edoc-vmtest

Small hepatocytes in culture develop polarized transporter expression and differentiation

Sidler Pfändler, Marguerite-Anne and Höchli, Mathias and Inderbitzin, Daniel and Meier, Peter J. and Stieger, Bruno. (2004) Small hepatocytes in culture develop polarized transporter expression and differentiation. Journal of cell science, Vol. 117, H. 18. pp. 4077-4087.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5261600

Downloads: Statistics Overview

Abstract

Rat small hepatocytes have been shown to proliferate in culture and to form organoids with differentiated hepatocytes in vitro. To evaluate the degree of polarized transporter differentiation of rat small hepatocytes during 9 weeks of culturing, we studied the time-dependent expression and subcellular localization of the major bile salt and organic anion transport systems of hepatocytes [i.e. the basolateral sodium-taurocholate co-transporting protein (Ntcp), organic-anion-transporting polypeptide 1b2 (Oatp1b2), the canalicular bile-salt export pump (Bsep) and multidrug-resistance-associated protein 2 (Mrp2)]. Small hepatocytes proliferated and differentiated in culture and formed sharply demarcated colonies as assessed by morphology, alpha-fetoprotein, albumin and Mrp1 expression. Polarized surface transporter expression was evident after 5 weeks of culturing for Ntcp, Oatp1b2 and Mrp2, and after 7 weeks for Bsep. After 9 weeks in culture, the vast majority of matured hepatocytes expressed Ntcp/Oatp1b2 at the basolateral and Bsep/Mrp2 at the canalicular plasma-membrane domains. This polarized transporter expression was accompanied by canalicular secretion of fluorescein-diacetate and cholylglycyl-fluorescein. Furthermore, an anastomizing three-dimensional network of bile canaliculi developed within piling-up colonies. These data demonstrate that cultured rat small hepatocytes acquire a fully differentiated transporter expression phenotype during their development into hepatic 'organoid-like' clusters of mature hepatocytes. Thereby, the time-dependent sequence of transporter expression mirrored the ontogenesis of transporter expression in developing rat liver, supporting the concept that small hepatocytes correspond to the hepatocyte lineage derived from embryonic hepatoblasts and/or from a different pool of 'committed hepatocyte progenitor cells'.
Faculties and Departments:11 Rektorat und Verwaltung > Vizerektorat Forschung
UniBasel Contributors:Meier-Abt, Peter J.
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Company of Biologists
ISSN:0021-9533
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:23
Deposited On:22 Mar 2012 13:35

Repository Staff Only: item control page