is the
number of all its factors.
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By f(x/,&,) we denote the Fourier transform pfwith respect to the last variablg,, i.e.,

—inTn
f( ,en) 271-/ f(x' xn)e dx,,.
Then

f( (&) = VD8 f(x g,)  and ”E('vgn)”L%R"*l):”f('agn)HL?(]R"*l)' (A.2)

Hence, the Fourier transform 6f; f,,, where|a| > 1, with respect to the last variable has the form

02 T (€)= %{&wxx@wm@ﬂf@mwwaw
||
Y)Y affﬂx',gn)P@e(a:,w}.

=1 0<1Be[<lex| ¢

Fixr, 1 < |a| < r < k. Then for every,, € R we have the estimates
102 fir (s €)1 Z2 n -1y < cllOg F (-5 En)ll72mn—1y + 2601 F (5 En)ll72 -1y 10T gn-1)

+ Z SR DI [0y {CR9] [y

0<|Be|<r—¢

where the constants, ¢, ¢, depend only ork, ¥» and do not depend of),. Multiplying the last inequality by
(1 + |€,])?t, wheret € R, and then integrating the result obtained with respeét, tan view of (A.2) we get

||f¢||Ht(R7H7‘(Rn71)) < CZ HfHHt+Z(R)H7‘7@(]Rnfl)) forall te R and 0 < r < k, (A3)
£=0

whereC depends only on, r, k andq. Here, for any givery € C5°(R") we use the notation (see [9])

1F 11205 (2, b1 1) ::/ (L4 1€)X 117 Cs )l Fra -1y dn-

Foragivens, 1 < s < k+ 1/2, define

k
m(€,&) =Y (14 &)1+ €)%, whereg’ e R™1.
=0
Then

— 00

(o'} 50 k 1
/ (L+ €' D>~ m(€ €)™ dén < 2/ {0} dr=a <.
0 “y=0
In view of the definition ofF/ 2 (T") (see [21, pp. 98-99]), we have

el (- 0))1 < el fu (-, 0)]12

H"3(Rn-1) H 3 (Rn-1) (A4)

< lhofl2,

™)

where the constants andc, are positive and independent pf Having observed that

fi/J('?O) = %‘/_ ﬁ(agn) dén,

Copyright line will be provided by the publisher



mn header will be provided by the publisher 21

with the help of the Cauchy—Schwarz inequality we therefate

o __ 2
of By <¢ [ 418027 [ Tote 0 dea| e

<o [ {) asigrime et [ e FE. )P de ) de

(oo}

k
< ok / /RZ (1+1€)2E 7O+ €)% | Fo (€, 60) 2 déy dE’
n—1 =0

k

= Chs Z 1 V7o, e rn1)y»
=0

whereﬁ is now then-dimensional Fourier transform ¢f,. Hence, with (A.3) we obtain the desired result

2 2
||70f||H57§(F) < C; 1 Vs (g, mre mn—1)

k A
=X [ [ el 00 € e 6 e e,
£=0

¢ /R/l;nfl (1 + |(€/7§n)|)25|f(€/7§n)|2 d&l dfn = C/”f”%-ls(]Rn)
Finally, using the definition of;; (see (4.5)), we obtain

oella-—e@y = sup (e, @)l < llell 3 1) 1702l

1 <l e
12| s mny <1 BTE(ID) S H2 ()’

which proves the right-hand side inequality in (4.4).
To establish its left-hand side, we observe that, accorif@?2, (2.7)],

dén — N ’
el = | | e e )P e

e [ IR dg

2
= csllel o g, = llel? - ‘)

where in the very last inequality the equivalence (A.4) hesrbapplied. Here;, := 2(2s — 1)~ 1(27)~'/2. O
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