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ADAPTIVE HYBRID FINITE ELEMENT/DIFFERENCE

METHOD FOR MAXWELL’S EQUATIONS

LARISA BEILINA AND MARCUS J.GROTE

Abstract. An explicit, adaptive, hybrid finite element/finite difference
method is proposed for the numerical solution of Maxwell’s equations
in the time domain. The method is hybrid in the sense that differ-
ent numerical methods, finite elements and finite differences, are used
in different parts of the computational domain. Thus, we combine the
flexibility of finite elements with the efficiency of finite differences. Fur-
thermore, an a posteriori error estimate is derived for local adaptivity
and error control inside the subregion, where finite elements are used.
Numerical experiments illustrate the usefulness of computational adap-
tive error control of proposed new method.

1. Introduction

The development of new more sophisticated algorithms for the numerical
solution of Maxwell’s equations is dictated by increasingly complex applica-
tions in electromagnetics. In 1966 Yee [40] introduced the first and probably
most popular method, the Finite Difference Time Domain (FDTD) scheme,
which is simple and efficient. However, the FDTD scheme can only be ap-
plied on structured (Cartesian) grids and suffers from the inaccurate repre-
sentation of the solution on curved boundaries (staircase approximation) [7].
In contrast, Finite Element Methods (FEMs) can handle complex bound-
aries and unstructured grids. They also provide rigorous a posteriori error
estimates which are useful for local adaptivity and error control. Yet FEMs
are usually more expensive than the FDTD method, both in computer time
and in memory requirement.

In many applications small scale features, such as geometric singularities
or jumps in material coefficients, only occupy a small part of the compu-
tational domain, Ω. While the FDTD cannot be used in general in those
regions where local refinement is needed, the use of a FEM everywhere
throughout Ω, because of a few isolated regions, can be quite high a price
to pay. Instead, hybrid schemes attempt to combine the advantages of the
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above two methods in a manner that retains the advantages of both, by
using finite elements only where needed and employing the FDTD method
everywhere else. In doing so, the computational domain Ω is divided into
two subregions, ΩFDM and ΩFEM , corresponding to the FD and the FE
regions, respectively, such that Ω = ΩFDM ∪ ΩFEM . These two regions are
meshed using structured and triangular/tetrahedral meshes, respectively,
with common nodes shared at the interface. Typically the unstructured re-
gion ΩFEM is much smaller than ΩFDM . It may consist of several disjoint
components, where computations are independent of one another and easily
performed in parallel; in particular, different finite elements can be used in
different subdomains.

The FDTD method in ΩFDM is standard. For the FE discretization of
Maxwell’s equations in ΩFEM , however, different formulations are avail-
able. Examples are the edge elements of Nédélec [31], the node-based first-
order formulation of Lee and Madsen [24, 25, 34], the Cartesian elements
of Mur [30], the node-based curl-curl formulation with divergence condi-
tion of Paulsen and Lynch [32], and the node-based least-squares FEM by
Jiang, Wu, and Povinelli [20] and also by Bergström [5]. Edge elements
are probably the most satisfactory from a theoretical point of view [26]; in
particular, they correctly represent singular behavior at reentrant corners.
However, they are less attractive for time dependent computations, because
the solution of a linear system is required at every time iteration. Indeed, in
the case of triangular or tetrahedral edge elements, the entries of the diago-
nal matrix resulting from mass-lumping are not necessarily strictly positive
[11]; therefore, explicit time stepping cannot be used in general. In contrast,
nodal elements naturally lead to a fully explicit scheme when mass-lumping
is applied [11, 23].

Even when the individual finite difference and finite element algorithms
are stable, some instabilities can occur when the two methods are hybridized
[28]. In early hybrid FEM/FDM schemes [38, 39] the inherent symmetry
of the operators was lost at the interface between ΩFDM and ΩFEM , which
indeed led to time instabilities; these instabilities were later treated by a
combination of temporal filtering and frequency shifting [18]. Rylander and
Bondeson [35, 36] and also Edelvik, Andersson and Ledfelt [9, 10] devised
the first stable time-domain hybrid method, which combined FDTD on the
structured part of the mesh with tetrahedral edge elements on the unstruc-
tured part – here the FDTD method is viewed as a FEM with edge elements
on a hexahedral mesh, lumped through trapezoidal integration. By coupling
hexahedra and tetrahedra with a layer of pyramids, an H(curl)-conforming
discretization of the electric field is obtained. To achieve stability in time,
implicit time-stepping is nevertheless required inside ΩFEM .

Various techniques are available to correctly represent field singularities
at reentrant corners. Clearly, edge elements on a locally refined mesh can
be used; alternatively, the singular field method [8] or the related singular
complement method [2, 1] can be applied, too. Away from such isolated,
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well-defined, and predictable singularities, we seek a fully explicit hybrid
FEM/FDM method for Maxwell’s equations, where the FDTD method is
used in the structured part and finite elements are used in the unstructured
part of the mesh. Therefore we opt for node-based finite elements, which
enable the use of mass-lumping in space and hence lead to in a fully explicit
time integration scheme [23].

It is well known that numerical solutions of Maxwell’s equations using
nodal finite elements may contain spurious solutions [27, 32], and various
techniques are available to remove them [19, 20, 21, 29, 32]. Following
Paulsen and Lynch [32], we shall add a penalty term to enforce the diver-
gence condition, which eliminates spurious solutions when combined with
local mesh refinement.

The FEM not only handles unstructured grids for local refinement, but
also offers the possibility for a posteriori error estimation, which enable
automatic grid refinement, precisely where needed. Following Johnson et
al. [13, 14, 15, 16, 22], we shall derive an a posteriori error estimate for the
time dependent Maxwell equations, where the error is represented in terms
of space-time integrals of the residuals of the computed solution multiplied
by weights related to the solution of the dual problem. Inside ΩFEM the
finite element is then iteratively refined with feed-back from the a posteriori
error estimation.

The outline of our work is as follows. In Section 2 we briefly recall
Maxwell’s equations. Then, in Section 3, we formulate the finite element
method and discuss the problem of spurious solutions. The FDTD scheme
is summarized in Section 4. Next, we formulate the hybrid FEM/FDM
method in Section 5 and derive a posteriori error estimates. Finally, in
Section 7 we present two- and three-dimensional time-dependent computa-
tions which demonstrate the effectiveness of our adaptive hybrid FEM/FDM
solver.

2. Maxwell’s equations

We consider Maxwell’s equations in an inhomogeneous isotropic medium
in a bounded domain Ω ⊂ R

d, d = 2, 3 with boundary Γ:

∂D

∂t
−∇×H = −J, in Ω × (0, T ),

∂B

∂t
+ ∇× E = 0, in Ω × (0, T ),

D = ǫE,

B = µH,

E(x, 0) = E0(x),

H(x, 0) = H0(x).

(2.1)
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Here E(x, t) and H(x, t) are the (unknown) electric and magnetic fields,
whereas D(x, t) and B(x, t) are the electric and magnetic inductions, re-
spectively. The dielectric permittivity, ǫ(x) > 0, and magnetic permeability,
µ(x) > 0, together with the current density, J(x, t) ∈ R

d, are given and
assumed piecewise smooth. Moreover, the electric and magnetic inductions
satisfy the relations

(2.2) ∇ ·D = ρ, ∇ ·B = 0 in Ω × (0, T ),

where ρ(x, t) is a given charge density. For simplicity, we restrict ourselves
to perfectly conducting boundary conditions

E × n = 0, on Γ × (0, T ),

H · n = 0, on Γ × (0, T ),
(2.3)

where n is the outward normal on Γ.
By eliminating B and D from (2.1) we obtain the two independent second

order systems of partial differential equations

ǫ
∂2E

∂t2
+ ∇× (µ−1∇× E) = −j,(2.4)

µ
∂2H

∂t2
+ ∇× (ǫ−1∇×H) = ∇× (ǫ−1J),(2.5)

where j = ∂J
∂t

. The initial conditions are

E(x, 0) = E0,(2.6)

H(x, 0) = H0,(2.7)

∂E

∂t
(x, 0) = (∇×H0(x) − J(x, 0))/ǫ(x),(2.8)

∂H

∂t
(x, 0) = −∇× E0/µ(x).(2.9)

From (2.4)-(2.9) we immediately infer that both E andH remain divergence-
free for all time, if ∇ · E0 = ∇ ·H0 = ∇ · J(., t) = 0.

3. The finite element method

We shall use a hybrid finite element/finite difference method for the nu-
merical solution of (2.4), (2.6) and (2.8). The method is hybrid in the sense
that we shall use different numerical methods in different parts of the com-
putational domain Ω. Let Ω separate into a finite element domain ΩFEM

and a finite difference domain ΩFDM . We assume that ΩFEM lies strictly
inside Ω, that is away from the physical boundary Γ. It may consist of one
or more subdomains and typically covers only a small part of Ω.

In ΩFDM we shall use the finite difference Yee scheme [40] on a Cartesian
equidistant mesh, which is based on the first order formulation of Maxwell’s
equations (2.1). In ΩFEM , however, we shall use finite elements on a se-
quence of nondegenerate unstructured meshes Kh = {K}, with elements
K consisting of triangles in R

2 and tetrahedra in R
3 [6]. Efficiency of the
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resulting scheme in Ω is obtained by using mass lumping in both space and
time in ΩFEM , which makes the scheme fully explicit [17]. In ΩFEM we
associate with Kh a (continuous) mesh function h = h(x), which represents
the diameter of the element K that contains x. For the time discretiza-
tion we let Jτ = {J} be a partition of the time interval I = [0, T ], where
0 = t0 < t1 < ... < tN = T is a sequence of discrete time steps with
associated time intervals J = (tk−1, tk] of constant length τ = tk − tk−1.

3.1. Finite Element spaces. When using standard, piecewise continuous
[H1(Ω)]3-conforming FE for the numerical solution of Maxwell’s equations,
one faces two difficulties. First, in general the solution of (2.4) lies in the
space H0(curl,Ω) ∩H(div,Ω) with

(3.1) H0(curl,Ω) := {u ∈ [L2(Ω)]3 : ∇× u ∈ L2(Ω), u× n = 0},
and

(3.2) H(div,Ω) := {u ∈ [L2(Ω)]3 : ∇ · u ∈ L2(Ω)};
here n is the unit outward normal to ∂Ω. This space is strictly larger than
[H1(Ω)]3 when Ω has reentrant corners ([26], p.191). However, this restric-
tion is of no concern here, because the FEM is used only in ΩFEM , which lies
strictly inside Ω; hence, corner singularities are excluded. Second, because
the bilinear form a(u, v) = (∇× u,∇× v) is not coercive without some (at
least weak) restriction to divergence-free functions, direct application of the
finite element method to the numerical solution of Maxwell’s equations using
[H1(Ω)]3-conforming nodal finite elements can result in spurious solutions
(the finite element solution does not satisfy the divergence condition (2.2)).
To remove these spurious solutions from the finite element solution, we shall
add a Coulomb-type gauge condition to enforce the divergence condition
[3, 29, 32]. This approach is discussed in detail below.

3.2. The problem of spurious solutions. To remove spurious solutions
from the finite element solution, we modify equations (2.4) - (2.5) following
Paulsen and Lynch [32] as

ǫ
∂2E

∂t2
+ ∇× (µ−1∇×E) − s∇(µ−1∇ · E) − s∇(∇ · (−j)) = −j,(3.3)

and

µ
∂2H

∂t2
+ ∇× (ǫ−1∇×H) − s∇(ǫ−1∇ ·H) = ∇× (ǫ−1J),(3.4)

respectively, where s > 0 denotes the penalty factor. Since the (modified)
bilinear form a(u, v) = (∇×u,∇×v)+s(∇·u,∇·v) is coercive on [H1(Ω)]3 for
any s > 0, both initial-boundary value problems (3.3) and (3.4), with initial
conditions (2.6) - (2.9), are now well-posed; hence, in the continuous setting
value of s > 0 is irrelevant. The addition of the term s(∇ · u,∇ · v) does
not change either solution of (3.3), (3.4), but only provides a stabilization
of the variational formulation - see also ([26], p.191). However, on a fixed
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mesh with given parameters µ, ǫ, the value of s determines the emphasis
one places on the gauge condition. Too small a value of s can give rise of
spurious solutions, which will vanish as h→ 0. In practice, a good choice is
s = 1 [21, 32].

3.3. The finite element method. For simplicity, we now restrict ourselves
to the finite element formulation of (3.3) together with the initial conditions

∂E

∂t
(x, 0) = E(x, 0) = 0,(3.5)

and perfectly conducting boundary condition

E × n = 0.(3.6)

To formulate a finite element method for (3.3), (3.5), and (3.6) we intro-
duce the finite element trial space WE

h , defined by

WE
h := {w ∈WE : w|K×J ∈ [P1(K) × P1(J)]3,∀K ∈ Kh,∀J ∈ Jτ},

where P1(K) and P1(J) denote the set of linear functions on K and J,
respectively, and

WE := {w ∈ [H1(Ω × I)]3 : w(·, 0) = 0, w × n|Γ = 0}.

Hence, the finite element space WE
h consists of continuous piecewise linear

functions in space and time, which satisfy certain homogeneous initial and
boundary conditions. We also define the following L2 inner products and
norms

((p, q)) =

∫

Ω

∫ T

0
pq dx dt, ‖p‖2 = ((p, p)),

(α, β) =

∫

Ω
αβ dx, |α|2 = (α,α).

The finite element method for (3.3) now reads: Find Eh ∈WE
h such that

∀ϕ̄ ∈WE
h ,

− ((ǫ
∂Ek

h

∂t
,
∂ϕ̄

∂t
)) + ((jk, ϕ̄))

+ ((
1

µ
∇× Ek

h,∇× ϕ̄)) + s((
1

µ
∇ · Ek

h,∇ · ϕ̄)) − s((
1

µ
∇ · jk,∇ · ϕ̄)) = 0.

(3.7)

Here, the initial condition ∂E
∂t

(x, 0) = 0 and the perfectly conducting bound-
ary condition (3.6) are imposed weakly through the variational formulation.
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3.4. The explicit scheme for the electric field. We expand E in terms
of the standard continuous piecewise linear functions in space and in time
and substitute E in (3.7). This yields the linear system of equations:

(3.8) M(Ek+1 − 2Ek + Ek−1) = −τ2F k + sτ2Cjk − τ2KEk − sτ2CEk,

with initial conditions E0 and E1 set to zero because of (3.5). Here, M is the
block mass matrix in space, K is the block stiffness matrix corresponding
to the curl term, C is the stiffness matrix corresponding to the divergence
term, F k is the load vector at time level tk corresponding to j(·, ·), whereas
Ek and jk denote the nodal values of E(·, tk) and j(·, tk), respectively.

At the element level the matrix entries in (3.8) are explicitly given by:

Me
i,j = (ǫ ϕi, ϕj)e,(3.9)

Ke
i,j = (

1

µ
∇× ϕi,∇× ϕj)e,(3.10)

Ce
i,j = (

1

µ
∇ · ϕi,∇ · ϕj)e,(3.11)

F e
j,m = ((j, ϕjψm))e×J .(3.12)

To obtain an explicit scheme we approximate M by the lumped mass
matrixML, i.e., the diagonal approximation obtained by taking the row sum
of M [17, 23]. By multiplying (3.8) with (ML)−1, we obtain the following
fully explicit time stepping method:

Ek+1 = − τ2(ML)−1F k + 2Ek − τ2(ML)−1KEk(3.13)

− sτ2(ML)−1CEk + sτ2(ML)−1Cjk − Ek−1.

4. The finite difference method

4.1. Finite difference formulation. Here we briefly recall the Yee scheme
[40] for the finite difference discretization of the time-dependent Maxwell
equations (2.1) in three dimensions. The FDTD method is based on centered
finite difference approximations of the first order derivatives in (2.1) on
staggered grids, both in time and space, which results in a second order
scheme. A typical update for the first components of the magnetic and
electric fields - ǫ, µ are assumed constant for simplicity - takes the form

H
n+ 1

2

1
p,q+ 1

2
,r+1

2

= H
n− 1

2

1
p,q+ 1

2
,r+1

2

− τ

µ

(
En

3
p,q+1,r+ 1

2

− En
3

p,q,r+1
2

△y −
En

2
p,q+ 1

2
,r+1

− En
2

p,q+ 1
2

,r

△z
)

,

(4.1)

En+1
1

p+ 1
2

,q,r
= En

1
p+ 1

2
,q,r

− τ

ǫ
J

n+ 1

2

1
p+ 1

2
,q,r

+
τ

ǫ

(

H
n+ 1

2

3
p+ 1

2
,q+ 1

2
,r
−H

n+ 1

2

3
p+1

2
,q− 1

2
,r

△y −
H

n+ 1

2

2
p+1

2
,q,r+1

2

−H
n+ 1

2

2
p+1

2
,q,r− 1

2

△z
)

.

(4.2)
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Here △x, △y, and △z denote the spatial mesh sizes underlying the finite
difference discretization. The corresponding equations for E2, E3,H2 and
H3 are obtained by cyclic permutation of the indices for the various electro-
magnetic field components Ei and Hi, i = 1, 2, 3 - see [37] or [40] for further
details.

4.2. Dispersion relation and stability. We now recall the dispersion
relation for the Yee scheme, when applied to (2.1), with j = 0. Thus, we
look for discrete plane wave solutions of (4.1) - (4.2) in the form

E(x, y, z, t) = E0e
i(ωt+k1△x+k2△y+k3△z), E0 ∈ R

3,

H(x, y, z, t) = H0e
i(ωt+k1△x+k2△y+k3△z), H0 ∈ R

3.
(4.3)

For instance, by substituting (4.3) into (4.2) for E1, we obtain:

ǫ

τ
E01(e

i((n+1)ωτ+(p+ 1

2
)k1△x+qk2△y+rk3△z)

− ei(nωτ+(p+ 1

2
)k1△x+qk2△y+rk3△z))

+
H02

△z (ei((n+ 1

2
)ωτ+(p+ 1

2
)k1△x+qk2△y+(r+ 1

2
)k3△z)

− ei((n+ 1

2
)ωτ+(p+ 1

2
)k1△x+qk2△y+(r− 1

2
)k3△z))

− H03

△y (ei((n+ 1

2
)ωτ+(p+ 1

2
)k1△x+(q+ 1

2
)k2△y+rk3△z)

− ei((n+ 1

2
)ωτ+(p+ 1

2
)k1△x+(q− 1

2
)k2△y+rk3△z)) = 0.

(4.4)

Next, we divide (4.4) by ei((n+ 1

2
)ωτ+(p+ 1

2
)k1△x+qk2△y+rk3△z) and iterate this

process for the other components of the electric and magnetic fields. These
calculations yield the following linear system:

sin
ωτ

2
E0 = C1H0,

sin
ωτ

2
H0 = C2E0,

(4.5)

where both C1 = τ
ǫ
C and C2 = τ

µ
C are 3 × 3 matrices with

C =





0 − sin(k3△z/2)/△z − sin(k2△y/2)/△y
sin(k3△z/2)/△z 0 − sin(k1△x/2)/△x
− sin(k2△y/2)/△y sin(k1△x/2)/△x 0



 .

Next, we eliminate H0 from (4.5) by inserting the second equation into the
first, which yields the following 3 × 3 eigenvalue problem

sin2 ωτ

2
E0 = C1C2E0,(4.6)
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(a) (b) (c)

Figure 1. Domain decomposition. The hybrid mesh (c) is
a combination of the structured mesh ΩFDM (a) and the un-
structured mesh ΩFEM (b), with a thin overlap of structured
elements. Here the unstructured grid is constructed so that
the grid contains edges approximating an ellipse.

with eigenvalue sin2 ωτ
2 and eigenvector E0. Finally, from (4.6) we derive

the dispersion relation

sin2 ωτ

2
=
τ2

ǫµ

(

sin2(k1△x/2)/△x2 + sin2(k2△y/2)/△y2 + sin2(k3△z/2)/△z2
)

.

(4.7)

We apply a standard von Neumann stability analysis to determine the
largest time step τ , for which the finite difference scheme remains stable.
Thus, we require | sin ωτ

2 | ≤ 1 for all discrete Fourier modes resolved on the
grid and, in particular, for the highest spatial frequencies given by k1△x =
k2△y = k3△z = π. This yields the stability condition

(4.8) τ ≤
√
ǫµ

√

1
△x2 + 1

△y2 + 1
△z2

.

5. The Hybrid method

We now describe the data communication between the finite element
method on the unstructured part of the mesh, ΩFEM , and the finite dif-
ference method on the structured part, ΩFDM . In practice, the commu-
nication is achieved by mesh overlapping across a two-element thick layer
around ΩFEM - see Fig. 2.

Next, we will formulate the hybrid method, which uses a hybrid discretiza-
tion of the computational domain, as shown in Fig. 2. First, we observe that
the interior nodes of the computational domain belong to either of the fol-
lowing sets:

ωo: Nodes ’o’ interior to ΩFDM that lie on the boundary of ΩFEM ,
ω×: Nodes ’×’ interior to ΩFEM that lie on the boundary of ΩFDM ,
ω∗: Nodes ’∗’ interior to ΩFEM that are not contained in ΩFDM ,
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D ◦ × ∗ ∗ ∗ ∗ × ◦ D

Figure 2. Coupling between FEM and FDM in one dimen-
sion. The interior nodes of the unstructured FEM grid are de-
noted by stars, while circles and crosses denote nodes, which
are shared between the FEM and FDM grids. The circles are
interior nodes of the FDM grid, while the crosses are interior
nodes of the FEM grid. At each time iteration, FDM solu-
tion values at circles are copied to the corresponding FEM
solution values, while simultaneously the FEM solution val-
ues are copied to the corresponding FDM solution values at
cross nodes.

ωD: Nodes ’D’ interior to ΩFDM that are not contained in ΩFEM .

Algorithm. In our algorithm, nodes belonging to ωo and ω× are stored
twice, as nodes belonging to both ΩFEM and ΩFDM . At every time step we
perform the following operations:

(1) On the structured part of the mesh ΩFDM compute Hn+ 1

2 , with

Hn− 1

2 known, and then compute En+1 from (4.2), with En known

and Hn+ 1

2 given by (4.1).
(2) On the unstructured part of the mesh ΩFEM compute En+1 by using

the explicit finite element scheme (3.13).
(3) Use the values of the electric field E at nodes ω× as a boundary

condition for the finite difference method in ΩFDM . To get the
values of E1 at nodes ω× for the finite difference method, we use the
following approximation:

(5.1) E1F DM
(p+

1

2
, q, r) =

E1F EM
(p+ 1, q, r) +E1F EM

(p, q, r)

2

All other components of the electric field are obtained similarly.
(4) Use the values of the electric field E at nodes ωo as a boundary

condition for the finite element method in ΩFEM . The following
approximation is used to get the values of E1 at nodes ωo:

(5.2) E1F EM
(p, q, r) =

E1F DM
(p + 1

2 , q, r) + E1F DM
(p − 1

2 , q, r)

2
.

The remaing components E2F EM
, E3F EM

are obtained similarly.
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6. A posteriori error analysis

Following previous works of Johnson and co-workers [14, 15, 16], we now
present the main steps leading to an adaptive error control strategy, which is
based on representing the error in terms of the solution of the adjoint, or dual
problem. We shall first recall the general strategy for deriving a posteriori
error estimates in an abstract framework. A posteriori error bounds for (3.3)
are then derived in details in Section 6.1.

Let us rewrite equation (3.3) as an error equation for the error e = E−Eh

Ae := ǫ
∂2e

∂t2
+ ∇× (µ−1∇× e) − s∇(µ−1∇ · e) − s∇(∇ · (−j)) = −j,

e× n = 0 on Γ,

e(·, T ) = 0 in Ω,

∂e

∂t
(·, T ) = 0 in Ω.

(6.1)

Then we define the adjoint operator A∗ to the operator A as

A∗ϕ := ǫ
∂2ϕ

∂t2
+ ∇× (µ−1∇× ϕ) − s∇(µ−1∇ · ϕ) = e in Ω × (0, T ),

ϕ× n = 0 on Γ,

ϕ(·, T ) = 0 in Ω,

∂ϕ

∂t
(·, T ) = 0 in Ω.

(6.2)

We have now following error representation formula

||e||2L2
= (e,A∗ϕ) = (Ae,ϕ) = (R,ϕ),

where R = −j −Ae is the residual.
Next, we use the splitting

ϕ− ϕh = (ϕ− ϕI
h) + (ϕI

h − ϕh),

where ϕI
h ∈ Uh denotes an interpolant of ϕ, together with Galerkin orthog-

onality

(R,ϕI
h − ϕh) = 0 ∀ϕI

h − ϕh ∈ Uh.

This finally yields the following error representation:

(6.3) ||e||2L2
≤ (R,ϕ− ϕI

h),

with ϕ−ϕI
h appearing as a weight. Then we combine the standard interpo-

lation estimates

(6.4) ||ϕ− ϕI
h||L2

≤ (h2 + τ2)Ci||D2ϕ||L2

with interpolation constant Ci, together with strong stability estimate for
the dual problem

(6.5) ||D2ϕ||L2
≤ Cs||e||L2
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with stability constant Cs and get following a posteriori error estimate

(6.6) ||e||L2
≤ CiCs(h

2 + τ2)||R||L2
.

We now explicitly apply this general approach to the time dependent
Maxwell equations.

6.1. A posteriori error estimation for Maxwell’s equations. The a
posteriori error analysis is based on representing the error in terms of the
solution ϕ of the adjoint, or dual problem, related to (3.3). Thus, we wish
to control the quantity ((e, ψ)) with e = E − Eh in Ω × (0, T ), where ψ ∈
[L2(Ω × I)]3 is given.

For the dual solution we introduce the finite element test space Wϕ
h de-

fined by:

Wϕ
h := {w ∈Wϕ : w|K×J ∈ P1(K) × P1(J),∀K ∈ Kh,∀J ∈ Jτ},

where

Wϕ := {w ∈ H1(Ω × I) : w(·, T ) = 0, w × n|Γ = 0}.

The dual problem for (3.3) reads: find ϕ ∈Wϕ
h such that

ǫ
∂2ϕ

∂t2
+ ∇× (µ−1∇× ϕ) − s∇(µ−1∇ · ϕ) = ψ in Ω × (0, T ),

ϕ× n = 0 on Γ,

ϕ(·, T ) = 0 in Ω,

∂ϕ

∂t
(·, T ) = 0 in Ω.

(6.7)

To begin we write the equation for the error as

∫ T

0

∫

Ω
eψ dx dt =

∫ T

0

∫

Ω
eψ dxdt

+

∫ T

0

∫

Ω
e(ǫ

∂2ϕ

∂t2
+ ∇× (µ−1∇× ϕ) − s∇(µ−1∇ · ϕ) − ψ) dx dt

=

∫ T

0

∫

Ω
e(ǫ

∂2ϕ

∂t2
+ ∇× (µ−1∇× ϕ) − s∇(µ−1∇ · ϕ)) dx dt.

(6.8)

Next, we integrate by parts twice the last term in (6.8), using that

ϕ(·, T ) = ∂ϕ
∂t

(·, T ) = 0, E(·, 0) = ∂E
∂t

(·, 0) = 0 and ϕ × n = E × n = 0
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on Γ. This yields:

−
∫ T

0

∫

Ω
ǫ
∂e

∂t

∂ϕ

∂t
dx dt+

∫ T

0

∫

Ω
(µ−1∇× ϕ) (∇× e) dx dt

+ s

∫ T

0

∫

Ω
(µ−1∇ · ϕ) (∇ · e) dx dt+

∑

k

∫

Ω
ǫ
[∂ϕ

∂t
(tk)

]

e(tk) dx

+
∑

K

∫ T

0

∫

∂K

(
1

µ
∇× ϕ) (e× nK) dsdt+ s

∑

K

∫ T

0

∫

∂K

(
1

µ
∇ · ϕ) (e · nK) dsdt

=

∫ T

0

∫

Ω

(

ǫ
∂2e

∂t2
+ ∇× (µ−1∇× e) − s∇(µ−1∇ · e)

)

ϕ dx dt

+
∑

k

∫

Ω
ǫ
[∂ϕ

∂t
(tk)

]

e(tk) dx+
∑

K

∫ T

0

∫

∂K

(
1

µ
∇× ϕ) (e× nK) dsdt

+ s
∑

K

∫ T

0

∫

∂K

(
1

µ
∇ · ϕ) (e · nK) dsdt−

∑

k

∫

Ω
ǫ
[∂e

∂t
(tk)

]

ϕ(tk) dx

−
∑

K

∫ T

0

∫

∂K

µ−1
(

nK ×∇× e
)

ϕ dsdt + s
∑

K

∫ T

0

∫

∂K

(µ−1∇ · e) (nK · ϕ) ds dt

= I1 + I2 + I3 + I4 + I5 + I6 + I7,

(6.9)

where Ii, i = 1, ..., 7 denote the seven integrals that appear on the right
of (6.9). In particular, I3, I4, I6 and I7 result from integration by parts in

space, whereas
[

∂e
∂t

]

and
[

∂ϕ
∂t

]

, the jumps in time of ∂e
∂t

and ∂ϕ
∂t

, respectively,

at time tk which result from integration by parts in time.
In I3 we sum over the element boundaries, where each internal side S ∈ Sh

occurs twice. Let es denote the function e in one of the normal directions
of each side S. Then we can write I3 as

(6.10)
∑

K

∫

∂K

(
1

µ
e× nK) (∇× ϕ) ds =

∑

S

∫

S

1

µ

[

es × n
]

∇× ϕ ds,

where
[

es × n
]

denotes the jump in e across the two elements sharing S.

We distribute each jump equally between the two neighboring elements and
rewrite the sum over all element edges ∂K as :

(6.11)
∑

S

∫

S

1

µ

[

es ×n
]

∇×ϕ ds =
∑

K

1

2
h−1

K

∫

∂K

1

µ

[

es ×n
]

∇×ϕ hK ds.

Next, we formally set dx = hKds and replace the integrals over the element
boundaries ∂K by integrals over the elements K. Thus, we find:
(6.12)
∣

∣

∣

∣

∣

∑

K

1

2
h−1

K

∫

∂K

1

µ

[

es × n
]

∇× ϕ hK ds

∣

∣

∣

∣

∣

≤ C

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

es×n
]∣

∣

∣
·
∣

∣

∣
∇×ϕ

∣

∣

∣
dx,
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with
[

es × n
]∣

∣

∣

K
= maxS⊂∂K

[

es × n
]∣

∣

∣

S
. Here and below we denote by C

various positive constants of moderate size.

f−(tk)

ttk−1 tk+1
J− J+

tk

[

f(tk)
]

[

f(tk+1)
]

[

f(tk−1)
]

f+(tk)

Figure 3. The jump in time of a function f .

In a similar way we estimate the jump in time in I2 and I5 by multiplying
and dividing by step size in time τ . More precisely, for estimation I2 we
have

∣

∣

∣

∣

∣

∑

k

∫

Ω
ǫ

[

∂ϕ

∂t
(tk)

]

e(tk) dx

∣

∣

∣

∣

∣

≤
∑

k

∫

Ω
ǫτ−1

∣

∣

∣

[

∂ϕ

∂t
(tk)

]

∣

∣

∣

∣

∣

∣e(tk)
∣

∣

∣ τdx

≤C
∑

k

∫

Jk

∫

Ω
ǫτ−1

∣

∣

∣

[

∂tkϕ
]∣

∣

∣

∣

∣

∣
e(tk)

∣

∣

∣
dxdt = Cǫτ−1

∫ T

0

∫

Ω

∣

∣

∣

[

∂tkϕ
]∣

∣

∣
·
∣

∣

∣
e(tk)

∣

∣

∣
dxdt.

(6.13)

Here, we have defined [∂tkϕ] as the greatest of the two jumps on the interval
Jk = (tk, tk+1]:

[∂tkϕ] = max
Jk

([

∂ϕ

∂t
(tk)

]

,

[

∂ϕ

∂t
(tk+1)

])

,

where

[∂ϕ

∂t
(tk)

]

=
∂ϕ

∂t

+

(tk) −
∂ϕ

∂t

−

(tk).

The time jumps are illustrated in Figure 3.
Using Galerkin orthogonality (3.7) we substitute the above expressions

into (6.9) with e = E − Eh, where we recognize −j − s∇(∇ · j) = ǫ∂2E
∂t2

+



ADAPTIVE FINITE ELEMENT/DIFFERENCE METHODS 15

∇× (µ−1∇× E) − s∇(µ−1∇ · E), to get:

∫ T

0

∫

Ω

∣

∣

∣
e
∣

∣

∣

∣

∣

∣
ψ

∣

∣

∣
dx dt ≤

∫ T

0

∫

Ω

∣

∣

∣
− j − s∇(∇ · j) − ǫ

∂2Eh

∂t2
−∇× (µ−1∇× Eh)

+ s∇(µ−1∇ · Eh)
∣

∣

∣ ·
∣

∣

∣ϕ
∣

∣

∣ dx dt

+ C

∫ T

0

∫

Ω
ǫ ·

∣

∣

∣

[

∂tkϕ
]∣

∣

∣ ·
∣

∣

∣Eh

∣

∣

∣ dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

Eh × n
]∣

∣

∣
·
∣

∣

∣
∇× ϕ

∣

∣

∣
dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

Eh · n
]∣

∣

∣ ·
∣

∣

∣∇ · ϕ
∣

∣

∣ dx dt

+ C

∫ T

0

∫

Ω
ǫ ·

∣

∣

∣

[

∂tkEh

]∣

∣

∣
·
∣

∣

∣
ϕ
∣

∣

∣
dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

n×∇× Eh

]∣

∣

∣
·
∣

∣

∣
ϕ
∣

∣

∣
dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

n · ϕ
]∣

∣

∣ ·
∣

∣

∣∇ ·Eh

∣

∣

∣ dx dt.

(6.14)

We then introduce the splitting ϕ − ϕh = (ϕ − ϕI
h) + (ϕI

h − ϕh) in (6.14),

where ϕI
h denotes an interpolant of ϕ ∈Wϕ

h , to obtain

∫ T

0

∫

Ω

∣

∣

∣
e
∣

∣

∣

∣

∣

∣
ψ

∣

∣

∣
dx dt ≤ C

∫ T

0

∫

Ω

∣

∣

∣
ǫ
∂2Eh

∂t2
+ ∇× (µ−1∇× Eh)

− s∇(µ−1∇ · Eh) + j + s∇(∇ · j))
∣

∣

∣
·
∣

∣

∣
ϕ− ϕI

h

∣

∣

∣
dx dt

+ C

∫ T

0

∫

Ω
ǫ ·

∣

∣

∣

[

∂tk(ϕ− ϕI
h)

]∣

∣

∣ ·
∣

∣

∣Eh

∣

∣

∣ dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

Eh × n
]∣

∣

∣
·
∣

∣

∣
∇× (ϕ− ϕI

h)
∣

∣

∣
dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

Eh · n
]∣

∣

∣ ·
∣

∣

∣∇ · (ϕ − ϕI
h)

∣

∣

∣ dx dt

+ C

∫ T

0

∫

Ω
ǫ ·

∣

∣

∣

[

∂tkEh

]∣

∣

∣
·
∣

∣

∣
ϕ− ϕI

h

∣

∣

∣
dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

n×∇× Eh

]∣

∣

∣ ·
∣

∣

∣ϕ− ϕI
h

∣

∣

∣ dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

n · (ϕ− ϕI
h)

]∣

∣

∣
·
∣

∣

∣
∇ ·Eh

∣

∣

∣
dx dt.

(6.15)
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By using standard interpolation estimates (6.4) for ϕ−ϕI
h we conclude that:

∫ T

0

∫

Ω

∣

∣

∣e
∣

∣

∣

∣

∣

∣ψ
∣

∣

∣ dx dt ≤ C

∫ T

0

∫

Ω

∣

∣

∣ǫ
∂2Eh

∂t2
+ ∇× (µ−1∇× Eh)

− s∇(µ−1∇ · Eh) + j + s∇(∇ · j)
∣

∣

∣ ·
(

τ2
∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣ + h2
∣

∣

∣D2
xϕ

∣

∣

∣

)

dx dt

+ C

∫ T

0

∫

Ω
ǫ ·

[

∂
(

τ2
∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣
+ h2

∣

∣

∣
D2

xϕ
∣

∣

∣

)

t

]

·
∣

∣

∣
Eh

∣

∣

∣
dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

Eh × n
]∣

∣

∣ ·
(

∇×
(

τ2
∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣ + h2
∣

∣

∣D2
xϕ

∣

∣

∣

))

dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

Eh · n
]∣

∣

∣
·
(

∇ ·
(

τ2
∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣
+ h2

∣

∣

∣
D2

xϕ
∣

∣

∣

))

dx dt

+ C

∫ T

0

∫

Ω
ǫ ·

∣

∣

∣

[

∂tkEh

]∣

∣

∣ ·
(

τ2
∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣ + h2
∣

∣

∣D2
xϕ

∣

∣

∣

)

dx dt

+ C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

n×∇× Eh

]∣

∣

∣
·
(

τ2
∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣
+ h2

∣

∣

∣
D2

xϕ
∣

∣

∣

)

dx dt

+ s C

∫ T

0

∫

Ω
max
S⊂∂K

h−1
K

1

µ

[

n ·
(

τ2
∣

∣

∣

∂2ϕ

∂t2

∣

∣

∣ + h2
∣

∣

∣D2
xϕ

∣

∣

∣

)]

·
∣

∣

∣∇ · Eh

∣

∣

∣ dx dt.

(6.16)

In (6.16) the terms ∂2Eh

∂t2
,∇ × (µ−1∇ × Eh),∇(µ−1∇ · Eh) vanish because

(Eh is continuous and piecewise linear). Finally, we use the estimates ∂2ϕ
∂t2

≈
h

∂ϕh
∂t

i

τ
and D2

xϕ ≈
h

∂ϕh
∂n

i

h
to get the following a posteriori error representation

formula:
Theorem 1. Let ϕ be the solution to (6.7), E the solution of (3.3), and

Eh the FEM approximation of E. Then the following error representation
formula holds:

∫ T

0

∫

Ω

∣

∣

∣e
∣

∣

∣

∣

∣

∣ψ
∣

∣

∣ dx dt ≤
∫ T

0

∫

Ω
R1σ1 dx dt

+
∑

k

∫

Ω
R2σ2 dx+

∫ T

0

∫

Ω
R3σ3 dx dt

+

∫ T

0

∫

Ω
R4σ4 dx dt +

∑

k

∫

Ω
R5σ1 dx

+

∫ T

0

∫

Ω
R6σ1 dx dt +

∫ T

0

∫

Ω
R7σ5 dx dt,

(6.17)
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where the residuals are defined by

R1 =
∣

∣

∣
j + s∇(∇ · j)

∣

∣

∣
, R2 = ǫ

∣

∣

∣
Eh

∣

∣

∣
, R3 = max

S⊂∂K
h−1

K

1

µ

∣

∣

∣

[

Eh × n
]∣

∣

∣
,

R4 = max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

Eh · n
]∣

∣

∣, R5 = ǫ
∣

∣

∣

[

∂tkEh

]∣

∣

∣,

R6 = max
S⊂∂K

h−1
K

1

µ

∣

∣

∣

[

n×∇× Eh

]∣

∣

∣
, R7 = max

S⊂∂K
h−1

K

1

µ

∣

∣

∣
∇ · Eh

∣

∣

∣
,

(6.18)

and the interpolation errors are

σ1 = Cτ

∣

∣

∣

∣

[

∂ϕh

∂t

]∣

∣

∣

∣

+ Ch

∣

∣

∣

∣

[

∂ϕh

∂n

]∣

∣

∣

∣

,

σ2 = C
[

∂
(

τ

∣

∣

∣

∣

[

∂ϕh

∂t

]∣

∣

∣

∣

+ h

∣

∣

∣

∣

[

∂ϕh

∂n

]∣

∣

∣

∣

)

t

]

,

σ3 = C ∇×
(

τ

∣

∣

∣

∣

[

∂ϕh

∂t

]∣

∣

∣

∣

+ h

∣

∣

∣

∣

[

∂ϕh

∂n

]∣

∣

∣

∣

)

,

σ4 = C ∇ ·
(

τ

∣

∣

∣

∣

[

∂ϕh

∂t

]∣

∣

∣

∣

+ h

∣

∣

∣

∣

[

∂ϕh

∂n

]∣

∣

∣

∣

)

,

σ5 = C

[

n ·
(

τ

∣

∣

∣

∣

[

∂ϕh

∂t

]∣

∣

∣

∣

+ h

∣

∣

∣

∣

[

∂ϕh

∂n

]∣

∣

∣

∣

)

]

.

(6.19)

6.2. Adaptive algorithm. The main goal in adaptive error control is to
find a mesh Kh with as few number of nodes as possible, such that ||E −
Eh|| < tol. Clearly, we cannot find E analytically. Instead, using the a
posteriori error estimate in Theorem 1, we shall find a triangulation Kh,
such that the corresponding finite element approximation Eh satisfies

(6.20) R1 · σ1 +R2 · σ2 +R3 · σ3 +R4 · σ4 +R5 · σ1 +R6 · σ1 +R7 · σ5 < tol.

The solution is found by an iterative process, where we start with a coarse
mesh and successively refine the mesh by using the stopping criterion (6.20)
with as few number of elements as possible. More precisely, in the compu-
tations below we shall use the following

Adaptive algorithm

1. Choose an initial mesh Kh and an initial time partition Jτ of the
time interval [0, T ].

2. Compute the solution En of (3.3) on Kh and Jτ .
3. Compute the solution ϕn of the adjoint problem (6.7) on Kh and Jτ .
5. Construct a new mesh Kh and a new time partition Jk of the time

interval (0, T ) using a posteriori error estimate of Theorem 1. More
precisely, refine all elements, where R1 · σ1 +R2 · σ2 +R3 · σ3 +R4 ·
σ4 +R5 · σ1 +R6 · σ1 + R7 · σ5 > tol. Here tol is a tolerance chosen
by the user. Return to 1. On Jk the new time step τ should satisfy
CFL condition.
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Remark During the refinement procedure we do not allow the appear-
ance of new nodes inside the overlapping layers. In the case of the presence
of parameters ǫ and µ in equation (3.3) we interpolate them after every
refinement on a new refined mesh. We also need impose compatibility con-
ditions for these coefficients in the case of non-smooth material interfaces
to avoid discontinuities for these coefficients. In this case ǫ and µ should be
replaced with smooth functions ǫ1 and µ1.

7. Numerical examples

We have implemented our adaptive hybrid FEM/FDM method in C++,
with different modules handling the finite elements, the finite differences,
and the communication required for the coupling. The software packages
PETSc [4] and MV++ [33] are used for matrix-vector computations. All our
computations (2D and 3D) were performed on a standard high-end work-
station (3.2 GHz Intel R© XeonTM processor, 2Gb RAM and 2Mb L3 cache).
We shall now evaluate the performance of our hybrid FEM/FDM method
in two and three dimensions.

7.1. Two dimensional examples. The computational domain is Ω =
[0.2, 0.8]2; it separates into a finite element domain, ΩFEM = [0.4, 0.6]2 ,
and a surrounding finite difference domain ΩFDM . In all computations we
choose the time step τ according to the CFL condition (4.8), while the
penalty factor in (3.7) is always set to s = 1.

In the following examples we consider a plane wave E = (0, E2), given
by

(7.1) E2(x, y, t) |y=0= (sin (5 (t− 2π/5) − π/2) + 1)/10, 0 ≤ t ≤ 2π

5
,

which initiates at the lower boundary of ΩFDM and propagates upwards.
To validate the implementation and show the convergence of our hybrid

method, we first consider (3.3) with ǫ = µ = 1.0 and j = 0. Hence, the elec-
tromagnetic field consists of the plane wave given as in (7.1). At the lateral
boundaries we use periodic boundary conditions, and at the top boundary
first-order absorbing boundary conditions [12], which is exact in this partic-

ular case. We compute the maximal error e = max[0,T ]

∣

∣

∣Eref − Eh

∣

∣

∣, where

Eref denotes the reference solution computed on the finest mesh with 25921
nodes and 51200 elements, and Eh denotes the solution computed on the
sequence of adaptively refined meshes shown in Table 1. All integrals are
computed over the inner domain ΩFEM , which remains fixed during the en-
tire computation and at all refinement steps. Note that every node on any
intermediate mesh coincides with some node on the finest mesh; hence, we
never need to interpolate Eref on coarser meshes.

Table 2 and Figure 5 illustrates the convergence behavior of the FEM-
solution in the hybrid method compared with Yee scheme as the mesh is
refined. Both the error in the FEM-solution and that obtained by using
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a) b)

Figure 4. Computational mesh in two dimensions. The hy-
brid mesh (c) is a combination of the structured mesh ΩFDM

(a) and the unstructured mesh ΩFEM (b) with a thin overlap
of structured elements.

the Yee scheme everywhere in Ω on an equidistant mesh are shown. As
expected, both methods are second-order convergent, with the Yee scheme
slightly more accurate than the FE scheme for a comparable mesh size.

Next, we shall demonstrate the continuity of the numerical solution across
the FD/FE mesh in the presence of material discontinuities. To do so, we
consider the same problem as above, with ǫ = µ = 1.0 outside the ellipse
shown in Fig. 4, and either ǫ = 20, µ = 1.0 or ǫ = µ = 20 inside. As shown
in Fig. 6, the isolines of the solutions remain smooth both across the FE/FD
interface and material jumps.

7.2. Three dimensional examples. Next, we consider (3.3) in Ω = [0, 5.1]×
[0, 2.5] × [0, 2.5], which is divided into a finite element domain ΩFEM =
[0.3, 4.7] × [0.3, 2.3] × [0.3, 2.3], with an unstructured tetrahedral mesh, and
a surrounding finite difference domain ΩFDM , with a structured hexahedral
mesh with mesh size h = 0.2. First order absorbing boundary conditions
are imposed at all boundaries of ΩFDM and the final time is T = 3.0. Here,
the electromagnetic field consists of a spherical wave, generated at the point
x0 = (2.05, 2.2, 1.25) in ΩFEM by the source term

(7.2) f1(x, x0) =

{

103 sin2 πt if 0 ≤ t ≤ 0.1 and |x− x0| < 0.1,
0 otherwise.

The material parameters are ǫ = 2.0 and µ = 1.0 inside the cube, and
ǫ = µ = 1.0 everywhere else. In Fig. 7 we show the isosurfaces of the
numerical solutions inside ΩFEM at different times.

We now use the results from the a posteriori error analysis in Section 6 to
estimate the error in the numerical solution of (3.3). According to Theorem
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Figure 5. Convergence of L2 error in space and time for
Yee scheme and hybrid method.

1 the error bound consists of space-time integrals of different residuals mul-
tiplied by the solution of the dual problem. The residuals indicate how well
the numerical solution satisfies the differential equation, whereas the solu-
tion of the dual problem determines how the error propagates through space
and time. Thus, to estimate the error in the numerical solution, we need
to compute an approximate solution of the dual problem together with the
residuals. Since the residuals R1, R2, R5 and weights dominate, we neglect
the terms I3, I4, I6, I7 in the a posteriori error estimator.

Different choices for ψ as data in the dual problem yield a posteriori error
estimates in different quantities of interest. Since we wish to control the
error only in the finite element domain, we choose ψ = 0 in ΩFDM and
ψ = 1 in ΩFEM which acts during the time interval [1.55, 3.0], and ψ = 0
everywhere else and at all remaining times. To evaluate the effectiveness of
the error estimator we now solve the dual problem (6.7) backward in time,
that is from T = 3.0 down to T = 0.0, with ǫ = 20, µ = 1 inside the cube,
and ǫ = µ = 1 elsewhere. In Fig. 8-a we show the L2-norms in space of
the solutions to the dual problem versus time for a sequence of adaptively
refined meshes.

To compare the behavior of the solution to the dual problem at different
times, we show in Fig. 8-b L2-norms in space of ϕ when we solve problem
(6.7) from T = 6.0 down to T = 0.0. We observe, that the solution of the
dual problem grows backward in time through the action of ψ, but is reduced
as the mesh is adaptively refined. In Fig. 9-a), one of the main components of

the interpolation errors (6.19) in the a posteriori error estimator,
∣

∣

∣

[

∂ϕh

∂t

]∣

∣

∣

L2

,

is shown on the time interval [0.0, 2.0]. We note that the jump in time of
the dual solution is reduced on the adaptively refined meshes, as expected.
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The L2-norm in space of the residual R2, shown during the time interval
[0.0, 2.0] in Fig. 9-b), does not grow with time. Therefore, here the main
error indicator is provided by the solution of the dual problem.

In Fig. 10 the highest value isosurfaces of the solution to the dual problem
on a locally refined mesh is shown. We observe that isosurfaces are concen-
trated around the cube where the main error is located, precisely where
local refinement is required. Then we construct a new mesh as described in
Section (6.2), choose a new time step that satisfies the CFL condition, and
return to step 1 in algorithm (6.2).

8. Conclusions

We have devised an explicit, adaptive, hybrid FEM/FDM method for
the time dependent Maxwell equations. The method is hybrid in the sense
that different numerical methods, finite elements and finite differences, are
used in different parts of the computational domain. Inside the FE part
of the computational domain, the adaptivity is based on a posteriori er-
ror estimates in the form of space-time integrals of residuals multiplied by
dual weights. Their usefulness for adaptive error control is illustrated in
three-dimensional numerical examples, where we solve both the direct and
the dual problems and compute the corresponding residuals and weights.
In particular, our numerical examples show that by combining a divergence
penalty term with adaptive mesh refinement, we eliminate spurious eigen-
modes in time dependent calculations and achieve an accuracy close to that
of the FDTD scheme on a comparable mesh.

The adaptive hybrid method combines the simplicity and speed of the
FDTD scheme [40] on the structured part of the mesh with the flexibility
of a FEM on the unstructured part of the mesh. Efficiency is obtained by
using a fully explicit hybrid FEM/FDM method with optimized numerical
linear algebra and adaptivity. Thus, we have developed a fast solver, which
can be applied to the solution of computationally demanding problems, such
as inverse electromagnetic problems in the time domain.
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a) t = 1.3 b) t = 1.3

c) t = 2.3 d) t = 2.3

e) t = 2.9 f) t = 2.9

g) t = 3.2 h) t = 3.2

Figure 6. Isolines of the computed solution in hybrid
method for geometry, presented in Fig. 4, with different val-
ues of the parameters ǫ, µ: in a), c), e), g) ǫ = 20, µ = 1
inside the ellipse, whereas in b), d), f), h) ǫ = µ = 20 inside
the ellipse. In both cases ǫ = µ = 1 everywhere else in Ω.
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a) t = 0.3 b) t = 1.2

c) t = 0.7 d) t = 1.5

e) t = 0.9 f) t = 2.0

Figure 7. Solution of problem (3.3) in ΩFEM with one
spherical pulse. We present isosurfaces at different time mo-
ments. Values ǫ = 2.0, µ = 1.0 are inside the cube, and
ǫ = 1.0, µ = 1.0 everywhere else in Ω.
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h
Nonodes in
ΩFEM

Noelements in
ΩFEM

Nonodes in Ω
Noelements in
Ω

0.025 81 128 625 640
0.02 121 200 961 1000
0.01 441 800 3721 4000
0.005 1681 3200 14641 16000
0.0025 6561 12800 58081 64000
0.00125 25921 51200 231361 256000

Table 1. Computational meshes in two dimensions.

h max[0,T ]

∣

∣

∣Eref − Eh

∣

∣

∣ max[0,T ]

∣

∣

∣Eref − Eh

∣

∣

∣

0.01 1.19879 1.16128
0.005 0.449274 0.341658
0.0025 0.113817 0.0794665

Table 2. Error in time over the time interval [0; 2.0]: hybrid
method (left) and Yee scheme (right).
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Figure 8. |ϕ|L2
for problem (6.7) on adaptively refined

meshes during the time interval [0, 3.0] (a) and [0, 6.0] (b).
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Figure 9. L2-norms in space on adaptively refined meshes

: a)
[

∂ϕh

∂t

]

, b) [Eht ].

Figure 10. The highest value isosurface of the dual solution ϕ.
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