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Structural Change in (Economic) Time Series

Christian Kleiber ∗

Abstract

Methods for detecting structural changes, or change points, in time series data are
widely used in many fields of science and engineering. This chapter sketches some basic
methods for the analysis of structural changes in time series data. The exposition is
confined to retrospective methods for univariate time series. Several recent methods for
dating structural changes are compared using a time series of oil prices spanning more than
60 years. The methods broadly agree for the first part of the series up to the mid-1980s, for
which changes are associated with major historical events, but provide somewhat different
solutions thereafter, reflecting a gradual increase in oil prices that is not well described
by a step function. As a further illustration, 1990s data on the volatility of the Hang Seng
stock market index are reanalyzed.

Keywords: change point problem, segmentation, structural change, time series.

JEL classification: C22, C87.

1 Introduction

In time series analysis, the point of reference is that of a stationary stochastic process; i.e.,
a process for which the sequence of first and second-order moments is constant (‘weak sta-
tionarity’), or even the sequence of the entire marginal distributions (‘strict stationarity’).
In practice, many time series exhibit some form of nonstationarity: changing levels, changing
variances, changing autocorrelations, or a combination of some or all of these aspects. These
phenomena are then called structural changes or structural breaks and the associated statis-
tical methodology is sometimes called change point analysis. Such phenomena may be seen
as ‘complex’ in the sense of this Volume, in that classical models with constant coefficients
are rejected by the data.
Structural change methodology is widely used in economics, finance, bioinformatics, engineer-
ing, public health, and climatology, to mention just a few fields of application. An interesting
recent contribution (Kelly and Ó Gráda, 2014) disputes the existence of a ‘little ice age’ for
parts of Central and Northern Europe between the 14th and 19th century. Using structural
change methodology (of the type used below) on temperature reconstructions spanning sev-
eral centuries, Kelly and Ó Gráda find no evidence for sustained falls in mean temperatures
prior to 1900, instead several relevant series are best seen as white noise series. One explana-
tion for the contradiction to the established view is the climatological practice of smoothing
data prior to analysis. When the raw data are in fact uncorrelated, such preprocessing can
introduce spurious dependencies (the ‘Slutsky effect’).

∗Date: April 25, 2016.
Correspondence: Christian Kleiber, Faculty of Business and Economics, Universität Basel, Peter Merian-Weg
6, CH-4002 Basel, Switzerland. E-mail: christian.kleiber@unibas.ch

1



More than 25 years ago, a bibliography on structural change methodology and applications
published in the economics literature (Hackl and Westlund, 1989) already lists some 500 ref-
erences, and the literature has grown rather rapidly since then. More recently, a bibliography
available with the R package strucchange provides more than 800 references, ending in 2006
(Zeileis, Leisch, Hornik and Kleiber, 2002). Recent surveys of the methodology include Perron
(2006), Aue and Horváth (2013) and Horváth and Rice (2014). Much of this methodology
relies quite heavily on functional central limit theorems (FCLTs), an excellent reference is
Csörgő and Horváth (1997).
Apart from practical relevance of the associated issues, one reason for the large number of
publications is that the notion of ‘structural change’ can be formalized in many different
ways. In terms of statistical hypothesis tests, the null hypothesis of ‘no structural change’ is
reasonably clear (model parameters are constant), but the alternative can mean many things:
a parameter (or several parameters) change(s) its (their) value(s) abruptly (once, twice, or
more often), or it changes gradually according to a stochastic mechanism (e.g., via a random
coefficient model), or it switches randomly among a small number of states (e.g., via a hidden
Markov model), etc. There are many further possibilities.
The available methodology therefore incorporates ideas from a variety of fields: linear models,
sequential analysis, wavelets, etc. In economics, there is comparatively greater interest in
changes in regression models, whereas in many other fields of application interest is focused
on changes in a univariate time series. A further dividing line is on-line (sequential) analysis
of a growing sample vs. off-line (retrospective) analysis of a fixed sample.
This chapter provides some basic ideas of change point methodology along with empirical
examples. It is biased towards least-squares methods, methodology used in economics and
finance as well as availability in statistical software. The following section outlines selected
methods in the context of a simple signal-plus-noise model. For reasons of space, the exposition
is confined to retrospective analysis of changes in univariate time series. In section 3, several
recent algorithms are explored for dating structural changes in a series of oil prices. Section 4
dates volatility changes in Hang Seng stock market index returns, thereby revisiting data
formerly studied in Andreou and Ghysels (2002). The final section provides some references
for sequential analysis of structural change and also for more complex data structures.

2 Some basic ideas in change point analysis

To fix ideas, consider a signal-plus-noise model for an observable (univariate) quantity yi,

yi = µi + ei, i = 1, . . . , T,

where µi is the (deterministic) signal and ei is the noise, with E[ei] = 0 and Var[ei] = σ2.
As noted above, this chapter is confined to changes in a univariate time series. However, for
many methods, there is a regression version with µi = x>i βi, where xi is a vector of covariates
and βi the corresponding set of regression coefficients. In the classical setting, the ei form a
sequence of independent and identically distributed (i.i.d.) random variables, but many more
recent contributions, especially in economics and finance, consider dependent processes.
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2.1 Testing for structural change

In terms of statistical testing, the null hypothesis of interest is H0 : µi = µ0 for all i; i.e.,
the signal exhibits no change. (For the regression version, the corresponding null hypothesis
is H0 : βi = β0 for all i.) Under the null hypothesis, natural estimates of µ0 are the recursive
estimates µ̂k = k−1

∑k
i=1 yi, k = 1, . . . , T ; i.e., the sequence of sample means computed from

a growing sample. The corresponding recursive residuals are ẽi = yi − µ̂i−1, i = 2, . . . , T .
A classical idea is to study the fluctuations of partial (or cumulative) sums (CUSUMs) of these
recursive residuals and to reject the null hypothesis of parameter stability if their fluctuations
are excessive. In order to assess significance, introduce an empirical fluctuation process indexed
by t ∈ [0, 1] as the process of partial sums of the recursive residuals via

S̃T (t) =
1

σ̂T
√
T

[Tt]∑
i=1

ẽi, 0 ≤ t ≤ 1,

where [Tt] denotes the integer part of Tt and σ̂2T some consistent estimate of σ2. This object
is often called the Rec-CUSUM process as it is based on recursive residuals. It is well known
that under the above assumptions this empirical fluctuation process can be approximated by
a Brownian motion, B(t), 0 ≤ t ≤ 1, and hence the enormous literature on properties of this
stochastic process can be used to assess the fluctuations in the recursive residuals. Excessive
fluctuation is determined from the crossing probabilities of certain boundaries, this is the
approach proposed in the seminal paper by Brown, Durbin and Evans (1975).
However, from a regression point of view, the ordinary least-squares (OLS) residuals êi =
yi − µ̂T are perhaps a more natural starting point, leading to the test statistic

max
k=1,...,T

∣∣∣∣∣ 1

σ̂T
√
T

k∑
i=1

êi

∣∣∣∣∣ . (1)

As OLS residuals are correlated and sum to zero by construction, the limiting process corre-
sponding to the OLS-CUSUM process is no longer a Brownian motion. Instead, the limiting
process is now a Brownian bridge, B0(t), with B0(t) = B(t) − t B(1), 0 ≤ t ≤ 1, and the
relevant limiting quantity for assessing significant deviation from the null hypothesis is

sup
0≤t≤1

|B0(t)|,

the supremum of the absolute value of a Brownian bridge on the unit interval (Ploberger
and Krämer, 1992). This object is well known in the statistical literature, and quantiles of its
distribution provide critical values for a test based on (1).
To briefly illustrate the machinery, consider a time series of measurements of the annual flow
of the river Nile at Aswan, for the period 1871 to 1970. This series is part of any binary
distribution of R (R Core Team, 2016) under the name Nile and has been used repeatedly in
the statistical literature on change point methods. The following illustrations make use of the
R package strucchange, which among other things implements structural change detection
using empirical fluctuation processes and related techniques. It should be noted that the
original paper (Zeileis et al., 2002) describing the software documents the first release of the
package, but many methods were added in subsequent years, including the methods for dating
structural changes that are used in the next section. The package is still actively maintained,
but the main developments happened some 10 years ago.

3



Nile river discharges

Time

N
ile

1880 1900 1920 1940 1960

60
0

80
0

12
00

OLS−CUSUM process

Time
E

m
pi

ric
al

 fl
uc

tu
at

io
n 

pr
oc

es
s

1880 1900 1920 1940 1960

−
1

0
1

2
3

Figure 1: Nile river discharges: Raw data (left) and OLS-CUSUM process (right).

Figure 1 plots the time series (left panel) and the corresponding OLS-CUSUM process (right
panel) along with a boundary indicating the 5% critical value for the test statistic (1). It is
seen that the empirical fluctuation process crosses the boundary, and hence the hypothesis of
a constant level is rejected at the 5% level.
The test statistic (1), often called the OLS-CUSUM test, measures the maximal absolute
deviation from zero of the corresponding OLS-CUSUM process. There are many variations
of this idea. For example, it is possible to use other functionals of the empirical fluctuation
process, such as the range or some average of the fluctuations. It is also possible to study
moving instead of cumulative sums, leading to moving sum (MOSUM) processes. Or, instead
of the fluctuations in the residuals, one can directly assess the fluctuations in the estimates
themselves; there are again recursive and moving versions (Kuan and Hornik, 1995). In the
univariate case considered here, the latter idea is equivalent to CUSUMs or MOSUMs of the
residuals, but in the regression case it leads to new procedures. It is also possible to assess
fluctuations in first-order conditions of fitting methods other than least squares, for example
likelihood methods (Zeileis, 2005).
Also, applications in economics and finance often involve dependent data, so that the ma-
chinery described above requires adjustments. These involve the long-run variance,

ω2 = lim
T→∞

Var(S̃T (1)).

If a consistent estimator ω̂2 of ω2 is available, then ω̂−1S̃T (t) or ω̂−1ŜT (t) can, in many settings
of interest, again be approximated by a Brownian motion or a Brownian bridge.

2.2 Dating structural changes

Having found evidence for the presence of structural change it is of interest to estimate the
change points themselves. In economics, basic references for dating structural changes are Bai
and Perron (1998, 2003), which among other things provide a method for obtaining confidence
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Figure 2: Nile river discharges: Model with constant level (left) vs. model with two regimes
(right).

intervals for the break dates. The associated point estimation issue – the segmentation of the
sample into homogeneous parts – dates back at least to Bellman and Roth (1969).
The model of interest is now a step function for the signal. With m+1 segments (corresponding
to m breaks), this is

yi = µj + ei, τj−1 + 1 ≤ i ≤ τj , j = 1, . . . ,m+ 1. (2)

Here j is the segment index and {τ1, . . . , τm} denotes the set of the break points. By conven-
tion, τ0 = 0 and τm+1 = T .
Given the break points τ1, . . . , τm, the least squares estimate of µj is the sample mean of the
observations pertaining to segment j. The resulting aggregate residual sum of squares is given
by

RSS(τ1, . . . , τm) =
m+1∑
j=1

rss(τj−1 + 1, τj), (3)

where rss(τj−1 + 1, τj) is the residual sum of squares for segment j. The problem of dating
structural changes is to find the break points τ̂1, . . . , τ̂m that minimize the objective function,

{τ̂1, . . . , τ̂m} = argmin{τ1,...,τm}RSS(τ1, . . . , τm), (4)

over all partitions {τ1, . . . , τm} with τj − τj−1 ≥ Tmin. Here Tmin is a bandwidth parameter
to be specified by the user, it defines the minimal segment length. For a given number m of
break points, their optimal location can be found using a dynamic programming algorithm.
The number of change points m itself can be determined via information criteria, the break-

points() function in strucchange employs the Bayesian Information Criterion (BIC). Below,
this algorithm is referred to as breakpoints. More details on the implementation may be
found in Zeileis, Kleiber, Krämer and Hornik (2003).

5



Returning to the Nile river flows, Figure 2 (left panel) provides the fit for a traditional
autoregressive model of order one (AR(1)) with constant parameters. Clearly, the fit is quite
poor in that for the first part of the series the data are almost always above the fitted mean
level, whereas after approximately the year 1900 they are mostly below. In contrast, Figure 2
(right panel) provides a model with a changing level, the BIC suggesting a model with a
single break corresponding to the year 1898. There is a simple explanation for this break: the
opening of the Aswan dam in 1898. It is worth noting that after modelling the break there
is no need for further modelling of any dependence about the changing level: the dependence
implied by the fitted AR(1) process (left panel), with an autoregressive parameter of 0.51, is
spurious and stems from the neglected data feature of a changing level.

3 Dating changes in a commodity price series

This section revisits an empirical example presented in Zeileis et al. (2003), namely dating
structural breaks in a time series of oil prices. That paper considered a quarterly index of
import prices of petroleum products obtained from the German Federal Statistical Office
– hereafter referred to as the German oil price data – for the period 1960(1) to 1994(4)
(base year: 1991). The present paper uses a much longer series, a quarterly time series of
spot prices for West Texas Intermediate (WTI) – hereafter referred to as the WTI data –
from 1947(1) to 2013(3). It is publicly available from the FRED database of the Federal Re-
serve Bank of St. Louis, more specifically from https://research.stlouisfed.org/fred2/

series/OILPRICE/. The series is deflated using the GDP deflator (base year: 2009), which is
available from https://research.stlouisfed.org/fred2/series/GDPDEF/. This deflated
version is given in Figure 3 (data are in logarithms). The task is to compare a change point
model for the WTI data with the corresponding segmentation for the older German oil price
data, and also to try out several more recent dating algorithms, on which more below.
For ease of reference, the older series along with a segmentation with three regimes is given
in Figure 4 (data are again in logarithms). The three breaks are for the quarters 1973(3),
1979(1) and 1985(1). The first two breaks correspond to two major historical events, the
first oil crisis (the Arab oil embargo following the Yom Kippur war) and the beginning of
the Iranian revolution. The break in 1985(1) may be seen as resulting from demand shifts,
quarrels within OPEC, and the entry of several new suppliers (namely Great Britain, Mexico,
and Norway) in international oil markets (Zeileis et al., 2003).
Repeating the exercise with the newer WTI data and a minimal segment size of 10 quarters,
the BIC now favors a segmentation with 10 regimes. The resulting solution is provided in
the second panel of Figure 5. There is good agreement for the breaks corresponding to major
historical events, here estimated at 1973(4) and 1979(2). Beginning in the second half of the
1990s, there is a gradual trend in the newer series that is not described well by a step function.
Also, the two oil price series differ visibly in the first half of the 1980s, leading to two estimated
change points for the newer series, at 1982(4) and 1985(4). These differences result from the
fact that the older series is a price index while the newer is for a single product; also, there
appear to be exchange rate effects in the older series.
We next compare the least-squares-based solution with two recent methods. The first method
(Matteson and James, 2014) uses ideas from cluster analysis combined with a nonparametric
form of ANOVA based on so-called energy statistics (Rizzo and Székely, 2010). The latter
are functions of distances between statistical observations in Euclidean spaces (and beyond),
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Figure 3: Quarterly spot prices for West Texas Intermediate (WTI). Source: Federal Reserve
Bank of St. Louis (FRED databse).

the name derives from an analogy with Newton’s gravitational potential energy. It should
be noted that this method assesses differences in entire distributions, not just level shifts.
However, there is a variant that assesses only changes in the mean; the relevant settings for
this variant are used below. An implementation is available in the R package ecp (James
and Matteson, 2014). The package offers several methods, here only the algorithm named
e.divisive there is used, a form of hierarchical clustering. The second method is wild binary
segmentation (Fryzlewicz, 2014) (hereafter: WBS), a stochastic algorithm that uses ideas from
the wavelets literature. The setup analyzed in the original paper is (2) with i.i.d. Gaussian
noise. An implementation is available in the R package wbs.
All three procedures require specification of a trimming parameter, for the least-squares ap-
proach and e.divisive this is the minimal segment length (or ‘cluster size’, in the terminology
of the ecp package), details differ from method to method. For e.divisive, the minimal seg-
ment size was again set to 10 quarters, here yielding 9 breaks. For WBS, which does not need
a minimal segment size, the maximum number of breaks was fixed at 10 for comparability
reasons. The solutions are provided in the third and fourth panel of Figure 5. There is good
agreement for the major historical events, while the algorithms differ somewhat for the sec-
ond half of the series. This partly reflects the problems with this part of the series mentioned
above. Overall, WBS tries to adapt to smaller details towards the end of the series. It is also
worth noting that, using the settings recommended by the authors of the software, the WBS
algorithm favors a solution with no fewer than 35 breaks. Clearly, not all of the estimated
breaks will be of economic interest. This appears to be a problem in some financial applica-
tions, where alarms can be frequent with long series. As an example, not all changes identified
in Fryzlewicz (2014) for the S&P 500 index will likely be of practical relevance.
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Figure 4: German oil price data, 1960(1) to 1994(4) (base year: 1991). Data source: German
Federal Statistical Office. Segmentation as in Zeileis et al. (2003).

Figure 5 provides an overall comparison of all solutions. The display highlights similarities
and differences of the solutions obtained from the algorithms. Notably the breakpoints and
e.divisive solutions are very similar. In contrast, wbs is more faithful to the more lively part
towards the end of the series. breakpoints has one further change point in the second half
of the 1990s (namely for the quarter 1997(1)), the other breaks differ, with one exception,
by at most two quarters. For example, the break corresponding to the first oil crisis is in
1973(4) according to breakpoints and in 1974(1) according to e.divisive. For the Iranian
revolution break, the algorithms give 1979(2) and 1979(4), respectively.

4 Dating changes in the volatility of a stock market index

The previous section considered changes in the mean of a time series. It is also possible to
study changes in other characteristics of the data, for example variances or autocorrelations.
With financial time series, for example stock returns, assessing risks is a central issue; both
squared and absolute returns may be seen as measures of risk. Assessing changes in such
transformed returns can be viewed as an indirect check of structural change in GARCH-type
models of volatility.
As a brief empirical illustration, we revisit an example from Andreou and Ghysels (2002).
They consider four stock market indices (FTSE, Hang Seng, Nikkei, S&P500) with an eye on
changes associated with the Asian and Russian financial crises in the second half of the 1990s.
Here we just consider one of these series, the Hang Seng index for the period 1989–01–04 to
2001–10–19, giving T = 3338 observations. For comparability reasons, the data are taken from
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Figure 5: WTI data (top panel) and segmentations obtained from three algorithms: break-
points, e.divisive and wbs.

Datastream. The data for the segmentation algorithm are the Hang Seng absolute returns (for
which more breaks are found than for the more common squared returns). The original paper
documents only the maximal number of breaks used but not the minimal segment size. Here
we use a minimal segment size corresponding to 10% of the length of the series, which should
permit recovery of the segmentation from Andreou and Ghysels (2002). This is only partly
possible, however.
Figure 6 provides a plot of the absolute returns along with two models. The original paper
suggests that a segmentation with three breaks, for the dates 1992-07-03, 1995-01-24 and
1997-08-15, is optimal. The 3-breaks solution found by breakpoints (the dashed line in the
plot) differs, it finds 1995-06-14, 1997-08-15 and 1998-11-30, so only the last break from the
paper is recovered. Also, the breakpoints solution has no break prior to 1995 but a new
break after 1997.
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It is also worth noting that the method finds a further break upon increasing the maximum
number of breaks. Setting the latter to five breaks, a segmentation with four breaks is found.
Interestingly, the new break at 1993-10-01 is before 1995, although not overly close to the 1992-
07-03 break of Andreou and Ghysels (2002). Further experiments with the minimal segment
length (down to 5% of the length of the series) and the admissible number of breaks (up to
10) suggest that the results are quite sensitive to the settings of these parameters. The only
break that is practically always found is for August 1997, it is often estimated at 1997-08-15
and is associated with the Asian financial crisis.
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Figure 6: Segmentation of Hang Seng absolute returns with breakpoints. Dashed line: max-
imal number of breaks 3, minimal segment size 10%. Solid line: maximal number of breaks 5,
minimal segment size 10%.

5 Discussion and outlook

This chapter has illustrated some basic ideas in change point analysis. The exposition was
confined to retrospective methods for univariate time series. (Most of) The methods described
have extensions to regression models (Perron, 2006). Many further topics had to be excluded,
notably the timely topic of on-line monitoring and also structural change in multivariate or
functional data. For on-line monitoring, in some fields referred to as surveillance or ‘quickest
detection’ problems, see the survey by Frisén (2009) and references therein, for an exposition
of associated optimality issues in a financial setting see Shiryaev (2002). Multivariate and

10



functional data are briefly addressed in the recent survey by Horváth and Rice (2014), where
further references may be found.
The literature will likely continue to grow rapidly, for several reasons: The classical methods
are largely confined to linear models fitted via least squares methods. Nonlinear models for
discrete-valued data are needed in some applications, but here the literature is still relatively
small. Also, the growing number of large data sets demands improvements on the algorithmic
side. Unfortunately, many recent methods are not readily available in statistical software,
which to some extent hinders progress. A further big challenge is the unification of this widely
scattered literature.

Computational Details

All results were obtained using R 3.2.4, with the packages strucchange 1.5-1, ecp 2.0.0, and
wbs 1.3, on PCs running Mac OS X, version 10.10.5. Some plots were drawn using the package
ggplot2 2.1.0 (Wickham, 2009).
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