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“Whoever would study medicine aright must learn of the following subject: 

First he must consider the seasons of the year and the differences between them 

Secondly he must study the warm and the cold winds, both those which are common to 

every country and those peculiar to a particular locality…” 

Hippocrates 4th – 5th century B.C 
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SUMMARY 

In sub-Saharan Africa, malaria is a major cause of morbidity and mortality especially 

among children less than five years of age and pregnant women. Malaria situations are 

very diverse because of many factors involved in malaria transmission and the great 

variety of their local combinations. These include climatic, ecologic, social, economic 

and cultural factors. A number of epidemiological approaches have been used to try and 

reduce malaria situations to a manageable number of types and classes for efficient 

planning and targeting of appropriate malaria control strategies. Modelling and mapping 

of malaria have long been recognized as important means to developing empirical 

knowledge of this kind. Recently, the availability of new data sets, innovative analytical 

tools and statistical methods has resulted in the development of more comprehensive 

malaria maps for east, west and central Africa. However, most risk maps that have been 

produced so far do not take into account seasonal variation in malaria transmission. 

Seasonality affects the dynamic relationship between vector mosquito densities, 

inoculation rate, parasite prevalence and disease outcome. Quantitative description and 

mapping of malaria seasonality is therefore important for modelling malaria transmission 

dynamics and for timely spatial targeting of interventions. 

 

This thesis is part of an on going effort within the MARA/ARMA (Mapping Malaria Risk 

in Africa/Atlas du risqué de la Malaria en Afrique) collaboration towards the 

development of improved malaria risk maps for Africa. The main objective is the 

development of an empirical model of malaria seasonality by fitting classical and modern 

statistical models to clinical and / or entomological indices where available. This work 
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also intended to identify important determinants of between-year and between-area 

variation that may be useful for developing climate based seasonal forecasting models for 

malaria epidemics.  

 

Chapter 1 gives an overview of the transmission and epidemiology of malaria in Africa 

and set the rational for this work. The initial focus of the analysis was on southern Africa, 

until recently this was the only region with reasonably comprehensive clinical malaria 

case data in the continent and therefore offered an ideal starting point. This region has a 

long history of successful malaria vector control by indoor residual spraying (IRS) with 

insecticides and this may have an impact on the level of malaria endemicity and 

consequently what we are modelling. Chapter 2 therefore reviews the historical impact of 

IRS in southern Africa. Chapters 3 evaluate the impact of the El Nino Southern 

Oscillation (ENSO) phenomenon on annual malaria incidence in Southern Africa. This is 

the main driver of inter-annual and seasonal variability in climate in most regions in 

Africa, and is important because ENSO events alter seasonality in climate in a way that 

influences malaria seasonality. Chapter 4 uses Zimbabwe to examine the spatio-temporal 

role of climate on year to year variation of malaria incidence. This country has a 

heterogeneity of climatic suitability for malaria transmission and reflects varying 

epidemiological profiles that occur in Southern Africa. Chapter 5 uses Zimbabwe as an 

example towards the development of an empirical model of malaria seasonality based on 

clinical malaria case data. Chapter 6 assesses the potential for use of the entomological 

inoculation rate (EIR) to describe malaria seasonality in Africa. Chapter 7 improves on 

work done in chapter 6 by modelling and mapping seasonal transmission of malaria 
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transmission using an approximation based on discrete Fourier transformations which 

remove noise in the original time series and allows for the description important / main 

seasonal components in EIR in relation to those of meteorological covariates. The work 

described in these chapters culminated in five scientific publications and one working 

paper 

 

Chapter 2 showed that Southern African countries that sustained the application of IRS 

reduced the level of transmission from hyper- to meso-endemicity and from meso- to 

hypo-endemicity. This means that in instances where pre-control malariometric indices 

are not available one can not assume to be modelling baseline endemicity. Preferably, 

where the data are available the ideal situation will be to develop pre- and post-control 

models to evaluate changes in the malaria risk pattern over time.  

 

Chapter 3 found that contrary to east Africa where ENSO events and in particular El 

Nino has been linked to changes in climatic condition and increase in epidemic risk, in 

Southern Africa, ENSO has the opposite effect during El Nino years, with heightened 

incidence during La Nina years. However, the impact of ENSO also varies over time 

within countries, depending on existing malaria control efforts and response capacity. 

From this analysis it is clear that in order to lay an empirical basis for epidemic 

forecasting models there is a need for spatial-temporal models that at the same time 

consider both ENSO driven climate anomalies and non ENSO factors influencing 

epidemic risk potential. 
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Chapter 4 confirmed that there is considerable inter-annual variation in the timing and 

intensity of malaria incidence in Zimbabwe. The modelling approach adjusted for 

unmeasured space-time varying risk factors and showed that while year to year variation 

in malaria incidence is driven mainly by climate the resultant spatial risk pattern may to 

large extent be influenced by other risk factors except during high and low risk years 

following the occurrence of extremely wet and dry conditions, respectively. It is likely 

therefore that only years characterized by extreme climatic conditions may be important 

for delineating areas prone to climate driven epidemics, and for developing climate based 

seasonal forecasting models for malaria epidemics.  

 

Chapter 5 employed the Bayesian spatial statistical method to quantify the relative 

amount of transmission in each month. This method smoothed for unobserved or 

unmeasured residual variation in malaria case rates while adjusting for environmental 

covariates enabling us to interpret the spatial pattern of malaria in seasonality. This work 

also demonstrated the feasibility of using Markham’s seasonality index (previously used 

for rainfall) to describe malaria seasonality. In this analysis the index was used to 

summarize the spatial pattern of the modelled seasonal trend by displaying the 

concentration of malaria case load during the peak season across, which is important for 

malaria control.  

 

Chapter 6 adopted Markham’s seasonality index to characterize seasonality in EIR in 

relation to environment covariates. This work successfully identified rainfall seasonality 

and minimum temperature as predictors of malaria seasonality across a number of sites in 
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Africa. However, model predictions were poor in areas characterized by two rainfall 

peaks and irrigation activities. The seasonality concentration index performed better in 

areas with a unimodal seasonal pattern, and this might have had an adverse effect in the 

analysis in areas with a bimodal seasonal pattern. This highlighted the need for an 

improved quantification of malaria seasonality to model the complex and varied seasonal 

dynamics across the continent.  

 

Chapter 7 used an approximation of the discrete Fourier transform to the model 

relationship between seasonality in EIR and meteorological covariates. This was used to 

predict the seasonal average as well as the magnitude and timing of the main seasonal 

cycles. This allowed for the estimation of the overall degree and timing malaria 

seasonality and the duration of transmission across sub-Saharan Africa. Model 

predictions can be used to estimate the average seasonal pattern of malaria transmission 

across the continent. This analysis presents the first step towards the development of 

improved models of malaria seasonality, and as more data become available the models 

can be further refined.  

 

In conclusion the Bayesian analytical framework used in this study enhanced our ability 

to evaluate the relationship between malaria and climatic / environmental factors, and 

improved considerably the identification of important associations and covariates. 

Climatic and associated environmental determinants of seasonal and between year-

variation in malaria, including the impact of ENSO identified in this work, provide 

valuable information for the development of climate based seasonal forecasting models 
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for malaria. Furthermore, an approximation of the discrete Fourier transformation of the 

data enabled us for the first time to develop empirical models and maps of the seasonality 

of transmission of malaria at a continental level. These are positive developments for the 

malaria modelling, mapping and control community in general.   
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ZUSAMMENFASSUNG 

In Afrika südlich der Sahara ist Malaria eine der Hauptursachen von Morbidität und 

Mortalität, wovon besonders Kinder unter fünf Jahren und schwangere Frauen betroffen 

sind. Die Facetten der Malaria sind sehr unterschiedlich da viele Faktoren die 

Malariatransmission beeinflussen und diese lokal in vielen verschiedenen Kombinationen 

vorkommen. Zu den Faktoren zählen klimatische, ökologische, soziale, ökonomische und 

kulturelle Elemente. Mit der Hilfe von verschiedenen epidemiologischen Ansätzen wurde 

versucht, die unterschiedlichen Bilder der Malaria zu überschaubaren Typen und 

Kategorien zu reduzieren um eine effiziente Planung und zielgerichtete 

Kontrollstrategien zu ermöglichen. Computermodelle  sowie Kartierungen der Malaria 

sind seit langem anerkannte, wichtige Mittel zur Entwicklung dieses empirischen 

Wissens. Seit kurzem ermöglichen die Verfügbarkeit von neuen Datensets sowie neue 

analytische Hilfsmittel und statistische Methoden die Entwicklung von umfassenderen 

Malaria Karten für Ost-, West- und Zentralafrika. Allerdings wurde bei den meisten 

entwickelten Risiko-Karten die saisonale Variation der Malariaübertragung nicht 

berücksichtigt. Diese Saisonalität beeinflusst die dynamische Beziehung zwischen der 

Vektor Moskitodichte, der Inokulationsrate, der Prävalenz der Parasiten sowie dem 

Ausgang der Krankheit. Daher sind die quantitative Beschreibung und die Kartierung der 

Malaria-Saisonalität wichtig für die Modellierung der Malariatransmission und der 

Planung von zeitlichen und räumlichen angepassten Interventionen. 

 

Diese Doktorarbeit ist Teil einer laufenden Bestrebung innerhalb der MARA/ARMA 

(Mapping Malaria Risk in Africa/Atlas du risqué de la Malaria en Afrique) Kollaboration 
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für die Entwicklung von verbesserten Malaria-Risikokarten für Afrika. Das Hauptziel ist 

die Entwicklung eines impirischen Modells der Malaria Saisonalität durch die Anpassung 

von klassischen und modernen statistischen Modellen an klinische und/oder 

entomologischen Indices. Des Weiteren beabsichtigte diese Arbeit die Identifizierung von 

wichtigen Determinanten der „zwischen-jährlichen“ und örtlichen Variationen, welche 

nützlich sein könnten für die Entwicklung von klimatisch basierten, saisonal 

vorhersagenden Modellen von Malaria-Epidemien.  

 

Im Kapitel 1 wird ein Überblick über die Übertragung und Epidemiologie der Malaria in 

Afrika gegeben und die Notwendigkeit dieser Arbeit begründet.   

Zu Beginn lag der Fokus der Analysen in Südafrika, da dies bis kürzlich die einzige 

Region innerhalb des Kontinentes war, welche über ausreichend umfangreiche klinische 

Daten von  Malariafällen besass, und sich daher als idealer Startpunkt auswies. Südafrika 

besitzt eine lange Geschichte der Malaria-Kontrolle durch das Besprühen von Wänden 

innerhalb von Häusern mit Insektizid („Indoor Residual Spraying“ (IRS)). Dies könnte 

einen Einfluss auf den Level der Malaria-Endemizität haben und folglich auch auf unser 

Model. Daher wird im Kapitel 2 der historische Einfluss von IRS in Südafrika 

beschrieben. Das dritte Kapitel evaluiert den Einfluss des „El Niño und die Southern 

Oscillation“ (ENSO) Phänomen auf die jährliche Malaria-Inzidenz im südlichen Afrika. 

In den meisten Gebieten von Afrika ist das ENSO Phänomen die Hauptkraft der 

zwischenjährlichen und der saisonalen Variabilität des Klimas und ist wichtig, weil es die 

die Klima-Saisonalität so modifiziert, dass die Malaria-Saisonalität ebenfalls beeinflusst 
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wird. Kapitel 4 untersucht durch das Beispiel von Zimbabwe die räumlich-zeitliche Rolle 

des Klimas auf die Jahr-zu-Jahr Variation der Malaria-Inzidenz.  

In Zimbabwe herrscht eine Heterogenität von Klimas, bei welchen die Malaria-

Übertragung möglich ist und welche die unterschiedlichen epidemiologischen Profile, 

welche im südlichen Afrika vorkommen, widerspiegeln. In Kapitel 5 wird durch das 

Beispiel von Zimbabwe die Entwicklung eines impirischen Modells der Malaria 

Saisonalität auf der Basis von Daten von klinischen Malariafällen aufgezeigt. Kapitel 6 

untersucht das Potential der entomologischen Inokulationsrate (EIR), die Malaria-

Saisonalität in Afrika zu beschreiben. Kapitel 7 geht einen Schritt weiter als Kapitel 6 in 

dem für das Computer-Modell und die Kartierung der saisonalen Malaria-Übertragung 

eine Approximation angewendet wurde, welche auf einer diskreten Fourier 

Transformation beruht. Diese entfernt Störungen in der ursprünglichen Zeitreihe und 

erlaubt die Beschreibung der wichtigsten saisonalen Komponenten der EIR in Beziehung 

zu den meteorologischen Kovariaten. Aus der vorgängig beschriebenen Arbeit 

resultierten fünf bereits publizierte wissenschaftlichen Artikel sowie ein Manuskript, 

welches noch in Bearbeitung ist. 

 

 In Kapitel 2 wurde gezeigt, dass in Ländern des südlichen Afrikas durch die 

kontinuierliche IRS-Applikation die Transmission  von Hyper – zu Meso und von Meso-

zu Hypoendemizität gesenkt wurde. Dies bedeutet, dass ohne malariaometrische Indices 

für die Zeit vor einer Malariakontrolle nicht davon ausgegangen werden kann, dass man 

das Modell einer ursprünglichen Endemizität erstellen kann. Wo die Daten erhältlich 
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sind, sollte daher für die Evaluation der Änderungen des Malariarisikos über die Zeit 

Idealerweise sowohl ein Prä – als auch eine Postmodell entwickelt werden. 

 

In Kapitel 3 wird gezeigt, dass im Gegensatz zu Ostafrika, wo ENSO Ereignisse und im 

speziellen das El Nino Phänomen mit der Änderung von klimatischen Konditionen und 

eines erhöhten Malaria-Risikos in Einklang gebracht werden, im südlichen Afrika ENSO 

Ereignisse während El Nino Jahren den Gegenteiligen Effekt bewirken. Erhöhte 

Inzidenzen treten im südlichen Afrika währen den La Nina Jahren auf. Allerdings variiert 

der Einfluss von ENSO ebenfalls über die Zeit in den verschiedenen Ländern, je nach 

existierenden Malaria-Kontrollprogrammen und Reaktionskapazitäten. In Anbetracht 

dessen ist klar, dass es für die Entwicklung einer empirischen Basis eines Modells, 

welche Epidemien voraussagenden sollte, ein räumlich-zeitliches Modell nötig ist, 

welches gleichzeitig ENSO abhängige klimatische Anomalien sowie Faktoren, welche 

nicht von ENSO verursacht sind und das Epidemie-Risiko beeinflussen, integriert.   

 

In Kapitel 4 wird bestätigt, dass in Zimbabwe eine beträchtliche zwischen-jährliche 

Variation sowohl im zeitlichen Auftreten als auch in der Inzidenz der Malaria vorkommt. 

Das Modell, welches ungemessene räumlich-zeitliche Risikofaktoren einbezog und 

berichtigte, zeigte, dass während die Jahr-zu-Jahr Variation der Malaria Inzidenz 

hauptsächlich durch das Klima verursacht wird, das resultierende örtliche Malaria Risiko 

beträchtlich durch andere Faktoren beeinflusst werden kann. Die Ausnahmen bilden 

Jahre mit sehr hohem oder sehr niedrigem Risiko nach extrem nassen, respektive extrem 

trockenen Zuständen. Es ist daher gut möglich, dass nur Jahre, welche durch extreme 
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klimatische Verhältnisse gekennzeichnet sind, für die Beschreibung von Epidemie-

gefährdeten Gebieten sowie für die Entwicklung von klimatisch basierten, saisonalen 

Malaria-Epidemien vorhersagenden Modellen wichtig sind. 

 

In Kapitel 5 wurden mit Hilfe der „Bayesianischen Methode die relativen Häufigkeiten 

der monatlichen Übertragungen quantifiziert. Diese Methode verminderte nicht 

detektierte oder nicht gemessene Restvariationen der Malariafalldaten während es 

umweltbedingte Kovariaten korrigierte. Dies ermöglichte die Interpretation der örtlichen 

Muster der Malariasaisonalität. Zusätzlich konnte diese Arbeit zeigen, dass der 

„Markham’s Saisonalitätsindex“ (welcher früher für Regenfalldaten benutzt wurde), auch 

für die Beschreibung der Malaria Saisonalität geeignet ist. Für diese Analyse wurde mit 

Hilfe des Indexes das örtliche Muster des berechneten saisonalen Trends 

zusammengefasst, indem die, für die Malariakontrolle wichtige, Dichte der Malariafälle 

während der Hauptsaison aufgezeigt wurde.  

 

In Kapitel 6 wurde mittels des „Markham’s Saisonalitätsindex“ die EIR in Bezug auf 

umweltbedingte Kovariaten charakterisiert. Dabei konnte in mehreren Regionen Afrikas 

die Niederschlagsjahreszeitlichkeit sowie die Minimums-Temperatur erfolgreich als 

Prädikatoren der Malaria-Saisonalität identifiziert werden. Allerdings waren die 

Voraussagungen des Models in Gebieten mit zwei Regenfall-Höchstwerten und 

Bewässerungsaktivitäten ungenügend. Es zeigte sich, dass der Index für Regionen mit 

einem unimodalen saisonalen Muster besser geeignet war, was eine Beeinträchtigung der 

Analysen von Regionen mit einem bimodalen saisonalen Muster bedeuten könnte. Dies 
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unterlegt den Bedarf einer verbesserten Quantifikation der Malaria-Saisonalität um die 

komplizierten und mannigfaltigen saisonalen Dynamiken zu simulieren. 

 

In Kapitel 7 wurde durch eine Annäherung der diskreten Fourier Transformation die 

Beziehung der Saisonalität der EIR und den umweltbedingte Kovariaten simuliert. Damit 

wurden der jährliche Durchschnitt sowie die Grössenordnung und Zeitintervalle der 

relevanten saisonalen Zyklen berechnet. Dies ermöglichte die Schätzung des Ausmasses 

und des Timings der Saisonalität sowie der Dauer der Transmission in ganz Afrika 

südlich der Sahara. Vorhersagen der Computer-Modelle ermöglichen es, die 

durchschnittlichen saisonalen Muster der Malariaübertragung über den ganzen Kontinent 

zu schätzen. Diese Analysen sind der erste Schritt in der Entwicklung eines verbesserten 

Models der Malaria-Saisonalität und umso mehr Daten erhältlich werden, desto besser ist 

es möglich das Model zu verfeinern.  

 

Dank der Bayesianischer Methode waren wir besser in der Lage, die Beziehung zwischen 

Malaria und klimatischen/umweltbedingten Faktoren zu evaluieren. Zusätzlich konnten 

wir die Identifikation von wichtigen Assoziierungen und Kovariaten massiv verbessern.  

Klimatische und umweltbedingte Faktoren, einschliesslich des ENSO, welche für die 

saisonalen und zwischen-jährlichen Variationen der Malaria verantwortlich sind, geben 

wertvolle Informationen für die Entwicklung von klimatisch basierten Modellen für die 

Vorhersage der saisonalen Malaria. Des Weiteren konnte zum ersten Mal ein empirisches 

Modell sowie Karten der Saisonalität der Malaria-Transmission auf der kontinental 

Ebene entwickelt werden, in dem die Daten mit Hilfe der „diskreten Fourier 
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Transformation“ angenähert wurden. Dies sind positive Entwicklungen sowohl für die 

Simulationen, Kartierungen als auch für die Malariakontrolle im Allgemeinen
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Chapter 1: Transmission and epidemiology of malaria in Africa 

Background 

Malaria remains one of the most devastating vector-borne parasitic diseases despite more 

than a century of efforts to eradicate and control it. The disease is a major growing threat 

to the public health and economic development of countries in the tropical and 

subtropical regions of the world, particularly in sub-Saharan Africa (Najera 1989; Carter 

and Mendis 2002). Recently renewed interest in malaria control and prevention has 

prompted demands for novel approaches and more effective implementation of proven 

strategies (Sachs 2002). Given the variable nature of the disease, its vectors and the 

vulnerability of particular human populations, all effective methods of attack against 

malaria should be employed according to epidemiological conditions of the area 

concerned (Bruce-Chwatt 1980; Molineaux 1988). These include a complex interplay 

between environmental, social, cultural and economic factors which operate at different 

spatial and temporal levels. Careful study and evaluation of the role of these factors is 

essential to the understanding of malaria epidemiology and for prioritizing interventions.  

 

Modelling and mapping of malaria has long been recognized as an essential tool for 

epidemiologists more especially as a way for reducing uncertainties in decision making 

for malaria control managers by disentangling and simplifying the complex dynamics of 

malaria transmission (Mckenzie 2000).  
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Transmission biology of malaria 

Human malaria is a mosquito-borne infectious disease caused by a protozoan blood 

parasite of the genus Plasmodium and transmitted by infected female mosquitoes of the 

genus Anopheles. Among the four species of Plasmodium infecting humans (P. 

falciparum, P. vivax, P. malariae, and P. ovale) the most common species in sub-Saharan 

Africa is P. falciparum, which causes the most severe and life threatening form of the 

disease (Gillies and De Meillon 1968; Gills 1993). Its main symptom is fever. Out of 

about sixty anopheline mosquitoes able to transmit malaria to humans the primary vector 

species include Anopheles funestus of the A. funestus group as well as A. arabiensis and 

A. gambiae sensu stricto both members of the A. gambiae complex (Coluzzi 1984; 

Coetzee et al. 2000). These are the most efficient vectors of the malaria parasite 

incriminated in transmitting the most severe and deadly form of malaria in Africa. 

Although there are different species of malaria parasite, the basic life cycle of each 

follows the same pathway.  

 
Life cycle in the human host 

The parasite is transmitted to humans by sporozoites (infective stages) in the saliva 

during blood meal. The female mosquitoes need blood meals to produce their eggs. Soon 

after entering the human host, the sporozoites invade hepatocytes (the liver cells) 

initiating the liver stage, where they multiply by schizogony (asexual reproduction). In 

the case of P. vivax and P. ovale some sporozoites may differentiate into hypnozoites, 

responsible for late relapse of the infection (Molineaux 1988; Oaks 1991; Gilles 1993).  
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Growth and division in the liver takes between 6-15 days depending on the Plasmodium 

species, thousands of merozoites (blood infecting stages of the parasite) are formed. 

These are released into the bloodstream where they invade erythrocytes (the red blood 

cells) initiating the blood stage. In the red blood cells each merozoite matures and divides 

by schizogony into daughter merozoites, which rapture the blood cells and invade more 

red blood cells. The rupturing of red blood cells is associated with the onset of clinical 

presentation of malaria, the periodic fevers (Molineaux 1988; Oaks 1991; Gilles 1993). 

After invading red blood cells, some merozoites develop into male and female 

gametocytes (sexual forms), which are ingested by a mosquito during blood meal, 

initiating sporogony. 

 

Life cycle in the vector 

Inside the mosquito gametocytes transform into micro- and macro-gamates (male and 

female gametes respectively), which fuse to form a zygote (sexual reproduction). The 

zygote matures to form the ookinete that become attached to the midgut wall and 

develops into the oocyst. The oocyst divides by sporogony, giving rise to thousands of 

sporozoite-stage parasites that rapture the oocyst and migrate to the salivary glands. The 

cycle begins again with the injection of sporozoites by a female Anopheles mosquito to 

another human host during blood meal (Molineaux 1988; Oaks 1991; Gilles 1993). 

Consequently, the geographic distribution of the parasite follows that of its carrier, and 

the presence of the human host along with suitable climatic / environmental conditions 

determine the extent of malaria transmission and distribution. 
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Malaria transmission determinants 

The transmission of malaria is complex, involving life cycles in both the human host and 

anopheline vectors as explained above and depends on the interaction of ecological and 

biological factors of both the human and vector populations. Malaria vectors vary 

considerably in their ability to transmit malaria. The feeding habits and prevailing 

climatic / environmental conditions affect their vectorial capacity (new infections 

produced by the vector per case per day) which determines how malaria is transmitted 

and expressed in individuals and populations (Gillies and De Mellion 1968; Hunt et al. 

1998). For example, within members of the Anopheles gambiae species complex, A. 

gambiae s.s. feed on humans (anthropophilic) both indoors (endophagic) and outdoors 

(exophagic) and rests mainly indoors (endophilic). An. arabiensis is more likely to feed 

on animals (zoophilic) and rest outdoors (exophilic). On the other hand Anopheles 

funestus is highly anthropophilic and both endophilic and exophagic. 

 

The capacity of the mosquito to transmit malaria is based on several key parameters of 

the vector population (Coluzzi 1984). These include the density of vectors in relation to 

humans, number of blood meals taken per vector per day, daily survival of the vector, and 

parasite incubation period in the vector. The transmission of malaria requires that 

environmental conditions are suitable for both the mosquito and the parasite (Molineaux 

1988; Oaks 1991; Gilles 1993). The vectorial capacity of A. funestus
 can often exceed 

that of A. gambiae in some localities (Gillies and De Meillon 1968; Fontenille et al. 

1984; Fontenille et al. 1997). A. funestus breeds in permanent or semi-permanent swamps 

or in pools along streams and river systems, and A. gambiae complex prefer temporary 
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aquatic habitats. Consequently, A. funestus are less dependent on rains and become 

abundant during the dry seasons when A. gambiae densities are low. Thus, A. funestus is 

often considered a vector species that bridges malaria transmission during the dry season 

(Gillies and De Meillon 1968; Cohuet et al. 2004). 

 

Only anophelines surviving longer than the sporogonic cycle (extrinsic phase of parasite 

development in the mosquito) can transmit malaria. The female mosquitoes need blood 

meals to produce their eggs. For transmission to occur there must be sufficient time for 

them to take a blood meal, for the parasite to develop, and for the mosquito to take 

another blood meal and thus transmit the parasite to a second host. Factors that affect the 

lifespan of the female anopheline, and consequently the completion of the sporogonic 

cycle include ambient temperature, relative humidity and rainfall. The time required for 

the complete maturation of the parasite in mosquito also varies according to the 

Plasmodium species (Molineaux 1988; Oaks 1991; Gilles 1993).  

 

Generally, sporogony cease at temperatures below 16 oC and above 40 oC, and at 20-30 

oC the parasite develops optimally in the vector. Higher temperatures shorten parasite 

development and increase the number of times blood meals are taken as well as breeding 

activity of Anopheles mosquitoes. High relative humidity (greater than 60%) prolongs the 

life of the vector and transmission is extended under such conditions (Molineaux 1988; 

Oaks 1991; Gilles 1993). The effect of rainfall is more complex. In addition to increasing 

the extent of vector breeding sites, rainfall modifies temperature and relative humidity, 

two important conditions for malaria transmission. Without sufficient rainfall mosquitoes 
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are unable to survive and as a result parasites cannot infect humans. However, too much 

rainfall, or rainfall accompanied by storm can flush away breeding larvae. Not only the 

amount or intensity of rainfall, but also the months of the year or intervals at which it 

occur (i.e. seasonality) affect vector activity, transmission and disease risk.  

 

Malaria epidemiology 

Malaria Risk  

Human malaria risk worldwide is estimated to be 350 to 650 million clinical cases each 

year (WHO 2005; Snow 2005), with about 90% of these occurring in Africa, south of the 

Sahara, mostly in young children, as well as in a significant number of pregnant women. 

Other high-risk groups include non-immune travelers, refugees, displaced persons and 

laborers entering endemic areas (WHO 2000a). Malaria related aneamia, hypoglaceamia, 

respiratory distress and low birth weights are included when defining the burden of 

malaria. Other nonspecific symptoms include chills, discomfort, fatigue, headache, 

muscle pain, cough and organ failure. The World Bank ranks malaria as the leading cause 

of lost disability-adjusted life years (DALYs) in Africa with an estimated 35 million of 

future life-years lost from disability and premature death (World Bank 1993). 

 

It is estimated that malaria kills between 1.5 and 2.7 million people world wide each year, 

about 1 million deaths occur in children under 5 years of age, especially in sub-Saharan 

Africa (WHO 2000a). Childhood malaria deaths, resulting mainly from severe anaemia, 

hyoglycaemia, cerebral malaria and metabolic acidosis presenting as respiratory distress 
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(Marsh et al. 1995; Murphy and Breman 2001), constitute nearly 25% of child mortality 

in Africa (WHO 2000a).  

 

The morbidity and mortality associated with malaria have a crippling effect on social and 

economic development of most countries in Africa. It incapacitate the labour force, 

lowers educational achievements, discourage tourism and business investment. Recent 

estimates suggested that the economic losses due to malaria in Africa are actually about 

US$12 billion per year and the needs for malaria control have been estimated to US$3 

billion (WHO 2000b). The economic burden of ill health on individual households can 

also be substantial and in some cases catastrophic, especially for poor households. An 

African family may spend up to 25% of their income on malaria prevention and control 

(Breman et al. 2004).  

 

Malaria control efforts  

Efforts to reduce the burden of malaria are as old as human societies. However, over a 

century into the history of scientific malaria control, too little has changed particularly in 

Africa where malaria causes untold suffering and impedes social and economic 

development (Najera 1989, Carter and Mendis 2002). The malaria eradication campaign 

between the 1950’s and 1960’s was the first globally coordinated attempt to bring malaria 

under control. The focus was indoor residual spraying (IRS) with persistent insecticides 

(mainly DDT) against house dwelling adult female mosquitoes supplemented in some 

instances by case treatment campaigns. Dramatic reduction in malaria was achieved in 

many parts of the world. However, the goal of eradication proved elusive in most 
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endemic countries in the tropics and in particular sub-Saharan Africa (Kouznetsov 1977; 

Bruce-Chwatt 1984).  

 

Since the end of the eradication campaign in 1969 failure to interrupt transmission in 

much of Africa led many to discount the value of vector control particularly IRS. As a 

result since the 1970’s international interest in malaria and funding for malaria research 

and control declined in most countries in the continent. In 1987 a Malaria Control 

Strategy for Africa was initiated in response to the increasing burden of malaria in the 

continent and the concern of national authorities. Difficulties in implementation and 

continued concerns of African countries led to the adoption of the Global Malaria Control 

Strategy in 1992 which focused on case management through early detection and prompt 

treatment (WHO 1993a and 1993b).  

 

This was followed by a formulation of a new movement in 1998 aimed at developing 

global and local partnership to halve the burden of malaria by 2010 through Roll Back 

Malaria (RBM). The RBM strategy recommends four evidence-based approaches 

towards malaria control. These include prompt treatment with effective drugs; selective 

and sustainable prevention relying on vector control (mainly through insecticide treated 

materials); intermittent preventive treatment in pregnant woman and infants; emergency 

and epidemic preparedness and response (WHO 1998). Recently, new global initiatives 

for malaria control in Africa include improving health conditions of the poor through the 

United Nations Millennium Development Goals, research development funded by the 
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Bill and Melinda Gates Foundation and scaling up of disease control through the Global 

Fund (Shiffman 2006).      

 

However, as was in the past contemporary control strategies face a variety of challenges. 

In Africa the rapid spread of drug resistance first to chloroquine and very recently to 

sulfadoxine-pyremethamine has greatly increased the cost and difficulty of case 

management. Drug treatment strategies are also compromised by inadequate health care 

infrastructure and poor distribution of drugs. Furthermore, poorly constructed dwellings, 

non compliance of affected communities, vector behaviour (such as feeding outdoors) 

and development of insecticide resistant vector populations combined with the complex 

dynamics of malaria transmission pose a serious threat to the effectiveness of vector 

control strategies (Hamoudi and Sachs 1999). This is compounded by the varying 

intensity and spatial-temporal dynamic of malaria transmission. Overcoming these 

challenges relies on advancing our understanding of malaria epidemiology which requires 

investigation of the underlying dynamics of malaria risk (Snow et al. 2005).  

 

Description of malaria risk 

The description of malaria risk depends on a great number of factors from a diverse set of 

domains. These factors can be roughly classified into those that influence transmission 

intensity (extrinsic factors such as climate), i.e. the potential for the transmission of the 

malaria parasite as discussed in the preceding sections, and those that influence disease 

risk (intrinsic factors such as host immunity), i.e. the potential morbidity and mortality in 
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the human population as a consequence of transmission (Molineaux 1988; de Vries 

2001).  

 

Basically, the level of malaria transmission relates to the pattern, spectrum and magnitude 

of disease outcome. Hence the intensity of transmission provides a useful indication of 

the likely age-structured risk of severe clinical disease in a given population (Snow and 

Marsh 2002). In Africa, the enormous heterogeneity in the parasite species and strain, 

rates of infection, human host genetic make up and level acquired immunity creates a 

variety of possible outcomes with respect to disease outcome. Individuals show a wide 

range of responses on contact with the malaria parasite and not everyone infected with 

malaria becomes ill or dies (Snow and Marsh 1998; Gupta et al. 1999). 

 

The main source of heterogeneity is the acquisition of some protective immunity against 

the disease, which is closely associated with age and depends on the degree of exposure 

to the malaria parasite. An area with malaria cases mainly in young children has very 

high transmission intensity under such conditions severe cases occur in infants while 

older children and adults suffer less severe disease indicating high degree of acquired 

immunity. The distribution of such immunity only reduces the incidence of clinical 

malaria attacks without preventing infection (Snow at al. 1998b; Gupta et al. 1999). On 

the other hand if cases occur equally across the ages, all age groups are susceptible to 

severe malaria and this indicates a lack of acquired immunity, and low transmission 

intensity (Mills 1984; Oaks et al. 1991; Gilles 1993).  
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The maintenance of acquired immunity requires exposure to repeated infections, and the 

temporal pattern of exposure plays an essential role in the impact of infection in the 

exposed individual. This is reflected in the climate driven seasonal fluctuation of the 

intensity of transmission and resultant malaria cases which can be very different from one 

year to the next (Gilles 1993). Age and season therefore reflect the different states of 

dynamic equilibrium between malaria transmission, parasite load and immune defenses 

(Paul et al. 2004). This makes modelling of malaria transmission and disease risk a great 

challenge and forms the rationale for mathematical and statistical approaches to describe 

the dynamics of malaria risk (McKenzie 2000).  

 

Modelling malaria risk   

Mathematical models offer important insight into the process underlying dynamics of 

malaria transmission and have been successfully used to compose effective interventions 

(Mackenzie 2000). In 1910 Ross used the first simple mathematical model to show that it 

is sufficient for the elimination of malaria to bring the mosquito population below a 

certain threshold (Ross 1911). In the 1950’s MacDonald extended Ross’s basic model to 

show that it is far more effective to use insecticides on adult mosquitoes than their larvae 

(Macdonald 1957). Since then mathematical models have continued to contribute to the 

theoretical basis of malaria control.  

 

To date most mathematical models are either directly related to the Ross-MacDonald 

models or borrow from their concept, which includes factors that directly influence 

malaria such as mosquito density and survival, biting frequencies and parasite 
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development rate (Dietz 1988; Mckenzie 2000). However, until recently only few models 

have been statistically calibrated (i.e. formally fitted to data) because of a lack of 

extensive longitudinal data and adequate statistical techniques. In addition, simulation 

results from those models were not presented with confidence intervals allowing for 

assessment of their reliability (Cancre et al. 1999). Most recently, an innovative 

mathematical modelling platform has been constructed to simulate the potential impact of 

interventions on malaria epidemiology (Smith et al. 2006). This employs a stochastic 

modelling framework to predict the relationships between different components which 

include transmission parameters, intervention scenarios and their cost effectiveness. 

However, these kinds of models are less suitable to determine the most effective moment 

and geographical position for control methods to be applied. 

 

New statistical approaches that take into account time and point reference, including 

model inference about model parameter values, calculation of confidence intervals for 

model predictions, model checking and hypothesis testing are now available. These 

operate within the framework of Generalised Linear Mixed Models (GLMM) (Littel et al. 

1996) and Bayesian spatial models using Markov Chain Monte Carlo simulation 

(MCMC) (Wakefield et al. 2000). All these methods have already started contributing in 

helping to identify the best choices of outcomes and parameters for improving the 

mapping of malaria risk in Africa. 
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Mapping malaria risk 

Risk maps by definition are outcomes of models of disease transmission based on spatial 

and temporal data. These models incorporate, to varying degrees, epidemiological, 

entomological, climate and environmental information (Kitron 2000). Describing spatial 

and temporal variation in transmission and disease risk is fundamental to epidemiological 

understanding and control of malaria. Decades of experience confirm that successful 

malaria control depended on accurate identification and geographical reconnaissance of 

high-risk areas in order to target control measures (Wijeyaratne 1999; Carter et al. 2000).  

 

However, in the past, global, continental and regional maps of malaria risk were largely 

based on expert opinion, limited data, as well as crude geographical and climate iso-lines 

with no clear and reproducible numerical definition (Craig et al. 1999). In recent years 

the availability of new data sources such as remote sensing (RS), and mapping tools such 

as computerized geographic information systems (GIS) for quantitative analysis of spatial 

data provided unprecedented amount of information and increased capability to describe, 

predict and communicate risk and the outcome of interventions (Hay et al. 2000; Kitron 

2000; Thomson and Connor 2000; Bergquist 2001). These developments lead to the 

formation of a GIS based continent wide initiative, the Mapping Malaria Risk in Africa / 

Atlas du Risque de la Malaria en Afrique (MARA/ARMA) collaboration with the aim of 

producing an atlas of malaria risk for rational and targeted control across the continent 

(Snow, Mash and Le Sueur 1996a; Le Sueur et al. 1997).  
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The MARA/ARMA project defined the theoretical distribution and duration of malaria 

transmission across the whole of Africa based on biological constraints of climate on 

parasite and vector development (MARA/ARMA 1998; Craig et al. 1999). Furthermore, 

the malaria distribution model was used to estimate the number of people at risk at a 

continental level (Snow et al. 1999). Several malaria risk maps have also been produced 

using malaria data collected as part of the MARA/ARMA collaboration. These maps 

have been developed using parasite prevalence data at a country and regional level in 

Kenya and West Africa, respectively, with new methods developed each time, 

discriminant analysis (Snow et al. 1998); kriging techniques including generalized linear 

mixed models (GLMM) (Kleinschmidt et al. 2000; Kleinschmidt et al. 2001a); Bayesian 

spatial models employing Markov Chain Monte Carlo (MCMC) inference (Gemperli 

2003). In southern Africa, the first spatial and temporal analysis of malaria risk was 

carried out in a small area in KwaZulu-Natal, South Africa using clinical incidence rates 

rather than parasite rates as in the above-mentioned studies by applying conditional 

autoregressive models fitted using MCMC (Kleinschmidt et al. 2001a & 2001b).  

 

Recently, a transmission model based approach has been used for mapping malaria risk in 

Mali, West and Central Africa (Gemperli et al. 2006a; Gemperli et al. 2006a). This 

approach requires an input of malaria seasonality to underlie the maps. Seasonality in 

malaria transmission is an important but neglected consideration in malaria mapping, 

most malariometric indices used are either collected during the rainy or dry season, and 

this introduces bias in the maps if not accounted for (Gemperli 2003). Besides, 
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seasonality in climate affects the dynamic relationship between vector mosquito 

inoculation rate, parasite prevalence and disease outcome. 

 

In the Mali analysis Gemperli et al. (2006a) assumed a constant transmission season for 

each location across the country. In the subsequent analysis of the West and Central 

African data Gemperli et al. (2006b) attempted to overcome this problem by using a 

modified version of the Tanser et al. (2003) climate suitability model of malaria 

seasonality which estimates duration and timing of season at each location by classifying 

months as suitable or not suitable for transmission. However, it would be preferable to 

use a seasonality model that predicts quantitative variation in intensity of transmission 

between months, rather than simply classifying them dichotomously. An improved map 

of the seasonal risk pattern is also important for timely spatial targeting of malaria control 

efforts.  

    

Rationale for the study 

In most parts of sub-Saharan Africa malaria transmission is highly seasonal with 

considerable interannual variability and propensity for epidemics in some parts. This is to 

a large extent driven by climate and associated environmental determinants. However, 

although the basic relatioship between transmision, climate and environment is well 

known (Molineaux 1988; Thomson et al. 1997; Craig et al. 1999), variability as a result 

of their complex interaction in both space and time pose a serious challenge for the 

description of malaria risk and disease control. Particularly because effective 

implementation of control measures requires that risk areas and risk periods be identified.  
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Study aim  

The main aim is to develop an empirical model of malaria seasonality and to identify 

potential climatic and environmental predictors of seasonal and inter-annual variation 

using time series of parasite positive clinical cases and entomological inoculate rates 

(EIR) where available for modelling malaria transmission dynamics and for timely spatial 

targeting of interventions. 

 

Specific objectives 

 
1. Review the historical impact indoor residual spraying (IRS) with insecticide 

on the malaria situations in southern Africa. 

2. Evaluate the effect of the El Nino Southern Oscillation (ENSO) as measured 

by the Southern Oscillation Index (SOI) on annual malaria incidence in 

Southern Africa. 

3. Examine the spatio-temporal role of the effect of climate in inter-annual 

variation of malaria incidence in Zimbabwe. 

4. Use Zimbabwe as an example towards the development of an empirical 

seasonality model based on clinical malaria data. 

5. Assess the potential use of entomological inoculation rate (EIR) and a 

seasonality concentration index for describing malaria seasonality in Africa. 

6. Develop an empirical model and map of the seasonality of malaria 

transmission for sub-Saharan Africa based on the seasonality in EIR and 

meteorological covariates.  
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Abstract 

Indoor residual house spraying (IRS) mainly with dichlorodiphenyltrichloroethane (DDT) 

was the principal method by which malaria was eradicated or greatly reduced in many 

countries in the world between the 1940s and 1960s. In sub-Saharan Africa early malaria 

eradication pilot projects also showed that malaria is highly responsive to vector control 

by IRS but transmission could not be interrupted in the endemic tropical and lowland 

areas. As a result indoor residual spraying was not taken to scale in most endemic areas 

of the continent with the exception of southern Africa and some island countries such as 

Reunion, Mayotte, Zanzibar, Cape Verde and Sao Tome. In southern Africa large-scale 

malaria control operations based on indoor residual house spraying with DDT and 

benzene hexachloride (BHC) were initiated in a number of countries to varying degrees. 

The objective of this review was to investigate the malaria situation before and after the 

introduction of indoor residual insecticide spraying in Swaziland, Botswana, Namibia, 

South Africa, Zimbabwe and Mozambique using historical malaria data. We show that 

immediately after the inception of indoor residual house spraying with insecticides, 

dramatic reductions in malaria and its vectors were recorded. Countries that developed 

national malaria control programmes during this phase and had built up human and 

organizational resources, made significant advances towards malaria control. Malaria was 

reduced from hyper- to meso-endemicity and from meso- to hypo-endemicity and in 

certain instances to complete eradication. Data are presented on the effectiveness of 

indoor residual house spraying as a malaria control tool in six southern African countries. 

Recent trends in and challenges to malaria control in the region are also discussed.  
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Introduction 

Control of malaria represents one of the world’s greatest public health challenges, 

especially in sub-Saharan Africa where most of the disease occurs nowadays. In the past 

decades, efforts to control malaria have been met with mixed success. Since the 

discovery of the connection between Anopheles vectors and malaria transmission in 1897, 

vector control strategies have been the most widely used malaria control measures. 

Before World War II vector control measures included environmental sanitation through 

drainage and landfills to eliminate larval mosquito habitat; biological control through the 

use of larvivorous fish in ponds; larviciding with oil and Paris green. All these methods 

were proven to be effective, especially in Europe, but malaria continued to be a problem 

on a global scale (Najera 2000).  

 

The availability of dichlorodiphenyltrichloroethane (DDT) and other insecticides in the 

1940s marked a new era for malaria control in the world. The effectiveness of DDT 

against indoor resting mosquitoes led to the adoption of the Global Eradication 

Programme of Malaria in 1955, coordinated and supported by the World Health 

Organization (WHO). For the first 10 years (1957-1966) the results were spectacular; 

malaria was completely eradicated in the United States as well as in the former Soviet 

Union and European countries. Disease incidence was also significantly reduced in many 

countries in the tropical region of South-East Asia, India and South America. However, 

gains made in some of the countries particularly in the tropical regions could not be 

sustained and there were reverses due to financial, administrative or operational 

problems, resistance or behaviour of vectors, or to the inadequate development of basic 
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health services (Najera 2001). The time-limited eradication policy was eventually 

abandoned in 1969 and replaced by a long-term Global Malaria Control Strategy in 1992. 

 

In Africa, south of the Sahara, several malaria eradication pilot projects were initiated 

between the 1940s and the 1960s in countries such as Liberia, Cameroon, Nigeria, 

Senegal, Burkina Faso, Benin, Togo, Rwanda, Burundi, Uganda, Tanzania and Kenya. 

The intention was to assist governments to improve techniques to the point where 

transmission was interrupted and eradication could be undertaken. These pilot projects 

demonstrated that malaria was highly responsive to control by IRS with insecticides 

(mainly DDT). Significant reductions in anopheline vectors and malaria were recorded 

but transmission could not be interrupted (Kouznetsov 1977; Payne et al. 1976; Bradley 

1991; Najera 2001). Subsequently, international interest in malaria and funding for 

malaria research and control declined in most countries on the continent. As a result 

residual spraying was not taken to scale in large parts of sub-Saharan Africa with the 

exception of southern Africa and islands such as the Reunion, Mayotte, Zanzibar, Cape 

Verde and Sao Tome.   

 

In southern Africa the first experimental adult mosquito control with pyrethrum was 

carried out in 1931 in KwaZulu-Natal, South Africa, and this led the way for the 

worldwide use of residual insecticides against adult mosquitoes (de Meillon 1936). By 

the 1940s, large-scale malaria control operations based on house spraying with DDT and 

BHC (benzene hexachloride) were successfully initiated in South Africa, Zimbabwe and 

Swaziland. The danger of unexpected epidemics was minimized; morbidity and mortality 
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were drastically reduced, and in certain areas such as southern KwaZulu-Natal the 

disease was eradicated (Kouznestov 1977).  

 

Today malaria is a resurging global phenomenon, with explosive epidemics, altered 

geographical distribution and resurgence in areas where it had been brought to low levels 

(Roberts et al. 2000). It is clearly important therefore to look at the history of malaria and 

its control in regions where significant and sustained strides were made towards control, 

particularly in Africa. In this paper, we examine the historical impact of vector control on 

the malaria situation in southern Africa, and how the control programmes evolved in the 

region with an emphasis on the use of IRS, which has been and continues to be the 

backbone of malaria control in the region. 

 

Selected countries and data collection 

This review focuses on six southern African countries for which historical malaria data 

and related information could be accessed, i.e. South Africa, Swaziland, Botswana, 

Namibia, Zimbabwe and Mozambique. The intensity of malaria transmission in the 

region varies considerably and includes malaria-free areas as well as unstable and stable 

transmission areas. Among the selected countries malaria is predominantly stable in 

Mozambique, which as a result has the greatest burden of the disease. In the other five 

countries, malaria is predominantly unstable. These areas are often prone to epidemics 

which can result in high levels of morbidity and mortality if not prevented or contained. 

IRS is the main vector control strategy in these countries, and over 13 million people are 

currently protected by IRS in the region (SAMC 2000). 
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Malaria data and related information used were collected as part of the MARA/ARMA 

project (Mapping Malaria Risk in Africa / Atlas du Risque de la Malaria en Afrique) 

through literature searches and country visits (MARA/ARMA 1998). Data sources 

included national malaria control programmes, national archives and libraries, as well as 

academic institutions in the region. 

 

In South Africa, publications by Sharp et al. (1988), le Sueur (1993), Sharp and le Sueur 

(1996) document the history of malaria control from the early 1930s to the mid 1990s. A 

number of unpublished documents and reports were also sourced from Dr. Frank 

Hansford of the former National Institute of Tropical Diseases in Tzaneen, South Africa. 

  

In Swaziland, early malaria control efforts (1947-1957) are well documented in published 

and unpublished papers by the chief medical officer Dr. O. Mastbaum. Consistent records 

of malaria data are also available from annual reports produced by the Ministry of Health 

since 1947 as well from various WHO reports.  

  

In Botswana, the Ministry of Health and Central Statistics compiled the only available 

consistent malaria information since 1980. Prior to this, only scanty information dating 

back to the 1930s and early 1950s could be sourced from national archives, as well as 

from two WHO reports produced in 1962 and 1974 (WHO 1962; Chayabejara et al. 

1975).  
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In Namibia, past malaria data and related information were available from a 1950 

publication by Dr B. de Meillon (de Meillon 1951). A series of malaria data dating from 

the 1960s until the early 1990s were sourced from the National Institute of Tropical 

Diseases in Tzaneen as well as from numerous WHO reports before and after 1990. 

However, since the early 1990s the National Vector-borne Disease Control Programme 

(NVDCP) within the Ministry of Health has been responsible for malaria and related 

information.  

  

In Zimbabwe, Alves and Blair (1953, 1955), Harwin (1969, 1979), Taylor and Matambu 

(1986) give a historical account of malaria control efforts in that country from the mid-

1940s to the mid-1980s. Some information is also contained in a number of unpublished 

reports from the Blair Research Institute in Harare, Zimbabwe.  

  

The 20-year history of malaria control experience (1946-1956 and 1960-1969) in 

southern Mozambique is documented in a number of unpublished reports (Soero 1956; 

Ferreira 1958; Schwalbach & de la Maza 1985). Recent information on malaria control in 

Mozambique was sourced from Barreto (1996) and Sharp et al. (2001).  

 

Malaria situation before control with IRS 

Prior to the introduction of IRS, malaria was hyper-endemic with intense seasonal 

transmission in endemic areas of most countries in the region. Pre-control spleen and 

parasite rates from random surveys carried out in selected areas in South Africa (Wilson 
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and Garnham 1950); Swaziland; Botswana (Mastaum 1944); Namibia (de Meillon 1951); 

(Mastbaum 1957b); Zimbabwe (Alves and Blair 1953) and southern Mozambique 

(Martins 1941) were highest in young children and there was a decline in infection with 

increasing age indicative of a fairly stable transmission (Table 2.1.). The geographical 

distribution of malaria was also more extensive, and most countries experienced severe 

epidemics.    

 

In South Africa, malaria epidemics used to extend as far southwards down the east coast 

as Port St. Johns (Eastern Cape) and as far inland as Pretoria in the northern part of the 

country (le Sueur et al. 1993). In Swaziland, the highest infections were found in the 

lowveld (150-500 meters) and relatively low infections were found in the middleveld 

(500-1000 meters) while malaria was absent from the highveld zone (1000-4000 meters) 

(Figure 2.1.).  

 

In Botswana, very little information is available on the malaria situation prior to the 

implementation of IRS. However, in 1939 a travelling dispensary noted the disease as  

occurring all year round in the riverine communities, indicating fairly stable transmission 

in these areas, while in villages away from such areas it was distinctly seasonal with 

fewer cases seen during winter months. The spleen rate varied from 40% to 84% in 

different villages (Medical Officer 1939).  

 

In Namibia, the only information available on the malaria situation before the beginning 

of the IRS operation in the mid 1960s is from studies by de Meillon (1951) and 
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Schoemann (1951). These surveys showed that malaria was highest in the north eastern 

part of the country decreasing towards the west, varying from meso- to hypo-endemic in 

the central districts, and fading to an epidemic-prone situation in the southern part of the 

country.  

 

In Zimbabwe, a more stable transmission was found to occur in low lying areas and 

frequent epidemics occurred at higher altitude (Taylor & Matambu 1986). In southern 

Mozambique, the Maputo region experienced stable seasonal transmission (Soero 1956; 

Ferreira 1958; Schwalbach & de la Maza 1985).    

 

Malaria vectors of the A. gambiae complex and A. funestus were also widespread and 

found in high densities indoors throughout the malarious areas in South Africa 

(Swellengrebel & de Meillon 1931), Swaziland (Mastbaum 1957b), Botswana 

(Mastbaum 1944), Namibia (de Meillon 1951), Zimbabwe (Alves & Blair 1955) and 

Mozambique (Soeiro 1956). 
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Table 2.1.  Pre-control spleen and parasite rates from random surveys carried out in selected areas in 

Swaziland (Mastbaum 1957b); Botswana (Mastaum 1944); Namibia (de Meillon 1951); South Africa 

(Wilson and Garnham 1950); Zimbabwe (Alves and Blair 1953) and southern Mozambique from (Martins 

1941). 

SOUTH AFRICA (1932) 

Transvaal and Northern KwaZulu-Natal Transmission season Age groups  

(Years) Spleen (%) Parasite (%) 

0-1 63 60 

2-5 92 91 

6-10 87 76 

11-15 74 64 

16-25 52 51 

>25 46 34 

SWAZILAND (1945-1948) 

 Lowveld Area (150-500 meters) Middleveld Area (500-1000 meters) 

Transmission season Non transmission season Transmission season Non transmission season 

 Spleen (%) Parasite 

(%) 

Spleen (%) Parasite (%) Spleen (%) Parasite 

(%) 

Spleen (%) Parasite (%) 

< 1 17 38 11 13 5 14 1 2 

1-5 64 76 47 51 23 31 9 15 

6-10 68 78 61 56 23 32 16 20 

11-15 49 55 42 37 24 43 13 13 

16-20 30 49 26 23 20 37 6 11 

>20 29 44 19 15 18 36 6 8 

BOTSWANA (1944) 

Ngamiland South Non transmission season Chobe Non transmission season  
Spleen (%) Parasite (%) Spleen (%) Parasite (%) 

0-5 43 33 86 73 

6-14 42 18.3 44 55 

>14 25 8.3 11 11 

NAMIBIA (1950) 

Kavango Transmission season Ovambo Transmission season  

Spleen (%) Parasite (%) Spleen (%) Parasite (%) 

0-1 48 74 30 19 

2-5 79 90 34 58 

6-10 52 75 36 63 

11-20 30 65 26 60 

21-30 13 48 9 50 

>30 10 25 7 33 

ZIMABWE (1948) 

 Bushu Reserve Transmission season 

                                                                                                                                                                                                Parasite % 

1-3                                                                                                                                                                                                72                                                                              

SOUTHERN MOZAMBIQUE (1937-1938) 

Maputo region 

 

Spleen (%) Parasite (%) 

< 1  56 80 

1-5 69 92 

5-10 53 83 

10-15 38 72 
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Figure 2.1. Parasite rates before and after the inception of malaria control by IRS (arrows show the start of IRS) in 

Swaziland, Botswana, Namibia, South Africa, Zimbabwe and southern Mozambique (for references on country data see 

main text).  
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Implementation of IRS programmes 

Table 2.2. summarizes the start of IRS programmes in the region and changes in residual 

insecticides applied over time. The first trial testing of the residual application of 

pyrethrum was undertaken. In 1946, DDT replaced pyrethrum as the insecticide of choice 

(Sharp et al. 1988; le Sueur et al. 1993). In 1956, malaria became a notifiable disease, 

total coverage of all malarious areas was achieved for the first time in 1958, and by 1970 

South Africa had a well-structured malaria control programme (Sharp & le Sueur 1996). 

In 1996, the pyrethroid deltamethrin was introduced for IRS in line with international 

trends to replace DDT. Subsequently, A. funestus, which had disappeared since the 1950s 

re-emerged in 2000 and was shown to be pyrethroid-resistant (Hargreaves et al. 2000). 

As a result, national policy reverted back to the use of DDT, and surveillance has since 

indicated that A. funestus has again disappeared (Ministry of Health 2003). 

  

In Swaziland, the malaria control programme was launched in 1945. Residual indoor 

spraying with DDT was initiated on a limited scale in 1947 (Mastbaum 1955). By 1950, 

coverage of all malarious areas was achieved. During the 1951-1952 transmission season, 

benzene hexachloride (BHC) was introduced due to a shortage of DDT. From 1955-1956, 

the efficacy of dieldrin versus BHC was evaluated and no significant difference was 

found in the vector population density and number of malaria cases in areas sprayed with 

the two insecticides. However, dieldrin was discontinued due to higher cost (Mastbaum 

1956, 1957b). Focal spraying, partly with BHC and partly with DDT, was carried out in 

the 1960s (Delfini 1969). From the 1980s, spraying of all inhabited structures in 

malarious areas with DDT and later with synthetic pryrethroids (cyfluthrin) in houses 
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with painted walls was carried out.  

 

In Botswana, the National Malaria Control Programme was initiated in 1974. However, 

malaria interventions including spraying of human habitations have been reported as far 

back as the mid 1940s (Mastbaum 1944). In the 1950s, indoor house-spraying with DDT 

became the main vector control method (Freedman 1953). DDT remained the insecticide  

choice until 1971 when Fenitrothion was tried but abandoned again in 1972 because of 

low efficacy (Chayabejara et al. 1975). In 1973, residual spraying with DDT in the 

malarious districts of Ngamiland, Chobe and Francistown resumed, and in the 1980s a 

comprehensive vector control programme was organized which lead to improved 

spraying coverage. In 1998, Botswana stopped the use of DDT and introduced 

pyrethroids (deltamethrin and lambda-cyhalothrin) as alternative insecticides as a 

consequence of a lack of availability of good quality DDT (Ministry of Health 1999).    

 

In Namibia, residual spraying with DDT was first carried out in 1965. However, it was 

only in the 1970s that full coverage of the malarious regions (Ovambo, Kavango and 

Caprivi) was achieved (Hansford 1990). In 1991, a comprehensive malaria control 

programme was launched under the auspices of the National Vector-borne Disease 

Control Programme (NVDCP) within the Ministry of Health and Social Services 

(MOHSS). To-date residual spraying with DDT is being carried out in traditional 

housing, with carbamates (bendiocarb) applied only in western-type housing.  
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Table 2.2. The start of indoor residual spraying (IRS) in countries in the southern African 

region, the start of malaria control programmes, and changes in residual insecticides 

applied over time.    

Country                      Start of IRS and changes of insecticides over-time 

South Africa 1931             Pyrethrum [experimental IRS] 

1946             DDT and BHC introduced                       

1958             Coverage of all malarious areas achieved 

1960-1996    DDT 

1997-1999    Deltamethrin [policy change]   

2000             DDT [resistance to pyrethroids] 

Swaziland 1945             IRS introduced and programme launched  

1947-1950    DDT [coverage of all malarious areas in 1950] 

1951-1960    BHC [shortage of DDT] dieldrin tried but was costly 

1960-1967    BHC and DDT [focal spraying] 

1968-2000    DDT [cyfluthrin in houses with painted walls]  

Botswana 1946             IRS introduced [limited scale] 

1950-1971    DDT [improved coverage]  

1972             Fenitrothion tried and abandoned [low efficacy] 

1974             Programme launched 

1973-1997    DDT 

1998-2000    Deltamethrin and lambda-cyhalothrin [policy change] 

Namibia 1965              IRS introduced [limited scale] 

1970             Coverage of all malarious areas achieved 

1965-2000    DDT [bendiocarb in western type residential areas] 

Zimbabwe 1945              IRS introduced [pilot projects] 

1949              Programme launched   

1957-1962    DDT and BHC 

1972-1973    BHC [equally effective as DDT but cheaper]  

1974-1987    DDT [resistance to BHC] 

1988-2000    Deltamethrin and lambda-cyhalothrin [policy change] 

Southern Mozambique 1946             IRS introduced [selected southern areas] 

1946-1956    DDT and BHC [coverage of all targeted areas in 1950] 

1960-1969    DDT [only in Maputo region] 

1993             Deltamethrin and lambda-cyhalothrin [major towns] 

2000             Bendiocarb [selected southern areas] 

For references on country data see main text. 
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In Zimbabwe, indoor house spraying pilot projects with DDT began as far back as 1945. 

A large scale house spraying programme was initiated in 1949 (Alves & Blair 1953, 

1955). Spraying operations were later extended to other parts of the country as part of a 

“barrier” spraying programme to prevent epidemics and to limit the spread to malaria-

free areas. These operations continued until the late 1970s and after 1980 the malaria 

control programme was reviewed with the aim of reducing morbidity and mortality rather 

than only preventing epidemics (Taylor & Matambu 1986). In 1988, DDT was replaced 

by deltamethrin and lambda-cyhalothrin due to the international lobby against persistent 

organic pollutants (Freeman 1995). 

 

In Mozambique, residual house spraying with DDT and BHC was first introduced in 

1946 in the southern part of the country in the semi-urban area of Maputo city and in the 

rural area of the Limpopo Valley (Soeiro 1956; Ferreira 1958). Between 1960-1969, 

residual spraying with DDT was carried out in southern Mozambique (Maputo region) as 

part of the malaria eradication experiment (Schwalbach & de la Maza 1985). The 

escalation of civil war in the late 1970s led to a complete breakdown of malaria control 

measures. Following the cessation of hostilities in the 1990s, IRS mostly with 

lambdacyhalothrin and partly with deltamethrin was re-introduced but only in suburban 

areas in the majority of provincial capitals (Barreto 1996). In 2000, IRS with carbamates 

(bendiocarb) was re-introduced in the rural parts of Maputo province as part of the 

Lubombo Spatial Development Initiative (LSDI), a trilateral agreement between 

Mozambique, Swaziland, and South Africa aimed at protecting communities against 
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malaria in the Lubombo region in order to create a suitable environment for economic 

development and promotion of eco-tourism (Sharp et al. 2001). 

 

Impact of indoor residual spraying (IRS) 

The introduction of indoor residual insecticide spraying had a huge impact on the malaria 

situation in the region, particularly immediately after its implementation (Figure 2.1.). 

Generally, in most of the countries under review other control measures such as attempts 

at drug prophylaxis, environmental sanitation and larviciding were tried prior to IRS, but 

with limited success.  

  

In South Africa, a dramatic reduction in number of malaria cases was observed after the 

first indoor spraying with pyrethrum in 1932 in the KwaZulu-Natal province (le Sueur et 

al. 1993). Malaria cases for the month of April (peak month) dropped from about 1400 in 

1931 to about 1000 in 1932 and to below 100 in 1934. Dramatic declines in hospital 

admissions due to malaria were also reported in the malarious areas of the former 

Transvaal province of South Africa, from 1177 cases during the 1945/46 transmission 

season to 601 in 1946/47 coinciding with the availability of DDT in 1946, and falling to 

454 in 1948 and to a low of 61 cases in 1951. Parasite rates in children 2-5 years old in 

the Tzaneen and Lubombo foothills were reduced from 94% recorded in 1931 

(Swellengrebel & de Meillon 1931) to 38% in 1948 (Ministry of Health 1949) and to 

4,9% between 1956 and 1957 (Brink 1958). 
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In Swaziland, considerable gains were made shortly after the implementation of residual 

spraying with total parasite rates in children 1-5 years being reduced from 75% in 1946 to 

24% (n=409) in 1952, 11% in 1953, 1.7% (n=1639) in 1954, 1,1% (n=438) in 1955, 0,7% 

(n=2248) in 1956 and 0.4% in 1957 (Mastbaum 1954, 1955, 1957a,b; Ministry of Health 

unpublished data). A similar reduction had already been achieved in the middleveld areas 

over the past three seasons.  

 

In Botswana, initial IRS with DDT in the mid-1940s and the intensified residual spraying 

campaign in the 1950s are evidenced by the low parasite rates recorded by WHO in 1960 

and 1979 in previously hyper-endemic districts. In the Chobe district parasite rates in 2-9 

year olds were further reduced from 43% (n=575) in 1961-62 to 14% (n=222) in 1973-

1974 and in Ngamiland from 45% (n=944) to 13% (n=564), respectively (WHO 1962; 

Chayabejara et al. 1975). 

 

In Namibia, after the first residual spraying with DDT in 1965, average parasite rates in 

2-9 year-olds in the malarious regions of Kavango and Ovambo declined tremendously, 

from 83% (n=74) in 1950 to 14% (n=1115) in 1979 and from 65% (n=35) to 0.1% 

(n=978), respectively. In the Caprivi district, a pre-control survey in 1966 recorded an 

overall parasite rate of 32% and this declined to 2% by 1967. 

 

In the Bushu Reserve in Zimbabwe, parasite rates in children between the ages 1-3 years 

declined from 72% in 1948 to 30% in 1950 following residual spraying, and further to 

4.7% in 1952 (Figure 3.1.). The same general pattern was shown by other surveys where 
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control measures had been introduced (Alves and Blair 1953). Similarly, in the Mazoe 

Valley when a residual spraying programme with DDT was introduced for the first time 

in 1945 as part of a pilot project, malaria cases declined from 100 in 1946 to 2 in 1950 at 

a hospital situated in a sprayed area compared to 62 in 1946 and 68 in 1950 at an adjacent 

hospital in an unsprayed area (Blair 1951).  

 

Following the introduction of residual spraying with DDT in Maputo, southern 

Mozambique, in 1946 malaria admissions dropped from 16% to about 8% in 1947 and to 

a low of 3% and 1% in 1953 and 1954, respectively. In the same region in a rural area in 

the Limpopo Valley after the introduction of malaria control in 1947, parasite and spleen 

rates in children under one year declined from 62.7% and 59.4%, respectively, in 1953 to 

23.6% and 21% in 1954 and to 17% and 1% in 1955. Only spleen rates were given for 

children 2-10 years old in 1953, and these stood at 53.2%. They dropped to 26.7 in 1954 

and declined further to 13.7% in 1955 (Soeiro 1956). Recently, dramatic reductions in 

malaria transmission have also been reported in the Maputo region after a year of 

successful control of vectors by IRS as part of as part of the Lubombo Spatial 

Development Initiative (LSDI) (Sharp et al. 2001).  

  

The application of IRS also greatly altered the entomological situation in the malarious 

regions of South Africa, Swaziland, Zimbabwe and parts of southern Mozambique. The 

principal vectors of the A. gambiae complex and A. funestus were reduced to negligible 

levels, and while the former could still be found outdoors the latter completely 

disappeared in certain parts. A. gambiae is a species complex initially identified by 
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Paterson in the early 1960s (Paterson 1963). It was generally presumed that the 

endophilic and endophagic A. gambiae s.s. was well controlled and possibly eradicated 

over large areas. On the contrary, other members of this complex, namely the exophilic 

and zoophagic A. quadriannulatus (a non vector species) persisted and A. arabiensis 

survived and is currently considered responsible for the remaining malaria transmission 

in areas under effective IRS (Hansford 1972; Sharp et al. 1990).  

 

Malaria situation over time   

Over time major gains were made in most countries in the region as a result of large scale 

and sustained application of IRS. There was a shift in the geographical distribution of 

malaria coupled by a decline in the level of transmission. In South Africa, malaria is now 

only found in the northern part of KwaZulu-Natal and in the low altitude areas of 

Limpopo and Mpumalanga (former Transvaal Province) (Sharp et al. 1988; le Sueur et al. 

1993; Sharp & le Sueur 1996; le Sueur et al. 1996). In Swaziland, malaria is now 

confined to the lowveld area with occasional outbreaks in the middleveld (Ministry of 

Health 1991). In Botswana and Namibia, malaria still persists in endemic areas albeit at 

much reduced levels (Ministry of Health 1999; Teklehaimanot et al. 1990). In Zimbabwe, 

malaria was considered eliminated in the plateau area by 1956, and throughout the 

country transmission was brought down to very low levels (Taylor & Matambu 1986). In 

Mozambique, although malaria transmission was never interrupted, dramatic reductions 

in malaria prevalence were achieved between 1960 and 1969, but mainly in the southern 

parts of the country where malaria control activities had been carried out since 1946 

(Schwalbach & de la Maza 1985). Southern Mozambique has also benefited from recent 
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vector control efforts by IRS (Sharp et al. 2001).  

  

Recently collated parasite prevalence database show that parasite rates in the countries 

under review have been kept at relatively low levels between the 1960 and 1980 

(MARA/ARMA, unpublished). Although this success was largely shaped by the quality 

and extent of IRS programmes, it was also strengthened by the development of good 

public health infrastructure coupled with effective malaria surveillance activities and 

improved socio-economic conditions. In addition, South Africa has also developed 

detailed maps of malaria risk areas to allow authorities to focus their spraying activities, 

thus facilitating cost-effective control (Sharp and le Sueur 1996; Booman et al. 2000; 

Martin et al. 2002). 

 

However, since the mid 1980s these gains were being gradually eroded with malaria 

epidemics becoming frequent and more severe. In 1996, the entire region experienced 

one of the most severe epidemics recorded in recent times (le Sueur et al. 1996). The 

recent trend in the reduction of the impact of IRS has been attributed to a number of 

factors and these include environmental, biological and social constraints. Increased risk 

has been partly attributed to weather disturbances linked to global climatic events such as 

El Nino (le Sueur et al. 1996). The appearance of P. falciparum resistance to chloroquine 

in the mid-1980s (Deacon et al. 1994) and Fansidar resistance in South Africa 

(Bredenkamp et al. 2001) has contributed to an increase in malaria cases as treatment 

failure increased the pool of malaria infections for the following transmission season. 

Detection of A. funestus resistance to pyrethroids in KwaZulu-Natal, South Africa 
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(Hargreaves et al. 2000) was a further reason for the reduced effectiveness of IRS. 

Behavioural avoidance of DDT sprayed surfaces by vectors due to its irritating effects 

also posed an effectiveness problem (Sharp et al. 1990). Social resistance to DDT 

application due to bed bug infestation, as they are resistant to DDT (Newberry and Jansen 

1986) and replastering of sprayed walls due to the presence of DDT stains (Mnzava et al. 

1998) reduced effective IRS coverage. Lack of proper supervision and /or skilled 

personnel is another mitigating factor because effective application of residual 

insecticides requires properly trained individuals. Population migration from uncontrolled 

areas also leads to the deterioration of malaria situation in neighbouring countries that 

have brought malaria under control (Delfini 1969; Sharp et al. 1988).  

 

All these constraints coincide with the renewed interest in the control of malaria in sub 

Saharan Africa. It is essential therefore that effort be made to ensure that the effectiveness 

of IRS is not compromised, particularly in areas where it has been proven to work. 

Continued monitoring and evaluation of its impact is clearly of fundamental importance 

in this regard. For example, in South Africa this led to the detection of both insecticide 

and parasite resistance which led to policy change and improved effectiveness of control 

efforts. We also need to develop climate-based early warning systems to detect climate 

driven epidemics and improve the impact of control efforts. Inter-country networking and 

cooperation towards strengthening malaria control programmes across the region is also 

of vital importance.  
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Today, with the availability of equally effective alternative intervention such as 

Insecticide-Treated (mosquito) Nets (ITNs), choosing between IRS and ITNs is a matter 

of operational feasibility and availability of local resources (Lengeler & Sharp 2003). 

Appropriate application or integration of IRS with other interventions elsewhere on the 

continent has to be based on sound scientific research which takes into account the 

epidemiological setting, organizational capacity, social and financial considerations, as 

these in turn impact on operational feasibility and sustainability. 

 

Conclusion 

Evidence presented in this review confirms that malaria control by IRS has made 

epidemics less frequent and reduced malaria from hyper- to meso-endemicity and from 

meso- to hypo-endemicity at the southern fringe of transmission in tropical Africa. The 

development of large well-organized and well-funded control programmes in these areas 

led to selective and sustainable application of IRS over time.  

 

Almost all the countries that successfully controlled malaria in southern Africa 

experienced an acceleration of economic growth immediately following the introduction 

of effective vector control measures with IRS. Countries that developed national malaria 

control programmes during this phase and had built up human and organizational 

resources made significant advances towards malaria control. In addition, most southern 

African countries developed stronger health systems.  
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However, with the recent trends in malaria increase and problems of drug and insecticide 

resistance there is a need to find ways to improve sustainability, both financially and 

technically, if IRS is to maintain its role as an effective measure against malaria 

transmission. Already effective supplementary interventions such as ITNs and new drug 

therapies (artermisinin-based combinations) are now available and the latter has been 

implemented to good effect in the republic of South Africa. Alternative vector control 

strategies such as rotational or mixed use of insecticides have also been proposed. South 

Africa has also recently secured funding to carry out research on feasibility and effect of 

these strategies. New technologies using GIS as a platform to plan, implement and assess 

control activities are now available to help rationalize malaria control in time and space 

and hence minimize cost. To date there is also a renewed interest and political 

commitment to controlling malaria in Africa through the Roll Back Malaria (RBM) 

partnership.  

 

Indoor residual spraying is not a magic bullet, and its use in other areas should be planned 

carefully, after considering the major organizational, technical and financial implications. 

However, its track record in southern Africa and in many other areas of the world is 

outstanding and should certainly be considered when planning extended vector control 

activities in endemic areas. 
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Abstract 

We evaluated the association between annual malaria incidence and ENSO (El Niño 

Southern Oscillation) as measured by the Southern Oscillation Index (SOI) in five 

countries in Southern Africa from 1988 to1999. Below normal incidence of malaria 

synchronized with a negative SOI (El Niño) and above normal with a positive SOI (La 

Niña), which lead to dry and wet weather, conditions respectively. In most countries there 

was a positive relationship between SOI and annual malaria incidence, especially where 

An. arabiensis is a major vector. This mosquito breeds in temporary rain pools and is 

highly sensitive to fluctuations in weather conditions. South Africa and Swaziland have 

the most reliable data and showed the strongest associations, but the picture there may 

also be compounded by the moderating effect of other oscillatory systems in the Indian 

Ocean. The impact of ENSO also varies over time within countries, depending on 

existing malaria control efforts and response capacity. There remains a need for 

quantitative studies that at the same time consider both ENSO-driven climate anomalies 

and non-ENSO factors influencing epidemic risk potential to assess their relative 

importance in order to provide an empirical basis for malaria epidemic forecasting 

models. 
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Introduction 

The El Niño Southern Oscillation phenomenon (ENSO) refers to the cyclic warming and 

cooling of the equatorial Pacific Ocean coupled with changes in the atmospheric pressure 

across the Pacific. This is the most important climatic cycle that contributes to worldwide 

interannual variability in climate and the likelihood of climatic anomalies. The two 

extremes of ENSO are El Niño (a warm event) and La Niña (a cold event), which create 

rainfall and temperature fluctuations. Their impact varies across the regions of the globe 

and can result in drought in some areas and flooding in others (Nicholls 1993; Bouma et 

al. 1997a; Kovats 2000; Kovats et al. 2003).   

 

There is strong evidence that ENSO is associated with heightened risk of malaria in 

regions of the world where climate is linked to the ENSO cycle (Kovats 2000; Kovats 

2003). These include, among others, countries in South Asia and in Latin America 

(Bouma and van der Kaay 1994 and 1996; Bouma and Dye 1997; Bouma et al. 1997b; 

Poveda et al. 2001; Gagnon et al. 2002). In Africa, this is supported mostly by studies 

carried out in the east African highlands of Uganda (Kilian et al. 1999; Lindblade et al. 

1999), Tanzania (Lindsay et al. 2000; Wort et al. 2004) and Rwanda (Loevinsohn 1994). 

ENSO also has a strong influence on inter-annual climate variability in Southern Africa 

(Nicholson 1993; Richard 2000 and 2001; Kovats 2000; Kovats et al. 2003) and is the 

main climatic phenomenon held responsible for some malaria epidemics in the region (Le 

Sueur et al. 1996a; SAMC 2003). However, quantitative analysis of the link between 

ENSO-related climate anomalies and malaria incidence is limited to a recent study in 

Botswana (Thomson et al. 2005).  
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In Southern Africa the challenge is that, owing to a long history of malaria control, 

baseline endemicity has been substantially reduced and in most places immunity is low 

(Mabaso et al. 2004). Under such conditions, seasonal transmission results in high 

morbidity and mortality if not prevented or contained (SAMC 2003). Consequently, 

disruption or failure of existing control activities induces epidemics (Mabaso et al. 2004; 

Craig et al., 2004a). Thus, climate is not the only factor that has an impact on the 

epidemic potential and the question is how sensitive malaria transmission is to the impact 

of ENSO and whether its effects can be separated from other factors influencing epidemic 

risk in the region. Inter-annual fluctuations in malaria are driven mainly by climate 

variability; the extent of these fluctuations is indicative of areas prone to epidemics 

(SAMC, 2003; Craig et al. 2004b; Thomson et al. 2005).     

 

In this study, we evaluated the association between inter-annual variability in malaria 

incidence and ENSO from 1989 to 1999 in five countries across Southern Africa in order 

to determine its relative impact given the different malaria situations in the region.  
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Materials and methods 

Study area 

Countries included in the study were Botswana, South Africa, Swaziland, Zambia and 

Zimbabwe based on the availability of malaria data. In these countries there are many 

areas with intense seasonal transmission as well as epidemic-prone and malaria-free 

areas. In Southern Africa, the total population is approximately 145 million people of 

whom about 92 million live in malarious areas, with approximately 21million cases and 

300 000 deaths reported annually (SAMC 2003). The risk of malaria varies considerably 

both spatially and temporally. Rainfall and temperature are the main limiting climatic 

factors for transmission of malaria in this region (Craig et al. 1999; SAMC 2003).  

  

Data 

Malaria 

Annual national malaria case data from 1988-1999 and corresponding population 

estimates were obtained from health information systems and / or annual malaria reports. 

This period was chosen because of the relative completeness of data from all the selected 

countries. The data consist of confirmed (Botswana, South Africa and Swaziland) and 

unconfirmed (Zambia) clinical cases as well a combination of both (Zimbabwe).  

 

ENSO 

There is a varying list of indices that can be used to determine ENSO years. In this 

analysis we use annual averages of the Southern Oscillation Index (SOI) a measure based 

on the differences in the atmospheric pressure between Tahiti in the eastern equatorial 
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Pacific and Darwin in Australia (west Pacific), expressed as a standard deviation from the 

norm and available from  the National Oceanic and Atmospheric Administration (NOAA) 

website (http://www.cdc.noaa.gov/ClimateIndices/List/). SOI is used to quantify the 

strength of an ENSO event and is negative during El Niño (a warm event) and positive 

during La Niña (a cold event). In parts of Southern Africa, a strong El Niño event is 

usually followed by drought, and La Niña by flooding (Nicholls 1993; Richard 2000 and 

2001; Kovats 2000; Kovats et al. 2003).    

 

Analysis 

To display the connection between annual averages of SOI and malaria incidence (per 

1000 person-years) in the selected countries, annual standardized incidence anomalies 

(SIA) were calculated using the formula SIA=(Y-Ῡ)/σ  where Y  denotes the observed 

incidence in each year, Ῡ the long term mean and σ  the standard deviation of Y. Scatter 

plots were used to examine the nature of the relationship between annual averages of SOI 

and log-transformed annual malaria incidence in each country. A negative binomial 

regression model with year specific random-effect was used to assess the association 

between SOI and annual malaria incidence. This model adjusts for overdispersion that 

may be present in the count data (malaria case data) and used random effects as 

surrogates for unmeasured factors influencing annual incidence. The analysis was 

performed in STATA version 9 (Stata Corporation, College Station, TX, USA).   
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Results 

Below normal annual incidence rates synchronized with negative SOI values (El Niño) 

i.e. dry conditions and above normal incidence with positive SOI values (La Niña) i.e. 

wet conditions (Figure 3.1.). During the study period the SOI varied from -2.02 to 1.22 

with mean = -0.54 and standard deviation = 1.28. Table 3.1. gives summary statistics of 

malaria incidence for the selected countries. 

 

The SOI showed a positive relationship with annual malaria incidence in Botswana, 

South Africa, Swaziland and Zimbabwe, but not in Zambia. The negative binomial model 

(Table 3.2.) confirmed that SOI increases annual malaria incidence in most of the 

selected countries (suggesting an association with positive SOI values or La Niña) 

although by a small amount in Zimbabwe, and reduces incidence in Zambia although 

very slightly. However, these associations were statistically significant only in South 

Africa and Swaziland.  
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Figure 3.1. Standardised annual malaria incidence and Southern Oscillation Index (SOI) anomalies from selected countries in 

Southern Africa by year between 1988 and 1999. 
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Table 3.1. Estimated population in malarious areas, mean incidence (cases per 1000 

person years) and standard deviation (SD) in selected countries in Southern Africa from 

1988 to 1999. 

Country  Population Mean incidence SD Minimum  Maximum 

Botswana 620400 5.585 4.906 0.306 15.274 

South Africa 4429500 0.363 0.307 0.060 1.139 

Swaziland 279300 6.295 3.370 0.716 13.318 

Zambia 8690000 323.608 56.248 247.300 415.500 

Zimbabwe 5962000 10.721 3.636 5.132 15.527 

 

 

Table 3.2. Changes in annual malaria incidence (cases per 1000 person years) associated 

with one unit increase in the Southern Oscillation Index (SOI) in selected countries in 

Southern Africa.  

Country IRR 95% CI P-value 

Botswana 1.548 0.720, 3.330 0.263 

South Africa 1.351 0.976, 1.870 0.070 
Swaziland 1.283 0.991, 1.660 0.058 
Zambia 0.968 0.895, 1.046 0.409 

Zimbabwe 1.073 0.902, 1.276 0.426 

IRR, incidence rate ratio; CI, confidence interval estimated from negative binomial model 
estimated using maximum likelihood. 
 
 

Discussion 

The study period featured a very active ENSO cycle (Kovats 2000; Kovats et al. 2003) 

and therefore offered an ideal opportunity for the evaluation of the relative impact of this 

phenomenon on malaria incidence in the region. This includes the two major El Niño 

episodes recorded in 1991 to 1994 and 1997 to 1998 and two La Niña episodes in 1995 to 

1996 and 1999. In general, malaria incidence anomalies appeared to be synchronized 

both with El Niño and La Niña events as described by SOI (Figure 3.1.). Basically, 
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ENSO events cause rainfall patterns to change and this usually affects mosquito breeding 

which, in turn, is associated with variation in malaria transmission. However, the impact 

on malaria incidence may be complicated by non-ENSO factors such as insecticide and 

drug resistance or failure of malaria control programmes. Hence we used year specific 

random effects as surrogates for unmeasured factors influencing annual incidence.   

 

In east Africa, ENSO events and in particular El Niño has been linked to changes in 

optimum climatic condition (i.e. lead to above normal temperature and / or rainfall) and 

associated increase in epidemic risk (Loevinsohn 1994; Kilian et al. 1999; Lindblade et 

al.1999; Lindsay et al. 2000; Wort et al. 2004). In agreement with others (Nicholls 1993; 

Kovats 2000; Kovats et al. 2003) we found that in most of Southern Africa, ENSO as 

measured by SOI has the opposite effect during El Niño (dry) conditions and that 

heightened incidence coincides with La Niña (wet) conditions. A recent study in 

Botswana (Thomson et al. 2005; Thomson et al. 2006) demonstrated the predictive value 

of the association between sea surface temperature (SST), another ENSO index, and 

rainfall after removing the impact of non-climatic trends and a major policy intervention.   

 

In most of the region, the positive relationship between SOI and annual malaria incidence 

probably reflects the effect of ENSO on the mosquito vector Anopheles arabiensis which 

breeds in temporary rain pools and is therefore highly sensitive to fluctuations in weather 

conditions. In Zambia, the lack of an apparent association of SOI with malaria incidence 

may be due to the lack of effective malaria control and therefore the presence of 

Anopheles funestus. This vector breeds in permanent swamps and streams which are less 
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dependent on rainfall and therefore less affected by ENSO events. Historical records 

show that An. funestus was responsible for most of the malaria transmission in southern 

Africa before the advent of DDT (Leeson 1931; De Meillon 1947), resulting in endemic 

malaria transmission even through the dry winter months. Where effective vector control 

by IRS with DDT was implemented, An. funestus disappeared and An. arabiensis took 

over (Mabaso et al. 2005), maintaining levels of transmission that are highly susceptible 

to rainfall fluctuations. A further reason why malaria cases in Zambia do not appear to 

correlate with ENSO may be poorer data quality owing to routine inclusion of 

unconfirmed cases in the official statistics, and this is not accounted for in our models. 

 

South Africa and her closest neighbour Swaziland have the most reliable data and showed 

the strongest associations of epidemics with ENSO, but the picture there may also be 

compounded by other oceanic systems such as the Quasi-Biennial and Quasi-Periodic 

Oscillations in the Indian Ocean, which have a moderating effect on the impact of ENSO 

(i.e. cause rainfall during El Niño) (Richard 2000 and 2001).  

 

There were inconsistencies in the association between ENSO and malaria incidence in 

Botswana and Zambia in 1993 and in all the countries in 1997, possibly reflecting 

heterogeneity in the climatic effects of ENSO (Lindsay 2000; Kovats 2000). The impact 

also varies over time within countries, depending on existing malaria control efforts and 

response capacity (Gagnon et al. 2002; Worrall et al. 2004). For example, the 1995 to 

1996 epidemic subsided in most countries following the 1997 to 1998 El Niño episode, 

except in South Africa and Zimbabwe (Figure 1). In South Africa the persistence of the 
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epidemic was due to problems of insecticide and drug resistance (Hargreaves et al. 2000; 

Bredenkamp et al. 2001) and the severity of the epidemics was exacerbated when 

coupled with the La Niña in 1999. In Zimbabwe socio-economic problems were also 

beginning to compromise the malaria control programme (DaSilva et al. 2004; Kiszewski 

and Teklehaimanot 2004).  

 

ENSO-induced epidemics are responsive to control where effective antimalarial measures 

exist, but often not before causing considerable suffering and death (Kiszewski and 

Teklehaimanot 2004; Worrall et al. 2004), and understanding the connection between 

ENSO related climate anomalies and malaria is important for developing forecasting 

models to make it possible to plan for this. However, ENSO based climate forecasting 

models still have to rely on case surveillance for early detection of higher than normal 

malaria incidence. This surveillance is also influenced by non ENSO factors that should 

not be dismissed as random error or ignored. There is thus a need for quantitative studies 

that at the same time consider both ENSO-driven climate anomalies and non ENSO 

factors influencing epidemic risk potential. 
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Abstract 

Background 

On the fringes of endemic zones climate is a major determinant of inter-annual variation 

in malaria incidence. Quantitative description of the space-time effect of this association 

has practical implications for the development of operational malaria early warning 

system (MEWS) and malaria control. We used Bayesian negative binomial models for 

spatio-temporal analysis of the relationship between annual malaria incidence and 

selected climatic covariates at a district level in Zimbabwe from 1988-1999. 

Results 

Considerable inter-annual variations were observed in the timing and intensity of malaria 

incidence. Annual mean values of average temperature, rainfall and vapour pressure were 

strong positive predictors of increased annual incidence whereas maximum and minimum 

temperatures had the opposite effects. Our modelling approach adjusted for unmeasured 

space-time varying risk factors and showed that while year to year variation in malaria 

incidence is driven mainly by climate the resultant spatial risk pattern may to large extent 

be influenced by other risk factors except during high and low risk years following the 

occurrence of extremely wet and dry conditions, respectively.      

Conclusion 

Our model revealed a spatially varying risk pattern that is not attributable only to climate. 

We postulate that only years characterized by extreme climatic conditions may be 

important for developing climate based MEWS and for delineating areas prone to climate 

driven epidemics. However, the predictive value of climatic risk factors identified in this 

study still needs to be evaluated.  
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Background 

The risk of malaria infection varies widely according geographic region, season and year 

(Baird et al. 2002; Thomson et al. 2003). On the fringes of endemic zones, particularly at 

the southernmost latitudes in southern Africa, across arid regions of northern Africa and 

among the highlands of east and central horn of Africa climate is a major determinant of 

seasonal and inter-annual (year to year) variation in malaria transmission (WHO 2003).   

 

In Southern Africa annual variation in climatic conditions and associated changes in 

malaria infection affect the timing and intensity of malaria incidence. This has an impact 

on the effectiveness of interventions (Da Silva et al. 2004). As a result there is a need for 

the development of climate-based malaria early warning systems (MEWS) capable of 

predicting seasonal to inter-annual variations with a lead time that allows health 

authorities to respond in a timely manner with preparatory / preventative measures (le 

Sueur  et al. 1996a and b). However, despite the fact that climate data are often used to 

account for spatial, seasonal and inter-annual variation in malaria risk in Africa, there is 

often little or no consensus about the relative importance and predictive value of different 

factors involved (Teklehaimanot et al. 2004). The disagreements seem to stem from 

differences in perspective and methods used (Bouma 2003).  

 

In Southern Africa, few studies or models of the relationship between malaria and 

climatic factors have been published. In a recent meeting of the Southern African Inter-

Country Programme on Malaria Control (SAMC) a number of countries acknowledged 

having poor empirical basis on which to develop and test climate-based early warning 



CHAPTER 4: Inter-annual variation of malaria incidence in Zimbabwe 56 

and detection indicators (Da Silva et al. 2004). Existing models include a non-spatial 

model for Zimbabwe which identified temperature as the main determinant of increased 

malaria risk years (Freeman 1996). Spatial and temporal models which used both 

temperature and rainfall for analysis and mapping of malaria risk in KwaZulu-Natal, 

South Africa (Kleinschmidt et al. 2001b; Kleinschmidt et al. 2002). An exploratory 

analysis of 30 years worth of data in the epidemic prone area of KwaZulu-Natal, South 

Africa, which showed that certain aspects of climate appear to drive inter-annual 

variation of malaria incidence but not its overall level (Craig et al. 2004a). In a recent 

study Thomson et al. (2005) showed that rainfall and sea surface temperature (SST) has a 

potential for application in the development of seasonal forecasts. We also recently 

developed a space-time seasonality model based on the relationship between monthly 

clinical malaria case data and environmental factors in Zimbabwe (Mabaso et al. 2005).  

 

Year to year predictability of malaria incidence still remains a challenge, and more work 

is required before malaria climate based forecasting models can realize their full potential 

in the region. In this study we use Bayesian spatio-temporal analysis to describe year to 

year variation of malaria incidence data from Zimbabwe in relation to variation in 

climatic risk factors to enhance our ability of developing an operational MEWS and 

determine areas prone to climate-driven epidemics.  
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Methods 

Setting 

In common with Angola, Namibia, Botswana, Zambia, Mozambique and South Africa 

Zimbabwe lies at the southern limits of malaria distribution in Africa. Malaria remains a 

major cause of mortality and morbidity despite more than four decades of sustained 

national control programme (Makono and Sibanda). Moreover, as a result of reduced 

level of transmission there is propensity for malaria epidemics unless adequately 

controlled or prevented. Overall, about 45-50 % of the 12.5 million people of Zimbabwe 

are at risk of malaria. In 1998, it was estimated that approximately 8 % of all deaths and 

12 % of all outpatient cases were due to malaria 

(http://www.malaria.org/zw/countries/zimbabwe.htm). Recently, substantial socio-

economic changes have further compromised the malaria control programme (Da Silva et 

al. 2004).  

 

Climate is another major factor that determines the extent of malaria transmission in 

Zimbabwe, and its variability may work with or against efforts to bring malaria under 

control (Hartman et al. 2002). The most important factors governing malaria 

epidemiology in the country are season, altitude, and associated rainfall and temperature 

changes (Taylor 1985; Taylor and Mutambu 1986; Hartman et al. 2002; Mabaso et al. 

2005). Malaria is found mainly within the low and mid altitude zones and rarely at higher 

altitude. However, this can vary tremendously from one year to another.   
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Covariate data 

We used normalized difference vegetation index (NDVI) available between 1988 and 

1999 from Advanced Very High Resolution Radiometer (AVHRR) sensor onboard the 

National Oceanic and Atmospheric Administration (NOAA) satellite 

(http://daac.gsfc.nasa.gov/data/dataset/AVHRR/index.html). We also used mean annual 

values of rainfall, vapour pressure, minimum, maximum and mean temperature obtained 

for each district and year for the 12 year period. These were obtained from the climate 

research unit (CRU) climate surfaces derived from interpolated weather station data as a 

function of latitude, longitude, and elevation using thin-plate splines (Mitchel 2005). 

 

Malaria data 

In Zimbabwe malaria is a notifiable disease and records from hospitals and clinics are 

compiled at a district, provincial and national levels to describe the malaria situation and 

trends. We used annual clinical malaria case data for children under the age of five 

reported in 58 districts covering the whole country between 1988 and 1999 (Ministry of 

Health and Child Walfare 2000). This is the highest risk group, with relatively little 

protective immunity and is therefore expected to be more sensitive to changes in malaria 

transmission. The data included both microscopically confirmed and unconfirmed 

clinically diagnosed cases. District population projections based on the 1982 and 1992 

census were used to calculate incidence rate per 1000 person years (Central Statistics 

Office 2002). 
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Analysis 

We used the annual proportion of monthly malaria cases and Markham’s seasonality 

index (Markham 1970; McGee 1977) to display between-year variation in the data. The 

seasonality index has been described in detail elsewhere (Mabaso et al. 2005). Briefly, 

this method calculates the seasonal concentration of the malaria case load and the peak 

month in a given year.  

 

A preliminary negative binomial regression analysis was carried out in STATA 9.0 (Stata 

Corp., College Station, TX, USA) to assess the relationship between annual malaria 

incidence and annual values of each climatic covariate. Thereafter, Bayesian negative 

binomial models were fitted in WinBUGS (WinBugs 2000) to examine the association 

between inter-annual variation in malaria incidence and a combination of climatic 

covariates selected from the preliminary analysis (see the appendix for more details). 

Basically, spatial random effects were used at a district level to take into account spatial 

correlation present in the data. Temporal random effects were also used at yearly 

intervals to account for temporal correlation. Spatial correlation was incorporated by 

assuming a conditional autoregressive (CAR) process in the random effects. A first order 

autoregressive process was applied for temporal random effects (Bernardinelli et al. 

1995).  

 

Markov Chain Monte Carlo simulation (MCMC) was applied to estimate model 

parameters (Gelfand and Smith 1990). After the initial burn-in of 5000 the number of 

iterations thereafter depended on convergence which was assessed using ergodic 
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averages. After convergence a final sample of 5000 was collected to obtain summaries of 

the posterior distribution of the parameters. The Deviance Information Criterion (DIC) 

(Spiegelhalter et al. 2002) was used for the comparison of model fit. Small values of DIC 

indicate superior model fit. Model estimates were exponentiated to represent incidence 

rate ratios (IRR), that is, per unit change in incidence for each covariate.       

 

Results 

Figure 4.1.A-D shows that malaria transmission in Zimbabwe is characterized by 

considerable between and within year variations. The highest malaria incidence recorded 

during the 12 year period was in 1988 with 15.5 cases per 1000 person years and the 

lowest was in 1992 with 5.2 cases per 1000 person years (Figure 4.1.A). In addition since 

1996, there is a rising trend in annual incidence with reported malaria cases remaining at 

high levels. The intensity and timing of the seasonal peak also varies from year to year 

(Figure 4.1.B and C). From 1988 to 1999 the peak month fluctuated between March and 

April with the exception of 1992 and 1995 which were characterized by peaks in January 

and May respectively. 

 

High annual malaria incidence coincide with high rainfall and relatively warm conditions 

while low incidence years coincide only with low rainfall (Figure 4.2.). Vapour pressure 

and NDVI follow the rainfall pattern. Temperature derived covariates seem to be 

important only in the presence of sufficient rainfall. The intensity and timing of the 

seasonal peak in each year appears to follow variability in rainfall.  
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Figure 4.1. (A) Annual malaria incidence rate (cases per 1000 person years) (B) proportion of annual monthly cases (C) 

percentage concentration of malaria case load during the peak transmission month and (D) peak month during the malaria 

transmission season in Zimbabwe from 1988-1999. 
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Figure 4.2. Inter-annual variations in malaria incidence rate (cases per 1000 person years), rainfall (mm), vapour pressure 

(hPa), NDVI (Normalized Difference Vegetation Index), average, maximum and minimum temperatures (°C) in Zimbabwe 

between 1988 and 1999. 
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In the bivariate analysis all selected covariates showed a significant relationship (P < 

0.001) with malaria incidence (Table 4.1.). All models (Table 4.2.) indicated that mean 

annual temperature, rainfall, vapour pressure and NDVI were strong positive predictors 

of increased annual incidence rate in contrast maximum and minimum temperature had a 

reducing effect. However, in the spatial model (model 2) rainfall had no significant effect 

and in the spatio-temporal model (Model 3) only NDVI was not significant. Model 

comparison showed that the spatial-temporal model had a small DIC value and therefore 

was the best fitting model. This model had large spatially correlated random effects.    

 
 
Table 4.1. Bivariate analysis of the relationship between annual malaria incidence and 

climatic covariates fitted using negative binomial regression.   

 Covariates Coefficients SE 95% CI P-value 

Mean  temperature (°C) 0.295 0.024 0.248, 0.341 < 0.001 

Maximum temperature (°C) 0.149 0.021 0.107, 0.189 < 0.001 

Minimum temperature (°C) 0.439 0.024 0.391, 0.487 < 0.001 

Vapour pressure (hPa) 0.046 0.003 0.040, 0.051 < 0.001 

NDVI 0.654 0.127 0.405, 0.903 < 0.001 

Rainfall (mm) 0.021 0.002 0.016, 0.026 < 0.001 

SE – standard error; CI – confidence intervals; NDVI – normalized difference vegetation index 

 

Figure 4.3. show differences in the spatial pattern of modelled malaria incidence during 

the 12 year study period. In 1988, 1993 and 1996 onwards high to moderate incidence 

rates were more widespread with the highest incidence rates in the north western and 

eastern part of the country. In 1992 and 1995 incidence rates were predominantly 
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moderate to very low levels across the country with pockets of high incidence rates in the 

districts 

 

Table 4.2. Modelled estimates of the effects of climatic covariates on malaria incidence in 

the districts of Zimbabwe, including spatial and temporal variance. The smaller value of 

DIC indicates a better fitting model.  

 

Covariates Non spatial Model Spatial Model Spatial-temporal model 

 IRR (95 % CI) IRR (95 % CI) IRR (95 % CI) 

Mean  temperature (°C) 5.332 (4.700, 5.885) 6.533 (4.251, 8.812) 7.634 (6.890, 8.349) 

Maximum temperature (°C) 0.440 (0.414, 0.485) 0.363 (0.306, 0.446) 0.291 (0.272, 0.322) 

Minimum temperature (°C) 0.700 (0.657, 0.752) 0.479 (0.357, 0.623) 0.500 (0.412, 0.581) 

Vapour pressure (hPa) 1.003 (0.998, 1.008) 1.036 (1.020, 1.050) 1.018 (1.005, 1.028)  

NDVI 2.700 (2.267, 3.132) 1.478 (1.011, 2.256) 1.375 (0.913, 1.701)    

Rainfall (mm) 1.017 (1.012, 1.021) 1.005 (0.999, 1.011) 1.006 (1.000, 1.012) 

Spatial variation ( 2
φσ )  1.346 (1.078, 1.673)  18.620 (15.280, 22.710)  

Temporal variation ( 2
ωσ )   0.004 (0.001, 0.010) 

DIC 8414.270 8113.280 7912.610 

NDVI – normalized difference vegetation index; DIC – deviance information criterion; IRR – incidence 
rate ratio; CI – credible intervals 

 

situated along of the Zambezi river system in the north western part and on the border 

with Mozambique in the eastern part as well as along the Limpopo river system in the 

south eastern part. 
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Figure 4.3 Geographic distribution of smoothed malaria incidence (cases per 1000 person years) by year between 1988 and 1999 in 

Zimbabwe from a spatial-temporal model. 
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Discussion 

Our observations confirm that malaria transmission in Zimbabwe is characterized by 

substantial inter-annual variation. Incidence rates show a rising, albeit fluctuating, trend 

with reported cases remaining relatively high after 1996 (Figure 4.1.). The intensity and 

timing of seasonal transmission also varies from year to year. The highest and lowest risk 

years were recorded during one of the most wet and severe drought periods in Zimbabwe, 

respectively (Kovats 2000). From a regional perspective 1988, 1993, 1996 and 1997 were 

the most serious epidemic years.  

 

Besides the limitation imposed by the effect of misdiagnosis as a consequence of 

unconfirmed clinically diagnosed cases, which would probably be to smooth over 

differences since this is not influenced by covariates. There are multiple explanations for 

the observed trend and it is difficult to identify true causes (Bouma et al. 2003). In 

general, there is more support for non-climatic explanations of recent trends especially in 

the fringe areas of endemic zones in Africa. These include deterioration of malaria 

control efforts, development of drug and insecticide resistance and a rise in co-infection 

with HIV/AIDS (Hay et al. 2002a and b; Bouma et al. 2003; Craig et al. 2004b). In 

Zimbabwe, none of these have been adequately quantified for inclusion into the 

modelling framework. Hence our modelling approach adjusts for unmeasured spatially 

and temporally structured sources of variation while investigating the association 

between annual malaria incidence and climatic covariates. However, the large residual 

spatial variation observed in the spatial-temporal model suggests that there are other 

important covariates not accounted for in the analysis that could explain most of the 
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spatial variation in malaria incidence. Most of the temporal variation in the data appears 

to be explained by the selected covariates.  

 

Our results showed that annual mean values of temperature, rainfall and vapour pressure 

are strong positive predictors of increased annual malaria incidence. Annual minimum 

and maximum temperature had the opposite effects probably due to fact that in an 

average annual cycle these climatic covariates are associated with the cold dry period 

(June-August) and hot dry period (August to October), respectively, both of which have 

low transmission (Mabaso et al. 2005). The association between vapour pressure (a 

measure of humidity) and annual incidence reflect the importance of the interaction 

between rainfall and temperature which modulates the ambient air humidity which in turn 

affect the survival and activity of Anopheles mosquitoes (Bruce-Chwatt 1980; Molineaux 

1888).  

 

Furthermore, the spatio-temporal model (Table 4.2.) showed that while NDVI, a 

surrogate for the response of vegetation to rainfall, appears to have a positive effect, it 

had no statistically significant association with annual malaria incidence. This may be 

due to the fact that vegetation greenness is to a large extent dependant on the amount of 

rainfall available in a given year (Reid 1957; Ramasdale 1965). Moreover, total annual 

rainfall in Zimbabwe is characterized by strong variability (Hartman et al. 2002). Hence, 

rainfall is a stronger predictor of malaria incidence at an inter-annual time scale.  
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The modelled spatial pattern showed that areas in the low lying north-western and south-

eastern part of the country have high but less variable incidence, whereas areas of lower 

incidence in the middle to highland areas showed greater year to year variability. Eco-

epidemiological conditions in these areas determine the stability of between year 

variation in malaria transmission (Reid 1957; Hartman et al. 2002; Craig et al. 1999). Our 

analysis therefore confirms that year to year variation in malaria incidence in Zimbabwe 

is driven mainly by climatic covariates, and further demonstrates that resultant incidence 

in a given area may also be a function of other unmeasured risk factors. The spatial effect 

of climatic conditions during the study period appears to be more evident only during the 

much reported drought years from 1990-1992 and following heavy rainfall in 1998 

(Kovats 2000).  

 

In our previous analysis optimum ranges of climatic risk factors identified in the present 

study were also significantly associated with malaria transmission at a seasonal time scale 

(Mabaso et al. 2005). It is likely therefore that increase in mean annual temperature, 

rainfall and humidity is linked to within year changes in average climatic conditions and 

in turn lead to changes in the full annual cycle of malaria transmission. The magnitude of 

which probably varies from one year another. For example, Freeman and Bradley (1996) 

found that higher than average annual mean monthly temperatures during the critical 

period of malaria transmission (April and September) in the previous year were 

associated with an increase in the severity of malaria in the following year in some areas.  

This becomes more pronounced and widespread if both extremes of warm and wet 

conditions coincide and vice versa as observed during high and low incidence years 
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(Figure 4.2. and 4.3.). We deduce therefore that extreme climatic events associated with 

covariates identified in this study may be useful for developing climate based malaria 

forecasting models operational at both seasonal and inter-annual time scales.  

 

In conclusion, our modelling approach adjusted for unobserved spatial and temporal 

varying risk factors, and showed that while inter-annual variation in malaria incidence is 

driven mainly by climatic conditions, the resultant spatially varying risk pattern may also 

be influenced by other risk factors. Nevertheless, high and low incidence years following 

the occurrence of extreme climatic conditions may be useful for developing climate based 

MEWS and for delineating areas prone to climate driven epidemics. However, the 

predictive value of climatic risk factors identified in this study still needs to be evaluated. 
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 Abstract 

Quantitative description and mapping of malaria seasonality is important for timely 

spatial targeting of interventions and for modelling malaria risk. We use Zimbabwe as an 

example for developing an empirical map of malaria seasonality. We describe the 

relationship between seasonality in malaria and environmental covariates for the period 

1988-1999, by fitting a spatial-temporal regression model within a Bayesian framework 

to provide smoothed maps of the seasonal trend. We adapt a seasonality concentration 

index used previously for rainfall to quantify malaria case load during the peak 

transmission season based on monthly values. Combinations of mean monthly 

temperature (range 28-32 °C), maximum temperature (24-28 °C) and high rainfall 

provide suitable conditions for seasonal transmission. High monthly maximum and mean 

monthly minimum temperatures limit months of high transmission. The intensity of 

seasonal transmission was highest in the north western part of the country from February-

May with the peak in April and lowest in the whole country from July-December. The 

north western lowlands had the highest concentration of malaria cases (> 25 %) followed 

by some districts in the north central and eastern part with a moderate concentration of 

cases (20-25 %). The central highlands and south eastern part of the country had the 

lowest concentration of malaria cases (< 20 %). This pattern was closely associated to the 

geographic variation in the seasonality of climatic covariates particularly rainfall and 

temperature. Our modelling approach quantifies the geographical variation in seasonal 

trend and the concentration of cases during the peak transmission season and therefore 

has potential application in malaria control. The use of a covariate adjusted empirical 

model may prove useful for predicting the seasonal risk pattern across southern Africa.  
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Introduction 

The diverse ecology of sub-Saharan Africa supports a wide range of malaria transmission 

conditions which vary in terms of their public health effects and necessary responses to 

control (Macdonald 1957). This is because of the complex interaction, between the 

malaria parasite, human host, Anopheles vector and environmental conditions which vary 

across different geographic regions in the continent. Understanding the malaria 

transmission pattern within each region is fundamental for the description of disease risk 

and control (Molineaux 1988; Bruce-Chwatt 1980). As such a number of different 

approaches have been used to try and reduce complex malaria situations to a manageable 

number of types and classes for the purpose of description, planning and development of 

appropriate control strategies (Mcdonald 1957; Metselaar & Van Theil 1959).  

 

Recently, there has been a considerable interest in developing continental and regional 

malaria risk maps (Craig et al. 1999; Kleinschmidt et al. 2001a; Gemperli 2003). 

Seasonality in transmission is an important but neglected consideration in the mapping of 

malaria risk. Most malariometric surveys used are deliberately carried out during the 

peak transmission season, and this introduces a bias in the maps unless it is allowed for 

(Gemperli 2003). A map of malaria seasonality is also important for timely spatial 

targeting of interventions, for example, optimizing the timing and frequency of indoor 

residual spraying with insecticides and / or re-impregnation of insecticide treated bed 

nets. This is particularly true for regions which experience variation in infection risk due 

to periodic onset of suitable environmental conditions in a given year. This variation in 

transmission is reflected in the seasonal fluctuation of vector densities, entomological 
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inoculation rate and malaria cases (Afari et al. 1993; Fontenille et al. 1997; Hamad et al. 

2002; Shililu et al. 2003). The challenge is how to translate this variation in the 

transmission pattern to a quantitative description of malaria seasonality in a given area.  

 

Seasonality in malaria has been described in terms of the timing and length of the 

transmission period depending on the presence of the period with or without 

transmission. For example, Tanser et al. (2003) used a climate suitability model to 

describe the duration, start and end of the malaria season based on classifying months 

dichotomously (i.e. yes or no transmission) according to their suitability of the climate 

for transmission. Some empirical models also followed a similar approach using the 

relationship between malaria cases and environmental proxies to predict the number of 

months during which transmission is possible (Thomson et al. 1997; Hay et al. 1998a & 

b; Thomson et al. 1999). According to this perspective, malaria is strongly seasonal in 

areas experiencing transmission over a short period and less so in areas with potentially 

perennial transmission.  

 

However, although some areas have very little seasonal variation in malaria transmission 

can be intense with strong seasonal variation, even in areas where it is perennial (Smith et 

al. 1993).  Some areas where transmission is limited to a short season have very intense 

transmission during the peak season, for example in Gambia (Von Seidlein et al. 2002), 

while in other areas transmission is barely measurable even during the peak of the season, 

for example in eastern Sudan (Theander 1998). Hence the variation in intensity of 

transmission between months need not be closely linked to the duration of transmission. 



CHAPTER 5: Empirical description of malaria seasonality: the example of Zimbabwe 74 

Consequently, for the development of empirical maps of malaria seasonality it would be 

preferable to use seasonality models that predict quantitative variation in intensity of 

transmission between months, rather than simply classifying them into months of 

transmission or no transmission.  

 

In this study we use Zimbabwe as an example of mapping malaria seasonality in southern 

Africa. Zimbabwe has a great variety of malaria transmission situations and fairly reliable 

recording of clinical malaria episodes at health facilities. It is therefore ideal for this 

analysis. We describe the relationship between seasonality in the incidence of clinical 

malaria and environmental factors in order to define spatial variation in seasonality, and 

to derive a measure of the intensity of seasonality of transmission based on the predicted 

relationship. A Bayesian analytical framework was employed to account for 

geographically varying unobserved risk factors and temporal variations (Clayton et al. 

1993; Knorr-Held & Besag 1998; Lawson et al. 1999; Bailey 2001). This provides 

smooth maps, enabling us to interpret the geographical patterns in seasonality, and to 

consider the implications for malaria control and the extent to which our approach can be 

generalized to other areas of southern Africa.  

 

Materials and methods 

Study area 

 Zimbabwe is a landlocked country situated in the south central part of southern Africa 

approximately between 25°E to 33°E and 16°S to 22°S. Malaria transmission is 

characterized by regular seasonal fluctuations alternating irregularly with high incidence 
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periods (Mpofu 1985; Taylor 1985; Taylor & Mutambu 1986). It is estimated that over 5 

million people out of a population of 13 million live in malarious areas (SAMC 2003). In 

1999 over 740 000 clinical cases and 2 200 deaths from malaria were reported (Ministry 

of Health and Child Welfare 2000).  

 

The intensity of transmission has been modified by a long history of malaria control. 

Consequently there is only a small proportion of the population with sufficient immunity 

to resist malaria infections without seeking treatment. Since the late 1940’s Zimbabwe 

has actively controlled malaria mainly by indoor house spraying with the residual 

insecticide dichlorodiphenyltrichloroethane (DDT) supplemented by case treatment at all 

levels of health facility. Initially only low lying areas were sprayed with DDT to prevent 

the spread of malaria from low to high altitude areas. After independence in 1980 all rural 

areas, regardless of altitude were included in the spraying programme and in 1988 DDT 

was replaced by pyrethroids (Taylor 1985; Taylor & Mutambu 1986; Siziya et al. 1997; 

Mabaso et al. 2004). 

 

Despite these measures, estimated to cost the country US$ 1 million in 1999 (Lukwa et 

al. 1999), malaria is still a major public health problem in the country. With such a high 

expenditure on malaria control combined with dwindling resources and a persistently 

high incidence of clinical malaria there is clearly a need for timely spatial targeting of 

interventions to improve cost effectiveness. 
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Data  

We used monthly malaria case data collated at a district level by the National Malaria 

Control Programme (NMCP) between 1988 and 1999 (Ministry of Health and Child 

Welfare 2000). Only malaria data for the highest risk group i.e. children less than five 

years old was used in the analysis. The data included both microscopically confirmed and 

unconfirmed cases symptomatically diagnosed as malaria by trained health workers. 

Despite this limitation the data give a clear indication of the relative incidence, 

seasonality and geographical variation of malaria in the country (Mpofu 1985; Taylor & 

Mutambu 1986). We computed incidence per capita in order to delineate areas of high 

and low risk in relation to intensity of seasonality using district population projections 

from the 1982 and 1992 censuses (Central Statistics Office 2002).  

 

Environmental covariates used were mean monthly values of rainfall, vapour pressure, 

temperature as well as maximum and minimum temperature sourced from the Climate 

Research Unit (CRU) interpolated climate surfaces with a 0,5 x 0,5° grid resolution about 

55 x 55km at the equator (Mitchell et al. 2003). Including, monthly normalized difference 

vegetation index (NDVI) at 8 x 8 km resolution from Advanced Very High Resolution 

Radiometer (AVHRR) sensor onboard the National Oceanic and Atmospheric 

Administration (NOAA) satellite 

(http://daac.gsfc.nasa.gov/data/dataset/AVHRR/index.html). To account for the time 

period between the onset of suitable conditions and disease onset which is later, 

environmental data was lagged two months before disease data based on studies by 

(Taylor 1985; Taylor & Mutambu 1986). Climate grid cells were calibrated using the 
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raster GIS software package Idrisi (http://www.clarklabs.org/) to extract average pixel 

values of the environmental variables for each district.  

 

Statistical analysis  

A  Poisson model was fitted in STATA (StataCorp, USA) version 8.0 to analyse the 

relationship between environmental factors and the number of incident cases (Ikjt) in each 

district (k), year (j) and month (t). All covariates showed significant associations with 

malaria cases (p < 0.001) and were included in the spatial-temporal analysis. Mean 

temperature and mean maximum temperature showed non-linear relationships with log 

(Ikjt) and were therefore converted to categorical variables for further analysis.  

 

A number of spatial and spatio-temporal models were fitted in WinBUGS (WinBUGS 

2000) using the Bayesian approach. Spatial and temporal correlation was taken into 

account by introducing district and month specific random effects. The full spatio-

temporal model assumed that the observed counts of cases Ikjt for the kth district (k = 

1…58) in the tth month in year j (1988-1999) follow a Poisson distribution with 

mean ( )kjtµ , that is, 

log( ) log t

kjt kj kjt k ktNµ α φ ω= + + + +X β  

 

where kjN is the annual total number of cases in district k and year j,α  is a measure of the 

overall incidence, β  is the vector of regression coefficients, kjtX  is the vector of 

environmental covariates for district k, year j and month t, kφ  is the spatial random effect 



CHAPTER 5: Empirical description of malaria seasonality: the example of Zimbabwe 78 

for district k and ktω is the temporal random effect for month t within district k. We used a 

conditional autoregressive (CAR) process to model the spatial correlation in the district 

specific random effects assuming that each kφ conditional on the neighbouring lφ  has a 

normal distribution with mean the average of lφ  and variance inversely proportional to 

the number of neighbours kn ,   that is, 

2| ,  neighbouring of k ~ Normal ( / , )k l l k k

k l

l n nφφ φ γ φ σ
≠
∑  

 

where γ  is a parameter that quantifies the amount of spatial correlation present in the 

data and 2
φσ  measures the spatial variance. Two CAR models were applied: the CAR(1) 

which assumed maximum spatial correlation (γ =1) and the CAR(γ ) which 

parameterizes the amount of spatial correlation present in the data. The Deviance 

Information Criterion (DIC) (Spiegelhalter et al. 2002) was applied to select the best 

fitting model. This is the expected deviance minus the deviance of the posterior 

expectation of the parameters. It summarizes model fit and complexity defined by the 

effective number of model parameters. The DIC showed that CAR(1) was more 

appropriate as indicated in Table 5.1. This model was used in subsequent analyses. An 

AR (1) process with temporal variance 2
ωσ  was used to model the spatio-temporal 

interaction parameters ktω  which allow for correlation between consecutive months 

within district k (i.e. assuming that cases at month t are influenced by cases in the 

previous month). We 
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specified inverse gamma hyper prior distributions for the variance parameters of the 

spatial and temporal random effects and uniform priors for the regression coefficients as 

well as the γ  parameter (Gelfand et al. 1997). Parameter estimation was obtained via 

Markov chain Monte Carlo simulation (MCMC) employing a single chain algorithm. We 

considered an initial burn-in of 5000 iterations. Convergence was assessed by plots of 

ergodic averages of selected parameters of the model and obtained after 20 000 iterations. 

A further 10 000 iterations were run to avoid false interpretation of convergence to local 

modes. A final sample of 5000 was then collected to obtain posterior distributions of the 

parameters. 

 

Table 5.1. Model comparisons using the deviance information criterion (DIC). Smaller 

values indicate a better fitting model.  

MODELS TYPE DIC 

(1) log( ) log t

kjt kj kjtNµ α= + + X β  Non spatial 930234 

(2) log( ) log t

kjt kj kjt kNµ α φ= + + +X β  Spatial CAR(1) 915997 

(3) log( ) log t

kjt kj kjt kNµ α φ= + + +X β  Spatial CAR(γ ) 918118 

(4) log( ) log t

kjt kj kjt k ktNµ α φ ω= + + + +X β  Spatial-temporal 

CAR(1) 

759993 

 

 

As an empirical indicator of the seasonal pattern of disease in district k and month j we 

used the proportion of total annual cases occurring in each month, kjP , calculated as: 
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kt

t
kj

kjt

jt

I

P
I

=
∑

∑
% .   We also calculated the smoothed model-based kjP% values from the results 

of the spatio-temporal model.  

 

Measure of seasonality 

To derive summary measures of malaria seasonality for each district we applied 

Markham’s concentration index, previously used to quantify seasonality in rainfall 

(Markham1970; McGee 1977). The method is based on vector representation of mean 

 

monthly totals, i.e the malaria incidence in month t is represented by a magnitude, 
kt

I , 

(equal to the mean over all years of 
kt

I ) and a direction, 
t

θ  , corresponding to the month 

expressed in units of arc.  Summation of the 12 monthly vectors gives a vector total 

; k k(r θ ) , that is, 

2 2
 = ( sin ) ( cos )k kt t kt t

t t

r I Iθ θ+∑ ∑  and 1
 k

sin

θ = tan
cos

kt t

t

kt t

t

I

I

θ

θ
−
∑

∑
  

where kr  is the magnitude of the displacement from a situation of no seasonality, and kθ  

is the month of the peak season. The seasonality concentration index, Si, is given by: 

= /
i k kt

t

S r I∑ , usually expressed as a percentage. The index was applied to both smoothed 

(model based estimates) and raw proportions of cases. 
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An index of 100 % implies that malaria is concentrated in one month while an index of 0 

% indicates a uniform distribution of malaria incidence throughout the year. For 

comparison between seasonality in malaria and environmental covariates the method was 

also applied to rainfall, vapour pressure and NDVI. For temperature, annual range (i.e. 

the difference between the monthly minimum and maximum temperature) was taken as 

the measure of seasonality. 

 

Results 

The broad geographical pattern of malaria risk across the country is shown in Figure 5.1. 

With the highest incidence from 15 to 46 cases per 1000 person years in the north 

western lowlands (< 900 m) followed by moderate incidence from five to 15 cases per 

1000 person years in the south eastern lowlands (< 600 m), and the lowest incidence from 

0.2 to five cases per 1000 person years in the south and central highlands ( ≥  1200 m). 

The highest risk coincides with areas of relatively high rainfall and elevated temperatures 

and low risk with areas where one or both of these factors are not suitable. However, this  

pattern was not consistent throughout the country with high incidence recorded in some 

areas experiencing on average hot and dry and / or wet and cold conditions. 

 

Table 5.2 shows regression coefficients from the spatial-temporal model for the 

relationship between monthly proportion of cases ratios and environmental conditions. 

Among temperature derived covariates, both mean monthly temperature range from 28 to 

32 °C and maximum temperature range from 24 to 29 °C showed a positive association 

with malaria incidence. While high monthly maximum and minimum temperatures 
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showed a negative association. Among other environmental covariates only rainfall and 

vapour pressure showed a positive association with malaria. NDVI showed a negative 

association. The modelled seasonal trend showed that on average transmission is most 

intense from February to May with a peak in April declining rapidly after May and 

remaining at low levels between June and January (Figure 5.2). Similar trends were 

observed in all the individual districts in the country (not shown here). 
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Figure 5.1. Average malaria incidence per thousand person years, altitudinal contours (m) and 

average climatic conditions [rainfall (mm), NDVI, vapour pressure (hPa), mean average, 

maximum and minimum temperature (°C)] for 1988-1999 in Zimbabwe. Malaria data from 

National Malaria Control Programme (Ministry of Health and Child Welfare 2000) and climate 

data from Climate Research Unit (Mitchel et al. 2003). 
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Table 5.2. Posterior estimates of regression coefficients ( β ) for environmental covariates 

and of spatial ( 2
φσ ) and temporal ( 2

ωσ ) variances obtained by fitting the spatio-temporal model 

(Table 5.1. model 4), including 95 % credible intervals.  

Variable Mean  95 % Credible intervals 

Spatial variation ( 2
φσ )   0.141 (0.110, 0.190) 

Temporal variation ( 2
ωσ )   0.208 (0.165, 0.251) 

Intercept -2.720 (-2.750, -2.674) 
Mean  temperature (°C) 
(<18)* 
(18-22) 
(23-27) 
(28-32) 

 
 
-0.171 
-0.103 
 0.235 

 
 
(-0.179, 0.163) 
(-0.113, -0.093) 
(0.211, 0.258) 

Maximum temperature (°C) 
(<24)* 
(24-28) 
(29-33) 
(34-38) 

 
 
 0.031 
-0.032 
-0.290 

 
 
(0.023, 0.038) 
(-0.041, -0.023) 
(-0.308, -0.274) 

Minimum temperature (°C) 
(4-24) 

 
-0.071 

 
(-0.072, -0.069) 

Vapour pressure (hPa) 
(72-275) 

 
0.008 

 
(0.008, 0.008) 

NDVI 
(0.2-0.9) 

 
-0.216 

 
(-0.257, -0.169) 

Rainfall (mm) 
(0-561) 

 
3.61E-05 

 
(3.24E-05, 3.99E-05) 

*Temperature range taken as baseline in the analysis. 
 

Smoothed estimates of the proportions of cases revealed a spatial pattern not evident 

from the maps of raw proportions (Figure 5.3.A and B). The highest intensity of seasonal 

transmission between February and May is mainly in the north western part of the  

country followed by some districts in the south eastern part. The lowest intensity of 

seasonal transmission occurs throughout the country from July to December. The months 

of January and June appear to be the start and end month for the transmission season, 

respectively (Figure 5.3.A).    
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Figure 5.2. Proportion of malaria cases by month averaged over location and year in 

Zimbabwe between 1988 and 1999 obtained from the spatio-temporal model adjusted for 

environmental covariates (Table 5.1. model 4). The box represents 2.5th, 50th and 97th 

quantiles of the posterior distribution of the expected proportion of cases, respectively. 

The whiskers correspond to the maximum and minimum of the distribution and the dots 

indicate the outliers.   

 

The mapping of the seasonality concentration index (Si) from unadjusted proportions of 

cases showed no clear spatial pattern (Figure 5.4.). The covariate adjusted proportions of 

cases showed that the percentage concentration of malaria cases was highest (> 25 %) in  
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Figure 5.3 Geographical variation in the proportion of A raw and B smoothed malaria cases Table 1 model 4 by month expressed as a  

Percentage averaged over 1988-1999 in Zimbabwe. 
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Figure 5.4. Seasonality concentration index (Si) expressed as a percentage of raw and 

smoothed malaria cases (Table 1 model 4), rainfall (mm), vapour pressure (hPa), NDVI and 

seasonality in temperature (°C) [i.e. annual range, derived from the difference between 

monthly minimum and maximum temperature] averaged over year (1988-1999) and months 

in Zimbabwe. Malaria data obtained from (Ministry of Health and Child Welfare 2000) and 

Climate data from Climate Research Unit (Mitchel et al. 2003). 
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the north western lowlands followed by districts in the north central and eastern part of 

the country (mostly intermediate between lowland and highland areas) with a moderate 

concentration of cases (20-25 %). The lowest percentage concentration of malaria case (< 

20 %) was in the central highlands and parts of the south eastern lowlands. This pattern 

was closely associated to the geographic variation in the seasonality of climatic 

covariates particularly rainfall. Seasonality in vapour pressure was also high in the north 

western lowlands coinciding with warm wet season. Seasonality in NDVI followed that 

of rainfall in the northern part of the country and to a less extent in southern part. 

 

Discussion 

Observed rates of recorded malaria cases in Zimbabwean districts demonstrate how much 

malaria incidence varies within geographical areas, depending on spatial variation in 

environmental determinants (Figure 5.1.). However, the observed pattern was not 

consistent throughout the country. This probably relates to between-district variability 

(noise, error) in the detection and recording of malaria cases at health facilities (Ray et al. 

1995), which is determined by other than environmental determinants. Possibly, the 

population sizes we used as the denominator to calculate malaria incidence rates were 

incorrect for some districts contributing to error in malaria case rates.  

 

The statistical method employed to quantify the amount of seasonal transmission in each 

months smoothed unobserved or unmeasured residual variation in malaria case rates 

between years and districts enabling us to interpret the geographical patterns in 

seasonality (Figure 5.3.). This work therefore contributes to the evidence for the 

importance of smoothing for spatial and temporal random effects in the mapping of 
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malaria (Diggle et al. 2002; Kleinschmidt et al. 2000; Kleinschmidt et al. 2001a & b; 

Kleinschmidt et al. 2002, Gemperli et al. 2004).  

 

Our results with regard to the seasonal patterns of malaria transmission confirm what has 

been shown by other studies of the epidemiology of malaria transmission in Zimbabwe. 

Taylor (1985) and Taylor and Mutambu (1986) showed that peak in disease incidence is 

between March and April, and that the overall seasonal trend in the country varied 

according to the different altitudinal zones. Mpofu (1985) related the observed seasonal 

trend to the vector population densities. The present analysis showed that the 

combinations of mean monthly temperature range from 28 to 32 °C, maximum 

temperature range of 24 to 28 °C and high level of rainfall provides suitable conditions 

for seasonal transmission. The negative association between malaria incidence and mean 

monthly temperature range from 23 to 27 °C could be an indication that warmer average 

conditions are required during months of high transmission (Table 5.2.). Whereas high 

monthly maximum and minimum temperatures limit seasonal transmission. Surprisingly, 

NDVI also showed a negative association probably due to colinearity with rainfall which 

accounts for most variation. Further implications of the performance of NDVI in our 

analysis are illustrated by the results of the seasonality concentration index as discussed 

below.   

 

The mapping of smoothed proportions of cases in each month averaged over the 11 year 

time period visually display the peak months as well as the start and end of seasonal 

transmission. Modelling and mapping seasonality in this way provides information about 
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the length of the transmission season based on the predicted relationship between 

seasonality in malaria and climate without setting any a priori conditions for duration in 

the model. This modelling approach also quantifies the relative amount of spatial 

seasonal risk pattern by delineating districts that have high and low proportions of 

malaria cases in a given time period. However, this requires the visual display of a map 

for each month. Mapping the seasonality concentration index (Si) provides a more 

concise presentation. 

 

The Si summarizes the spatial seasonal trend observed in Figure 5.3. by displaying the 

distribution of malaria case load during the peak season across the country (Figure 5.4.). 

The concentration of cases was highest in the north western lowlands and lowest in the 

south eastern lowlands and central highlands. This pattern follows the geographic 

variation in the seasonality of climatic conditions particularly rainfall. For example, the 

low lying areas have on average elevated temperatures compared to areas at higher 

altitude. However, these areas are relatively dry and rainfall is strongly seasonal and 

brings with it intense seasonal transmission. On the contrary, in the south eastern 

lowlands the seasonal concentration of rainfall is low and as such there is less seasonality 

in malaria transmission. Nevertheless, perennial transmission in both western and eastern 

lowlands has been reported along major river systems. In addition, seasons of high 

rainfall have also been observed to dramatically alter the intensity of seasonal 

transmission in these areas (Taylor 1985). Seasonality in vapour pressure which is a 

measure of humidity follows a similar pattern to malaria seasonality. This is biologically 

plausible since humidity is high where rainfall and temperature are high and such 
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conditions are conducive to breeding and survival of the vector population and 

development of the parasite (Molineaux 1988). On the other hand NDVI which has been 

used to predict the number of months during which seasonal transmission is possible as 

illustrated by Thomson et al. (1997), Hay et al. (1998a) and Thomson et al. (1999), did 

not show a similar seasonal pattern to malaria. According to our analysis the greenness is 

highest in May long after the peak in rainfall and temperature (February-March), and this 

period coincides with a decline in malaria incidence.  

 

Visual comparison of our model with the seasonality classification by Tanser et al. 

(2003) showed that in Zimbabwe areas with a high seasonality index and therefore high 

concentration of cases during the peak season fall within potentially perennial 

transmission areas with 4-6 months of transmission, and low indices within areas with 1-

3 months of transmission. It may be that in areas experiencing malaria over a short period 

transmission is more sporadic and epidemic in nature, and that a greater percentage of 

recorded cases throughout the year are imported cases and / or false positives due over 

diagnosis as observed by (Stein and Gelfand 1985; Ray et al. 1995; Mharakurwa et al. 

1997; Siziya et al. 1997).   

 

The Si leads to a quite different classification of areas of high and low seasonality 

compared to earlier seasonality definitions and maps. In the case of Zimbabwe it shows 

that strong seasonality tend to be associated with potentially perennial transmission, 

rather than with shorter annual duration of transmission which was the main determinant 

of other definitions of seasonality. Moreover, Si quantifies the concentration of cases and 
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the peak month in a given year, and the mapping of this index therefore gives information 

about the intensity transmission during the peak season in a given area. This has potential 

for application in the timely spatial targeting of malaria interventions. In addition, the use 

of a covariate adjusted empirical model may prove useful for predicting seasonal risk 

pattern across the region with validation and / or calibration of the resulting seasonal 

pattern carried out in areas where fairly reliable malaria case data is available. Further 

work in this topic will include the investigation of seasonal variation between years and 

the relationship between the level of transmission and patterns of seasonality. 
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Abstract 

A description of malaria seasonality is important for planning and optimizing malaria 

control in both time and space but adequate malariological data are not available for 

many diseases-endemic areas. We analyzed the relationship between seasonality in 

entomological inoculation rate (EIR) and in environmental factors in sites across sub-

Saharan Africa with the objective of predicting seasonality from environmental data. The 

degree of EIR seasonality in each site was quantified using an index previously used for 

rainfall. The results showed that seasonality of rainfall, minimum temperature and 

irrigation are important determinants of seasonality in EIR. Model fit was poor in areas 

characterized by two rainfall peaks and by irrigation activities. Two rainfall peaks 

probably dampen seasonality while irrigation creates perennial breeding habitats for 

vectors independent of rainfall. This complex interplay between the seasonal dynamics of 

environmental determinants and malaria pose a great challenge and highlights the need 

for improved models of malaria seasonality.  
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Introduction 

Malaria is one of the most prevalent and devastating public health problems in sub-

Saharan Africa (WHO 2003). An important tool for optimizing malaria control over both 

time and geographical area is a map of malaria seasonality. Such a map would be 

valuable as a basis for mapping transmission intensity (Gemperli et al. 2006). It has long 

been suggested that assessing the relationship between malariometric indices and 

environmental factors may be the most effective way of predicting changes in malaria 

transmission dynamics and thus improve the impact of control efforts (McDonald 1957; 

Bruce-Chwatt 1980; Molineaux 1988). A number of studies have analyzed this 

relationship using different approaches and indices in different parts of the continent 

Thomson et al. 1997; Hay et al. 2000b; Githeko and Ndegwa 2001; Abeku et al. 2004; 

Zhou et al. 2003). However, there is no convincing empirical model of the relationship 

between seasonality in environmental factors and seasonality in malariometric indices 

that could be used to map the pattern of seasonality across the continent. 

     

The existing continental model of malaria seasonality is based on climate suitability for 

malaria transmission in a given month and shows the potential duration, start and end of 

the malaria season (Tanser et al. 2003). This model was validated against parasite 

prevalence data but these data are not ideal for describing malaria seasonality (Thomson 

et al. 1999; Reiter et al. 2004) since at very high transmission levels malaria prevalence 

is not very seasonal (Smith et al. 1993). Clinical malaria case data are more closely 

related to seasonality in transmission and hence to some environmental proxies for 

malaria seasonality (Hay et al. 1998; Thomson et al. 1999). Recently, an empirical 
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seasonality model that incorporates a combination of clinical malaria data and 

environmental covariates was used to predict monthly variation in transmission in 

Zimbabwe (Mabaso et al. 2005). A seasonality concentration index previously used for 

rainfall was applied to the model estimates in order to quantify and map the seasonal risk 

patterns across the country. 

  

The index quantifies the distribution of the malaria case load during the peak season in a 

given area and therefore has the potential to be applied to seasonal risk mapping. 

However, because of the scarcity of reliable clinical malaria case data in large parts of 

sub-Saharan Africa, the use of other malariometric indices sensitive to malaria 

seasonality is necessary.   

 

The entomological inoculation rate (EIR) is the definitive measure of malaria challenge 

and responds to seasonal changes in environmental factors (Rogers et al. 2002). EIR 

relates to both the human-biting activity of Anopheles vectors and the risk to humans of 

malaria infections (Appawu et al. 2004). 

 

In this study we use a seasonality concentration index to model the relationship between 

seasonality in EIR and environmental factors, in order to identify environmental 

predictors of malaria seasonality and evaluate the utility of the seasonality index in 

different sites across sub-Saharan Africa. 
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Materials and methods 

Data  

We compiled published and unpublished monthly EIR data from as many different sites 

across sub-Saharan Africa as we could find (Figure 6.1.). The EIR is the number of 

infective mosquito bites per human per unit time (McDonald 1957; Molineaux et al. 

1988). Studies included in the analysis were cross-sectional surveys conducted at least 

monthly throughout the year prior to the introduction of interventions or where no control 

methods were in place. These used standard mosquito sampling methods such as human 

landing catches, pyrethrum spray catches or light traps for estimating biting rates 

including dissection or enzyme-linked immunosorbent assay (ELISA) for determining the 

presence of sporozoites and origin of blood meal (Beier et al. 1999). Annual and monthly 

inoculations were derived by multiplying the daily EIR (infective bites per man per night) 

by 365 and 30 days, respectively. 

 

We used monthly minimum temperature, annual temperature range and rainfall data 

obtained from the Climate Research Unit (CRU) with a global grid of 0.5 spatial 

resolution (Mitchel et al. 2003). The annual temperature range (the difference between 

monthly minimum and maximum temperatures) was taken as a measure of seasonality. 

For EIR and rainfall we applied Markham’s seasonality concentration index 

(Markham1970; McGee 1977) previously used to summarize the seasonal trend in 

malaria cases by displaying seasonal concentration of cases during the peak transmission 

season (Mabaso et al. 2005). The method is based on vector representation (i.e. give both    
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Figure 6.1. Geographic location of EIR study sites, (■) show locations with one rainfall peak and (♦) those with two peaks in a 

given year, and (▲) show locations with irrigation schemes. 
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magnitude and direction) of mean monthly values in a given year. The twelve monthly 

values are added up to give a vector total ; t t(r θ ) , i.e., 

2 2
 = ( sin ) ( cos )i it i i

r r rθ θ+∑ ∑  and 1
 tθ = tan sin cosi ii i

r rθ θ− ∑ ∑   

 

and the seasonality concentration index C is given by = /
t i

C r r∑  expressed as a 

percentage, where ir  is the magnitude of the vectors and tθ  is the direction which is the 

peak month expressed in units of arc. An index of 100 percent implies that value of 

interest is concentrated in one single month while an index of zero percent means that it 

is equal in each month of the year. 

 

The effect of anthropogenic environmental change, specifically the presence of irrigation 

activities in selected localities was also taken into account in the analysis. All types of 

irrigated agriculture were recorded as either present or absent based on the information 

available from the literature used.  

  

Statistical analysis 

The analysis was carried out in Stata 8.0 (Stata Corporation). We used a Probit 

transformation to convert the EIR seasonality concentration index into a variable with a 

normal distribution. A multiple stepwise linear regression analysis was used to describe 

and model the relationship between the Probit transformed EIR seasonality index and 

selected explanatory variables in each site (Figure 6.1.), and variables with a p-value > 
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0.2 were removed. Table 6.1. summarizes variables used in the analysis. These variables 

were 
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Table 6.1. Mean and SD (standard deviation) of all variables used in the analysis from selected localities (n = 48) in sub-Saharan 

Africa. Only sites with monthly EIR values were included in the analysis. Where C is the seasonality concentration index expressed a 

percentage. 

 
 

VARIABLES 

EIR  Rainfall (mm) Temperature (ºC) 

 
 
 Annual 

Mean (SD) 
C (%)     
Mean (SD) 

Annual 
Mean (SD) 

C (%) 
Mean (SD) 

Minimum 
Mean (SD) 

Annual range* 
Mean (SD) 

Country No. of Sites ( EIR References)  
Benin  1 (Akogbeto & Nahum 1996) 4.09 56.45 13536.33   26.65   22.20   3.40 
Burkina Faso 3 (Robert et al. 1988; Robert & Carnevale 1991; Modiano et al. 1996)  80.15 (46.82)   62.79 (28.91) 8621 (1411.17) 73.52 (3.22)   16.20 (0.82) 7.67 (1.85) 
Burundi 2 (Coosemans 1985) 43.01 (53.27) 54.24 (0.02) 11281.50 (1085.41) 29.88 (4.13) 13.50 (1.34) 1.86 (0.38) 
Gabon 3 (Elissa et al. 1999; Elissa et al. 2003) 60.549 (41.73) 32.83 (26.97) 20331.61 (3296.17) 26.42 (8.89)   18.90 (0.85)   2.98 (0.76) 
Kenya 4 (Mbongo et al. 1993; Mbongo et al. 1995; Beier et al. 1990) 29.21 (43.42)   55.36 (12.08) 10702.63 (1340.25) 32.30 (13.78   18.83 (2.25) 3.56 (0.97) 
Mali 6 (Dolo et al. 2004) 146.30 (99.49)   64.24 (27.24) 4782.67 (50.76) 80.73 (0.31)   16.61 (0.15)   9.10 (0.05) 
Mozambique 1 (Mendis et al. 2000) 153.12 30.05 5570 44.36   10.80 8.73 
Nigeria 8 (Molineaux and Gramiccia 1980) 24.88 (26.38)   85.25 (4.65) 5768.19 (800.64)   84.15 (0.56) 13.00 (0.14) 9.58 (0.35) 
Senegal 6 (Fontenielle et al. 1997;  Robert et al. 1998) 18.3 (26.38) 66.78 (26.42) 8006.67 (2485.52)   86.10 (1.73) 16.25 (0.78)   4.81 (0.73) 
Sierra Leon 1 (Bockarie et al. 1994) 13.52    55.58 24216.50   64.00   19.85    2.95 
Tanzania 13 (Biro 1987; Smith et al. 1993; Premji et al. 1997; Charlwood et al. 

     1998; Drakeley et al. 2000; Ijumba et al. 2002; Bodker et al. 2003) 
37.5 2 (64.69)   63.28 (56.38) 11222.57 (3114.18)   47.50 (10.74) 15.25 (2.96)   4.47 (0.50) 

* Annual range [difference between monthly minimum and maximum temperature] used as a measure of seasonality in temperature  
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used to see how well they predict seasonal concentration of EIR in the different sites.  

The performance of climatic predictors was further assessed by fitting the regression 

model in the presence or absence of irrigation activities, and with or without sites from 

the tropical zone. 

 

Results 

Table 1 shows that there is great variability in the annual EIR values and seasonality 

among the selected countries (n = 48 sites) and between-sites variation is masked by 

averaging by country.  Only the rainfall seasonality concentration index, minimum 

temperature and irrigation were selected as potential predictors of the seasonal 

concentration of EIR (Table 6.2.). Rainfall seasonal concentration showed a positive 

association with seasonal concentration of EIR while both minimum temperature and 

irrigation showed a negative association.  No evidence of an association was found 

between annual EIR and either annual rainfall or temperature range.  

 

Table 6.2. Results of multiple stepwise linear regression analysis between EIR 

seasonality and environmental variables (listed in Table 1) for selected localities in sub-

Saharan Africa, and variables with a p-value > 0.2 were removed.  

Variables Coefficients SE p-value 95% CI 

Rainfall seasonality index  0.011    0.004 0.006  0.003, 0.019 

Minimum temperature (ºC) -0.057 0.033 0.090     -0.123, 0.009 

Irrigation -0.918 0.236 0.000 -1.393, -0.442 

SE, standard error ; CI, confidence intervals. 
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Model predictions were poor in sites situated in regions with two rainfall peaks (Figure 

6.2.). Most of these are in the tropical zone south of the equator (Figure 6.1.) and show 

very low EIR seasonality indices compared to the rest of the sites. However, we also 

observed poor model fit in a few sites with one rainfall season. EIR study sites located in 

the vicinity of irrigation schemes also had low seasonality indices compared to nearby 

non irrigated sites, for example in Mali with 40.1 percent (3 sites) and 88.3 percent (3 

sites) and Tanzania with 26.8 percent (2 sites) and 91.2 percent, respectively.  

 

 

 

 

 

0

20

40

60

80

100

0 20 40 60 80 100

Observed EIR seasonality

P
re

d
ic

te
d

 E
IR

 s
e

a
s
o

n
a

li
ty

Figure 6.2. Predicted and observed EIR seasonality concentration index from selected sites in 

sub-Saharan Africa, (!) show locations with one rainfall peak and (∀) those with two peaks in 

a given year, and (%) show locations with irrigation. 
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 Figure 6.3. EIR seasonality concentration index predicted using rainfall seasonality index and minimum temperature (ºC) including 

the absence (a, b) and presence (c, d) of irrigation activities with 95 % confidence limit. 
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Regardless of irrigation activities the seasonal concentration of rainfall remained a better 

predictor of EIR seasonality than minimum temperature. The predicted EIR seasonality 

index was higher when irrigated sites were excluded (Figure 6.3.).Conversely, exclusion 

of study sites from the equatorial tropical zone did not have much effect on the model. 

 

Discussion 

Our findings support the claim for a marked heterogeneity in the malaria transmission 

pattern across the continent (Hay et al. 2000c). We further confirm that this variation 

reflects sub-regional ecological heterogeneity, and is affected by anthropogenic activities 

such as irrigated agriculture. The analysis showed that rainfall seasonality, and to a lesser 

extent minimum temperature are important climatic determinants of the intensity of 

inoculation rate during the peak transmission season. Most of the selected EIR study sites 

are situated in tropical Africa where seasonality in rainfall drives the seasonal dynamics 

of malaria transmission. Minimum temperature probably plays little or no role in 

regulating malaria seasonality in these areas.  

 

The results also showed that irrigation activities have a dampening effect on seasonality 

of malaria transmission. Elsewhere in Africa irrigation has been shown to alter the 

transmission pattern from seasonal to perennial especially during the dry season in areas 

of unstable transmission (Ijumba and Lindsay 2001; Henry et al. 2003; Appawu et al. 

2004; Dolo et al. 2004; Sissoko et al. 2004). The impact of irrigation on malaria 

seasonality can vary with the type of irrigation activity and according to the level of 

endemicity. Increases in the level of transmission in irrigated areas result in more 
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rigorous control measures usually reflected in the low levels of malaria infection and 

morbidity (Boudin et al. 1992; Ijumba and Lindsay 2001; Ijumba et al. 2002; Dolo et al. 

2004; Sissoko 2004). In the present study, the seasonality of malaria is less in sites with 

irrigation, irrespective of the effect on overall transmission. However, the effect of 

minimum temperature and rainfall seasonality still seem to operate in irrigated areas. 

  

The two rainfall seasons in the equatorial tropical zone probably complement each other 

by intensifying and prolonging the transmission season. The seasonality index seems to 

work better in areas with unimodal seasonal pattern and this might have had an adverse 

effect in the analysis in areas with a bimodal seasonal pattern. Poor model fit in a few 

localities with one rainfall season may be due to the presence of two distinct common 

African malaria vectors, Anopheles funestus and Anopheles gambiae sensu lato which 

have been shown to sustain perennial parasite inoculation given suitable ecological 

conditions (Elissa et al. 1999 and 2003). For example, in some parts of the continent the 

two main vectors are seasonally with high densities of An. gambiae and An. 

arabiensis following the rainy season, and An. funestus reaching its peak in the early dry 

season (Gillies and De Meillon 1968; Cohuet et al. 2004). 

 

Urbanization may also be important since it has been shown to produce breeding habitats 

for malaria vectors by increasing the number of artificial water collection reservoir 

(Robert et al. 2003). However, data used in this analysis was mainly from rural settings 

and therefore insufficient to explore the impact of urbanization on EIR seasonality. Some 

of the difficulties we face may be because of chaotic dynamics in the impacts of the 
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environmental drivers of seasonality on the life histories of both parasite and vector 

(Altizer 2006). 

    

We have successfully identified environmental predictors of malaria seasonality given the 

effect of irrigated agriculture across different sites in sub-Saharan Africa. However, we 

note that the global climate data used is rather coarse and may contain uncertainties that 

should be borne in mind when dealing with EIR which vary over smaller spatial scales. 

Remotely sensed environmental proxies may improve model fit. We also acknowledge 

the need for a seasonality algorithm that captures other components of seasonal variation. 

Future work will explore the use of improved quantification and modeling of malaria 

seasonality. 
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Abstract 

Seasonal dynamics of malaria transmission as influenced by environmental / climatic 

conditions have implications for effective implementation of interventions in both space 

and time, but no analyses have been available of how observed patterns of malaria 

seasonality vary across the African continent. In this study we used an approximation of 

the discrete Fourier transformation for both entomological inoculation rate (EIR) due to 

Anopheles gambiae s.l. and meteorological covariates in order to summarise seasonality 

for 97 sites across sub-Saharan Africa. The empirical relationship between the Fourier 

coefficients for EIR and for meteorological covariates was used to predict and map the 

magnitude and timing of the main seasonal cycles. This allowed the estimation of maps 

of the overall degree of malaria seasonality and the timing and length of seasonal 

transmission across the continent. The conditions that determine the most infectious 

periods vary between and within sub-regions along an altitudinal gradient north and south 

of the equator. These products can be used to account for seasonality in transmission 

model based mapping of malaria risk at a country, regional and continental level. Model 

outputs can be further refined as more data become available.  
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Introduction 

In most malaria endemic areas transmission varies strongly with season because of the 

influence of meteorological conditions that determine the breeding, abundance and 

survival of the mosquito vectors and the rate of sporogonic development of the parasite 

(Gillies and De Meillon 1968; Molineaux 1988). Seasonal variations in parasite 

inoculation rates also affect the acquisition or loss of protective immunity in humans 

(Fontenille and Simard 2004). The timing of interventions such as the application of 

indoor residual spraying with insecticides, re-treatment of insecticide impregnated nets 

(ITNs) (Randolph 1999) and intermittent preventive treatment in infants (IPTi) 

(Chandramohan et al. 2007) need to be coordinated with the malaria transmission season. 

New intervention strategies such as vaccines may also need to be targeted accordingly 

and efficiently in both space and time for effectiveness and sustainability (Randolph 

1999). There is thus a need for accurate maps of malaria seasonality in endemic areas. 

 

The seasonality of malaria transmission in relation to climatic and environmental 

covariates is complex (Gemperli et al. 2006b; Mabaso et al. 2006). Several methods have 

been used for modelling seasonality in transmission and disease risk. These vary from an 

assumption of no seasonality, to seasonal adjustment or dichotomously classifying 

months as with, or without transmission (Abeku et al. 2002; Gemperli et al. 2006a). 

Climate based theoretical models have been used to predict the timing and length of the 

transmission season based temperature or rainfall (Tanser et al. 2003; Gemperli et al. 

2006b). There are also empirical models that fit malaria data to environmental covariates 

to predict months during which transmission is possible (Thomson et al. 1997; Hay et al. 
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1998; Hay et al. 1998b; Thomson et al. 1998). Most of these models classify months as 

with or without transmission. However, for including seasonality in models of impact of 

malaria interventions, it would be preferable to develop empirical models of malaria 

seasonality that predict quantitative variation between months rather than classifying 

dichotomously (Mabaso et al. 2005). This could also help refining the planning of control 

interventions.  

 

In this study we use temporal Fourier analysis to estimate the annual cycle of the EIR due 

to Anopheles gambiae sensu lato in relation to meteorological covariates. We use these 

relationships to map the geographical patterns of seasonality of malaria transmission 

caused by this vector in the African continent. An. gambiae s.l. typically breeds in water 

bodies and is therefore highly sensitive to temporal meteorological variations (Gillies and 

De Meillon 1968; Cohuet et al. 2004). 

 

Methods 

Entomological data 

We used the entomological inoculation rate (EIR) for An. gambiae s.l., expressed as 

average number infective mosquito bites per person per month, disaggregated by calendar 

month, and averaged over all the years for which data were available from any given site. 

These data were collated from published and unpublished sources for all 97 geolocated 

sites in Africa that we could identify, as described in detail in our previous analysis 

(Mabaso et al. 2006).  In general, annual values of EIR in tropical Africa vary from as 

low as one to more than one thousand infective bites per person (Hay et al. 2000; Hay et 
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al. 2005). In addition, EIR values vary seasonally, rising and falling with changes in 

rainfall, temperature and humidity depending on the vector species (Fontenille and 

Simard 2004; Smith et al. 2004).  

 

Meteorological data  

We obtained rainfall data from the Climate Research Unit (CRU, Norwich, U.K.) 

interpolated weather station data at a global resolution of 0.5° grid (Mitchell and Jones 

2005).  For further analysis we used the loge(R+0.001) transform of the average monthly 

rainfall(R) in millimetres. Other determinants were derived from meteorological satellite 

sensor data at 8 x 8 km spatial resolution taken from the National Oceanographic and 

Atmospheric Administration’s (NOAA) Advanced Very High Resolution Radiometer 

(AVHRR) onboard polar-orbiting satellites. These comprised monthly images of 

normalized difference vegetation index (NDVI), a measure of vegetation greenness / 

amount of vegetation and a proxy for availability of ground water and therefore a 

surrogate for mosquito breeding sites, and air temperature (Hay and Lenon 1999; Hay et 

al. 2006).   

 

Site- and time- specific values of these covariates corresponding to the EIR data were 

extracted using raster geographic information (GIS) software package Idrisi 

(http://www.clarklabs.org/). The meteorological data was averaged from 1982 to 2000, 

which corresponds to time period of the extracted EIR data. The rainfall data were 

resampled to the same grid as the remote sensed data.  Predictions were generated using 

Idrisi and predicted surfaces were displayed in MapInfo 7.1 (www.mapinfo.com/). 
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Analysis of malaria seasonality 

For each environmental variable and for the loge transform of the EIR we approximated 

the seasonal pattern with the constant, annual and biannual components of the inverse 

discrete Fourier transform, as described by, 
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where the subscripts X = E corresponds to the loge transform of the EIR; X = N 

corresponds to NDVI, X = R corresponds to loge transform of the rainfall; X = T 

corresponds to the air temperature. 
Xt

Y  then denotes the approximate value of variable X 

at month t, where t = 1,2…12 corresponds to the months of the year.  0 X
a denotes the 

mean monthly value for variable X, 1X
a , 1X

b and 2 X
a , 2 X

b represent the annual and the 

biannual Fourier coefficients for variable X, respectively.  and 
iX iX
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the real and imaginary parts of the ith Fourier coefficient expressed as a complex number.   

The values of the Fourier coefficients, for n = 1, 2, were obtained using, 
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This approximation of the discrete Fourier transform parameterised the seasonal patterns 

by reducing the data for each variable for each site to 5 orthogonal terms.   

 

Modelling of the magnitude and timing of EIR seasonality   

The magnitude and timing of the annual and biannual seasonal cycles of the logarithm of 

the EIR was modelled as a function of the amplitude and phase of meteorological 

covariates by relating the Fourier coefficients using multiple linear regression.  The full 

multivariate normal model estimated fitted values for each of the Fourier parameters for 

the log transformed EIR as the system of linear sums,    
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where ,  and ( 0...6)
ijk ijk

kφ θ = are regression coefficients; and ˆ
i

a  and ˆ
i

b  are estimated  by 

minimising the sum of squared deviations from the values of  and  
iE iE

a b for the 97 

observed sites. 

 

A backward elimination algorithm was used to eliminate coefficients where p > 0.2 

(model 1). We also fitted reduced models where only parameters corresponding to the 

annual cycle ( 2j < ) were included (model 2), a model from which parameters were 

removed where i j≠  (model 3), and another one for the average levels (model 4). The 
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Akaike Information Criterion (AIC) was used to select the best fitting models. Statistical 

analysis was carried out in Stata version 9.0 (StataCorp, USA). 

 

Predicting malaria seasonality 

Fourier coefficients for the annual and biannual seasonal components including the 

annual average were extracted from the predicted surfaces to make predictions of 

Et
Y using equation (2) for each pixel considered to have a climate suitable for malaria 

transmission in the model of Craig et al. (1999).   

 

To describe the predicted seasonal patterns we first exponentiated the fitted values of 
Et

Y  

to give an annual pattern of the untransformed exp( )
t Et

Z Y=  scale. We estimated the 

annual and biannual amplitudes as well as their phases, and the degree of seasonal 

concentration and peak of 
t

Z including the annual duration of transmission as described 

in appendix 2.   

 

Results 

Table 7.1 shows summary statistics of the Fourier coefficients for all data used in the 

analysis.  

 

The best fitting models with smaller AIC values were those that incorporated coefficients 

of the average and both the annual and biannual cycles as explanatory variables (Table 

7.2). The Fourier coefficients for predicting the annual and biannual seasonal components 

for EIR are given in Table 7.3. 
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Table 7.1. Distribution of Fourier coefficients for the logarithm of the An. gambiae s.l. 

entomological inoculation rate (EIR) and for meteorological covariates for the 97 sites 

used in the analysis, SD is the standard deviation. 

FOURIER COEFFICIENTS  MEAN SD MINIMUM MAXIMUM 
EIR (loge (/person per month))     
a0E -3.37 1.90 -7.67 0.82 
a1E -0.60 0.93 -2.65 2.26 
b1E -0.62 1.49 -3.35 2.93 
a2E -0.05 0.83 -1.87 2.02 
b2E 0.10 0.74 -1.40 1.79 
Rainfall (loge (mm))     
a0R 5.01 1.58 2.43 7.22 
a1R -1.89 1.77 -4.53 1.70 
b1R -1.39 1.92 -5.85 3.48 
a2R -0.20 0.68 -2.55 2.00 
b2R -0.74 0.87 -2.13 1.93 
NDVI†     
a0N 0.37 0.15 0.13 0.68 
a1N 0.00 0.05 -0.13 0.12 
b1N -0.06 0.08 -0.20 0.19 
a2N -0.01 0.05 -0.09 0.11 
b2N -0.01 0.05 -0.20 0.08 
Air temperature (˚C)     
a0T 30.83 0.55 29.33 32.11 
a1T -0.06 0.38 -1.12 0.83 
b1T 0.52 0.30 0.01 1.12 
a2T -0.14 0.21 -0.60 0.66 
b2T 0.02 0.22 -0.37 0.77 

†NDVI is normalized difference vegetation index 

 

Figure 7.1 compares the observed and fitted Fourier coefficients for the 97 sites with 

data. The estimated coefficients of the annual average, the annual and biannual amplitude 

and phase from Model 1 (appendix 3A-E) were used to predict the seasonal pattern for 

the sampled sites. 
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Table 7.2. Comparison of models for predicting the magnitude and timing of the 

logarithm of An. gambiae s.l. EIR.  

Model 1 Model 2 Model 3 Model 4 Response variables 
k AIC k AIC k AIC k AIC 

Annual average         
a0E 4 391.5     2 394.04 
Annual cycle         
a1E  7 230.1 5 232.9     
b1E 8 303.6 2 327.4     
Biannual cycle         
a2E 9 222.5   5 225.4   
b2E 7 199.6   2 214.9   
Model 1 includes parameters of the annual and biannual cycle including average levels, Model 2 only 

parameters of the annual cycle, Model 3 only parameters of the biannual cycle and Model 4 only average 

values. K is the number of parameters included in the different models. The smaller the AIC value the 

better the model fit. In each case the parameters included in the model were selected using the backward 

elimination algorithm. 

 

The predicted seasonal pattern 

Model predictions of the seasonal pattern (Figure 7.2A-C) compare well with the 

observed pattern in some sites and not in others. The poor fit in some sites may partly be 

because the model predictions are based on a long term average and will therefore not 

necessarily match the site and time specific observed pattern exactly. For example, areas 

that are sometimes and not too often characterised by a bimodal season pattern in a given 

year may on average depict a unimodal pattern and vice versa.  In addition, the predicted 

timing of the most infectious period is centred on the average month and the observed 

pattern may be located within or slightly away from it. Model predictions may also be 

less accurate in some parts of the continent due to the paucity of data points. 
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Table 7.3. Parameters retained in Model 1 Table 2.7 of the annual and biannual seasonal 

pattern for An. gambiae s.l. entomological inoculation rate (EIR) with regression 

coefficients ( β ) and confidence intervals (CI) estimated using maximum likelihood.  

RESPONSE EXPLANATORY β  95% CI 

EIR a0E     

 RAIN a0R -0.47 -0.93 -0.00 

 RAIN b1R 0.41 0.09 0.72 

 TAIR a0T -1.14 -2.13 -0.15 

 Intercept 34.64 2.78 66.50 

EIR a1E     

 RAIN a1R 0.18 0.00 0.35 

 RAIN b1R -0.26 -0.38 -0.13 

 RAIN b2R -0.14 -0.34 0.06 

 NDVI a1N 3.75 0.733 6.77 

 NDVI a2N -5.90 -10.53 -1.28 

 TAIR a0T 0.42 -0.01 0.84 

 Intercept -13.35 -26.17 -0.52 

EIR b1E     

 RAIN a2R 0.40 0.06 0.75 

 RAIN b2R -0.47 -0.76 -0.19 

 NDVI b1N 5.18 1.78 8.59 

 NDVI b2N 4.27 -1.08 9.61 

 TAIR a0T -0.87 -1.37 -0.37 

 TAIR a2T 1.26 0.06 2.47 

 TAIR b2T 1.75 0.64 2.85 

 Intercept 26.45 11.09 41.81 

EIR a2E     

 RAIN b1R 0.14 0.00 0.28 

 RAIN a2R 0.34 0.07 0.62 

 RAIN b2R -0.18 -0.36 0.01 

 NDVI b1N -3.14 -5.96 -0.33 

 NDVI a2N 5.34 0.76 9.92 

 NDVI b2N -2.28 -5.67 1.12 

 TAIR a1T 0.40 -0.10 0.89 

 TAIR a2T -0.65 -1.42 0.12 

 Intercept -0.14 -0.39 0.12 

EIR b2E     

 RAIN a1R -0.13 -0.29 0.04 

 RAIN b1R 0.27 0.13 0.41 

 RAIN a2R 0.39 0.11 0.67 

 NDVI a0N 1.27 -0.34 2.88 

 NDVI a2N -7.32 -11.58 -3.06 

 TAIR a1T -0.64 -1.09 -0.19 

 Intercept -0.27 -1.06 0.52 

DVI is normalized vegetation index, TAIR is air temperature. 
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Figure 7.1. Observed versus predicted Fourier coefficients for the logarithm of An. gambiae s. l. entomological inoculation rate (EIR) 
of the annual (a1E, b1E) and biannual (a2E, b2E) cycles. 
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Figure 7.2. Predicted (dotted line) seasonal pattern (Model 1 Table 2.7) versus Fourier approximation of the observed (solid line) 
seasonal pattern from selected sites in (A) West Africa, (B) west and Central Africa and (B) East Africa. 
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The predicted degree and timing of malaria seasonality  

The parameter estimates from Model 1 were also used to predict the geographical 

variation of the geometric mean, the timing and phase of the biannual and biannual cycles 

(Appendix 3A-E). These were in turn used to estimate the degree of malaria seasonality 

and timing, and the duration of the An. gambiae transmission season for the whole of the 

African continent. For interpretation of predicted surfaces Africa was divided into natural 

ecological or bioclimatic zones as defined by latitude.   

 

The model predictions (Figure 7.3) suggested that overall the concentration index for the 

EIR is highest (2.49-3.24) in the Savannah-Sahelian zone between 10˚-20˚ N, 15˚ W-40˚ 

E and the Greater Horn of Africa (15˚S-25˚ N, 30˚-55˚ E) as well as parts of the eastern 

and southern tropical and subtropical regions. A moderate degree of seasonality (2.00-

2.49) was also predicted in these regions including the West African forest belt 15˚ W 

and 10˚ E). The lowest degree of seasonality (0.25-1.50) is predicted in the in Sudano-

Savannah region approximately 10˚-15˚ N, 15 W˚-40˚ E and in the central equatorial 

tropical rain forest and its margins (5˚-10˚S, 10˚-30˚E). 

 

Figure 7.4 shows that the predicted peak of transmission in the Savannah-Sahelian region 

is predominantly in August / September. In the West African coastal zone and forest belt 

stretching to the Savannah region (5˚ and 10˚ N) the peak is centred on June. In the 

central equatorial zone the predicted peak is in May. In the greater Horn of Africa there is 

variation between April to June depending on the location and in the southern tropical 

and subtropical regions the timing of the peak is in mainly in April or in May.  
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Figure 7.3. Estimated concentration index (CI) of the An. gambiae s.l. entomological 

inoculation rate from Model 1 Table 2.7. Black dots are study sites (n=97). 
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Figure 7.4. Estimated peak month of the An. gambiae s.l. entomological inoculation rate 

(Model 1 Table 2.7). 
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The predicted duration of seasonal transmission 

As one would expect the map of the predicted length of the transmission season (Figure 

7.5) suggests that the central equatorial zone and the savannah region have the longest 

transmission season (8 to 10 months). The shortest transmission season occurs in the 

Sahel 15˚ and 20˚ N as well as in the eastern and southern parts of the tropical and 

subtropical regions (1 to 4 months) depending on the location. Intermediate between 

these regions are areas with the duration of seasonal transmission roughly between four 

and seven months.  Surprisingly, the model predicts shorter transmission season in the 

West African forest belt than in Savannah areas to the north.  Generally, the predicted 

length of the malaria transmission season compares well with classifications derived 

using climate based models (Tanser et al. 2003). 
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Figure 7.5. Estimated average length of the malaria transmission season by An. gambiae 

s.l. (Model 1 Table 2.7) showing number of months during which transmission is possible 

defined as the number of months with 95 % of transmission in a given year. 
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Discussion 

In sub-Saharan Africa heterogeneity in malaria epidemiology reflects the complex 

interaction of many factors including seasonal dynamics as influenced by environmental / 

climatic conditions (Gillies and De Meillon 1968; Molineaux 1988, Small et al. 2003). 

Improved understanding of the seasonal dynamics of malaria transmission is important 

for the optimal design of malaria control and prevention strategies. In this study we use 

an approximation of the discrete Fourier transform for EIR and environmental covariates 

to describe the amplitude and phase of the annual and biannual seasonal components. 

This approach allowed us to predict the main seasonal patterns as functions of the 

empirical relationships between EIR and prevailing climatic / environmental conditions, 

and thus for the first time to produce maps of the degree of seasonality in malaria 

transmission and of the period of the year when it peaks.     

 

Seasonal changes in rainfall and air temperature are major determinants of the seasonal 

characteristics of malaria transmission in the continent. These either limit or trigger 

seasonal transmission depending on the time of the year and the location. (Craig et al. 

1999; Hay et al. 2000; Tanser et al. 2003; Hoshen and Morse 2004; Grover-Kopec et al. 

2005). The length of the transmission season is determined by the coincident occurrence 

and duration of suitable rainfall and optimum temperature conditions as well as terrain 

and vegetaion (Gillies and De Meillon 1968; Molineaux 1988). In this analysis the 

predicted seasonal transmission of An.gambiae s.l. reflects the heterogeneity in ecological 

conditions that varies with latitude or altitude across the continent (Reiter et al. 2004).  
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 Model predictions show that overall the degree of seasonality is highest in northern and 

southern parts of the continent towards the limits of malaria distribution with a peak in 

August / September and April / May, respectively. The nothern margins including parts 

of the Greater Horn of Africa are charactrized by the shortest transmsion season. In the 

southern parts of the tropical and subtropical Africa the picture is more complex with a 

mixture of both long and short transmission season. In the northern part seasonal 

transmission is set off into wet and dry periods since there is very little variation in 

temperature, and in the southern parts this includes the onset of elevated temperatures. 

These include the desert fringe in the north and the semi-arid southern margins as well as 

highlands areas where seasonal epidemics are the rule (Craig et al. 1999; Tanser et al. 

2003; Hoshen and Morse 2004; Grover-Kopec et al. 2005). On the other hand the model 

suggests that the degree of seasonality is lowest in the Savannah-Sudano region as well as 

in the central equatorial rainforest zone with a peak in August / September and May, 

respectively. The duration of seasonal transmission is basically longer in the savannah 

region and in the central equatorial rainforest zone. In the Savannah-Sudano region the 

rainfall is more seasonally distributed but transmission continues for the greater parts of 

the year with considerable seasonal variation. In parts of Savannah the bimodal peak in 

rainfall including the presence of both wet and dry season vectors may also serve to 

prolong seasonal transmission (Fontenille and Simard 2004). The central equatorial 

rainforest region is characterized by optimum temperature and rainfall regimes for the 

greater part the year, and malaria transmission is perennial but seasonal in nature (Craig 

et al. 1999; Tanser et al. 2003; Fontenille and Simard 2004).  
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The comparison of the fitted seasonal pattern against the observed appears to be 

reasonably accurate in some parts and less so in other parts of the continent. This is to be 

expected since the model predictions are based on a long term average and will therefore 

not necessarily match the site and time specific observed pattern exactly. The magnitude 

and timing of the most infectious period follows the onset of suitable conditions after an 

appropriate lag representing vector breeding, their densities, feeding frequency, survival 

and the extrinsic incubation period of the parasites in the vector mosquitoes (Gillies and 

De Meillon 1968; Molineaux 1988). The conditions that determine the seasonal cycles of 

transmission vary between and within sub-regions along a latitudinal gradient north and 

south of the equator. This may vary from one year to another with the possibility of wide 

seasonal variation in transmission intensity and timing.  

 

Most study sites used in the analysis do not separate An. gambiae sensu stricto from An. 

arabiensis or the salt water species An. melas in West Africa and A. merus in East Africa. 

The salt water species show different seasonality and are likely to be important in coastal 

areas. Model predictions may also be confounded by the presence of Anopheles 

arabiensis which has been shown to sustain all year round transmission even during the 

dry season in parts of the continent (Trape et al. 1994; Lindsay et al. 1998; Bayoh et al. 

2001; Fontenille and Simard 2004). Different chromosomal form of An. gambiae s.s. the 

Savannah, Bamako and Mopti are important west Africa (della Torre et al. 2002; della 

Torre et al. 2005). The frequency of these vectors change seasonally (Coluzzi et al. 

1979), and the accuracy of model prediction will vary in accordance with the 

predominance of one of the vector species in a given location.  
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It is important to also acknowledge the limitations of our models and maps since these 

were derived from sparsely distributed point data collected at a local level and aggregated 

at a continental level to model average conditions of seasonal transmission. Hence, model 

predictions may not necessarily match locally derived estimates. The observed seasonal 

pattern can also change over time. The measure of length of season does not take into 

account the overall level of transmission so that 5% of the annual transmission in a 

marginal area might be negligible, while 5% in a high transmission area might be 

considerable. It follows that if we define seasons of transmission and no transmission 

there should be a greater contrast between high and low transmission areas than we see in 

our map.  

 

The EIR are not an unbiased sample of the situation on the ground. The data certainly 

over represent high transmission sites. On the other hand seasonal geometric mean may 

be higher in places with short intense seasonal transmission than in places with perennial 

transmission (appendix 3A). All these underscore the difficulty inherent in trying to 

model seasonal dynamics of malaria transmission given sparse data in the face of time- 

and space-dependant potential confounders.      

 

Nevertheless, our models are a starting point for seasonality modelling. We therefore, for 

the first time, empirically predict and map the degree and timing of malaria seasonality as 

well as the duration of transmission across sub-Saharan Africa by one of the major 

malaria vector species. These products can be used to account / calibrate for seasonality 
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in transmission model based mapping of malaria risk at a country, regional and 

continental level. Models and maps produced in this work can be refined and / or 

improved for application at a sub-national level as more malaria and high resolution 

environmental data becomes available. There is a need for studying together all main 

vectors, human infectivity and incidence. 
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Chapter 8: GENERAL DISCUSSION AND CONCLUSIONS 

 

Since the availability of effective tools for malaria control and prevention the 

geographical description of malaria risk has been high on the research agenda. The 

availability of new datasets, novel analytical tools and innovative statistical and 

mathematical models in recent years presents new possibilities for improving existing 

information and knowledge base. This work is part of the MARA/ ARMA 

(http://www.mara.org.za/) project, which was motivated by these developments to 

establish an atlas of malaria risk for Africa. We focus mainly on temporal variations in 

malaria risk with the aim of developing an empirical model and map of malaria 

seasonality for sub-Saharan Africa to facilitate optimization of malaria control and / or 

interventions in both space and time.  

 

The first part of this work focuses on Southern Africa since this is the only region with 

long-time series of fairly reliable clinical malaria data. The review of malaria control 

mainly by IRS with insecticides in this region showed that countries that developed 

national malaria control programmes and had built up human and organizational 

resources made significant advances towards malaria control. For example, malaria was 

reduced from high to very low in the different parts of the region. However, IRS is not a 

magic bullet, and its use in other areas should be planned carefully, after considering the 

major organizational, technical and financial implications. From this work it is also clear 

that besides changes ecological diversity as influenced by climatic and environmental 

factors the extent of malaria control efforts can also alter the level of endemicity. 
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Consequently, variability observed in our analysis may not be attributable only to 

climatic / environmental factors as observed elsewhere in the continent (Hay et al. 2002a 

and b; Bouma et al. 2003; Craig et al. 2004b). It is therefore important to adjust for other 

potential sources of variation in the observed data.  

 

In the subsequent analysis where we examined the temporal effect of ENSO events on 

annual malaria incidence in selected countries in Southern Africa, we used year specific 

random effects as surrogates for unobserved factors influencing annual incidence. The 

analysis showed that in this region increased incidence follows La Nina (cold event) 

which leads to wet conditions and that El Nino (warm event) which leads to dry 

conditions has the opposite effect. This is contrary to observations in East Africa where 

El Nino has been shown to lead warm-wet conditions and therefore heightened incidence 

(Loevinsohn 1994; Kilian et al. 1999; Lindblade et al. 1999; Lindsay et al. 2000; Wort et 

al. 2004). However, we also found that the impact of ENSO on malaria incidence in 

Southern Africa varies over time within and between countries, partly due to existing 

malaria control efforts and response capacity but also because of spatial variability in 

climatic conditions over time.  

 

The spatial and temporal variability of annual malaria incidence was investigated using 

malaria case data from Zimbabwe. A Bayesian statistical modelling framework was used 

to account for unmeasured spatially and temporary varying potential risk factors. This 

analysis confirmed that while inter-annual variation in malaria incidence is driven mainly 

by climatic conditions, the spatial pattern is influenced by factors other risk factors. The 
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exception was during high and low risk years following the occurrence of extremely dry 

and wet conditions, respectively. Overall, low lying areas showed less year to year 

variability in malaria while highland areas showed greater variability. The latter is typical 

of areas characterized by stable seasonal transmission and the former by unstable 

seasonal transmission (Craig et al. 1999; Tanser et al. 2003). This provides useful 

information for delineating areas prone to climate driven epidemics and for developing 

climate based seasonal forecasting models. The description of the average seasonality of 

malaria in a given area is thus important for laying the basis for monitoring seasonal 

change and variability in transmission / disease risk.    

 

In our initial attempt towards the development of an empirical model of malaria 

seasonality we used Zimbabwe and the Bayesian space-time statistical approach. The 

analysis employed the proportion of annual cases occurring in each month as a relative 

measure of the amount of seasonal transmission occurring in each month. The modelled 

covariate-adjusted, smoothed monthly estimates enabled us to interpret geographical 

variation in malaria seasonality which was not apparent in the observed data. This 

approach quantifies seasonal transmission between months differently from previous 

studies that classified months as either suitable or not suitable for transmission based on 

climatic conditions (Thomson et al. 1997; Hay et al. 1998a & b; Thomson et al. 1999; 

Tanser et al. 2003). Most importantly a seasonality concentration index was adapted to 

summarize the modelled seasonal trend. The index quantifies the concentration of malaria 

case load and the peak month during the transmission season, and therefore can be used 

for timely spatial targeting of malaria intervention. This work also raised prospects for 
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the application of the seasonality index in the modelling and mapping of malaria 

seasonality across sub-Saharan Africa.      

 

To evaluate the potential application of the seasonality concentration index in the 

description of malaria across the continent we used the relationship between seasonality 

in EIR and environmental covariates. The results showed that the rainfall seasonality 

index and minimum temperature are important predictors of the intensity of inoculation 

rate during the peak transmission season. However, model fit was poor in areas 

characterized by bimodal rainfall patterns and irrigation activities though the effect of 

minimum temperature and rainfall seasonality still seem to operate in irrigated areas. In 

addition, the seasonality index performed better in areas characterized by a single peak in 

transmission compared to areas with two peaks. The presence of both A. gambiae s.l. 

(predominant in the wet season) and A. funestus (predominant in the dry season) in a 

given area could have also confounded the analysis. Since the two vector mosquitoes 

have been shown to sustain potentially perennial transmission or lead to biannual 

seasonal pattern (Gillies and De Meillon 1968; Elissa et al. 1999 and 2003; Cohuet et al. 

2004). These findings highlighted the need for improved quantification of malaria 

seasonality in order to capture the complex interplay between the seasonal dynamics of 

environmental determinants of malaria transmission across the continent. 

 

To improve on this approach we used an approximation of the discrete Fourier 

transformation for both malaria and environmental data in order to capture important 

seasonal characteristics of malaria transmission across sub-Saharan Africa. We found that 
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conditions that determine the most infectious periods vary between and within sub-

regions along an altitudinal gradient north and south of the equator. Our models for the 

first time predict and map the degree and timing of malaria seasonality as well as the 

duration of transmission across the continent based on the empirical relationship between 

seasonality in EIR and meteorological determinants. We also estimated the average 

seasonal pattern based on our model predictions, and although these matched reasonably 

well with observed data in some study sites, overall the pattern varied depending on the 

geographical location. This may largely be due to the comparison of long term average 

model estimates to year specific observed EIR data. Inconsistencies in model predictions 

especially in the dry regions may be due to the presence of A. arabiensis which has also 

been shown to sustain all year round transmission even during the dry season, and 

therefore contribute to complexity of the seasonal dynamics of malaria transmission 

(Trape et al. 1994; Lindsay et al. 1998; Bayoh et. al. 2001). This is case since most study 

sites used in the analysis do not separate A. gambiae s.s. from A. arabiensis. However, 

our models can be refined and / or improved as more detailed malaria and meteorological 

data become available. The model outputs can be used to calibrate for malaria seasonality 

in transmission based models for mapping malaria risk at a country, regional and 

continental level.  

 

Limitations of this work also need to be acknowledged. Firstly, the quality of malaria 

control efforts and notification data might vary over time, and it is difficult to quantify the 

potential impact of any such variation in our models. Secondly, in addition to climatic and 

environmental covariates used in the analysis there are other important potential sources 
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of variation as alluded to in the respective chapters and simply treating these as random 

effects might not be enough. We also note that interpolated climate data used is coarse 

and therefore contain uncertainties that should be borne in mind when dealing with 

smaller spatial scales. The complex interplay between the different vectorial systems 

found in Africa with their distinct ecological and behavioural characteristics (Trape et al. 

1994; Lindsay et al. 1998; Bayoh et. al. 2001), presents another constraint in our analysis 

since few studies separate even the most important A. gambiae sibling species.  

 

Conclusion 

The Bayesian analytical framework used in this study enhanced our ability to evaluate the 

relationship between malaria and environmental factors, and improved considerably the 

identification of important associations and covariates. In the final analysis an 

approximation of the discrete Fourier transformation used removes noise from the 

original time series and therefore allowed us to model the main seasonal variation in both 

malaria and meteorological covariates.    

 

This work presents the first step towards the development of improved models of malaria 

seasonality. While there is still scope for further refining the models as more relevant data 

become available, model outputs can be used as inputs in transmission models for 

mapping malaria risk. The seasonality maps produced are also important for determining 

the most effective moment and geographical position for control efforts to be applied 

throughout sub-Saharan Africa. In addition, climatic and associated environmental 

determinants of seasonal and between year-variation in malaria including the impact of 
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ENSO provide valuable information for the development of empirical seasonal 

forecasting models. 
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APPENDICES 

Appendix 1: statistical model 

We assumed that the observed counts of malaria cases Yit in district i (i = 1,…, 58) and 

year t (1988-1999) follow a negative binomial distribution with parameters 
it

p  and r , 

that is, Yit ~ NB (pit,r), where pit relates to average number of cases via the formula 

( )
it it

p rµ =  and r is the overdispersion parameter. We modelled average number of new 

cases ( )
it

µ  as a function of potential risk factors as follows: 

(1) log( ) log T

it it it
Nµ α= + + X β    (non-spatial model) 

(2) log( ) log T

it it it i
Nµ α φ= + + +X β    (spatial model) 

(3) log( ) log T

it it it i itNµ α φ ω= + + + +X β   (spatio-temporal model) 

 

itN  denotes population at risk in district i  and year t, α  is the incidence rate when all 

covariates have zero value, itX  is a vector of climatic covariate effect in district i and 

year t, β a vector of the regression coefficients, iφ  is the spatial random effect for district 

i and itω is the temporal random effect for year t and district i. District specific random 

effects were modelled via a conditional autoregressive (CAR) process, which implies that 

each iφ conditional on the neighbour jφ  follows a normal distribution with mean equal to 

the average of neighbouring jφ  and variance inversely proportional to the number of 

neighbours in ,   that is, 2| ,  neighbouring of  ~ Normal ( / , )i j j i i

i j

j i n nφφ φ γ φ σ
≠
∑  where γ  

is a parameter that quantifies the amount of spatial correlation present in the data and 2
φσ  
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measures the spatial variance. The temporal effects were modelled by first order 

autoregressive process with temporal variance 2
ωσ , which allows correlation between 

consecutive time periods for each district and year. We assumed inverse gamma hyper-

prior distributions for the variance parameters of the spatial and temporal random effects, 

non-informative Uniform prior distributions ( , )U −∞ ∞ for the regression coefficients β , 

and a Uniform distribution ( , )U a b for γ , with limits a and b specified as described in 

Gelfand and Vounatsou (2003). 
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Appendix 2: Estimating the magntitude and timing of malaria seasonality  

We approximated the discrete Fourier transform of 
t

Z in order to derive statistics 

describing the seasonal pattern for each pixel, again using average, annual and biannual 

components, so that for n=1,2: 

12

0
1

1
,

12
t

t

a Z
=

= ∑  

12

1

2 2
cos ,

12 12
n t

t

nt
a Z

π

=

 =  
 

∑  

12

1

2 2
sin .

12 12
n t

t

nt
b Z

π

=

 =  
 

∑  

The annual component of the Fourier transform has one peak, while the biannual 

component has two peaks. Each of these peaks may be represented as a complex number. 

We represent the two sums of the peaks of the annual and biannual cycles as, 

 
1 2

1 2

/ 2
1 1 2

( / 2 )
2 1 2

,

,

i i

i i

z re r e

z re r e

ψ ψ

ψ ψ π+

= +

= +
 (3) 

where, 

 

1 1 1

2 2 2

1 1 1

2 2 2

,

,

Arg( ),

Arg( ),

r a ib

r a ib

a ib

a ib

ψ

ψ

= +

= +

= +

= +

 (4) 

and 1i = −  is the unit imaginary number  

The overall amplitude of the seasonal variation is then: 

    ( )1 2Max , ,A z z=      (5) 

To describe the degree of concentration of the seasonal pattern we used a modified 

version of Markham’s seasonality concentration index (Markham1970; McGee 1977) that 
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incorporates both seasonal cycles, corresponds to the amplitude divided by the average of 

t
Z : 

    ( )1 2 0Max , .CI z z a=     (6)  

The peak of the transmission season is then given by, 

    1 1 2

2 1 2

Arg( )
,

Arg( )

z z z
CI

z z z
ψ

 ≥
= 

<
    (7) 

and the annual duration of transmission, L, defined as the number of months accounting 

for 95% of the estimated EIR, which was calculated by dividing the year into 1000 equal 

time intervals, for each of which ( )f τ  was calculated at τ  equal to the midpoint of the 

intervals.  The time intervals were then ranked in descending order of ( )f τ  and, L 

estimated by the proportion of intervals (cumulated in rank order) required in order to 

include 95% of 
12

0
( ) f dτ τ∫ , where 

0 1 1 2 2

2 2 2 2
( ) cos sin cos sin

12 12 6 6
f a a b a b

πτ πτ πτ πτ
τ        = + + + +       

       
  (8) 

and τ  represents the time of year and varies continuously from 0 to 12. 
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Appendix 3A: Predicted An. gambiae s.l. geometric mean of predicted monthly EIR 

(Model 1 Table 2.7). 
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Appendix 3B: Predicted amplitude of the annual component for An. gambiae s.l. 

EIR on a log scale (Model 1 Table 2.7). 
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Appendix 3C: Predicted phase of the annual component of the amplitude for An. 

gambiae s.l. EIR (Model 1 Table 2.7). 
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Appendix 3D: Predicted amplitude of the biannual component for An. gambiae s.l. 

EIR on a log scale (Model 1 Table 2.7). 
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Appendix 3E: Predicted phase of the biannual component of the amplitude for An. 

gambiae s.l. EIR (Model 1 Table 2.7). 
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