Archäozoologische Untersuchungen der Tierknochen aus Cresta-Cazis (GR) und ihre Bedeutung für die Umwelt-, Ernährungs- und Wirtschaftsgeschichte während der alpinen Bronzezeit

INAUGURALDISSERTATION

zur Erlangung der Würde eines Doktors der Philosophie vorgelegt der Philosophisch-Naturwissenschaftlichen Fakultät der Universität Basel

von

Petra Plüss aus Luzern (LU) und Vordemwald (AG) Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Dr. J. Schibler, Institut für prähistorische und naturwissenschaftliche Archäologie (IPNA)

Dr. C. Becker, Institut für prähistorische Archäologie an der freien Universität Berlin

Prof. Dr. S. Jacomet, Institut für prähistorische und naturwissenschaftliche Archäologie (IPNA)

Basel, den 10. Oktober 2005

Prof. Dr. H.-J. Wirz Dekan

-Inhaltsverzeichnis-

Verzeichnis der Abbildungen

Verzeichnis der Tabellen

GRUNDLAGEN	
1. Einführung	1
1.1. Vorwort	1
1.2. Die Siedlung	2
1.2. 1. Geo- und topografische Lage	2
1.2. 2. Archäologische Siedlungsstrukturen	۷
1.2. 3. Kulturelle Voraussetzungen	2
1.2. 4. Naturräumliche Voraussetzungen	5
1.2. 5. Die Entdeckung	e
2. Methode	e
2.1. Materialgrundlage	6
2.2. Vorgehensweise	7
2.2.1. Tierartenbestimmung	8
2.2.2. Schlachtalteranalyse	8
2.2.3. Geschlechtsbestimmung	10
2.2.4. Osteometrie	11
2.2.5. Pathologisch- anatomische Veränderungen	11
2.2.6. Auswertung der Fragmentierung, Skelettelementverteilung	
und Zerlegungsspuren	12
ERGEBNISSE	
3. Charakterisierung der Tierknochen	14
3.1. Die räumliche Knochenverteilung	14
3.1.1. Vertikale Knochenverteilung	14
3.1.2. Horizontale Knochenverteilung	14
3.2. Charakterisierung der Auffüllschichten	15
3.3. Qualitative und optische Einschätzung der Erhaltungsqualität	
der Knochen	15
3.4. Fragmentierung	16
3.5. Bruchkanten	17
3.6. Verbissspuren	17
3.7. Entsorgung der Tierknochen	18
4. Tierarten	19
4.1. Vorbemerkungen	19
4.2. Haustiere	20
4.2. 1. Einleitung	20
4.2. 2. Hausrind (<i>Bos primigenius</i> f. taurus)	20
4.2.2.1. Anteil am Tierartenspektrum	20
4.2.2.2. Schlachtalter	21
4.2.2.3. Geschlechterzusammensetzung	23
4.2.2.4. Hornzapfen	24

4.2.2.4.a Morphologische Beschreibung	24
4.2.2.4.b Interpretation	25
4.2.2.4.c Horizontale und vertikale Verteilung der	
Hornzapfen im untersuchten Siedlungsabschnitt	27
4.2.2.5. Grösse und Wuchsform	28
4.2.2.5.a Einleitung	28
4.2.2.5.b Grösse	30
4.2.2.5.c Wuchsform	32
4.2.2.6. Pathologisch- anatomische Veränderungen	33
4.2. 3. Hausschaf (<i>Ovis ammon</i> f. aries) und	
Hausziege (<i>Capra aegagrus</i> f. hircus)	36
4.2.3.1. Anteil am Tierartenspektrum	37
4.2.3.2. Schlachtalter	39
4.2.3.3. Hornzapfen	42
4.2.3.3.a Schafe	42
4.2.3.3.b Ziegen	44
4.2.3.3.c Kritische Überlegungen zur Geschlechtsbestimmung	٠.
an Hornzapfen kleiner Wiederkäuer	46
4.2.3.4. Geschlechterzusammensetzung	47
4.2.3.5. Grösse und Wuchsform	47
4.2.3.6. Pathologisch- anatomische Veränderungen	51
4.2. 4. Hausschwein (<i>Sus scrofa</i> f. domestica)	52
4.2.4.1. Anteil am Tierartenspektrum	52
4.2.4.1. After all Herartenspektrum 4.2.4.2. Schlachtalter	53
	54
4.2.4.3. Geschlechterzusammensetzung 4.2.4.4. Grösse und Wuchsform	55
4.2.4.5. Pathologisch- anatomische Veränderungen	60 61
4.2. 5. Haushund (<i>Canis lupus</i> f. familiaris)	
4.2.5.1. Anteil am Tierartenspektrum	62
4.2.5.2. Koprolithen	63
4.2.5.3. Alterszusammensetzung	63
4.2.5.4. Geschlechterverteilung	64
4.2.5.5. Grösse und Wuchsform	64
4.2.5.5.a Übersicht, aktueller Forschungsstand	65
4.2.5.5.b Resultate	66
4.2.5.5.c Diskussion	66
4.2.5.6. Skelettregionverteilung	68
4.2.5.7. Pathologisch- anatomische Veränderungen	69
4.2. 6. Pferdeartige (Equidae spec.)	69
4.3. Wildtiere	71
4.3. 1. Einleitung	71
4.3. 2. Wildrind	71
4.3. 3. Hirsch (Cervus elaphus)	72
4.3. 4. Steinbock (<i>Capra ibex</i>)	73
4.3. 5. Wildschwein (Sus scrofa)	74
4.3. 6. Braunbär (<i>Ursus arctos</i>)	74
4.3. 7. Wolf (Lupus lupus)	75
4.3. 8. Wildkatze (Felis silvestris)	76
4.3. 9. Vögel (<i>Aves</i>)	76
4.3.9.1. Eichelhäher (Garrulus glandarius)	76
4.3.9.2. Kolkrabe (<i>Corvus corax</i>)	77

4.3.9.3. Taubenvögel (Columbiformes)	77
4.3.9.4. Mäusebussard (<i>Buteo buteo</i>)	78
4.3.9.5. Stockente (Anas platyrhynchos)	78
4.3.9.6. Rebhuhn (<i>Perdix perdix</i>)	78
4.3.10. Waldmaus (Apademus silvaticus)	79
4.3.11. Amphibien	79
4.3.12. Landschnecke (<i>Clausiliidae</i>)	79
4.3.13. Diskussion	79
4.4. Menschenknochen	83
5. Tierknochen als Zeugen menschlicher Tätigkeiten	84
5.1. Fragmentierung	84
5.1. 1. Einleitung	84
5.1. 2. Röhrenknochen	86
5.1.2.1. Das vom Verwachsungszeitraum der Epiphysen geprägte	
Fragmentierungsmuster	86
5.1.2.2. Das von der spezifischen Knochenstruktur geprägte	
Fragmentierungsmuster	88
5.1.2.2.a Hausrind	88
5.1.2.2.b Hausschaf/Hausziege	89
5.1.2.2.c Hausschwein	89
5.1.2.2.d Fazit	89
5.1. 3. Plattenknochen	90
5.1.3.1. Mandibula	90
5.1.3.2. Scapula	91
5.1.3.3. Pelvis	92
5.2. Verteilung der Körperregionen	92
5.2. 1. Einleitung	92
5.2. 2. Resultate	93
5.2.2.1. Hausrind	95
5.2.2.2. Hausschaf/Hausziege	96
5.2.2.3. Hausschwein	96
5.2.2.4. Chronologische Veränderungen in der	
Skelettelementverteilung	96
5.2. 3. Kritische Überlegungen zur Körperregionverteilung	97
5.3. Zerlegen und Zubereiten	97
5.3. 1. Hackspuren	98
5.3. 2. Schnittspuren	98
5.3. 3. Schlagpunkte	99
5.4. Brand- und Hitzespuren	99
5.5. Artefakte	101
5.6. Diskussion	103
SYNTHESE	
6. Umwelt-, Ernährungs- und Wirtschaftsgeschichte des Dorfes	106
6.1. Vorwort	106
6.2. Einleitung	106
6.3. Die chronologischen Entwicklungen in der Vieh- und Wildtiernutzung	
auf dem Hintergrund eines kulturellen Wandels	107
6.4. Saisonalität	109
6.5. Ackerland und Weiden	110
6.6. Transhumanz	111

6.6.1. Voraussetzungen6.6.2. Beurteilung aus Sicht der Archäozoologie6.6.3. Fazit				
ZUSAMMENFASSUNG RESUMAZIUN RESSAIUNTO RÉSUMÉ	1 1	115 115 116 116		
Literaturverzeichnis				
Verzeichnis der Literatur aus de	em Internet			
Literaturverzeichnis zu den Abb	ildungen			
Anhang Abkürzungsverzeichnis Tabellen Tabelle II Tabelle III Tabelle IVI Tabelle VI Tabelle VI Tabelle VII Tabelle VIII	 : Code-Listen (Alter) : Referenzindividuen, Berechnung der Widerristhöhe : Tierartenliste : Häufigkeit (n) der verschiedenen Skelettelemente : Masse : Pathologisch- anatomische Veränderungen : Artefakte : Vergleichssiedlungen, Vergleich der Tierartenzusammensetzung 	à		
Abbildungen Abbildung I Abbildung II Abbildung III Abbildung IV Fotos	 : Fragmentanalyse : Osteometrie : chronologische Schwankungen der Fleisch- bzw. Skelettregionverteilung : Schlachtspuren 			
Foto I Foto II Foto III Foto IV Foto V Karten	 : Beispiele für die Erhaltung der Tierknochen : Beispiele für Schlachtspuren : Wuchsformen : Pathologisch- anatomische Veränderungen : Artefakte 			
Karte I Karte II	: Vegetation während des Subboreals: Vergleichssiedlungen			

Verzeichnis der Abbildungen

		Geographische Lage der Siedlung Cresta-Cazis	2
		Topographische Lage der Siedlung Cresta-Cazis	
Abb.	3:	Cresta-Cazis. Zahnalter- versus Epiphysenverschlussanalyse	9
Abb.	4:	Cresta-Cazis. Anteil loser Zähne am gesamten osteologischen Fundgut	1:
Abb.	5:	Cresta-Cazis. Alte Bruchkanten versus neue	1'
Abb.	6:	Cresta-Cazis. Häufigkeit der Verbissspuren an Knochen im Vergleich	
		mit den Hundeanteilen	18
Abb.	7:	Cresta-Cazis. Hausrind. Knochenanteile am gesamten Tierartenspektrum	
		in den einzelnen Siedlungsphasen (P 1-14)	20
Abb.	8:	Cresta-Cazis. Hausrind. Altersverteilung in der Früh-, Mittel- und Spätbronzezeit	21
Abb.	9:	Cresta-Cazis. Hausrind. Zusammenhang zwischen Altersverteilung	
		und Anteil am Tierartenspektrum	22
Abb.	10:	Hausrind. Geschlechterzusammensetzung in verschiedenen	
		bronzezeitlichen Fundstellen anhand der Osteometrie von Metapodien	24
Abb.	11:	Cresta-Cazis. Hausrind. Hack- und Schnittspuren an Hornzapfen und	
		anhaftenden Schädelfragmenten	25
Abb.	12:	Cresta-Cazis. Hausrind. Verteilung der Hornzapfenfragmente auf die	
		verschiedenen Schichten	28
		Hausrind. Grössenreduktion im Laufe der Bronzezeit	31
Abb.	14:	Cresta-Cazis. Hausrind. Auswertung der Grössenindizes (LSI)	
		für Plana 1- 14 zusammengefasst	32
Abb.	15:	Cresta-Cazis. Hausrind. Auswertung der Grössenindizes (LSI) für die	2.2
411	1.0	Früh-, Mittel- und Spätbronzezeit	32
Abb.	16:	Cresta-Cazis. Hausschaf/Hausziege. Knochenanteile am gesamten	27
A 1.1.	17.	Tierartenspektrum in den einzelnen Siedlungsphasen (P 1-14)	37
		Cresta-Cazis. Hausschaf: Hausziege	38 40
		Cresta-Cazis. Hausschaf/Hausziege. Vereinte Altersanalyse Blasbälge aus der Haut kleiner Hauswiederkäuer	41
		Cresta-Cazis. Hausschaf/Hausziege vereint. Chronologische	41
AUU.	20.	Veränderungen in der Schlachtalterzusammensetzung	41
۸bb	21.	Cresta-Cazis. Hausschaf. Hornzapfenreduktion bei den Weibchen	43
		Cresta-Cazis. Hausschaf. Typische Hackspuren an den Hornzapfen von Widdern	44
		Cresta-Cazis. Hausziege. Identische Hackspuren an Hornzapfen und	
1100.		anhaftenden Schädelfragmenten bei Weibchen und Männchen	46
Abb.	24:	Cresta-Cazis. Hausziege. Artefakte aus Ziegenhornzapfen	46
		Hausschaf. Vergleich der Wuchsformen in verschiedenen Gebieten der Alpen	49
		Cresta-Cazis. Wuchsformveränderungen bei den kleinen Wiederkäuern	
		und speziell bei den Schafen	50
Abb.	27:	Cresta-Cazis. Veränderungen der Wuchsform im Laufe der Bronzezeit	50
		Cresta-Cazis. Hausschwein. Knochenanteile am gesamten Tierarten-	
		spektrum in den einzelnen Siedlungsphasen (P1- 14)	53
Abb.	29:	Cresta-Cazis. Hausschwein. Altersverteilung in der Früh-, Mittel- und Spätbronzezeit	53
		Cresta-Cazis. Hausschwein. Geschlechterverteilung in den einzelnen Schichten	55
Abb.	31:	Haus- und Wildschwein. Vergleich der Körperproportionen	
		in verschiedenen Fundstellen	56
Abb.	32:	Cresta-Cazis. Suidae. Auswerung der Grössenindizes (LSI) für	
		Planum 1- 14 zusammengefasst	57
Abb.	33:	Cresta-Cazis. Suidae. Auswertung der Grössenindizes für die Früh-,	
		Mittel- und Spätbronzezeit	58
		Cresta-Cazis. Haushund. Schnittspuren am Thorakalrand der Scapula	63
Abb.	35:	Cresta-Cazis. Vermutlich Haushund. Koprolith und "Kot-Patina" an	
411	2.	Den Knochen kleiner Hauswiederkäuer	63
		Haushund. Grössenvergleich	66
		Haushund. Schematischer Vergleich der Grösse und Wuchsform	67
		Haushund. Körperregionverteilung	68
ADD.	39 :	Taube. Ulna mit Schnittspuren	78

Abb. 40: Klimakurve. Zusammenhang zwischen Klima und Jagdtätigkeit?	82
Abb. 41: Schematische Darstellung der Faktoren, welche die Fragmentierung	
von Knochen beeinflussen, und ihrer Abhängigkeiten untereinander	85
Abb. 42: Cresta-Cazis. Das vom Verwachsungszeitpunkt der Epiphysen geprägte	
Fragmentierungsmuster A bei Hausrind, Hausschaf/Hausziege und Hausschwein	87
Abb. 43: Cresta-Cazis. Das von den spezifischen Knocheneigenschaften geprägte	
Fragmentierungsmuster B bei Hausrind, Hausschaf/Hausziege und Hausschwein	88
Abb. 44: Cresta-Cazis. Hausrind. Vergleich des Fragmentierungsmusters B für	
die beiden Stylopodiumelemente Femur und Humerus separat	89
Abb. 45: Cresta-Cazis. Hausrind. Einfluss der Erhaltung auf die Fragmentanalyse A	90
Abb. 46: Cresta-Cazis. Fragmentierung der Mandibula bei Hausrind,	
Hausschaf/Hausziege und Hausschwein	91
Abb. 48: Cresta-Cazis. Fragmentierung der Scapula bei Hausrind,	
Hausschaf/Hausziege und Hausschwein	91
Abb. 49: Cresta-Cazis. Fragmentierung des Pelvis bei Hausrind,	
Hausschaf/Hausziege und Hausschwein	92
Abb. 50: Überblick: Einflüsse auf die Körperregionverteilung	93
Abb. 51: Cresta-Cazis. Fleischregionverteilung (Planum 1- 14 zusammengefasst)	
bei Hausrind, Hausschaf/Hausziege und Hausschwein	102
Abb. 52: Cresta-Cazis. Skelettregionverteilung (Planum 1- 14 zusammengefasst)	
bei Hausrind, Hausschaf/Hausziege und Hausschwein	103
Abb. 53: Cresta-Cazis. Relative Häufigkeit der Schnitt- und Hackspuren an	
den verschiedenen Skelettelementen bei Hausrind, Hausschaf/Hausziege	
und Hausschwein	98
Abb. 54: Cresta-Cazis. Totaler Anteil der Fragmente mit Brandspuren pro Schicht	100
Abb. 55: Cresta-Cazis. Artefakt aus der Tibia eines Schafes oder einer Ziege	102
Abb. 56: Cresta-Cazis. Verschiedene anthropogen verursachte Spuren an den Knochen	
von Hausrind, Hausschaf/Hausziege und Hausschwein im Vergleich	104
Abb. 57: Zum Lufttrocknen aufgehängte Fleischstücke	104
Abb. 58: Cresta-Cazis. Veränderungen in der Tierartenzusammensetzung von	
der Früh- zur Spätbronzezeit	108
Verzeichnis der Tabellen	
Tab. 1: Cresta-Cazis. Übersicht über die ausgewählten Plana bzw. Abstiche	7
Tab. 2: Cresta-Cazis. Hausrind. Widerristhöhen	30
Tab. 3: Cresta-Cazis. Hausrind. Quantitative Auswertung der pathologisch-	26
anatomisch veränderten Knochen	36
Tab. 4: Cresta-Cazis. Das Verhältnis von Hausschaf zu Hausziege	38
Tab. 5: Hausschaf. Vergleich der Wuchsformen in verschiedenen Fundstellen	48
Tab. 6: Cresta-Cazis. Hausschaf/Hausziege. Quantitative Auswertung der	52
pathologisch- anatomisch veränderten Knochen	52
Tab. 7: Cresta-Cazis. Hausschwein. Anzahl Fragmente pro Altersstufe und Geschlecht	54
Tab. 8: Cresta-Cazis. Suidae ohne sichere Wildschweine. Vergleich einiger	
Masse am postcranialen Skelett aus verschiedenen Siedlungsperioden	57
Tab. 9: Cresta-Cazis. Suidae. Quantitative Auswertung der pathologisch-	<i>(</i> 1
anatomisch veränderten Knochen	61
Tab.10: Cresta-Cazis. Metrische Unterschiede zwischen Wolf und Haushund	62
Tab.11: Cresta-Cazis. Auflistung der von früheren Autoren benutzten	
"Morphotypen" bei der Beschreibung der bronzezeitlichen Haushunde	64
Tab.12: Cresta-Cazis. Equidae. Massvergleich	70
Tab.13: Cresta-Cazis. Einteilung der verschiedenen Brandspurtypen	100

GRUNDLAGEN

1. EINFÜHRUNG

1.1. Vorwort

Die aktuelle archäozoologische Datengrundlage aus Schweizer Bronzezeitstationen muss als mager und vor allem als lückenhaft bezeichnet werden¹. Während das Neolithikum durch rund 120 publizierte Tierknochenkomplexe repräsentiert ist, beläuft sich ihre Anzahl für die bronzezeitlichen Epochen gerade einmal auf gut einen Drittel davon. Die Forschung konzentrierte sich bis vor kurzem sehr einseitig auf die populären, in der Regel ausgezeichnet erhaltenen, Reste der Seeufersiedlungen, die zum grössten Teil in die Spätbronzezeit datieren. Deshalb mangelt es generell an Bearbeitungen von mittel- und frühbronzezeitlichen Fundstellen und von solchen mit Trockenbodenerhaltung, insbesondere aus dem alpinen Raum. Im Kanton Graubünden wurde bisher lediglich von vier bronzezeitlichen Fundorten die Fauna ausgewertet und veröffentlicht (Karte II und Tabelle VIII im Anhang)². Den Arbeiten über den Westalpenraum insbesondere von Chaix sowie der gesamtheitlichen Betrachtung über den Ostalpenraum von Pucher³ entnimmt man, dass die Bronzezeit auch da spärlich vertreten ist. Ganz anders sieht die Situation im benachbarten Italien aus. Das Südtirol und Trentino gehören dank den langjährigen Untersuchungen von Riedel und anderen⁴ zum besterforschten Teil der Alpen aus dieser Epoche, was die Tierknochen betrifft. Der besondere Stellenwert der archäozoologischen Bronzezeitforschung im Alpenraum liegt eigentlich auf der Hand, setzt doch kurz vor und während dieser Periode die erste intensive Besiedlung der Gebirgstäler ein⁵. Lange ging man davon aus, dass die systematische Erschliessung dieses Siedlungsraumes eng und primär an die Erzgewinnung gebunden ist. Archäozoologische und -botanische Untersuchungen zeigten jedoch, dass dieses einseitige Bild relativiert beziehungsweise differenziert werden muss. Die Land- und Viehwirtschaft scheint bei der demographischen Ausbreitung in alpine Gegenden von essentieller Bedeutung gewesen zu sein.

Die Alpen sind kein einheitlicher und nach aussen abgeschirmter Natur-, Lebens- und Siedlungsraum. Die Wurzeln des für die Gegenwart charakteristischen Wechselspiels aus trennend und verbindend zwischen Gebirge und benachbarten Niederungsgebieten reichen bis in prähistorische Zeiten zurück und können auch mittels archäozoologischen Befunden⁶ aufgezeigt werden.

Mit Cresta-Cazis kommt nun eine bezogen auf die Tierknochen umfangreiche und ergiebige alpine Station hinzu, die zu Gegenüberstellungen mit den jeweils für sich alleine behandelten Resultaten aus der näheren Umgebung oder aus weiter entfernten Gebieten der Alpen und dem angrenzenden Vorland herausfordert.

¹ Schibler u. Chaix 1995, S. 103, Schibler u. Studer 1998, S. 171.

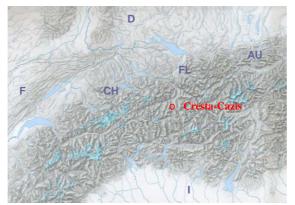
² Rüeger 1942, Würgler 1962, Kaufmann 1983, Rageth 1998 (Auswertung der Tierknochen: A. Rehazek).

³ Pucher 1994.

⁴ Zum Beispiel Cavall, Clark, Fedele, Gamble, Barman, Rizzi, Tacciati.

⁵ Natürlich wurden Bergregionen schon früher aufgesucht und bewohnt, neu ist die höhere Siedlungsdichte.

⁶ Als Beispiel sei die Entwicklung der Viehwirtschaft auf dem Hintergrund des kulturellen Wandels (Kapitel 6.3.) genannt.


Eine breitgefächerte Sammlung von archäozoologischen Rohdaten, wie sie unter anderem mit der vorgelegten Arbeit für Cresta-Cazis angestrebt wurde, ist die Voraussetzung dafür, den zukünftigen Erforscherinnen und Erforscher der alpinen Bronzezeitfauna eine solide Vergleichsgrundlage an die Hand geben zu können.

Das Manuskript ist wie folgt aufgebaut: Nach der Besprechung der Grundlagen (allgemeine Voraussetzungen und angewendete Methoden) werden in einem zweiten Block die Ergebnisse vorgestellt. Dabei kommt die Sprache als erstes auf den Zustand des Untersuchungsmaterials, die Knochen. Es folgt eine detaillierte Diskussion der wirtschaftlichen Bedeutung der einzelnen Tierarten und schliesslich werden Themenkreise aufgegriffen, welche sich mit den Zusammenhängen zwischen menschlichen Tätigkeiten und den Knochen selbst, bzw. den an ihnen gefundenen Spuren, auseinandersetzen. Im dritten Teil, der Synthese, werden die zusammengefassten archäozoologischen Erkenntnisse mit denen weiterer Forschungsrichtungen (Archäologie, Metallurgie, Ökologie, usw.) verknüpft und Interpretationen sowie Rekonstruktionen für die sich abzeichnenden Veränderungen im ökonomischen Verhalten der Einwohnergemeinschaft angeboten.

1.2. Die Siedlung

1.2.1. Geo- und topografische Lage.

In der nördlichsten Talschaft des Hinterrheintals (Domleschg-Heinzenberg) erstreckt sich am Fuss des Heinzenbergs ein Höhenzug von Thusis bis nach Realta. Er verläuft parallel zum Hinterrhein und ist durch die Erosionswirkungen von Wildbächen mehrfach unterteilt. Auf **A**

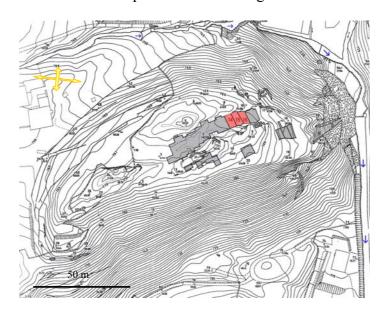



Abb.1: Geographische Lage der Siedlung Cresta-Cazis. A Nach Reliefgrundkarte der Alpen, aus Tiroler Atlas.
 AU: Österreich, CH: Schweiz, D: Deutschland, F: Frankreich, FL: Fürstentum Liechtenstein, I: Italien B
 Crestahügel (roter Pfeil) im Domleschg-Heinzenbergtal. Sicht von Nordosten in Richtung Südwesten.

seinem nördlichsten Sporn, dem Crestahügel bei Cazis, liegt 70- 100 m über der Talsohle die bronzezeitliche Siedlung Cresta-Cazis (Abb.1).

Die Abhänge der Cresta im Osten, Norden und Westen sind sehr steil, während der Südhang in einer sanften Neigung ausläuft. Auffallende Geländeerscheinungen des Wohnhügels, die man auch an anderen Stellen des Höhenzugs antrifft, sind zwei schluchtartige Felsspalten, die sich in nordsüdlicher Richtung in das Hügelplateau eingraben (Abb.2). Ihre Entstehung lässt sich auf die Einwirkung von Schmelzwässern entlang einer das Tal überdeckenden Gletscherzungezurückführen⁷. Die verblüffende Tatsache, dass die ersten Siedler gerade diese Felsspalten als ihre Wohnstätte ausgesucht haben, wird meistens mit einem ausgeprägten Schutzbedürfnis, beziehungsweise mit einer strategisch bedingten Motivation in Verbindung gebracht. Die frühbronzezeitlichen Gehniveaus lagen teilweise bis zu acht Meter tief unterhalb des Plateaubodens bei einer Spaltenbreite von ungefähr sieben Metern.

Abb.2: Topographische Lage der Siedlung Cresta-Cazis. Kurvenplan der Cresta. Ausgegrabene Siedlungsflächen in der Zentral- und Nordspalte, sowie auf dem östlichen Plateauareal grau unterlegt. Rosa unterlegt: Felder 14, 15 und 16, aus denen die, in der vorliegenden Arbeit untersuchten, Knochen stammen. Aufnahme (1962/1963) und Ausarbeitung (1964) durch A. Wildberger.

Die Cresta bei Cazis liegt direkt an einer der wichtigsten Nordsüdrouten durch die Alpen. Diese führt von Chur über den 2065 m hohen San Bernardino Pass bis nach Bellinzona im Tessin und verbindet das nördliche mit dem südlichen Alpenvorland. Einzelfunde belegen eine Begehung bereits zur Bronzezeit und sind deshalb deutliche Hinweise auf die Mobilität der damaligen Bevölkerung. Nach Della Casa⁸ kann man sich die Organisation der Besiedlung der Talschaft Domleschg/Heinzenberg etwa so vorstellen: Siedlungen in Form kleinerer dörflicher Einheiten (z.B. Cresta-Cazis oder Tomils) befanden sich im Bereich der günstigen Böden und in klimatisch bevorzugter Lage (vgl. Karte I oder Kapitel 1.2.4.). Daneben existierten Stationen mit spezifischer, teilweise strategischer Funktion (z.B. Scharans Spundas oder der Burghügel Hohen Rätien am Eingang zur Viamala-Schlucht). Bei den Felsbildern auf Crap Carschenna lässt sich ein zentraler, die ganze Talschaft überragender Ort mit kultischer Funktion vermuten.

-

⁷ Interpretation von H. Jäckli in: Wyss 2002, S. 17.

⁸ Della Casa 1998, S. 369.

1.2.2. Archäologische Siedlungsstrukturen.

Die besonders markante zentrale Felsspalte auf der Cresta ist ca. 70 m lang. Wie es die Topographie vorschreibt, wurde die Siedlung als einzeiliges Reihendorf innerhalb der Spalte angelegt. Das gegen Norden zu abfallende Gelände glichen die Erbauer mit Terrassierungsmäuerchen aus. Die Siedlung wurde, aufgrund von mehrfachen Feuersbrünsten oder möglicherweise infolge des Bedürfnisses nach mehr Sonnenlicht oder um den Baugrund längerfristig auszuebnen, regelmässig erneuert oder neu aufgebaut (kontinuierliche Überdeckungen mit Auffüllschichten, 10- 205 cm mächtig). Innerhalb der Hausgrundrisse konnte eine sehr detaillierte Abfolge von Siedlungsschichten ausgegraben werden. In der weniger ausgeprägten nördlichen Felsspalte legte man aus Zeitgründen nur ein elf Meter langes Teilstück des bebauten Terrains frei. Trotz ähnlicher Ausgangslage wie in der Zentralspalte zeichnen sich hier deutliche Unterschiede in der Nutzungsweise der Gebäude ab. Neben den üblichen Wohnhäusern deuten in der nördlichen Felsspalte viele verschiedene pyrotechnische Anlagen auf die Ausführung gewerblicher (metallverarbeitender) Tätigkeiten hin. Schliesslich stiess man auf Konstruktionen, die womöglich eine Interpretation als Speicherbauten in Erwägung ziehen lassen.

Im östlichen Bereich des Plateaus reduzierten sich die Ausgrabungen auf einzelne kleine Areale. Man fand Überreste von Häusern, die an eine Felskuppe angelehnt und abgehoben gebaut waren. Die Zeitstellung und Interpretation der Befunde dieser Ostfelder ist unsicher. Sowohl bei den Nord- als auch bei den Ostfeldern musste hauptsächlich aus finanziellen Gründen auf eine ausführliche archäologische Auswertung verzichtet werden⁹. Anhand des reichen Fundmaterials und der C 14- Daten zu schliessen, war die Siedlung ab der Früh- über die Mittel- bis zur Spätbronzezeit ohne grössere Unterbrüche bewohnt, d.h. von ungefähr 2200 v. Chr. bis 800 v. Chr. 10. Hinweise auf Brandrodung 11 machen eine menschliche Gegenwart auf dem Wohnhügel bereits vor den bronzezeitlichen Siedlern wahrscheinlich. Fest steht, dass die anhand von Radiokarbon-Datierungen ins Neolithikum gestellten Schichten keine datierenden Funde enthielten und an keiner Stelle der natürlich gewachsene Boden erreicht wurde. Inwiefern in der frühen Latènezeit von Siedlungstätigkeit gesprochen werden darf, muss zum heutigen Zeitpunkt offen bleiben. Von der mittleren Latène- bis zur Römerzeit kamen nur vereinzelt Funde (keine Befunde) zum Vorschein.

1.2.3. Kulturelle Voraussetzungen.

Aus Untersuchungen der Keramik¹² geht hervor, dass während der Frühbronzezeit der Austausch zwischen den Siedlern des inneralpinen Raums (v.a. in Nordbünden, Unterengadin, Vinschgau, ev. St. Galler Rheintal und Liechtenstein) rege war und der Kontakt zum Flachland eher eingeschränkt. Ab der Mittelbronzezeit stellte Murbach-Wende im keramischen Fundgut einen intensivierten Kontakt mit anderen Bevölkerungsgruppen fest, der während der Spätbronzezeit zu einer Vernachlässigung der Weiterentwicklung der eigenen Keramiktradition führte. Je nach Entfernung der Bündner Siedlungen von den beiden Bezugsquellen für fremde Keramikformen (Mittelland/Süddeutschland, Südtirol) machen sich die verschiedenen Kultureinflüsse mehr oder weniger stark bemerkbar. Murbach-Wende folgerte in ihrer Arbeit über die Keramik aus Cresta-Cazis: "Menschen aus beiden Richtungen haben wohl die Traditionen zur Herstellung der fremden Keramikstile mitgebracht und vermutlich an Ort praktiziert. Die eingewanderten Personen lebten wahrscheinlich in friedlicher Art und Weise mit der ansässigen Bevölkerung zusammen".

⁹ Wyss 2002, S.230.

¹⁰ Die Datierung der frühesten (älterbronzezeitlichen) Niederlassungen ist unsicher und wird zwischen 2400 und 2000 v.Chr. angesetzt. Wyss 2002, S. 223.

¹¹ Wyss 2002, S.27.

¹² Murbach-Wende, 2001.

1.2.4. Naturräumliche Voraussetzungen.

Über den Klimaverlauf während der schweizerischen Bronzezeit lassen sich zwar keine endgültigen Aussagen machen, dennoch liefern die Rekonstruktionsvorschläge wertvolle Hinweise darauf, in welchem Masse die Umweltbedingungen das Handeln der Menschen von damals beeinflusst und geprägt haben könnte. Nach dem heutigen Stand der Forschung fällt die Frühbronzezeit in eine lange, bis in die frühe Mittelbronzezeit andauernde, Warmphase. Danach stellte sich eine kühlere, niederschlagsreichere Phase ein, die beim Übergang von der Mittel- zur Spätbronzezeit durch eine erneute Erwärmung abgelöst wurde, welche in der mittleren Spätbronzezeit ihren Höhepunkt fand. Um 850/800 v. Chr. (Ende Spätbronzezeit/Anfang Eisenzeit) verschlechterte sich das Klima wiederum zunehmend¹³. Im Kapitel 4.3.13. wird darauf eingegangen, inwieweit sich die Klima Oszillationen in der Viehund Jagdwirtschaft niederschlugen beziehungsweise im osteologischen Material fassbar sind. Heute gehört die breite, von sanften Abhängen aber auch steilen Felsformationen (bis ca. 2600 m ü.M.) flankierte Talschaft Domleschg-Heinzenberg mit weniger als 1000 mm Niederschlag im Jahr zur "mittelbündnerischen Trockeninsel"¹⁴. Die milden durchschnittlichen Jahrestemperaturen (Thusis, 710 m ü.M: 8-9°C) ermöglichen ohne weiteres Obst- und Ackerbau bis in Höhen von 1300 m ü.M.. Die zur agrarwirtschaftlichen Nutzung geeignetsten Böden konzentrieren sich auf die Schwemmfächer und Ablagerungen (Alluvionen) des Hinterrheins in der Talsohle. Diese dürften während der Bronzezeit höchstens befristet erschliessbar gewesen sein, weil der Hinterrhein noch als mäandrierender, ungezähmter Fluss das Tal durchfloss. Als Alternative zur Nutzung der Talsohle könnte man sich ein Urbarmachen der Talflanken durch Rodung und ev. Terrassierung vorstellen (vgl. Kapitel 6.5.). Die pollenanalytischen Profile aus dem Bergsee Lai da Vons bei Andeer, 1991 m ü.M., bezeugt bereits um ca. 3000 v. Chr. menschliche Aktivitäten im Hinterrheintal¹⁵. Lokale Untersuchungen zu Pollen- und pflanzlichen Makroresten sowie zu möglichen Holzkohle-Horizonten wurden leider nicht durchgeführt, so dass über die bronzezeitlichen anthropozoogenen Vegetationsveränderungen auf dem Wohnhügel Cresta und in der ihn umgebenden Talschaft bis heute keine Details bekannt sind. Nichtsdestotrotz haben archäobotanische Analysen in nahegelegenen Talschaften (Unter- und Oberengadin) ergeben, dass dort während der frühen Bronzezeit (um 2000 v. Chr.) markante Umgestaltungen der Landschaft durch die Menschen auftraten und Getreide angebaut wurde ¹⁶. Die bronzezeitlichen Vegetationsverhältnisse sind mit den potentiell-natürlichen der Gegenwart zu vergleichen¹⁷. Die Gegend von Domleschg-Heinzenberg gehörte wie heute zur hochmontanen Stufe der kontinentalen Zentralalpen (Karte I im Anhang). Buchen/Tannen-Tannen- oder Tannen/Fichtenwälder dominierten die Landschaft. Neben lokalen Vorkommen von Trocken- und Steppenrasen war die Waldföhre weit verbreitet. Eine vergleichbare Vegetation traf man im unteren und mittleren Rhonetal. Vorderrheintal. Albulatal. Unterengadin und im oberen Vintschgau an. Im Detail betrachtet, weisen sowohl die Westals auch die Ostseite der Talschaft Heinzenberg-Domleschg typische klimatische Eigenheiten auf. Heinzenberg im Westen gilt mit den vielen Tümpeln in hoch liegenden Hangzonen und einem dichten Netz von Gewässern als eher feuchtes, für die Viehwirtschaft geeignetes Gelände. Domleschg im Osten bietet währenddessen dank seiner bevorzugten Position bezüglich der Sonneneinstrahlung und der raschen Entwässerung durch mehrere, in die Steilhänge eingeschnittene Schluchten, günstige Bedingungen für den Ackerbau¹⁸.

.

¹³ Der hier einleitend knapp vorgestellte Klimaverlauf während der Schweizerischen Bronzezeit kann im SPM-Band III (Hochuli et al 1998) im Detail nachgelesen werden: Magny et al. 1998, S. 137. Siehe auch Haas et al. 1998.

¹⁴ Della Casa 2002, S. 16 ff.

¹⁵ Burga 1980, Frau Dr. Lucia Wick (schriftliche Mitteilung).

¹⁶ Zoller et al. 1996, Jacomet et al. 1999, Gobet u. Hochuli 2004.

¹⁷ Burga u. Perret 1998, S. 656.

¹⁸ Wyss 2002, S. 13.

Der Crestahügel mit der bronzezeitlichen Siedlung liegt auf der Westseite der Talschaft zwischen dem Heinzenberg und dem Hinterrhein. Entlang der Sohle seines Westhanges und schliesslich, vermischt mit anderen Gewässern, fliesst ein kleinerer Bach um den nödlichen Sporn des Crestahügels herum in den Hinterrhein. Er kann, neben der Sammlung von Regenwasser, für die Wasserversorgung der Dorfbewohner in Betracht gezogen werden.

1.2.5. Die Entdeckung¹⁹.

Einer seiner Geländegänge führte den Kreisförster Walo Burkart 1941 auf die Cresta bei Cazis. Da er sich für die urgeschichtlichen Alpenbewohner interessierte und bereits einige ihrer Hinterlassenschaften entdeckt hatte, fiel diese spezielle Lokalität seinem geübten Blick sofort auf. Ein Jahr später führte er eine erste archäologische Sondierung auf dem Hügelplateau durch und wurde sofort fündig. Man entschloss sich, eine Grabung vorzunehmen. Die Resultate zeigten bald, dass diese Fundstelle ein enormes Potential für die Forschung barg, deshalb wurde der Archäologe Emil Vogt vom Landesmuseum in Zürich beauftragt, weitere Grabungskampagnen zu unternehmen. Von 1947 bis 1971 fanden unter seiner Leitung auf der Cresta jedes zweite Jahr während August und September Ausgrabungen statt.

2. METHODE

2.1. Materialgrundlage

Das gesamte Tierknochenmaterial aus Cresta-Cazis, das aus den Grabungskampagnen von 1947- 1970 geborgen werden konnte, beläuft sich schätzungsweise auf über 300 000 Fragmente (ca. 2 000 kg). Die Bearbeitung dieser Menge hätte den Rahmen einer Dissertation gesprengt, deshalb einigte man sich, in Absprache mit dem für die archäologische Auswertung betrauten Archäologen René Wyss und mit der für die Bearbeitung der Siedlungskeramik verantwortlichen Archäologin Ina Murbach-Wende, auf eine repräsentative Auswahl. Die entscheidendsten Kriterien waren einerseits die Qualität der archäologischen Dokumentation und andererseits die Auswirkungen einer langen Lagerungszeit auf die Knochenensembels. Da bei der Fundstelle Cresta-Cazis eine aussergewöhnlich lange, über 1200 Jahre währende, Siedlungskontinuität vorliegt, wurde bei der Materialauslese Wert darauf gelegt, die ganze Bandbreite der bronzezeitlichen Siedlungshorizonte abzudecken. Die dafür am besten geeignete Stelle des ausgegrabenen Areals boten die nördlichen Felder (insbesondere die Felder 14- 16) der zentralen Felsspalte (vgl. Abb.2). Von den unter der grossen Auffüllung liegenden, archäologisch gut dokumentierten Plana der frühen und mittleren Frühbronzezeit wurden alle berücksichtigt. Dagegen erforderten ausgrabungs-, lagerungs- oder zeittechnische Gründe bei den darauffolgenden Phasen teilweise eine Beschränkung auf Stichproben. Es wurden nur Schichten ausgewählt, deren Datierung sowohl auf Befund- als auch auf Fund-(Keramik) ebene übereinstimmten. Die anfängliche Hoffnung, Vergleiche zwischen Knochen aus einem Haus und denen aus anderen zeitgleichen Häusern beziehungsweise zwischen Knochen aus dem Hausinnern und solchen ausserhalb eines Hauses anzustellen, musste aufgegeben werden (vgl. Kapitel 3.1.2.).

_

¹⁹ Erste Erwähnung der Fundstelle in: Neue Bündner Zeitung vom 18. März 1943. Die Entdeckungsgeschichte ist ausführlich nachzulesen in Wyss 2002, S. 9.

Mit einer auf diese Weise theoretisch erstellten Liste der in Frage kommenden Fundkomplexe begab ich mich ins Knochenlager der Universität Irchel in Zürich, wo die Tierknochen von Cresta-Cazis heute aufbewahrt sind. Sie kamen in Holzkisten verpackt mit der Bahn in Zürich an. In den rund drei Jahrzehnten, die seitdem vergangen sind, hat es mindestens eine Umlagerungsaktion gegeben, bei der u.a. die Holzkisten durch Kunststoffboxen (mit Grabungsjahr und selten mit Feld- oder Abstichnummern beschriftet) ersetzt wurden. Trotz dieser Massnahme bot das Heraussuchen der gewünschten Abstiche einige Tücken: meistens waren einige Knochen zusammen mit einem Vermerk der exakten Abstichnummer in unbeschriftetes Zeitungspapier eingewickelt. Eine Kunststoffbox fasste 20 bis 30 solcher "Knochenpäckchen". Um an die Informationen über Schicht- und Feldzugehörigkeit seines Inhalts heranzukommen, musste jedes einzelne Päckchen geöffnet werden. In den Holzkisten waren manchmal die Knochen aus verschiedenen Abstichen einzig durch einige Lagen Zeitungspapier voneinander getrennt. Mäuse wie auch Gewicht und Kanten der Knochen selbst machten die labile Separierungsschicht bald funktionslos und führten unweigerlich zu Materialvermischungen. Die theoretisch aufgestellte Selektion erfuhr dadurch in der Praxis weitere Änderungen und Anpassungen. Die schlussendlich für die archäozoologische Bearbeitung ausgewählten Plana und Abstiche sind in Tab.1 ersichtlich.

	F 16		F 15		F 14		Stratigraphie nach R. Wyss	Stratigraphie nach I. Murbach-Wende
Planum 15								Kh IV
Planum 14	A 2	(1311)	A 3,4	(953)	A 3	(-)	SBZ	(1300-400 BC)
Planum 13							(1350 bzw. 1100-800?)	
Planum 12	A 4	(2089)			A 6	(1187)	MBZ	Kh III
Planum 11	A 5	(93)	A 5	(648)	A 7	(309)	(1800-1550 BC)	(1630-1300 BC)
Planum 10	A 7 u. 6	(312)			A 8	(351)	(1800-1330 BC)	
Planum 9								
Planum 8	A 9	(2228)			A 10	(379)	jüngere FBZ	Kh II
Planum 7							-1800 BC)	(1800-1700 BC)
Planum 6								
Planum 5b 5a	A 12	(60)	A 10 A 11	(591)	A 13 A 14	(387)		
Planum 4	A 13	(777)	A 12	(367)	A 16 u. 15	(446)		Kh I
Planum 3c			A 13		A 17		ältere FBZ	(1980-1800 BC)
3b	A 14	(1404)	A 14	(1069)	A 18	(1713)	(2400 bzw. 2000-	
3a			A 15		A 20/19			
Planum 2	A 15	(7)	A 16	(1194)				
Planum 1	A 17	(680)	A 17	(64)	A 21	(95)		

Tab. 1: Cresta-Cazis. Übersicht über die ausgewählten Plana bzw. Abstiche in den Feldern 14- 16 (gelb untermalt). A: Abstich, F: Feld, in Klammer: Gesamtanzahl der Knochen (Bestimmte + Unbestimmte), Kh: Keramikhorizont, gerastert: "grosse Einfüllschicht" (siehe Kapitel 3.2.).

2.2. Vorgehensweise

Die Bearbeitung der Tierknochen gliederte sich in zwei Hauptphasen: die erste beinhaltete die morphologische Bestimmung und Datenerfassung des Knochenmaterials, als nächster Schritt folgte die statistische Auswertung der erfassten Daten und deren Interpretation. Mittels einer Spezialsoftware²⁰ wurden für jeden einzelnen Knochen folgende Aufnahmekriterien erfasst:

Fundadresse, Tierart, Skeletteil, Fragmenttyp, Bruchkantenzustand, Erhaltung, Schlachtalter, Geschlecht, Gewicht, Tierfrassspuren, anthropogene Spuren (Feuereinwirkungen, Schlachtspuren usw.), pathologisch-anatomische Veränderungen und osteologische Masse.

_

²⁰ Schibler 1998.

2.2.1. Tierartenbestimmung.

Für die morphologische Bestimmung der Tierarten stand die Vergleichssammlung der Archäozoologischen Abteilung des Instituts für prähistorische und naturwissenschaftliche Archäologie (IPNA) zur Verfügung. Am meisten Schwierigkeiten bei der Tierartbestimmung bereiteten mir die kleinen Wiederkäuer. Aufgrund der geo- und topographischen Lage musste, abgesehen von den Rehen, auch mit Gämsen und Steinböcken gerechnet werden. Bevor also die ohnehin nicht einfache Unterscheidung der domestizierten kleinen Boviden untereinander angegangen werden konnte, war es unumgänglich, sie vorerst von ihren wilden Verwandten morphologisch abzugrenzen. Der starke Fragmentierungsgrad der Schaft- aber auch Epiphysenstücke wirkte sich dabei erschwerend aus. Generell lässt sich feststellen, dass die Gämse- und Rehknochen in ihren Merkmalsausprägungen weniger gut von den Schafen und Ziegen zu trennen sind als die Knochen des Steinbocks, die in der Regel aufgrund ihrer Grösse sofort auffallen. Neben der Vergleichssammlung orientierte ich mich bei der Zuordnung der kleinen Wiederkäuer an der einschlägigen Bestimmungsliteratur²¹. Spezifisch in der "Gämsenfrage" leistete mir die Sammlung im Musé naturel de Genève gute Dienste²². Die Unterscheidung von Rind und Hirsch gelang in den meisten Fällen. Unsicherheiten betrafen hauptsächlich Rippen und Wirbel. Auch hier half die Literatur in Zweifelsfällen weiter²³.

Bei der Bestimmung der Schweineknochen aus Cresta-Cazis fiel die Entscheidung zwischen Wildschwein und Hausschwein zumindest teilweise nicht leicht, weil es an metrischen Daten mangelte. Dies war einerseits einmal mehr durch den hohen Fragmentierungsgrad des Materials bedingt, andererseits durch die geringe Anzahl Schweineknochen, insbesondere solchen, die mit Sicherheit als ausgewachsen angesprochen und somit vermessen werden konnten.

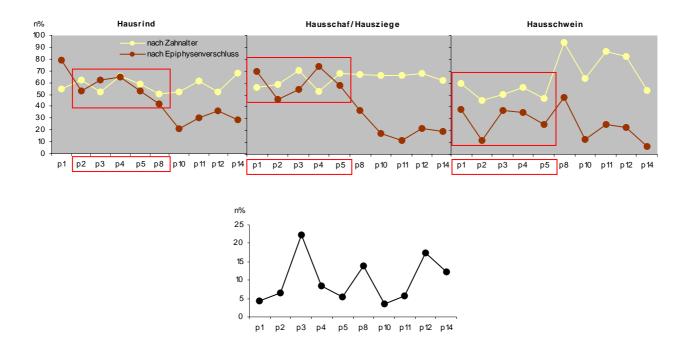
Die Gruppe der Bestimmten enthält alle Bruchstücke, bei denen eine tierartliche Zuordnung möglich war. Zusätzlich gelten auch Knochen als bestimmt, die eindeutig entweder als Hausoder als Wildtiere angesprochen werden konnten, selbst wenn innerhalb dieser beiden Untergruppen ihre Bestimmung nicht bis auf das Niveau der Art gelang (z.B. Schaf/Ziegen, Amphibien spec., Aves spec. und Carnivoren).

Die Gruppe der Unbestimmten setzt sich aus folgenden drei Untergliederungen zusammen:

- 1. Grossgruppe der Haus- oder Wildtiere, deren Fragmente anatomisch bestimmt wurden, aber die Beurteilung, ob sie von Wildtier- oder von Haustierknochen stammen, nicht zuliessen (z.B. grosse Wiederkäuer, kleine Wiederkäuer, Haus- oder Wildschwein)
- 2. anatomisch bestimmte Fragmente mit unsicherer taxonomischer Zugehörigkeit, die anhand ihrer Mächtigkeit und Kompaktadicke den drei verschiedenen Grössenklassen (Grösse Hund bis KWK, Grösse KWK bis Schwein, Grösse GWK bis Pferd) zugeteilt wurden
- 3. anatomisch unbestimmte Fragmente mit unsicherer taxonomischer Zugehörigkeit (indet)

2.2.2. Schlachtalteranalyse.

Die Beurteilung des Schlachtalters basiert einerseits auf dem Zahnwechsel und dem Abkauungsgrad der Zähne in Unter- und Oberkiefer und andererseits auf dem


²³ Prummel 1988.

Boessneck et al. 1964, Payne 1985, Prummel u. Frisch 1986, Pucher 1998, Clutton-Brock et al. 1990,
 S 38-63 Helmer 2000, Fernandez 2001

S. 38-63, Helmer 2000, Fernandez 2001.

²² Besten Dank an Jaqueline Studer, Kuratorin am Musé naturel de Genève, die mir für meine Untersuchungen die Benutzung der umfangreichen Museumssammlung von Gämsenknochen ermöglichte.

Verwachsungszustand der Epiphysen²⁴. Die Beschaffenheit der Oberflächenstruktur eines Knochens kann in einigen Fällen (z.B. Talus) bei der groben Einstufung in die Kategorien "ausgewachsen" oder "nicht ausgewachsen" als Entscheidungskriterium hinzugezogen werden. Sie hängt aber stark von der Erhaltung und der subjektiven Einschätzung ab und sollte daher sparsam als alleiniges Argument in der Beurteilung verwendet werden. Da die anhand der beiden Hauptmethoden ermittelten Altersangaben in Cresta-Cazis voneinander abweichen und z.T. widersprüchliche Ergebnisse in den Schlachtalteranalysen lieferten (Abb.3 oben), drängt sich an dieser Stelle eine Diskussion der möglichen Ursachen für diese Diskrepanz auf.

Abb.3: Cresta-Cazis. Zahnalter- versus Epiphysenverschlussanalyse. **Oben**: Diskrepanz (für die Anteile der adulten Vertreter) zwischen Zahnalter- und Epiphysenverschlussanalyse beim Hausrind, Hausschaf/Hausziege und Hausschwein. **Unten**: Prozentuale Aufteilung der Knochen (n%) auf die einzelnen Schichten (p1- 14).

Grundsätzlich kann in Erwägung gezogen werden, dass die Alterseinschätzung beim posteranialen Skelett stark vom jeweiligen Knochenelement abhängt. Knochen mit geschlossener Epiphyse können bei spätverwachsenden (z.B. Femur) Gelenkenden zweifelsfrei als adult eingestuft werden, bei frühverwachsenden (z.B. Humerus) hingegen ist die Eingrenzung problematisch: theoretisch kommen Altersangaben von subadult, und z.T. noch jünger, bis altadult in Frage. Umgekehrt bereitet die Altersschätzung der Knochen mit offener Epiphyse nur bei den spätverwachsenden Gelenkenden Schwierigkeiten. Bei den frühverwachsenden ist die Identifizierung als "nicht erwachsen" eindeutig.
Um zu überprüfen, ob der knochenspezifische Verwachsungszeitpunkt die Widersprüche zwischen Zahn- und Epiphysenverschlussalter erklärt, wurden letztere für jede Tierart mit der chronologischen Entwicklung der Skelettelementverteilung²⁵ verglichen. Beispielsweise würde eine Schicht mit zahlreichen verwachsenen Femurgelenken andere Altersschätzungen liefern als eine Schicht mit überwiegend verwachsenen distalen Humerusgelenken. Da die

²⁵ Abbildung III im Anhang.

-

²⁴ Die im IPNA benutzten Alterscodierungen sind in Tabelle I im Anhang aufgelistet. Sie lehnen sich hauptsätzlich an die Ansätze von Becker u. Johannsson 1981, Habermehl 1975, 1985 an und konnten bei den Rindern mit der metrischen Methode von Ducos (Ducos et al. 1968) verifiziert werden.

Skelettelementverteilung i.d.R. recht konstant war, gab es hier also keinen Anlass, die methodischen Probleme der Altersschätzung mit ihr in Zusammenhang zu bringen. Die Erhaltung des osteologischen Materials spielt insofern eine Rolle bei der Altersschätzung, als dass sie sich selektiv auf die Skelettelemente auswirkt und zwischen den stratigraphischen Einheiten variiert. Im Fall von Cresta-Cazis stellt man fest, dass für Knochen, die aus den Horizonten unterhalb der grossen frühbronzezeitlichen Auffüllschicht stammen, günstigere Ablagerungsbedingungen herrschten als für die darüber liegenden. Spätbronzezeitliche Plana weisen die schlechtesten Erhaltungszustände auf (vgl. Foto II). Da sich Zähne von Jungtieren besser erhalten als deren Knochen würde man erwarten, dass ihr Anteil beim Zahnalter grundsätzlich höher ausfällt als beim Epiphysenverschlussalter, vor allem in den spätbronzezeitlichen Schichten. Genau das Gegenteil ist der Fall. Dennoch möchte ich einen Zusammenhang zwischen dem systematischen Überwiegen junger Individuen bei den Extremitätenknochen über der grossen Einfüllschicht und den gleichzeitig auftretenden Veränderungen in den Erhaltungsbedingungen nicht ausschliessen.

Kaum einschätzbar ist schliesslich der Einfluss der Knochenmenge pro Schicht auf die jeweilige Zusammensetzung der Altersstufen. Die Statistik gibt aber vor: je geringer die Zahl der altersbestimmten Fragmente, umso unsicherer die Schlachtaltersanalysen. Dieser Zusammenhang kann für Cresta-Cazis nicht eindeutig nachgewiesen werden, da sich Häufigkeit und Differenzen der Alterseinschätzungen nicht synchron verändern (Abb.3 unten). Ich verweise an dieser Stelle auf die neolithische Fundstelle Arbon-Bleiche 3, die trotz zahlreicheren altersbestimmten Tierknochen eine ähnliche Problematik aufwarf²⁶. Schliesslich könnte sich der gegenwärtige Zeitpunkt, wann die Gelenke zusammenwachsen, im Vergleich zu dem der Bronzezeit verschoben haben, d.h. heutige Tiere wären betreffend des Epiphysenverschluss frühreifer als ihre prähistorischen Vorfahren²⁷. Falls sich der Durchbruch und Wechsel der Zähne in dieser Frage konservativer als die Gelenke verhalten, lassen sich die beobachteten Differenzen teilweise nachvollziehen.

Es fällt nicht leicht, die Diskrepanz zwischen den zwei Methoden der Altersschätzung zu erklären, weil es keine Argumente gibt, die für alle Tierarten und chronologischen Einheiten gleichermassen gelten.

Während die Bestimmungsmethode mittels Epiphysenverschluss auf die zahlreichen und unterschiedlichen postcranialen Skelettelemente angewendet wird, fokusiert man sich beim anderen Verfahren einzig auf die Zähne, die speziell bei jüngeren Tieren eine präzisere Alterseinschätzung erlauben. Bei der ersten Methode ist deshalb mit stärkeren Schwankungen in Bezug auf die Altersanalysen zu rechnen als bei der zweiten. Ferner weisen die Zähne einen konstant hohen Anteil am Total der vorhandenen Skelettelemente auf und sind in der Regel widerstandsfähiger als postcraniale Knochen. Aufgrund dieser Kriterien entschied ich mich letztendlich für das Zahnalter als Auswertungsbasis.

Absolute Schlachtaltersangaben beruhen auf rezenten Untersuchungen und dürfen aus diesem Grund nicht ohne weiteres auf prähistorische Haustiere übertragen werden. Wenn sie in dieser Arbeit trotzdem aufgeführt sind, dann deshalb, weil sie uns zumindest einige Anhaltspunkte und grobe Vorstellungen über die Altersstruktur der Wirtschaftstiere vermitteln können²⁸.

2.2.3. Geschlechtsbestimmung.

Die Auswahl an Skelettelementen mit geschlechtsspezifischen Merkmalen ist limitiert. In Frage kommen bei den Wiederkäuern das Becken und die Hornzapfen, bei den Schweinen die Eckzähne und deren Alveolen. Zur geschlechtlichen Diagnose von Extremitätenknochen braucht

²⁶ Deschler-Erb u. Marti-Grädel 2004, S. 167.

²⁷ Deschler-Erb u. Marti-Grädel 2004, S. 179.

²⁸ Payne 1973, S.297-299.

es vollständige Stücke, die im osteologischen Fundgut von Cresta-Cazis nur vereinzelt vorkommen. Die wenigen geschlechtsbezogenen Ergebnisse aus den metrischen Untersuchungen an Metapodien und Radius von Rindern hatten deshalb keine statistische Relevanz, vielmehr dienten die Stichproben als Orientierungshilfe für den Gesamteindruck. Kastraten sind sowohl mit der morphologischen als auch mit der metrischen Methode nicht einfach zu fassen. Die Schwierigkeit bei ihrer Identifizierung liegt an der intermediären Ausprägung von weiblichen und männlichen Merkmalen²⁹. Auf Angaben über die Höhe des Kastratenanteils unter den Cazis Rindern (quantitative Bestimmung) wurde verzichtet. Qualitative Beobachtungen (z.B. Dünnwandigkeit bei Hornzapfen), die mir bei der Charakterisierung der Geschlechterzusammensetzung aufschlussreich schienen, sind in die jeweiligen Tierartenkapitel integriert und dort erläutert.

2.2.4. Osteometrie.

Bei der metrischen Aufnahme wurden alle Knochen ohne (z.B. Talus) oder mit geschlossenen Epiphysen, die als erwachsen eingeschätzt wurden, nach der Methode von A. von den Driesch³⁰ vermessen. Die Massabnahmen erfolgten auf 0,1 mm genau. Um eine Vorstellung von Körpergrösse und Wuchsform der Tiere zu erhalten, wurden neben den absoluten Knochenmassen verschiedene osteometrische Analysemethoden angewendet, von denen zwei hier kurz vorgestellt sind:

Berechnung der Widerristhöhe³¹

Die Widerristhöhe und somit die Körpergrösse prähistorischer Haus- und Jagdtiere kann man abzuschätzen, indem man die Längenmasse vollständig erhaltener Röhrenknochen mit entsprechenden skelettteilspezifischen Umrechnungsfaktoren multipliziert (siehe Tabelle II/1 im Anhang). Bei den kurzen Fusswurzelknochen (v.a. Calcaneus) ist die ermittelte Widerristhöhe stärkeren Schwankungen unterworfen als bei den grossen Röhrenknochen. Darum, und weil nur wenige Langknochen zur Absicherung der Ergebnisse zur Verfügung stehen, blieben sie bei den Berechnungen nur eingeschränkt berücksichtigt. Berechnung von Grössenindizes³²

Die für die Widerristhöhenberechnung irrelevanten Breiten- und Tiefenmasse des Extremitätenskeletts werden besonders durch das Gewicht eines Tieres geprägt und sind deshalb umso wichtiger für die Beurteilung seiner Statur. Bei der Ermittlung der Grössenindizes vergleicht man sie mit den entsprechenden Massen eines Standardindividuums (siehe Tabelle II/2 im Anhang). Die Differenz zwischen jedem einzelnen logarithmierten Messwert und dem ebenfalls logarithmierten Standardwert ergibt den Grössenindex:

log Messwert - log Standardwert = Grössenindex (LSI)

2.2.5. Pathologisch- anatomische Veränderungen.

Alle Skelettelemente, die in irgendeiner Weise Abweichungen von der üblichen Morphologie zeigen, werden in dieser Arbeit zusammenfassend als pathologisch- anatomisch veränderte Tierknochen angesprochen. Neben krankhaften Erscheinungen und "Fehl"- bzw. Alternativbildungen zähle ich auch Extremfälle individueller Variation dazu, denn der Übergang

³¹ Von den Driesch u. Boessneck 1974.

²⁹ Der durch die Sterilisation erheblich beeinflusste Hormonhaushalt hat Veränderungen im Knochenwachstum zur Folge, die sich je nach Zeitpunkt des Eingriffs stärker oder schwächer manifestieren (vgl. auch Kapitel 4.2.2.5.a).

³⁰ Von den Driesch 1976.

³² Uerpmann 1990, Meadow 1999.

zwischen physiologischen und pathologischen oder anomalen Spuren an Knochen kann fliessend und eine Grenzziehung deshalb oft schwierig sein. Ab welchem Ausprägungsgrad bezeichnet man zum Beispiel eine ungewöhnliche Zahnstellung nicht mehr als individuelle Variation, sondern als Anomalie? Oder wann gilt die Verwachsung von Fussknochen als eine funktionelle Anpassung an besondere ökologische Verhältnisse³³ und wann als Anfangsstadium eines chronischen Gelenkleidens? Das Vorgehen bei der Untersuchung der pathologisch- anatomisch veränderten Tierknochen aus Cresta-Cazis reflektiert mein primär angestrebtes Ziel, eine möglichst umfassende Bandbreite der an der Siedlungsstelle vorkommenden morphologischen Spezialitäten aufzunehmen und zu beschreiben. So kann ein Beitrag zum Aufbau einer gegenwärtig kaum existierenden Vergleichsbasis patholoagischanatomisch veränderter Tierknochen für das bronzezeitliche Graubünden geleistet werden. Zur Übersicht über das erfasste Spektrum sind sämtliche, von der Norm abweichende, Erscheinungen an Rinder-, Schaf/Ziegen- und Schweineknochen tabellarisch aufgelistet und photographisch dokumentiert. Pathologisch-anatomische Veränderungen, die gehäuft auftreten, oder ausgewählte Einzelfälle werden im Text eingehender diskutiert. Diagnose und Interpretation spielen eine untergeordnete Rolle, da es für eine solche Beurteilung generell an Erfahrung und Wissen mangelt. Nur ein Bruchteil der Krankheiten schlägt sich sichtbar auf die Knochen nieder. Zudem ist die Wahrscheinlichkeit, Pathologien oder Anomalien am Skelett zu finden, bei rezenten Haustieren sehr klein. Heute rentiert ein vom "optimalen Wirtschaftstier" abweichendes Individuum nicht, besonders in Herden von Grossbetrieben mit einer einseitig ausgerichteten Viehwirtschaft. Es wird deshalb früh geschlachtet, meist bevor krankhafte Auswirkungen auf den Knochen zu erkennen sind. Bei ausgedienten oder arbeitsunfähigen Wirtschaftstieren verhält es sich ähnlich. Untersuchungen ihres Skeletts auf Abnutzungserscheinungen gehören nicht zur Tagesordnung. Eine Chance, mehr über die Ursachen von pathologisch- anatomischen Veränderungen an Haustierenknochen herauszufinden, bieten relativ kleine, autarke Gemeinschaften, wo man in stärkerem Mass auf ein einzelnes Tier angewiesen ist. Mit der Schlachtung wird unter Umständen länger zugewartet, was sich, ähnlich wie in ur- und frühgeschichtlichen osteologischen Siedlungsresten, in einem erhöhten Anteil pathologisch- anatomisch veränderter Knochen niederschlagen dürfte. Anregungen und Hilfe zum Thema fand ich in der Vergleichsliteratur unterschiedlichster Forschungsrichtungen (Landwirtschaftsforschung, Pathologie, Veterinärmedizin, Archäozoologie)³⁴.

2.2.6. Auswertung der Fragmentierung, Skelettelementverteilung und Zerlegungsspuren.

Für die Ermittlung des Fragmentierungsgrades und des Fragmenttyps wurde jeder Röhrenknochen in der Länge in fünf (obere Epiphyse, oberes, mittleres, unteres Schaftdrittel, untere Epiphyse) und im Umfang in vier (Umfang ganz, 3/4, 1/2,1/4 erhalten) Abschnitte aufgegliedert. Die Beschreibung eines Bruchstücks erfolgte durch die kombinierte Angabe des Längen- und Umfangabschnittes³⁵. Die Platten- und Kurzknochen wurden nach verschiedenen Knochenteil-Codes ausgewertet (siehe Abb.46- 49, Kapitel 5.1.3.). Die Skelettregionverteilung basiert auf dem Knochengewicht, das der Knochenzahl vorgezogen wurde, weil der unterschiedliche Fragmentierungsgrad verschiedener Elemente auf diese Weise umgangen werden kann³⁶. Für die Ermittlung einer Über- bzw. Untervertretung von Körperteilen oder Skelettelementen diente jeweils ein vollständiges Vergleichsskelett (meist Durchschnitt aus mehreren Individuen) jeder betrachteten Tierart als Referenz (Tabelle II/4 im Anhang).

.

³³ Beispielsweise lässt sich bei Arbeitstieren eine veränderte oder verstärkte Belastung der Extremitäten beobachten: Leinders u. Sondar 1974.

³⁴ Silbersiepe et al. 1965, Joest 1969, von den Driesch 1975, Wäsle 1976, Jubb et al. 1985, Häni 1994.

³⁵ Hüster-Plogmann u. Schibler 1997, S. 42, Abb. 7.

³⁶ Becker 1986, S. 254.

Die Zerlegung des Tierkörpers hinterlässt Schnitt- und Hackspuren sowie Schlagpunkte an den Knochen. Die gängigsten wurden zeichnerisch festgehalten (Abbildungen IVA-C im Anhang).

Die Untersuchungen zur Skelettelementverteilung und Zerlegungstechnik sind eng mit den Überlegungen und Resultaten aus der Fragmentanalyse verknüpft. Aus diesem Grund habe ich es vorgezogen, diese Themenkreise nicht nach Tierarten getrennt, sondern in einem eigenen Kapitel (Tierknochen als Zeugen menschlicher Tätigkeiten) gemeinsam, abzuhandeln³⁷. Damit wird dem Hauptanliegen eher Rechnung getragen, die Auswirkungen der Aktivitäten prähistorischer Menschen, der Taphonomie und der Ausgrabungs- bzw. Untersuchungsmethoden auf die Tierknochen als solche zu erkennen.

_

³⁷ Die Auswertungen betreffen ausschliesslich die häufigsten Haustiere Rind, Schaf und Ziege sowie Schwein.

ERGEBNISSE

3. CHARAKTERISIERUNG DES TIERKNOCHENMATERIALS

3.1. Die räumliche Knochenverteilung

3.1.1. Vertikale Knochenverteilung.

Ein ehemaliger Mitwirkender bei den Ausgrabungen in Cazis, der bereits erwähnte Archäologe René Wyss, wusste zu berichten, dass die echten Siedlungsschichten kaum Knochen enthielten. Einzig im Umfeld von Herdstellen gab es regelmässig Ansammlungen von tierischen Überresten. Das überwiegende Quantum der Knochen stammte aus den Schuttund Einebnungsschichten³⁸. Die Hypothese einer in sich geschlossenen und ungestörten Siedlungsabfolge wird aber in ihren groben Zügen kaum dadurch tangiert, ob die Ablagerungen durch kontinuierlich anfallende Schichten (Siedlungsschichten) oder durch eine periodische Sedimentation (Schuttschichten) entstanden sind. Hingegen erwartet man für beide Varianten unterschiedliche chronologische Auflösungsgrade. Angenommen, die Knochenreste gelangten während einer Siedlungsperiode von beispielsweise 60 Jahren kontinuierlich in den Boden (z.B. Siedlungsschichten), liessen sich in ihr theoretisch mehrere Phasen archäologisch fassen und gegenüberstellen. Wenn bei einer gleich langen Siedlungsperiode die meisten Knochenreste erst mit deren Ende als Einheit (z.B. Schuttschichten) in den Boden gelangten, sind solch detaillierte Auswertungen natürlich von vornherein auszuschliessen.

Ob eine Ablagerung als Schuttschichten oder als kontinuierlich eingebrachte Siedlungsschichten vorliegt, hat für Cresta-Cazis also nur Konsequenzen auf die absolute Chronologie: sehr detaillierte archäozoologische Aussagen sind nicht möglich³⁹, wohingegen die relative Chronologie unbeeinflusst bleibt.

3.1.2 Horizontale Knochenverteilung.

Auch bei den Untersuchungen von horizontalen Fundverteilungen stellt sich die Frage, welche Art der Sedimentation vorliegt. Kontinuierlich sedimentierte Schichten (Siedlungsschichten) hinterlassen andere Muster als etappenweise eingebrachte Schichtpakete (Schuttschichten). In einer Siedlungsschicht bieten sich verschiedene zeitgleiche Areale für einen Vergleich an: Innenräume von Häusern, Herdstellen, Gruben und vieles andere mehr. Die diversen Befunde unterscheiden sich unter Umständen in der Zusammensetzung und Verteilung der Tierknochen. Die Voraussetzungen bei Schuttschichten sehen ganz anders aus: bei ihnen wurde das Material oft gleichmässig über mehrere Strukturen verteilt und die Knochen lassen sich nicht einem Befund zuordnen. Für Schuttschichten hat die horizontale Fundverteilung im Siedlungsareal deshalb kaum eine Aussagekraft.

In Cresta-Cazis stehen für Ermittlungen der horizontalen Knochenverteilung zu wenig dokumentierte Befunde aus Siedlungsschichten zur Verfügung.

³⁸ Es gab zwar Knochenmaterial, das mit der genaueren Befunddefinition "Schuttschicht" beschriftet wurde, aber beim mehrheitlichen Rest fehlte eine solche Kennzeichnung.

³⁹ Als kleinstmögliche Auswertungseinheit gilt ein Planum (vgl. Tab.1, Kapitel 2.1.). Die detaillierteste Auflösung in Zeitphasen wird mit "frühe, mittlere oder späte Frühbronzezeit" angegeben.

3.2. Charakterisierung der Auffüllschichten

In der Benennung der Auffüllschichten hielt man sich bei der archäologischen Dokumentation an keine Systematik. Schutt-, Einebnungs-, Schotter-, Einfüll- oder Auffüllschicht wurden als Synonyme verwendet⁴⁰. Ihre Beschaffenheit gestaltete sich sehr mannigfach. Je nach ihrer Zusammensetzung unterschied man:

- sterile (fundfreie) Schuttschichten aus sehr vielen Steinen (z.B. grosse Einfüllschicht zwischen Planum 5 und 6)
- Schuttschichten aus Kies, z.T. mit Lehm durchmischt
- Schuttschichten aus feinem Schotter
- Schuttschichten aus Knochen und reinem Steinschutt

Unterschiede sind auch in ihrer horizontalen Verteilung erkennbar:

- Schuttschichten, die sich über mehrere bis alle Häuser in der Spalte erstrecken
- Schuttschichten, die nur ein Haus betreffen

Was ihre Mächtigkeit betrifft, existierten sämtliche Abstufungen von kaum fassbaren bis hin zu zwei Meter dicken Auffüllschichten. Die diesbezüglich auffälligste von allen ist die, in dieser Arbeit immer wieder erwähnte "grosse Einfüllschicht" zwischen Planum 5 und 6 (Tab.1 in Kapitel 2.1.), die eine Höhe von zwei Metern erreichte.

3.3. Qualitative und optische Einschätzung der Erhaltungsqualität der Knochen

Bei Cresta-Cazis würde man theoretisch die für Höhensiedlungen charakteristische Trockenerhaltung und ein damit einhergehender schlechter Zustand des osteologischen Materials erwarten. Das ist nicht grundsätzlich der Fall: die Tierknochen zeichnen sich im Allgemeinen durch Festigkeit und eine intakte Oberflächenstruktur aus und der Anteil an losen Zähnen und Zahnfragmenten am Knochenmaterial ist mit 6- 11% relativ gering⁴¹ (Abb.4).

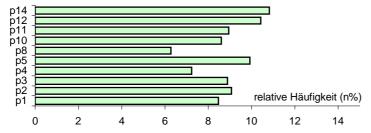


Abb.4: Cresta-Cazis. Anteil (n%) loser Zähne am gesamten osteologischen Fundgut.

Die gute Erhaltung, insbesonder der Knochen aus den frühbronzezeitlichen Schichten unter der "grossen Einfüllschicht", lässt sich mit der lokalen topographischen Situation des prähistorischen Dorfes erklären. Das Regenwasser sammelte sich zu einem beachtlichen Teil im geröllhaltigen Fundament der bewohnten Felsspalte und trug damit zu ziemlich feuchten Bedingungen im schluchtartigen Graben bei. Es ist anzunehmen, dass das Wasser den Untergrund und die darin

-

⁴⁰ Mündliche Mitteilung René Wyss.

⁴¹ Bei schlechten Erhaltungsbedingungen während der Diagenese erhöht sich der Anteil an losen Zähnen, indem als erstes die Zähne des fragilen Oberkiefers ausfallen und schliesslich jene des stabileren Unterkiefers. Bei besseren Erhaltungsbedingungen bleiben die Zähne länger im Kiefer stecken. Zudem sind Zähne aufgrund ihes Aufbaus stabiler als Knochen, zerfallen also weniger schnell. Beispiele für schlechte Erhaltungsbedingungen sind aus Zuger Seeufersiedlungen bekannt (Schibler et al 1997, S. 49).

eingelagerten prähistorischen Überreste vor dem Luftsauerstoff abgedichtet und so zu der guten Konsistenz der Tierknochen geführt hat. Überreste von Einrichtungen, die vermutlich der Entwässerung oder als Auffangbecken dienten, zeugen beispielsweise davon, dass diese speziellen, räumlich begrenzten, Gegebenheiten von den ansässigen Menschen diverse Anpassungen abverlangt haben. Als weitere Erklärung für den ausgezeichneten Zustand der frühbronzezeitlichen Knochen könnte man anbringen, dass tiefer liegende Schichten besser geschützt sind. Tatsächlich treten ab der Mittel- und vor allem in der Spätbronzezeit gehäuft poröse Knochen mit einer vollkommen zersetzten Oberfläche, inmitten des gut erhaltenen Rests, auf (Foto II). Möglicherweise haben diese längere Zeit an der Oberfläche gelegen und sind vor ihrer Einsedimentierung verwittert. Andererseits könnten auch kleinräumige Verschiedenheiten des Bodens für die variable Erhaltungsqualität der mittel- und spätbronzezeitlichen Knochen verantwortlich sein. Angenommen, die Erde war in den oberen Bereichen lockerer strukturiert bzw. stärker zerklüftet als in den unteren, so konnte sich zwischen den Schutt- und Erdmassen hie und da eine Lücke bilden. Fragmente, die in solche Lufteinschlüsse gerieten, wären somit für unbestimmte Zeit dem Sauerstoff ausgesetzt gewesen, wodurch aerobe Bakterien die Knochensubstanz hätten abbauen können. Auch die den Knochen anhaftende Auflagerungen zeigt typische Veränderungen in der Häufigkeit ihres Auftretens und in ihrer Beschaffenheit. Charakteristisch für die unterste Schicht der Frühbronzezeit (Planum 1) ist eine Auflagerungen aus grobkörnigen, graphitfarbenen Mineralien und meist orange-gelber, harzähnlicher Substanz, die nahezu 50% der Knochen überzieht und sich nicht entfernen lässt (Foto I/2 im Anhang). In den darauffolgenden Plana trifft man diese Art von Auflagerungen selten an. In den mittelbronzezeitlichen Horizonten treten typische Versinterungen auf, milchiggraue

Im recht schmalen Farbenspektrum der Knochenfunde dominiert ein sandfarbiges Braun. Daneben fallen extrem weisse Knochen auf, die praktisch ausschliesslich aus den Plana der ältesten Frühbronzezeit stammen. Die Färbung hängt massgeblich vom umgebenden Milieu ab. Als Richtlinie gilt: je kalkhaltiger ein Untergrund, umso heller die darin eingelagerten Knochen. Der Boden unter der grossen Auffüllung muss demnach partiell mit Kalk angereichert gewesen sein.

Beläge mit wenig kleinkörnigem Material durchsetzt.

Es sieht so aus, als ob die Lage der osteologischen Überreste unter- oder oberhalb der grossen Einfüllung (Tab.1 in Kapitel 2.1.), deren taphonomisches Schicksal nicht unwesentlich beeinflusst hat.

Unter den verdauten Knochen, die an ihrer dünnen Kompakta, den abgerundeten Bruchkanten sowie an der aufgelösten und glänzenden Oberfläche mit den typischen Eindellungen gut zu identifizieren sind, finden sich hauptsächlich Elemente des Autopodium. An vielen von ihnen haften noch immer die mineralisierten Reste der Exkremente, in denen sie einst steckten (vgl. Kapitel 4.2.5.2.) an.

Mit Hilfe der eben besprochenen Unterschiede im Erscheinungsbild der tierischen Reste liesse sich die Position eines isolierten Knochenkomplexes im bronzezeitlichen Profil grob abschätzen. Das weist für die in dieser Arbeit behandelten Siedlungsausschnitte auf eine in sich geschlossene, ungestörte Schichtabfolge hin (vgl. Kapitel 3.1.1.).

3.4. Fragmentierung

Eine intensive Fragmentierung ist bei allen Knochen in gleichem Masse festzustellen, ob sie von grossen oder von kleinen Tieren, beziehungsweise aus früh- oder spätbronzezeitlichen Schichten stammen. Das mittlere Gewicht für ein Bruchstück variiert je nach Planum zwischen 10,2 und

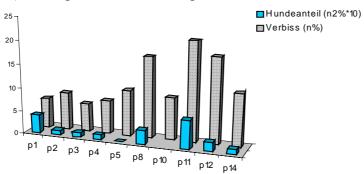
21,4 Gramm⁴². Vollständige Elemente kommen äusserst selten vor. Stark fragmentiertes Knochenmaterial wird in der Regel als Indiz für Siedlungsabfall (Schlacht- oder Speisereste) gewertet. Für den Fundort Cresta-Cazis gilt diese Annahme ebenfalls. Schlagpunkte in der Schaftregion zahlreicher Knochen zeugen davon, dass diese von den bronzezeitlichen Siedlern aufgeschlagen wurden, um an das nahrhafte Knochenmark heranzukommen (z. B. Kapitel 5.3.3.). Zudem hat man in Cresta-Cazis die Knochen auch als "Baumaterial" verwendet. Man denke an die zahlreichen Auffüllschichten, die osteologisches Fundgut enthielten. Das Begehen der über ihnen liegenden Horizonte verursachte eine zusätzliche Zertrümmerung der Knochen.

3.5. Bruchkanten

Am osteologischen Fundgut von Cresta-Cazis konnten alte und neue Bruchkanten anhand ihrer Farbe in der Regel gut unterschieden werden. Die bereits vor der Bergung gebrochenen Knochenfragmente (Bruchstelle mit gleicher Farbe wie der Rest des Knochens) überwiegen (Abb.5). Von den nachträglichen, frischen Brüchen (eindeutig heller als der Rest des Knochens) sind die grossen Rinderknochen etwas stärker betroffen als die kleineren Schaf/Ziegen- oder Schweineknochen.

Abb.5: Cresta-Cazis. Alte Bruchkanten versus neue. BK: Bruchkanten.

Unter Berücksichtigung der Tatsache, dass es sich bei Cresta-Cazis um eine Altgrabung handelt, die Tierknochen also schon einige Transport- und Umlagerungsaktionen hinter sich haben (vgl. Kapitel 2.1.), hält sich der Prozentsatz neuer Bruchkanten mit 13,8% in Grenzen.


3.6. Verbissspuren

Alle Siedlungshorizonte weisen einen verhältnismässig hohen Anteil an verbissenen Knochen auf. Am häufigsten treten die Nage- und Kauspuren aber in Schichten über der grossen Auffüllung, also ab Planum 8, auf. Die Überlegung, dass sich die Schwankungen des Prozentsatzes der angenagten Knochen mit denen des relativen Anteils der Hunde decken und so indirekt ein Indiz für die Häufigkeit dieses Haustieres sein könnten, wird durch die Situation in Cresta-Cazis weitgehend bestätigt⁴³ (Abb.6). Die Zahl der Hundeknochen ist jedoch zu gering, um auszuschliessen, dass sich ihre Häufigkeit und diejenige der verbissenen Knochen im Laufe

⁴² Durchschnittsgewicht pro Knochenfragment bei Zusammenfassung aller Schichten= 14,8 Gramm.

⁴³ Ähnliche Ergebnisse liefern unter anderen die Fundstellen Kastanas in Griechenland, Bronzezeit (Becker 1986) und Basel-Münsterhügel, keltisch und römisch (Ebersbach 1998).

der Zeit rein zufällig synchron ändern. Zudem ist nicht a priori davon auszugehen, dass Hunde sich als einzige Geschöpfe bei Gelegenheit an den Resten von Gebeinen zu schaffen machten. Aufgrund der zahlreichen Verbissspuren darf angenommen werden, dass viele der tierischen Reste nicht sofort in den Boden gelangten, sondern für Hunde (und ev. für Schweine) leicht greifbar, noch eine geraume Zeit an der Oberfläche lagen⁴⁴.

Abb.6: Cresta-Cazis. Häufigkeit der Verbissspuren an Knochen im Vergleich mit den Hundeanteilen. Basis für die Hundeanteile: proportional modifizierte Tierartenzusammensetzung (siehe Kapitel 4.2.), Basis für die Verbissanteile: gesamtes Knochenmaterial.

3.7. Entsorgung der Tierknochen

Gruben und Haufen sind seit dem Neolithikum eine häufige Art, Abfall zu deponieren. In Cresta-Cazis fehlen innerhalb der Siedlungsspalte solche archäologische Strukturen, die als Mülldepots in Frage kommen würden. Es drängt sich die Frage auf, wie die Dorfbewohner ihr Abfallproblem regelten. Die oft aus Knochen zusammengesetzten Planierschichten regen zu einem faszinierenden Gedanken an: für die Entsorgung des Siedlungsabfalls sind spezielle Sammelplätze denkbar, die bei Bedarf von jedermann jederzeit aufgesucht werden konnten, um Knochenmaterial daraus wiederzuverwerten, beispielsweise zur Ausebnung der sich ständig absenkenden Wohnhorizonte. Kollektives prähistorisches Recycling sozusagen. Aber wo, wenn nicht in der Spalte selbst, hätte man diese Sammelstellen platziert? Ein Sammelplatz ausserhalb, aber in unmittelbarer Nähe, der Siedlungsspalte wäre ebenfalls vorstellbar. Mit einer angepassten Konstruktion des Depots (z.B. mit Steinen und Erde zugedeckte Grube) hätte die Gefahr der Anlockung von Wildtieren und die damit verbundenen Unannehmlichkeiten eventuell etwas entschärft werden können. Wie aber lässt sich bei dieser Theorie die gute Konstitution des Knochenmaterials und die kaum abgerundeten Bruchkanten erklären? Die unter Umständen jahrelange Aufbewahrung und die anschliessenden Umlagerungsaktionen müssten theoretisch Spuren daran hinterlassen haben⁴⁵. Sicherlich war die Abfallbeseitigung in Cresta-Cazis nicht nur Sache der Gemeinschaft. Anhaltspunkte, wie man sich den individuellen Umgang mit Abfall vorzustellen hat, sind jedoch schwer zu finden. In der kleinen Spalte bot sich kein grosser Spielraum für den einzelnen, sich beispielsweise seiner Essensreste zu entledigen. Ein Wurf der abgenagten Knochen über den bis zu acht Meter hohen Spaltenrand hinaus in die mehr als zehn Meter dahinter abfallende Schlucht wäre sicherlich selbst für den Geübten kein simples Unterfangen gewesen. Als weitere

⁴⁴ Dieser Aspekt wird in Kapitel 5.4. (Brand- und Hitzespuren) noch einmal aufgegriffen.

⁴⁵ Wie mir Guido Breuer, ehemaliger wissenschaftlicher Mitarbeiter am Institut für prähistorische und naturwissenschaftliche Archäologie (IPNA) der Universität Basel, mündlich mitgeteilt hat, unterscheiden sich die Tierknochen aus den spätrömischen Abfallhalden in Kastelen in ihrer Erhaltung nicht vom restlichen osteologischen Material der Fundstelle. Eine hinreichende Erklärung für dieses Phänomen gibt es bis jetzt nicht.

Entsorgungsvarianten boten sich noch der Weg vor den Häusern und die eigene Herdstelle an. in Tatsächlich stammt ein Teil der Tierknochen aus der Region um die Feuerstellen⁴⁶. Für die Beantwortung der Frage, ob sich in Cresta-Cazis die knochenführenden Auffüllschichten beispielsweise mehrheitlich aus Schlacht- und die Herdstellenschichten überwiegend aus Speiseabfällen zusammensetzen, reicht die Befunddokumentation am Tierknochenmaterial leider nicht aus.

Zusammenfassend lässt sich für die Abfallregelung von Cresta-Cazis folgende Arbeitshypothese formulieren: der Schlacht- und teilweise auch der Speiseabfall wurde kollektiv an eigens dafür eingerichteten Stellen ausserhalb der Spalte gesammelt und zur späteren Nutzung als Füllmaterial aufbewahrt. Um oder in die eigene Herdstelle entsorgte man hingegen nur Speiseabfall.

4. TIERARTEN

4.1. Vorbemerkungen

Obwohl nicht geschlämmt wurde, finden sich in Cresta-Cazis immer wieder kleine, grazile Vogel-, Amphibien- und Kleinsäugerreste im Fundgut. Das spricht für ein sorgfältiges, keinesfalls selektives, Aufsammeln der tierischen Überreste⁴⁷.

Der Anteil an bestimmten Stücken liegt bei 67,4% bzw. bei 93,1% (Tabelle III im Anhang, n1% bzw. g1%). Das Durchschnittsgewicht der unbestimmten Knochen beträgt 3,1 g, während die bestimmten im Mittel mit 20,4 g pro Stück rund sieben mal schwerer sind⁴⁸.

Der Anteil der Grossgruppe, welche die domestizierten und wilden Arten der kleinen Wiederkäuer zusammenfasst (KWK⁴⁹), ist aus bestimmungstechnischen Gründen aussergewöhnlich hoch (siehe Kapitel 2.2.1). Da sich in dem gesamten untersuchten Knochenmaterial weder von Rehen noch von Gämsen sichere Nachweise fanden und der Wildtieranteil allgemein verschwindend klein ist, darf davon ausgegangen werden, dass von den kleinen Wiederkäuern 98- 100% Schafe oder Ziegen sind. Die Zahlen der Rohdaten spiegeln uns also ein falsches Bild von der Haustierzusammensetzung vor, nämlich einen viel zu geringen Wert für den Schaf/Ziegen-Anteil im Verhältnis zu den anderen Haustieren. Aus diesem Grund erscheint es mir gerechtfertigt, für die Tierartenauswertung die Grossgruppe der kleinen Wiederkäuer proportional (aliquot) auf ihre wilden bzw. domestizierten Arten zu verteilen (Tabelle III im Anhang, Spalten gekennzeichnet mit n2 bzw. g2). Da sich keine sicheren Rehe und Gämsen bestimmen liessen, wurden stets 100% der jeweiligen Grossgruppe zu den Schaf/Ziegen gezählt. Die unveränderten Werte, die nicht auf entsprechende Weise angepasst wurden, findet der Leser in der gleichen Tabelle wie die modifizierten, jeweils links neben diesen (Tabelle III im Anhang, Spalten gekennzeichnet mit n1 bzw. g1).

⁴⁸ Berücksichtigt man sämtliche untersuchte Knochen aus Cresta-Cazis, wiegt ein einzelnes durchschnittliches Fragment 14,8 Gramm.

 ⁴⁶ Auffälligerweise sind auf den wenigsten von ihnen Brandspuren zu erkennen.
 ⁴⁷ Durch René Wyss bestätigt (Wyss 2002, S. 23).

⁴⁹ Schaf, Ziege, Gämse, Reh oder Steinbock.

Mit den anzahl- und gewichtsmässig relativ bescheidenen, nicht näher definierten Grossgruppen der grossen Wiederkäuer (GWK⁵⁰) sowie der Suidae (Haus- oder Wildschwein) bin ich gleich verfahren wie mit jenen der kleinen Wiederkäuer. Wie erwartet unterscheiden sich aber hier die beiden Werte kaum.

Falls nicht anders vermerkt, gilt, abgesehen von der Tierartenanalyse, für alle Auswertungen die unveränderte Tierartenliste als Grundlage. Die vorliegende Arbeit basiert auf insgesamt 18 714 Knochenfragmenten, die zusammen ein Gewicht von 276 280,6 g auf die Wage bringen.

4.2. Haustiere

4.2.1. Einleitung.

Das Tierartenspektrum von Cresta-Cazis wurde in allen Phasen der Bronzezeit von den Haustieren dominiert (vgl. Kapitel 4.3.1.). Die Viehwirtschaft basierte in erster Linie auf der Haltung von Rindern, Schafen, Ziegen und Schweinen. Reste von Hunden kommen zwar in den meisten Schichten vor, aber nach ihrer geringen Anzahl zu schliessen, unterschied sich deren Nutzungszweck von dem der anderen Haustiere. Das gleiche gilt für das Pferd, das einzig durch zwei Fragmente nachgewiesen ist und wahrscheinlich dem domestizierten, für die Bronzezeit typisch kleinwüchsigen Typ entspricht.

4.2.2. Hausrind (Bos primigenius f. taurus).

4.2.2.1. Anteil am Tierartenspektrum. In Bezug auf ihren Gewichtsanteil überwogen in Cresta-Cazis die Rinder während der gesamten Bronzezeit deutlich gegenüber allen anderen Tierarten (vgl. Tabelle III im Anhang). Da das Knochengewicht proportional den Fleischertrag wiederspiegelt, ist davon auszugehen, dass sie über 1200 Jahre hinweg die wichtigsten Fleischlieferanten für die Dorfbewohner waren. Innerhalb dieser Konstanz zeichnen sich dennoch Tendenzen ab, die davon zeugen, dass die Bedeutung dieser Haustiere einen Wandel durchmachte. Ihr prozentualer Gewichtsanteil stieg nach einem Minimum in der mittleren Frühbronzezeit wieder an und erreichte in der Spätbronzezeit Maximalwerte (Abb.7B). Der allgemeine Trend zu immer höheren Rinderanteilen lässt sich noch klarer an den Mittelwerten (weisse Prozentwerte) für die Früh-, Mittel- und Spätbronzezeit ablesen. Der Blick auf die

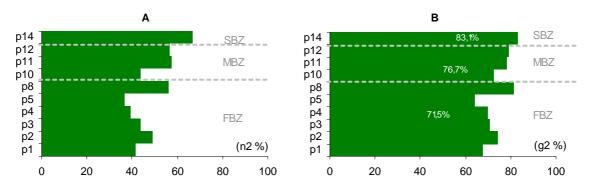


Abb.7: Cresta-Cazis. Hausrind. Knochenanteile am gesamten Tierartenspektrum in den einzelnen Siedlungsphasen (Planum 1 bis 14). A nach der Häufigkeit (n2%) B nach Gewichtsprozenten (g2%). Weisse Prozentwerte: Mittelwerte für die zusammengefassten Zeitphasen Früh-, Mittel- und Spätbronzezeit. Auswertungsbasis: proportional modifizierte Tierartenliste (siehe Tabelle III im Anhang).

⁵⁰ Rind oder Hirsch.

Fragmentzahlen⁵¹ (Abb.7A) vermittelt ein noch eindeutigeres Bild: nachdem sich in der frühen Frühbronzezeit Rinder und Schaf/Ziegen ungefähr die Waage hielten, fiel im weiteren Verlauf kleinen auf die zweite Stelle zurück. Ab der späten Frühbronzezeit ist ein klares Überwiegen der Rinderfragmente bis in die Spätbronzezeit festzustellen. Die Rinderzucht in Cazis erlebte also ab der späten Frühbronzezeit einen Aufschwung mit Höhepunkt in den spätbronzezeitlichen Epochen.

4.2.2.2. Schlachtalter. Für die detaillierte (relativ fein aufgelöste) Schlachtalteranalyse mit insgesamt sechs Altersstadien von fötal/neonat bis altadult (siehe Tabellen I/A-E im Anhang) wurden die Schichten aufgrund ihrer oftmals geringen Anzahl altersbestimmter Knochen für eine allgemeine Übersicht vorerst einmal zu früh-, mittel- und spätbronzezeitlichen Einheiten zusammengefasst (Abb.8). Die Schlachtalteranalyse aus den frühbronzezeitlichen Horizonten macht klar, dass in dieser Phase vermehrt auch Jungtiere verspiesen wurden. Kälber im neonaten bis juvenilen Alter sind mit 30%, subadulte Individuen mit weiteren knapp 15% vertreten. Das Verhältnis zwischen ausgewachsenen und nicht ausgewachsenen Rindern ist somit annähernd ausgewogen. Fast jedes dritte Rind wurde als altadultes Tier (älter als sechs Jahre) geschlachtet. Eine andere Situation wiederspiegelt das spätbronzezeitliche Altersprofil: rund vier Fünftel der Rinder stammen von adulten Individuen. Knapp die Hälfte von ihnen war zum Todeszeitpunkt über sechs Jahre alt. Die wenigen Jungtiere verteilen sich auf alle Altersstadien von neonat bis und mit subadult.

Die Ergebnisse aus den mittelbronzezeitlichen Analysen nehmen eine Zwischenstellung ein. Aus ihnen ist herauszulesen, dass Jungtiere mit über 40% immer noch zahlreich vertreten sind. Das Schwergewicht hat sich aber von den neonat bis juvenilen Kälbern hin zu den subadulten verlagert. Kennzeichnend für die Mittelbronzezeit ist der ausgeglichene Prozentsatz von sub- und jungadulten Tieren. Die über sechsjährigen Rinder wurden ausserdem häufiger geschlachtet als in der Frühbronzezeit.

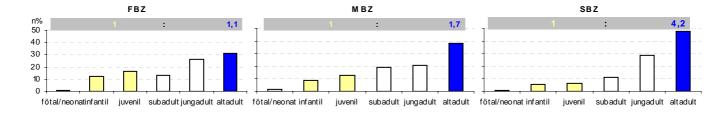
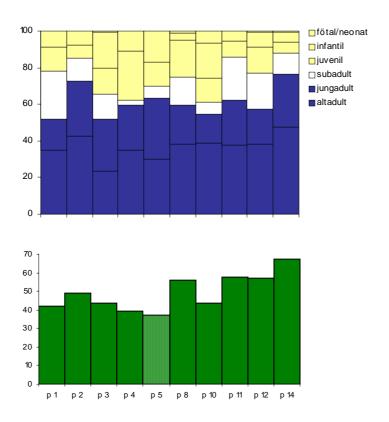


Abb.8: Cresta-Cazis. Hausrind. Altersverteilung in der Früh-, Mittel- und Spätbronzezeit.


Zusammenfassend ist festzuhalten, dass die sub- und jungadulten Tiere in allen drei bronzezeitlichen Epochen gemeinsam konstant rund 40% ausmachen. Der augenfälligste Unterschied betrifft zum einen die alten Rinder (älter als sechs Jahre), zum anderen die jüngeren Kälber (neonates und juveniles Altersstadium). Der prozentuale Anteil dieser beiden Altersgruppen variiert im Laufe der Zeit erheblich: mit je circa 30% halten sich alte Rinder und jüngere Kälber in der Frühbronzezeit die Waage. Ab der Mittelbronzezeit steigt der Anteil der ersteren an, während jener der letzteren in gleichem Masse abnimmt. In der Spätbronzezeit stehen knapp 50% altadulte Rinder noch gut 10% jüngeren Kälbern gegenüber. Knochen von fötalen bzw. neonaten Individuen kommen in allen drei Zeitabschnitten vor, aber immer in sehr geringer Anzahl.

_

⁵¹ Die Fragmentzahl refelektiert die Häufigkeit einer Tierart.

Um eine feinere chronologische Auflösung und damit Informationen über Veränderungsprozesse innerhalb der groben Zeitphasen Früh-, Mittel- und Spätbronzezeit zu erhalten, bietet sich eine "Schicht-für-Schicht-Analyse" an. Wie eingangs bereits angedeutet, stellt die teilweise geringe Fragmentzahl pro Horizont ein Unsicherheitsfaktor dar (vgl. auch Kapitel 2.2.2.).

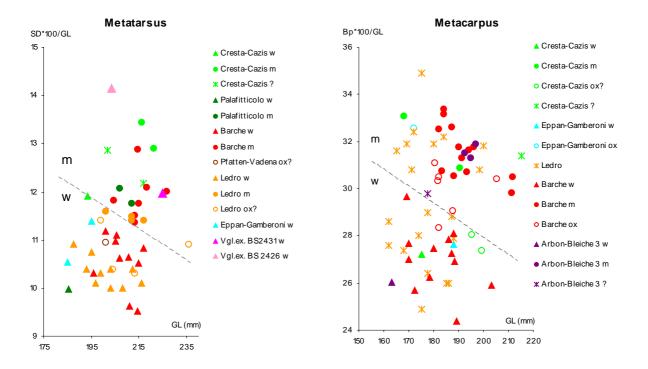
Durch die chronologisch feiner aufgelöste Schlachtalterauswertung lässt sich eine weitere (wenn auch mit den eben erwähnten Vorbehalten zu behandelnde) Erkenntnis über die Herdenhaltungsstrategie der Cazner Bauern gewinnen: die Alterszusammensetzung der Rinderpopulation verändert sich tendenziell synchron zu den Schwankungen ihres Anteils am Tierartenspektrum (Abb.9). Am deutlichsten kommt die Synchronität zum Ausdruck, wenn man den prozentualen Anteil der jüngeren Kälber und den Rinderanteil über die Zeit verfolgt.

Abb.9: Hausrind. Cresta-Cazis. Zusammenhang zwischen Altersverteilung und Anteil am Tierartenspektrum. **Oben**: Altersverteilung (n%) in den einzelnen Schichten (p1- 14). **Unten**: Anteil (n2%) der Rinder am gesamten Tierartenspektrum in den einzelnen Schichten (p1- 14). Gerastert: Abweichung innerhalb des synchronen Verlaufs von Rinderanteil und Häufigkeit der jungen (jünger als subadult) Kälber.

Mit Ausnahme von einer kurzen Periode in der mittleren Frühbronzezeit (Plana 4 und 5), nimmt die relative Häufigkeit von adulten Tieren parallel zum wachsenden Rinderanteil zu. Umgekehrt decken sich die Phasen der schwächsten Vertretung der Rinder innerhalb der Haustiere i.d.R. mit denjenigen, bei denen der Kälberanteil am höchsten ist (Ausnahme Planum 5). Im Detail fallen insbesondere die Horizonte der späten Mittel- bis Spätbronzezeit auf, die von den im Erwachsenenalter geschlachteten Individuen dominiert sind. Man kann das vermehrte Verspeisen von Jungtieren beispielsweise als Reaktion auf einen Engpass im Angebot des üblichen Schlachtviehs werten. Die Resultate aus den Altersanalysen passen gut zu der bereits oben aufgestellten Vermutung, dass die Bauern aus Cresta-Cazis in den ausgehenden mittel- und spätbronzezeitlichen Epochen die Rinderzucht besonders erfolgreich betrieben haben oder mit anderen Worten, dass die Rinder im Laufe der fortgeschrittenen Früh- und während der Mittelbronzezeit nicht dieselbe

unangefochtene Dominanz im viehwirtschaftlichen Bild des Dorfes repräsentierten wie zu Beginn und vor allem gegen Ende der Bronzezeit. Der Zusammenhang zwischen ihrem Schlachtalter und ihrem Anteil am Tierartenspektrum liegt in der Nutzungsstrategie der Cazis-Bauern begründet, auf die im nachfolgenden Kapitel 4.2.2.3. und, mit weiteren Faktoren verknüpft, in der Synthese (Kapitel 6) noch einmal eingegangen wird.

4.2.2.3. Geschlechterzusammensetzung. Für eine Einschätzung des Verhältnisses zwischen weiblichen und männlichen Rindern in den einzelnen Schichten reicht die Anzahl der geschlechtsbestimmten Knochenelemente nicht aus. Selbst ihre Zusammenfassung zu den drei Auswertungseinheiten Früh-, Mittel- und Spätbronzezeit ändert daran nicht viel. Bei der folgenden Gesamtbeurteilung bleiben Informationen über chronologische Unterschiede innerhalb der Siedlung zwar im Dunkeln, aber sie liefert dennoch einige Anhaltspunkte für das Verständnis der Herdenhaltung in Cresta-Cazis.

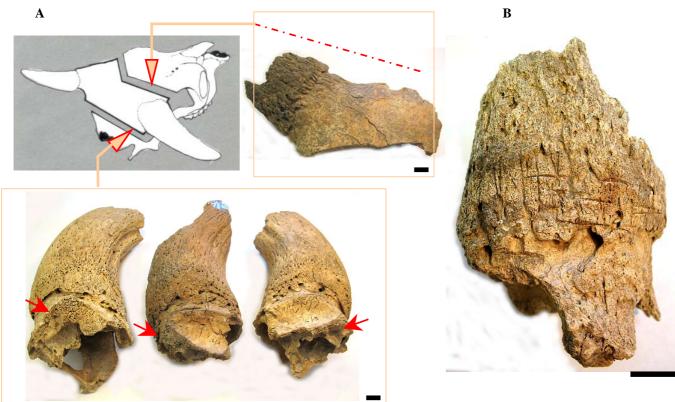

Anhand der Beckenmorphologie liessen sich insgesamt 18 weibliche und 21 männliche Individuen bestimmen. Obwohl von keinem Stück mit Sicherheit behauptet werden kann, dass es von einem Ochsen stammt, spricht die beachtliche morphologische Variabilität des Pubis und das Vorhandensein sämtlicher Übergangsformen zwischen weiblichen und männlichen Merkmalsausprägungen für ihre nicht zu unterschätzende Präsenz im Rinderbestand der Cazner Bauern (Foto III/A im Anhang).

Aus den Geschlechtsbestimmungen der Hornzapfen resultieren sechs Weibchen, die zwölf Männchen gegenüberstehen. Dieses Verhältnis reflektiert nicht zwingend die ursprüngliche Situation in der Rinderpopulation, weil bei den Hornzapfen nicht a priori davon ausgegangen werden darf, dass es sich bei ihren Überresten um den üblichen Speiseabfall handelt. Vor der Einlagerung in die Erde könnte es aufgrund ihrer Verwendungsmöglichkeit als Rohstoff zu einer anthropogenen Selektion gekommen sein. Im nachfolgenden, speziell den Hornzapfen gewidmeten Kapitel 4.2.2.4.wird zu dieser Frage Stellung genommen. Das Thema der Kastraten kommt gleichfalls zur Sprache. Vorweggenommen sei lediglich, dass die meisten der von männlichen Individuen stammenden Hornzapfen als solche von Ochsen interpretiert wurden

Radius und Metapodien⁵² liefern zwar nicht genügend Masse, um sie als verlässliche Informationsquelle für eine statistisch fundierte Geschlechteranalyse benutzen zu können, aber die Einhängung von Einzelstücken in vorhandene Massprofile zeigt abermals, dass mit Ochsen zu rechnen ist (Abb.10). Ähnlich wie beim Becken bleibt nach der morphologischen Trennung von eindeutig weiblichen und männlichen Tieren eine heterogene Gruppe von Knochenstücken übrig, bei welcher die Merkmalsausprägungen beider Geschlechter in unterschiedlichem Ausmass vereint bzw. vermischt sind. Sie steht wohl eng mit der Kastration der Rinder in Verbindung (vgl. Kapitel 4.2.2.5a).

Alle gesammelten Breitenmasse der Rinderknochen zusammen (Grössenindizes, vgl. Kapitel 4.2.2.5.c) ergeben eine unimodale Verteilung und erlauben deshalb keine Rückschlüsse auf das Geschlechterverhältnis. Richtet man den Fokus auf einzelne Skelettelemente, zeichnen sich teilweise bimodale Ansätze ab (Abbildung II im Anhang). Falls damit tatsächlich der Geschlechtsdimorphismus nachgewiesen ist, halten sich weibliche und männliche Tiere ungefähr die Waage.

⁵² Benecke 1988.


Abb.10: Hausrind. Geschlechterzusammensetzung in verschiedenen bronzezeitlichen Fundstellen anhand der Osteometrie von Metapodien.

Zusammenfassend vermitteln die Untersuchungen an Pelvis, Hornzapfen und Langknochen (trotz mangelnder Quantifizierbarkeit) den Gesamteindruck, dass während der Bronzezeit auf der Cresta eine mehr oder weniger ausgewogene Zusammensetzung der beiden Geschlechter bestanden hat, und dass der Anteil der ausgewachsenen männlichen Tiere zum wesentlichen Teil auf Kastraten zurückzuführen ist.

4.2.2.4. Hornzapfen.

4.2.2.4.a Morphologische Beschreibung. Innerhalb der Hornzapfenreste können morphologisch mindestens drei Gruppen unterschieden werden: vorherrschend sind (relativ) grosse, nicht sehr lange Formen, mit einer auffällig dünnen Kompakta, deren Oberfläche sehr glatt und wenig strukturiert wirkt (Foto III/A3 im Anhang). Ihr Querschnitt an der Basis ist oval, z.T. dorsal abgeflacht. Die meist recht ausgeprägten Längsfurchen findet man meistens auf der anterioren Dorsalseite, manchmal dehnen sie sich von dort bis auf die posteriore Ventralseite aus. Die Hornzapfenspitzen sind nach vorn und leicht nach oben gebogen. Sämtliche unter ihnen weisen typische Hack- bzw. Trennspuren an den anhaftenden Schädelfragmenten auf, und zwar unterhalb der Hornzapfen in waagrechter Richtung verlaufend und unmittelbar vor den Hornzapfen auf dem Frontale in Richtung Schädelmitte (Abb.11A). Eine zweite Gruppe von Hornzapfen lässt sich von der ersteren im Wesentlichen durch die Grösse separieren (Foto III/A2 im Anhang). Sie setzt sich aus kleinen, relativ kurzen Formen zusammen mit einem runden bis ovalen Querschnitt an der Basis und einer ebenfalls nach vorn und leicht nach oben verlaufenden Biegung. Die im Verhältnis etwas dickere Kompakta ist an der Oberfläche ebenfalls glatt. Die Längsfurchen sind nur schwach ausgebildet. Verglichen mit der ersten Gruppe sind die Hornzapfen i.d.R. weniger vollständig erhalten. Bearbeitungsspuren finden sich auch hier, sie sind jedoch nicht mit jenen der ersten Gruppe zu vergleichen. Es handelt sich um Hack- oder Schnittspuren direkt an der Hornzapfenbasis und um eine vertikale Trennspur am anhaftenden Hinterschädelfragment.

Sehr vage nachgewiesen ist eine dritte Gruppe von Hornzapfen (Foto III/A4 im Anhang). Ihre Vertreter weichen aufgrund der dicken Kompakta von den bisher beschriebenen Formen ab. Leider existieren keine sicher dieser Gruppe zugeschriebenen Stücke, bei denen die Hornzapfenbasis und somit der Querschnitt erhalten ist. Mindestens drei der insgesamt sieben als jung eingestuften Exemplare können wegen ihrer beachtlichen Kompaktadicke möglicherweise als Vertreter der dritten Gruppe angesprochen werden. Jedenfalls übertreffen sie die Hornzapfen aus der zweiten Gruppe bereits deutlich an Grösse, so dass ihre Zugehörigkeit zumindest zu dieser ausgeschlossen werden kann.

Abb.11: Cresta-Cazis. Hausrind. Schnitt- und Hackspuren an Hornzapfen und anhaftenden Schädelfragmenten bei A Gruppe 1 und B Gruppe 2. (Der schwarze Balken rechts unten im Bild entspricht jeweils einem Zentimeter.)

4.2.2.4.b Interpretation. Die Tatsache, dass sich die Hornzapfenfragmente in drei morphologisch voneinander trennbare Gruppen aufteilen lassen, legt die Vermutung nahe, dass im bronzezeitlichen Cresta-Cazis neben Kühen und Stieren auch Ochsen gehalten wurden. Nach der Morphologie zu urteilen, handelt es sich bei der als erstes beschriebenen Form um Hornzapfen von Ochsen. Die Vertreter der zweiten Gruppe werden als Kühe angesprochen, während die Stiere am ehesten mit der dritten, schwach vertretenen, Gruppe in Verbindung zu bringen sind. Diese Einteilung macht ebenfalls Sinn, wenn man die Altersbestimmung der Hornzapfen von Ochsen, Stieren und Kühen miteinander vergleicht. Da bei den meisten geschlechtsbestimmten Hornzapfen an den anhaftenden Schädelelementen der Verwachsungsgrad von Frontale und Parietale erkennbar ist, lässt sich deren individuelles Alter abschätzen: mit etwa zwei bis drei Jahren beginnen die beiden Schädelelemente entlang der Nuchaleminenz zu verwachsen, unter den Hornzapfen (an der Ecke zum Temporale) fängt

dieser Prozess hingegen erst nach einem Alter von zehn Jahren an⁵³. Die als Ochsenhornzapfen deklarierten Fragmente weisen

⁵³ Armitage 1982.

ausnahmslos eine vollständig verwachsene Frontal-Parietal-Sutur unterhalb der Hornzapfen auf, das heisst, sie gehören allesamt zu Individuen, die zum Zeitpunkt ihres Todes älter als zehn Jahre waren. Wenn man eine Nutzung der Ochsen als Arbeitskraft annimmt, was in Anbetracht des hohen Stellenwerts der Landwirtschaft bei den Siedlern auf der Cresta durchaus plausibel erscheint, ist nachvollziehbar, dass die prähistorischen Bauern bestrebt waren, gerade ältere, erfahrene Individuen möglichst lange zu behalten. Von den Hornzapfen der Kühe dürften ebenfalls alle von ausgewachsenen Individuen stammen. Bei wenigen ist die Frontal-Parietal-Sutur unterhalb der Hornzapfen jedoch noch nicht vollständig verwachsen. Dass alle drei der mit Vorbehalt geschlechtsbestimmten Hornzapfen von Jungtieren am ehesten als Stiere angesprochen werden können, erstaunt nicht weiter. Ausgewachsene Stiere sind alles andere als pflegeleicht und nur in geringer Zahl (3-4%), nämlich für den Fortbestand der Herde, notwendig⁵⁴. In vielen Viehwirtschaftsystemen werden deshalb die meisten männlichen Rinder geschlachtet oder kastriert, bevor sie das Erwachsenenalter erreichen. Das Bild, das uns die Hornzapfen vom Verhältnis der Geschlechter vermittelt, ist hingegen (im Vergleich zum Postcranialskelett) ungewöhnlich. Abgesehen von den Stieren, deren Anteil verschwindend klein ausfällt, überwiegt die Fragmentzahl der Ochsen gegenüber jener der Kühe deutlich. Wie bereits oben kurz erwähnt, sind an fast allen, den Hornzapfen anhaftenden Schädelfragmenten der Ochsen, und vereinzelt auch an solchen von mutmasslichen Stieren, typische Hackspuren zu erkennen (Abb.11A). Sie wurden gezielt und mit einem scharfen Werkzeug ausgeführt. Vielleicht wurde dafür ein kleines Bronzebeil verwendet, denn in einem Fall glaubt man auf dem Frontale die Kontur einer Beilklinge (Klingenbreite ca. 4 cm) erkennen zu können (Foto II/5 im Anhang). Unter den zahlreichen bronzezeitlichen Kleinfunden aus Metall (sowie aus Gestein) fanden sich in Cresta-Cazis keine Werkzeuge, die vergleichbare Marken auf dem Knochen hinterlassen lassen würden (vgl. Kapitel 5.6.). Hackspuren auf dem Schädel können unter Umständen auf eine besondere Art der Tötung des Tieres hindeuten. Über letztere ist wenig bekannt, aber sie kann aufgrund der Orientierung und des Charakters der Hackspuren in dem vorliegenden Fall nicht als Erklärung herangezogen werden. Man könnte die anthropogenen Manipulationen mit der Absicht in Verbindung bringen, das Hornzapfenpaar postmortal möglichst unversehrt aus dem Schädelverband herauszulösen. Zurichtungen dieser Art sind unter anderem aus dem Neolithikum (Arbon-Bleiche 3) als Bukranien bekannt und ihre Interpretation gibt immer wieder Anlass zu neuen Diskussionen⁵⁵. An ihrer repräsentativen und/oder dekorativen Wirkung, aufgehängt beispielsweise oberhalb der Haustür, wird niemand zweifeln wollen. Da die Ochsen in Cazis offensichtlich eine Rolle in der Wirtschaftsweise gespielt haben⁵⁶, scheint die Idee, mit der Anfertigung von Bukranien den Stellenwert dieser Arbeitstiere auszudrücken, durchaus nicht abwegig. Vergleicht man die auf diese typische Weise zugerichteten Cazis Exemplare z. B. mit den Bukranien aus Arbon, stellt man eine weitgehende Übereinstimmung fest. Schnittmarken, die auf eine Verarbeitung der Hornscheide schliessen lassen würden, fehlen bei ihnen ebenfalls. Anders als in Cazis erfolgte die Präparation in Arbon jedoch offensichtlich mit einem stumpfen Gegenstand, da keine eigentlichen Hackspuren zu erkennen sind. Ausserdem fand man auf der Cresta nur einzelne Hornzapfen mit anhaftenden Schädelelementen, jedoch kein einziges Hornzapfenpaar, welches mit Sicherheit einem Individuum zuzuschreiben wäre. Die räumliche Verteilung der betreffenden Hornzapfenelemente innerhalb der Siedlung könnte eventuell Aufschluss darüber geben, ob eine Interpretation als Bukranien gerechtfertigt ist. Man würde erwarten, dass letztere nicht mit den Speise- bzw. Schlachtabfällen in den Boden gelangt sind und

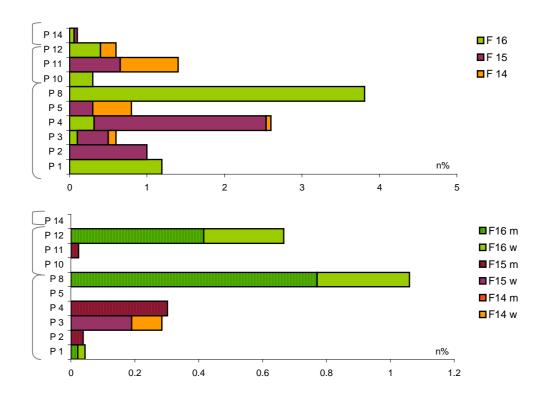
-

⁵⁴ Ebersbach 2002, S. 144f.

⁵⁵ Deschler-Erb et al. 2002.

⁵⁶ Beim Heranschaffen der Einfüllschichten in die Siedlung (Kpt. 3.2.) dürften z.B. Ochsen eingesetzt worden sein.

deshalb ein spezielles Verteilungsmuster aufweisen. Denkbar wären beispielsweise auffällige Akkumulationen in der Nähe von Hauseingängen. Da sich die Lokalisierung der Knochenfunde in Cresta-Cazis auf Angaben über Feld und Abstich (d.h. 16 m²) beschränkt, muss hier auf diese Möglichkeit der Beurteilung verzichtet werden. Schliesslich können die charakteristischen Hackspuren auf dem behornten Schädelteil von Rindern (und insbesondere auf jenen der Ochsen) als Folge der Portionierung zum Zweck der Hirnentnahme interpretiert werden. Die Untersuchungen von Knecht an rezentem Hornzapfenmaterial, das er am Schlachthof München aufgesammelt hatte, sind diesbezüglich ausserordentlich informativ⁵⁷: die photographische Dokumentation verdeutlicht, dass ein üblicher Ausschlachtvorgang Schädelfragmente liefert, die den Bukranien zum Verwechseln ähnlich sehen (Foto II/4 im Anhang). Knecht stellt in seinen Ausführungen fest, dass "die Hornzapfen mit einem einer Axt ähnlichen Instrument vom Rinderkopf abgetrennt werden und dass es hiezu nur eines wohlgeführten Hiebes bedarf". Die gleichartigen Resultate aus Bukraniumherstellung und Schlachtvorgang zur Hirnentnahme sollten anhand der Sorgfältigkeit in der Ausführung der Präparation unterschieden werden können. Unter Berücksichtigung dieses letzten Arguments und der vorangegangenen Betrachtungen deute ich die behornten Schädelelemente der männlichen Rinder (v.a. der Ochsen) aus Cazis als klassischen Schlachtabfall. Die bronzezeitlichen Älpler in der Felsspalte scheinen regelmässig das Hirn dieser Tiere genutzt zu haben. Dabei ist einerseits die Verwendung als Nahrung, andererseits der Gebrauch als Werkstoff beispielsweise beim Gerben denkbar⁵⁸. Es ist anzunehmen, dass auch die Kuhschädel aus demselben Grund auf diese Weise aufgeschlagen wurden. Da die anhaftenden Schädelelemente bei den weiblichen Individuen mehrheitlich fehlen, lässt sich diese Vermutung nicht schlüssig klären. Es sei hier lediglich angefügt, dass viele Rinderschädelfragmente ohne Hornzapfen aus Cresta-Cazis, (welche sich nicht für eine Geschlechtsbestimmung eignen), die oben beschriebenen Hackspuren auf dem Frontale aufweisen. Nicht zu übersehen ist die geschlechtsspezifische Verarbeitung der Hornzapfen selbst. Die typischen Schnitt- und Hackmarken auf den Kuhhornzapfen oder unmittelbar unterhalb der Hornzapfenbasis (vgl. mit den Schafen und Ziegen, Kapitel 4.2.3.3.) fehlen bei den männlichen Exemplaren. Man tut sich schwer mit der Vorstellung, dass ausgerechnet die mächtigen Hornscheiden der männlichen Rinder keine Verwendung fanden, wo doch die Kuhhörner offensichtlich zur Verarbeitung diverser Artefakte genutzt wurden. Vielleicht legte man Wert auf vollständige, unversehrte Hornzapfenscheiden der männlichen Individuen.


4.2.2.4.c Horizontale und vertikale Verteilung der Hornzapfen im untersuchten Siedlungsausschnitt. Wie Abb. 12 aufzeigt, fanden sich Hornzapfenfragmente grundsätzlich in allen
Schichten und Feldern von der Früh- bis zur Spätbronzezeit. Als ergiebigste Quelle der
besagten Skelettelemente erweisen sich die frühbronzezeitlichen Schichten, darunter
insbesondere Planum 8 in Feld 16 und Planum 4 in Feld 15. Diese Beobachtung ist mit der
Tatsache, dass das Planum 8 in Bezug auf die Gesamtzahl seiner Knochen⁵⁹ zu den
umfangreichsten Komplexen gehört, nicht hinreichend erklärt. Trotz bescheidener
Knochengesamtzahl liefert nämlich Planum 4 in Feld 15 mit 41 Stücken die zweitgrösste
Menge an Hornzapfen. Die spätbronzezeitlichen Schichten sind aufgrund ihrer hohen
Knochengesamtmenge durchaus mit jenen der Frühbronzezeit zu vergleichen, trotzdem sind
aus ihnen nur wenige kleine, nicht näher identifizierbare Bruchstücke geborgen worden.
Für eine Deutung (und die dazu notwendige Überprüfung der möglichen Ursachen) der
unterschiedlichen Hornzapfenverteilung auf die Felder und Schichten müsste die
Datengrundlage umfangreicher sein.

_

⁵⁷ Knecht 1966.

⁵⁸ Ottiger u. Reeb 1991.

⁵⁹ Die Gesamtzahl der Knochen in den einzelnen Schichten bzw. Feldern kann in Tab. 1 (Kapitel 2.1.) nachgeschaut werden.

Abb.12: Cresta-Cazis. Hausrind. Verteilung der Hornzapfenfragmente (n%) auf die verschiedenen Schichten (Planum 1- 14). **Oben**: alle Hornzapfen, **unten**: nur geschlechtsbestimmte Hornzapfen. F: Feld, w: weiblich, m: männlich (mehrheitlich Ochsen).

4.2.2.5. Grösse und Wuchsform.

4.2.2.5.a Einleitung. Der optische Eindruck der Rinderknochen aus Cresta-Cazis vermittelt, ungeachtet ihrer zeitlichen Herkunft, das Bild einer erstaunlichen Variabilität in Grösse und Statur dieser Haustiere. Das morphologische Spektrum reicht von regelrechten Zwergformen bis hin zu durchaus stattlichen Exemplaren. An den Metacarpen manifestieren sich die Unterschiede in der Grösse, der Proportion und der Kompaktadicke besonders eindrücklich (Foto III/A5 im Anhang).

Demgegenüber gewinnt man aus den osteometrischen Auswertungen den Eindruck einer hinsichtlich Körpergrösse und Wuchsform recht einheitlich zusammengesetzten Rinderpopulation. Der scheinbare Widerspruch zwischen visueller Wahrnehmung und metrischer Analyse kann unter anderem mit dem Umstand erklärt werden, dass durch die starke Zertrümmerung des Materials die Wahrscheinlichkeit, "Ausreisser" vermessungstechnisch zu erfassen, stark reduziert ist.

Bei Überlegungen über die Wuchsform darf nicht ausser Acht gelassen werden, dass während der Bronzezeit nicht mit derselben Homogenität in der Gestalt der Rinder zu rechnen ist, wie wir sie bei heutigen Herden antreffen. Der Geschlechtsdimorphismus (Foto III/A1 im Anhang) vermag Staturunterschiede bis zu einem gewissen Grad zu erklären, aber im Fall von Cresta-Cazis verlangt das Ausmass der Variabilität nach zusätzlichen Begründungen. Neben wirtschaftstechnischen (Kastration), ernährungsbedingten und topographischen Faktoren können auch Einkreuzungen mit Wildrindern⁶⁰ oder Viehtausch zwischen benachbarten Siedlungen eine beeinflussende Wirkung auf die Statur von Hausrindern haben.

_

⁶⁰ MacHugh at al 1999, Bollongino et al. 2003, Edwards et al 2004, Bollognino 2006.

Im nächsten Abschnitt werden die aufgezählten Faktoren auf ihre Bedeutung für die Situation in Cazis hin überprüft und diskutiert.

Durch die Kastration und den so veränderten Hormonhaushalt verzögert sich unter anderem der Epiphysenverschluss von Extremitätenknochen, wodurch ihnen mehr Zeit für das Längenwachstum bleibt⁶¹. Mit der Streckung einher gehend verliert die Kompakta relativ an Dicke. Ochsen besitzen aus diesen Gründen im Verhältnis längere und dünnwandigere Extremitätenknochen als Stiere und Kühe. Der Ausprägungsgrad von kastrationsbedingten Veränderungen hängt hauptsächlich vom Zeitpunkt des sterilisierenden Eingriffs ab. Je später dieser im Leben eines männlichen Rindes erfolgt, umso schwieriger ist es, seine Knochen von denen eines Stieres zu unterscheiden. Die Vielfalt an Proportionen der Rinderknochen auf der Cresta spricht meines Erachtens in Zusammenhang mit den Hornzapfenfunden (vgl. Kapitel 4.2.2.4.) dafür, dass die Cazner Bauern die Technik der Kastration regelmässig angewendet haben, und zwar bei Tieren unterschiedlichen Alters. Es ist auffällig, wie gerade bei Jungtieren gleichen Alters die Kompaktadicke extrem variiert (Foto III/A5). Um diese Hypothese eingehender zu testen, fehlen grossflächige Studien zum Thema, die für archäozoologische Fragestellungen Relevanz hätten.

Auch Veränderungen der Ernährungsbedingungen können die Wuchsform von Tieren direkt beeinflussen. Mangelhafte Ernährung beispielsweise haben bei Kälbern Entwicklungsstörungen zur Folge, die im Extremfall zu Kleinwüchsigkeit führen können⁶². Allerdings würde man bei anderen Haustieren ähnliche Konsequenzen erwarten. Solche sind jedoch für Cresta-Cazis nicht nachzuweisen. Es gibt andere Beispiele, wo man auf die Fütterung von Ochsen besonderen Wert legt, während Kühe und Stiere so knapp wie möglich gehalten werden⁶³. Eine solche Behandlung dürfte an den Tieren nicht spurlos vorbeigehen. Ähnlich wie die Ernährungsbedingungen sollten sich topographische Faktoren (Lebensraum) theoretisch bei sämtlichen Rindern aus der Siedlung in ähnlicher Weise auf deren Gestalt auswirken und kommen deshalb als Ursache für die diskutierte Formenvielfalt nicht in Betracht. Bei der Gegenüberstellung von Wuchstypen aus verschiedenen Lokalitäten, wie beispielsweise der Alpen und des Mittellandes, müssen sie jedoch berücksichtigt werden. Nicht ganz auszuschliessen, aber wenig wahrscheinlich ist die Möglichkeit, dass die vereinzelten, sehr grossen Rinderknochen von Nachkommen aus zufälligen Kreuzungen von Haus- und Wildrindern stammen. In Graubünden überlebte der Ur zwar bis ins Mittelalter und der Wisent sogar bis ins 19. Jahrhundert, aber beide Wildrinder sind im faunistischen Material der ur- und frühgeschichtlichen Siedlungen in der Region spärlich vertreten. Aus den untersuchten Tierknochen von Cresta-Cazis wurde nur ein einziges Fragment (Metapodium) sicher als Wildrind bestimmt. Angenommen, Vermischungen zwischen den Haus- und Wildrindern kamen tatsächlich vor, würde ich eine höhere Anzahl der letzteren im Tierartenspektrum erwarten. Abgesehen davon vermag dieser Aspekt die extrem kleinwüchsigen Exemplare nicht zu erklären.

Der regelmässige Viehaustausch eines Dorfes mit anderen unabhängigen Gemeinschaften aus der Umgebung ist die einzige Methode, den beschränkten Genpool einer Herde aufzufrischen und "Inzucht" zu verhindern. Falls eine solche Motivation existierte, zeugt diese zwar von einer weitsichtigen, vorausplanenden Organisation in der Viehhaltung, ihr Nachweis anhand von Tierknochen ist aber äusserst schwierig.

Als unwahrscheinlich schätze ich eine Haltung oder Zucht von zwei verschiedenen Rinderpopulationen parallel und isoliert nebeneinander ein. Die Formenvielfalt der Cazisrinder ist für eine solche Situation zu unspezifisch. Zwischen dem grazilsten und robustesten Tier existieren sämtliche Übergangsstufen, es gibt also keinen Anhaltspunkt für verschiedene, untereinander abgrenzbare Wuchsformklassen.

⁶¹ Bartosiewicz 1984.
⁶² von Nathusius 1864, Henseler 1913, Herre u. Röhrs 1990.
⁶³ Benecke 1994, S. 269f und Abb. 153.

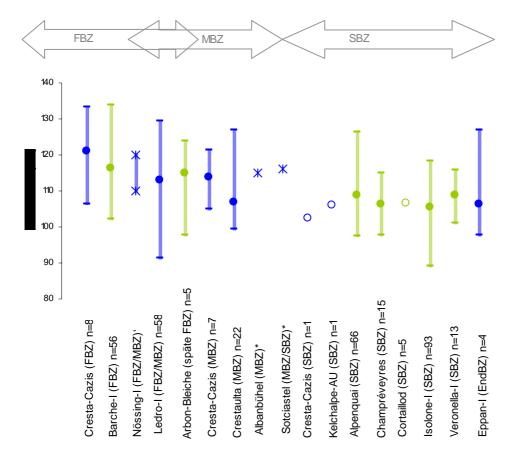
Abschliessend bleibt festzuhalten: auch wenn die Grössenvielfalt der Cazisrinder erstaunt, deutet die immense Zeitdauer (Früh- bis Spätbronzezeit), während der sie beobachtet werden kann, auf eine langfristige und "alltägliche" Ursache oder Ursachenkombination hin. Für Cresta-Cazis gehe ich davon aus, dass die Kastration einerseits und der Geschlechtsdimorphismus andererseits zum grossen Teil für die Variabilität in der Wuchsform der Hausrinder verantwortlich sind.

4.2.2.5.b Grösse. Einen groben Eindruck von der Körpergrösse der Cazis-Rinder gewinnt man durch die Berechnung ihrer Widerristhöhe (Tabelle II/1 im Anhang). Dazu müssen vollständig erhaltene Langknochen zur Verfügung stehen, eine Rarität im faunistischen Fundgut von Cresta-Cazis. Nur bei 13 Metapodien war die Massabnahme der Gesamtlänge möglich. Die ermittelten Werte für die Widerristhöhe streuen zwischen 102,5 und 123,6 cm. Die durchschnittliche Körpergrösse der Individuen, die eine Beurteilung erlauben, lässt sich mit rund 115 cm angeben (Tab.2).

Skelettelement	sex	Pla	num	GL (cm)	WRH (cm)	WRH med	Faktor
	ox	FBZ	8	19,9	123,6		6,2
	ox	MBZ	11	19,5	120,9		
	m	MBZ	12	17,9	112,5		6,3
MC	m	MBZ	12	19,0	117,8		
	w	MBZ	12	17,5	105,0		6,2
	m	MBZ	12	16,8	105,8		
	m	MBZ	12	18,2	114,7		
						114,3	
	m	FBZ	1	21,6	121,4		5,5
	ox	FBZ	1	22,1	121,6		
MT	w	FBZ	?8	20,1	106,5		5,3
IVII	ox*	FBZ	8	21,7	119,4		5,6
	m	MBZ	12	21,6	121,4		
	w	SBZ	14	19,3	102,5		
						115,5	
n total= 13						114,8	

Tab.2: Cresta-Cazis. Hausrind. Widerristhöhen berechnet nach den Faktoren von Matolcsi 1970 für Metacarpus und -tarsus. WRH med: durchschnittliche Widerristhöhe, *unsichere Bestimmung.

Gestützt auf die Ergebnisse aus weiteren osteometrischen Analysen (LSI, Korrelationen zwischen Längen- und Breitenmassen) und aus der Geschlechtsauswertung können trotz der schmalen Datenbasis folgende Aussagen über die Körpergrösse der Cazis-Rinder gemacht werden: von den 13 Metapodien dürfte es sich mehrheitlich um Stiere oder Ochsen handeln (ein Metacarpus und zwei Metatarsen stammen sicher von Kühen). Somit ist die mittlere Widerristhöhe von 115 cm offensichtlich stark von den männlichen Tieren beeinflusst. Die "Durchschnittskuh" aus Cresta-Cazis mass ungefähr 107 cm, auf jeden Fall war sie deutlich grösser und weniger grazil als jenes spätbronzezeitliche Individuum, dessen Ristmass mittels seines Metatarsus auf 102,5 cm geschätzt wird. Die über 120 cm hohen und gleichzeitig äusserst schlankwüchsigen Individuen repräsentieren vermutlich die Kastraten. Der Vergleich mit Daten aus anderen Regionen der Alpen sowie des Flachlands gibt eine Vorstellung davon, wie sich die Cazis-Rinder in Bezug auf ihre Körpergrösse in einen geographisch weitergefassten Rahmen eingliedern (Abb.13). Es zeigt sich, dass sie gut ins Bild der jeweils zeittypischen Variationsbreite passen.


Der Trend der Grössenreduktion im Laufe der Bronzezeit zeichnet sich auch bei den Rindern aus dem bündner Spaltendorf ab (vergleiche mit nächstfolgendem Kapitel 4.2.2.5c über die Wuchsform). Obwohl bereits vielerorts in Europa ähnliche Tendenzen beobachtet wurden⁶⁴,

_

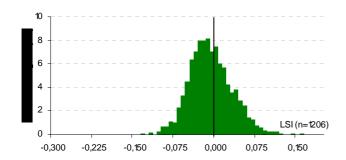
⁶⁴ Bachmann 1962, Bökönyi 1974, Ijzereef 1981, Meniel 1984, Riedel 1986a.

sind die Möglichkeiten, diese wie hier in Cazis innerhalb einer Siedlung zu verfolgen, selten gegeben. Die bronzezeitliche Grössenreduktion hat Rinderpopulationen aus Wohnplätzen in der Ebene und in den Alpen gleichermassen erfasst. Das Phänomen ist vom Neolithikum über die Bronze- bis hin zur Eisenzeit dokumentiert und wurde erst in den römischen Epochen durch neue Zuchtpraktiken unterbrochen⁶⁵.

Welche Ursache liegt nun aber der Grössenreduktion zu Grunde? Möglicherweis besteht eine Abhängigkeit zwischen der Körperdimension der Cazner Hausrinder und ihrer Häufigkeit⁶⁶. Danach wäre das Individuum in vergrösserten Rinderherden einem gesteigerten, sich negativ auf seine Grösse auswirkenden, Konkurrenzdruck (betreffend Futter, Raum usw.) ausgesetzt.

Abb.13: Hausrind. Grössenreduktion im Laufe der Bronzezeit. Säulen: Variationsbreite der Widerristhöhe (anhand Metapodien errechnet), blau: alpine Siedlungen, grün: Flachlandsiedlungen, ausgefüllter Punkt: durchschnittliche Widerristhöhe, nicht ausgefüllter Punkt: Einzelwert, *: Schätzwerte.

Ein weiterer Interpretationsvorschlag bezieht sich auf die Tatsache, dass Säugetiere v.a. in der Frühzeit der Haustierhaltung, im Allgemeinen kleiner werden als ihre wilden Vorfahren⁶⁷. Die kontinuierliche Abnahme der Körpergrösse der Rinder in Cresta-Cazis könnte man dementsprechend als "fortlaufende Folgen der Domestikation" deuten.


66 Pucher 1994, S. 244.

67 Herre u. Röhrs 1990, S. 216.

⁶⁵ Breuer et al. 2001.

4.2.2.5.c Wuchsform. Die Auswertung der Grössenindizes (LSI) (vgl. Kapitel 2.2.4.), die sämtliche zur Verfügung stehende Breiten-, Tiefen- und Kurzknochenmasse des Extremitätenskeletts miteinbezieht, ist in der Abb. 14 dargestellt. Daraus geht hervor, dass der überwiegende Teil der Cazis-Rinder eine zierlichere Statur hatte als das in den Analysen verwendete Vergleichsexemplar BS2431⁶⁸.

Anzeichen für eine zweigipflige (bimodale) Verteilung, die gegebenenfalls den Geschlechtsdimorphismus ausdrückt oder auf ein Nebeneinander zweier unterschiedlicher

Abb.14: Cresta-Cazis. Hausrind. Auswertung der Grössenindizes (LSI) für Plana1- 14 zusammengefasst. Referenzindividuum (BS2431) mit Balken durch den Nullpunkt gekennzeichnet.

Rinderpopulationen hindeutet, sind hier nicht ausgesprochen deutlich zu erkennen. Aber in Kombination mit der Geschlechtsauswertung, die während der ganzen Bronzezeit ein mehr oder weniger ausgewogenes Verhältnis zwischen weiblichen und männlichen Rindern postuliert, vermittelt die Abfolge der einzelnen Säulen des Histogramms, dass Stiere und Ochsen in der Regel wenig kleiner, gleich gross oder grösser waren als die Hinterwälder-Kuh. Das entspricht der Interpretation einer männlich geprägten durchschnittlichen Widerristhöhe von 115 cm (vgl. Kapitel 4.2.2.5b).

Aufgegliedert in die drei Hauptepochen der Bronzezeit, illustriert die Häufigkeitsverteilung der Breitenmasse (Abb.15) eine Entwicklung in der Statur der Rinder aus Cresta-Cazis, wie sie ansatzweise im vorangegangenen Abschnitt schon für die Widerristhöhe diskutiert wurde: der Anteil der robusten Tiere verminderte sich von der Früh- bis zur Spätbronzezeit um fast 10%. Die Veränderungen sind auch an einzelnen Skelettelementen fassbar (Abbildung II im Anhang).

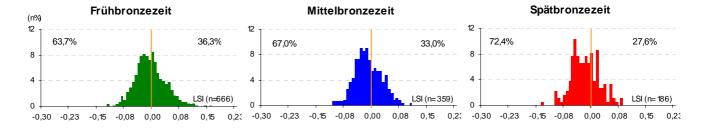


Abb.15: Cresta-Cazis. Hausrind. Auswertung der Grössenindizes für die Früh-, Mittel- und Spätbronzezeit.

⁶⁸ Die Angaben zum Referenzindividuum sind in Tabelle II/2 im Anhang aufgeführt. Seine auf Basis der Metapodien berechnete Widerristhöhe beträgt ca. 118 cm.

4.2.2.6. Pathologisch- anatomische Veränderungen. Von den Rinderknochen aus Cresta-Cazis weisen rund 1% pathologisch-anatomische Veränderungen auf⁶⁹. Für viele der Erscheinungen finden sich Parallelen zu Befunden aus anderen vor- und frühgeschichtlichen Siedlungen. Einige stehen jedoch bislang noch isoliert da.

Verbrauchs- und Überlastungserscheinungen am Skelett kommen am häufigsten vor, und zwar überwiegend in Form von chronischen Gelenkleiden, sogenannten Arthropathien. Die Hüfte ist davon im besonderen Masse betroffen. An 16 Pelvisfragmenten lassen sich Abnutzungserscheinungen beobachten, wie sie für Coxarthrosen typisch sind (Foto IV/A1): das Acetabulum, das im lebenden Organismus mit dem Femur artikuliert, weist abgeschliffene, glänzende und oft gleichzeitig zerklüftete Stellen auf. Die offensichtlich anfälligste Lokalität dafür befindet sich auf dem Pubis-Acetabulum. Nur einmal zeigt eine andere Region, das Ischium-Acetabulum, die gleichen Veränderungen. Manchmal sind die Pfannenränder aufgetrieben (Exostosen) und in zwei Fällen die Incisurae acetabuli durch Knochensubstanz nahezu geschlossen (Foto IV/A2). Vier Femurköpfe zeigen entsprechende Spuren von Schliffusuren, die entstehen, wenn aufgrund von Knorpeldegeneration Knochen an Knochen reibt (Foto IV/A3). Nur sechs⁷⁰ der insgesamt 20 betroffenen Hüftfragmente stammen aus der Frühbronzezeit. Von wenigen Ausnahmen abgesehen, finden sich die chronischen Veränderungen hauptsächlich an den Hüftgelenken von Kühen⁷¹. In Kombination mit den Resultaten aus der Altersauswertung (Kapitel 4.2.2.2.) sprechen die Befunde aus Cresta-Cazis für Abnutzungserscheinungen im Zusammenhang mit dem Anstieg altadulter Individuen während der Mittel- und Spätbronzezeit (Milchkühe, Ochsen als Arbeitstiere). Unklar bleibt, wieso vermehrt weibliche Tiere betroffen waren. Geht man von einem altersbedingten Gelenkleiden aus, müssten bei den Ochsen, die ebenfalls bis ins hohe Alter gehalten wurden (vgl. Kapitel 4.2.2.4b) ähnlich häufig Coxarthrosen auftreten wie bei den Kühen. Die Abnutzung der Gelenke kann sich durch zusätzliche oder einseitige Belastungen, wie beispielsweise beim Einsatz der Tiere als Arbeitskraft, noch beschleunigen. Es bleibt abzuklären, ob sich die Veranlagung für Coxarthrose über die mütterliche Linie vererbt und männliche Rinder deshalb seltener unter diesen Beschwerden leiden, oder ob die Abnutzung mit einem, durch die jahrelange Milchproduktion hervorgerufenen, Nährstoffmangel in Verbindung steht. Die Coxarthrose als Mangelkrankheit wurde beispielsweise bei chilenischen Jungrindern diagnostiziert⁷².

Die Schliffusuren auf und Exostosen am Rand der schaufelartig verbreiterten proximalen Artikulationsfläche zweier vollständiger ersten Phalangen können als Schalen angesprochen werden (Foto IV/A6). Möglich, dass sie mit den assymmetrischen Verbreiterungen und Verformungen von distalen Gelenkrollen der Metapodien (siehe unten) im Zusammenhang stehen⁷³. Weniger dramatisch manifestieren sich die Arthropathien an zwei Phalangen II (Foto IV/A7). Sie äussern sich entweder als minime Wucherungen am Gelenkrand oder als periphere Lippenbildung der Artikulationsfläche. Letztes Phänomen trifft man bei den Phalangen I und II als stark abgeschwächte oder kaum mehr zweifelsfrei fassbare Variante immer wieder an. Aufgrund der Unsicherheiten bei ihrer Erfassung werden sie hier aber nicht zu den pathologisch- anatomischen Veränderungen gezählt. Als Ursache für die Arthropathien an den Zehenknochen kommt am ehesten eine durch regelmässige Belastung oder das Alter verstärkte Beanspruchung des Gelenks in Frage.

_

⁶⁹ Was hier unter "pathologisch-anatomischen Veränderungen" verstanden wird, kann man im Kapitel 2.2.5. nachlesen. Die fotographische Dokumentation bzw. die dazugehörige Liste der Kurzbeschreibungen findet man im Anhang unter Tabelle VI/A bzw. Foto IV/A1-28.

⁷⁰ Das heisst vier Stücke aus der frühen bis mittleren und zwei aus der späten Frühbronzezeit.

⁷¹ 2 Männchen, 14 Weibchen und 4 Unbestimmte.

⁷² Nieberle et al. 1970.

⁷³ Von den Driesch, S. 418.

Ein Schädelbasisfragment mit anhaftenden Condylen kann im weitesten Sinn ebenfalls unter den Abnutzungserscheinungen aufgeführt werden (Foto IV/A10). Seine stark asymmetrische Form zeugt von einer schwerwiegenden, chronischen Haltungsanomalie des Individuums zu Lebzeiten. Auf welche Ursache diese zurückzuführen ist, bleibt unbekannt. Neben der aussergewöhnlichen Asymmetrie des Knochens lassen die Schliff- und Auflösungsspuren auf dem linken Condylus vermuten, dass die abnormale, für die Abnutzung des Gelenks verantwortliche Körperhaltung, des wohl jungadulten, recht grosswüchsigen Tieres entweder schon früh in seinem Leben ihren Ursprung hatte, oder angeboren, also genetisch bedingt war. Das Besondere an dem Schädelteil ist, dass er dokumentiert, wie ein stark handicapiertes Tier, entgegen dem Prinzip der grössten Effizienz, von einer sofortigen Schlachtung verschont blieb. Am Kiefergelenk kommen ebenfalls Arthropathien vor. Drei Ober- und zwei Unterkiefer von mindestens subadulten Rindern zeigen die charakteristischen zerklüfteten Stellen auf der Artikulationsfläche (Foto IV/A 4und 5). Schliffusuren fehlen. Anders als die Arthropathien am postcranialen Skelett (Hüftgelenk, Phalangen, Centrotarsale) lassen die Veränderungen am Kiefergelenk aufgrund ihres Altersspektrum mehr auf eine Mangel- als auf eine Verbrauchserscheinung schliessen. Als eine weitere Gruppe von gleichartigen, gehäuft auftretenden pathologisch- anatomischen Veränderungen, lassen sich sieben Metatarsen und zwei Metacarpen mit Knochenwucherungen an der Innenseite der Kompakta separieren (Foto IV/A9). Bei den Strukturen handelt es sich um längs verlaufende zusätzliche Knochenbildungen, die keine Präferenz für eine spezifische Region innerhalb der Diaphyse zeigen. Ihre Erscheinungsform erinnert an die zarten Gespinste, in denen sich manche Falterarten verpuppen: die Oberfläche wirkt wie zerklüfteter Bimsstein, im Ouerschnitt ist die regelmässige Anordnung von feinsten Querbälkchen erkennbar. Aus allen drei Hauptphasen der Bronzezeit sind Metapodien mit solchen Wucherungen vertreten. Ein Fragment stammt von einem jungen Individuum, bei den anderen Bruchstücken lässt sich das Alter nur ungenau auf subadult oder adult schätzen. Die Suche nach rezenten oder archäologischen Parallelen blieb lange erfolglos. Kürzlich entdeckten zwei meiner KollegInnen am IPNA in Basel einen weiteren Metatarsus aus mittelalterlichem⁷⁴ und einen Radius aus römischem⁷⁵ Fundzusammenhang mit vergleichbaren Knochenwucherungen an der Kompaktainnenseite. Welche Art von Stress für eine solche Reaktion des Knochens verantwortlich ist, kann im Moment nicht entschieden werden. Dobberstein und Tamaschke beschreiben in ihrem Bericht über Blastome der Haustierknochen⁷⁶ Osteome, die "in der Regel einen spongiösen Bau aufweisen und aus lamellär angeordneten Knochenbälkchen bestehen. Sie nehmen ihren Ausgang entweder vom Periost und entwickeln sich an der Aussenfläche des Knochens (periphere Osteome), oder sie gehen vom Endost aus, haben ihren Sitz dann in der Spngiosa oder in der Marksubstanz (zentrale Osteome)". Es handelt sich bei ihnen um gutartige Knochenwucherungen. Einschränkend muss angefügt werden, dass Osteome bis jetzt hauptsächlich für die Schädel- und Unterkieferregion (v.a. Pferd, Rind und Mensch) beschrieben sind. Als alternative Ursachen stehen Mangel- bzw. Fehlernährung, parasitischer Befall oder eine hormonelle Störung zur Diskussion. Innerhalb der in ur- und frühgeschichtlichen Faunenkomplexen gut dokumentierten Unregelmässigkeiten am Gebiss machen unübliche Abkauungsmuster von Zähnen in Cazis den Hauptteil aus. Bei sieben dritten Molaren aus Ober- und Unterkiefer überragt der aborale den boralen Abschnitt (Foto IV/A12 und 13). Sieben Molaren weisen diverse andere abweichende Abkauungsmuster auf. Es wird angenommen, dass die Abkauungsanomalie zustande kommt, weil die Zähne durch

-

⁷⁴ Bearbeiter: Richard Frosdick, IPNA Universität Basel, Fundstelle: Kaiseraugst, Frühmittelalter.

⁷⁵ Bearbeiterin: Sabine Deschler-Erb, IPNA Universität Basel, Fundstelle: Augusta Raurica, Mitte 3. Jahrhundert

⁷⁶ Dobberstein u. Tamaschke 1969, S. 516.

ein Missverhältnis zwischen oberer und unterer Zahnreihenlänge nicht mehr exakt aufeinander treffen⁷⁷. Zu den Abweichungen vom Normalgebiss zählen auch Oligodontien⁷⁸ (angeboren zu wenig Zähne) und Polyodontien (angeboren zu viel Zähne). In Cresta-Cazis sind ausschliesslich Oligodontien vertreten. Darunter fallen vier dritte Unterkiefermolaren mit reduzierter aboraler Säule (Foto IV/A15). Die Reduktion des vordersten unteren Prämolars (P2) wurde an einem einzigen Rindergebiss beobachtet. Bei zwei Schädelstücken ist das Parietale durch mehrere eigentümliche, unterschiedlich grosse Löcher perforiert (Foto IV/A11). Ein Fragment stammt von einem mindestens subadulten Individuum, das andere von einer ausgewachsenen Kuh. Die Ränder der Durchbrüche wirken abgerundet, trotzdem möchte ich nicht ganz ausschliessen, dass sie auch nach dem Tod des Tieres entstanden sein könnten. Identische Befunde werden regelmässig an prähistorischen Rinderschädeln beobachtet⁷⁹, aber über deren Interpretation gehen die Meinungen noch immer auseinander. Das Deutungsspektrum ist dementsprechend breit und schliesst Parasitenbefall, Infektion, Tumor, wiederholte mechanische Belastung (beim Einspannen der Rinder vor den Pflug an den Hörnern) oder Entwicklungsanomalie mit ein. Die bei der Besprechung der Schädelperforationen ab und zu erwähnten Larven der Käsefliege (Piophila casei) scheiden als Verursacher der Löcher im Hinterschädel von Rindern aus, weil sie sich von weichem organischem Material ernähren. Knochen fehlt auf ihrem Speiseplan. Die adulten Weibchen platzieren ihre Eier äusserlich auf Leichen. Die Larven sind charakteristischerweise erst in späteren Verwesungsstadien an einem Kadaver zu finden. Sie spielen in der forensischen Entomologie (rechtsmedizinisch-kriminalistisch angewandte Gliedertierkunde) eine wichtige Rolle bei der Ermittlung des Todeszeitpunkts eines Menschen⁸⁰. Unter den Wurmparasiten existiert eine Art, Troglotrema acutum, die Löcher im Viscerocranium von Carnivoren (v.a. Iltis, aber manchmal auch Marder, Dachs, Fuchs und Fischotter) produziert⁸¹. Über einen derartigen Befall von grossen Wiederkäuern ist nichts bekannt. Bakterielle Parasiten, die ein Krankheitsbild an Knochen hinterlassen, gibt es wenige, und wenn, dann äussern sich die Symptome hauptsächlich als Arthropathien. Bei einer Infektion, die zu Knochendurchbrüchen führen kann, würde ich in deren Umfeld weitere Knochenveränderungen (Wucherungen usw.) erwarten, die auf einen entzündlichen Prozess schliessen lassen⁸². Das ist nicht der Fall. Hingegen wäre mit der Infektionshypothese erklärbar, warum sich die Perforationen immer im Frontalknochen, der die Stirnhöhle nach hinten abschliesst, bilden. Wieso mechanische Belastung, wie das Anspannen der Rinder vor den Pflug, ausgerechnet eine verstärkte Abbaurate der Knochensubstanz auslösen soll, ist mir nicht klar. Eher rechnet man mit einer zusätzlichen Knochenproduktion zur Stabilisierung. Bei einer Mangelerkrankung andererseits wird in der Regel Knochen an mehreren Elementen gleichmässig abgebaut bzw. reduziert produziert. Ob das auch auf so lokalspezifische Weise geschieht, wie es die Perforationen vorgeben, bleibt abzuklären. Es wäre denkbar, dass es sich bei den Löchern im Hinterschädel von Rindern um ein vergleichbares Phänomen wie die Reduktion des ersten Prämolars bei Schweinen handelt, um einen genetisch bedingten Verlust bestimmter Skelettelemente bzw. – regionen sozusagen. Fundiertere Kenntnisse über die biomechanische und funktionelle Rolle der perforierten Zone am Rinderschädel sind Voraussetzung für eine Beurteilung dieser These. Schliesslich bleiben einige Fragmente übrig, bei denen die Entscheidung schwer fällt, ob die Veränderungen als Pathologie, Anomalie oder als individuelle Variation im üblichen Rahmen anzusprechen sind. Dazu gehören ausgesprochen tiefe, rundliche Eindellungen knapp unterhalb der proximalen Gelenkfläche von Radien und Phalangen I (Foto IV/A23). Vertreter

⁷⁷ Von den Driesch S. 415, Häni et al. 1994 S. 25.

⁷⁸ Andrews und Noddle 1975.

⁷⁹ Schoenenberger 1971, Johannson 1982, Becker 1986, O'Connor 2000, Furrer 2003, S. 195.

⁸⁰ Benecke 2001.

⁸¹ Koubek et al. 2004.

⁸² Vergleichbar mit den eitrigen Durchbrüchen bei Zahnfachentzündungen.

der letzteren sind auch aus Arbon-Bleiche 3 (Ostschweiz) bekannt⁸³. Dort wurden die Einbuchtungen, als einer von mehreren Hinweisen, mit der Nutzung der Tiere als Arbeitskraft in Zusammenhang gebracht. Die Einbuchtungen an den Rinderknochen aus Cresta-Cazis

kommen allenfalls als Ausdruck der Anpassung an die montane Topographie in Frage.

	I			i -			- 5	I.					
		Foto IV/A	p1	p2	рЗ	p4	p5	p8	p10	p11	p12	p14	Anzahl pathologisch- anatomischer Veränderungen
Arthropatien	Coxarthrose Pelvis:	1,2			ı	П		П		ı	11111	11111	16
	Caxarthrose Femur:	3		-1						- 1	Ш		4
	Unterkiefergelenk:	4		-1			1						2
	Oberkiefergelenk:	5		- 1				- 1			- 1		3
	Phalanx I und II:	6,7	11	- 1			-1					1	5
	Metapodien:	8										- 1	1
	Centrotarsale:	28									- 1		1
"Bienenwaben" (Knochen- wucherungen in der	Metacarpus:							1			ı		2
Markhöhle)	Metatarsus:	9		111	ı			ı			- 1	- 1	7
Pathologien am Gebiss	sekundärer Zahnverlust (P4 mand):										- 1		1
Anomalien am Gebiss	M3 max einseitige Abkauung:	12	-1					-1				11	4
	M3 mand einseitige Abkauung:	13	-1			-1		-1					3
	M1oder M2 mand einseitige Abkauung:					-1						- 1	2
	UK Z unregelmässige Abkauung:	14	11	-1		-1							4
	OK Z unregelmässige Abkauung:	14					-1		-1				2
	M3 mand 2säulig:	15			11			-1				- 1	4
	primäre Zahnreduktion (P2 mand) :	16									- 1		1
	OK Einschnürungen (Zahnanomalie):	17							-1				1
	UK (Zahnanomalie):	18,19,20			Ι						- 1	11	4
Perforationen am Hinterschädel		11						ı			ı		2
Asymmetrie beim Schädel		10			1								1
Asymmetrie bei Metapodien		8					1				11	1	4
Folgen von Traumata?	an Metapodien:	21,22		-1				- 1					2
diverse pathologisch-	an Metapodien (äussere Kn.wucherung):	21				-		П			- 11		5
anatomische Veränderungen	an Pelvis (Kn.veränderungen):											ı	1
	an Rippen (Kn.veränderungen):	24										11	2
Pathologie/Anomalie/	Dellen bei Röhrenkn. (Ph I, Ra, Mp):	23								П	1111	11	8
individuelle Variation?	Beulen beim Metatarsus:	25						1			-11	1	4
	diverse (Hu, Hz):	26,27						L			1		2
<u> </u>		1											98
Anzahl pathologisch- anatomis	ch veränderter Fragmente		6	9	6	6	4	13	2	4	25	20	95

Tab.3: Cresta-Cazis. Hausrind. Quantitative Auswertung der pathologisch- anatomisch veränderten Knochen. Rot: jeweils zwei verschiedene pathologisch- anatomische Veränderungen an ein und demselben Knochen.

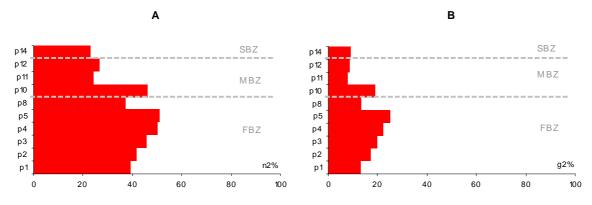
4.2.3. Hausschaf (Ovis ammon f. aries) und Hausziege (Capra aegagrus f. hircus).

Die ersten Hausschafe- und ziegen verbreiteten sich in der Schweiz mit der neolithischen Wirtschaftsweise. Ihre wilden Stammformen waren in unseren Gegenden nie heimisch. Sie stammen aus Vorder- und Zentralasien und wurden auch dort domestiziert⁸⁴. Hausschafe sowie Hausziegen gelten also als echte Neueinführungen⁸⁵.

Bedingt durch die Lage von Cresta-Cazis in einem Alpental erwartet man neben den Überresten von Schafen und Ziegen auch Knochenfunde der wildlebenden alpinen Caprinae-Fauna,

⁸³ Deschler-Erb u. Marti-Grädel 2004, S. 174, Abb. 166c.

⁸⁴ Studer 1991, S. 35, Helmer 1992, S. 93, Benecke 1994, S. 228 ff und 238 ff, Helmer 1994, Legge 1996, Zeder 1999, S. 16 und 22, Zeder 2000.


⁸⁵ Bökönyi 1974, Clutton-Brock 1981, Mason 1984, Benecke 1994, S. 228 ff und 238 ff.

vertreten durch den Steinbock (*Capra Ibex*) und die Gämse (*Rupicapra rupicapra*). Für das Reh (*Capreolus* capreolus), ein kleiner Wiederkäuer aus der Familie der Cervinae, stellt die Heinzenbergregion ebenso ein potentieller Lebensraum dar.

Die Unterscheidung, vor allem von fragmentierten Skelettelementen der fünf kleinen Wiederkäuerarten birgt einige Tücken (vgl. Kapitel 2.2.1.). Weil durchschnittlich nur jeder zehnte Knochen dieser Grossgruppe schlussendlich speziesgenau bestimmt werden konnte, bleibt für die Analysen noch eine minimale Materialbasis übrig. Trotzdem sollen die artspezifischen Informationen nicht verloren gehen, indem man Schafe und Ziegen grundsätzlich als Einheit zusammengefasst behandelt⁸⁶. Die beiden Tierarten haben nicht nur eine voneinander unabhängige Domestikationsgeschichte, ihre Nutzungsarten unterscheiden sich ebenso wie ihr Verhalten oder ihre Haltungsmöglichkeiten.

Nicht für alle Fragestellungen lässt sich die strikt getrennte Auswertung von Schafen und Ziegen realisieren. Bei der Ermittlung des Anteils am Tierartenspektrum beispielsweise, ergäbe dieses Vorgehen ein verzerrtes Bild, da nur eine Auswahl (die artbestimmten Fragmente) der kleinen Hauswiederkäuer berücksichtigt würden (vgl. Kapitel 4.1.). In diesem Fall entschied ich mich für die Version, bei der Schafe und Ziegen als Einheit behandelt werden⁸⁷, die aber zusätzlich ein Herauslesen von Detailinformationen über Schafe oder Ziegen erlaubt.

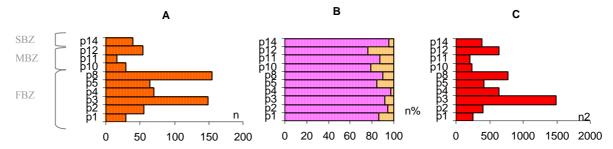
4.2.3.1. Anteil am Tierartenspektrum. Die Anteile der Schaf- und Ziegenknochen am bearbeiteten faunistischen Material aus Cresta-Cazis veranschaulichen einerseits ihren Stellenwert als zweitwichtigste Tiergruppe während nahezu der gesamten Bronzezeit und zeugen andererseits von der wechselhaften Bedeutung, die diese Haustiere in der Geschichte des Dorfes einnahmen. Sowohl nach dem Gewichtsanteil als auch nach der Anzahl Knochenfragmente zu urteilen, spielten Schafe und Ziegen zusammen in den ersten Phasen der bronzezeitlichen Besiedlung noch eine relativ bescheidene Rolle neben den Rindern (Abb.16, Tabelle III im Anhang). In Planum 1 tragen sie noch weniger zum Gesamtgewicht bei als die Schweine.

Abb.16: Cresta-Cazis. Hausschaf/Hausziege. Knochenanteile am gesamten Tierartenspektrum in den einzelnen Siedlungsphasen (Planum 1 bis 14). **A** nach der Häufigkeit (n2%) **B** nach Gewichtsprozenten (g2%) Auswertungsbasis: proportional modifizierte Tierartenliste (siehe Tabelle III im Anhang).

Dies änderte sich in den nachfolgenden Epochen rasch: nach stetiger Zunahme übertrafen sie in der mittleren Frühbronzezeit selbst die üblicherweise dominierenden Rinder

_

⁸⁶ Sehr ausführlich diskutiert in Becker 2004.


⁸⁷ Die Version, die Schafe und Ziegen als Einheit behandelt, basiert immer auf der modifizierten Tierartenliste (vgl. Kapitel 4.1. und Tabelle III im Anhang).

mengenmässig. Bereits ab Ende der Frühbronzezeit sank jedoch der prozentuale Anteil der Schafe und Ziegen (nach Gewicht⁸⁸ und Fragmentzahl⁸⁹) wieder kontinuierlich ab, bis er im Verlauf der Mittelbronzezeit schliesslich sogar unter die Werte der frühen Frühbronzezeit fiel. Zum zweiten Mal werden sie in den Plana 11 und 12 bezüglich des Gewichts von den Schweinen übertroffen. Über das Verhältnis zwischen den Schaf- und Ziegenknochen lässt sich sagen, dass man in Cresta-Cazis deutlich mehr Überreste der erstgenannten vorgefunden hat. Je nach betrachtetem Skelettelement variiert ihr Anteil etwas (Tab.4). Insgesamt betrachtet, machen die Ziegen durchschnittlich gut 10% der auf die Art bestimmten kleinen Hauswiederkäuer aus. Die Hornzapfen sind dabei nicht berücksichtigt, da die Hornlosigkeit bei den Schafen das Verhältnis verfälscht.

Skelettelement	n Schafe	n Ziegen	n% Schafe	n% Ziegen
Schädel (ohne hz)	44	3	93,6	6,4
Scapula	40	3	93,0	7,0
Humerus	69	13	84,1	15,9
Radius (mit ra+ul)	63	14	81,8	18,2
Ulna	36	4	90,0	10,0
Metacarpus	16	5	76,2	23,8
Pelvis	63	9	87,5	12,5
Femur	34	3	91,9	8,1
Patella	6	0	100	0
Tibia	100	2	98,0	2,0
Metatarsus	31	3	91,2	8,8
Talus	35	9	79,5	20,5
Calcaneus	32	0	100	0
Centrotarsale	3	0	100	0
Ph I	16	1	94,1	5,9
Ph II	3	0	100	0
Ph III	1	0	100	0
total	592	69	89,6	10,4

Tab.4: Cresta-Cazis. Das Verhältnis von Hausschaf zu Hausziege. Gliederung der Knochenfunde nach tierartlicher Bestimmbarkeit.

Es stellt sich die Frage, ob während den eingangs beschriebenen Veränderungen im Tierartenspektrum das Verhältnis der Schafe und Ziegen untereinander konstant blieb oder nicht. Wie man aus Abb.17B entnehmen kann, ist der auf den Fragmentzahlen beruhende Schaf- bzw. Ziege-Anteil⁹⁰ im Laufe der Zeit Schwankungen unterworfen (3- 24% Ziegen). Ab der späten

Abb.17: Cresta-Cazis. Hausschaf: Hausziege. **A** Anteil (n%) der artbestimmten kleinen Hauswiederkäuer pro Schicht (P1- 14). 100% entsprechen sämtlichen kleinen Wiederkäuern. **B** Verhältnis von Hausschaf zu Hausziege in den einzelnen Schichten (Planum 1- 14). Rosa: Schafe, orange: Ziegen. **C** absolute Knochenzahl (n2) der kleinen Hauswiederkäuer pro Schicht (P1- 14).

⁹⁰ Hornzapfen wurden nicht berücksichtigt (vgl. vorangegangener Abschnitt).

.

⁸⁸ Der Gewichtsanteil der Knochen einer Tierart wiederspiegelt proportional deren Bedeutung als Fleischlieferant.

⁸⁹ Die Fragmentzahl refelektiert die Häufigkeit einer Tierart.

Früh- und während der ganzen Mittelbronzezeit fällt die Überzahl der Schafe weniger extrem aus als in den vorangegangenen Siedlungsphasen. Ab der Spätbronzezeit schrumpft hingegen der Ziegenanteil wieder auf die, in der mittleren Frühbronzezeit gängigen, äusserst bescheidenen Dimensionen zusammen. Vereint man die einzelnen Plana zu den drei Hauptepochen (Früh-, Mittel- und Spätbronzezeit), kommen die Änderungen im Schaf:Ziegen-Verhältnis klarer zum Ausdruck: in der Frühbronzezeit beträgt es durchschnittlich 10:1 (n= 522), in der Mittelbronzezeit noch 4:1 (n= 99) und in der Spätbronzezeit wieder 19:1 (n= 40). Möglicherweise liegt der Ursprung für die Differenzen in einer, zumindest teilweise, flexibeln wirtschaftlichen Position begründet, die Schafe und/oder Ziegen bei den Menschen aus Cazis vertraten. Die geringe Anzahl an sicheren Schafen und Ziegen erlaubt hierzu jedoch keine weiteren Ausführungen. Gerade bei kleinen Datenmengen darf etwa der Einfluss wechselhafter Knochenzahlen pro Schicht (Abb.17C) auf das Verhältnis der beiden nah verwandten Haustiere nicht ausser Acht gelassen werden. Aus dem gleichen Grund spielt es auch eine Rolle, wie viele der Hauswiederkäuer auf die Art genau bestimmt werden konnten (Abb. 17A): unter wenigen Knochen wird ein einzelnes Fragment stärker gewichtet als unter vielen. Die Schaf- bzw. Ziegenanteile in Planum 8 oder 3 sind deshalb beispielsweise als representativer einzustufen als jene in Planum 11.

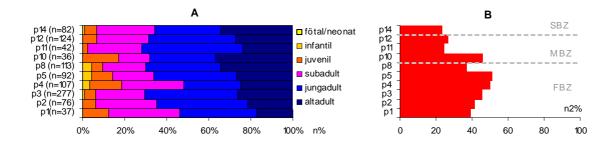
4.2.3.2. Schlachtalter. Gerade was die Altersanalysen betrifft, die gegebenenfalls Indizien zur Nutzung einer Tierart liefert, ist theoretisch einzig ein separates Vorgehen für Schafe und Ziegen sinnvoll. Wie in der Einleitung bereits angekündigt, kann dazu in Cresta-Cazis nicht auf eine ausreichende Datengrundlage zurückgegriffen werden⁹¹. Um eine erste Vorstellung von der Altersstruktur der kleinen Hauswiederkäuer zu erhalten ist eine vereinte Analyse gerechtfertigt, vorausgesetzt eine der beiden Tierarten kann statistisch vernachlässigt werden (im vorliegenden Fall die Ziegen), d.h. ihr prozentualer Anteil (siehe Kapitel 4.2.3.1.) fällt unter einen bestimmten⁹² Grenzwert.

Eine gemeinsame Schlachtalteranalyse von Schafen und Ziegen sollte zudem nie alleine stehen. Es braucht zusätzlich möglichst viele artspezifische Informationen z.B. was die Geschlechtsverteilung betrifft. Die Untersuchungen an den Hornzapfen von Schafen und Ziegen stellten sich diesbezüglich als besonders aufschlussreich heraus (vgl. nachfolgendes Kapitel 4.2.3.3.).

Die Resultate aus den gemeinsamen Schlachtalteruntersuchungen vermitteln insgesamt den Eindruck einer recht einheitlichen, stabilen Altersstruktur für die Schaf- bzw.

Ziegenpopulation aus Cresta-Cazis. Vor der Vollendung ihres ersten Lebensiahres⁹³ wurden die Tiere selten getötet (Abb.18). Wenn, dann handelte es sich wohl mehrheitlich um männliche Zicklein und männliche Lämmer (vgl. Kapitel 4.2.3.3. und 4.2.3.4.). Foetale oder neonate Exemplare beider Arten fehlen im untersuchten Fundgut gänzlich.

In welchem Ausmass Tierfrass oder auch Erhaltung zu dieser Lücke beziehungsweise zum allgemein verschwindenden Anteil der Zicklein und Lämmer beigetragen haben, ist schwer abzuschätzen. Fest steht, dass bei den, von der Körpergrösse her am ehesten vergleichbaren Hauschweinen, das besagte Altersstadium (zumindest bei den Zähnen) auch nicht vertreten ist (vgl. Kapitel 4.2.4.2.).


In Anbetracht der generell zahlreichen Bissspuren (siehe Kapitel 3.6.) und den chronologisch nicht durchwegs gleichen Erhaltungsbedingungen (siehe Kapitel 3.3.) gehe ich davon aus, dass diesem Umstand unbedingt Rechnung getragen werden muss.

⁹¹ Die Methoden von Helmer (Helmer 2000) und Payne (Payne 1985) zur Unterscheidung von Schaf- und Ziegenunterkiefern liessen sich an den Tierknochen aus Cazis leider nicht befriedigend umsetzen.

92 Ich schliesse ich mich Cornelia Beckers Anliegen an, dass unter den ArchäozoologInnen ein allgemein

gültiger Grenzwert definiert und festgelegt werden muss.

93 Altersstufen fötal bis und mit juvenil (M2 mand nicht gewechselt oder höchstens am durchbrechen).

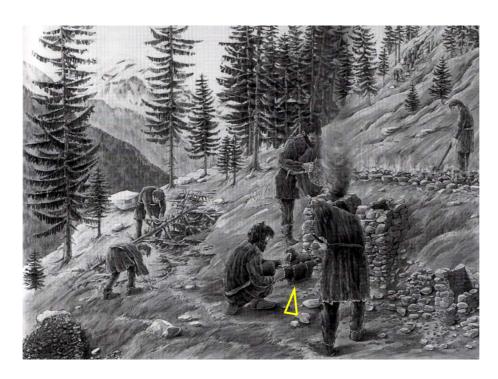
Abb.18: Cresta-Cazis. Hausschaf/Hausziege. Vereinte Altersanalyse. (A) Altersverteilung (n%) der kleinen Hauswiederkäuer in den verschiedenen Schichten (Planum 1-14) im Vergleich mit (B) deren Anteil (n2%) am Tierartenspektrum.

Die sub- und jungadulten Individuen (über 60% aller altersbestimmten Schaf/Ziegen-Knochen), bei denen das Verhältnis zwischen Ertrag (Fleischmenge) und Investition (Fütterungsaufwand) eine optimale "Ausbeute" verspricht, befanden sich offensichtlich im bevorzugten Schlachtalter. Verglichen mit den artspezifischen Geschlechtsauswertungen (Kapitel 4.2.3.3. und 4.2.3.4.) lässt sich für diese Altersgruppe ein Dominieren von Widdern postulieren, gefolgt von weiblichen Schafen und Ziegenböcken. Für die Siedler am Fuss des Heinzenbergs hatten die kleinen Hauswiederkäuer offensichtlich eine wichtige Stellung als Fleischtiere inne. Dabei lag die Präferenz deutlich bei den männlichen Tieren beider Arten. Möglicherweise hat man die Ziegenböcke jünger geschlachtet als die Schafböcke (vgl. Häufigkeit der Hornzapfen von Ziegen- und Schafsböcken). Auch ein Teil der weiblichen Schafe hat man wohl primär zu Nahrungszwecken genutzt.

Im Zusammenhang mit der Fleischnutzung steht die Lederproduktion. Die Häute von Ziegen verwendete man gemäss ihrer spezifischen Beschaffenheit wohl anders als jene der Schafe⁹⁴. Ziegenleder ist leicht und bedeutend fester und fettärmer als Schafsleder. Es hält erstaunlichen Belastungen stand. Besonders beim Schaf gilt die Regel, dass die Qualitäten von Wolle bzw. Haarkleid und Leder sich entgegenstehen⁹⁵. Für die Anfertigung bestimmter Produkte empfiehlt sich deshalb erfahrungsgemäss die Verwendung speziell von Ziegenleder. Die Kleidung der neolithischen Gletschermumie vom Similaun beispielsweise ermöglicht diesbezüglich Einblicke in interessante Details: der "Mann aus dem Eis" trug einen Umhang aus Ziegenfell, eine Bärenfellmütze und Hirschfellschuhe mit Bärenledersohle. Unterwäsche und Beinkleider waren aus Ziegenleder angefertigt.

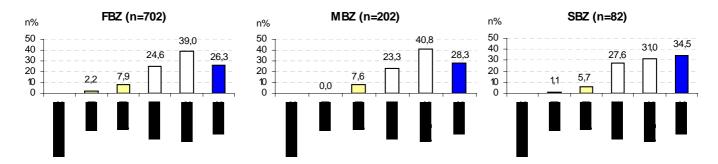
Liegt die Begründung für das frühe Töten der Ziegenböcke auf der Cresta in der systematischen Verarbeitung ihrer Haut (mit oder ohne Haarkleid)? Ganze Ziegenhäute können beispielsweise auch als Blasbälge im Prozess der Metallverarbeitung (Abb.19) oder als Wasserbehälter verwendet werden⁹⁶.

Der kontinuierliche Zuwachs der altadulten Schafe und/oder Ziegen von frühbronzezeitlichen 26% auf spätbronzezeitliche 34% (Abb.20) lässt (ähnlich wie bei den Rindern) auf Kosten der Fleischwirtschaft, eine vermehrte Hinwendung zur Nutzung des lebenden Tieres annehmen⁹⁷:


_

⁹⁴ In Indien und Nigeria züchtet man heute spezielle Ziegenrassen zur Lederherstellung (Payer 2001, Kapitel 8.4.).

⁹⁵ Ottiger u. Reeb 1991, S. 18 und 19.


⁹⁶ Payer 2001.

⁹⁷ Die Diskrepanz zwischen der Altersbestimmung mittels Zahndurchbruch bzw. -abnutzung und derjenigen mittels Epiphysenverschluss wird in Kapitel 2.2.2. diskutiert.

Abb.19: Blasbälge aus der Haut kleiner Hauswiederkäuer (Ziege oder Schaf). Rekonstruktionszeichnung der prähistorischen Kupferverhüttung (aus Fasnacht 1997, S. 61).

- Ältere Tiere sind beispielsweise zu Fortpflanzungszwecken oder als Leittiere einsetzbar. In gemischten Herden, mit Schafen und Ziegen zusammen, übernehmen die Ziegen meistens die Führung⁹⁸.
- Mancherorts dienen die kleinen Hauswiederkäuer als Trag- oder Zugtiere⁹⁹, was eine spezielle Schulung der Individuen voraussetzt, ein Mehraufwand also, der sich optimalerweise so lange wie möglich auszahlen soll.

Abb. 20: Cresta-Cazis. Hausschaf und Hausziege zusammengefasst. Chronologische Veränderungen in der Schlachtalterzusammensetzung im Laufe der Früh-, Mittel- und Spätbronzezeit.

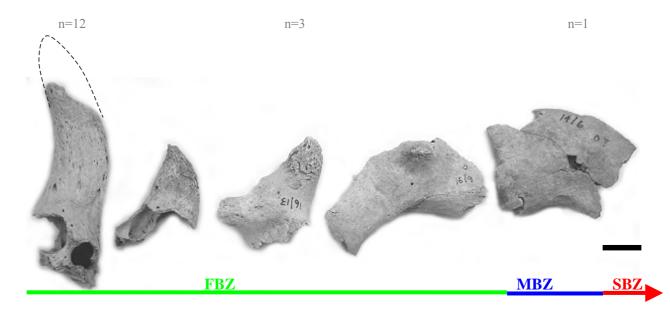
- Kleine Hauswiederkäuer haben die Chance auf ein längeres Leben, wenn ein Interesse an der Verarbeitung ihres Haarkleides besteht. Das Haarkleid der Ziegen eignet sich sehr gut zur Herstellung von Seilen, während jenes der Schafe eher in der Verarbeitung zu diversen Textilien einsetzbar ist. Die stark von den Schafen geprägte Altersanalyse spricht, im Zusammenhang mit dem recht grossen Anteil männlicher Schafe dafür, dass eine

⁹⁹ Benecke 1994, S. 228.

⁹⁸ Ryder 1983, Becker 1986, S. 48.

- entsprechende Manufaktur in Cazis etabliert war. Inwieweit das Fell der Schafe aus Cresta-Cazis bereits als Wolle bezeichnet werden darf, kann nicht beantwortet werden.
- Eine alternative, auf Milch spezialisierte, Wirtschaftsweise zeichnet sich gewöhnlich durch eine stärkere Vertretung der 6- 9 Monate alten Lämmern bzw. Zicklein aus ¹⁰⁰, die nach der Laktationsphase geschlachtet wurden. Die kaum vorhandenen männlichen Ziegenhornzapfen deuten auf ein systematisches Töten der Böcke als Zicklein hin. Geissen indes erreichten meist das (fortgeschrittene?) Erwachsenenalter. Ihre Funktion als Milchtiere scheint über die Jahrhunderte konstant gewesen zu sein.
- 4.2.3.3. Hornzapfen. Selbst relativ kleine Reste von Hornzapfen lassen sich dank ihrer markanten, arttypischen Morphologie in der Regel den Schafen oder den Ziegen zuordnen. Ihre Beschreibung in diesem Abschnitt wird daher für jede der beiden Spezies separat vorgenommen.

4.2.3.3.a Schafe. Innerhalb der 68 Schafhornzapfenfragmente kristallisieren sich zwei klar trennbare Gruppen heraus. Eine von ihnen ist charakterisiert durch 38 recht grosse Exemplare mit dreieckigem Querschnitt an der Basis, moderater Biegung sowie Drehung im Gegenuhrzeigersinn, meist ausgeprägten Kanten, und einer oftmals porösen, z.T. durch Längsfurchen (auf der gegen die Schädelmitte orientierten Seite) geprägten, Oberfläche. Die in ihrem Erscheinungsbild an Wespenwaben erinnernden Kavernen dehnen sich kaum weiter als im untersten Drittel der Hornzapfenlänge aus, der Rest bis zur Spitze ist gefüllt mit Spongiosa. Die 16 Vertreter der anderen, ausgesprochen heterogenen, Gruppe sind kleiner und können hinsichtlich des ovalen Basisquerschnitts, der geringen Biegung bzw. der fehlenden Drehung, der glatten Oberfläche und des durch wenige, grössere Kavernen unterteilten Hornzapfenhohlraums als "ziegenähnlich" umschrieben werden. Sie sind allesamt von einer mehr oder weniger fortgeschrittenen Verkümmerung gezeichnet. Die restlichen Fragmente waren zu klein, um sie einer der Gruppen anzugliedern. Die aufgeführten Unterschiede an den Hornzapfen werden als Ausdruck eines beachtlichen Geschlechtsdimorphismus gewertet. Dementsprechend lassen sich die Vertreter der ersten Gruppe als männliche Tiere bestimmen, während es sich bei den "ziegenähnlichen Formen" um die weiblichen Individuen handelt.


Als aussergewöhnlich darf die wunderschöne Dokumentation der kontinuierlichen Hornzapfenreduktion bei den weiblichen Schafen aus Cazis im Laufe der Bronzezeit bezeichnet werden. Abb.21 veranschaulicht den zunehmenden Grad der Verkümmerung, ausgegangen von den oft wenig reduzierten Hornzapfen der ältesten Frühbronzezeit über die würstchen- und hütchenförmigen der mittleren und jüngeren Frühbronzezeit bis hin zu den mittelbronzezeitlichen, vollkommen hornlosen Exemplaren. Aus der Spätbronzezeit sind ebenfalls keine Hornzapfenfragmente weiblicher Individuen überliefert.

Während der Frühbronzezeit weideten also in der Umgebung der Cresta neben den kleinhörnigen Weibchen bereits solche ohne Kopfbewaffnung. Ab der Mittelbronzezeit dürfte der Anblick von behornten weiblichen Tieren in den Schafherden aus Cazis selten gewesen sein oder endgültig der Vergangenheit angehört haben. Im mittelbronzezeitlichen Lumbrein GR- Surin kamen sie immer noch vor. Nur aus einer einzigen spätbronzezeitlichen Fundstelle der Schweiz (Zürich ZH-Alpenquai) sind bisher sichere Nachweise weiblicher Schafhornzapfen bekannt.

Auch die Hornzapfen der männlichen Schafe lassen Tendenzen einer Grössenabnahme im Laufe der Zeit erkennen¹⁰¹ (Foto III/B1 im Anhang).

_

¹⁰⁰ Payne 1973.

Abb.21: Cresta-Cazis. Hausschaf. Hornzapfenreduktion bei den Weibchen. Stadium "mehr oder weniger reduziert": 12 Fragmente, Stadimum "Stummelhörner": 3 Fragmente, Stadium "hornlos": 1 Fragment. Der schwarze Balken in der rechten unteren Bildecke entspricht einem Zentimeter.

Die Ursprünge des genetischen Reduktionsprozesses an den Hornzapfen sind bereits bei den Vorfahren der Cazner Schafe zu suchen und gehen wohl bis ins Neolithikum zurück. Es gibt Anhaltspunkte, die eine solche Annahme, eventuell sogar gesamtschweizerisch, rechtfertigen:

- 1. Schon neolithische Schafe weisen einen ausgeprägten Geschlechtsdimorphismus auf. Die weiblichen Tiere sind oft ausgesprochen kleinhörnig (z.B. Egolzwil 2- LU, St-Aubin NE- Port Conty usw. 102).
- 2. Das Fehlen jeglicher Funde von weiblichen Schafhornzapfen in manchen spätneolithischen Stationen (z.B. Mozartstrasse usw. 103) könnte mit der Existenz hornloser Schafe zusammenhängen.
- 3. Der frühbronzezeitliche (Sion VS- Petit Chasseur¹⁰⁴) sowie der neolithische (Twann-BE¹⁰⁵) Nachweis hornloser Schafe zeigt, dass der Reduktionsprozess in diesen Epochen teilweise schon fortgeschritten war.

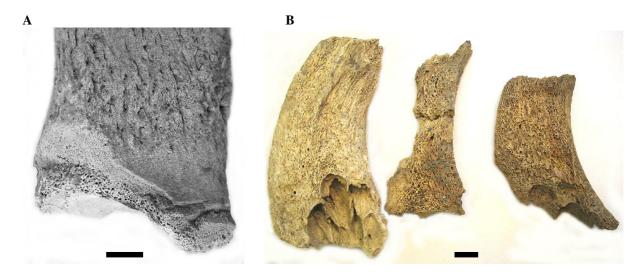
Die Hypothese, dass die Entwicklung in Richtung Hornlosigkeit in der Schweiz auf neolithischen Wurzeln fusst¹⁰⁶, lässt sich auch in einen zeitlich und geographisch weitergefassten Kontext mühelos integrieren: der erste Nachweis hornloser Schafe überhaupt stammt aus dem Iran um 7500 v.Chr. In der ungarischen Fundstelle Maroslele-Plana (Körös-Kultur, um ca. 5000 v.Chr.) findet sich der älteste Beleg für Mitteleuropa. Gehäuft kommen Funde hornloser Schafe aber erst in der Bronzezeit vor¹⁰⁷. Stellt man die auf den Hornzapfen basierenden Geschlechterverhältnisse der drei bronzezeitlichen Hauptepochen in Cresta-Cazis einander gegenüber, wird deutlich, dass die Hornreduktion einen direkten Einfluss auf diese

Anteile hat. Frühbronzezeit: 16 Weibchen zu 21 Männchen Mittelbronzezeit: 1 Weibchen zu 10 Männchen Spätbronzezeit: 0 Weibchen zu 1 Männchen

¹⁰¹ Diese Beobachtung hat Kaufmann auch für das osteologische Fundgut aus Scuol GR- Munt Baselgia gemacht (Kaufmann 1983).

Reverdin 1921, 1930, Hescheler u. Rüeger 1942, Chaix 1976b. Aus dem norditalienischen Alpenraum existieren hierzu leider kaum Angaben.

¹⁰³ Hüster-Plogmann u. Schibler 1997.


¹⁰⁴ Chaix 1976a.

¹⁰⁵ Becker u. Johansson 1981.

¹⁰⁶ Chaix 1976b.

¹⁰⁷ Benecke 1994.

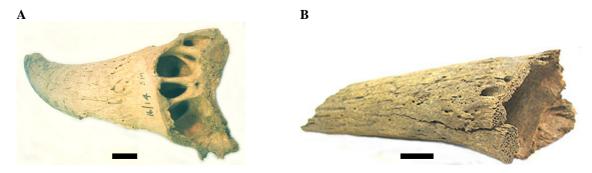
Der Vollständigkeit halber bleibt zu erwähnen: Hornlosigkeit kann bei Schafen und Ziegen (unabhängig von "Rasse" oder Geschlecht) auftreten, wobei eine Homozygotie bei den Ziegen Sterilität zur Folge hat. Die meisten weiblichen Schafhornzapfen aus Cresta-Cazis stammen von ausgewachsenen Individuen. Bei ein paar wenigen ist ein subadultes Stadium nicht auszuschliessen. Bezeichnenderweise finden sich auf den Hornzapfen der weiblichen Schafe weder Hack- noch Schnittmarken. Die anhaftenden Schädelelemente dagegen waren vermehrt Ziel von Hieben, was als Hinweis auf die Hirnentnahme gedeutet werden kann. Aber gerade hier war die Unterscheidung von Hackspuren und Bruchkanten oft nicht ganz einfach. Für die Verwertung des Horns beschränkte man sich offensichtlich auf die ergiebigeren Zapfen der Schafböcke. An letzteren wurde in unterschiedlicher Manier herumhantiert: Hackspuren in Region der Hornzapfenbasis zeugen vom, nicht immer sorgfältigen, Abtrennen der Hornscheide (Abb.22A). Bei fünf Fundstücken ist eine eigentümliche Längsspaltung nachgewiesen, die trotz wiederholten Schlagansätzen glatt und gerade wirkt (Abb.22B). Die Schlagrichtung verläuft in allen Fällen entlang der Achse zwischen äusserer und innerer Biegung. Schnittspuren fehlen sowohl auf den Hornzapfen weiblicher als auch auf jenen der männlichen Tiere. Die knöchernen Gehörnreste der Schafböcke dokumentieren sämtliche Altersstufen von subadult bis älteradult. Über die Hälfte von ihnen stammt aber von Individuen, die noch nicht ganz ausgewachsen waren.

Abb.22: Cresta-Cazis. Hausschaf. Typische Hackspuren an den Hornzapfen von Widdern. **A** Hackspuren rund um die Hornzapfenbasis, **B** Hornzapfen längsgehackt. Der schwarze Balken am unteren Bildrand entspricht jeweils einem Zentimeter.

4.2.3.3.b Ziegen. Den gängigsten Typ repräsentieren mit 41 Fragmenten die säbelförmigen Ziegenhornzapfen. Neben ihrer unverkennbaren Silhouette zeichnen sie sich durch eine glatte Oberfläche und dichte Kompakta, durch einen linsenförmigen Querschnitt an der Basis und durch einen weit in die Zapfenspitze reichenden Hohlraum mit grossmaschigen Kavernen aus. Sie stehen senkrecht und mit einer leichten Krümmung nach rückwärts vom Schädel ab. Ein weiterer Ziegenhornzapfentyp, der durch sechs Reste definiert ist, unterscheidet sich vom säbelförmigen durch seine stattlichen Dimensionen, die stark betonten Vorder- und Hinterkanten, eine plane innere und konvexe äussere Flanke sowie durch eine meist poröse, "luftige" Kompakta.

Neben diesen beiden Hauptformen gibt es noch ein Stück, das etwas aus dem Rahmen fällt. Betreffend der Grösse steht es den scharfkantigen Ziegenhornzapfen in nichts nach. Es stammt

von einem ausgewachsenen Tier. Seine abgerundeten Kanten, die glatte Oberfläche sowie der ovale basale Querschnitt erinnern andererseits an die säbelförmige Variante. Ein spezielles Augenmerk ist auf die hauchdünne, dennoch dichte Kompakta und auf die konvexe Wölbung der, sowohl inneren als auch äusseren, Zapfenflanke zu richten (Foto III/B2). Die verbleibenden acht kleinen Bruchstücke von Ziegenhornzapfen wies ich keiner der aufgeführten Gruppen zu. Die säbelförmigen Ziegenhornzapfen wurden als weibliche, die scharfkantigen als männliche Morphotypen interpretiert. Seine herausragende Grösse ist ausschlaggebend, den dünnwandigen "Ausreisser" als Männchen anzusprechen, zumal innerhalb der Vertreter der Ziegenböcke auch Hornzapfen ohne scharfe Hinterkante vorkommen und die Porösität der Kompakta wohl zu einem ansehlichen Teil auf deren mehrheitlich jugendliches Alter (oder jünger) zurückzuführen ist. Die Vergleichsbasis ist zwar denkbar mager für Hypothesen, aber unter Umständen hat die andeutungsweise beobachtete Korrelation zwischen Alter und veränderter Hornzapfenmorphologie (jung: scharfkantig – ausgewachsen: abgerundete Kanten, dünnwandig) bei Ziegenböcken nichts mit Zufall zu tun, sondern gründet auf den Auswirkungen, welche beispielsweise die Kastration bei den Tieren hinterlässt¹⁰⁸. Solange diesbezüglich jedoch keine stichhaltigen Anhaltspunkte dargelegt werden können, sind Überlegungen zu den möglichen Hintergründen der Sterilisation von Ziegenböcken in einer bronzezeitlichen Siedlung verfrüht. Der kurzen Diskussion muss unbedingt hinzugefügt werden, dass unter Umständen auch Mangelernährung und Krankheiten bei Hornzapfen Dünnwandigkeit verursachen 109. Von wenigen Zweifelsfällen abgesehen, lassen sich sämtliche Hornzapfen der weiblichen Ziegen ausgewachsenen Individuen zuschreiben. Trotz ihrer morphologischen Einheitlichkeit, sind gewisse Unterschiede nicht zu übersehen. Diese betreffen hauptsächlich die Form der Spitze, die Hornzapfenlänge und die Dicke der Zapfenwand. So stehen Exemplare mit einer sehr flachen, sichelartigen und porös auslaufenden Spitze solchen mit einem stumpfen, glatten, klarer abgeschlossenen Zapfenende gegenüber (Foto III/B4). Erstere übertreffen letztere zudem in ihrer Länge. Die lange, sichelspitzige Variante kommt häufiger vor als die kurze, stumpfendende. Die Varietät ist nicht mit einer chronologischen Entwicklung zu erklären. Beide Ausprägungen der Zapfenspitze existieren gleichzeitig nebeneinander. Obgleich sich Hornzapfen während eines Lebens stark verändern können 110, halte ich das individuelle Alter als Ursache für die zwei morphologischen Varianten für unwahrscheinlich. Die Bandbreite der Unterschiede liegt jedoch durchaus im Bereich der individuellen Variation, weshalb ich geneigt bin, sie als solche zu verstehen.


Die Untersuchungen zu den Schnitt- und Hackspuren an den Ziegenhornzapfen und den anhaftenden Schädelelementen zeigen, dass diese Skelettelemente bei der Verwertung des geschlachteten Tierkörpers oft in irgendeiner Weise involviert waren. Mindestens zwei Drittel von ihnen weisen charakteristische Hackmarken (meist an der Basis, rund um den Hornzapfen herum, vgl. Kuhhornzapfen Kapitel 4.2.2.4c) auf. Die Verteilung wo (an welcher Stelle) und wie häufig sie ausgeführt wurden, sprechen gegen eine epochen-, ev. auch gegen eine geschlechtsspezifische Verarbeitung des Gehörns. Dem immer wiederkehrenden gleichen Muster (Abb.23), das die Hackspuren an den Ziegenhornzapfen und –schädeln hinterlassen, liegt eine systematische Vorgehensweise seiner Verursacher zu Grunde. Auf einem einzigen Ziegenhornzapfen sind Schnittspuren überliefert. Sie befinden sich nahe der Zapfenspitze, je eine an der äusseren Flanke und am Hinterrand. Die obigen Beschreibungen hinterlassen den Eindruck, als ob man das Gehörn einzeln oder als Paar vom übrigen Schädel trennen wollte, ohne es zu beschädigen. Wenn es nur darum gegangen wäre, ans Hirn zu gelangen, hätten ein

-

¹¹⁰ Mündliche Mitteilung Cornelia Becker.

¹⁰⁸ Extrem dünnwandige Hornzapfen gelten bei Rindern als Hinweis auf Kastration.

¹⁰⁹ In der Vergleichssammlung der Archäozoologischen Abteilung des IPNA der Universität Basel kam mir ein Schafschädel mit krankheitsbedingt anomalen Hornzapfen in die Hände, die in Bezug auf die äussere Erscheinungsform dem dünnwandigen Hornzapfen aus Cazis ähneln (Foto III/B3).

Abb.23: Cresta-Cazis. Hausziege. Identische Hackspuren an Hornzapfen bzw. anhaftenden Schädelelementen bei A Weibchen und B Männchen. Der schwarze Balken am unteren Bildrand entspricht jeweils einem Zentimeter.

oder zwei gezielte Schläge auf das Frontale ausgereicht. Da die den Hornzapfen anhaftenden Schädelelemente vielfach zertrümmert wurden, ist eine Verarbeitung zu Ziegenbukranien (vgl. Kapitel 4.2.2.4b, Rinderbukranien) wenig wahrscheinlich. Wirft man einen Blick auf die Zeichnungen der Knochenartefakte, die zum Teil bereits publiziert sind¹¹¹, so stellt man fest, dass sämtliche der aus Ziegenhornzapfen angefertigten Stücke in längere oder kürzere Abschnitte zerteilt (ev. gesägt) wurden (Abb.24). Stampfli, der seinerzeit für die Begutachtung der Knochenartefakte herangezogen wurde, interpretierte die besprochenen Fragmente als Fassungen oder Halbfabrikate¹¹². Auch wenn die Deutung als Fassungen heute angezweifelt wird¹¹³, die Dorfbewohner auf der Cresta hatten offensichtlich eine spezifische Verwendung für die Ziegenhornzapfen. Unter diesem Gesichtspunkt könnten die unversehrten Ziegenhörner, welche Gegenstand der hier vorgestellten Untersuchungen sind, die von den Menschen zur weiteren Verarbeitung aufbewahrten und vorbereiteten Stücke repräsentieren.

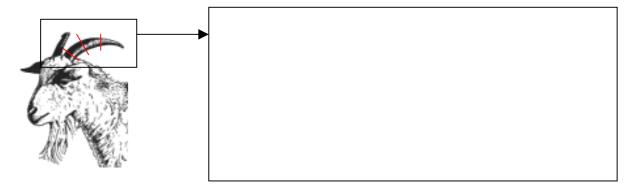


Abb.24: Artefakte aus Ziegenhornzapfen (publiziert in Wyss 2002).

4.2.3.3.c Kritische Überlegungen zur Geschlechtsbestimmung an Hornzapfen von kleinen Wiederkäuern. Die Vielfalt der Hornzapfenmorphologie kleiner Hauswiederkäuer ist generell gross. Neben dem Geschlecht können weitere Faktoren wie zum Beispiel Einkreuzung mit anderen Populationen, Ernährung, Krankheiten und Kastration ihr Aussehen beeinflussen. Während die aufgezählten Alternativen eher Momentaufnahmen repräsentieren, chronologisch also weniger konstant sind, hinterlässt die geschlechtsbedingte Variabilität in der Regel ein

¹¹¹ Wyss 2002, S. 248- 266 und 311- 319.

¹¹² Wyss 2002, S. 317.

¹¹³ Mündliche Mitteilung Jörg Schibler.

längerfristig verfolgbares Muster aus klar voneinander abzugrenzenden Gruppen. Für das umfangreiche Fundmaterial aus Cresta-Cazis trifft letzteres Bild zu. Sowohl innerhalb der Schaf- als auch der Ziegenhornzapfen zieht sich eine, durch sehr wenige "Ausreisser" unterbrochene, morphologische Regelhaftigkeit durch alle Phasen der Bronzezeit. Basierend auf dieser Überlegung hat der Entschluss, an den Schaf- und Ziegenhornzapfen aus Cazis eine Geschlechtsbestimmung und -auswertung durchzuführen, durchaus Berechtigung. Die daraus gewonnenen Einsichten sind, isoliert betrachtet, mit Vorbehalt zu werten und werden deshalb im nächsten Kapitel durch zusätzliche Ergebnisse aus Analysen des Beckens und des postcranialen Skeletts ergänzt.

4.2.3.4. Geschlechterzusammensetzung. Ohne zwischen den einzelnen Zeitphasen bzw. Spezies zu unterscheiden, lassen sich anhand der Beckenmorphologie 35 weibliche von 24 männlichen Tieren trennen. Auf die Arten aussortiert lauten die Verhältnisse bei den Schafen: 25 Weibchen auf 17 Widder und bei den Ziegen: 3 Geissen auf 1 Ziegenbock. Die Diskrepanz der Resultate aus den Geschlechtsanalysen bei den Schafen, die auf verschiedenen Skelettelementen basieren (Hornzapfen und Becken), gründet auf der Existenz hornloser Weibchen, die mit der Hornzapfenanalyse nicht, mit der Beckenanalyse hingegen sehr wohl erfasst werden. Man stütze sich daher auf letztere, um eine Vorstellung von der Geschlechterzusammensetzung der Schafe aus Cazis zu erhalten. Bei den Ziegen ist die Sachlage anders. Die vier Beckenfragmente reichen bei weitem nicht aus, um Rückschlüsse auf die Verteilung der Geschlechter zu ziehen. Da bei den Ziegenhornzapfen jegliche Anzeichen für eine geschlechtsspezifische Selektion (bezüglich Verarbeitung, Erhaltungsfähigkeit, Reduktionserscheinungen usw.) fehlen, kann man sie in diesem Fall für die Ermittlung des Verhältnisses zwischen den beiden Geschlechtern heranziehen. Hornzapfenfragmente der Geissen sind mit einem Anteil von 85% gegenüber jenen der Ziegenböcke ganz klar in der Überzahl. In die gleiche Richtung zielen auch die postcranialen Skelettelemente: zierliche Proportionen überwiegen, nur vereinzelt tauchen Reste stattlicher Vertreter auf. Es drängt sich die Frage nach dem Verbleiben der männlichen Tiere auf. Man könnte argumentieren, dass die meisten von ihnen als Zicklein geschlachtet wurden. Da Knochen von Jungtieren einerseits kaum Rückschlüsse auf das Geschlecht erlauben und andererseits womöglich verstärkt durch Tierfrass zerstört werden (siehe Kapitel 2.2.2.), lässt sich diese Hypothese leider schlecht überprüfen. Die Quintessenz, die man aus der Geschlechtsauswertung der kleinen Hauswiederkäuer ziehen kann, ist die, dass bei den ausgewachsenen Schafen das zahlenmässige Gleichgewicht mit 60% zwar auf der Seite der weiblichen Tiere liegt, die Widder (und, falls vorhanden,

4.2.3.5. Grösse und Wuchsform. Einleitend sei vermerkt, dass die aktuelle metrische Datenmenge für die Schafe und vor allem auch für die Ziegen aus Cresta-Cazis, kaum ausreicht, um Klarheit über etwaige Veränderungen der Grösse oder der Postur dieser Tiere im Laufe der Bronzezeit zu schaffen. Die Information aus der subjektiven Beobachtung, dass ab der mittleren Bronzezeit vermehrt Bruchstücke von stattlichen, schwer artspezifisch einzuordnenden, Individuen auftauchen, kann mit objektiven Mitteln beispielsweise nur ansatzweise (siehe LSI-

Hammel) mit 40% aber auch recht zahlreich vertreten sind. Bei den ausgewachsenen Ziegen gehören die Böcke zur Minderheit, oder vielmehr zur Seltenheit. Im Gegensatz dazu dürfte sich unter den als Jungtieren geschlachteten Individuen kaum ein weibliches Zicklein finden.

Methode) verifiziert werden. Die durch die vorliegende Arbeit nicht komplett ausgeschöpfte Ressource an Tierknochen (vgl. Kapitel 2.1.) bietet diesbezüglich ein vielversprechendes Potential für weitere Nachforschungen.

Weder die Schafe noch die Ziegen aus Cresta-Cazis lassen sich als besonders zierlich oder klein beschreiben. Von den Schafen existieren ausreichend Masse, um sie mit denen zeitgleicher Siedlungen zu vergleichen (Tab.5).

		Hume Bd	rus	Tibi Bo		Metacar Bd	pus	Metatars Bd	sus	Scar SL0		Talu: GL	S	Talı Bo		Calcan GL	
		med	n	med	n	med	n	med	n	med	n	med	n	med	n	med	n
	SBZ	28,2	2	26,7	2	-		23,1*	1	19,4*	1	27,2	2	18,1	2	56,9	2
Cazis GR- Cresta	MBZ	29,8	7	27,3	3	-		23,4	4	20,4*	1	27,7	8	18,3	8	54,6	3
	FBZ	30,9	32	25,8	15	25,7	4	24,1	5	19,8	10	28,9	23	18,9	22	53,2	4
Zürich ZH- Alpenquai	SBZ	26,7	7	-		24,2	13	23,2	15	19,2	9	-		-		-	
Cortaillod- NE**	SBZ	27,2	34	23,9	48	24,0	9	21,9	21	16,0	26	27,3	6	16,9	6	53,7	12
Vex VS- le Château	FBZ+SBZ	-		25,5	2	-		-		19,1	2	-		-		-	
Naturns I- Schnalserhof	FBZ	25,7	2	-		-		-		-		31,7	6	19,9	7	-	
Nössing- I	FBZ/MBZ	31,5	6	27,1	4	26,8*	1	22,2*	1	18,0*	1	29,0	8	18,7	8	53,0*	1
Albanbühel	FBZ/MBZ	31,4*	1	25,4	11	24,1	3	-		18,9	37	27,6	46	-		53,5	10
Sotciastel- I**	FBZ/MBZ	29,8	10	25,3	5	23,5	3	22,3*	1	20,4	2	26,0	5	17,4	5	-	
Sonnenburg	BZ	33,0*	1	26,3*	1	-		-		20,3	3	28,2	3	18,1	3	52,3*	1
Eppan I- Gamberoni	SBZ	32,0	6	27,7	7	25,8	2	21,7	12	-		30,0	11	19,6	10	55,2*	1
Pfatten I- Vadena	SBZ	30,9	4	27,7	4	26,2	3	24,7	2	-		30,3	14	20,0	13	55,4	3
Fiavé I- Carrera**	FBZ+MBZ	-		-		23,2	16	22,0	23	-		26,6	28	-		51,4	9
Ledro- I	FBZ/MBZ	28,7	117	24,3	212	22,9	62	21,8	71	18,5	153	25,5	8	16,5	8	50,9	5
Wiesing AU- Buchberg	FBZ	31,8	6	28,5	5	27,5*	1	23,5*	1	21,1	7	31,4	4	21,3	4	-	
Kitzbühl AU- Kelchalpe	SBZ	30,7	3	26,0	3	23,3	4	-		-		29,5	2	20,5	2	-	
Kastanas- G	SBZ	26,6	20	23,6	13	22,6	6	22,8	7	19,4	48	24,3	5	16,1	100	52,3	5
	FBZ/MBZ	29.3	3	24.7	9	23.8	2	22.9*	1			28.0	2			51.2*	1

Tab.5: Hausschaf. Vergleich der Wuchsformen in verschiedenen Fundstellen. * Einzelmass, ** Schafe und Ziegen zusammengefasst, wobei mehrheitlich Schafe.

Dabei stellt sich heraus, dass die robustesten und grössten Vertreter im nordöstlichen Alpenraum (Wiesing AU- Buchberg, Kitzbühl AU- Kelchalpe) zu finden sind. In nahezu allen Massen, die hier unter die Lupe genommen wurden, übertreffen sie die Cazner Exemplare deutlich. Eine Ausnahme bildet das distale Metapodiumgelenk, das bei den österreichischen Tieren von ziemlich schmalem Wuchs gewesen zu sein schien.

Verglichen mit den Exemplaren aus Cresta-Cazis hatten die Schafe aus den bronzezeitlichen Siedlungen des Südtirols ähnlich dimensionierte (Sonnenburg- I, Naturns I- Schnalserhof?) oder oft etwas grössere Knochen (Naturns I- Schnalserhof, Pfatten I- Vadena, Eppan I- Gamberoni). Proportionsunterschiede betreffen vor allem den Talus und abermals das distale Gelenk der Metapodien.

Weiter südlich im Trentino, wo die Alpen in die Poebene auslaufen (Ledro- I, Fiavé I- Carera), waren zierliche, kleine Schafpopulationen heimisch, wie sie beispielsweise in den bronzezeitlichen Epochen von Kastanas (Griechenland, Küste) typischerweise vorkommen. In den spätbronzezeitlichen Seeufersiedlungen der West- und Nordschweiz (Cortaillod- NE, Hauterive NE- Champréveyres, Zürich ZH- Alpenquai) begegnet man ähnlich grazilen Schafen, gegenüber denen die Vertreter aus Cazis kräftiger und stämmiger wirken. Leider stehen aus den Westalpen (Wallis) wenige Messdaten zur Verfügung, aber es scheint, dass die kleinen Hauswiederkäuer dort etwas robuster waren als im angrenzenden nördlichen Flachland und dennoch graziler als in Cazis.

Stark vereinfacht lässt sich also die Hypothese formulieren, dass die bronzezeitlichen Schafe der östlichen bzw. nördlichen Alpen stämmiger waren als jene der westlichen bzw. südlichen und dass im Flachland grundsätzlich grazilere Populationen lebten als in benachbarten Bergregionen. Cresta-Cazis als "Ort der geographischen Mitte" sowie die mir bekannten, hier besprochenen, Stationen aus dem fokussierten Gebiet fügen sich in dieses, noch lückenhafte, Muster ein (Abb.25).

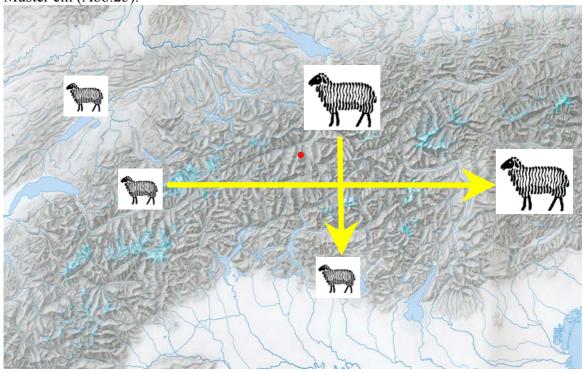
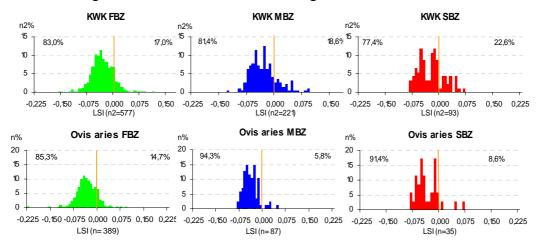
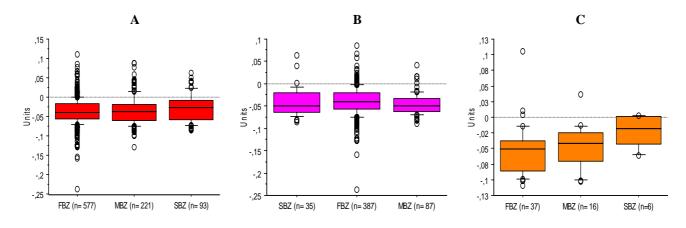


Abb.25: Hausschaf. Vergleich der Wuchsformen in verschiedenen Regionen der Alpen.


Innerhalb der Alpen gestaltet sich, aufgrund der knappen Datengrundlage, die Deutung der Unterschiede betreffend der Wuchsform von Schafen schwierig. Ungleiche lokale, naturräumliche Voraussetzungen (Höhenlage, Exponierung usw.), die eine unregelmässige Verteilung betreffend der Wuchsformen zur Folge haben, scheiden als Begründung aus. Viel eher kommen klimatische Ursachen oder Differenzen in der Schafzuchttradition in Frage. Was die Gegenüberstellung von Flachland- und Alpenschafen zur Bronzezeit betrifft, darüber berichtet Rüeger bereits 1942¹¹⁴ für die Station Crestaulta: "Bei ungefähr gleichen Längendimensionen weisen die Schafknochen in Crestaulta grössere Breiten der Mittelstücke und der distalen Gelenke auf als im Alpenquai Zürich." Das hat, wie wir gesehen haben, auch für Cresta-Cazis und andere (alpine) Fundstellen seine Gültigkeit. Möglicherweise ist der etwas klobigere Körperbau bei vergleichbarer Körpergrösse in diesem Fall mit einer Anpassung an die Fortbewegung auf gebirgigem Untergrund zu erklären. Es bleibt auf zukünftige Untersuchungen zu hoffen, die mit weiteren Messdaten diese Resultate bestätigen oder verwerfen. Um die eingangs angesprochenen Wuchsformveränderungen der kleinen Hauswiederkäuer im Laufe der Zeit überhaupt beobachten zu können, müssen in Cazis sämtliche verfügbare Breitenmasse ihres Extremitätenskeletts zusammengefasst berücksichtigt und ausgewertet werden (Grössenindex-Analyse, siehe Kapitel 2.2.4.). Von zentralem Interesse ist auch hier, ob, und wenn ja, welche Informationen aus dem Ergebnis

¹¹⁴ Rüeger 1942.

einer gemeinsamen Analyse von Schafen, Ziegen und nicht näher bestimmten kleinen Hauswiederkäuern¹¹⁵ gewonnen werden können. Die Histogramme und Boxplots auf der


¹¹⁵ Auswertungsbasis: Spalte n2 für Schaf/Ziege in der Tierartentabelle (Tabelle III im Anhang).

Basis der nicht artlich differenzierten Knochen in Abb.26 oben dokumentieren, wie sich das Gleichgewicht von der Früh- zur Spätbronzezeit etwas mehr auf die Seite der stämmigen Tiere verschiebt. Steht diese Beobachtung nun mit den Schafen oder mit den Ziegen oder mit beiden Arten gleichermassen im Zusammenhang?

Abb.26: Cresta-Cazis. Wuchsformveränderungen bei den kleinen Wiederkäuern (**oben**) und speziell bei den Schafen (**unten**). Standardindividuum: oranger Balken durch Null-Punkt (Tabelle II/4 im Anhang).

Dazu gibt die separate Analyse der Schafe erste Hinweise: einerseits zeigt sie auf, wie stark das Histogramm-Muster der zusammengefassten Auswertung von den Schafen geprägt ist (Abb.26 unten). Das verwundert bei einem Verhältnis von durchschnittlich rund 90% Schafen zu 10% Ziegen nicht. Andererseits, und das verdeutlicht die Darstellung mittels Boxplots (Abb.27), lässt sich die Grössenzunahme im Laufe der Zeit für die Schafe nicht bestätigen.

Abb.27: Cresta-Cazis. Veränderung der Wuchsform im Laufe der Bronzezeit. **A** kleine Wiederkäuer vereint, **B** Hausschaf, **C** Hausziege. Standardexemplar: Null-Linie (Hausschaf und Hausziege, Tabelle II/2 im Anhang).

Das hängt zum überwiegenden Teil damit zusammenhängen, dass die meisten, von kräftigen Individuen stammenden, Knochenfragmente nicht speziesgenau bestimmt werden konnten. Die Ergebnisse für die Ziegen (Abb.27C) zeigen eine Zunahme der LSI-Werte von der Frühbis zur Spätbronzezeit. Als Ursache kommt dabei weniger eine allgemein zunehmende Körpergrösse der Ziegen, sondern viel eher das gelegentliche, ev. vermehrte, Auftreten von

ausgewachsenen, stattlichen Ziegenböcken ab der Mittelbronzezeit in Frage. Dieser Hypothese stehen die

Resultate aus den Hornzapfenuntersuchungen (vgl. Kapitel 4.2.3.3b) gegenüber, welche keinen Anlass dazu geben, ein häufigeres Vorkommen von ausgewachsenen Ziegenböcken in der Mittel- und Spätbronzezeit anzunehmen.

Es ist nicht undenkbar, dass es sich bei den auffälligsten unter den grosswüchsigen Exemplaren um die Nachkommen aus Paarungen von Steinböcken mit Ziegen handelt¹¹⁶. Die Veränderungen betreffend der Wuchsform, die sich innerhalb der kleinen Hauswiederkäuer ab der Mittelbronzezeit abzeichnen, lassen sich auch mit einer kombinierten Interpretationsvariante erklären: die Schafe werden generell etwas robuster und die Ziegenböcke im Speziellen etwas häufiger.

Abschliessend sei noch einmal auf die niedrige Fragmentzahl hingewiesen, welche die Aussagekraft des Ergebnis letzten Endes einschränkt. Trotzdem oder gerade deshalb bleibt es ein spannender Ansatzpunkt für weitere Nachforschungen in dieser Frage.

4.2.3.6. Pathologisch- anatomische Veränderungen. Bei der Besprechung der pathologisch- anatomischen Veränderungen am Skelett von Schafen und Ziegen konnte ein einziges Knochenelement auf die Art genau bestimmt werden. Bei den anderen bleibt die Spezieszugehörigkeit unsicher.

Aus den insgesamt 5755 Schaf/Ziegen Knochen¹¹⁷ lassen sich 38 Fragmente (0,7%) aussortieren, die in irgendeiner Weise Abweichungen vom gewohnten Erscheinungsbild aufweisen. Die Variationsbreite dieser Abweichungen ist bescheiden und umfasst mehrheitlich Unterkiefer und Zähne. Nichts deutet auf ein gehäuftes Vorkommen bestimmter Pathologien oder Anomalien in einzelnen Siedlungsphasen hin.

Mit 25 Exemplaren besonders zahlreich vertreten sind pathologische Veränderungen an den Mandibeln. Bei 18 Fragmenten äussern sie sich in Ausbuchtungen und Umbildungen des Knochens unterhalb der Prämolaren und z.T. der Molaren, in ausgeweiteten bzw. wuchrigen Alveolen oder in einer Kombination von beidem (Foto III/B1). In einem Fall wirkte sich die Entzündung so dramatisch auf die Kiefermorphologie aus, dass daraus eine Abkauungsanomalie resultierte (Foto III/B2). Ihre Deutung als Folge von Zahnfachentzündungen (Periodontitis) liegt nahe. Häufig wird eine durch Abnutzung erhöhte Empfindlichkeit gegenüber Verletzungen des Zahnfleisches als Ursache genannt. Von den Driesch¹¹⁸ beschreibt den entzündlichen Prozess folgendermassen: "das Zahnfach reagiert auf die Noxe wie Knochen immer reagiert: es wird Knochensubstanz abgebaut und gleichzeitig an anderer Stelle unphysiologisch zugebildet. Der Zahnfachrand buchtet aus. Nicht selten kommt es zu einer Vereiterung der Zahnwurzel. Die Vereiterung versackt in die Tiefe. Gekennzeichnet sind solche Kiefer durch Vorbuchtungen lateral am Unterkieferkörper, basal der Stelle, wo die Läsion stattgefunden hat." Da bei den Mandibeln der kleinen Hauswiederkäuer aus Cazis die beschriebenen pathologischen Veränderungen häufig in den Altersklassen subadult bzw. jungadult auftreten, wo ausnahmslos die Region unter den Prämolaren betroffen ist, vermute ich, dass neben der altersbedingten Abnutzung auch der Zahnwechsel zu einer gesteigerten Empfindlichkeit gegenüber Verletzungen usw. führen

An sieben Unterkiefern, die allesamt von älteren¹¹⁹ Individuen stammen, zeugt das Zuwachsen einzelner oder mehrerer Prämolar-Alveolen von sekundärem Zahnverlust (Foto IV/B3). Ohne mich auf die dünnen Äste einer Diagnose hinauszuwagen, erinnert einen das Erscheinungsbild stark an die, durch den Alterungsprozess oder Vitaminmangel (Skorbut) hervorgerufene, sekundäre Zahnlosigkeit bei Menschen.

¹¹⁶ Mündliche Mitteilung Christina Boschi, Wildtierbiologin am NLU, Basel.

¹¹⁷ Basis: modifizierte Tierartentabelle (Tabelle III, Spalte n2 im Anhang).

¹¹⁸ Von den Driesch 1975.

¹¹⁹ Altersgruppe 10 und 11 in Tabelle I im Anhang.

Als Abweichungen vom Normalgebiss lassen sich folgende Unterkiefer- und Zahnfragmente umschreiben: zwei Exemplare dokumentieren das primäre Fehlen des zweiten Prämolars, die häufigste Form von Oligodontie bei Schafen bzw. Ziegen (Foto IV/B6).

Abkauungsanomalien wurden, neben dem bei der Zahnfachentzündung erwähnten Unterkiefer, an zwei losen Zähnen (unterer dritter Prämolar und oberer letzter Molar) beobachtet (Foto IV/B4, 5).

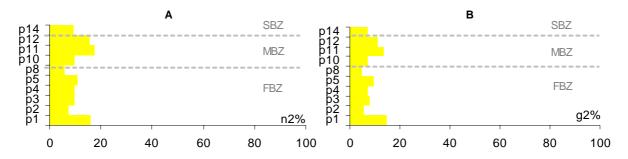
Sämtliche Nachweise von morphologisch ungewöhnlichen Kreationen am postcranialen Skelett der Schaf/Ziegen sind Einzelfälle. Die Beschreibungen ihrer individuellen Erscheinungsbilder findet man in Tabelle VI im Anhang aufgelistet.

		Foto IV/B	р 1	p2	р3	p4	p5	p8	p10	p11	p12	p14	Anzahl pathologisch- anatomischer Veränderungen
Pathologien am	Alveolenrand												
Gebiss	ausgeweitet:	1,2		111	111	11	11	111		- 1	- 1	111	18
	sekundärer Zahnverlust												
-	(mand):	3			Ш	Ш					ı	Ш	7
	M3 max einseitige												
Anomalien am Gebiss	Abkauung:	4							ı				1
	UK Z (PM4)												
	unregelmässige	5			١.								1
	Abkauung: Abkauungsanomalie	5											ı
	(UK):	2											1
	primäre Zahnreduktion	2					'						
	(P2 mand):	6		ı								ı	2
	OK Zahnanomalie:	7			- 1								1
	UK Zahnanomalie:	8							- 1				1
diverse pathologisch-	an Metapodien :	9				ı					-	ı	3
anatomische	an Tibia:	11									- 1	- 1	2
Veränderungen	an Phalangen:	12									ı		1
Pathologie/Anomalie/	an Radius (Delle):							ı					1
Individuelle Variation?	an Tibia (2 Foramen):										ı		1
	an Wirbel (Asymmetrie):						- 1						1
-	an Scapula (Loch):										-		1
Anz. Pathologisch-anat	omisch veränderter												42
Fragmente				4	6	4	3	4	2	1	7	7	38

Tab.6: Cresta-Cazis. Hausschaf/Hausziege. Quantitative Auswertung der pathologisch- anatomisch veränderten Knochen. Rot: jeweils zwei verschiedene pathologisch- anatomische Veränderungen an ein und demselben Knochen.

4.2.4. Hausschwein Sus scrofa f. domestica.

Das Wildschwein (*Sus scrofa* L.) ist die Stammform der Hausschweine. Charakter- und Verhaltenseigenschaften wie Herdenleben, Allesfresser, fixes Territorium, usw. haben bei seiner Domestikation eine grosse Rolle gespielt¹²⁰.


Die ältesten gesicherten Belege für die Einführung des Wildschweins in den Hausstand stammen aus der Siedlung Cayönü in der Osttürkei, die in die erste Hälfte des achten vorchristlichen Jahrtausends datiert¹²¹.

4.2.4.1. Anteil am Tierartenspektrum. Mit einem durchschnittlichen Anteil von elf Prozent am ganzen Artenspektrum ist das Schwein in Cazis nach dem Rind und den Schaf/Ziegen das drittwichtigste Haustier (Abb.28 und Tabelle III im Anhang). Da die Fragmentzahl in einem

¹²⁰ Chaix 1986b.

¹²¹ Benecke 1994, S. 250, Hongo u. Meadow 1998, S. 87, Ervynck et al. 2002. Larson et al. 2007.

groben Zusammenhang mit der Individuenzahl steht, kann man annehmen, dass meistens weniger Schweine als kleine Hauswiederkäuer gehalten wurden. In der fortgeschrittenen Mittelbronzezeit ist das Verhältnis zwischen den beiden Tiergruppen jedoch entweder fast ausgeglichen (Planum 11) oder sogar von den Schweinen dominiert (Planum 12). Nach Gewichtsprozenten überwiegen die Schweineknochen in dieser Zeitspanne. Eine ähnliche Konstellation scheint in der aller ersten Siedlungsphase (Planum 1) schon einmal bestanden zu haben, wenn sie auch nur sehr kurz währte. Im bronzezeitlichen Cazis wurde konstant, aber in eher kleinem Ausmass, Schweinezucht betrieben. Die verhältnismässig niedrigen Gewichtsanteile der Knochen von Schweinen (klassische Fleischlieferanten) erwecken den Eindruck, dass die Haustierhaltung der Dorfbewohner nicht in erster Linie der Fleischwirtschaft diente.

Abb.28: Cresta-Cazis. Hausschwein. Knochenanteile am gesamten Tierartenspektrum in den einzelnen Siedlungsphasen (Planum 1 bis 14). **A** nach der Häufigkeit **B** nach Gewichtsprozenten. Auswertungsbasis: proportional modifizierte Tierartenliste (Tabelle III im Anhang).

4.2.4.2. Schlachtalter. Die Analyse ihres Schlachtalters fällt bei den Schweinen konstant aus. Obgleich die Menge der altersbeurteilten Knochen in der Spätbronzezeit kritisch klein ist, so schimmert doch die allgemeine Tendenz durch: von der Früh- bis zur Spätbronzezeit hat man immer 65-80% der Schweine im sub- bis jungadulten¹²³ Stadium getötet. Die oft angefügte Begründung, dass in

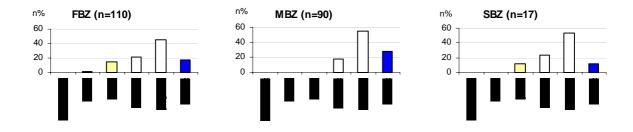


Abb.29: Cresta-Cazis. Hausschwein. Altersverteilung in der Früh-, Mittel- und Spätbronzezeit.

¹²² Der Gewichtsanteil der Knochen einer Tierart wiederspiegelt proportional deren Bedeutung als Fleischlieferant.

¹²³ M3 am durchbrechen oder durchgebrochen und kaum oder leicht bis deutlich abgekaut (siehe Tabelle I im Anhang: Alter 1= 7, 8 und 9).

dieser Zeitspanne der Fleischertrag verglichen zum getätigten Fütterungsaufwand am ergiebigsten ausfällt, steht, zumindest teilweise, im Widerspruch mit der Vorstellung einer mehr oder weniger selbstständigen Nahrungssuche der Schweine.

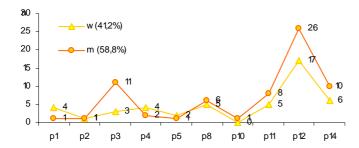
Alte Schweine sind relativ gut vertreten. Ihr Anteil sinkt in keiner der drei Hauptepochen unter 10%. Wahrscheinlich gehört die Mehrheit von ihnen zum weiblichen Geschlecht (vgl. Tab.7). Die männlichen Tiere hat man dementsprechend öfters vor Erreichen des Erwachsenenalters geschlachtet als die weiblichen. Der maximale Prozentsatz an altadulten Tieren während der Mittelbronzezeit lässt sich möglicherweise mit dem gleichzeitigen Höchststand des Schweineanteils in Zusammenhang bringen (vgl. Abb.28). Die sowohl in der Früh- als auch in der Spätbronzezeit ab und zu vorkommenden juvenilen Tiere (Abb.29) fehlen in den mittelbronzezeitlichen Schichten. Damit scheint sich bei den Schweinen ein ähnlicher Zusammenhang zwischen ihrem Anteil am Tierartenspektrum und der Schlachtalterverteilung abzuzeichnen wie bei den Rindern (vgl. Kapitel 4.2.2.2.): mit zunehmender Häufigkeit der Tiere verringert sich der Anteil junger (neonat bis und mit juvenil) Individuen.

Weibchen	FBZ	MBZ	SBZ	M ännchen	FBZ	мвZ	SBZ
fötal/neonat				fötal/neonat			
infantil				infantil			
juvenil				juvenil			
sub ad ult	2			sub ad ult	2	3	
jung ad ult	6	7	3	jung ad ult	12	5	
alt ad ult	3	6		alt ad ult		3	
nicht ad ult	2	1	1	nicht ad ult	2	3	2
adult	11	16	4	ad ult	14	13	

Tab.7: Cresta-Cazis. Hausschwein. Anzahl Fragmente pro Altersstufe und Geschlecht.

Wie bei den kleinen Hauswiederkäuern (vgl. Kapitel 4.2.3.2.) fanden sich im untersuchten Knochenfundgut keine Unterkieferbruchstücke fötaler bzw. neonater Individuen. Reste infantiler Ferkel sind ebenfalls rar (zwei Fragmente). Unter den Extremitätenknochen der Schweine begegnet man diesen Altersstufen jedoch wiederholt¹²⁴ (vgl. Tabelle I im Anhang). Das wirft unter Umständen Zweifel an der "Tierfrass-Interpretation" auf, welche bei den Schaf/Ziegen als Erklärung für die Absenz der jüngsten Altersklasse ins Auge gefasst wurde. Falls wirklich Erhaltung und/oder Verbiss die Knochen von Jungtieren verstärkt dezimiert haben, dann müssten ihre widerstandsfähigen Zähne mindestens gleich häufig gefunden werden wie die entsprechenden Extremitätenknochen. Allerdings ist bei der kleinen Datenbasis das Mitspielen des Zufalls nicht auszuschliessen.

Die Nutzung der Schweine in Cresta-Cazis war gemäss den Schlachtalteruntersuchungen, wie praktisch überall in den Viehwirtschaft betreibenden Gemeinschaften, während der ganzen Bronzezeit ausschliesslich auf das Fleisch ausgerichtet. Seine Bedeutung als Werkstofflieferant (z.B. Leder, Zähne und Knochen), als Arbeitstier (z.B. bei der Trüffelsuche, zum Lockern und Vorbereiten des Bodens von Feldern) oder als Jagdgehilfe dürfte kaum ins Gewicht gefallen sein 125.


4.2.4.3. Geschlechterzusammensetzung. Für die Bewertung des Verhältnisses zwischen den Geschlechtern der Schweine wurden ausschliesslich die Kieferstücke herangezogen. Alle Schichten zusammengenommen ergaben insgesamt nicht mehr als 114 geschlechtsbestimmte Reste¹²⁶. Eber sind mit rund 59% etwas häufiger vertreten als Sauen (gut 41%).

-

¹²⁴ Fötal/neonat: sechs, infantil: sieben Fragmente.

¹²⁵ Becker 1986, S. 63.

¹²⁶ Rund ein Zehntel (vier Weibchen und sieben Männchen) stammen dabei von Ferkeln.

Abb.30: Cresta-Cazis. Hausschwein. Geschlechterverteilung in den einzelnen Schichten (anhand der Kiefer und losen Zähne).

Ruft man sich die Gruppe der Schweine im bevorzugten Schlachtalter und ihren überragenden Anteil am gesamten Spektrum in Erinnerung, wird klar, dass sie es sind, die das Ergebnis aus der Geschlechtsanalyse massgebend prägen: bei den sub- bis jungadulten Tieren, deren Geschlecht bekannt ist, stehen 18 Sauen 22 Eber gegenüber, also 45%: 55% (vgl. Tab.7).

4.2.4.4. Grösse und Wuchsform. Bis zur ausgehenden Frühbronzezeit vermitteln die Hausschweineknochen ein einheitliches Bild was die Grösse und Wuchsform der Tiere betrifft. Ihre Körperproportionen entsprechen in etwa den Dimensionen eines rezenten zierlichen Wildschweinweibchens aus der Vergleichssammlung der Archäozoologischen Abteilung der Universität Basel (Inv.- Nr. 2268), das zu Lebzeiten 56 kg wog und eine Widerristhöhe von ungefähr 67 cm aufwies. Robustere Formen gehören zur Minderheit. Im Verlauf der Mittel- und Spätbronzezeit verändert sich die Gewichtung innerhalb des Grössenvariationsspektrums. Im Fundgut treten vermehrt stämmige Individuen auf und ihre Abgrenzung von den eindeutig wilden Vertretern wird zunehmend schwieriger. In Bezug auf ihre Knochenmasse stehen sie dem männlichen Wildschwein¹²⁷ mit der Inv.- Nr. 1446 wenig bis kaum nach.

Die Schweinepopulation aus Cresta-Cazis ist also, grob gesagt, durch drei Grössengruppen charakterisiert, die sich überlappen (Abb.31)¹²⁸. Um die Übergänge klarer lokalisieren zu können, habe ich die Schweinemessdaten mehrerer bronzezeitlichen Stationen untereinander verglichen, die, abgesehen von Kastanas, alle in den Alpen oder im benachbarten Flachland liegen. Zusätzlich dienten die Messwerte des oben erwähnten rezenten Keilers als Referenz. Auf diese Weise kristallisierten sich die Variationsbereiche der bronzezeitlichen Wild- und Hausschweine meist ziemlich schön heraus (Abb.31).

Folgende Beobachtungen sind festzuhalten: tendenziell scheinen die südeuropäischen Wildschweine (z.B. Kastanas) von etwas kleinerer Statur gewesen sein als ihre Artgenossen aus den nördlicheren Regionen. Das wilde Referenzindividuum mit der Inv.- Nr. 1446 vertritt in der Gegenüberstellung das unterste Ende auf der "Wildschweingrössenskala". Die Nachweise der kräftigsten Hausschweine stammen aus Wiesing, das mich in Bezug auf die Problematik der Grenzziehung zwischen Haus- und Wildtieren stark an Cazis erinnert¹²⁹.

¹²⁷ Archäobiologische Abteilung des Instituts für prähistorische und naturwissenschaftliche Archäologie (IPNA) der Universität Basel (Tabelle II/3).

¹²⁸ 1. Grösse: kleines bis mittelgrosses Hausschwein, 2. Grösse: Haus- oder Wildschwein, 3. Grösse: Wildschwein.

¹²⁹ Erich Pucher, der die Fauna aus Wiesing untersucht hat, schreibt über die dortigen Schweine: "Obwohl der grösste Querschnittdsdurchmesser der unteren Canini zwischen 15 und 23 mm schwankt, hält sich die Variation der in 18 Fällen belegten Länge des M3 in so engen Grenzen, dass eine Mischung von Haus- und Wildschweinkiefern völlig unglaubwürdig erscheint. Analoges gilt auch für die Elemente des postcranialen Skeletts. Der ganze Fundbestand wirkt sehr einheitlich".

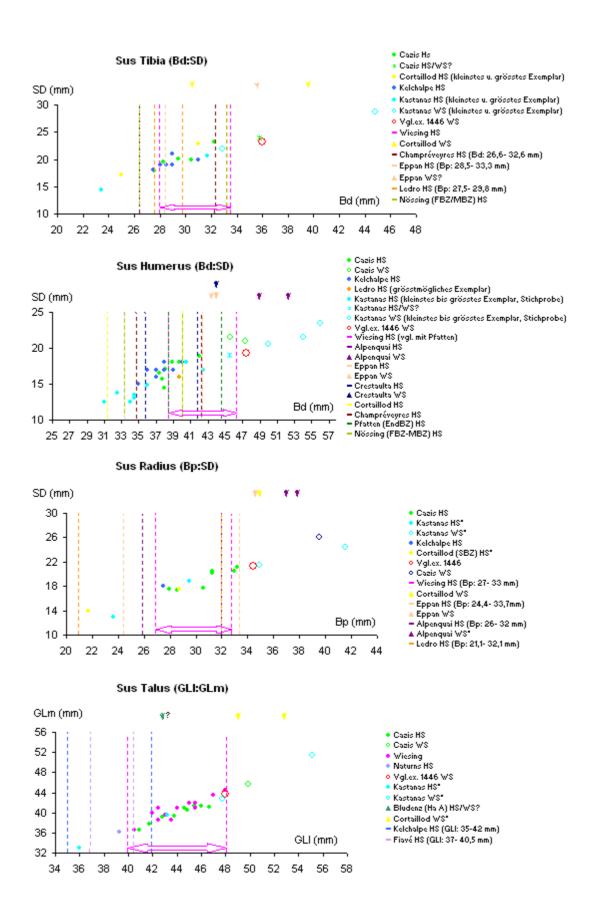


Abb.31: Haus- und Wildschwein. Vergleich der Körperproportionen in verschiedenen Fundstellen.

Auch in Eppan I- Gamberoni, wo grosswüchsige Hausschweine wie in Pfatten I- Vadena und Sonnenburg- I heimisch waren, fiel Riedel die Unterscheidung zwischen domestizierten und wilden Vertretern besonders schwer¹³⁰. Er folgerte: "vielleicht war ein grosser Schlag von Hausschweinen vorhanden, möglicherweise auch durch Kreuzung mit Wildschweinen entstanden".

Zwischen den robusten Schweinen aus den östlichen Alpenregionen und der Gruppe stämmiger Individuen aus Cazis entdeckt man also auffällige Parallelen. Die bislang einzige bronzezeitliche Vergleichsmöglichkeit aus dem Raum Graubünden ist mit Lumbrein-Surin GR- Crestaulta gegeben. Die Dimensionen der dortigen Hausschweine stimmt weitgehend mit jener der Cazis-Exemplare, grossgewachsene Individuen

miteingeschlossen, überein. In Ledro- I, Fiavé I- Carera und Kastanas- G lebten die schmächtigsten der für den Vergleich herangezogenen Hausschweine. Auf eine mittlere Statur lassen die Vertreter aus Kitzbühl AU- Kelchalpe, Hauterive NE- Champréveyres, Cortaillod-NE und Zürich ZH- Alpenquai schliessen.

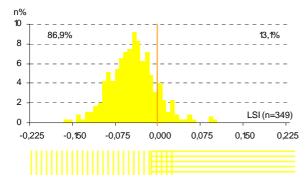
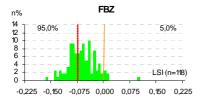


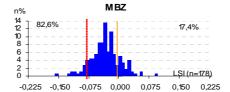
Abb.32: Cresta-Cazis. Suidae. Auswertung der Grössenindizes (LSI) für Planum1- 14 zusammengefasst.

Die Auswertung der Grössenindizes¹³¹ spricht abermals für einen nahtlosen Übergang von wilden zu domestizierten Schweinen in Cazis. Alle Breitenmasse vereinigt ergeben nämlich eine Normalverteilung (Abb.32).

Am Anfang des Abschnitts wurden die chronologischen Änderungen der Grössenverhältnisse innerhalb der Schweinepopulation angesprochen. Tab. 8 zeigt mit einer Auswahl an chronologisch verglichenen Messstrecken, dass die durchschnittlichen frühbronzezeitlichen

		min	max	m e d	n
	SBZ	3 9 ,6	4 2 ,4	4 1,0	2
Humerus Bd	MBZ	3 8 ,0	4 5 ,6	41,2	9
	FBZ	37,4	4 5 ,6	39,6	6
	SBZ	28,6	3 1,3	29,9	2
Radius B p	MBZ	2 9 ,8	3 3 ,2	3 1,4	7
	FBZ	2 8 ,0	2 8 ,0	28,0	2
	SBZ	2 2 ,4	2 5 ,4	23,9	4
U Ina B P C	MBZ	2 1,0	2 6 ,7	23,8	2 0
	FBZ	2 0 ,2	27,1	22,4	11
	SBZ	27,6	3 5,7	3 1,5	4
Tibia Bd	MBZ	2 8 ,3	3 5 ,2	3 1,5	6
	FBZ	2 8 ,8	3 3 ,4	31,2	7
	SBZ			3 6 , 2 *	1
Pelvis LA	MBZ	3 5,4	4 1,3	36,6	4
	FBZ	3 1,7	4 0 ,6	3 4 , 3	8
	SBZ	2 4 ,3	25,92	24,8	4
Scapula SLC	MBZ	2 2 ,9	2 9 ,2	26,2	14
	FBZ	2 1,3	2 5 ,2	23,9	9


Tab. **8**: Cresta-Cazis. Suidae ohne sichere Wildschweine. Vergleich einiger Masse am postcranialen Skelett aus verschiedenen Siedlungsperioden. * Einzelwert.


-

¹³⁰ Riedel 1986a, S. 30.

¹³¹ Referenzindividuum ist das männliche Wildschwein mit der Inv.- Nr. 1446 (Tabelle II/2 im Anhang).

Auch anhand der in Früh-, Mittel- und Spätbronzezeit aufgelösten LSI- Analyse lässt sich besagte Entwicklung anschaulich dokumentieren (Abb.33). Dabei kommt zur Geltung, dass die Zunahme von kräftigen Schweinen während der Mittel- und Spätbronzezeit mit einer Verminderung im Bestand der zierlicheren Hausschweine einhergeht.

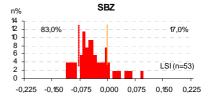


Abb.33: Cresta-Cazis. Suidae. Auswertung der Grössenindizes für die Früh-, Mittel- und Spätbronzezeit.

Eine Deutung dieses Resultats kann nur im Zusammenhang mit der Interpretation der Gruppe der robusten Tiere angegangen werden. Bei der Entscheidung, ob es sich bei ihnen beispielsweise mehrheitlich um eine gestiegene Anzahl männlicher Hausschweine, um jüngere männliche Wildschweine, um weibliche Wildschweine, um Einkreuzungen von Wildschweinen in den Haustierbestand, um importierte Vertreter einer grösserwüchsigen Population oder um "gemästete" Tiere handelt, spielten folgende Überlegungen eine Rolle:

- Von den vier sicheren Wildschweinekieferstücken stammen drei von männlichen Exemplaren. Unter den stämmigen Individuen, deren Zugehörigkeit zu den Wild- oder Haustieren geklärt werden soll, finden sich beim selben Skelettelement zwei Weibchen und drei Männchen. Dies vermag die Thesen, welche von der Dominanz eines Geschlechts ausgehen (z.B. dass es sich bei ihnen um die weiblichen Wildschweine handelt), zwar nicht zu verwerfen, aber bestimmt nicht zu unterstützen.
- Die aufgezählten Fragmente zeugen ausnahmslos von mindestens jungadulten Tieren. Das Argument des Alters fällt also im vorliegenden Fall als Erklärung für den frappanten Unterschied in der Höhe des Unterkiefers zwischen den Wildschweinen und den stämmigen Vertretern des jeweils gleichen Geschlechts weg. Zudem lassen sich die Eckzähne der stämmigen männlichen Individuen anhand ihres grössten Durchmessers zwischen den Gewehren der Keiler und den Hauern der Eber ansiedeln. Neigt man dazu, sie als schmächtigere Wildschweinmännchen zu interpretieren, setzt man eine sehr grosszügige Bandbreite der individuellen Variation innerhalb der lokalen Wildschweinpopulation voraus.
- Es sei darauf hingewiesen, dass innerhalb der Wildschweinknochen aus Cazis nur wenige Messwerte von mittleren bis stattlichen Exemplaren vorliegen, die meisten streuen im unteren Bereich. Dies könnte aber auch schlicht durch ihre geringe Zahl bedingt sein.
- Gerade in der Mittelbronzezeit, in der die stämmigen Individuen besonders häufig, bzw. die kleinsten Hausschweine relativ weniger vorkommen, erreicht der Schweineanteil seinen Maximalwert am Tierartenspektrum.
- Hausschweine sprechen mit ihrem Körperwuchs relativ schnell auf eine veränderte Nahrungsbasis an ¹³². Diesbezüglich lassen archäobotanische Untersuchungen aufhorchen, von denen man weiss, dass einige Kulturpflanzen (z.B. die Hirse oder Hülsenfrüchte wie die Ackerbohne), die in Ostasien beziehungsweise in Südosteuropa ihren Ursprung haben, sehr wahrscheinlich ab der Mittel- und sicher während der Spätbronzezeit im Kanton Graubünden

¹³² Herre u. Röhrs 1990, S. 158 ff.

angebaut wurden¹³³. Könnte die Verfütterung der Abfälle dieser neuartigen Gewächse zu der beobachteten Grössenzunahme bei den Schweinen geführt haben? Der Einwand, dass sich die

¹³³ Jacomet et al. 1999, S. 237- 239.

Zahngrösse bei einer Mast nicht verändert, spricht gegen die "Auffütterungs-These", denn die Eckzähne der zu beurteilenden Grössengruppe zeichnen sich, wie oben erwähnt, durch einen intermediären Wuchs (zwischen Haus- und Wildschwein) aus.

- Das Parallellaufen der Grössenzunahme bei den Hausschweinen mit dem Ansteigen des Wildschweineanteils, wie es im mittel- und spätbronzezeitlichen Cresta-Cazis schön zum Ausdruck kommt, könnte als Indiz für eine Einkreuzung von Haus- und Wildschweinen gewertet werden(siehe unten).
- Schliesslich deutet die Synchronität zwischen der Abnahme von zierlichen und der Zunahme von stattlichen Tieren auf einen engen Zusammenhang der beiden Tendenzen.

Auf Basis der Analysen bzw. Faunenvergleiche mit anderen Fundstellen, der obigen Überlegungen und des momentanen Wissenstandes tendiere ich dazu, die stämmigen Individuen aus Cazis als Einkreuzungen von Wildschweinen in den Hausschweinebestand, oder, wie Pucher treffend formuliert, als mehr oder weniger domestizierte Schweine, zu interpretieren 134. Natürlich drängt sich sofort die Frage auf, warum das Phänomen der Einkreuzung während der frühbronzezeitlichen Besiedlung weniger oder kaum auftritt. Dafür gibt es mehrere Erklärungen:

- 1. Das Wildschwein breitete sich erst ab der Mittelbronzezeit im Domleschg-Heinzenbergtal aus (vgl. Kapitel 4.3.5.). Vorher "verirrte" sich nur ab und zu eines in die Gegend, so dass kaum die Möglichkeit von Paarungen zwischen domestizierten und wilden Tieren bestand.
- 2. Die Organisation der Schweinehaltung veränderte sich am Übergang von der Frühzur Mittelbronzezeit (ev. in Folge von Umstrukturierungen der land- und viehwirtschaftlichen Nutzflächen). In der Frühbronzezeit nutzte man beispielsweise das Hügelplateau als "Schweine-Gatter". Bei einer solchen Haltung war die Wahrscheinlichkeit von Einkreuzungen mit Wildschweinen gering. Ab der Mittelbronzezeit liess man die Tiere in weiterer Entfernung vom Dorf herumspazieren und ihre Nahrung suchen, so dass sich Kontakte mit den Wildschweinen häuften (vgl. Kapitel 6.5.).
- 3. Die mittel- und spätbronzezeitlichen Bauern aus dem Felsspaltendorf haben die ab und zu vorkommende Deckung weiblicher Hausschweine durch Wildschweinkeiler bewusst forciert oder nicht unterbunden, um kräftigere, widerstandsfähigere Tiere zu erhalten. Das gleiche Zuchtziel wäre zu erreichen gewesen, indem man Wildschweinferkel zu sich ins Dorf genommen, gezähmt und mit den eigenen Hausschweinen gekreuzt hätte. In beiden Fällen ist von einer aktiven anthropogenen Initiative auszugehen¹³⁵. Bleibt zu ergründen, wieso und wie die Idee für eine solche Methode zur Auffrischung des Erbguts, oder der Wille, sie umzusetzen. im mittelbronzezeitlichen Cazis Fuss gefasst hat. Vielleicht gedieh sie aus den intensivierten kulturellen Kontakten mit anderen Bevölkerungsgruppen, die sich während der Mittelbronzezeit auch im Keramikspektrum wiederspiegeln (vgl. Kapitel 1.2.3.). Der aus diesem Kontext heraus aufkeimende Einwand, es könne sich bei den stämmigen Cazner Schweinen allenfalls auch um Importtiere (und deren Nachkommen) handeln¹³⁶, hat durchaus seine Berechtigung. Als erstes würde man dabei an eine östliche (ev. Südtiroler) Bezugsquelle denken. Robuste Hausschweine könnten über ähnliche Wege wie die fremden Getreidearten (siehe oben,

¹³⁴ Bei rezenten Hausschweinen, die frei gehalten werden und ihre Nahrung selbständig suchen müssen, finden dann und wann Paarungen mit Wildschweinen statt. Poplin 1976, Cram 1979, Riedel 1986a.

¹³⁵ Pucher 1986, S. 245, Barker 1987, Riedel 1988, S. 83, Riedel 1990, S. 142, Pucher u. Engl 1997, S. 90 und 96

¹³⁶ Dazu gibt es heutige Parallelen in Korsika und Sardinien (Albarella et al. 2006).

"Auffütterungs-These") in Cazis angelangt sein. Das Gebiet nördlich der Alpen käme allenfalls auch als Importregion in Betracht¹³⁷. Südlich der Alpen sind die Schweine meist von kleinerem Wuchs, wobei Ausnahmen ebenfalls vorkommen (Barche di Solferino- I, Pozzedo- I)¹³⁸.

Ich bevorzuge die "Kreuzungstheorie" aufgrund des synchronen Verlaufs der Grössenveränderungen innerhalb der Schweinepopulation und des Anstiegs des Wildschweinanteils in Cresta-Cazis.

4.2.4.5. Pathologien und Anomalien. Für die Auswertung der pathologisch- anatomischen Veränderungen an Schweineknochen wurden auch jene Exemplare miteinbezogen, deren Herkunft von domestizierten oder wilden Formen nicht geklärt werden konnte (Gruppe Hausoder Wildschweine). Trotzdem beläuft sich die Zahl der Fragmente mit morphologischen Auffälligkeiten nur gerade auf sechs. Bezogen auf alle Schweineknochen bedeutet das immerhin einen Anteil von 0,4%. Ähnlich wie bei den kleinen Wiederkäuern sind es die pathologischen Erscheinungen am Gebiss, die am regelmässigsten auftreten. Die Alveolen zweier Oberkiefer befinden sich im Stadium des Zuwachsens (Foto IV/C2 im Anhang). Beide oberen ersten Molaren, steckten zu Lebzeiten der Tiere aber wohl noch im Kiefer. Was das Alter betrifft, stammen die beschriebenen Knochen von über zweijährigen Schweinen. Lässt sich diese Knochenveränderung mit einer erhöhten Empfindlichkeit des Zahnfleisches erklären, ausgelöst beispielsweise durch den Durchbruch, den Wechsel, die Abnutzung von Zähnen (vgl. Schaf/Ziegen, Kapitel 4.2.3.6.) oder durch eine Mangelernährung Ein Unterkiefer mit reduziertem erstem Prämolar repräsentiert das klassische Beispiel für die Oligodontie bei Schweinen. Die Reduktion betrifft sogar nur die linke Kieferhälfte (Foto IV/C4 im Anhang). In Bezug auf die Gebissentwicklung scheint diese Reduktion folgenderweise erklärbar: "was nichts nützt, wird aufgegeben". Nun wird aber seit etwa 25 Millionen Jahren der P1 bei der Gattung Sus einmal ausgebildet, einmal reduziert, ohne dass sich sein Fehlen bis auf den heutigen Tag eingespielt hat ¹³⁹. Die Interpretation müsste demnach eher lauten: "was nichts nützt, schadet nicht", oder wie es Agduhrs¹⁴⁰ sinngemäss ausgedrückt hat: "unbedeutende Organe bzw. Regionen sind stärker von Variationen betroffen als andere 141". Als einzige postcraniale Skelettelemente mit Hinweis auf eine Erkrankung können zwei Tibien genannt werden. Bei dem einen Stück von der linken Körperseite, von dem nur die Diaphyse erhalten ist, erstreckt sich medial in der distalen Schafthälfte eine ca. 3 cm lange Region mit zusätzlich abgelagerter Knochensubstanz (Foto IV/C5 im Anhang). Vielleicht verursachte das Anbinden des Tieres am Hinterbein (Tüdern) oder ein anderes Trauma eine Strapazierung und anschliessende Entzündung der Knochenhaut, die letztendlich ihre Spuren am Knochen hinterliess. Die zweite Tibia eines recht grosswüchsigen, ausgewachsenen Schweins fällt auf durch eine

Die zweite Tibia eines recht grosswüchsigen, ausgewachsenen Schweins fällt auf durch eine dorsal wulstig verdickte Sehnenansatzstelle an der distalen Epiphyse und durch eine wohl damit in Zusammenhang stehende stellenweise aufgelöste Gelenkfläche (Foto IV/C1 im Anhang). Solche Symptome können beispielsweise durch Parasitenbefall (*Erysipelothrix rhusiopathiae*), Überbelastung, Abnutzung usw. hervorgerufen werden ¹⁴². Im Anschluss an die Behandlung der pathologisch- anatomischen Veränderungen bei den Hausschweinen werden nun diejenigen der Wildschweine kurz vorgestellt.

¹³⁷ Teichert 1969.

¹³⁸ Riedel 1986, S. 31.

¹³⁹ Boessneck 1955.

¹⁴⁰ Agduhrs 1921.

¹⁴¹ Beim Schildkrötenpanzer treten die meisten Anomalien an jenen Knochenschildern auf, welche nicht mit der Wirbelsäule verwachsen sind, d.h. dort, wo die Folgen von Veränderungen am wenigsten Schaden anrichten. ¹⁴² O Connor 2000, S. 99f.

Zwei Unterkiefer von weiblichen Individuen sind betroffen. Beim einen befinden sich die Alveolen ab dem vierten Prämolar im Stadium des Zuwachsens (vgl. Hausschweine), der andere repräsentiert die ebenfalls bereits bei den domestizierten Schweinen festgehaltene Oligodontie (fehlender erster Prämolar).

Sus dom pathologisch- anatomische Veränderungen

voranao, an g on		Foto IV/C	р1	p2	р3	p4	p5	p8	p10	p11	p12	p14	Anzahl pathologisch- anatomischer Veränderungen
Arthropathie	an Tibia:	1									Ι		1
Pathologien am Gebiss	Alveolenrand ausgeweitet: sekundärer Zahnverlust (mand/max):	2					ı				ı		2
Anomalien am Gebiss	primäre Zahnreduktion (P1 mand) :	4						П					2
diverse path anat. Veränderungen	an Tibia:	5								I			1
Anzahl pathologisch- anat Fragmente	omisch veränderter						1	2		1	2		6

Sus scrofa pathologisch- anatomische Veränderungen

·		Foto IV/C	p1	p2	рЗ	p4	p5	p8	p10	p11	p12	p14	Anzahl pathologisch- anatomischer Veränderungen
Pathologien am Gebiss	sekundärer Zahnverlust (mand/max):	3									ı		1
Anomalien am Gebiss	primäre Zahnreduktion (P1 mand) :	4									I		1
Anzahl pathologisch- anatomisch veränderter Fragmente											2		2

Tab.9: Cresta-Cazis. Suidae. Quantitative Auswertung der pathologisch- anatomisch veränderten Knochen. Blau: Wild- oder Hausschwein.

4.2.5. Haushund (Canis lupus f. faniliaris).

Hunde haben als erste Haustiere des Menschen die längste Geschichte aller domestizierten Tierarten. Ob für die Haushunde eher von einem poly- als von einem monophyletischen Ursprung auszugehen ist, wird noch immer diskutiert¹⁴³. Die vorherrschende Theorie (polyphyletischer Ursprung)¹⁴⁴ schlägt vor, dass aus mehrmaligen Domestikationsereignissen, bei denen genetisch verschiedene Unterarten des Wolfes involviert waren, mehrere unterschiedliche Morphotypen von Hunden hervorgingen. Der zweiten Theorie (monophyletischer Ursprung)¹⁴⁵ zur Folge fand die Domestikation des Wolfes einmal statt und der daraus resultierende primitive Haushundtyp wurde je nach den lokalen Bedürfnissen der Menschen durch kontrollierte Züchtung modifiziert. Morphologische wie auch genetische Untersuchungen, aus denen hervorgeht, dass

¹⁴⁵ Scott 1967

¹⁴³ Koop et al. 1998, S. 271.

¹⁴⁴ Morey 1994, Clutton-Brock 1995, Vilà et al. 1997.

Einkreuzungen zwischen Haushunden und Wölfen immer wieder vorkamen und -kommen 146, bringen letztere Theorie ins Wanken.

Sowohl die eine als auch die andere Hypothese wird herangezogen, um die extreme Bandbreite der morphologischen Variation heutiger Hunderassen zu erklären. Dass zumindest die erste der beiden Argumentationen in dieser Frage als Begründung nicht überzeugt, zeigen meiner Einschätzung nach molekularbiologische Studien, die übereinstimmend zum Schluss kamen, "that there are no breed-specific, or morphotype-specific, mtDNA haplotypes. This means that genetically distinct lineages did not generate specific dog morphotypes, such as spitzes and mastiffs: apparently, any dog lineage may generate these morphotypes" 147.

4.2.5.1. Anteil am Tierartenspektrum. Wenn auch der Hund regelmässig in den Schichten der Spaltensiedlung auftaucht, so muss sein Beitrag an der Gesamtknochenmenge und am Gesamtknochengewicht doch als verschwindend klein bezeichnet werden. Alles in allem liegen 25 Fragmente vor. Ihnen sind unter Umständen fünf weitere Bruchstücke, bei denen ich die Zugehörigkeit zum Wolf nicht ausschliessen kann, anzufügen.

Die Haushunde aus Cresta-Cazis lassen sich vor allem an ihren Kieferknochen und Zähnen morphologisch, beziehungsweise metrisch, gut von jenen der Wölfe unterscheiden (Tab.10). Die Gruppe der postcranialen Fragmente, die in ihren Proportionen gleich gross bzw. grösser (oder im Falle eines Sacrumbruchstückes ein bisschen kleiner) wie ein rezenter männlicher Schäferhund¹⁴⁸ sind, wurden als Vertreter des Wolfes identifiziert.

So fallen beispielsweise die Masse sämtlicher Metapodien aus dem Variationsbereich bronzezeitlicher Haushunde heraus (vgl. Kapitel 4.3.7.)¹⁴⁹.

		GL	GB
Unterkiefer M1	Wolf	25,0	11,1
	Haushund	21,5	8,0
	Haushund	20,1	8,0
Oberkiefer P4	Wolf	24,5	11,0
	Haushund	18,8	9,4

Tab.10: Cresta-Cazis. Metrische Unterschiede zwischen Wolf und Haushund.

Über die Bedeutung des Hundes für die Dorfbewohner können nur Vermutungen angestellt werden. Vergegenwärtigt man sich den Standort der Siedlung, kommt einem als erstes der Gedanke an Wachhunde. Mit ihnen lassen sich unerwünschte Besucher aller Art, sei es Mensch oder wildes Tier, vom Leib halten. Da die typischerweise eher zierlichen Cazner Hunde dem Eindringling nötigenfalls wohl kaum ernsthaft Respekt einzuflössen vermochten, dürfte ihre Aufgabe, wenn, dann eher darin bestanden haben, diesen durch Bellen zu melden. Der Einsatz von Hirtenhunden in Cresta-Cazis ist angesichts der verhältnismässig hohen Schaf/Ziegenanteile, die sich jedoch nicht synchron zur Häufigkeit der Hunde verändern, naheliegend. Neben ihrer Aufgabe als Hüter von Herden kleiner Wiederkäuer, sind Hirtenhunde generell beim Eintreiben des Viehs eine wertvolle Unterstützung. Vielleicht haben Hunde die Bewohner der Cresta auf deren Handels - oder sporadischen Jagdausflügen begleitet. Sicherlich leisteten sie nebenbei als Abfallvertilger im Dorf willkommene Dienste.

¹⁴⁷ Crockford 2000, S. 298.

¹⁴⁶ Gurskii 1975, Maargaard u. Graugaard 1994, Crockford 2000.

¹⁴⁸ Vergleichsexemplar mit der Inv.-Nr. 1448, archäozoologische Abteilung, IPNA, Basel (Tabelle II/3 im

¹⁴⁹ Unter den rezenten Haushunden weisen Rottweiler entsprechende Masse auf (siehe Becker 1986, S. 91).

Schnittspuren auf einer Scapula¹⁵⁰ (siehe Abb.34) lassen zudem annehmen, dass in Cresta-Cazis Hunde gelegentlich auch verspeist wurden.

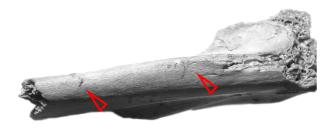


Abb.34: Cresta-Cazis. Haushund. Schnittspuren am Thorakalrand der Scapula.

4.2.5.2. Koprolithen. In einigen Schichten haben Kotreste die rund 3000 Jahre, die seit ihrer Einsedimentierung vergangen sind, gut überdauert. Nach ihrer äusseren Morphologie und dem makroskopisch sichtbaren Inhalt zu schliessen, stammen sie von Carnivoren¹⁵¹. Dabei kommen in erster Linie Caniden, die selbst einige Zentimeter grosse Knochenstücke ohne vorherige Zerkleinerung hinunterschlingen, in Betracht. Viel eher als Wölfe haben die Haushunde ihre Losung in der Siedlungsspalte deponiert. Auch die Grösse der Koprolithen lässt den Verdacht auf den "treuen Begleiter des Menschen" fallen (Abb.35A). Der Kot kommt in Cresta-Cazis aber nicht nur in seiner ursprünglichen Form vor. Manchen Knochen haftet er lediglich noch als Patina an (Abb.35B).

Abb.35: Cresta-Cazis. Vermutlich Haushund. Koprolith (links) und "Kot-Patina" an den Knochen kleiner Hauswiederkäuern (rechts).

4.2.5.3. Alterszusammensetzung. Bei allen Unterkiefern ist der permanente vierte Prämolar und der dritte Molar bereits durchgebrochen und hochgewachsen¹⁵². Die Bandbreite des

¹⁵⁰ Dieser Knochen stammt aus einer frühbronzezeitlichen Schicht (Planum 8).

An dieser Stelle danke ich Phillipe Rentzel (Leiter der Abteilung Geoarchäologie, IPNA, Basel) für die Durchsicht der Kotstücke und die aufschlussreichen Erläuterungen über deren Beschaffenheit bei den verschiedenen Tierarten.

¹⁵² Beide Zähne durchbrechen das Zahnfleisch, wenn der Hund ungefähr ein halbes Jahr zählt.

Abkauungsgrades variert von "kaum abgekaut" (Stadium A nach Horard-Herbin¹⁵³) bis "deutlich abgekaut" (Stadium F). Alte Individuen (älter als 4 Jahre) sind innerhalb der Unterkiefer also nicht vertreten. Femur und Tibia weisen geschlossene proximale Epiphysen auf¹⁵⁴. Mit Ausnahme eines Humerusbruchstückes macht die Oberfläche der Hundeknochen insgesamt einen glatten, ausdifferenzierten Eindruck. Fragmente von Welpen fehlen im untersuchten Fundmaterial.

Zusammenfassend stellt man für die untersuchten Hundereste aus Cresta-Cazis fest, dass die Tiere alle im sub- bis jungadulten Altersstadium gestorben sind. Die Absenz von ganz jungen bzw. alten Hunden liegt unter Umständen an der relativ geringen Menge an Hundeknochen. Eine spezielle Auswahl bestimmter Altersstadien durch die Menschen ist möglich, lässt sich hier aber nicht belegen.

4.2.5.2. Geschlechterzusammensetzung. Der Penisknochen gilt als einziges Skelettelement, das bei den Hunden hinsichtlich der Geschlechtsbestimmung über jeden Zweifel erhaben ist. Der grössen- bzw. staturabhängige Geschlechtsdimorphismus lässt sich an den Knochen kaum nachweisen¹⁵⁵.

4.2.5.3. Grösse und Wuchsform. In der ersten Hälfte des 20. Jahrhunderts konzentrierte man sich bei archäozoologischen Arbeiten über Hundereste hauptsächlich auf die, vermeintlich für eine systematische Klassifizierung relevanten, Untersuchungen, Ziel der osteometrischen und morphologischen Auswertungen war die Definition prähistorischer Hunderassen sowie Erkenntnisse über deren geographische und chronologische Verteilung. Die wachsende Zahl der aus Grabungen geborgenen Canidenknochen und parallel dazu

Informationen aus der Genetik, die dem Artbegriff eine neue Dimension gaben, führten dazu, dass man von der stark taxonomisch orientierten Archäozoologie wieder abkam. Um die Vergleichbarkeit mit den älteren Fundstellen sicherzustellen, werde ich im Folgenden den jeweiligen Angaben über die Grösse und Wuchsform von Haushunden in eckigen Klammern hinzufügen, welchem "Morphotyp" sie bei den frühen Autoren entsprechen (Tab.11)¹⁵⁶.

	Basallange des Schädels nach Brinkmann	WRH	Bemerkungen
Canis familiaris palustris RÜTIMEYER, 1862	125-145 cm	35- 40 cm	"Torfspitz"
Canis familiaris intermedius WOLDRICH, 1878	< 170 cm		"Aschehund"
Canis familiaris matris optimae JEITTELES, 1872	155-190 cm		"Bronzehund"
Canis familiaris inostranzewi ANUTSCHIN, 1882	150-170 cm	45- 55 cm	Grösse vgl.bar mit C.f. matris optimae

Tab.11: Auflistung der von früheren Autoren benutzten "Morphotypen" bei der Beschreibung der bronzezeitlichen Haushunde.

Aus den neolithischen Seeufersiedlungen kennt man einen kleinen, zierlichen Hundetyp, der in seinen Körperproportionen dem rezenten Spitz ähnelte [C. f. palustris]. Er war in den gleichzeitigen Fundstellen Europas weitverbreitet und wies da, bezogen auf seine Grösse, ein beachtliches geographisches Variationsspektrum auf¹⁵⁷. Gelegentlich kamen innerhalb einer

¹⁵⁴ Bei beiden Skelettelementen verwachsen proximale Epiphyse und Diaphyse im Alter von ca. 18 Monaten. ¹⁵⁵ Röhrs 1959, Holz 1965, S. 326f, Brückner 1971, S. 12.

¹⁵³ Horard-Herbin 1998.

¹⁵⁶ Losgelöst von ihrem taxonomischen Charakter sollen die alten "Morphotypen" hier lediglich als Synonym oder Bezeichnung für eine Grössenklasse verstanden werden (genauso wie die Begriffe "Typ", "Form", "Wuchsform" oder "Grössengruppe"). ¹⁵⁷ Fedele 1987, S. 107.

Siedlung herausragend stattliche oder auffallend schmächtige Individuen neben der vorherrschenden Grundform vor¹⁵⁸. Es wird davon ausgegangen, dass die durchschnittliche Grösse der Haushunde im ausgehenden Neolithikum leicht zunahm¹⁵⁹ und dass diese Grössenzunahme sich mit dem Beginn der Bronzezeit fortsetzte. Parallel dazu häufen sich die Belege für robustere Individuen. Vor allem in spätbronzezeitlichen Seeuferiedlungen der Schweiz gipfelte dieser Trend in einer charakteristisch grosswüchsigen Hundepopulation [C. f. inostranzewi, C. f. matris optimae].

4.2.5.5a Übersicht, aktueller Forschungsstand. Riedel unterscheidet im früh- bis mittelbronzezeitlichen Ledro- I (und ev. in Barche di Solforino- I, FBZ¹⁶⁰) innerhalb der Hundepopulation zwei Grössengruppen: "si puo rilevare che la variabilità dell'altezza al garrese è notevole e corisponde a due gruppi di animali superiori ai 40 e ai 50 cm¹⁶¹. Aus den Untersuchungen der Station Baldegg im Kanton Aargau schlossen Hescheler und Rüeger, dass dort während der Frühbronzezeit neben dem "grossen Hund der Bronzezeit" [C. f. inostranzewi oder C. f. matris optimae?] noch immer der kleinere "Torfspitz" [C. f. palustris] vertreten war¹⁶².

In Arbon TG- Bleiche am Bodensee (FBZ) wurden Hundeknochen geborgen, die auf einen einheitlich mittelgrossen Hundetyp [C. f. intermedius] schliessen liess. Kuhn erklärt die Wuchsunterschiede zwischen den Hunden aus der frühbronzezeitlichen Fundstelle Schellenberg- Borscht im Liechtenstein mit einem Import von "grossen Haushunden"[C. f. inostranzewi?]¹⁶³. Amschler dagegen möchte im österreichischen Bludenz (SBZ) eher von einer erneuten "Züchtung oder Zähmung des Wolfes" vor Ort ausgehen¹⁶⁴. Auch hier existierten stattliche und zierlichere Typen gleichzeitig. Auf dem spätbronzezeitlichen Wittnauer Horn im Kanton Aargau wurden ein Dutzend Hundeknochen geborgen, von denen ein einziger von einem grazilen Individuum stammt. Alle anderen vertreten die grosswüchsige Form¹⁶⁵.

In den Südtiroler Alpen deutet sich ebenfalls gelegentlich ein Nebeneinander von kleiner und grosser Wuchsform an (Sotciastel- I, MBZ/SBZ¹⁶⁶). Beobachtungen aus etwas jünger datierten Fundorten der gleichen Region (Eppan I- Gamberoni¹⁶⁷ und Pfatten I- Vadena¹⁶⁸) dokumentieren die Präsenz der stattlichen Form von Haushunden während der Spätbronzezeit. Tiere mit dem grazileren Körperbau sind hier nicht vertreten. Ausnahmslos auf überaus robuste Haushunde stiess man auch in den spätbronzezeitlichen Schweizer Seeufersiedlungen Zürich ZH- Alpenquai¹⁶⁹, Cortaillod- NE¹⁷⁰ und Hauterive NE-Champréveyres¹⁷¹. Die durchschnittliche Widerristhöhe der Hauterive-Hunde von 57 cm (nach Koudelka) bzw. 58 cm (nach Harcourt) entsprach ungefähr derjenigen eines rezenten irischen Setters¹⁷². Hinweise, die ein gleichzeitiges Auftreten der grossen und kleinen Wuchsform in

-

¹⁵⁸ Dannegger 1959, S. 20.

¹⁵⁹ Chaix 1976b, Riedel 1980, S. 262, Hüster-Plogmann u. Schibler 1997, S.85, Arbogast et al. 2006.

¹⁶⁰ Riedel 1976a, S. 290.

¹⁶¹ Riedel 1976b, S. 86.

¹⁶² Hescheler u. Rüeger 1940, S. 69.

¹⁶³ Kuhn 1937.

¹⁶⁴ Amschler 1937.

¹⁶⁵ Rüeger 1945.

¹⁶⁶ Riedel u. Tecchiati 1998.

¹⁶⁷ Riedel 1985.

¹⁶⁸ Riedel 2001.

¹⁶⁹ Wettstein 1924.

¹⁷⁰ Chaix 1986a.

¹⁷¹ Studer 1991.

¹⁷² Studer 1991, S. 103.

spätbronzezeitlichen Seeufersiedlungen des Schweizer Mittellandes postulieren lassen, liefert die Arbeit über Zug ZG- Sumpf¹⁷³. Für das spätbronzezeitliche Isolone in der Lombardei geht Riedel von einheitlich kleinwüchsigen Haushunden aus¹⁷⁴. Der zeittypische Trend (robuste Vertreter zu halten) hinterliess an diesem Ort keinerlei Spuren. Bevor die Resultate aus Cresta-Cazis zur Sprache kommen, sollen die obigen Ausführungen stichwortartig zusammengefasst werden:

- 1. Die kleinen, aus dem Neolithikum bekannten Hunde werden kontinuierlich grösser (Ende Neolithikum bis mindestens Frühbronzezeit).
- 2. In vielen Fundstellen (FBZ bis SBZ) wurden zwei Grössenklassen beschrieben.
- 3. Vereinzelt sind Hundepopulationen (FBZ bis SBZ) erwähnt, die aus homogen mittelgrossen Individuen zusammengesetzt waren.
- 4. Häufig kommen in Siedlungen ausschliesslich die kleine (v.a. FBZ, vereinzelt auch MBZ, SBZ) oder ausschliesslich die grosse Wuchsform (SBZ) vor.
- 5. Die Maximalwerte der kleineren Wuchsform überschneiden sich mit den Minimalwerten der grösseren Wuchsform.
- 6. Die grosse Wuchsform nimmt im Laufe der Bronzezeit an Bedeutung zu.

4.2.5.5b Resultate. Der typische Haushund aus Cresta-Cazis ähnelte in seinen Grössendimensionen stark den zierlichen Tieren aus dem Trentino (Ledro-I, Lasino I- Ripario del Santuario). Das gilt für die Frühbronzezeit genauso wie für die Mittel- und Spätbronzezeit. Dennoch gibt es vereinzelt Hinweise auf die Gegenwart zweier Grössenklassen: ein aus den übrigen Hundeknochen herausragender Humerus aus Planum 8 (FBZ) lässt sich bezüglich seiner distalen Breite in den unteren bis mittleren Variationsbereich der "Seeuferexemplare" eingliedern (Abb.36), genauso wie das Unterkieferpaar mit beidseitig fehlendem P4 aus Feld 17¹⁷⁵ in Planum 1 (FBZ).

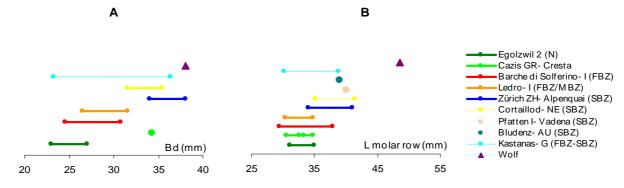
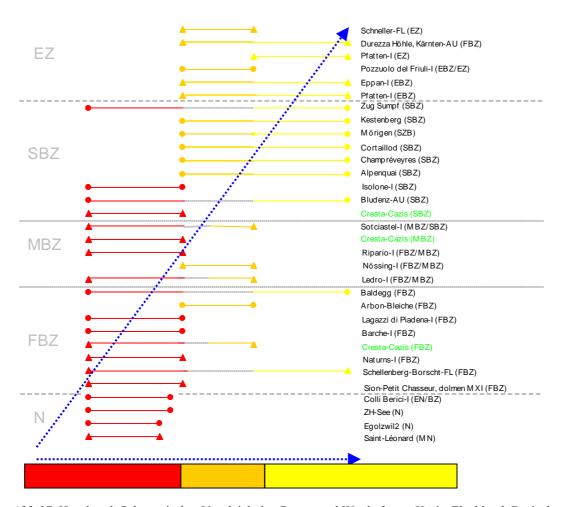


Abb.36: Haushund. Grössenvergleich. A Humerus (Bd), B Unterkiefer (L molar row).

4.2.5.5c Diskussion. Die Resultate aus dem Alpendorf Cresta-Cazis ergeben eine neue, interessante Perspektive in der "schweizspezifischen Hund-Thematik der Bronzezeit":

-


¹⁷³ Schibler u. Veszeli 1996.

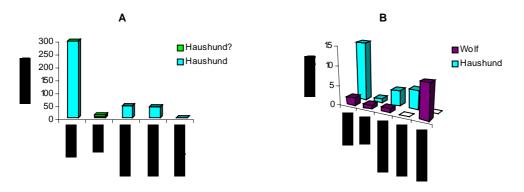
¹⁷⁴ Riedel 1975.

¹⁷⁵ Feld 17 gehört nicht zu den in dieser Arbeit untersuchten Abstichen (vgl. Kapitel 2.1 und 4.2.5.7.).

es zeichnet sich ab, dass die Verdrängung des kleinen durch den grossen Hundetyp nicht überall gleich schnell vonstatten ging. Anders als in den Seeuferiedlungen des Mittellandes gab es in

Cresta-Cazis und möglicherweise auch in anderen alpinen Stationen des Kantons Graubünden, wie beispielsweise Crestaulta bei Surin (MBZ)¹⁷⁶, offensichtlich wenig Anlass dazu, den zierlichen Haushund im Laufe der Bronzezeit zu ersetzen. In anderen Worten: die bronzezeitlichen Wuchsformveränderungen der Haushunde folgten in den Alpengegenden einer eigenen, von derjenigen des schweizerischen Mittellandes (v.a. der Seeufer) abweichenden Dynamik. Vielleicht war der in den Alpentälern heimische Haushund mit seinen körperlichen Eigenschaften für die, in den Gebirgsregionen herrschenden, Lebensbedingungen und für die Aufgaben, die er dort zu erfüllen hatte, optimal ausgerüstet. Meiner Ansicht nach drücken die beachtliche Häufigkeit und die Massivität der Hundeknochen aus dem spätbronzezeitlichen Mittelland, sowie deren "plötzliches" Auftreten, eine gezielte Auslese (unter anderem Fleischproduktion?) aus. Unter der kleinen, bereits aus dem Neolithikum bekannten Wuchsform, lässt sich demgegenüber gut ein Generalist vorstellen. Während es im Mittelland zur Spätbronzezeit weit verbreitet war, grosswüchsige Hunde zu halten, scheinen die Alpen für die Ausbreitung dieses Trends eher als Barriere gewirkt zu haben. Die Graphik in Abb.37 veranschaulicht noch einmal schematisch eine Zusammenfassung der beobachteten Tendenzen, die sich beim Vergleich der Wuchsformen bronzezeitlicher Haushunde herauskristallisierten 177. Sie kann als Anknüpfungspunkt für

Abb.37: Haushund. Schematischer Vergleich der Grösse und Wuchsform.: Kreis: Flachland, Dreieck: Alpen, hellgraue unterbrocheneLinie: Variationsbreite einer oder mehrerer (zweier) Populationen? Blaue unterbrochene Linie: Verlauf der hypothetischen Grössenentwicklung.


¹⁷⁶ Rüeger 1942, S. 255.

Der in bronzezeitlichen Stationen üblicherweise bescheidene Fundanteil der Haushunde am gesamten Tierartenspektrum erschwert eine umfassende metrische Gegenüberstellung.

Interpretationen und weiterführende Nachforschungen dienen.

Von zentralem Interesse ist beispielsweise die Frage, ob sich die spätbronzezeitliche stattliche Hundeform aus der zierlicheren neolithischen heraus entwickelte, oder ob die Grössenzunahme durch Einkreuzungen mit einer robusteren Population (Importtiere oder Wölfe) zu Stande kam. Offen bleibt weiterhin, ob das Nebeneinander von grosser und kleiner Wuchsform als ein Artefakt der geringen Fundmenge gerechnet werden muss oder ob solche Situationen tatsächlich existierten. In diesem Kontext sei Crockford¹⁷⁸ zitiert: "Nevertheless, archaelogical evidence of true dog husbandy – the repeated occurrence of similar, distinctive morphotypes – does not appear until the Roman period in Europe. The Romans had the benefit of writing to keep track of breeding strategies. Could there have been true husbandry for specific breeds before there were written records to keep track of individual relationships and lineages?" Sie fügt ein Beispiel von der Nordwestküste Nordamerikas an¹⁷⁹: "Early historic and ethnographic references¹⁸⁰ report the presence of two types of indigenous dogs kept by aboriginal peoples on the southern portion of the NW Coast at the time of European contact in the late 1700s. In general, these accounts describe a medium sized, dingo-like animal sometimes used for hunting (von Crockford als "Village dog" bezeichnet) and a smaller, longhaired dog kept almost exclusively for its thick soft fur which was woven into blankets (traditionally called the "Wool dog"). Measures were reportedly taken to keep the two types from interbreeding. Archaeological evidence 181 suggests the Wool dog averaded 44 cm at the shoulder and the Village dog 52 cm."

4.2.5.6. Skelettregionverteilung. Trotz der knappen Knochenmenge, auf der die Untersuchungen über die Verteilung der Skelettelemente basieren, ist die Anhäufung von Kopffragmenten nicht zu übersehen. Was ebenfalls auffällt: keine Elemente des Autopodium sind vertreten. Zwar überwiegen auch in Fundkomplexen einiger anderer Siedlungen Kieferund Schädelteile des Hundes, aber nicht in dem Ausmass wie in Cazis. Das spärliche Vorkommen von postcranialen Knochen lässt sich hier unter Umständen nicht allein mit Argumenten der Erhaltung erklären. Wenn man nämlich die Körperregionverteilung des Wolfes heranzieht, dessen Knochen vergleichbar beständig sind wie jene des Hundes, so hat man es dort mit einem ganz anderen, ja fast komplementären, Muster zu tun (Abb.38). Wolfskiefer sind gegenüber den Autopodien deutlich untervertreten (siehe Kapitel 4.3.7.).

Abb.38: Cresta-Cazis. Haushund. Körperregionverteilung. **A** nach Gewicht, sichere (türkis) und unsichere (hellgrün) Haushunde **B** nach Anzahl, Haushund (türkis) und Wolf (violett) im Vergleich.

¹⁷⁸ Crockford 2000, S. 303.

¹⁷⁹ Crockford 1997, Crockford u. Pye 1997.

¹⁸⁰ Howay 1918, Schulting 1994.

¹⁸¹ Crockford 1997.

Dem gehäuften Vorkommen der Kiefer- und Schädelteile von Hunden liegt möglicherweise eine, durch Menschen induzierte, Selektion zu Grunde, die in engem Zusammenhang mit der besonderen Bedeutung dieses Haustieres zu sehen sein dürfte. Vielleicht hat man nach dem (rituellen oder natürlichen) Tod eines Hundes seinen Kopf vom restlichen Körper separiert und ihn in der Siedlung aufbewahrt (z.B. vergraben oder präsentiert vor/an/in den Häusern). Schnitt- oder Hackspuren an Condylen oder am Altas, die auf entsprechende Handlungen hindeuten könnten, wurden aber nicht entdeckt.

4.2.5.7. Pathologisch- anatomische Veränderungen. Bei einem Unterkieferstück aus Planum 11 (Feld 14) fehlt der letzte Prämolar (Foto IV/D1 im Anhang). Die entsprechende Zahnlücke zeugt davon, dass der Milch- und eventuell auch der Folgezahn ursprünglich vorhanden waren. Das Tier muss den Zahn lange vor seinem Tod verloren haben, denn die Alveole ist komplett zugewachsen. Beim Durchschauen und Auslesen der Tierknochen (Kapitel 2.1.) ist mir aus einem frühbronzezeitlichen Planum in Feld 17 (vgl. Kapitel 4.2.5.5b) ein weiterer Unterkiefer mit identischem Erscheinungsbild in die Hände gekommen (Foto IV/D2 im Anhang).

4.2.6. Pferdeartige (Equidae spec.).

Die Bronzezeit nimmt in der Geschichte der Hauspferde (Equus ferus f. caballus) für Mitteleuropa eine Schlüsselrolle ein: während im Neolithikum Funde von sicheren domestizierten Pferden rar sind, kommen sie in bronzezeitlichen Schichten regelmässig, wenn auch meist in geringer Anzahl, vor. Da das Gebiet möglicherweise gleichzeitig noch immer von Wildpferden (Restpopulationen?) besiedelt war, drängt sich die Frage nach Unterscheidungskriterien an den Knochen der Haus- und Wildform auf. Leider erschweren oder verunmöglichen mangelnde Kenntnisse über die holozänen Wildpferde Europas den entscheidenden Vergleich. Die Erfahrung zeigt aber, dass die Domestikation bei Säugern im Allgemeinen zunächst Grazilisierung bewirkt. Zudem sind die Knochen von Wildpferden häufig stärker fragmentiert und weisen mehr Schlachtspuren auf als jene der Hauspferde¹⁸². Mit den anschliessend aufgelisteten holozänen Funden stehen zumindest einige Vertreter von Wildpferden als Referenz zur Verfügung.

Roucadur, Frankreich (Neolithikum)¹⁸³

Chalain-3, Frankreich (Neolithikum)?¹⁸⁴

Schonen, Anderslöv bzw. Allarp, Schweden (Frühholozän)¹⁸⁵

Valsusa, Italien (Neolithikum)¹⁸⁶

Bruszeni, Moldau (Frühmesolithikum)¹⁸⁷

Dereivka, ein südukrainischer Fundkomplex aus der kupferzeitlichen Sredny-Stog-Kultur, muss bis auf weiteres als ältester Beleg für die Pferdedomestikation betrachtet werden ¹⁸⁸. Dabei haben die damaligen Menschen in mehr oder weniger grossem Umfang auf die lokale Wildform des Pferdes (Equus ferus gmelini, später als Tarpan bezeichnet) zurückgegriffen. Von der Südukraine breitete sich das Hauspferd in die benachbarten Gegenden aus. Pucher postuliert in seinem Bericht über das bronzezeitliche Pferdeskelett von Unterhautzenthal¹⁸⁹: "Wahrscheinlich kam es

¹⁸² Hochuli et al. 1998, S. 177.

¹⁸³ Ducos 1960, S. 70.

¹⁸⁴ Arbogast 2002.

¹⁸⁵ Lundholm 1947, S. 58 und 286.

¹⁸⁶ Fedele 1989, S. 75-92.

¹⁸⁷ Nobis 1971, S. 56.

¹⁸⁸ Bibikova 1986, Uerpmann 1990, Benecke 2003.

¹⁸⁹ Pucher 1992, S. 25.

im Verlauf der Bronzezeit bzw. noch im Endneolithikum analog zu Rind und Schwein in gewissen Gebieten ausserhalb des ursprünglichen, osteuropäischen Domestikationszentrums zur Nachdomestikation des Pferdes, sodass die Gene weiterer Wildpopulationen in die Population der spärlich importierten Hauspferde einflossen und das Erscheinungsbild der Haustiere weitgehend an die jeweilige Wildform anglichen." Die Beobachtung, dass die westeuropäischen Wild- sowie Hauspferde von kleinerer und zierlicherer Statur gewesen sind als ihre osteuropäischen Verwandten unterstützt die Annahme von Pucher. Unter den untersuchten Tierknochen aus Cresta-Cazis stammen einzig die Bruchstücke eines Atlas (Planum 14, SBZ) und eines Radius (Planum 3, FBZ) von Equiden. Ihre Zugehörigkeit zur Haus- oder Wildform lässt sich rein morphologisch nicht eindeutig festlegen. Soweit die Dimension der Stücke beurteilt werden kann, gliedern sie sich in die, für die Zeit vorgeschlagene, Variationsbreite der Hauspferde ein (Tab.12). Die topographische Lage des Dorfes und dessen naturräumliches Umfeld sprechen jedenfalls eher für domestizierte Equiden.

Atlas	ĺ	GB	GL	GLF	BFcd	(BFcd)/2
Esel (Vergleichsexemplar BS 1447)	1	118,1	83,0	72,0	73,0	39,0
Hauspferd, Holsteiner Wallach (Vergleichsexemplar BS 1605)	2	180,0	125,5	107,0	108,5	56,6
Hauspferd Unterhautzenthal (MBZ)	3			89,5	80,7	
Cazis GR- Cresta (SBZ)		130,2			80,5	43,0
Metacarpus		Bd				
Hauspferd Unterhautzenthal (MBZ)	3	42,2				
Hauspferd Lumbrein Surin GR- Crestaulta (MBZ)	4	42				
Hauspferd Zürich ZH- Alpenquai (SBZ)	5	41-49				
Hauspferd Mörigen- BE (SBZ)	6	44				
Hauspferd Bludenz- AU (SBZ)	7	45				
Hauspferd Pfatten I- Vadena (EZ)	8	46,3				
Hauspferd Eppan I- Gamberoni (SBZ)	9	46,5				
Hauspferd Isolone della Prevaldesca- (SBZ)	10	44-45				

Tab. 12: Equidae. Massvergleich. Kursiv: berechneter Wert. 1,2: Vergleichsexemplare der Archäozoologischen Abteilung, IPNA, Universität Basel, 3: Pucher 1992, 4: Rüeger 1942, 5: Wettstein1924, 6: Studer 1882, 7: Amschler 1937, 8: Riedel 2001, 9: Riedel 1985, 10: Riedel 1975.

Unter der Voraussetzung, dass es sich bei den Bruchstücken aus Cazis um die Reste von Haustieren handelt, verkörperten die Pferde bei den Menschen im Spaltendorf am ehesten Luxus und Prestige. Sie dürften als Reit-, Transport- und eventuell als Lasttiere genutzt worden sein. Zum Ziehen schwerer Lasten (z.B. Pflug) haben die Dorfbewohner sie nicht eingesetzen können, da zur Bronzezezeit der Kumet noch nicht erfunden war¹⁹⁰. Mit der Überlegung, wem die Pferde wohl gehört haben, werden gesellschaftspolitische Fragen aufgeworfen: lebte auf der Cresta eine Bevölkerung, die nicht egalitär organisiert, sondern in Gruppen mit unterschiedlichen Rechten und Pflichten unterteilt war? Vielleicht lag die Reiterei als Privileg beim Oberhaupt, oder bei den "Spezialisten" für bestimmte Tätigkeiten (z.B. Handel, Metallurgie).

_

¹⁹⁰ Der Kumet wurde um ca. 900 v. Chr. In die Landwirtschaft eingeführt. Damit konnten Pferde das Vierfache der Last ziehen. Trotzdem leisteten selbst noch bei den Römern in erster Linie Rinder die Arbeit auf dem Feld. (Neuhaus Schulen 2006)

4.3. Wildtiere

4.3.1. Einleitung.

Die Wildtierreste machen auf der Cresta einen verschwindend kleinen Anteil des gesamten Fundguts aus. Unter den 15 258 artlich identifizierten Knochen finden sich gerade einmal 115 Vertreter der Wildfauna¹⁹¹. Ihre maximale prozentuale Beteiligung am Total der bestimmten Fragmente klettert nie über 2,5 % (Anzahl) bzw. 4,1 % (Gewicht). Bei acht der insgesamt zehn Schichten (Planum 1 bis 14) wird nicht einmal die 1 % bzw. 2 %- Grenze erreicht. Bezeichnenderweise finden sich die höchsten Wildtierwerte während den ersten Phasen der Frühbronzezeit.

Nicht alle der innerhalb einer archäologischen Fundstelle geborgenen Wildtierarten wurden von den Bewohnern gejagt. Dann und wann gelangten Tiere auch ohne menschliches Zutun in die Siedlungsschichten. Die Knochen von Gänge grabenden Arten stammen zum Beispiel nicht zwingend aus der Vergangenheit. Über diese spezielle Gruppe der Wildfauna wird anschliessend an die eigentlichen Jagdtiere berichtet.

Die Masse der Wildtierknochen können im Anhang (Tabelle V2 C-H) eingesehen werden.

4.3.2. Wildrind (Bovinae spec.).

Die Wildrinder umfassen drei Gattungen: die Büffel (*Bubalus*), die eigentlichen Rinder (*Bos*) und die Wisente oder Bisons (*Bison*). Knochen vom Ur oder Auerochsen (*Bos primigenius* BOJANUS 1827) und vom Wisent (*Bison bonasus* BOJANUS 1827) wurden in weiten Teilen Europas aus ur- und frühgeschichtlichen Fundzusammenhängen geborgen¹⁹². Beide lebten in lichten Laubwäldern oder offenen Graslandschaften mit vereinzelten Baum- oder Strauchgruppen. Ihre einstigen Verbreitungsgebiete überschnitten sich daher wohl öfters und grossflächig¹⁹³. Nach dem Fossilbericht lässt der Wisent die grösste ökologische Toleranz unter den Wildrindern erwarten. Auffallend in diesem Zusammenhang ist, dass sich der Auerochse im Gegensatz zum Wisent nicht durch den kontinentalen Raum Osteuropas ausbreiten und über die Beringstrasse nach Nordamerika gelangen konnte¹⁹⁴. Während der letzte Ur 1627 in Polen erlegt wurde, trifft man den Wisent, dessen Bestand 1921 auf 56 Exemplare geschrumpft war, heute wieder auf der ganzen Welt in Wildgattern, teilweise auch wildlebend, an.

Das Bruchstück einer herausragend grossen Metacarpusgelenkrolle aus Planum 3 (FBZ) ist das einzige Indiz für die Präsenz von Wildrindern in Cazis. Da sich stark zerbrochenes Material kaum einer der beiden Gattungen zurechnen lässt¹⁹⁵, muss hier offen bleiben, ob das Fragment von einem Ur oder einem Wisent stammt.

Neben diesem eindeutigen Exemplar existieren zwei weitere Stücke (ein Unterkiefer und ein Calcaneus), die eventuell auch als Vertreter von Wildrindern in Frage kommen. Entsprechend der Umwelt- respektive Vegetationsbedingungen scheinen die Wildrinder während der Bronzezeit in der Gegend des Domleschg-Heinzenbergtals selten vorgekommen zu sein oder den Kontakt mit den Menschen und dem von ihnen genutzten Territorium gemieden zu haben.

¹⁹¹ Basis= proportional modifizierte Tierartenzusammensetzung (Tabelle III im Anhang).

¹⁹² Becker 1986, S. 27.

¹⁹³ von Lengerken 1953, Teichert 1970.

¹⁹⁴ von Koenigswald 1999, S. 28.

¹⁹⁵ von Koenigswald 1999, S. 25, Martin 1987 und 1990.

4.3.3. Hirsch (Cervus elaphus)¹⁹⁶.

Als optimaler Lebensraum für das Rotwild gelten ausgedehnte Auwälder entlang von Flüssen. Auch Bergwälder suchen Hirsche, die auf ihren Wanderungen weite Strecken zurücklegen können, oft auf. Das vom Hinterrhein durchflossene Domleschg-Heinzenbergtal dürfte (aus heutiger Sicht) zur Bronzezeit dementsprechend ideale Bedingungen für die Hirsche geboten haben.

Rezente Beobachtungen ergaben, dass die Hirsche bei einem nicht allzu hohen Jagddruck im Sommer den Wald verlassen und sich mit Vorliebe auf Wiesen oder anderen baumlosen Landflächen (auch oberhalb der Baumgrenze) aufhalten¹⁹⁷. Für die Brunft im Herbst (September/Oktober) kehren die Tiere meistens an die gleichen Plätze zurück, an denen sie schon im vergangenen Jahr verweilt haben.

Die Cresta mit dem Spaltendorf lag wohl mitten im Verbreitungsgebiet der Hirsche. Das ermöglichte den Bewohnern jagdbedingte Streifzüge in der unmittelbaren Umgebung ihres Wohnorts. Da die Hirsche nach einem wohl definierten Jahreszyklus leben, liesse sich ins Auge fassen, dass es für die Menschen aus Cazis so etwas wie eine bevorzugte Jagdsaison gegeben hatte. Vielleicht nützten sie bevorzugt den Sommer, der, wie oben erwähnt, die Tiere aus dem Dickicht lockte.

31% aller Wildtierknochenfragmente aus den frühbronzezeitlichen Schichten von Cresta-Cazis stammen vom Hirsch. Er repräsentiert damit die meistgejagte Tierart in dieser Siedlungsphase. Verglichen mit zeitgleichen Fundorten aus benachbarten Regionen entspricht Cazis in dieser Hinsicht dem üblicherweise vorgefundenen Bild¹⁹⁸ (Tabelle VIII im Anhang). Während der Mittelbronzezeit scheint der Hirsch seine Vorrangstellung eingebüsst zu haben. Nur in Planum 12 (Ende Mittelbronzezeit) belegen noch einmal einige Knochenstücke seine Gegenwart. Aus der Spätbronzezeit sind keine Hirschreste bekannt.

Nichts deutet auf eine Portionierung des Hirschkörpers ausserhalb der Siedlung hin. Im Gegenteil, die in Cresta-Cazis geborgenen Knochenfragmente representieren eine Auswahl des gesamten Skeletts. Man hat die erlegten Tiere, die ohne weiteres 100 bis 350 kg wiegen konnten, offenbar unangetastet ins Dorf geschafft und dort zerlegt.

Die Hirschfunde stammen ausnahmslos von ausgewachsenen Exemplaren und gliedern sich betreffend ihrer Proportionen gut in das erst lückenhaft bekannte Variationsspektrum der bronzezeitlichen Schweiz ein (Tabelle V2/E im Anhang)¹⁹⁹. Bereits in frühen archäzoologischen Studien wurde die These aufgestellt, dass die prähistorischen Rothirsche aus Zentraleuropa grösser waren als rezente Populationen in der gleichen Region²⁰⁰. Neuere Untersuchungen bestätigten eine allmähliche Grössenreduktion dieses Jagdwilds. J. Studer verglich beispielsweise die Hirschknochen aus der spätbronzezeitlichen Fundstelle Hauterive-Champréveyres mit der mittelneolithischen Siedlung Twann und stellte fest: «Ces résultats sont suffisamment éloquents pour certifier qu'en Suisse, la population de cerfs de la région jurassienne a nettement diminué de taille entre 3000 et 1000 ans avant J.-C.»²⁰¹. Für entsprechende Gegenüberstellungen im Raum Graubünden kann weder auf ausreichend neolithische noch bronzezeitliche Hirschmasse zurückgegriffen werden.

Die Reste der Hirschgeweihe aus Cresta-Cazis zeigen durchwegs Bearbeitungsspuren, deren Vielfalt auf mehrere Verwendungszwecke hinweist (siehe Kapitel 5.5.). Neben schädelechten Stücken kommen auch Abwurfstangen vor. Daraus lässt sich ableiten, dass die Menschen aus

¹⁹⁹ Pietschmann 1977, Hochuli et al. 1998, S.187.

_

¹⁹⁶ Von Raesfeld 1964, Panorama-Park Sauerland 2003.

¹⁹⁷ Dieses Verhalten kann man heute zum Beispiel im Schweizer Nationalpark beobachten (mündliche Mitteilung Christina Boschi, Wildtierbiologin an der Universität Basel, NLU).

¹⁹⁸ Riedel 1986a, S. 37f.

²⁰⁰ Rütimeyer 1862, Dierich 1910, Boessneck et al 1963.

²⁰¹ Studer 1991, S. 122- 125.

Cazis im Frühjahr, wo die männlichen Tiere sich jeweils ihres Geweihs entledigen, den mannigfach verwendbaren Rohstoff zusätzlich eingesammelt haben²⁰².

4.3.4. Steinbock (Capra ibex)²⁰³.

Neben den beiden domestizierten Arten (Schaf und Ziege) der Caprinae muss aufgrund der Lage des Siedlungsplatzes in einem Alpental mit der Präsenz von Gämse (*Rupicapra rupicapra*) und Steinbock (*Capra ibex*) im Knochenmaterial gerechnet werden. Auch für das Reh (*Capreolus capreolus*) kommt die Gegend als potentieller Lebensraum in Frage, wobei es in alpinen Bedingungen an die obere Grenze seiner Belastbarkeit stösst.

Tatsache ist, dass ich von den drei wildlebenden kleinen Wiederkäuern einzig und allein den Steinbock im osteologischen Material aus Cazis vorfand (vgl. Kapitel 4.3.13.).

Als hervorragende Kletterer leben Steinböcke an steilen Felshängen oberhalb der Baumgrenze. Der Heinzenberg gleicht in unmittelbarer Nähe der Siedlung zwar eher einem Hügelzug als einem Berg²⁰⁴, aber das Südende und die östliche Seite des Tales werden von höheren Gebirgsmassiven überragt²⁰⁵. Sie erfüllen theoretisch die Voraussetzungen für ein Vorkommen von Steinböcken.

Wohl schon in der Bronzezeit hat sich die Jagd auf Steinböcke, abhängig von der Jahreszeit, schwieriger oder einfacher gestaltet. Heute stehen die Tiere im August/September hoch im Fels, was die Bejagung erschwert. Während der Brunft im November/Dezember sind die Erfolgsaussichten am besten. Ebenfalls gut stehen die Chancen in den kalten Wintermonaten Januar/Februar und im Frühling (März/April), wo das Steinwild in tiefere Lagen zieht, weil dort schon das erste spriessende Grün zu finden ist²⁰⁶.

Typisch für die Steinböcke ist ihre ausgeprägte Standorttreue. Die heutigen Nachkommen der Anfang des 20. Jhts. wiedereingesiedelten Populationen in der Schweiz beispielsweise leben immer noch im gleichen Gebiet. Für die Jagd bedeutet es natürlich einen enormen Vorteil, wenn man weiss, wann und wo die Tiere anzutreffen sind.

Über Jahrhunderte hat der Steinbock Aberglaube, Sage, Volksmedizin und Brauchtum mehr beeinflusst als irgendein anderes Wildtier aus dem Hochgebirge. Begehrt waren sein Blut, die Bezoare (Haarkugeln aus dem Magen), die Hörner, Milz und Knochenmark sowie das Herzkreuzchen (Verknöcherungen im Austrittsbereich der Herzschlagadern)²⁰⁷. Steinböcke gehörten in den frühbronzezeitlichen Epochen neben den Hirschen zum beliebtesten Jagdtier in Cresta-Cazis (23%). Danach fehlt, abgesehen von einem einzigen Knochenfragment aus Planum 10 (Anfang Mittelbronzezeit), jeglicher Nachweis auf die Existenz dieses Steinwildes im untersuchten Fundgut.

Bei der frühbronzezeitlichen Steinbockjagd in Cresta-Cazis kann man sicherlich von einem gut geplanten Unterfangen ausgehen. Es ist denkbar, dass man sie mit kleineren Handelsreisen²⁰⁸ verband, welche die Menschen über Pässe durch das höhergelegene Revier des Steinwilds

²⁰² Abwurfgeweih, das nicht aufgelesen wird, ist innerhalb von drei Wochen von Mäusen, Schnecken oder Carnivoren aufgefressen.

²⁰³ Schweizer Nationalpark 2006.

Das erste Suedtiroler Jagdportal 2002.

World of Animals 2005.

²⁰⁴ Höchster Punkt: Lüschgrat, 2182 m ü.M.

²⁰⁵ Piz Beverin, 2997m ü.M., im Süden.

²⁰⁶ Westfalia Jagdreisen GmbH 2004.

²⁰⁷ Die intensive Wilderei führte Anfang des 19. Jahrhunderts in der Schweiz zur Ausrottung. Aus Graubünden verschwand er bereits 1650. Mittlerweile konnte der Steinbock erneut in vielen Alpenregionen erfolgreich angesiedelt werden.

²⁰⁸ Der inneralpine Alpenpasshandel ist durch zahllose Einzelfunde bei Passübergängen usw.belegt. Zudem wurden in verschiedenen inneralpinen Fundstellen (Hinterrheintal, St. Gallen, Fürstentum Liechtenstein,

führten. Die Beute wurde wahrscheinlich nicht am Jagdplatz tranchiert und entfleischt, sondern als Ganzes ins Dorf zurückgebracht²⁰⁹. Mit Ausnahme von Hornzapfen sind sämtliche Skelettelemente von Zähnen bis Zehen im Fundmaterial vertreten. Darüber, warum ausgerechnet die Kopfbewaffnung fehlt, lässt sich nicht mehr als spekulieren. Auf jeden Fall muss berücksichtigt werden, dass das heute klassische Verbreitungsgebiet der Tiere oberhalb der Baumgrenze infolge von Verdrängungsprozessen (Jagd, Wintertourismus usw.) eingeschränkter ist als früher. Möglicherweise sind die Steinböcke in besonders kalten Wintern bis in das 700 m ü.M. gelegene Heinzenbergtal hinuntergewandert, wo die Siedler der Cresta sie praktisch vor ihrer eigenen Haustüre hätten erlegen können.

4.3.5. Wildschwein (Sus scrofa).

Der Lebensraum der anpassungsfähigen Wildschweine ist vielgestaltig. Die Tiere besiedeln mit Vorliebe grössere Waldkomplexe mit hohem Buchen- oder Eichenanteil, andere dichte Vegetationsstrukturen, sowie von Menschen bewirtschaftete Landschaften. Intakte Sozialverbände leben in einem Wohngebiet von rund 800 bis 3000 Hektaren. Innerhalb eines Heimgebiets befinden sich feste Wechsel, Suhlen, Mal- und Markierbäume, Schlaf- und Wurfkessel sowie Frassstellen²¹⁰. Nach der Paarungszeit (Dezember bis Februar) dauert es fast vier Monate, bis im Fühling (April bis Juni) die Jungen geworfen werden. Umgekehrt zur Situation von Hirsch und Steinbock treten die Wildschweine in der Frühbronzezeit höchstens sporadisch auf (ein Fragment aus Planum 2). Die mittelbronzezeitlichen Horizonte lassen an eine wechselhafte und unstete Organisation der Jagd denken. Nach einer Schicht mit nur einem Wildschweinknochen (Planum 11) dominieren diese Tiere in der ausgehenden Mittelbronzezeit das Jagdtierspektrum deutlich. Während der nachfolgenden spätbronzezeitlichen Phasen beschränken sich die Wildtierfunde sogar einzig und allein auf das Wildschwein. Die Bewohner der Cresta haben sowohl weibliche wie auch männliche Wildschweine gejagt. Anhand der Eckzähne konnten ein Weibehen und drei Männchen identifiziert werden. Da nur wenige postcraniale Knochen von auffallend mächtigen Tieren zeugen, gehe ich davon aus, dass die "Jäger" aus Cazis insgesamt mehr Wildschweinweibchen als Keiler nach Hause brachten. Was das Alter betrifft, so haben wir es mehrheitlich mit ausgewachsenen Individuen zu tun. Sechs Fragmente könnten allenfalls auch als subadult eingestuft werden. Ein Beckenstück mit wenig differenzierter Oberfläche gehört sicherlich zu einem jungen Wildschwein. Zwei Knochen weisen pathologisch-anatomische Veränderungen auf (siehe Kapitel 4.2.4.5. und Foto IV/C3 und 6 im Anhang). Bei dem oben erwähnten weiblichen Unterkiefer sind Anzeichen für das Zuwachsen der Alveole des letzten Prämolars zu erkennen. Die bereits bei den Hausschweinen beobachtete primäre Reduktion des ersten unteren Prämolars findet man ebenso bei den Wildschweinen. In den Alpenregionen von Norditalien kommt das Wildschwein während der Bronzezeit sehr selten bis gar nicht vor²¹¹.

4.3.6. Braunbär (Ursus arctos)²¹².

Die Braunbären lebten und leben in unterschiedlichen Habitaten auf der nördlichen Erdhalbkugel (arktische Tundren, Bergregionen, Wälder etc.). Heute sind ihre Bestände

Graubünden, Vintschgau usw.) übereinstimmende Keramik- (v.a. Magerungstypen) und Bronzeobjekte gefunden, die einen regen Güteraustausch zwischen den Bevölkerungen der Alpentäler vermuten lassen. ²⁰⁹ Die Böcke des Steinwildes erreichen ein Gewicht bis 100 kg, die Geissen etwa die Hälfte.

²¹⁰ Baettig 1988, S. 74.

²¹¹ Riedel 1986a, S. 322.

²¹² Kohls 1998, Höhner 1999-2005, Ballenger u. Dewey 2002.

vielerorts bedroht oder ausgerottet. Der letzte Bär der Schweiz wurde 1904 im Kanton Graubünden getötet²¹³. Die Qualität des Bärenreviers wird vor allem durch die Gewährleistung der Nahrungsbeschaffung und das Vorhandensein von Schutz- und Ruheräumen bestimmt. Kälte und Futtermangel induzieren die Winterruhe der Bären, deren Dauer je nach Bedingungen variiert. Die insgesamt sieben Bärenknochenfragmente aus Cresta-Cazis verteilen sich auf die früh- bis mittelbronzezeitlichen Schichten. Inwieweit man ihr Fehlen in der Spätbronzezeit als zufällige Fundlücke interpretieren kann, lässt sich auf Basis der mangelhaften Anzahl nicht sagen. Aus der Verteilung der Skelettelemente sind keine selektiven Muster zu erkennen. Somit ist anzunehmen, dass man den kompletten Leib des Bären in die Siedlung brachte, wie das auch bei den übrigen Jagdtieren üblich war. Sein verglichen mit Hirsch, Steinbock und Wildschwein stets geringer, aber konstanter Anteil am Wildtierspektrum weist eventuell darauf hin, dass die Bewohner der Cresta primär sein Fell begehrten. Zweifellos hat man daneben seine beachtliche Fleischmasse ebenfalls geschätzt und genutzt. Schnitt- oder Hackspuren, mittels denen sich die Verbindung zur Fellverarbeitung oder Entfleischung herstellen liesse, wurden an den vorliegenden Knochen aber keine beobachtet. Eine saisonal organisierte Bärenjagd kann für Cresta-Cazis weder belegt noch ausgeschlossen werden. Möglicherweise zogen die Menschen vor, die Raubtiere in ihrem Winterlager aufzustöbern und sie in ihrer reduzierten Wehrhaftigkeit anzugreifen. Vielleicht haben sie aber auch bis zum Frühjahr gewartet, wo sich die Bären, aufgrund des noch etwas mageren Nahrungsangebots der Natur, besonders leicht locken und ablenken liessen. Jedenfalls leisten die Bärenknochen aus Cazis keinen Beitrag zur Diskussion zur saisonalen Benutzung des Siedlungsplatzes. Auch in den Siedlungsstätten Norditaliens (Südtirol und Trentino) wurden regelmässig Braunbärfunde in kleinerer Anzahl geborgen. Die beachtliche Zahl an Bärenresten in Ledro hängt nach A. Riedel "wahrscheinlich von der kulturellen Eigenart der dort während der Früh- und Mittelbronzezeit ansässigen Einwohner ab, die eine sichtliche Vorliebe für die Bärenjagd und die Nutzung der Körperteile dieses Tieres als Trophäen usw. besassen". 214

4.3.7. Wolf (Canis lupus).

Wölfe vermögen sich den verschiedensten Lebensräumen (Tundra, Steppe, Halbwüste, Gebirge, Wälder etc.) anzupassen, in denen sie weitreichende Wanderungen unternehmen. Die Reviergrösse wird durch die Populationsdichte, die Nahrungsressourcen, die Unterschlupfmöglichkeiten, die jahreszeitlichen Schwankungen und den Jagddruck durch die Menschen bestimmt²¹⁵. Der Wolf ist ein Raubtier mit ausserordentlich breit gefächerten Nahrungsbindungen. Er neigt jedoch dazu, sich, abhängig vom Angebot, auf bestimmte Beutetiere zu spezialisieren. So treten beispielsweise einzelne Individuen oder Familien als harmlose Aasfresser auf, während andere gezielt Haushunde reissen²¹⁶. Während der Paarungszeit in den Wintermonaten Dezember bis Februar sind Wölfe besonders aktiv. Im Frühjahr und Frühsommer, Zeit der Jungenaufzucht, lebt die Wolfsfamilie sesshaft, da sie an den Bau gebunden ist²¹⁷.

Das Gewicht und die Körpermasse der Tiere variieren innerhalb des ausgedehnten Territoriums erheblich: die stärksten Wölfe sind im Norden des Verbreitungsgebiets zu finden, die kleinsten im Süden²¹⁸.

²¹³ Hainard 1962.

²¹⁴ Riedel 1986, S. 39.

²¹⁵ Bibikow 1988, S. 68.

²¹⁶ Pavlov 1982.

²¹⁷ Bibikow 1988, S. 81.

²¹⁸ Bibikow 1988, S. 18.

In Cresta-Cazis sind nur aus den ersten drei Dorfhorizonten (Planum 1 bis 3) Wolfsknochen bekannt. Von den 13 Bruchstücken gehören neun zum Autopodium. Verglichen mit dem Haushund, von dem in erster Linie Schädel- und Kieferteile die Zeit überdauerten, bedeutet dies eine nicht minder einseitige Verteilung der Skelettelemente. Zeugt diese von der Verarbeitung der Wolfsfelle oder hatten die Siedler auf der Cresta eine besondere Verwendung für die Wolfspfoten (Talisman o.Ä.)? Die Altersbestimmung der Bruchstücke ergab für alle ein ausgewachsenes Stadium (geschlossene Epiphysen von Metapodien, Sacrum und Calcaneus und durchgebrochene, hochgewachsene Reisszähne). Die Frequenz von Wolfsknochen in alpinen Stationen der Bronzezeit ist allgemein niedriger als die von Bärenknochen (Tabelle 2)

4.3.8. Europäische Wildkatze (Felis silvestris silvestris SCHREBER)²¹⁹.

In der Bronzezeit ist noch nicht mit Hauskatzen zu rechnen, da die Römer jene erst vor rund 2000 Jahren aus Ägypten, wo sie domestiziert wurden, nach Europa einführten. Vor diesem Hintergrund überrascht es denn auch kaum, dass nicht die Europäische, sondern die Afrikanische Wildkatze (*Felis silvestris lybica* FORSTER, Falbkatze) die Stammform unserer Hauskatze ist. Als Lebensraum bevorzugt die Europäische Wildkatze vor allem Laub- und Laubmischwälder in mittleren Höhenlagen. Im Gebirge und in anderen Regionen mit langen, harten Wintern kommt sie nicht vor. Unter den durchgeschauten Knochen ist die Tibia einer Europäischen Wildkatze der einzige Nachweis dieser Tierart auf der Cresta (Planum 4, Feld 16). Im bronzezeitlichen Cazis hat man höchstens gelegentlich Wildkatzen gejagt. Möglicherweise wurden den Raubtieren zufällige Kontakte mit den Menschen zum Verhängnis, oder man stellte ihnen gezielt nach. Wie auch immer, allein ihres dichten, feinen Felles wegen galt die Wildkatze sicherlich als begehrenswerte Beute. Unter den in dieser Arbeit berücksichtigten bronzezeitlichen Vergleichsstationen haben neben Cazis einzig Lumbrein Surin GR- Crestaulta, Pfatten I- Vadena und Hauterive NE- Champréveyres Nachweise für die Wildkatze geliefert.

4.3.9. Vögel (Aves)²²⁰.

Die insgesamt sieben Vogelknochen konnten fünf verschiedenen Arten bzw. Familien zugeordnet werden. Es fällt auf, dass ausnahmslos mittelgrosse Typen vertreten sind (Körperlänge zwischen 28 und 67 cm). Eine weitere Besonderheit lässt sich womöglich in der Anhäufung von Ulna-Fragmenten (vier Stück) sehen.

4.3.9.1. Eichelhäher (Garrulus glandarius). Der Eichelhäher gilt als ausgesprochener Waldbewohner. In der heutigen Schweiz favorisiert er lichte Laub- und Mischwälder mit gut ausgebildeter unterer Baum- oder hoher Strauchschicht. Dunkle Nadelwälder bewohnt er höchstens am Waldrand oder in Schneisen.

In Graubünden begegnet man dem wachsamen Rabenvogel rund ums Jahr. Als Allesfresser reicht seine Nahrungspalette von Baumnüssen bis zu Eiern und Jungvögeln. Die Gefiederfärbung des Eichelhähers ist unverkennbar. Das hellblaue, fein schwarzgebänderte Feld am Flügelbug fällt besonders auf.

Aus dem frühbronzezeitlichen Planum 3 des Spaltendorfes stammt der vollständige Humerus eines Eichelhähers. Nach der Grösse zu urteilen, handelt es sich dabei um ein ausgewachsenes Individuum.

²²⁰ Meier 1992, Schmid et al. 1998, Svensson et al. 1999.

²¹⁹ Schmidt u. Hozinek 1994, Stubbe u. Krapp 1993, Benecke 1994, Kappeler 2003, Vigne u. Guilaine 2004.

4.3.9.2. Kolkrabe (Corvus corax). Der Kolkrabe brütet in grösseren, einsamen Waldgebieten, im Gebirge und in Küstenklippen. Im Graubünden, wo er ganzjährig anzutreffen ist, wählt er sich als Nistplatz am häufigsten Felswände in einer Höhe von 700 bis 2000 Meter über Meer aus. Selten befinden sich die Horste über der Waldgrenze. Beliebte Standorte sind Nischen in unzugänglichen Felsformationen nahe des Talgrundes. Kolkraben sind sehr scheu und wachsam. Die Allesfresser, die selbst den Mäusebussard an Grösse übertreffen, ernähren sich vor allem im Winter gern von Kadavern. Vom Kolkraben kam in Planum 5 (Frühbronzezeit) eine unfragmentierte Ulna zum Vorschein. Sie ist der Knochen, an dem die Flugmuskulatur und –federn ansetzen. Eine Schnittspur im distalen Schaftbereich zeugt von menschlicher Manipulation.

4.3.9.3. Taubenvögel (Columbiformes)²²¹. Die artgenaue Bestimmung der Taubenknochen aus Cazis erfolgte nach dem Ausschlussverfahren und ist daher etwas unsicher. Auf Basis der osteologischen Masse scheidet die grösste Form ihrer Art, die Ringeltaube (Columba palumbus) (L= 38-43 cm), als Kandidatin aus. Die Verbreitung der Türkentaube (Streptopelia decaocto) beschränkte sich bis ins 20. Jahrhundert auf die Balkanhalbinsel. Was die Turteltaube (Streptopelia turtur)betrifft, so brütet diese am wenigsten verbreitete Taubenspezies der Schweiz in den tiefgelegenen Gebieten unterhalb 500 m, was natürlich nicht ausschliesst, dass sie sich in höher gelegenen Regionen aufhält. Ob die Hohltaube (Columba oenas) (L= 29- 32 cm) im Graubünden nur als Durchzügler vorkommt oder gelegentlich auch dort brütet, ist noch unklar. Fest steht, dass sie heute nur in größeren Tälern sporadisch in die Nordalpen eindringt (Rhonequertal bis St-Maurice, Nieder-Simmental, Diemtigtal, Kandertal, Kiental, Seeztal und St.Galler Rheintal, evtl. auch unteres Toggenburg). Die Strassen- oder Haustaube (Columba livia domestica) stammt von der Felsentaube (siehe unten) ab, von der sie anhand der Skelettmerkmale kaum zu unterscheiden ist. "Die Anfänge der Taubendomestikation", schreibt Benecke dazu²²²: "liegen deshalb noch weitgehend im Dunkeln. [] Aus schriftlichen Quellen weiss man, dass die Haustaube den Griechen spätestens seit dem Beginn des 1 Jt. v. Chr. bekannt war. [] Mit der Expansion des Römischen Reiches in die Länder nördlich der Alpen erlangte die Haustaube schliesslich auch in Mitteleuropa eine weitere Verbreitung". Zu Beginn des 19. Jahrhunderts war die Haustaube ein durchaus ländlicher Vogel. Die frühesten Ansiedlungen in Städten scheinen eng an zentrale Marktplätze mit ihrem Nahrungsangebot gebunden gewesen zu sein. Die weitere Entwicklung der Agrarproduktion und Güterversorgung ließ für die Straßentaube den ländlichen Raum an Bedeutung immer mehr gegen städtische Zentren mit ihren Umschlagplätzen zurücktreten. Die Stammform der Strassentaube, die Felsentaube (Columba livia) (L= 30-35 cm), ist heute zwar allgemein selten anzutreffen, dürfte im bronzezeitlichen Graubünden aber zahlreich vorgekommen sein. Sie bevorzugt Höhen unter 1000m und lebt gesellig auf steilen Felskanten.

Die Taube aus Cresta-Cazis kann mit grosser Wahrscheinlichkeit als Vertreterin der Felsentauben interpretiert werden. Eine linke und eine rechte Ulna, die beide aus Planum 4 (FBZ) geborgen wurden, gehören wohl zum gleichen Individuum. Einer der beiden ganz überlieferten Knochen weist unterhalb des proximalen Gelenks Schnittspuren auf (Abb.39). Angesichts der Tatsache, dass ausgerechnet nichts als die beiden Knochen des Flügelpaares übrig geblieben sind, und dass für die Zerteilung des Taubenkörpers Werkzeuge nicht zwingend vonnöten sind, fragt sich, ob neben der Auslegung des besprochenen Fundes als Speiserest weitere Deutungen in Betracht gezogen

²²² Benecke 1994, S. 383ff.

²²¹ Von Blotzheim 1992, Haag-Wackernagel 1998.

werden müssen. Womöglich hat man in Cresta-Cazis "Vogelflügel-Präparate"²²³ angefertigt und war deshalb darauf bedacht, die Muskeln mit einem scharfen Gerät vorsichtig von Haut und Knochen abzulösen, ohne das Gefieder zu beschädigen. Unter diesem Gesichtspunkt wäre es auch kaum verwunderlich, warum von insgesamt sieben Vogelknochen vier Ellen sind.

Abb.39: Cresta-Cazis. Taube. Ulna mit Schnittspuren. Der schwarze Balken in der rechten Bildecke entspricht einem Zentimeter.

4.3.9.4. Mäusebussard (Buteo buteo). Mäusebussarde bewohnen offene Landschaftstypen, wo ihm Baumhecken, Feldgehölze und Waldränder Deckungsmöglichkeiten und Brutgelegenheiten bieten. Zur Jagd und Nahrungssuche sind sie auf Weiden, Felder, Wiesen oder Feuchtgebiete angewiesen. Oft halten die Greifvögel auf niederen Warten (z.B. Zaunpfähle) sitzend Ausschau nach Beute (Mäuse, Reptilien, Amphibien, Insekten, Würmer). Die Zugbewegungen (v.a. Herbstzug) der Mäusebussarde sind in den Alpen weniger ausgeprägt als im Mittelland. Zahlreiche Tiere überwintern in der Nähe ihrer Brutorte, wobei sich in der kalten Jahreszeit auch Zuzüger aus dem Norden im Graubünden aufhalten. Von der Ulna eines adulten Mäusebussards aus Planum 5 (FBZ) sind in Cresta-Cazis das distale Gelenk und mehr als die Hälfte des Schaftes erhalten geblieben.

4.3.9.5. Stockente (Anas platyrhynchos). Stockenten sind äusserst anpassungsfähig und stellen wenige Ansprüche an ihren Lebensraum. Auf stehenden oder langsam fliessenden Gewässern aller Art fühlen sie sich wohl. Ihr Hauptverbreitungsgebiet liegt unterhalb 600 m. Die höchstgelegenen Brutstätten beobachtete man auf der Alp Raschil im Domleschg auf 2230 m. Im Winter wird der einheimische Bestand durch nordische Zuwanderer erhöht. Auf allen eisfreien Gewässern des Kantons, insbesondere auch auf den freifliessenden Abschnitten des Hinterrheins, überwintert die Stockente in grösserer Zahl. Ein kleines Fragment des knöchernen Schnabels (Unterkiefer) einer Stockente überdauerte die Jahrhunderte im Boden der Cazner Siedlungsspalte, wo es gegen Ende der Frühbronzezeit (Planum 8) hineingelangt war.

4.3.9.6. Rebhuhn (Perdix perdix). Das Rebhuhn war ursprünglich ein Steppenbewohner und Bodenbrüter. Da es weiträumige, offene strukturreiche und trockenwarme Landwirtschaftsgebiete des Tieflandes bevorzugt, begegnete man ihm in der Schweiz aus naturräumlichen und klimatischen Gründen nie sehr häufig. In den vergangenen Jahrzehnten trug die Intensivierung der Landwirtschaft überall in Europa zur Dezimierung des Rebhuhnbestandes bei. Die ehemaligen Vorkommen im Churer Rheintal, Domleschg und Unterengadin sind heute sogar ganz erloschen.

_

²²³ Hüster-Plogmann u. Schibler 1997, Schibler u. Sedlmeier 1993.

Eine der mittelbronzezeitlichen Schichten (Planum 12) aus Cresta-Cazis lieferte den Nachweis des Rebhuhns in der Hügelsiedlung: der komplett erhaltene Humerus gehörte zu einem ausgewachsenen Individuum. Für die nachfolgend vorgestellten Wildtiere gehe ich davon aus, dass sie ohne menschliches Zutun in die Siedlungsschichten gerieten. Bei der Waldmaus muss es sich nicht einmal zwingend um ein "bronzezeitliches Individuum" handeln. Ebenso gut könnte sie als eine rezente Vertreterin ihrer Art aus einem ihrer unterirdisch angelegten Gänge nicht mehr an die Erdoberfläche zurückgekehrt sein.

4.3.10. Waldmaus (Apademus sylvaticus). Aus Planum 8 (FBZ) stammt der mehr oder weniger ganz erhaltene Schädel (Unterkiefer und Oberkiefer mit Zähnen, Schädelteile) einer Waldmaus. Die Zähne sind stark abgekaut.

4.3.11. Amphibien²²⁴. Die vollständige Tibiofibula und der fragmentierte Femur gehören wohl zum gleichen Individuum. Beide Knochen wurden in Planum 5 (FZB) gefunden. Wahrscheinlich handelt es sich um eine Kröte.

4.3.12. Landschnecke (Clausiliidae). Die kleine Schnecke mit langgezogenem Häuschen ist vollständig erhalten. Auch bei ihr kann die bronzezeitliche Herkunft nicht zweifelsfrei angenommen werden.

4.3.13. Diskussion. Alle Aussagen über die Wildtierzusammensetzung in Cresta-Cazis beruhen auf einer kleinen Datenmenge. Trotz der sich daraus ergebenden Unsicherheiten zeichnen sich Verhältnisse bzw. Entwicklungen ab, denen eine Regelmässigkeit zugrunde liegt, so dass unmöglich von einem Zufallsmuster gesprochen kann.

Jedes Wildtier hat speziesspezifische Ansprüche an seinen Lebensraum. Seine Knochenreste erlauben deshalb gewisse Aussagen über die ökologischen Verhältnisse in der Umgebung des Siedlungsplatzes, aus dem sie stammen. Es ist jedoch nicht möglich, aus den Mengenverteilungen innerhalb von Speiseresten unmittelbar auf die tatsächliche Wilddichte und das Umfeld der Siedlung rückzuschließen, da die Wildtierfunde durch einen enormen Filter gelaufen sind, der Qualität und Quantität des Materials stark verzerrt hat ("taphonomic loss").

Für das umliegende Gebiet von Cresta-Cazis lässt sich anhand der Wildtierknochen zusammenfassend die Nutzung folgender Biotope rekonstruieren: Eichelhäher, Mäusebussard, Wildkatze, Wildschwein, Bär und Wolf bevorzugen

Landschaften mit lichten Laub- und Mischwäldern. Der Hirsch unternimmt oft lange Streifzüge durch Auwälder, in denen sich auch der Ur gerne aufhält. Für offene, steppenähnliche Flächen plädiert das Rebhuhn. Tauben und Mäusebussarde nutzen waldfreie Geländeabschnitte (Kulturland, Weiden) gerne zur Nahrungssuche. Die Stockente ist ein Zeuge für stehende oder langsam fliessende Gewässer in der Gegend der bronzezeitlichen Siedlung, während der Steinbock, der Kolkrabe und eventuell die Felsentaube nahes Gebirge und felsige Regionen verraten.

Über die Bedingungen im unmittelbaren Umkreis des Spaltendorfs geben die Amphibien- und Waldmausknochen Auskunft. Erstere sind auf nahe Gewässer angewiesen, während die letzteren, wie ihr Name verrät, den Wald als Lebensraum nutzen.

_

²²⁴ Bestimmungsliteratur: Baillon 1999.

Nachweise von Fischen liegen aus Cazis nicht vor. Möglicherweise haben ihre fragilen Knochen die Zeit nicht überdauert (erhaltungsbedingt oder aufgrund von Tierfrass). Viel wahrscheinlicher ist jedoch die Erklärung, dass man sie beim Ausgraben übersah, denn es wurde nicht geschlämmt. Den Bewohnern der Cresta bot sich auf jeden Fall mehrfach die Gelegenheit für den Fischfang. Sowohl der Hinterrhein als auch der Maseiner Bach liess sich mit einem kurzen Fussmarsch erreichen.

Vergleicht man diese archäozoologischen Ergebnisse mit denen aus den Untersuchungen der bronzezeitlichen Vegetation in der gleichen Gegend²²⁵ (siehe Kapitel 1.2.4.) stellt man eine sehr gute Übereinstimmung fest.

Als primäre Motivation für die organisierten Jagdausflüge der Cazner Bauern kann man sich die Ergänzung des Speisezettels vorstellen, besonders in Zeiten, wo das Nahrungsangebot aus den eigenen Erzeugnissen knapp ausfiel. Neben dem Fleisch veranlassten aber auch andere tierische Produkte (Felle und vielleicht Federn) die Menschen dazu, Wildtiere zu erlegen. Inwiefern die Jagd in den frühbronzezeitlichen Phasen mit religiösen oder magischen Vorstellungen der Menschen verknüpft gewesen war, muss hier offen bleiben. Der Steinbock, der mit dem Hirsch zum beliebtesten Jagdtier gehörte und eventuell bereits damals als "lebender Medizinschrank" galt, könnte, zusammen mit den Wolfstatzen²²⁶, einen solchen Verdacht aufkommen lassen. Eine Schutzjagd kommt höchstens für die junge Mittel- und die Spätbronzezeit in Frage (vgl. unten).

Das vollkommene Fehlen der Gämse im untersuchten osteologischen Fundgut aus Cazis mag aufgrund der geographischen Lage des Dorfes im ersten Moment Verwunderung auslösen²²⁷. Die Suche nach diesem Tier in anderen alpinen Knochenkomplexen aus der Bronzezeit bleibt aber ebenfalls öfters erfolglos (Tabelle VIII im Anhang). Gibt es Nachweise, so handelt es sich meist um ein oder ein paar wenige Fragmente. Anders sieht es in den beiden neolithischen Siedlungen Mondsee und Kanzianiberg aus Österreich aus²²⁸. Sie gehören mit ihrem relativ hohen Gämseanteil zur grossen Ausnahme.

Auf Rehknochen stösst man im Alpengebiet sogar noch seltener als auf Gämsenknochen, was mit den, im Vergleich zum Mittelland härteren, Lebensbedingungen zu erklären sein könnte (Tabelle VIII im Anhang). Nach der Rekonstruktion des Lebensraumes (siehe oben) wäre im Domleschg-Heinzenberg-Tal zwar mit Rehen, die als Bewohner lichter Wälder bzw. Waldränder gelten, zu rechnen, doch auch sie sind im untersuchten osteologischen Fundmaterial aus Cazis nicht vertreten.

Selbst wenn die naturräumlichen Bedingungen für Reh und Gämse im Hinterrheintal theoretisch gegeben waren, kann natürlich nicht automatisch davon ausgegangen werden, dass sie sich dort auch tatsächlich aufgehalten haben. Allerdings fällt es gerade für die Gämsen schwer, eine potentielle lokale Bestandeslücke während der gesamten Bronzezeit zu interpretieren, zumal in mehr oder weniger nahegelegenen zeitgleichen Siedlungen aus dem Kanton Graubünden Knochen dieser Tierart dokumentiert sind²²⁹.

Neben den ökologischen müssen weitere Faktoren²³⁰ in Betracht gezogen werden, welche die Wildtierzusammensetzung im prähistorischen Cazis unter Umständen zu beeinflussen

²²⁶ Die Wolfstatzen lassen sich aber auch mit der Fellnutzung in Zusammenhang bringen (z.B. als Abfall beim Gerben, vgl. auch Kapitel 4.3.7.).

²²⁹ Lumbrein Surin GR- Crestaulta, Savognin GR- Padnal, Scuol GR- Munt Baselgia.

²²⁵ Burga u. Perret 1998.

²²⁷ In diesem Zusammenhang muss hier aber angefügt werden, dass die Gämse nicht ausschliesslich ein Alpentier ist (vgl. Bauman et al. 2005). ²²⁸ Pucher 1994.

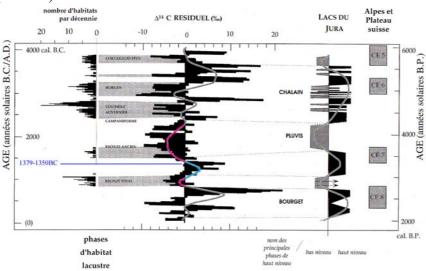
²³⁰ Mit den möglichen methodischen Faktoren (Bestimmungs- und Unterscheidungsschwierigkeiten bei kleinen Wiederkäuern) habe ich mich sehr eingehend auseinandergesetzt. Fehlbestimmungen sind zwar nie

vermochten. Das im Vergleich mit Steinbock und Hirsch bescheidene Körpergewicht von Gämsen und Rehen könnte ein Schlüssel zur Erklärung der Absenz beider kleinen wilden Wiederkäuer im osteologischen Material von Cresta-Cazis sein. Die bezüglich ihres Fleischertrags weniger attraktiven Beutetiere als Hirsch und Steinbock dürften zudem aufgrund ihres Verhaltens (Rehe leben einzelgängerisch und sind, ebenso wie die Gämsen, extrem scheu) schwerer zu jagen gewesen sein als ihre massigeren Verwandten. Das Ensemble der Knochen wilder Wiederkäuer in Cazis erweckt somit, besonders unter den gegebenen ökologischen Voraussetzungen, den Eindruck einer gezielten Auslese, das heisst, einer Bevorzugung fleischreicher Arten, die zugleich den kleinstmöglichen Jagdaufwand erforderten. Selbstverständlich hätten die Menschen ein zufällig in die Schusslinie (oder ev. Falle²³¹) geratenes Reh oder Gamswild nicht verschmäht. Diese "Schlaraffenland-Variante" ereignete sich aber wohl kaum so häufig, um hier von Bedeutung zu sein. Eine selektive Jagd lässt sich nicht mit Handlungen aus akuten Notsituationen heraus vereinbaren. Viel eher ist sie als Ausdruck einer bewährten und effizienten Jagdorganisation bzw. -tradition zu werten. Ob die Hypothese der selektiven Jagd für Cresta-Cazis Bestand hat, könnte zum Beispiel durch zusätzliche, systematische Untersuchungen der in dieser Arbeit unberücksichtigten Tierknochen aus dem Spaltendorf abgeklärt werden. Am Übergang von der Früh- zur Mittelbronzezeit stellt man besonders ausgeprägte Einschnitte in der Entwicklung der Wildtierfauna fest. So nahm die Diversität in der Artenzusammensetzung der Wildtiere mit Beginn der Mittelbronzezeit dramatisch ab (während das frühbronzezeitliche Spektrum der Wildtiere neben Hirsch und Steinbock auch Bär, Wildschwein, Wildkatze, verschiedene Vogelarten und Wolf umfasste, bestand es in der Spätbronzezeit praktisch ausschliesslich aus Wildschweinen). Haben wir mit der Veränderung in der Wildtierzusammensetzung eine frühe Dokumentation der Folgen menschlicher Eingriffe in das lokale Ökosystem vor uns? In diesem Fall wäre ein wesentlicher, die Wildtiere direkt betreffender, Faktor in Betracht zu ziehen: die Dezimierung des Waldbestandes. Regelmässig wiederholte Rodungen zur Erschliessung neuer, grösserer Ackerflächen oder zur Holznutzung (Hausbau, Kochen, Heizen, Berbau, Verhüttung usw.) trugen unter Umständen dazu bei, dass die vom Wald bedeckte Fläche, Lebensraum vieler Wildtiere, mehr oder weniger kleinräumig schrumpfte. Die Haustiere, die teilweise ähnliche oder identische Habitate nutzten wie die Wildfauna, hätten eine zusätzliche belastende Konkurrenz dargestellt²³². Die Hirsche dürften von solchen Veränderungen am stärksten betroffen gewesen sein. Angenommen, die ursprüngliche Hirsch- und ev. auch Steinbockpopulation im Domleschg-Heinzenbergtal hat sich an der Wende Früh-/Mittelbronzezeit wirklich im Zusammenhang mit einem Territoriumsverlust reduziert, könnten dadurch möglicherweise andere Wildtierarten an Häufigkeit zugenommen haben²³³. Dementsprechend lassen sich die Wildschweine, deren Anteile von praktisch 0% in der Früh- auf 100% in der Spätbronzezeit anstieg, als "Kulturfolger" interpretieren²³⁴. Es fällt nicht schwer, sich auszumalen, wie das Schwarzwild, angelockt von einer gedeihenden Landwirtschaft, seine Scheu ablegte und, gewiss zum Ärgernis der Cazner Bauern, die Vorzüge der Äcker kennen lernte. In einem solchen Szenario bestechen die Argumente für die Umstellung auf Schutzjagd.

Eine alternative Hypothese bezüglich der Entwicklungen im Wildtierartenspektrum basiert auf einem kulturellen Wandel im Leben der Dorfbewohner. Parallel zur erliegenden Hirschund Steinbock-, bzw. zur aufkeimenden Wildschweinjagd, mehren sich Fremdeinflüsse im

hundertprozentig auszuschliessen, aber ich bin überzeugt, dass sie nicht für das Fehlen der Reh- und Gämsenachweise in Cazis verantwortlich gemacht werden können.

Fallen zu stellen und regelmässig zu kontrollieren ist sehr zeitintensiv.


²³² Das Verschwinden des Steinbocks aus dem Fundgut von Cazis ist damit aber noch nicht erklärt.

²³³ Z.B. Fuchs, Reh, Wildschwein.

²³⁴ Die Häufigkeiten von Fuchs oder Reh sind dagegen alles andere als angestiegen.

Keramikmaterial von Cresta-Cazis aus dem Norden wie auch aus dem Südosten. Es wird ein intensiverer Kontakt mit anderen, nicht nur inneralpinen, Bevölkerungsgruppen postuliert (vgl. Kapitel 1.2.3.). Hat der dadurch ins Rollen gekommene Austausch seine Spuren im Jagdverhalten der Leute auf der Cresta hinterlassen? In diesem Fall müssten hinter dem frühund mittel- bzw. spätbronzezeitlichen Wildtierspektrum so grundsätzlich unterschiedliche Jagdstrategien stehen, dass gerade für den Aufgabenbereich der Jagd von einem besonders starken Einfluss fremder Ideen oder Gewohnheiten ausgegangen werden müsste (vgl. Kapitel 6.3.).

Ausgerechnet in der Mittelbronzezeit gibt es phasenweise keine Nachweise von Wildtieren, wo doch gerade für diese klimatisch eher schwierige Zeit ein Anstieg der Jagd erwartet würde²³⁵. Dass in Cresta-Cazis die Schichten aus den ungünstigen Phasen der Mittelbronzezeit aufgrund schlechterer Erhaltungsbedingungen²³⁶ fehlen könnten (z.B. ein schnellerer Abtrag durch Wegschwemmen oder -rutschen von Erdmassen)²³⁷, ist aufgrund der topographischen Lage des Siedlungsplatzes in der Spalte unwahrscheinlich. Trotzdem, theoretisch wäre es möglich, dass die Tierknochen der drei mittelbronzezeitlichen Schichten (Planum 10, 11, 12) alle aus Phasen mit entschärften Bedingungen stammen. Dieser Einwand vermag jedoch nicht so recht zu überzeugen: zwei Tierknochen aus Planum 11 wurden für die Radiokarbondatierung beprobt²³⁸, wobei sich gemittelte Altersschätzungen (kalibriert) von 1379 v. Chr. und 1350 v. Chr.²³⁹ ergaben. Wie man aus der Klimakurve herauslesen kann, entsprechen diese Daten nicht einem "Zwischenhoch", sondern den Anfängen eines "Tiefs" (Abb.40).

Abb.40: Klimakurve²⁴⁰. Zusammenhang zwischen Klima und Jagdtätigkeit? 1379 und 1350 v. Chr. entsprechen den C 14 Daten der Knochen aus Planum 11 (Schicht mit dem geringsten Jagdtieranteil).

²³⁵ In den neolithischen Seeufersiedlungen nahm die Jagdtätigkeit während den klimatisch ungünstigen Phasen zu (Hüster-Plogmann u. Schibler 1997, S. 344ff, Arbogast et al. 2006).
 ²³⁶ Schibler u. Jacomet 2005.

_

²³⁷ In Haldenstein (GR) sind beispielsweise durch einen glücklichen Zufall die klimatisch ungünstigen Zeitphasen dokumentiert. Der Wildtieranteil dieser Fundstelle ist hoch (Schibler u. Jacomet 1999).

²³⁸ Frau Murbach-Wende schickte sie im Rahmen ihrer Dissertation zusammen mit 18 anderen Proben (Holzkohle und verkohlte Speisereste an den Gefässen) zur Analyse in das C-14 Labor der Universität Utrecht (Faculteit Natuur- en Sterrenkunde, R. J. Van de Graaff laboratorium). Die Rohdaten (unkalibriert) betragen 3130+/- 60 BP für den einen und 3071+/- 42 BP für den anderen Tierknochen.

²³⁹ Drei Speisekrustenproben, ebenfalls aus Planum 11, wurden auf 1399 v. Chr., 1482 v. Chr. und 1704 v. Chr. datiert (ebenfalls kalibriert und gemittelt).

²⁴⁰ Hochuli et al. 1998 (SPM Band III), S. 139, nach Stuiver/Braziunas 1993, Magny 1993, Haas/Richoz et al. 1998.

Mit den zur Verfügung stehenden Indizien lässt sich in Cresta-Cazis, anders als in den neolithischen Seeufersiedlungen der Schweiz, ein klimabeeinflusstes Jagdverhalten der Dorfbewohner also nicht nachweisen. Möglicherweise wirkten sich die Folgen der Klimaveränderungen in den Alpen anders aus als an den Seeufern des Flachlands. Man denke beispielsweise an die Wasserspiegelschwankungen der grösseren Seen.

In diesem Zusammenhang sei eine interessante Bemerkung von Primas über "ein Problem der Anthropogeographie" erwähnt²⁴¹: "Der bronzezeitliche Landausbau in den Zentralalpen fällt in eine Periode, die aufgrund der Radiokarbondaten mit der als "Löbbenschwankung" bezeichneten, ungünstigen Klimaphase zusammenfällt²⁴²; der Datierungsspielraum liegt zwischen 3300 und 3150 BP. Damals dehnten sich die alpinen Gletscher wieder aus, und die Waldgrenze rückte tiefer. Verschleiert uns die grosse Bandbreite der Radiokarbondaten die Situation, oder müssen wir uns tatsächlich damit auseinandersetzen, dass sich die bronzezeitlichen Pioniere in einer Phase mit sinkenden Temperaturwerten in 1200-1500m ü.M. niederliessen?"

4.4. Menschenknochen

In der Siedlungsspalte auf der Cresta kamen während der Grabungsarbeiten immer wieder Menschenknochen zum Vorschein. Oftmals waren es Schädelkalotten von Säuglingen, in die Zwischenräume der Wegmauersteinsetzung postiert²⁴³. Diese dank ihrer exponierten und auffälligen Fundlage an Ort und Stelle identifizierten Stücke hat man separiert und lagern heute im Landesmuseum Zürich. Doch auch unter den, in der vorliegenden Untersuchung vorgestellten, faunistischen Resten konnten regelmässig Menschenknochen herausgepickt werden (siehe Tabelle III im Anhang).

Arm- und Beinknochen von Säuglingen zeugen davon, dass man ihre Leichen manchmal auch unter dem Hausboden vergraben hat.

Die acht Belege von menschlichem Gebein aus der Schicht, die den grossen Dorfbrand dokumentiert (Planum 4), gehören sehr wahrscheinlich alle zur selben adulten Person. Es dürfte sich, ähnlich wie bei den Säuglingen, um die erhalten gebliebenen Reste eines in situ eingelagerten Skeletts handeln. Da in der Umgebung der Fundstücke (Feld 14 und 15) keine archäologischen Strukturen verzeichnet sind, die auf das Vergraben der/des Toten schliessen lassen²⁴⁴ und einige der Fragmente Brandspuren (Hitzeeinwirkung, Verkohlung und Kalzinierung) aufweisen, liegt es nahe, diese menschlichen Überreste als Opfer der Feuersbrunst zu interpretieren. Sie/er war jedenfalls nicht mehr ganz jung, das verrät unter anderem die poröse, lippige und wucherige Gelenkfläche eines Lendenwirbels. Einzelne Knochenstücke von erwachsenen Individuen²⁴⁵ unterscheiden sich in ihrer Erhaltung und Verteilung in den Siedlungsschichten nicht im geringsten von den Tierknochen. Die Beobachtung ist keinesfalls aussergewöhnlich, sondern kann in vielen prähistorischen Knochenkomplexen bestätigt werden²⁴⁶.

Um über die Hintergründe zu diskutieren, wie und wieso die Menschenknochen unter die Tierknochen gelangten, müsste man unter anderem auf reichlich Informationen über die Grabsitten der Dorfbewohner zurückgreifen können. Falls das zur Siedlung gehörende

²⁴¹ Primas 1998.

²⁴² Furrer et al. 1987.

²⁴³ Mündliche Mitteilung René Wyss.

²⁴⁴ Gruben für Säuglinge sind eher zu übersehen als solche für Erwachsene.

²⁴⁵ Dazu gehören das Bruchstück eines Radius aus Planum 8 (Frühbronzezeit), das Humerusfragment aus Planum 11 (Mittelbronzezeit) und der Rest eines Röhrenknochen aus Planum 14 (Spätbronzezeit). ²⁴⁶ Kaufmann 1983, S.173.

Gräberfeld wirklich noch existiert, wie Wyss vermutet²⁴⁷, würde seine Entdeckung unter Umständen zu neuen Ideen in dieser Sache anregen.

Fest steht, dass in Graubünden bis heute allgemein wenig bronzezeitliche Bestattungen entdeckt wurden. Rageth²⁴⁸ fasst den derzeitigen Forschungsstand etwa so zusammen: "Im bündnerischen Alpenraum liegen für die Frühbronzezeit ausschliesslich Körpergräber vor²⁴⁹. Seit der Mittelbronzezeit ist eine neue Bestattungsform, die Brandbestattung²⁵⁰ nachgewiesen. Für die Spätbronzezeit in Nordbünden und Misox werden hauptsächlich Urnenfeldergräber postuliert, wobei (teilweise unsichere) Körperbestattungen ebenfalls vorkommen²⁵¹. Zur Zeit ist noch offen, welche Bestattungsform man im Raum Unterengadin und Münstertal gepflegt hat.

5. TIERKNOCHEN ALS ZEUGEN MENSCHLICHER TÄTIGKEITEN

5.1. Fragmentierung²⁵²

5.1.1. Einleitung.

Unter den Tierknochen, auf denen die vorliegende Untersuchung aufbaut, sind abgesehen von den Kurzknochen nur vereinzelt vollständige Stücke überliefert, fast alle liegen in Form von Fragmenten vor. Ihre Zerkleinerung erklärt sich nicht allein mit dem Zufallsprinzip, im Gegenteil, sie lässt Muster erkennen, die stets wiederkehren. Wie aber kommen solche Gesetzmässigkeiten bezüglich der Gestalt, Grösse und Region der Bruchstücke zustande? Zwischen der Geburt eines Tieres und dem Moment, wo die Archäozoologin seine sterblichen Überreste in der Hand hält, beeinflussen diverse Faktoren die Fragmentierung seiner Knochen (Abb.41). Neben "äusseren" Einwirkungen (z.B. die Taphonomie oder Manipulationen durch den Menschen) spielen die spezifischen Knocheneigenschaften eine Rolle. Dabei variieren Dichte und Biomechanik des Knochens, Spongiosa-Anteil, Kompaktadicke und Knochenmarkgehalt abhängig vom Skelettelement bzw. von der Knochenregion und vom individuellen Alter.

²⁴⁹ Donath-Surses: zwei Körpergräber (ein weiteres mit zweifelhaftem Befund).

Bronzefunden.

-Maladers Tummihügel: ein Urnengrab?

Binford 1981, Klein u. Cruz-Uribe 1984, Lyman 1994, O'Connor 2000, Currey 2002.

²⁴⁷ Wyss 2002, S. 344.

²⁴⁸ Rageth 2000.

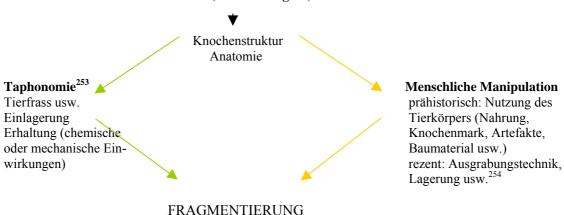
²⁵⁰ Der Tote wurde dabei mit Kleidung (Tracht) und Schmuck auf dem Scheiterhaufen verbrannt und anschliessend der Leichenbrand in einfachen Gruben oder in Form von Brandschüttungsgräbern, vereinzelt auch in Urnen, beigesetzt (nach Rageth).

⁻Cresta-Petschna (in der Nähe der Siedlung Lumbrein/Surin-Crestaulta): elf Brandgräber.

⁻Savognin-Padnal (in der Nähe der gleichnamigen Siedlung): allfälliger Bestattungsplatz mit viel Leichenbrand und

⁻Laax, an der Strasse nach Salums: Skelettgräber und Reste von Brandbestattungen, alle ohne Beigaben.

⁻Rodels: mehrere Körperbestattungen, mindestens eine davon enthielt eine spätbronzezeitliche Nadel.


⁻Ruschein (in der Nähe der bronzezeitlichen Siedlung Pleun da Buora): zwei Körpergräber, eines davon enthielt eine spätbronzezeitliche Bronzenadel.

⁻St. Luzisteig-Answiesen: ein Urnengrab?

⁻Domat/Ems: ein Körpergrab.

²⁵² Einführende Literatur:

Tierart Skelettelement, Knochenregion, Alter

Abb.41: Schematische Darstellung der Faktoren, welche die Fragmentierung von Knochen beeinflussen, und ihrer Abhängigkeiten untereinander.

Bevor auf die einzelnen Fragmentanalysen eingegangen wird, scheint es mir sinnvoll, sich einige Stichworte und Gedanken zu den eben aufgeführten Faktoren ins Bewusstsein zu rufen. Die Beurteilung, in welchem Mass die Aktivitäten prähistorischer Menschen einerseits und die Taphonomie oder die Ausgrabungs- bzw. Bearbeitungsmethoden andererseits die Entstehung der Bruchtypmuster prägten, ist schlussendlich das Hauptziel der Untersuchungen über die Fragmentierung.

- Der Aufbau eines Knochens bestimmt sozusagen sein weiteres Schicksal nach dem Tod des Tieres: beispielsweise äussert sich die im Laufe des Lebens ungleich auf das Skelett eingewirkte Intensität von Druck- und Zugkräften in einer regional unterschiedlichen Knochenstruktur bzw. -anatomie, welche ihrerseits die Wahrscheinlichkeit einer potentiellen Bruchstelle vorgibt.
- Ein Knochen im frischen Zustand bricht nicht gleich wie einer, der bereits einige Zeit im Boden eingelagert war²⁵⁵.
- Die spongiosareichen und knorpeligen Knochen von Jungtieren oder auch Epiphysen sind wenig widerstandsfähig und werden bevorzugt von Tier bzw. Mensch zernagt oder aufgefressen.
- Beim Schlachtvorgang fallen die für die jeweilige Zerlegungstechnik typischen Fragmente an. Gleiches gilt für das Aufschlagen des Knochens zur Mark²⁵⁶- bzw. Hirnentnahme oder zur Leimgewinnung²⁵⁷.
- Die Herstellung von Gebrauchsgegenständen hinterlässt ebenfalls Spuren der selektiven Verwendung bestimmter Knochen oder Knochenteile.
- Mechanische Belastungen (z.B. bei der Ein- bzw. Umlagerung im Untergrund oder durch das Laufen von Mensch und Tier über den Boden, in dem die Knochen liegen) führen bei unverwachsenen Epiphysenfugen schneller zu Zerstörung im Gelenkbereich als bei verwachsenen.

Vgl. Kapitel 5.2.3.

²⁵³ Vgl. Kapitel 3.

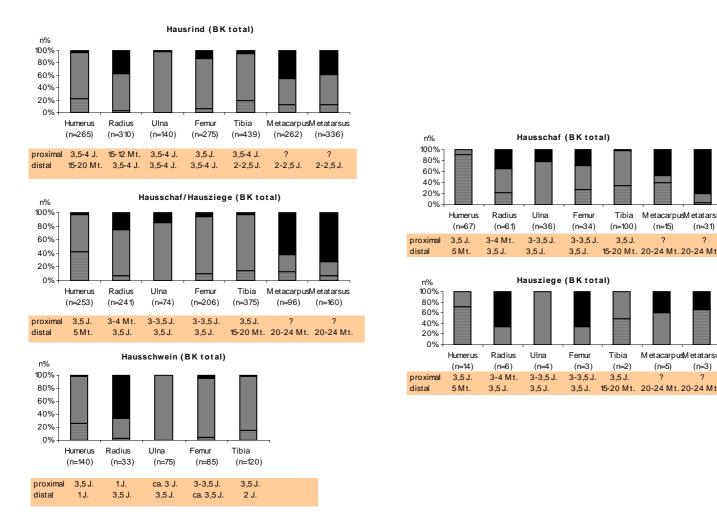
²⁵⁵ Lyman 1994 S. 318 f.

²⁵⁶ Binford 1978 S. 149ff.

²⁵⁷ Lyman 1994.

- Die zahntragenden Abschnitte erhalten sich erfahrungsgemäss besser und länger als der Rest des Kiefers (vgl. Kapitel 3.3.).

Schliesslich sollen die Auswirkungen der rezenten Arbeitsmethoden, die einsetzen, sobald die Knochen aus dem Boden geholt werden, etwas eingehender zur Sprache kommen. Der Anteil von neuen zu alten Bruchkanten spielt hierbei eine essentielle Rolle. Frische Bruchkanten entstehen beim Bergen, Transport, Lagern und Bearbeiten der Knochen und können, je nach Häufigkeit, die Resultate erheblich beeinflussen (vgl. Kapitel 3.5.). Für Cresta-Cazis wurde das Ausmass einer möglichen Verfälschung durch Miteinberücksichtigung der neuen Bruchkanten getestet. Es zeigte sich, dass in den vorliegenden Beispielen die allein auf alten Bruchkanten beruhende Fragmentanalyse praktisch identische Ergebnisse liefert wie jene, die ungefiltert sämtliche Bruchstücke berücksichtigt (Abbildung I im Anhang). Ein anderer Aspekt, den es zu beachten gilt, ist die Auswirkung der, nicht für alle Fragmente einheitlichen, Bestimmbarkeit auf die Fragmentanalyse. Abhängig davon, aus welcher Knochenregion das Bruchstück stammt, steigt oder sinkt die Chance, es einer Tierart zuzuordnen (vgl. Kapitel 4.2.3.1. oder 5.2.3.). Sehr anschaulich kann dieses Phänomen bei den kleinen Hauswiederkäuern aufgezeigt werden. Aus der separaten Analyse der Schafe bzw. der Ziegen geht klar hervor, wie unmittelbar sich der Einfluss der Bestimmbarkeit dort manifestiert: der Anteil der Schaftstücke schrumpft auf ein Minimum, während die vergleichsweise besser nach Art identifizierbaren Gelenkenden dominieren (Abb.42).


Nur die wichtigsten Haustierarten, welche die Voraussetzungen einer ausreichend umfangreichen Knochenmenge erfüllen, werden in die anschliessende ausführliche Bruchstückanalyse miteinbezogen. Diese erfolgt getrennt nach Skelettregionen in der Reihenfolge: Röhrenknochen, Plattenknochen (Unterkiefer, Schulterblatt, Becken, Wirbel, Rippen). Für die restlichen Tiere (z.B. Hund oder Wildtiere) finden sich die Angaben zur Fragmentierung ihrer Knochen jeweils direkt bei der Besprechung der entsprechenden Art.

Einmal mehr galt es abzuwägen, wie mit der Gruppe der kleinen Hauswiederkäuer verfahren wird. Ich entschied mich, sie für die Untersuchung der Fragmentierung zusammenzufassen, ohne die speziell auf den Schaf- oder Ziegenknochen beruhenden Resultate aus den Augen zu lassen. Ausschlaggebend für die Wahl der Vorgehensweise waren folgende Argumente:

- 1. Nach der Durchsicht des Fundguts gibt es keinen Anlass anzunehmen, dass sich Schaf- und Ziegenknochen hinsichtlich ihrer Fragmentierung unterscheiden.
- 2. Die Ziegen fallen aufgrund ihres geringen Anteils am Knochenmaterial der kleinen Hauswiederkäuer statistisch gesehen kaum ins Gewicht (siehe Kapitel 4.2.3.1.), d.h. die vereinte Auswertung der kleinen Hauswiederkäuer dürfte vor allem die Situation der Schafe wiederspiegeln.
- 3. Die generellen Tendenzen sind bei der separaten Analyse die gleichen wie bei der vereinten.
- 4. Die Bestimmbarkeit der Fragmente beeinflusst eine separate Analyse drastisch, während sie in der vereinten Analyse naturgemäss nicht ins Gewicht fällt (Abb.42).

5.1.2. Röhrenknochen.

5.1.2.1. Das vom Verwachsungszeitraum geprägte Fragmentierungsmuster A. Die drei verschiedenen Abschnitte eines Einzelknochens (proximale Epiphyse, Diaphyse, distale Epiphyse) sind nicht gleich wiederstandsfähig und kommen dementsprechend unterschiedlich häufig im Fundgut vor. Ihre jeweiligen zahlenmässigen Anteile variieren je nach Skelettelement.

(n=15)

MetacarpusMetatarsus

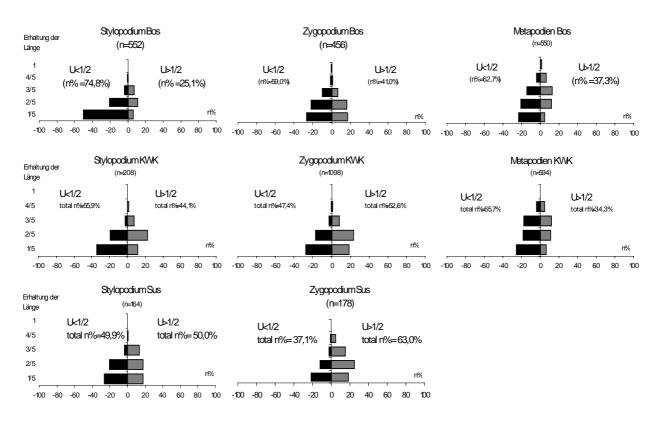
(n=3)

(n=5)

(n=31)

Abb.42: Cresta-Cazis. Das vom Verwachsungszeitraum der Epiphysen geprägte Fragmentierungsmuster A bei Hausrind, Hausschaf, Hausziege und Hausschwein. Rosa unterlegt: Verwachsungszeiträume für die einzelnen Skelettelemente, schwarz: proximale Epiphysenregion, gerastert: Diaphyse, gestreift: distale Epipysenregion.

Dabei scheint weniger die Tierart als vielmehr die Anatomie des Knochens massgebend. So ist das Ellbogengelenk, das aus der distalen Region des Humerus und der proximalen Partie von Radius und Ulna gebildet wird, bei allen betrachteten Haustierarten zahlreich vertreten²⁵⁸ (Abb.42). Speziell häufig kommen proximale Schweineradien vor. Kniegelenke, zusammengesetzt aus dem distalen Femur- und dem proximalen Tibiabereich, findet man hingegen selten. Vergleicht man diese Beobachtung mit den Verwachsungszeiträumen der beteiligten Epiphysenfugen (Abb.42, rosa unterlegt), so lässt sich die Stabilität des Ellbogens dadurch erklären, dass seine Gelenke bei den Rindern, Schafen, Ziegen sowie den Schweinen zeitig (mit ein bis zwei Jahren) verwachsen. Die Epiphysen des seltener erhaltenen und unbeständigeren Kniegelenks schliessen sich dagegen frühestens im dritten Lebensjahr. Der Zusammenhang zwischen der Erhaltung der Gelenke und dem Zeitraum, in dem sie verwachsen, wird durch die Betrachtung der übrigen Skelettelemente bestätigt: wie beim Femur und bei der proximalen Tibia verschmelzen die Epiphysen der Ulna spät mit dem Schaft, was sich darin ausdrückt, dass von diesem Skelettelement fast ausschliesslich


²⁵⁸ Becker 19986, Ebersbach 1998, S. 25ff, Horard-Herbin 1998.

Diaphysenstücke überliefert sind²⁵⁹. Die Fragmentierung der Wiederkäuermetapodien reflektiert den zeitverschobenen Verwachsungszeitraum ihrer beiden Schaftenden, indem das bereits sehr früh geschlossene proximale Ende viel häufiger vorhanden ist als die später verwachsende distale Artikulation.

5.1.2.2. Das von den spezifischen Knocheneigenschaften geprägte Fragmentierungsmuster B. Das Fragmentierungsmuster B in Abb. 43 reflektiert primär die spezifischen Knocheneigenschaften. Sie geben vor, wo Knochen bevorzugt brechen bzw. am einfachsten aufzuschliessen sind. Hierbei gelten die Regeln der Statik bzw. der Biomechanik: während sich Stellen mit hoher Belastung durch eine besonders solide Knochenstruktur auszeichnen, zerbrechen weniger beanspruchte, fragilere Zonen eher.

Der Fragmenttyp ist nicht, wie beim Muster A, durch den Abschnitt eines Knochens definiert, sondern durch den Anteil an dessen Umfang und Länge.

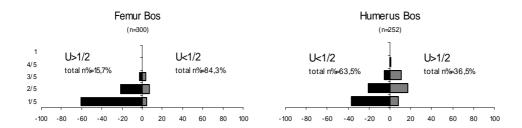

Bei der Besprechung des von den spezifischen Knocheneigenschaften abhängigen Fragmenttyps wird nach Tierarten vorgegangen.

Abb.43: Cresta-Cazis. Das von den spezifischen Knocheneigenschaften geprägte Fragmentierungsmuster B bei Hausrind, Hausschaf/Hausziege und Schwein.

5.1.2.2.a Hausrind. Aus der Graphik (Abb.43) lässt sich eine ausserordentlich starke Zertrümmerung der Rinder-Stylopodien herauslesen. Die weitere Aufteilung in Humerus und Femur macht klar, dass hauptsächlich der letzte der beiden Knochen dieses Bild prägt (Abb.44).

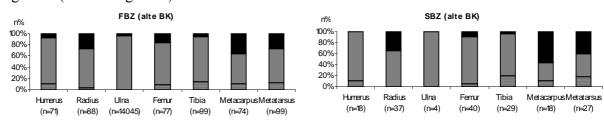
²⁵⁹ In anderen Fundstellen kommen Fragmente der proximalen Ulna jedoch häufiger vor. Möglicherweise ist ihre Untervertretung in Cresta-Cazis auch mit der Artefaktherstellung zu erklären: die Ulna der kleinen Wiederkäuer gilt als eines der am häufigsten bearbeiteten Skelettelemente des Spaltendorfes (vgl. Kapitel 5.5).

Abb.44: Cresta-Cazis. Hausrind. Vergleich der Fragmentierungsmuster B für die beiden Stylopodiumelemente Femur und Humerus separat.

Sowohl der Schaft als auch die weniger zahlreichen Epiphysenelemente des Femur sind typischerweise durch kleine Fragmente vertreten, die selten mehr als die Hälfte des Diaphysenumfangs messen und grösstenteils weniger als 2/5 der Knochengesamtlänge. Beim Humerus dagegen liegt der Anteil der Bruchstücke, deren Diaphysenumfang mehr als zur Hälfte erhalten ist, höher. Dazu zählen insbesondere die oft unversehrten distalen Gelenkenden mit anhaftendem Schaftabschnitt. Daneben tritt regelmässig ein spezieller Fragmenttyp auf (Länge: 2/5 - 4/5 und Umfang < 1/2), der von einer Längsspaltung herrührt (vgl. Kapitel 5.3.1. und Foto II/1 im Anhang).

Was das Zygopodium betrifft, setzt sich die relativ grosse Zahl an Fragmenten, bei denen mehr als der halbe Schaftumfang erhalten ist, einerseits aus Ulnaschäften und andererseits aus proximalen Radius- bzw. distalen Tibiastücken zusammen. Schaftelemente von Radius und Tibia sind im Umfang meist stärker fragmentiert.

Gleich wie beim Femur stellt man auch bei den Metapodien ein Überwiegen der Bruchstücke fest, die kaum die Hälfte des Diaphysenumfangs umspannen. Im Gegensatz zum Femur kommen viele Metapodienfragmente vor, die über 3/5 der Knochenlänge messen (Foto II/1 im Anhang).


5.1.2.2.b Hausschaf/Hausziege. Für die Stylopodien der Schaf/Ziegen gilt Ähnliches wie für die Humeri der Rinder: die Gruppe der Reste, die rund 2/5 der gesamten Knochenlänge ausmachen, zeichnet sich gleichzeitig durch einen mehrheitlich wenig zerkleinerten Umfang aus. Sie repräsentiert in erster Linie distale Humerusgelenke mit kurzen anhaftenden Schaftabschnitten sowie Diaphysenfragmente des Femur.

Ein nahezu identisches Fragmentierungsmuster lieferte die Analyse des Zygopodium. Die einzige Diskrepanz betrifft den Umfang, der bei den 1/5 und 3/5 der Länge messenden Knochenelementen des Zygopodium etwas vollständiger überliefert ist als bei den entsprechenden Abschnitten des Stylopodium. Das dürfte mit den zahlreichen Bruchstücken von Tibiaschäften, die horizontale Bruchstellen aufweisen, zu erklären sein.

Vom Umfang der Schaf/Ziegenmetapodien ist, unabhängig von deren Länge, oft weniger als die Hälfte erhalten.

5.1.2.2.c Hausschwein. Die Extremitätenknochen der Schweine sind in der Regel weniger zertrümmert als jene der Wiederkäuer. Das fällt vornehmlich für den Umfang auf. Die meist nur leicht bis kaum fragmentierten, distalen Humerus-, Tibia- und proximalen Radiusgelenke stellen zusammen einen überragenden Anteil der Schweineröhrenknochen.

5.1.2.2.d Fazit. Aus den beiden Fragmentanalysen geht hervor, dass die Resultate aus Cazis jenen aus Kastanas (Bronzezeit, Griechenland)²⁶⁰ genauso ähneln wie anderen aus Levroux (Eisenzeit, Frankreich)²⁶¹ oder Pfyn (Römerzeit, Schweiz)²⁶². Die Übereinstimmung lässt sich also nicht an eine Epoche binden. Wie die Untersuchungen zeigten, folgt die Fragmentierung eines Skelettelements im wesentlichen den, von den Knocheneigenschaften (ihrerseits durch Alter, Skelett- und Knochenregion diktiert) vorgegebenen, Regeln. Das Einbettungsmilieu verändert das Bruchstückmuster in der Regel nicht grundlegend, sondern wirkt verstärkend oder abschwächend darauf ein. Man erinnere sich an die lagebedingten Unterschiede im Erhaltungszustand der Tierknochen in Cazis (vgl. Kapitel 3.3.). Um die Wirkung des Einbettungsmilieus zu illustrieren, habe ich die Fragmentanalyse A für die Rinderknochen aus der Frühbronzezeit (Knochen gut erhalten) jener aus der Spätbronzezeit (Knochen öfters schlecht erhalten) gegenübergestellt (Abb.45): der relative Anteil der widerstandsfähigen Knochenpartien (z.B. proximales Metapodiumgelenk) ist bei ungünstigen Erhaltungsbedingungen höher als bei idealen. Umgekehrt verhält es sich mit den unstabilen Regionen (z.B. Kniegelenk).

Abb.45: Cresta-Cazis. Hausrind. Einfluss der Erhaltung auf die Fragmentanalyse A. Schwarz: proximale Epiphysenregion, gerastert: Diaphyse, gestreift: distale Epiphysenregion.

Anthropogene Manipulationen zeichnen sich nur in Extremfällen ab. Weisen die Tierknochen einer Siedlung beispielsweise eine aussergewöhnliche Schlachtalterverteilung auf (hauptsächlich Jungtiere usw.), würde ich stärkere Abweichungen in Fragmentierungsmuster A erwarten. Die direkten Eingriffe der Menschen auf die Knochen (Zerlegen, Zertrümmerung) wirken sich besonders auf das Fragmentierungsmuster B aus. Allgemein hinterlässt auch eine einseitige Ansammlung bzw. das systematische Fehlen gewisser Knochenregionen (Leimsiederei, Auslese für Artefakte, usw.) Spuren an den Fragmentierungsmustern. Die Übereinstimmung der Fragmenttypen und ihrer Häufigkeiten aus der zweiten Bruchstückanalyse mit solchen anderer Siedlungen fällt weniger markant ins Auge als bei der ersten. Im Kapitel 5.3. und 5.6. über die Zerlegungstechnik der prähistorischen Menschen aus Cazis werde ich noch einmal kurz auf diesen Aspekt zurückkommen.

5.1.3. Plattenknochen.

5.1.3.1. Mandibula. Die meisten Bruchstücke der Unterkiefer von Rindern, Schaf/Ziegen und Schweinen stammen aus der zahntragenden Region, der bekanntlich robustesten Zone des Knochens (Muster 2 in Abb.46)²⁶³. Zwischen den Tierarten bestehen nur geringfügige Unterschiede in den prozentualen Anteilen der einzelnen Fragmenttypen: bei den

²⁶⁰ Becker 1986.

²⁶¹ Horard-Herbin 1998.

 ²⁶² Marguerita Schäfer, wissenschaftliche Mitarbeiterin am IPNA, Universität Basel, mündliche Mitteilung.
 ²⁶³ Siehe Kapitel 5.1.1., letzter Punkt der Aufzählung.

Schaf/Ziegen und Schweinen überwiegen, anders als bei den Rindern, Stücke aus dem vorderen Schnauzenteil (vgl. Verhältnis Muster 5:4), wobei die Schnauzenspitze (Muster 3) selten ohne die anhaftende Backenzahnregion auftritt. Bei den Rindern ist die Schnauzenspitze allein relativ zahlreich überliefert (vgl. Verhältnis "Kieferast (Muster 1) zu Schnauzenspitze (Muster 3)"). Der Anteil des Kieferastes allein (Muster 1) ist bei den Rindern am höchsten und bei den Schweinen am niedrigsten. Vollständige Mandibeln existieren nur von den Schaf/Ziegen. Wie bei den Extremitätenknochen bestimmt die Beständigkeit verschiedener Knochenregionen beim Unterkiefer das Muster der Fragmentierung in hohem Mass.

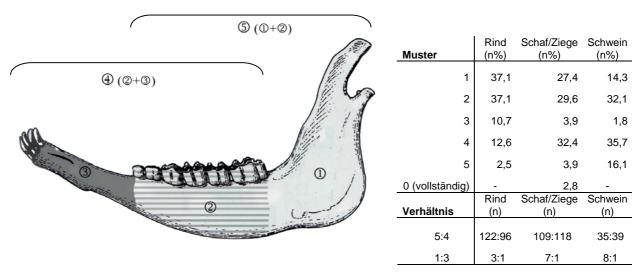
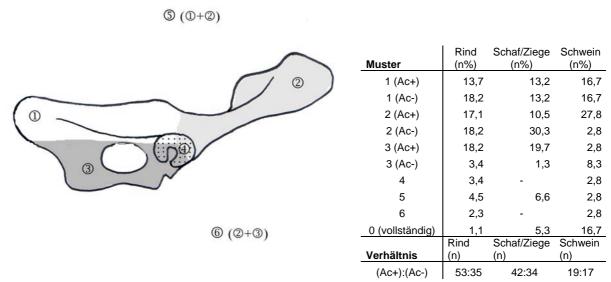


Abb.46: Cresta-Cazis. Fragmentierung der Mandibula bei Hausrind, Hausschaf/Hausziege und Hausschwein.

5.1.3.2. Scapula. Auch bei der Scapula dominieren Fragmente aus den stabilsten Regionen des Knochens (Abb.48): für alle Tierarten gilt, dass Gelenkstücke (Fossa glenoidea) mit einem mehr oder weniger grossen Teil der Schaufel mindestens 20 % (Schaf/Ziegen) bis 30 % (Rinder) ausmachen (Muster 1). Der kräftigere thoracale Rand des Schulterblattes (Muster 5) ist immer häufiger vertreten als der fragilere cervicale (Muster 4), wobei das Verhältnis der



Muster	Rind (n%)	Schaf/Ziege (n%)	Schwein (n%)
1	34,3	22,9	31,8
2	4,5	22,9	40,9
3	1,5	4,2	-
4	23,9	10,4	4,5
5	35,8	39,6	22,7
0 (vollständig)	-		

Abb.48: Cresta-Cazis. Fragmentierung der Scapula bei Hausrind, Hausschaf/Hausziege und Hausschwein.

beiden Regionen bei den Rindern ausgeglichener ist (1,5:1) als bei den Schaf/Ziegen (3,8:1) und den Schweinen (5:1). Der distale Bereich der Scapula (Muster 3) ist bei allen hier besprochenen Haustieren selten erhalten.

5.1.3.3. Pelvis. An mehr als der Hälfte der Beckenfragmente ist das Acetabulum oder Teile davon beteiligt (Abb.49). Die deutlichsten Unterschiede zwischen den Tierarten betreffen die Anteile des Pubis- und Iliumbereichs: beim Ilium des Rindes halten sich die Stücke mit und solche ohne Acetabulum ungefähr die Waage. Bei den Schaf/Ziegen und Schweinen machen Iliumfragmente ohne Acetabulum die Mehrheit aus. Auffallend für die Schweine ist die relativ geringe Anzahl an Bruchstücken aus der Pubisregion.

Abb.49: Cresta-Cazis. Fragmentierung des Pelvis bei Hausrind, Hausschaf/Hausziege und Hausschwein. (Ac+): mit Acetabulum, (Ac-): ohne Acetabulum.

5.2. Verteilung der Körperregionen²⁶⁴

5.2.1. Einleitung.

Die Überlieferung von Tierknochen aus prähistorischen Siedlungen ist meist selektiv. Gewisse Skelettelemente bzw. –regionen kommen gehäuft vor, während andere fehlen. Funde vollständiger Skelette gelten als Besonderheit²⁶⁵. Die entscheidende Frage lautet, inwieweit der prähistorische Mensch für die verschiedenen, systematischen Verteilungsmuster von Körperregionen verantwortlich gemacht werden darf (Abb.50).

Vergegenwärtigt man sich den natürlichen Zersetzungsprozess eines Tierkadavers, so startet die Disartikulation der Knochen in der Regel an Kopf und Vorderextremität, darauf folgen die Hinterbeine und schliesslich das Axialskelett²⁶⁶. Falls Carnivoren oder andere Tiere die Gelegenheit haben, sich an der Leiche gütlich zu tun, hängt es unter anderem von der Dauer ihrer Exponierung ab, wie viel und was von ihr übrig bleibt.

Wenn das tote Tier jedoch unmittelbar nach seinem Tod in den Boden gelangt, sei es durch natürliche Umstände (vgl. Fossilien) oder durch menschliches Dazutun (z.B. Opfertiere,

²⁶⁴ Einführende Literatur: Toots 1965, Hill 1975 und 1979, O'Connor 2000, Kapitel 7.

²⁶⁵ Gandert 1953, S. 201, Coblenz u. Fritzsche 1961, S. 77 ff, Pucher 1992, Riedel 2001, S. 78f.

²⁶⁶ Toots 1965, S.38, Hill 1975, S. 741, Binford 1981, S. 42f.

Beseitigung von Seuchenopfern, Tierbestattung²⁶⁷ usw.), existiert die Chance, dass es etliche Jahre später als vollständiges Skelett geborgen werden kann.

Steht die Nutzung des Tierkörpers durch die Menschen im Zentrum, bestimmen die vielfältigen Verwertungsmöglichkeiten seine Portionierung: Speisereste unterscheiden sich sowohl von Schlacht- als auch von Gerbereiabfällen, die Verarbeitung der Knochen zu Artefakten hinterlässt andere Überreste als die Leim-, Knochenmark- oder Baumaterialgewinnung.

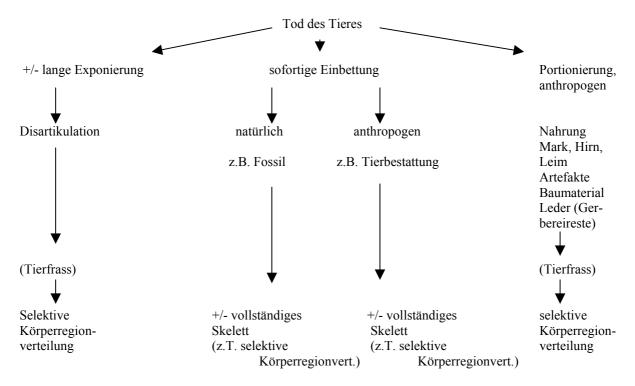


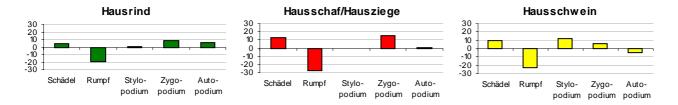
Abb.50: Überblick: Einflüsse auf die Körperregionverteilung.

Um einen ersten Eindruck davon zu erhalten, welche Körperpartien bzw. Skelettelemente bei den wichtigsten Haustieren aus Cresta-Cazis wie stark vertreten sind (nach Gewichtsprozenten), wurden die Fragmente aller untersuchten Schichten zusammengefasst analysiert und nach Fleischregionen sortiert²⁶⁸. Die Knochen sind, je nach ihrer Lage im Tierkörper, von unterschiedlich grossen Fleischpaketen umgeben: dem Kopf, dem Stylopodium sowie den Wirbeln und Rippen haftet viel oder einige Hirn- bzw. Muskelmasse an, während weniger bis kaum Fleisch das Zygo- und Autopodium umhüllt.

5.2.2. Resultate.

Die Auswertungsresultate für die Schädel- und Rumpfregion entsprechen in groben Zügen dem Bild, das wir aus vielen prähistorischen Siedlungen kennen (Abb.51)²⁶⁹: der Unterkiefer ist praktisch immer mehr oder weniger stark übervertreten, währenddessen hat es von den Rippen, Wirbeln und Schädelteilen stets verhältnismässig zu wenig. Dies trifft für jede der hier besprochenen Haustierarten zu. An Deutungen für diese Regelhaftigkeit, die sich weder

²⁶⁷ Z.B. Behrens 1964.


²⁶⁸ Die relative Häufigeit (n%) der verschiedenen Skelettelemente bei den Rindern, Schweinen, Schafen und Ziegen kann im Anhang (Tabelle IV) nachgeschaut werden.
²⁶⁹ Ebersbach 1998, S. 25f.

auf bestimmte Epochen noch auf ausgewählte geographische Regionen beschränkt, mangelt es nicht²⁷⁰, durchzusetzen vermochte sich jedoch keine so richtig. Naheliegend wäre die Interpretation als ein erheblich durch die Knocheneigenschaften diktierter Prozess, wie er für die, vielerorts ähnlichen, Fragmentierungsmuster vorgeschlagen wurde (vgl. Kapitel 5.1.2.2d). Der Einwand, dass bei paläontologischen, ungestörten Funden eine Untervertretung der Rumpfregion nicht zu beobachten ist, vermag nicht standzuhalten, weil der Fossilisationsprozess speziellen taphonomischen Regeln folgt, die mit der üblichen Einlagerung archäologischer Knochenreste nicht ohne weiteres gleichzusetzen sind (siehe Abb.50 in Kapitel 5.2.1.): der ganze Tierkörper wird gleichzeitig und im Verband eingebettet, so dass schliesslich alle Skelettelemente und Knochenregionen, ungeachtet ihrer unterschiedlichen Knocheneigenschaften, vertreten sind. Dieselbe Argumentation hat auch für komplette Skelette aus archäologischen Fundzusammenhängen ihre Gültigkeit. Die vollständige Präsenz der Wirbel und Rippen lässt sich hier ebenfalls mit den speziellen Einbettungsbedingungen (Einlagerung ohne vorangegangene Zerlegung und Portionierung des Tierkörpers oder Selektion bestimmter Knochen zur Weiterverarbeitung usw.) begründen. Neben den bereits erwähnten unterschiedlichen Knocheneigenschaften der Skelettelemente spielt bei der chronischen Untervertretung der Rumpf- und Schädelregion aber auch deren zahlenmässige Repräsentanz im Tierkörper eine nicht zu unterschätzende Rolle: die Wahrscheinlichkeit, dass zwischen Zerlegung und Einbettung von den Wirbeln oder von den Rippen einer bzw. eine gefressen, verschleppt oder zersetzt wird, ist um ein Vielfaches grösser als der Verlust eines der beiden Schienbeine²⁷¹. Für das Gewicht trifft insofern gleiches zu, weil ein einzelner kompakter Knochen dem Schwund weniger Angriffsfläche bietet als mehrteilige Brustkörbe oder Wirbelsäulen. Es lässt sich also die Schlussfolgerung ziehen: von einem Individuum, dessen Körperteile zerstreut und unabhängig voneinander in den Boden gelangten (Zerlegung, Portionierung usw.) findet man naturgemäss weniger Knochen als von einem, das im Verband vergraben wurde. Der Verlust wirkt sich bei den aus vielen Elementen zusammengesetzten Skelettregionen (Rippen bzw. Brustkorb, Wirbelsäule, Schädel) am stärksten aus. Eine andere Beobachtung im Zusammenhang mit der chronischen Untervertretung der Rumpf- und Schädelregion ist zu erwähnen: einerseits wird und wurde das Sammeln von Knochen zur Markgewinnung von den verschiedensten Kulturgruppen in sämtlichen Zeitepochen praktiziert, und andererseits eignen sich nicht alle Skelettelemente für diesen Zweck. Mit Röhren- und Unterkieferknochen, die besonders reich an Knochenmark sind, verfuhr man womöglich anders als mit den marklosen Wirbeln, Rippen und Schädelteilen. Einschränkend muss hierzu angemerkt werden, dass die ebenfalls markarmen Schulterblätter und Becken durchaus nicht so regelmässig untervertreten sind wie Wirbel, Rippen und Schädelteile (Abb.52). Schliesslich bleibt abzuklären, ob die chronologische und geographische Regelhaftigkeit in der Verteilung der Körperregionen von Nutztieren dadurch zustande kommt, weil es sich bei den meisten Materialien um nicht näher definierten Siedlungsabfall²⁷² handelt. Wirft man nämlich einen Blick auf Knochenensembels aus speziellen Befundsituationen (z.B. Gerbereigrube, Küche mit viel Speiseresten, Latrinen), weichen die Resultate aus der Körperregionverteilung vom allgemeinen Bild ab. Unter diesem Aspekt gibt es für die Deutung von Wirbel und Rippen in Siedlungsabfällen folgende Möglichkeit. Die einfachste Möglichkeit, das Fleisch um Wirbel und Rippen zu nutzen, besteht darin, diese in Suppen oder Eintöpfen mitzukochen. In dem Fall wären die Rumpfknochen als Speise- und nicht als Schlachtabfall zu deuten.

²⁷⁰ Brain 1967, Lyon 1970, Thawley 1982, S. 213, Becker 1986, S. 254, Ebersbach 1998, S. 25.

²⁷¹ Beispiel Rind: bei einer durchschnittlichen Wirbelzahl von 46 (Sacrum als 1 gezählt) ist die Wahrscheinlichkeit eines Wirbelverlustes 23 Mal höher als bei der Tibia, von der jeweils nur zwei Exemplare pro Tier existieren. ²⁷² Schlachtabfall, Speiseabfall, Werkabfall vermischt.

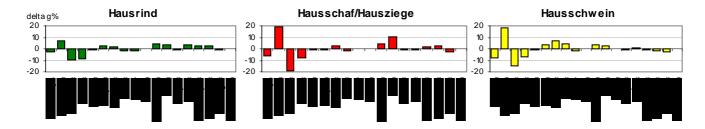

Für die Körperregionanalyse wurden alle kleinen Wiederkäuer zusammengefasst. Das hat folgenden Grund: die artspezifische Unterscheidung ist nicht bei allen Skelettelementen gleich schwierig bzw. einfach (vgl. Kapitel 5.3.1.), was sich unweigerlich einseitig auf deren Verteilung auswirkt²⁷³.

Abb.51: Cresta-Cazis. Fleischregionverteilung (Planum 1- 14 zusammengefasst) bei Hausrind, Hausschaf/Hausziege und Hausschwein.

Die Differenzen bezüglich der Körperregionverteilung zwischen den drei Haustierarten konzentrieren sich auf das Extremitätenskelett. Charakteristisch für die Rinder ist das relative Überwiegen der fleischarmen Partien (Zygo- und Autopodium). Bei den Schaf/Ziegen prägen die typischerweise sehr hohen Anteile des Zygopodium das Verteilungsmuster. Als unverkennbare Spezialität fällt innerhalb der Schweineknochen die Überrepräsentanz der fleischreichen Stylopodien auf.

Was aus dem Blickwinkel auf die Fleischregionen nicht zum Ausdruck kommt, kann unter Umständen die detaillierte Skelettelementanalyse klären. Sie gibt Auskunft über die Repräsentanz einzelner Knochen (Abb.52).

Abb.52: Cresta-Cazis. Skelettelementverteilung (Planum 1- 14 zusammengefasst) bei Hausrind, Hausschaf/Hausziege und Hausschwein.

5.2.2.1. Hausrind. Bei den Rindern liegt das Gleichgewicht zwischen den Elementen der Vorder- und Hintergliedmassen (Stylo- bis und mit Zygopodium) auf der Seite der erstgenannten. Möglicherweise besteht ein Zusammenhang damit, dass sich die vorderen Extremitäten, vor allem bei grossen Tieren, leichter entfernen lassen als die hinteren, weil die Scapula lose, und das Pelvis fest mit der Wirbelsäule verbunden ist.

²⁷³ Die Informationen über die Häufigkeit der verschiedenen Skelettelemente (n%) können, für die einzelnen Tierarten getrennt, der Tabelle IV im Anhang entnommen werden.

An der Übervertretung der Rinderzygopodien sind massgeblich Radius und Ulna beteiligt. Speziell für die Ulna kommt in Frage, dass die Menschen sie für die Geräteherstellung behalten bzw. gesammelt haben. Wie die Liste der Artefakte (Tabelle VII im Anhang) zeigt, hat man aus ihr häufig Spitzen angefertigt. Als eine Erklärung für die zahlreichen Reste der Metapodien kann die Markgewinnung aufgeführt werden. Die relative Übervertretung des Zygo- und Autopodium bei den Rindern könnte also einerseits das Horten von Knochen als Rohmaterialreserve wiederspiegeln. Andererseits besteht auch die Möglichkeit, dass das fleischreiche Stylopodium bereits am Schlachtplatz (in diesem Fall ausserhalb der Siedlungsspalte) entbeint wurde oder dass die Bewohner es nicht in den Häusern des Dorfes zubereitet, sondern beispielsweise auf dem Hügelplateau zu Vorratszwecken luftgetrocknet haben. Die Anteile von Wirbel und Rippen liegen bei den Rindern mehr oder weniger gleich weit unter dem Referenzwert. Bei den Rippen sei ebenfalls ihre mögliche Verwendung in der Geräteherstellung (z.B. Hechelkämme²⁷⁴) erwähnt. Zu den Mandibeln muss angemerkt werden, dass sie bei den Rindern nicht in dem starken Mass überrepräsentiert sind wie bei den kleineren Haustieren (Schaf/Ziege und Schwein).

5.2.2.2. Hausschaf/Hausziege. Ein Blick auf Abb. 52 verdeutlicht, dass unter den Schaf-/Ziegenknochen vor allem Tibien in beachtlichen Mengen gefunden wurden. Man könnte argumentieren, dass selbst kleine Fragmente der Tibia leichter identifiziert werden können als solche anderer Knochen, und dies als Erklärung für ihr gehäuftes Auftreten anbringen. Ich zweifle jedoch daran. Becker²⁷⁵ erklärt das zahlreiche Vorkommen von Tibien in Kastanas mit der Verwendung dieser Skelettelemente in der Gerätefabrikation (vgl. oben: Rinderulnae). In Cresta-Cazis überwiegen unter den bearbeiteten Knochen aber nicht die Tibien, sondern die Ulnae. Die Untervertretung des Rumpfes ist zu mehr als zwei Dritteln durch die Wirbel bedingt.

5.2.2.3. Hausschwein. Eine Aufgliederung des fleischreichen Schweinestylopodium in seine Einzelpartien macht ersichtlich, dass seine Dominanz gegenüber anderen Körperregionen auf den Humerus, das Pelvis und die Scapula zurückzuführen ist. Der Femur trägt dazu nichts bei. Das liegt aber nicht an der Schwierigkeit, bei den kleinen Schaftfragmenten dieses Skelettelements zwischen kleinen Hauswiederkäuern und zierlichen Hausschweinen zu unterscheiden. Insgesamt konnten nämlich lediglich drei Femurstücke weder der einen noch der anderen Tiergruppe zugeordnet werden. Möglicherweise hat man den Schinken öfters einmal gegen andere Waren eingetauscht, speziell zubereitet oder bevorzugt als Proviant (beispielsweise beim Viehhüten, bei der Arbeit auf dem Feld, bei bergbaulichen Tätigkeiten) mitgenommen (vgl. Kapitel 3.6.). Was die Wirbel der Schweine betrifft, sind sie stärker untervertreten als die Rippen.

5.2.2.4. Chronologische Veränderungen in der Skelettelementverteilung. Über die potentiellen chronologischen Schwankungen in der Repräsentanz der verschiedenen Fleischregionen (Abbildung III im Anhang) lässt sich verallgemeinernd sagen, dass sie sich bei den Schweinen am ausgeprägtesten abzeichnen. Das mag unter anderem mit der geringeren Menge an Schweineknochen pro Schicht zu tun haben. Einige wenige Tendenzen kristallisieren sich dennoch heraus. Für das Rind stellt man eine relative Abnahme der Unterkiefer ab der Mittelbronzezeit (Planum 11) fest. Parallel dazu ist das Stylopodium ab Planum 10 nicht mehr

_

²⁷⁴ Hechelkämme sind in Cresta-Cazis nicht nachgewiesen.

²⁷⁵ Becker 1986, S. 257 und 284.

unter-, sondern leicht übervertreten. Bei den Schaf/Ziegen steigt der hohe Anteil der Zygopodien ab Ende der Frühbronzezeit noch weiter an.

5.2.3. Kritische Überlegungen zur Skelettregionverteilung.

Nimmt man die Erkenntnisse aus der Fragmentanalyse noch einmal auf und bringt sie mit der Skelettelementverteilung in Verbindung, wird deutlich, dass bei der Verteilung der Skelettelemente nicht mit fundamentalen Überraschungen zu rechnen ist, wenn in der Fragmentanalyse keine nennenswerten Abweichungen vom allgemeinen Grundschema vorkommen.

Oft unterscheiden sich der ermitteltete prozentuale Anteil eines ausgewählten Skelettelements bzw. einer Fleischregion für eine Tierart und der entsprechende Wert des Referenzskeletts nur wenig. Für die vorliegende Arbeit gilt das persönliche Richtmass, dass Differenzen (delta g%), die 5 % nicht übersteigen, im üblichen Variationsbereich liegen. Um Überinterpretationen zu vermeiden, schadet es nicht, sich einige der Faktoren zu vergegenwärtigen, welche die Aussage einer Skelettelementanalyse unter Umständen beeinflussen können:

- Einfluss der Befundsituation: damit ein spezielles Zerteilungsmuster überhaupt als solches erkannt wird, dürften die verschiedenen Abfälle (aus Gerberei, Artefaktherstellung usw.) vor der Einlagerung nicht vermischt worden sein. Diese Voraussetzung ist natürlich oftmals nicht gegeben. Gerade in Cresta-Cazis, wo man die Knochen auch als Baumaterial verwendet hat (Auffüllschichten) muss diesem Umstand Rechnung getragen werden.
- Einfluss der Bestimmbarkeit: je kleiner das Bruchstück, umso geringer die Chance, es einem Skelettelement oder einer Tierart zuzuordnen. Nicht identifizierte Splitter scheiden aus der Untersuchung aus, so als ob sie nicht existieren würden. Lyman schreibt darüber: "a collection of bone fragments may contain pieces of, say, femora, but if those pieces are sufficiently small and the anatomical landmarks are sufficiently incomplete, then the analyst will be unable to identify the femur"²⁷⁶.
- Einfluss der Interpretation: sowohl die Über- als auch die Untervertretung von Elementen, die zum Beispiel in der Artefaktherstellung Bedeutung hatten (die Ulna kleiner Hauswiederkäuer usw.), können als Hinweis darauf verwendet werden, dass aus ihnen Knochengeräte angefertigt worden sind. Im ersten Fall lässt sich argumentieren, dass man es direkt mit dem gezielt für die Artefaktherstellung gesammelten Knochenvorrat zu tun hat. Im zweiten Fall ginge man dementsprechend umgekehrt davon aus, dass die brauchbaren Stücke aussortiert und zur Verarbeitung weggegeben wurden.

5.3. Zerlegen und Zubereiten

Unmittelbar nach der Tötung des Tieres setzte ein im Voraus festgelegter Ablauf von Arbeitsschritten ein, der dem späteren Verwendungszweck der verschiedenen tierischen Produkte angepasst war. Durch das Häuten verursachte Schlachtspuren unterscheiden sich von solchen, die das Zerteilen des Körpers zum Ziel hatten oder die Entfernung des Fleisches vom Knochen. Jedoch hinterliessen nicht nur Tätigkeiten vor oder während der Nahrungszubereitung anthropogene Spuren an den Knochen: nachdem das Fleisch verspiesen war, bearbeitete man ausgewählte Skelettelemente für weitere Zwecke wie zum Beispiel zur Markgewinnung oder zur Artefaktherstellung.

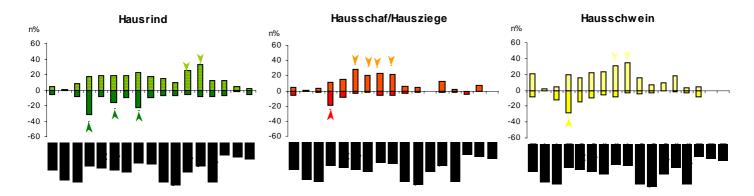
_

²⁷⁶ Lyman 1991, S. 426.

5.3.1. Hackspuren.

Die Hackspuren an den Tierknochen aus Cresta-Cazis zeugen in erster Linie von der Zerlegung des Schlachtkörpers (Abbildungen IV/A-B im Anhang). Diese folgte der Regel: je grösser das Tier, desto mehr Hiebe sind nötig, um die gewünschten Portionen zu erhalten (Abb.53). Den kleinsten Anteil an Knochen mit Hackspuren weisen infolgedessen die kleinen Hauswiederkäuer mit 13,6% auf. Die Rinderknochen waren am zahlreichsten zerhackt (26,1%), jedoch nur geringfügig häufiger als die der Schweine (25,5%).

Die am stärksten von Hackspuren betroffene Skelettregion ist bei den Rindern, den Schweinen und den Schaf/Ziegen die Wirbelsäule. Gehäuft kommen Hackspuren auch an Scapula und Pelvis der Rinder vor (Abb.53). Hervorzuheben ist hier die wiederholt vorkommende Längsspaltung der Scapula (Foto II/6 im Anhang), für die ich keine Erklärung habe.


Für jene Hackspuren oder auch Schlagpunkte (vgl. Kapitel 5.3), die eine Längsspaltung der Röhrenknochen (vornehmlich von Rindern) zur Folge hatten, nehme ich an, dass sie entweder mit der Markgewinnung oder der Artefaktherstellung in Zusammenhang stehen (vgl. Kapitel 5.1.2.2a und 5.1.2.2d).

5.3.2. Schnittspuren

Schnittspuren können sowohl von der Zerlegung, der Häutung oder dem Entfleischen herrühren (Abbildung IV/A-C).

An den Gelenkregionen v.a. von Stylo- und Zygopodiumelementen korrelieren Anhäufungen von Ritz- oder Schnittspuren am häufigsten mit den Bemühungen, diese mittels Durchtrennen der Sehnen zu separieren (Zerlegung). Die betroffenen Stellen verteilen sich beim Rind gleichmässig auf die Extremitäten. Bei den kleinen Hauswiederkäuern dominieren Schnittspuren an den vorderen und hinteren Elementen des Stylopodium. Viele von ihnen stehen mit dem Zerteilen des Körpers im Zusammenhang. Es fällt auf, dass das Zygopodium generell verhältnismässig wenige Einritzungen aufweist.

Das Häuten eines Tierkörpers hinterlässt dort die meisten Spuren, wo zwischen Haut und Knochen nicht mehr viel Muskelmasse liegt. Typische Stellen befinden sich zum Beispiel am Schädel oder an den Enden der Gliedmassen (Autopodium). In der Regel verlaufen die beim Häuten entstandenen Schnittspuren zirkulär um den Röhrenknochen herum. Keine anderen Skelettelemente der Rinder sind prozentual so oft mit Schnittfurchen versehen wie die Tarsalia und Carpalia (Abb.53). Möglicherweise kommen sie als Indiz für das Abziehen der Haut in Frage. Es fällt aber auf, dass beim Schwein und den kleinen Hauswiederkäuern gerade an

Abb.53: Cresta-Cazis. Relative Häufigkeit (n%) der Schnitt- und Hackspuren an den verschiedenen Skelettelementen bei Hausrind, Hausschaf/Hausziege und Hausschwein. Gestreift: Schnittspuren, uni: Hackspuren, Pfeile markieren die Maxima.

Tarsaliafragmenten ebenfalls kumuliert Schnittspuren auftreten. Stehen sie also eher primär mit der Schlachtmethode im Zusammenhang, bei welcher der Tierkörper an den Füssen aufgehängt proportioniert wird? Die tiefen Schnittspuren auf dem Hinterschädel zweier Schafe können als Indiz für die Balgverwertung gedeutet werden. Der Hilfe eines Messers bedarf es ferner, um das von einer Haut umhüllte Muskelfleisch vom Knochen zu lösen²⁷⁷. Von dieser Tätigkeit könnten im Fundgut von Cresta-Cazis beispielsweise die längsverlaufenden Einritzungen auf der Ventral- und Dorsalseite von Scapulae und Pelvis (bei Rind und Schwein) zeugen (Foto II/7). Nach Binford stehen ähnliche Spuren auf der Oberseite der Scapula mit dem Prozess des Fleischtrocknens in Zusammenhang: die nicht vollständig vom Knochen gelösten Muskelpakete hängen frei von der Scapulafläche herunter und sind so für eine konservierende Verarbeitung zugänglich²⁷⁸. Bei den Schweinen ist das hintere Stylopodium verstärkt von Schnittspuren betroffen (Abb.53). Die meisten von ihnen dürften beim Entfernen des Muskelfleisches entstanden sein (Abbildung IV/C im Anhang).

5.3.2. Schlagpunkte.

Offensichtlich besteht eine enge Beziehung zwischen Schlagpunkten und der Markgewinnung: Schläge hinterlassen typische Spuren auf dem Knochen (Foto II/9) und diese sind ausschliesslich auf markhaltigen Skelettelementen nachgewiesen. Haut man den Knochen mit einem gezielten Hieb gegen eine Kante (Stein usw.), bricht er auseinander. Auf diese Weise lässt sich das nahrhafte Mark im Innern des Knochens freilegen. Bei den Schafen und Ziegen setzte man die Technik des Knochenaufspaltens am häufigsten ein. Schlagpunkte in Kombination mit dunkelbraunen Verfärbungen zeugen in Cazis davon, dass man sich, vorzugsweise bei den massiveren Knochen der Rinder und teilweise auch der Schweine, durch deren vorheriges kurzes, lokales Erhitzen das Aufschlagen erleichtert hat (vgl. Kapitel 5.4.)²⁷⁹. Falls dies nicht genügte, half man sich mit Werkzeug (vgl. Kapitel 5.3.1.).

5.4. Brand- und Hitzespuren

²⁷⁸ Binford 1978, S. 101 Fig. 3.9.

Im Zusammenhang mit der Thematik dieses Kapitels interessieren insbesondere jene Brandspuren, die während der Nahrungspräparation entstanden. Sie sind es, die uns Aufschluss darüber geben können, welche Partien man gekocht, gebraten oder zur Markentnahme aufgeschlagen hat. Verknüpft mit den Zerlegungsspuren und der Skelettregionverteilung erlauben sie im Idealfall Einblicke in die Zubereitungstechnik. Wurde das Fleisch beispielsweise vor dem Garen entbeint, wie es besonders für grosse, unhandliche Portionen (z.B. Humerus vom Rind) denkbar ist, so blieb der entfernte Knochen vom Einfluss des Herdfeuers verschont. Beliess man den Knochen im Fleischstück, war die Wahrscheinlichkeit, dass er angeschmort wurde, beim Braten grösser als beim Kochen. Nicht alle Brandspuren lassen sich mit der Nahrungszubereitung in Verbindung bringen. Gelangen entfleischte Knochenstücke ins Feuer oder in verbranntes Material (z.B. Holzkohle), hinterlässt das an ihnen genauso verkohlte Regionen. Als Unterscheidungskriterium dient hauptsächlich die Lage der Brandspuren. Das heisst, man klärt ab, "ob ... ein Knochen ... regellos angesengt ...ist oder ob die Brandspuren an ganz bestimmten Stellen der

²⁷⁷ Z.B. an der Innenseite von Rippen (beobachtet von Sabine Deschler-Erb an römischem osteologischem Fundgut aus Kaiseraugst und an rezenten Tierknochen aus der Metzgerei).

²⁷⁹ An den relativ zierlichen Knochen der Schafe und Ziegen ist diese kombinierte Technik seltener zu beobachten.

Skelettelemente auf relativ eng umschriebenem Gebiet und mit gewisser Regelmässigkeit in Erscheinung treten"²⁸⁰.

	n	n%	n% der Brandspuren
part. Verkohlung	204	1,3	46,3
völlige Verkohlung	22	0,1	5,0
D Verkohlung+part. Kalz.	14	0,1	3,2
A Verkohlung tot	240	1,6	54,4
part. Kalzinierung	1	0,01	0,2
völlige Kalzinierung	9	0,1	2,0
D Verkohlung+part. Kalz.	14	0,1	3,2
B Kalzinierung tot	24	0,2	5,4
C Hitze- und Feuereinwirkung (ohne Verkohlung)	177	1,1	40,1
total Brandspuren (A+B+C)	441	2,9	100
total Fragmente ohne P12	15427	100	

Tab.13: Cresta-Cazis. Anteile der verschiedenen Brandspurentypen. (Planum 12 nicht berücksichtigt).

In Cresta-Cazis sind insgesamt nur an sehr wenigen Tierknochen (2,9%) Einwirkungen von Hitze oder Feuer zu beobachten (Tab.13). Es wären noch weniger, wenn nicht Dorf- und Hausbrände die Bewohner des bronzezeitlichen Spaltendorfes periodisch auf Trab gehalten hätten²⁸¹. Die höchsten Werte mehr oder minder angesengter Knochen treten in jenen Siedlungsphasen auf, in denen Feuersbrünste nachgewiesen werden konnten (Abb.54), doch selbst da erreichen sie nie mehr als 7,4%. Es kann daher in Erwägung gezogen werden, dass zum Zeitpunkt des Feuerausbruchs sehr wenig Knochen oberflächig in der Siedlung verstreut herumlagen (vgl. Kapitel 5.6.). Andererseits besteht auch die Möglichkeit, dass man für verkohltes Knochengut (zusammen mit Holzasche usw.) eine spezifische Verwendung (z.B. als Dünger für die Felder oder zur Äscherung beim Gerben²⁸²) hatte und dieses deshalb in der Siedlungsspalte kaum oder wenig vertreten ist.

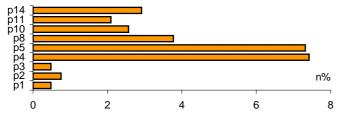


Abb.54: Cresta-Cazis. Totaler Anteil der Fragmente mit Brandspuren (Verkohlung, Kalzinierung, Hitzeeinwirkung ohne Verkohlung) pro Schicht.

In Planum 4 fiel nahezu das ganze Dorf den Flammen zum Opfer. Die einzigen kalzinierten²⁸³ Fragmente, die von sehr hohen Temperaturen zeugen, stammen denn auch aus dieser Zeit. Planum 12 wurde aus der Untersuchung ausgeschlossen, weil sehr viele der Knochenfragmente, die während der betreffenden Grabungskampagne geborgen wurden, rezente Brandspuren aufweisen (Foto I/3 im Anhang)²⁸⁴. Knochen aus der Region von

²⁸¹ Wyss 2002, S. 52 und 224.

Planum 4: Dorfbrand, Planum 8: Hausbrand, Planum 9: Hausbrand.

²⁸⁰ Becker 1986, S. 263.

²⁸² Ottiger u. Reeb, S. 53.

²⁸³ Wahl 1982.

²⁸⁴ René Wyss, mündliche Mitteilung: die Bedingungen während der Grabungskampagnen waren sehr feucht. Um die nassen Knochen vor Pilzbefall und Fäulnis zu bewahren, hat man sie auf dem Rost über dem Feuer getrocknet. Es ist nicht auszuschliessen, dass sie dort einmal etwas zu lange gelegen sind.

Herdstellen sind nicht häufiger angekohlt als andere. Die Befunde aus der Analyse der Feuereinwirkungen auf die Knochen sprechen dafür, dass es auf der Cresta grundsätzlich nicht üblich war, das Fleisch zu braten. Stets wiederkehrende Muster von Bratspuren, wie sie Becker und andere für die spätbronzezeitlichen Schichten in Kastanas beschreibt, kristallisieren sich hier nicht heraus. Viel eher haben die Menschen das Fleisch als Zutat in Hülsenfrucht- oder Getreideeintöpfen mitgekocht. Die Möglichkeit, dass man entbeinte Fleischstücke gebraten hat, besteht natürlich. Ich halte es aber aus mehreren Gründen für nicht sehr wahrscheinlich, dass man diese Technik in Cazis öfters angewendet hat: beim Braten tropfen Kalorien in Form von Fett ungenutzt ins Feuer, eine Verschwendung für die damalige Zeit. Durch Kochen wird das Fleisch weniger zäh als beim Braten²⁸⁵. Zudem beansprucht das Garen von Fleisch direkt über dem Feuer ständige Aufmerksamkeit und Kontrolle. wohingegen beim Kochen im Topf Zeit bleibt für andere Beschäftigungen nebenbei. Weiterführend böten sich zu dieser Thematik Fettsäureanalysen an der Gebrauchskeramik oder an den ihr anhaftenden Nahrungsrückständen an. Die nachgewiesenen Fette geben Aufschluss darüber, welche Nahrung in den Töpfen zubereitet wurde (Unterscheidung zwischen Fleisch, Milch, pflanzlich). Kürzlich wurden solche Analysen für die neolithische Siedlung Arbon durchgeführt²⁸⁶. Die Ergebnisse zeigten, dass in diesem Dorf Fisch und Wild eher gebraten und das Fleisch der anderen Tiere gekocht wurde.

Die meisten der Anzeichen von Hitzeeinwirkungen ohne Verkohlung (40,1% aller Brandspuren) stehen im Kontext mit der Knochenmarkgewinnung. Die lokalen dunkelbraunen Verfärbungen treten oft in Kombination mit Schlagpunkten auf. Vor allem bei den massiveren Stücken scheint man sich durch vorangehendes lokales Erhitzen des Knochens seine Aufspaltung erleichtert zu haben.

Eine zweite, weniger häufige, Art von Hitzeeinwirkungen ohne Verkohlung betrifft die Schweinezähne. Der Zusammenhang mit der Markgewinnung ist hier, im Gegensatz zu den Rindern, aufgrund der meist fehlenden Hitzespuren auf dem Kieferknochen nicht gegeben. Vielleicht hat man auf der Cresta doch ab und zu ein Schwein am Spiess gebraten?

5.5. Artefakte

Ein Teil der bearbeiteten Tierknochen ist bereits publiziert²⁸⁷. Die mit dem vorliegenden Bericht hinzukommenden Artefakte entsprechen dem bisherigen Bild: es gibt wenige aufwendig gefertigte Stücke. Bei den meisten handelt es sich um "ad hoc" Instrumente, die bei Bedarf in kurzer Zeit produziert werden konnten, und die man nach dem Gebrauch wieder wegwarf. Für die Herstellung dieser "Alltagsgeräte" waren die Knochen kleiner Hauswiederkäuer und Rinder am beliebtesten (Tabelle VII im Anhang). Die Ulnae von Schafen und Ziegen benutzte man speziell für Pfrieme und Spitzen (Foto V/1 im Anhang). Der Verwendungszweck der Tibiae war variabler. Neben Spitzen und Spateln fällt ein besonders schönes, stark poliertes, Stück ins Auge (Abb.55), dessen einstige Funktion nicht festgelegt werden kann. Seine Form scheint wie geschaffen, um durch das Hineinblasen Töne zu erzeugen. Die Tatsache, dass dies mit ein bisschen Übung funktioniert, reicht für eine Deutung als "Hirtenpfeife" nicht aus.

²⁸⁵ Dumont 1987. Dumont geht davon aus, dass die Muskelbeschaffenheit den Ausschlag gibt, wie das Fleisch zubereitet wird (braten, kochen usw.).

²⁸⁶ Spangenberg 2004, S. 284- 293.

²⁸⁷ Wyss 2002, S. 248- 266.

Abb.55: Cresta-Cazis. Artefakt aus der Tibia eines Schafes oder einer Ziege. Einseitig erfolgte Halbbohrung und starke Politur. Der schwarze Balken in rechter Bildecke entspricht einem Zentimeter.

Von den Rinderknochen verwendete man am häufigsten die Rippen und die Transversalfortsätze der Brustwirbel zur Werkzeuganfertigung. Die unzähligen, kreuz und quer verlaufenden Schleif- und Politurspuren auf ihrer Knochenoberfläche machen eine Deutung als Fragmente von Hechelzähnen wahrscheinlich, die bei der Gewinnung der Leinfasern zum Einsatz kamen (Foto V/2 im Anhang).

Auch für die Rinder sei eine kleine Spezialität angefügt: der Gelenkteil eines Unterkiefers wurde zu einem Haken umfunktioniert (Foto V/3 im Anhang). Ein identisches Stück findet sich bereits bei den Artefakten aus der Publikation von Wyss²⁸⁸.

Bei den Schweinen lag das Interesse in erster Linie bei den Fibulae für die Anfertigung von Spitzen und Nadeln und bei den Eckzähnen (Hauer) der Eber, die man zu Schmuck verarbeitet hat.

Nach der Durchsicht der Knochengeräte in der Publikation von Wyss habe ich etwas mehr Artefakte aus Hirschgeweih erwartet als nur ein einzelnes Bruchstück. Es handelt sich dabei um ein beidseitig durchlochtes und extrem überschliffenes Fragment mit unbekanntem Verwendungszweck (Foto V/4).

Schliesslich kann das Gerätespektrum in Cazis neu mit einem weiteren Wildtier, dem Braunbären ergänzt werden. Der betreffende Eckzahn wurde durchlocht, was an seinen Gebrauch als Anhänger oder Amulett denken lässt (Foto V/5).

Die vorrangige Bedeutung von Knochen als Werkstoff zur Herstellung von Alltags- bzw. Gebrauchsgegenständen unterstreicht das Bild einer bäuerlichen Bevölkerung²⁸⁹. Die mehrheitlich aus der Frühbronzezeit stammenden Artefakte wiederspiegeln in ihrer tierartlichen Zusammensetzung exakt die frühbronzezeitliche Situation, wie wir sie in der vorliegenden Arbeit für die übrigen Tierknochen kennengelernt haben: kleine Hauswiederkäuer und Rinder sind in ähnlicher Zahl am häufigsten vertreten, während die Schweine und Wildtiere einen kleinen Anteil ausmachen²⁹⁰.

-

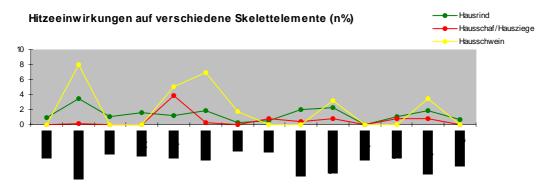
²⁸⁸ Wyss 2002, S. 262, Abb. 10, Fig. 15 a-b.

²⁸⁹ Wyss 2002, S. 248.

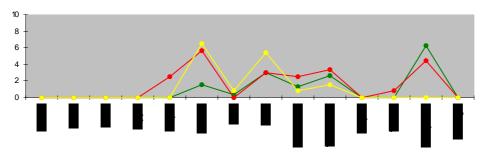
²⁹⁰ Diese Zusammensetzung stimmt mit anderen Artefaktkomplexen überein.

5.6. Diskussion

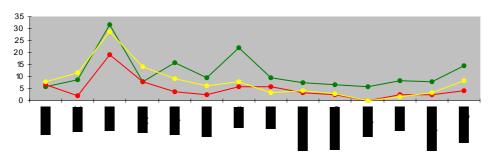
Je nach Organisation einer Dorfgemeinschaft, sind in den Prozess des Schlachtens einzelne oder mehrere Menschen involviert, die ihre Tätigkeiten auf einem oder diversen Arbeitsplätzen ausführen. In Cazis fand die Schlachtung der Rinder, Schafe, Schweine und Ziegen, hinsichtlich der Vertretung sämtlicher Skelettelemente im Fundgut, wohl in der Nähe der Wohnspalte statt. Vielleicht am Ufer des Maseiner Baches, der die Cresta umfliesst. Dennoch dokumentiert die Anhäufung gewisser Skelettelemente bzw. Knochenregionen, wie sie in den Kapiteln über die Fleischregionverteilung bzw. Fragmentierung beschrieben wurde, eine, nicht konsequent eingehaltene, Selektion von Körperpartien. Diese kann sowohl vor (Zerlegung des Schlachtkörpers, Lufttrocknen oder Räuchern einzelner Fleischportionen usw.), während (Enfleischen der Knochen usw.) als auch nach der Nahrungszubereitung (Artefaktherstellung, Verwendung der Knochen in rituellen Handlungen²⁹¹ usw.) stattgefunden haben. Als Richtlinie gilt: eine grosse Anzahl von Knochen fleischreicher Körperregionen spricht für Speiseabfall, während hohe Anteile fleischarmer Körperregionen auf Schlachtabfall weisen²⁹². Auf diesem Hintergrund lassen sich die Schweinereste in Cazis als typischer Speiseabfall deuten. Die Rinderreste würden demnach eher die Verteilung von Schlachtabfall repräsentieren. Auch bei den Schaf/Ziegen ist der Anteil fleischreicher Körperpartien relativ gering. Für die Untervertretung der Stylopodien bei den grossen und kleinen Wiederkäuern kommen neben der Schlachtabfall-Theorie weitere Erklärungen in


- Aus den Knochen des Zygo- und Autopodium von Rindern, Schafen und Ziegen (v.a. Ulna und Metapodien) hat man viele Artefakte hergestellt. Ihre Metapodien eigneten sich im Gegensatz zu denen der Schweine auch zur Markentnahme. Vorausgesetzt, man sammelte die genannten Elemente zu diesen oder anderen Zwecken in der Siedlungsspalte, müssten sie dort tatsächlich häufiger vorkommen als andere.
- Bei grossen Tieren wie dem Rind wurden die Knochen des Stylopodium möglicherweise vor der Nahrungszubereitung (also bereits beim Zerlegen des Schlachtkörpers ausserhalb der Siedlungsspalte) entfernt²⁹³.

Die vorwiegend das Schlachten dokumentierenden Hackspuren in Abb.56C verdeutlichen, dass die Zerlegungstechnik in erster Linie von der Körpergrösse der Tiere abhing. Bei den Rindern hat man sich im Gegensatz zu den Schweinen und kleinen Hauswiederkäuern öfters mit kraftvollen Hieben behelfen müssen, um gelenkige Verbindungen zu trennen oder um eine stärkere Portionierung ausgewählter Fleischregionen zu erreichen. Abb.56A zeigt schön, wie andererseits die Markentnahme (nachgewiesen durch die Schlagpunkte) eng mit der Knochenmorphologie verknüpft war. Unterschiede betreffen vor allem die Metapodien, die bei den Schweinen, anders als bei den Wiederkäuern, kaum Mark enthalten (siehe oben). Sowohl die Resultate aus der Körperregion- als auch der Schlagpunktauswertung weichen bei den Schweinefemora von denen der restlichen Stylopodiumelemente ab. Einerseits sind sie weniger häufig im osteologischen Fundgut vertreten und andererseits hat man sie meist ohne vorheriges Erhitzen aufgeschlagen. Steckt eine gemeinsame Ursache, wie zum Beispiel die spezielle Verarbeitung des Schinkens (Lufttrocknen, Räuchern usw.) dahinter? An dieser Stelle bietet sich eine kurze Besprechung der beiden Konservierungstechniken (Lufttrocknen und Räuchern von Fleisch) an.


²⁹¹ Ein Beispiel aus Slowenien: im Kokratal war es in den 50 er Jahren des 20. Jhts. Brauch, an Ostern sämtliche Femurknochen von Rindern nach dem Essen des Fleisches in den Äckern zu vergraben, um eine fruchtbare Ernte heraufzubeschwören.

²⁹² Ebersbach 1998, S. 24.


²⁹³ Aus praktischen Gründen hat man diese Stücke wohl kaum als Ganzes zubereitet, es sei denn, sie wurden getrocknet oder geräuchert.

Schlagpunkte an verschiedenen Skelettelementen (n%)

Hackspuren an verschiedenen Skelettelementen (n%)

Abb.56: Cresta-Cazis. Verschiedene anthropogen verursachte Spuren an den Knochen von Hausrind, Hausschaf/Hausziege und Hausschwein im Vergleich.

Das mehrwöchige Trocknen von Fleischpartien in der Alpenluft (Abb.57), um es auf diese Weise haltbar zu machen, hat im Kanton Graubünden eine lange Tradition²⁹⁴. Als "mittelbündnerische Trockeninsel" (vgl. Kapitel 1.2.4.) ist das Domleschg-Heinzenbergtal wie geschaffen für diese Art der Nahrungspräparation.

Beim Räuchern wird das Fleisch für längere Zeit (meist mehrere Tage) in den Rauch gehängt.

Abb.57: Zum Lufttrocknen aufgehängte Fleischstücke. Foto: Grischuna 2005.

-

²⁹⁴ Grischuna 2005.

Dabei nimmt es Stoffe auf, welche die Konservierung fördern und gleichzeitig als schmackhafte Würze wirken. Bei beiden Methoden beliess bzw. belässt man die Knochen oft im Fleisch oder hängt sie neben das entbeinte Muskelstück. Dem Prozess des Lufttrocknens oder des Räucherns geht die Lagerung unter Zugabe von Salz voraus. Ressourcen für diesen wertvollen Rohstoff werden von Weller beispielsweise für St. Moriz im Kanton Graubünden²⁹⁵, für Salins im Kanton Wallis und für Sassuolo in Norditalien diskutiert²⁹⁶. Ob man in Cresta-Cazis für die Zerlegung des Tierkörpers bzw. für die Entfleischung und Bearbeitung der Knochen Metall- oder Steinwerkzeuge einsetzte, möchte ich aufgrund der morphologischen Beschaffenheit von Schnitt- oder Hackspuren allein nicht entscheiden²⁹⁷. O'Connor beschreibt die gängigen Kriterien zur Identifizierung von Schlachtspuren wie folgt: "the use of stone tools tends to produce short, multiple, often roughly parallel marks, with a V-shaped cross-section. Within the cut, there will often be fine striations parallel with the cut, reflecting a sawing motion on cutting. Chop-marks made by a metal tool, on the other hand, often show striae nearly at right angles to the mark. These are produced by irregularities in the cutting edge of the tool. Where a sharp metal knife has been used in defleshing, the cut-marks may be very narrow and deep, with little associated cracking of the bone." Nach diesen Beobachtungen zu urteilen, wären die Hackspuren auf den Cazner Tierknochen vorwiegend auf Stein- und nur in Ausnahmefällen auf Metallwerkzeuge zurückführen, während die teilweise haarfeinen Schnittspuren an Metallwerkzeuge denken lassen. Im Fundgut von Cresta-Cazis fehlen Bronzegeräte²⁹⁸, die auf Tätigkeiten im Zusammenhang mit der Schlachtung oder Nahrungszubereitung schliessen liessen. Selbstverständlich könnte dieser Umstand auch auf eine Fundlücke zurückzuführen sein. Änderungen im Erscheinungsbild oder in der Häufigkeit von Schnitt- und Hackspuren im Laufe der Bronzezeit, die allenfalls mit einer Umstellung von Stein- auf Metallwerkzeug einhergehen würden, sind nicht festzustellen.

_

²⁹⁸ Wyss 2002, S. 342.

²⁹⁵ Heierli 1907, Seifert 2000.

²⁹⁶ Weller 1999.

²⁹⁷ Fisher 1995, S. 12-25, Greenfield 2000, O'Connor 2000, S. 46.

SYNTHESE

6. UMWELT-; ERNÄHRUNGS- UND WIRTSCHAFTSGESCHICHTE DES DORFES

6.1 Vorwort

In diesem Kapitel werden mehrere Modelle vorgestellt, welche die Veränderungen des Dorflebens auf der Cresta im Laufe der Zeit aus dem archäozoologischen Blickwinkel heraus, aber stets im Kontext der zur Verfügung stehenden Informationen aus anderen Forschungsrichtungen (Archäologie, Metallurgie, Ökologie usw.) beschreiben. Ziel ist es, die mosaiksteinchenartigen Erkenntnisse zu einem Bild zusammenzufügen, um potentielle Wechselwirkungen und Abhängigkeiten aufzudecken, die ansonsten unter Umständen übersehen würden.

6.2. Einleitung

Die archäologischen Ergebnisse (u.a. Funde und Befunde, die mit dem Ackerbau in Verbindung stehen²⁹⁹) und die gewaltige Menge an Knochenresten von Nutztieren zeugen in eindrücklicher Art und Weise von der land- und viehwirtschaftlich geprägten Subsistenzwirtschaft in Cresta-Cazis.

Wie weit die Wurzeln des Dorfes tatsächlich zurückliegen, kann zum heutigen Zeitpunkt nicht beantwortet werden. Es lässt sich nicht ausschliessen, dass Menschen bereits im Neolithikum das Hügelplateau (phasenweise) bewohnt oder aufgesucht haben, da man während der Grabungsarbeiten noch nicht bis zum natürlichen Grund und Boden vorgestossen ist. Trotz stichprobenweise angelegter Schnitte unter die bronzezeitlichen Horizonte fehlen Fundgut oder Baustrukturen, die als neolithisch angesprochen werden könnten. Stattdessen stiess man auf mit Holzkohlepartikel angereicherte neolithische Schichten, die möglicherweise auf früheste anthropogene Tätigkeiten (Vorbereitung des Wohngrundes durch Brandrodung?) im und um das Siedlungsareal hinweisen³⁰⁰.

Darüber, woher die Leute ursprünglich herkamen, die sich im Hinterrheintal und schliesslich auf der Cresta niederliessen, weiss man wenig. Murbach-Wende schlägt vor³⁰¹, dass "zwischen den älter-frühbronzezeitlichen Bevölkerungsgruppen Nordbündens und des ostschweizerischen Mittellandes kulturelle und vermutlich auch ethnische Verwandtschaft bestanden hat, die eventuell auf die Besiedlung der unteren Täler Nordbündens während des Neolithikum durch Pfyner Leute zurückzuführen ist".

Die Tatsache, dass die bronzezeitlichen Bewohner aus Cresta-Cazis von Anfang an primär Bauern waren (vgl. einleitender Satz), schliesst nicht aus, dass der ausschlaggebende Motivationsgrund für die Migration und für die Suche nach einem neuen Wohnplatz der

³⁰¹ Murbach-Wende 2001, S. 173.

²⁹⁹ In mehreren Grundmauern der Häuser wurden beispielsweise ausgediente Mahlsteine als Bauelemente wiederverwendet.

³⁰⁰ Vielleicht stehen diese Spuren im Zusammenhang mit dem neolithischen Siedlungsplatz auf dem nur wenige hundert Meter nördlich gelegenen Petrushügel.

Dorfgründer in der Kupferprospektion³⁰² zu suchen ist: Bergleute müssen schliesslich auch mit Nahrungsmitteln versorgt werden. Hinweise auf eine verstärkte Bedeutung metallurgischer Tätigkeiten finden sich in Cazis aber erst in den spätbronzezeitlichen Phasen³⁰³. Damit vertrat das Spaltendorf wohl nicht den Ausnahmefall. Alle bislang verfügbaren Datierungen von Holzkohle aus Verhüttungsschlacken der Zentralalpen ergaben erst spätbronzezeitliche Evidenzen³⁰⁴.

6.3. Die chronologischen Entwicklungen in der Haus- und Wildtiernutzung vor dem Hintergrund eines kulturellen Wandels

Die frühe Frühbronzezeit als Zeitraum für die Dorfgründung liesse sich schliesslich auch mit den archäozoologischen Daten gut vereinbaren: in Planum 1 (früheste dokumentierte Schicht) wurde eine, verglichen mit den anderen frühbronzezeitlichen Horizonten, stärkere Präsenz der Schweine festgestellt (vgl. Kapitel 4.2.4.1.). Möglicherweise dienten diese anpassungsfähigen Tiere, die eine hohe Reproduktionsrate aufweisen und aus diesem Grund als regelmässige Fleischquelle gelten, den ersten Siedlern als "zuverlässiges Startkapital" oder "Risikoabfederung", während sie in der neuen Umgebung Fuss fassten.

Anhand der frühbronzezeitlichen Tierknochen aus Cresta-Cazis lassen sich keine Parallelen zu den endneolithischen Kulturen (Schnurkeramik und Glockenbecher) des östlichen Mittellandes erkennen. Dort hatten kleine Wiederkäuer eine untergeordnete Bedeutung verglichen mit dem Rind oder dem Hausschwein³⁰⁵. Auch die spätneolithischen Fundstellen aus dem Kanton Graubünden erlauben in dieser Frage keine klare Aussage. In einigen von ihnen überwiegt der Rinderanteil (Untervaz GR- Haselboden³⁰⁶, Cazis GR- Petrushügel³⁰⁷), in anderen der Schaf/Ziegenanteil (Tamins GR- Crestis³⁰⁸).

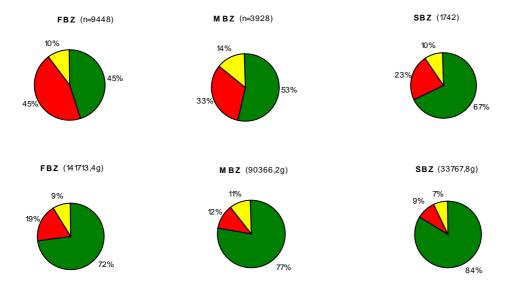
Über die Haustierfauna der frühbronzezeitlichen Epochen im inneralpinen Raum ist kaum etwas bekannt (siehe Karte II im Anhang). Ob es sich bei der anfänglich mehrheitlich auf die Schaf/Ziegen ausgerichteten Viehwirtschaft in Cresta-Cazis um eine inneralpin orientierte Tradition handelt, lässt sich aus diesem Grund leider nicht sagen. Fest steht, dass sich die von kleinen Hauswiederkäuern dominierte Tierhaltung innerhalb weniger Jahrhunderte in eine ausgeprägte Rinderwirtschaft veränderte (Abb.58). Bedenkt man, dass Umstrukturierungen in der Land- und Viehwirtschaft bzw. in der Versorgungstradition immer mit grossen Risiken verbunden waren, so lassen sich die Veränderungen innerhalb der Haustierzusammensetzung in Cresta-Cazis als bemerkenswert bezeichnen. Es muss eine kontinuierliche und nachhaltige Umorientierung in der Nutzungsstrategie stattgefunden haben.

Folgendes Szenarium, das die Ergebnisse u.a. der Alters- und Geschlechtsanalysen sowie die Grössenentwicklung der Rinder, Schafe, Schweine und Ziegen und deren schwankenden Anteil am Tierartenspektrum miteinander verknüpft, wird vorgeschlagen:

³⁰⁵ Die wenigen, heute bekannten, glockenbecherzeitlichen (Endneolithikum) Tierknochenkomplexe scheinen mit den aus Seeufersiedlungen bekannten spät- und endneolithischen Fundensembles der Schnurkeramik vergleichbar zu sein: hoher Haustier- und darüber hinaus hoher Rinderanteil (Hüster-Plogmann u. Schibler 1997, Schibler 2001, Hüster-Plogmann 2005).

³⁰² Kupfer hat man in der Schweiz bereits ab 3900 v. Chr. gebraucht. Frühe Abbaustellen fand man vielleicht deshalb nicht, weil nicht systematisch prospektiert wurde.

³⁰³ Wyss 2002, S. 193 und 230.


³⁰⁴ Wyss 1993.

³⁰⁶ Prilloff 2001.

³⁰⁷ Primas 1985.

³⁰⁸ Primas 1979.

Das Hausrind deckte bereits während der Frühbronzezeit den grössten Teil des Fleischbedarfes. Die Schafhaltung war zu dieser Zeit ebenfalls hauptsächlich auf Nahrungszwecke ausgerichtet (männliche, aber auch weibliche Individuen). Sie leistete einen ansehlichen Beitrag an der gesamten Fleischversorgung. Daneben wurde das Haarkleid -und eventuell die Milch- der Schafe genutzt. Am Übergang von der Früh- zur Mittelbronzezeit fanden in Cazis, ausgelöst durch den intensivierten Austausch mit anderen Kulturgruppen

Abb.58: Veränderungen in der Tierartenzusammensetzung von der Früh- zur Spätbronzezeit. **Obere Reihe**: nach Fragmentzahlen (n2%), **untere Reihe**: nach Gewichtsprozenten (g2%). Hausrind: grün, kleine Hauswiederkäuer (Schaf/Ziegen): rot, Hausschwein: gelb.

(vgl. Kapitel 1.2.3.), Verschiebungen in der Nutzung der Haustiere statt: die Rinder übernahmen einen Teil der Rolle, welche bisher die Schafe als Fleischlieferanten gespielt haben. In den Wohnplätzen der Ostalpen (Südtirol) lassen sich teilweise parallele Tendenzen wie in Cresta-Cazis vermuten³⁰⁹. Während die Bedeutung der Schafe als Fleischlieferanten ab der Mittelbronzezeit zurückging, nutzte man ihr Haarkleid³¹⁰ (und ev. die Milch) weiterhin. Kühe wurden ihrerseits zunehmend als Milchlieferanten und Ochsen als Arbeitstiere eingesetzt. Ähnlich wie während der aller ersten Besiedlungsphase haben die Schweine in den Anfängen der sich wandelnden mittelbronzezeitlichen Viehwirtschaft als "Puffer" (Risikoabfederung) gedient und deshalb eine etwas gesteigerte Bedeutung erlangt. Diese ging einher mit einer Zunahme ihrer durchschnittlichen Körpergrösse ab der Mittelbronzezeit. Von den in Kapitel 4.2.4.4. aufgezählten möglichen Erklärungen für die Grössenentwicklung der Schweine in Cresta-Cazis haben sich einerseits die "Kreuzungstheorie" und andererseits die "Importtheorie" als die wahrscheinlichsten erwiesen. In beiden Fällen zeigte sich, dass für einen Einfluss von aussen hauptsächlich der Ostalpenraum in Frage kommt. Die Anteile der Ziegen am Tierartenspektrum waren stets bescheiden (auf zehn Schafe kam durchschnittlich eine Ziege). Die Ziegenböcke erreichten selten das Erwachsenenalter, sie dienten ausschliesslich dem Nahrungszweck. Die weiblichen Individuen hielt man zur Produktion von Milch. Welchen Stellenwert die Ziegenmilch bei den Menschen aus Cazis hatte, ob man sie

Riedel u. Tecchiati 1999, S. 298 (siehe auch Karte II im Anhang: Naturns I- Schnalserhof, Sotciastel I, Nössing I)

Artefakte, die explizit auf Wollverarbeitung schliessen lassen, sind in Cresta-Cazis zwar nicht nachgewiesen, aber sämtliche der textilspezifischen Artefakte wie Tonspulen und Schwungrädchen für Spinnwirtel, stammen aus spätbronzezeitlichen Horizonten. Dagengen weisen Knochen- und Bronzezenadeln, die u.a. als Nähutensilien in Frage kommen, keine zeitlich eingeschränkte Verteilung auf (Wyss 2002, S. 249, 271, 303).

an speziellen Anlässen trank oder aus ihr haltbarere Produkte (Käse usw.) herstellte, lässt sich zur Zeit nicht beantworten. Mittels Isotopenanalyse der Reste tierischer Fette an Keramikgefässen könnten unter Umständen die diversen Milchprodukte (Frischmilch, Käse, Butter usw.) verschiedener Tierarten identifiziert werden³¹¹. Die Ziegenmilch zählte, ähnlich wie die Kuh- (und die Schafs-) milch, zwar nicht zu den alltäglichen Nahrungsmitteln, wurde aber wohl regelmässig konsumiert.

Zusammengefasst unterstützen die archäozoologischen Resultate die Thesen aus der Keramikuntersuchung (vgl. Kapitel 1.2.3.). In anderen Worten: die Umorganisationen in der Haustiernutzung stehen meiner Meinung nach eng mit der kulturellen Entwicklung des Dorfes im Zusammenhang. Interessant ist aber, dass sich in der Keramikware stärker der nördliche Einfluss niedergeschlagen hat, während im osteologischen Fundgut der östlich-südöstliche dominanter zum Ausdruck kommt. Die Viehwirtschaft in Cresta-Cazis während der Mittelund Spätbronzezeit, die sich so einseitig auf eine Tierart abstützte, vermittelt einen stabileren Eindruck als in den vorangegangenen Epochen. Es lässt sich vorstellen, dass in Folge der gut funktionierenden Land- und Viehwirtschaft freie Kapazitäten für eine vermehrte Beschäftigung mit anderen Tätigkeiten (z.B. im Zusammenhang mit dem Bergbau) geschafften werden konnten. Nach Wyss³¹² haben die gewerblichen (v.a. metallurgischen) Tätigkeiten auf der Cresta an der Wende Mittel-/ Spätbronzezeit auffällig zugenommen, was in der Anlage verschiedener technischer Betriebe (z.B. Feuerstellen) zum Ausdruck kommt. Ein Bedeutungswandel hin zu mehr Siedlungsgeschehen fand statt.

6.4. Saisonalität?

Für Cresta-Cazis stellt sich bezüglich der Saisonalität in erster Linie die Frage, ob das Dorf im Sommer bewohnt war, oder ob man die warme Jahreszeit zusammen mit dem Vieh in höhergelegenen Wohnplätzen verbracht hat (vgl. Kapitel 6.5.). Der indirekte Hinweis³¹³ auf Getreideanbau (Mühlsteine) und die baulichen Überreste der Spaltensiedlung (Isolationstechniken beim Hausbau) machen den Eindruck einer rund ums Jahr bewohnten Niederlassung³¹⁴. Diese Annahme kann nun durch die Untersuchungen der Haustierknochen bestätigt werden.

Dabei erweist sich der Fortpflanzungszyklus der Schafe und Ziegen aufgrund seiner Regelmässigkeit als besonders hilfreich: einmal im Jahr werden die Lämmer bzw. Zicklein geboren. Der Setztermin fällt immer auf den Frühling. In Cresta-Cazis sind bei den Schafund Ziegenknochen sämtliche Altersstufen von infantil bis subadult³¹⁵ vertreten (vgl. Kapitel 4.2.3.2.). Vorausgesetzt, die Knochen neonater, d.h. weniger als drei Monate alter, oder frisch geborener Tiere fehlen erhaltungsbedingt (siehe Kapitel 4.2.3.2.), darf davon ausgegangen werden, dass die Menschen sowohl in den warmen als auch in den kalten Monaten in der Siedlungsspalte auf der Cresta weilten.

Was die Rinder betrifft, so kommen von foetal bzw. neonat bis altadult alle Altersklassen vor (vgl. Kapitel 4.2.2.2.).

Zur weiteren Überprüfung des Sachverhalts kann die Ökologie der Wildtiere herangezogen werden. Kommen zum Beispiel im osteologischen Material einer Siedlung Knochen von Wildtieren vor, die nur während der Sommermonate in der freien Wildbahn anzutreffen sind, kann das auf menschliche Anwesenheit in der entsprechenden Jahreszeit hinweisen. Bei den

³¹² Wyss 2002, S. 193 und 230.

³¹¹ Dudd u. Evershed 1998.

³¹³ Sichere Nachweise von Getreideanbau wären beispielsweise Funde der Kulturpflanze selbst (Körner usw.).

³¹⁴ Wyss 2002, S. 80, 115 und 92.

³¹⁵ Die Definition der Altersklassen kann in Tabelle I eingesehen werden.

Winterruhe bzw. -schlaf haltenden Tieren (z.B. Braunbär, Murmeltier³¹⁶), die in Cresta-Cazis vertreten sind, lässt sich einschränkend einwenden, dass ihre Unterschlüpfe sie während der kalten Jahreszeit nicht zwingend vor menschlichen Übergriffen abschirmen (vgl. Braunbär, Kapitel 4.3.6.). Zugvögel, die für die Wintermonate wegziehen in wärmere Gegenden, könnten in dieser Frage klarer Aufschluss geben. Bei wildtierökologischen Aussagen über die zeitliche Benutzung eines Wohnplatzes besteht die Gefahr, dass mit Vogelknochen argumentiert wird, die eventuell nicht durch menschliches Zutun in die Siedlungsschichten gelangt sind. Es existieren aber Methoden, gerade für Vögel, solche Szenarien zu erkennen und auszuschliessen³¹⁷. In den archäozoologisch untersuchten Siedlungsschichten aus Cresta-Cazis fanden sich keine Knochen von Zugvögeln, was nicht weiter erstaunt: die Wahrscheinlichkeit, dass von den sieben Vogelknochen (bei 15 258 bestimmten Tierknochen³¹⁸) einer von einem Zugvogel stammt, ist verschwindend klein.

6.5. Ackerland und Weiden

Man weiss bis heute wenig über die Standorte, wo die Bewohner von Cresta-Cazis ihre Felder bestellt haben und ihr Vieh weiden liessen. Mehrere Möglichkeiten sind in Betracht zu ziehen. Der theoretisch ermittelte Wert, nach dem ein für den Feldbau und für die Weiden verwendetes Gebiet in ca. zehn Minuten vom Dorf aus erreichbar sein sollte³¹⁹, kann einzig als Richtwert dienen. Im Einzelfall sind selbst grössere Abweichungen von diesem Wert durchaus möglich. Eine agrarwirtschaftliche Nutzung der Hügelkuppe selbst scheint vom Energiehaushalt her effizient, allerdings ist das räumliche Potential mit einer Plateaufläche von 8500 m2 begrenzt. Um eine Person ausreichend zu ernähren, rechnet man mit einem Bedarf von 1100 bis 4400 m2 Ackerfläche pro Jahr³²⁰. Das kultivierbare Terrain auf der Cresta hätte theoretisch also höchstens für sieben bis acht Menschen die Versorgung sicher gestellt, das entspricht ungefähr 16 % aller Dorfbewohner, die durchschnittlich gleichzeitig dort gelebt haben. Zudem war es vielleicht nicht im Sinne der Einwohner, das gesamte Plateau als Anbaufläche zu nutzen, denn damit wäre der, nur durch eine Bewaldung gewährleistete, Sichtschutz eingebüsst. Die steilen Abhänge im Osten, Norden und Westen erlaubten keinen Ackerbau, weil sich bei einer Geländeneigung von annähernd 45° schwer Terrassierungen vornehmen lassen. Abgesehen davon besteht eine grosse Chance, dass man solche Eingriffe in die Landschaft heute noch sehen könnte, das ist aber nicht der Fall. Die Topographie des Hügelplateaus stellt, zumindest unter Voraussetzung kleiner Viehherden, kein Hindernis für ihre Verwendung als Weideland dar. Im Gegenteil: durch die, mit den stark abfallenden Hängen natürlich gegebenen Grenzen, hätten die Hirten (meist Kinder?) ihre eventuell gemischten Herden³²¹ gut kontrollieren können. Doch als einzige Weide wäre das Cresta Plateau definitiv zu klein gewesen. Zur ganzjährigen Versorgung einer Kuh beispielsweise, werden je nach Haltungsbedingungen und Art bzw. Qualität der Weide

_

³¹⁶ Der Braunbär ist, wenn nicht häufig so aber regelmässig, in allen Siedlungsphasen von Cresta-Cazis nachgewiesen. Die in dieser Arbeit behandelten Horizonte lieferten zwar keine Murmeltierknochen, aber dass sie in Cresta-Cazis vertreten waren, beweist zumindest ein Fragment, das mir bei der Durchsicht der Kisten im Knochenlager Irchel in die Finger kam.

³¹⁷ Ericson 1987.

³¹⁸ Basis: proportional modifizierte Tierartentabelle (n2).

³¹⁹ Hochuli et al. 1998, S. 224.

³²⁰ Jacquat 1989, S. 71, Jacomet u. Karg 1996, S. 258f.

³²¹ Es gibt rezente Beispiele, wo Herden kleiner Tiere (Schaf/Ziegen) zusammen mit grossem Vieh (z.B. Esel oder Rind) gehalten werden, um die Raubtiere abzuschrecken.

ungefähr 5000 bis 10 000 m2 Futterfläche benötigt³²². Schafe und vor allem Ziegen sind weniger anspruchsvoll. Ein Schaf bzw. eine Ziege frisst mengenmässig durchschnittlich acht mal weniger als eine ausgewachsene Kuh. Besonders Ziegen können selbst schlechteste Weidegründe verwerten. Für die stets in kleiner Zahl gehaltenen Schweine wäre das Areal, allenfalls in Kombination mit einer Art Gartenwirtschaft, bestens geeignet gewesen. Optimale Bedingungen, sowohl für die Vieh- als auch für die Agrarwirtschaft, fand man an den westlichen Talhängen des Heinzenbergs vor. Die Distanz von ihnen bis zur Siedlung ist mit einem Fussmarsch über die nur langsam ansteigende Südflanke des Wohnhügels problemlos in fünf Minuten zu schaffen. Falls die Talflanken des Heinzenbergs während der Bronzezeit bewaldet waren, mussten die damaligen Menschen sie je nach Dichte des Forstes vor ihrer Nutzung entsprechend vorbereiten (Rodungen usw.). Geht man davon aus, dass hinter der eigentümlichen Lage des Dorfes das Bedürfnis der Bewohner nach Verborgenheit stand, so liesse sich für deren Felder und Weiden keinen besseren Standort denken als die Hänge des Heinzenbergs, die hinter dem Höhenzug mit vorgelagerter Cresta vor den Blicken der in der Mitte des Tals vorbeiziehenden Reisenden geschützt waren. Eine agrarwirtschaftliche Nutzung der Talsohle kam schon allein aufgrund der Überflutungsgefahr durch den Hinterrhein nicht in Frage (vgl. Kapitel 1.3.). Hingegen eignete sie sich sehr gut als Weidefläche für das mobile Vieh, das notfalls schnell an einen anderen Ort getrieben werden konnte. Ob die Bauern aus Cazis Einzäunungen (in Form von Hecken oder Gatter) für ihr Vieh errichteten oder ob Hirten dafür sorgten, dass die Tiere zusammenblieben bzw. nicht auf den Ackerflächen herumspazierten, weiss man nicht. Zur Stallhaltung gibt es auch kaum Informationen. In Planum 4 (FBZ) erwähnt R. Wyss ein Wohngebäude mit einer ungewöhnlichen Nutzfläche von 44 m2, das eventuell auch als Unterstand für das Vieh gedient haben könnte. Sichere Anhaltspunkte für die Erstellung einer Zwischenwand liegen nicht vor³²³. Beim Versuch zu rekonstruieren, wie eine sesshafte prähistorische Gemeinschaft aus der Alpenregion die Organisation ihrer Wirtschaftsflächen handhabte, sollte für die betreffende Niederlassung nach Möglichkeit nachgeforscht werden, ob alpwirtschaftliche Aktivitäten in Betracht gezogen werden müssen (Kapitel 6.6.)³²⁴.

6.6. Transhumanz³²⁵

6.6.1. Voraussetzungen.

In Kapitel 6.3 wurde aufgezeigt, dass Cresta-Cazis rund ums Jahr bewohnt war. Das Spaltendorf kommt, bei einer transhumanten Wirtschaftsweise der Siedler, also nur als Basisstation (Hauptwohnplatz) in Frage. Weiter bedarf es einer Überprüfung der potentiellen Beweggründe, weshalb Bauern ihr Vieh im Laufe des Jahres bewegen beziehungsweise bewegt haben. Ausschlaggebend dürfte (ursprünglich) der Mangel an Wirtschaftsflächen im Tal gewesen sein. Da Weide- und Ackerbauflächen in räumlicher Konkurrenz zueinander stehen, bedeutete die Expansion in höhere Lagen die Chance, die Futterbasis (in Form von Alpweiden) für das Vieh zu erweitern. Dies ermöglichte eine Verminderung des Aufwands für die Winterfütterung und damit einhergehend eine Vergrösserung der Herden. Gemäss

2

³²² Ebersbach 2002, S. 155f.

³²³ Wyss 2002, S. 52.

³²⁴ Schibler et al 1997, S. 344ff.

³²⁵ Transhumanz ist eine (neben anderen) Ausprägung der mobilen Viewirtschaft. Sie definiert sich durch saisonale Viehbewegungen zwischen einem im Winter schneefreien Küsten-, Tal- oder Niederungsgebiet und der Höhenzone eines Gebirges.

Schätzungen³²⁶ erlaubt die Nutzung alpiner Weiden einen um 25- 30% grösseren Viehbestand. Die Ausweichung auf Alpweiden dürfte für die Hirten einen erwähnenswerten Nebeneffekt gehabt haben: die anstrengenden Bemühungen, das Vieh von den Feldern fernzuhalten, blieb ihnen dadurch erspart. Interessante Aspekte im Kontext mit der Transhumanz ergeben sich auch aus der Erforschung der Wanderungsbewegungen wilder Wiederkäuer: "In the temperate region, the vertical movement of cervids from a low-elevation winter range to a high-elevation summer range is the most common pattern of migration "327". "Concentrations of nutrients and defences (food quality) vary considerably both spatially and temporally between, as well as within, plant species³²⁸ and may influence direction and timing of seasonal movements of the animals" Die Studien von Mysterud und anderen ergaben, dass die mit der Topographie zusammenhängende Nahrungsqualität auch einen Einfluss auf die Körpergrösse der Cerviden hat: "body mass of temperate cervids does not increase with proportion of high-altitude habitat per se, but a diversity of different altitudes gives the highest body weights "330". Leider sind mir keine vergleichbaren Untersuchungen für kleine Wildwiederkäuer (Gämse und Steinbock) bekannt. Die Quintessenz, die ich aus diesem kurzen Exkurs ziehe: warum sollten sich die Menschen bei der Idee für das Transhumanz-Modell nicht auch ein Stück weit am Vorbild der Natur orientiert haben? Den Bauern von Cresta-Cazis mangelte es jedenfalls, soweit man das aus heutiger Sicht beurteilen kann, nicht an wirtschaftlich nutzbaren Flächen in der unmittelbaren Umgebung. Der nahegelegene Heinzenberg, bot ausgesprochen viel Raum für Weide und Acker. Bei einem geschickten Turnus konnten die gleichen Weiden sogar mehrmals im Jahr genutzt werden. Grundsätzlich scheint für die Bewohner von Cresta-Cazis kein zwingender Grund vorgelegen zu haben, ihr Vieh auf Alpweiden zu treiben. Trotzdem halte ich es durchaus nicht für unrealistisch, dass sich Hirten aus dem bronzezeitlichen Dorf mit ihrem Vieh, oder einem Teil von ihnen, mehrere Tage bis wenige Wochen in weiter entfernten Gebieten des Heinzenbergs aufgehalten haben, ohne allabendlich in die Siedlung zurückzukehren.

6.6.2. Beurteilung aus Sicht der Archäozoologie.

Die Transhumanz ist in der aktuellen archäologischen Forschung ein rege diskutiertes Thema³³¹, und Stellungnahmen seitens der Archäozoologie sind gefragt, weil man sich durch die alternativen Lösungsansätze neue Erkenntnisse zum zeitlichen Ursprung der transhumanten Lebens- und Wirtschaftsweise und zu ihrer Identifizierung in prähistorischen Fundzusammenhängen erhofft³³². Die durch die räumlichen Voraussetzungen begründeten Zweifel an einer konsequent transhumanten Wirtschaftsweise der bronzezeitlichen Siedler auf der Cresta sollen einer archäozoologischen Beurteilung der Materie nicht im Wege stehen. Die entscheidende Frage lautet: können Hinweise auf Transhumanz im osteologischen Material von Cresta-Cazis gefasst werden, und wenn ja, wie? Theoretisch stehen mehrere Methoden zur Verfügung, diesen Fragen nachzugehen.

Altersspektren der Haustiere verraten uns beispielsweise einiges darüber, ob die Viehherden in der Nähe des zu erforschenden prähistorischen Dorfes geweidet haben oder weit entfernt, möglicherweise auf einer Alp. Bei einer auf Alpwirtschaft spezialisierten Gemeinschaft drängt

³²⁶ Kreutzmann 1989, S. 129 Anm. 17.

³²⁷ Oosenbrug u. Theberge 1980, Mysterud 1999.

³²⁸ Van Soest 1994.

³²⁹ Morgantini u. Hudson 1989, Klein 1998.

³³⁰ Mysterud et al. 2001.

³³¹ Primas 1999, Della Casa 2002.

³³² Greenfield 1999, Arnold u. Greenfield 2004.

sich bei den Rindern, die potentiell das ganze Jahr über kalben können³³³ aus Organisationsgründen auf, die Geburt der Kälber auf Ende Winter (Februar) zu planen³³⁴, damit sie zum Zeitpunkt des Alpaufzugs gross und kräftig genug sind, und man sich längere Zeit nicht um ihre Fütterung zu kümmern braucht. Die Synchronisation der Fortpflanzung bedeutet somit ein wesentlich verminderter Arbeitsaufwand. Wie die Fortpflanzung ist bei dieser Wirtschaftsform auch die Schlachtung der Tiere oft hauptsächlich saisonal geregelt. Sogenannte Herbstschlachtungen haben den Vorteil, dass die Kälber zum Zeitpunkt der Tötung ein geeignetes Alter bezüglich des Fleischertrags erreicht haben und ausserdem nicht durch den Winter gefüttert werden müssen. Überträgt man dieses Modell, bei dem die grossen und kleinen Hauswiederkäuer im Alter von ca. 2-6 Monaten auf der Sommerweide leben, auf prähistorische Zeiten, dürfte exakt diese Altersklasse im Knochenmaterial der "Wintersiedlung" folglich nicht vertreten sein. Im Fall von Cresta-Cazis deuten die Resultate der Altersanalysen darauf hin, dass sowohl die Rinder als auch die Schaf/Ziegen das ganze Jahr über in der näheren Umgebung von Cresta-Cazis verbracht haben: mehrere Knochen von Kälbern und Lämmern bzw. Zicklein zeugen von Tieren mit einem Sterbealter zwischen 2 und 6 Monaten. Da diese Hypothese, zumindest was die Rinder betrifft, auf einem generalisierten Modell beruht, darf sie nicht ohne Einwände formuliert werden. Unsicherheitsfaktoren in der Praxis schränken ihre Aussagemöglichkeit ein: es ist einerseits nicht abzuschätzen, inwieweit die prähistorischen Bauern, falls sie in der Tat Alpwirtschaft betrieben, die Aufzucht und Schlachtungen ihres Viehs saisonal organisiert haben. Andererseits muss berücksichtigt werden, dass in den wenigsten Fällen alle Bewohner der Siedlung mit dem Vieh auf die Alp gezogen sind und deshalb einzelne Tiere in der "Wintersiedlung" zurückgelassen wurden als lebender Fleischvorrat für diejenigen Siedler, die den Sommer im Tal verbrachten. Selbst wenn alle Tiere auf einer Alp gesömmert wurden, lässt sich nicht ausschliessen, dass die Talsiedlung von dort ab und zu mit Kalbs- bzw. Lamm- oder Zickleinfleisch versorgt wurde. Die Knochen dieser Kälber, Lämmer und Zicklein wären trotz Transhumanz im osteologischen Material vorhanden. Es gibt ein Kriterium, letztere von den tierischen Überresten, die in unmittelbarer Siedlungsnähe geweidet haben, zu unterscheiden: wenn craniale Skelettelemente, wie beispielsweise Unterkiefer, oder Teile der mehr oder weniger fleischlosen Extremitätenregionen von 2-6 Monate alten Individuen im Knochenmaterial vorkommen, unterstützt das die dorfnahe These. Die Wahrscheinlichkeit, dass man das Fleisch unproportioniert (mit Kopf usw.) ins Tal schleppte, ist gering, es sei denn, es handelte sich im speziellen Fall um Opfertiere, die wohl erst im Dorf getötet worden wären. In Cresta-Cazis sind sowohl Kälber- als auch Lammunterkiefer im besprochenen Alter vertreten.

Weitere Anhaltspunkte zur Transhumanz könnten vergleichende Strontiumanalysen von Knochen und Zähnen liefern³³⁵ oder mikroskopische Studien über die Abkauung von Zähnen (dental microwear)³³⁶. Sie wurden jedoch im Rahmen dieser Arbeit aus finanziellen Gründen nicht weiterverfolgt. Dennoch sei das Prinzip der Strontiumanalysen hier kurz erwähnt: der Strontiumgehalt in Knochen und Zähnen eines Tieres ist abhängig vom Boden, auf dem seine pflanzliche Nahrung wächst. Er ist für jede Region verschieden. Da der Knochen im lebenden Organismus ständig ab- und aufgebaut wird, ändert sich der Strontiumgehalt darin, wenn das Tier sein "Nahrungsgebiet" wechselt. Der Strontiumgehalt in Zähnen hingegen entspricht zeitlebens jenem der ersten Monate nach der Geburt. Wenn sich der Strontiumgehalt von Knochen und Zähnen eines Individuums unterscheidet, deutet das darauf hin, dass das Tier an mindestens zwei verschiedenen Orten gelebt hat. Vielfältiger gestaltet sich die Interpretation

-

³³³ Kühe haben einen 21 Tage- Fruchtbarkeitszyklus wie die Menschen.

³³⁴ Schaf/Ziegen haben, wie in der Einleitung erwähnt, naturgemäss einen saisonalen Fortpflanzungszyklus mit nur einem Setztermin im Frühjahr.

³³⁵ Bentley 2003, Bentley u. Knipper im Druck.

³³⁶ Mainland 1995.

bei einem identischen Strontiumgehalt in Knochen und Zähnen eines Individuums: entweder handelt es sich um ein Tier, das nach unbekannter "Verweilzeit" in anderen Regionen zumindest seinen letzten Lebensabschnitt am selben Ort wie zur Geburt verbrachte oder um ein Tier, das immer in der gleichen Region lebte.

6.6.3. Fazit.

Weder archäozoologische noch raumtechnische Überlegungen geben Anlass zu der Annahme, dass die Bauern aus Cresta-Cazis eine Transhumanz nach unseren heutigen Vorstellungen betrieben haben. Nicht ausschliessen will ich hingegen andere Formen mobiler Viehzucht, wie beispielsweise mehrtägige Aufenthalte (v.a. der Schaf- und Ziegenherden) auf Wald- oder freien Weiden in nicht allzu weit vom Dorf entfernten Gegenden des Heinzenbergs.

ZUSAMMENFASSUNG

Auf einer Hügelkuppe zwischen Cazis und Thusis (Domleschg-Heinzenbergtal, GR) fanden sich in einer fünf bis acht Meter breiten, schluchtartigen Spalte die Überreste eines bronzezeitlichen Dorfes (Cresta-Cazis).

Die Untersuchungen der dort geborgenen Tierknochen ergaben, dass zwischen den einzelnen Epochen tiefgreifende Umwälzungen in der Viehwirtschaft stattgefunden haben. Diese äussern sich u.a. als Schwankungen in der Grössenentwicklung und in der Zusammensetzung der Haus- und Wildtiere, wobei der Übergang von der Früh- zur Mittelbronzezeit besonders ereignisreich und zukunftsprägend war. Die Ursache dafür dürfte in einem intensivierten kulturellen Kontakt mit anderen Bevölkerungsgruppen ab Beginn der Mittelbronzezeit liegen. Aus Vergleichen mit Fundstellen benachbarter Alpenregionen bzw. Seeufersiedlungen kristallisierte sich zudem eine grosse Ähnlichkeit des Gesamtbildes der Fauna aus Cresta-Cazis mit demjenigen aus dem Südtirol (Etschtal) heraus.

Gerade weil sie eine ununterbrochene Siedlungsabfolge über 1200 Jahre dokumentieren, nehmen die archäozoologischen Ergebnisse aus Cazis für das Verständnis der wenig erforschten alpinen Bronzezeit, über die Landesgrenze hinaus, eine wichtige Referenzfunktion ein.

RESUMAZIUN

Sin ina mutta tranter Cazas e Tusaun (Tumleastga-Mantogna, GR) han ins scuvert las restanzas d'in vitg dal temp da bronz (Cresta-Cazas) en ina sfessa en furma da chavorgia cun ina ladezza da 5-8 m.

Las examinaziuns da l'ossa d'animals salvada mussa, ch'i ha dà profundis midadas en l'allevament da muvel tranter las singulas epocas. Questas sa manifesteschan tranter auter sco fluctuaziuns en il svilup da la grandezza ed en la cumposiziun dals animals dumestis e selvadis. Il passagi tranter il temp da bronz tempriv e mez è stà spezialmain ritg d'eveniments ed ha influenzà il futur. La raschun pudess giaschair en in contact cultural intensivà cun autras gruppas da la populaziun davent dal cumenzament dal temp mez da bronz. Cumparegliaziuns cun exchavaziuns en regiuns alpinas vischinas resp. cun culegnas a rivas da lais reveleschan ultra da quai ia gronda sumeglientscha da la vista cumplessiva da la fauna da Cresta-Cazas cun quella ord il Tirol dal sid (Val da l'Adisch).

Gist perquai ch'ils resultats archeozoologics da Cazas documenteschan ch'ins ha abità en questa culegna passa 1200 onns noninterrutamain, han els ina funcziun da referenza impurtanta per chapir il temp da bronz alpin pauc perscrutà, er sur il cunfin dal pajas.

RIASSUNTO

Sulla cupola di una collina tra Cazis e Thusis (Domleschg e la valle di Heinzenberg, GR) si trovarono in una larghezza di 5-8 m, in una fessura simile ad un burrone i sovraresti di un borgo (Cresta-Cazis) del Età del bronzo.

Le indagini degli ossi di animali li recuperati risultarono che tra le varie Epoche ci furono dei profondi sconvolgimenti nella economia del bestiame. Questo viene dimostrato fra l'altro anche nelle fluttuazioni del processo di sviluppo e nella composizione degli animali domestici e selvaggi, mentre il passaggio dal Bronzo recente al medio Bronzo fu pieno di avvenimento e coniando al futuro. La causa potrebbe essere un intenso contatto culturale con altri gruppi di popolazioni dall'inizio del Bronzo medio. Nei confronti con luoghi di scoperte nelle vicine regioni alpine, rispettivamente nei centri abitati della sponda del lago, si cristallizzò una grande assomiglianza del quadro complessivo della Fauna di Cresta-Cazis con quella del sud Tirolo (valle di Adige).

Propro perché documentano un'ininterrotta successione di centri abitati oltre 1200 anni, i risultati archeozoologici di Cazis prendono un'importante funzione di raccomandazione per la comprensione della poco esplorata Età del bronzo alpina.

RESUMÉ

Sur le sommet d'une colline entre Cazis et Thusis (vallée de Domleschg-Heinzenberg, GR) se trouvaient, dans un ravin de la forme d'une crevasse, large de 5-8 m, les ruines d'un village d'âge de bronze (Cresta-Cazis).

Les analyses des ossements d'animaux recueillis là-bas ont dévoilé qu'entre les différentes époques, l'élevage du bétail a été profondément bouleversé. Ceci se présente entre autre par fluctuation dans le développement de grandeur et dans la composition des animaux domestiques et sauvages, la transition de l'âge de bronze ancien à l'âge de bronze moyen étant particulièrement agitée et marquante pour le futur. La raison pour ceci devrait être le contact culturel intensifié avec d'autres populations à partir du début de l'âge de bronze moyen.

En comparant le site avec des populations de régions des alpes et de bord de lac avoisinées, il se révèle une grande analogie de l'aperçu général de la faune de Cresta-Cazis avec celle du Tyrol du sud (vallée d'Etsch).

Justement puisque les résultats archéozoologiques de Cazis documentent une colonisation ininterrompue de plus de 1200 ans, ceux-ci prennent pour la compréhension de l'âge de bronze alpin peu exploré une fonction de référence au-delà de la frontière du pays.

Literaturverzeichnis

Albarella et al.	2006	U. Albarella/F. Manconi/P. Rowley-Conwy/JD. Vigne, Pigs of Corsica and Sardinia: a biometrical re-evaluation of their Status and history. Archaeozoological studies in honour of Alfredo Riedel (Bolzano 2006) 285- 302.
Arbogast et al	2006	RM. Arbogast/S. Jacomet/M. Magny/J. Schibler, The significance of climat fluctuations for lake level changes and shifts in substistence economy during the late Neolithic (4300- 2400 BC) in central Europe.
Arbogast et al.	2006	RM. Arbogast/S. Deschler-Erb/E. Marti-Grädel/P.Plüss, H. Hüster-Plogmann, J. Schibler), Du loup au "chien des tourbières". Les restes de canidés sur les sites lacustres entre Alpes et Jura. Revue Paléontologie (Vol. spéc.) 10, 2006, 171-183.
Arnold u. Greenfield	2004	E. R. Arnold und H. J. Greenfield, A Zooarchaeological Perspective on the Origins of Vertical Transhumant Pastoralism and the Colonisazion of Marginal Habitats in Temperate Southeastern Europe. In: M. Mondini (Hrsg.), Colonisation, Migration and Marginal Areas. A zooarchaeological approach. Association for Environmental Archaeology (Oxford 2004) 96- 117.
Andrews u. Noddle	1975	A. H. Andrews und B. A. Noddle, Absence of Premolar Teeth from Ruminant Mandibles found at Archaeological Sites. Journal of Archaeological Science 2, 1975, 137- 144.
Amschler	1937	W. Amschler, Die Haustierreste von der Kelchalpe bei Kitzbühel. Mitteilungen der Prähistorischen Kommission der Akademie der Wissenschaften 3, 1937, 96- 120.
Amschler	1937	W. Amschler, Die Tierreste von Bludenz. Mitteilungen der Prähistorischen Kommission der Akademie der Wissenschaften 3, 1937, 217- 242.
Arbogast et al.	i. V.	R M. Arbogast/E. Marti-Grädel/S. Deschler-Erb/J. Schibler J./ H. Hüster-Plogmann, Du loup au "chien des tourbières". Les restes de canidés sur les sites lacustres entre Alpes et Jura. In Vorbereitung.
Arbogast	2002	R M. Arbogast, Archéologie du cheval: des origins à la periode moderne en France. Collection des Hésperides (Paris 2002).
Armitage	1982	Ph. Armitage, A system for ageing and sexing the horncores of cattle from British post-Medieval sites (17 th to the early 18 th cent.) with special reference to unimproved British Longhorn Cattle. Bar British Series 109, 1982, 37-54.
Bachmann	1962	M. Bachmann, Schädelreste des Rindes aus dem keltischen Oppidum von Manching. Studien an vor- und frühgeschichtlichen Tierresten Bayerns 14 (München 1962).
Baettig	1988	M. Baettig, <i>Sus scrofa</i> L., 1758. In: J. Hausser/J D. Bourquin, Die Verbreitung von zwölf Säugetierarten in der Schweiz. Atlas der Säugetiere der Schweiz (Lausanne 1988) 73-88.

Bailon	1999	S. Bailon, Différenciation ostéologique des Anoures (Amphibia, Anura) de France. Fiches d'Ostéologie Animale pour l'Archéologie C/1 (Antibes 1999).
Barker	1987	G. Barker, Prehistoric subsistence and economy in northern Italy: The contribution of archaeozoology. Archaeozoologie 3, Weimarer Monographien zur Ur- und Frühgeschichte 13 (Weimar 1987) 59- 101.
Baronne	1986	R. Baronne, Anatomie comparée des mammifèrees domestiques. Tomes 1 Ostéologie (Paris 1986).
Bartosiewicz	1984	L. Bartosiewicz, Sexual dimorphism of long bone growth in cattle. Acta Veterinaia Hungarica 32/3-4, 1984, 135-146.
Baumann et al.	2005	P. W. Baumann, Die Alpen-Gämse: ein Leben auf Gratwanderung (Bern 2005).
Behrens	1964	H. Behrens, Die neolithisch-frühmetallzeitlichen Tierskelettfunde der Alten Welt: Studien zu ihrer Wesensdeutung und historischen Problematik. Veröffentlichungen des Landesmuseums für Vorgeschichte in Halle 19 (Berlin 1964).
Becker	1986	C. Becker, Kastanas. Die Tierknochenfunde. Prähistorische Archäologie in Südosteuropa 5 (Berlin 1986).
Becker	2004	C. Becker, On the Identification of Sheep and Goats: the Evidence from Basta. In: H. J. Nissen/M. Muheisen/H. G. K. Gebel (Hrsg.), Basta I. The human ecology. Ex oriente (Berlin 2004) 219-310.
Becker u. Johansson	1981	C. Becker und F. Johansson, Tierknochenfunde: zweiter Bericht. Die neolithischen Ufersiedlungen von Twann 11 (Bern 1981).
Benecke	2001	M. Benecke, Entomologie, forensische. In: Enzyklopädie der Naturwissenschaft und Technik 2 Ecomed (Landsberg 2001) 1-8.
Benecke	1988	N. Benecke, Die Geschlechtsbestimmung von Metapodien vom Hausrind (<i>Bos primigenius f. taurus</i> L.) aus frühmittelalterlichen Siedlungen Mecklenburgs. Zoologischer Anzeiger Jena. 220/5/6, 1988, 255- 276.
Benecke	1994	N. Benecke, Der Mensch und seine Haustiere. Die Geschichte einer jahrtausendealten Beziehung (Stuttgart 1994).
Benecke	2003	N. Benecke, Zu den Anfängen der Pferdehaltung in Eurasien. Aktuelle archäozoologische Beiträge aus drei Regionen. Ethnographisch-Archäologische Zeitschrift 43, 2002, 187- 226.
Bentley	2003	R. A. Bentley, Human mobility at the early Neolithic settlement of Vaihingen, Germany: evidence from Strontium Isotope Analysis. Archaeometry 45/3, 2003, 471- 486.
Bentley u. Knipper	im Druck	R. A. Bentley und C. Knipper, Geographic patterns in biologically available strontium, carbon and oxygen isotope signatures in prehistoric southwest Germany. Archeometry, im Druck.
Bibikova	1986	V. I. Bibikova, A study of the earliest domestic horses of Eastern Europe. In: D. Y. Telegin (Hrsg.), Dereivka – a settlement and cemetery of Copper Age horse keepers on the middle Dniepr. BAR International Series 287 (Oxford 1986).

Bibikow	1988	D. I. Bibikow, Der Wolf. Die neue Brehm-Bücherei 587 (Wittenberg Lutherstadt 1988).
Binford	1978	L. R. Binford, Nunamiut ethnoarchaeology. Academic Press (New York 1978).
Binford	1981	L. R. Binford, Bones. Ancient men and modern myths. Academic Press (New York 1981).
Von Blotzheim	1992	U. N. G. von Blotzheim (Hrsg.), Handbuch der Vögel Mitteleuropas 9 (Wiebelsheim, Deutschland 1992).
Boessneck et al.	1963	J. Boessneck/JP. Jéquier/H.R. Stampfli, Seeberg Burgäschisee-Süd. Teil 3: die Tierreste. Sonderdruck der Acta Bernensia 2 (Bern 1963).
Boessneck et al.	1964	J. Boessneck/HH. Müller/M. Teichert, Osteologische Unterscheidungsmerkmale zwischen Schaf (<i>Ovis aries</i> L.) und Ziege (<i>Capra hircus</i> L.). Kühn-Archiv 78, 1964, 1- 129.
Bökönyi	1974	S. Bökönyi, Pferde- und Schafdomestikation bzw. –haltung in der frühen Kupferzeit Eurasiens. In: J. Lichardus (Hrsg.), Die Kupferzeit als historische Epoche (Bonn 1974) 549- 556.
Bollongino	2003	R. Bollongino/J. Burger/K. Alt, Import oder sekundäre Domestikation? Der Ursprung der europäischen Hausrinder im Spiegel molekulargenetischer Analysen an neolithischen Knochenfunden. Beiträge zur Archäozoologie und Prähistorischen Anthropologie 4, 2003, 211-217.
Bollongino	2006	R. Bollongino, Die Herkunft der Hausrinder in Europa. Eine aDNA- Studie an neolithischen Knochenfunden. UPA 130 (Bonn 2006).
Ворр	in Vorb	o. M. Bopp, Die Tierknochen aus Savognin GR- Padnal.
Brain	1967	C. K. Brain, Hottentot food remains and their bearing on the interpretation of fossil bone assemblages. Scientific Papers of the Namib Desert Research Station 32, 1967, 1-7.
Breuer et al.	2001	G. Breuer/A. Rehazek/B. Stopp, Veränderung der Körpergrösse von Haustieren aus Fundstellen der Nordschweiz von der Spätlatènezeit bis ins Frühmittelalter. Jahresberichte aus Augst und Kaiseraugst 22, 2001, 161-178.
Brückner	1971	J. Brückner, Allometrische Untersuchungen an den Vorderextremitäten adulter Caniden. Zoologischer Anzeiger 186, 1971, 11-46.
Burga	1980	C. A. Burga, Pollenanalytische Untersuchungen zur Vegetationsgeschichte des Schams und des San Bernardino- Passgebietes (Graubünden, Schweiz). Dissertationes Botanicae 56 (Vaduz 1980).
Burga u. Perret	1998	C. A. Burga und R. Perret, Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter (Thun 1998).
Della Casa	1998	Ph. Della Casa, Relief, Boden, Klima – Zusammenhänge zwischen Landschaften und Siedlungsmuster am Beispiel der Täler nördlich und südlich des San Bernardino. In: B. Hänsel (Hrsg.), Mensch und Umwelt in der Bronzezeit Europas (Kiel 1998) 367-372.

Della Casa et al.	1999	Ph. Della Casa/B. Bass/F. Fedele, The Grisons Alpine Valleys Survey 1995-97: Methods, Results and Prospects of an interdisciplinary Research Program. In: Ph. Della Casa (Hrsg.), Prehistoric alpine environment, society, and economy. Papers of the international colloquium PAESE '97 in Zürich. Universitätsforschungen zur prähistorischen Archäologie 55 (Zürich 1999) 151- 172.
Della Casa	2002	Ph. Della Casa, Landschaften, Siedlungen, Ressourcen; Langzeitszenarien menschlicher Aktivität in ausgewählten alpinen Gebieten der Schweiz, Italiens und Frankreichs. Préhistoires 6 (Montagnac 2002).
Cavallo	2000	Ch. Cavallo, Analisi die resti faunistici rinvenuti nel villaggio Palafitticolo dell'antica età del bronzo (cultura di Polada) di Lagazzi di Piadina (CR). Atti del 2° Convegno Nazionale di Archeozoologia in Asti 1997 (Forli 2000) 231- 237.
Chaix	1976a	L. Chaix, La faune du Dolmen M XI à Sion (Valais, Suisse), problèmes d'interprétation. IXe congrès UISPP (Nice 1976) 56-74.
Chaix	1976b	L. Chaix, La faune néolithique du Valais (Suisse): ses caractères et ses relations avec les faunes néolithiques des régions proches. Dissertation an der Universität Genf (Genf 1976).
Chaix	1986a	L. Chaix, La faune. In: M. A. Borrello/J. L. Brochier/L. Chaix/Ph. Hadorn, Cortaillod- Est, un villane du Bronze final. Archéologie neuchâteloise (Neuchâtel 1986) 47-73.
Chaix	1986b	L. Chaix, Le sanglier et le porc. Musées de Genève 266 (Genève 1986).
Chaix	1987	L. Chaix, Rapport sur la faune d'une grotte de l'âge du Bronze récent/final en Haut-Valais. In: M. David-Elbiali, Occupations en grotte à l'âge du Bronze récent/final en Haut Valais (Grotte In Albon). Jahrbuch der Schweizerischen Gesellschaft für Ur- und Frühgeschichte 70, 1987, 73.
Chaix	1990a	L. Chaix, La faune d'Ayent-le-Château (Valais, Suisse; Bronze ancien et Bronze final). Annuaire de la Société Suisse de Préhistoire et d'Archéologie 73, 1990, 44- 46.
Chaix	1990b	L. Chaix, La faune de Vex-le-Château (Valais, Suisse; du Néolithique moyen au Bronze final). Annuaire de la Société Suisse de Préhistoire et d'Archéologie 73, 1990, 47- 50.
Clutton-Brock	1981	J. Clutton-Brock, Domesticated animals from early times (London 1981).
Clutton-Brock et al.	1990	J. Clutton-Brock/K. Dennis-Bryan/Ph. Armitage/P. A. Jewell, Osteology of the Soay sheep. Bulletin of the British Museum of Natural History (Zoology) 56/1, 1990, 1- 56.
Clutton-Brock	1995	J. Clutton-Brock, Origins of the dog: domestication and early history. In: J. Serpell (Hrsg.), The Domestic Dog: Its Evolution, Behaviour, and Interactions with People. Cambridge University Press (Cambridge 1995) 8- 20.
Coblenz u. Fritzsche	1961	W. Coblenz und K. Fritzsche, Dreifache Rinderbestattung aus Zauschwitz, Kr. Borna. Ausgrabungen und Funde 7 (Berlin 1961).
O'Connor	2000	The archaeology of animal bones. (Stroud 2000).

Currey	2002	J. D. Currey, Bones. Structure and mechanics. Princeton University Press (New Jersey 2002).
Cram	1979	C. L. Cram, Neolithic Pig in Highland New Guinea and Prehistoric Europe. In: Kubasiewicz (Hrsg.), Archaeozoology. Agricultural Academy Szczecin, 1979, 329- 339.
Crockford	1997	S. J. Crockford, Osteometry of Makah and Coast Salish Dogs. Simon Fraser University: Archaeology Press 22, (Bunaby, Canada 1997).
Crockford u. Pye	1997	S. J. Crockford und C. J. Pye, Forensic reconstruction of prehistoric dogs from the Northwest Coast of North America. Canadian Journal of Archaeology 21, 1997, 149- 153.
Crockfkord	2000	S. J. Crockford, A commentary on dog evolution: regional variation, breed development and hybridisation with wolves. In: S. J. Crockford (Hrsg.), Dogs through Time: An Archaeological Perspective. Proceedings of the 1st ICAZ Sypmposium on the History of the Domestic Dog. Eighth Congress of the International Council for Archaeozoology (ICAZ98), Augut 23-29,1998, Victoria, B.C., Canada (Victoria 2000) 295-312.
Dahr	1937	E. Dahr, Studien über Hunde aus primitiven Steinzeitkulturen in Nordeuropa. Lunds Universitets Årsskrift, ny följd, afdelning 2, 32/4, 1937.
Dannegger	1959	E. A. Dannegger, Osteologische Untersuchung der Tierknochenreste aus der Grabung 1952 im Pfahlbau Burgäschisee-Süd. Sonderabdruck aus den Mitteilungen der Naturforschenden Gesellschaft in Bern, neue Folge, 18 (Bern 1959).
Deschler-Erb et al.	2002	S. Deschler-Erb/E. Marti-Grädel/J. Schibler, Bukranien in der jungsteinzeitlichen Siedlung Arbon-Bleiche 3- Status, Kult oder Zauber? Archäologie der Schweiz 4/25, 2002, 25- 33.
Deschler-Erb u. Marti-Grädel	2004	S. Deschler-Erb und E. Marti-Grädel, Viehhaltung und Jagd. Ergebnisse der Untersuchung der handaufgelesenen Tierknochen. In: St. Jacomet/U. Leuzinger/J. Schibler J (Hrsg.), Die jungsteinzeitliche Seeufersiedlung Arbon/Bleiche 3. Umwelt und Wirtschaft. Archäologie im Thurgau 12 (Thurgau 2004) 158- 252.
Dierich	1910	P. Dierich, Beiträge zur Kenntnis prähistorischer Hirsche (Bonn 1910).
Dobberstein u. Tamaschke	1969	J. Dobberstein und Ch. Tamaschke Ch., Blastome der Knochen. In: J. Dobberstein/G. Pallaske/H. Stünzi (Hrsg.), Handbuch der speziellen pathologischen Anatomie der Haustiere. Band I: Bewegungsapparat (Berlin/Hamburg 1969) 513- 533.
Von den Driesch	1975	A. von den Driesch, Die Bewertung pathologisch-anatomischer Veränderungen an vor- und frühgeschichtlichen Tierknochen. In: A.T. Clason (Hrsg.), Archaezoological studies. (New York 1975) 413- 425.
Von den Driesch	1976	A. v. d. Driesch, A guide to measurement of animal bones from archaeological sites. Peabody Museum Bulletin 1 (Cambridge 1976).
Von den Driesch	1976	A. von den Driesch, Das Vermessen von Tierknochen aus vor- und frühgeschichtlichen Siedlungen (München 1976).

Von den Driesch	1992	A. v. d. Driesch, Kulturgeschichte der Hauskatze. In: V. Schmidt und M. Ch. Horzinek (Hrsg.), Krankheiten der Katze 1 (Jena 1992) 17-40.
Von den Driesch u. Boessneck	1973	A. von den Driesch und J. Boessneck, Kritische Anmerkungen zur Widerristhöhenberechnung aus Längenmassen vor- und frühgeschichtlicher Tierknochen. Säugetierkundliche Mitteilungen, 1973, 325- 348.
Dudd u. Evershed	1998	St. N. Dudd und R. P. Evershed, Direct Demonstration of Milk as an Element of Archaeological Economies. Science 282/5393, 1998, 1478- 1481.
Ducos	1960	P. Ducos, Note sur le Cheval néolithique en France. L'Anthropologie 64, 1960, 67-72.
Ducos	1968	P. Ducos, L'origine des animaux domestiques en Palestine. Publications de l'Institut de préhistore de l'Université de Bordeaux 6 (Bordeaux 1968).
Dumont	1987	B. L. Dumont, Relations entre la découpe bouchère et la structure de la musculature. In: La decoupe et le partage du corps a travers le temps et l'espace. Anthropozoologica (premier numéro special), 1987, 9-17.
Ebersbach	1998	R. Ebersbach, Ausgrabungen am Basler Murus Gallicus. Teil 2. Die Tierknochen. Materialhefte zur Archäologie in Basel 13 (Basel 1998).
Ebersbach	2002	R. Ebersbach, Von Bauern und Rindern. Eine Ökosystemanalyse zur Bedeutung der Rinderhaltung in bäuerlichen Gesellschaften als Grundlage zur Modellbildung im Neolithikum. Basler Beiträge zur Archäologie (Basel 2002).
Edwards et al	2004	C. J. Edwards/D. E. MacHugh/K. M. Dobney/L. Martin/N. Russel/L. K. Horwitz/S. K. McIntosh/K. C. MacDonald/D. Helmer/A. Tresset/JD. Vigne/D. G. Bradly, Ancient DNA analysis of 101 cattle remains: limits and prospects. Journal of Archaeological Science 31 (6), 2004, 695-710.
Ericson	1987	P. G. P. Ericson, Interpretations of Archaeological Bird Remains: A Taphonomic Approach. Journal of Archaeological Science 14, 1987, 65-75.
Ervynck et al.	2002	A. Ervynck/K. Dobney/H. Hongo/ R. H. Meadow, Born free: New evidence for the status of pigs from Çayönü Tepesi, Eastern Anatolia. Paléorient 27/2, 2002, 47-73,
Fasnacht	1997	W. Fasnacht, Schlacken ausserhalb der Eisenmetallurgie. In: Technique des fouilles. Minerai, scories, fer. Cours d'initiation à l'étude de la métallurgie du fer ancienne et à l'identification des déchets de cette industrie. GSAF/SAGEA (2é ed. renouvellée). (Basel 1997) 267- 276.
Fasnacht	1999	W. Fasnacht, Prähistorischer Kupferbergbau im Oberhalbstein und dessen Spuren in der bronzezeitlichen Siedlung Savognin-Padnal (GR). In: Ph. Della Casa (Hrsg.), Prehistoric alpine environment, society, and economy. Papers of the international colloquium PAESE '97 in Zürich. Universitätsforschungen zur prähistorischen Archäologie 55 (Zürich 1999) 267- 288.

Fedele	1981	F. Fedele, The ORCO Project: anthropological archaeology in the Alps. In G. Barker und R. Hodges (Hrsg.), Archaeology and Italian Society. Papers of the second seminar on Italian archaeology 1980 in Sheffield. Prehistoric, Roman and Medieval studies (Oxford 1981) 225-238.
Fedele	1983	Le Macrofaune antropiche dell'età del Bronzo piemontese. Rivista Piemontese di Storia Naturale 4, 1983, 85- 109.
Fedele	1987	F. Fedele, Canidi nella preistoria alpina: Paleobiologia e iconografia. Rivista Piemontese di Storia Naturale 8, 1987, 93- 122.
Fedele	1989	F. Fedele, Il popolamento preistorico della bassa Valsusa. In: D. Mori, Materiali per una storia del territorio e del paesaggio agrario nella bassa Valsusa. Avigliana, 1989, 75- 92.
Fernandez	2001	H. Fernandez, Ostéologie compare des petits ruminants eurasiatiques sauvages et domestiques (genres Rupicapra, Ovis, Capra et Capreolus): diagnose differentielle du squelette appendiculaire. Dissertation an der Universität in Genf (Genf 2001).
Fisher	1995	J. W. Fisher, Bone surface modifications in zooarchaeology. Journal of Archaeological method and theory 2/1, 1995, 7-68.
Furrer	2003	B. Furrer (Hrsg.), Kulturaustausch im ländlichen Hausbau, Inneralpin – Transalpin. Berichte über die Tagung der Regionalgruppe Alpen in Schwyz, 29. Juni- 1. Juli 2002. Beiträge zur historischen Hausforschung in den Alpen 1 (Petersberg 2003).
Furrer et al.	1987	G. Furrer/C. Burga/M. Gamper/H P. Holzhauser/M. Maisch, Zur Gletscher-, Vegetations- und Klimageschichte der Schweiz seit der Späteiszeit. Geographica Helvetica, 1987, 61- 91.
Gamble u. Clark	1987	C. Gamble und R. Clark, The faunal remains from Fiavé: Pastoralism, Nutrition and Butchery. In: R. Perini, Scavi archeologici nella zona Palafitticola di Fiavé Carera. Parte II Campagne 1969- 1976. Resti della cultura materiale metallo, osso, litica, legno. Patrimonio storico e artistico del Trentino, 1987, 423- 445.
Gandert	1953	O. Gandert, Neolithische Gräber mit Rinderbeigaben und Rinderbestattungen in Mitteleuropa. Actes de la 3e Session Zurich 1950 (Zürich 1953).
Giacobini u. Strobino	1980	G. Giacobini und F. Strobino, Analisi quantitativa die resti faunistici in un insediamento preistorico alpino: La Grotta del Laghetto (Monte Fenera, Valsesia). Bulletin d'Etudes préhistirques alpines 12, 1980, 21-35.
Gobet u. Hochuli	2004	E. Gobet/P. A. Hochuli, Vom Urwald zur Kulturlandschaft des Oberengadins: Vegetationsgeschichte der letzten 6200 Jahre. Jahrbuch der Schweizer Gesellschaft für Ur- und Frühgeschichte 87, 2004, 255- 270.
Greenfield	1999	H. J. Greenfield, The advent of transhumant pastoralism in the temperate southest Europe: a zooarchaeological perspective from the Central Balkans. In: L. Bartosiewicz L. und H. J. Greenfield (Hrsg.), Transhumant pastoralism in Southern Europe. Recent Perspectives from Archaeology, History and Ethnology. Archaeolingua, Series Minor 11 (Budapest 1999) 15- 36.

Greenfield	1999	H. J. Greenfield, The origins of metallurgy: distinguishing stone from metal cut marks on bones from archaeological sites. Journal of Archaeological Science 26/7, 1999, 797-808.
Gurskii	1975	I. G. Gurski, Hybridization between wolves and dogs in nature. Byulleten Moskovskogo Obshchestva Ispytatelei Prirody Otdel Biologicheskii 80, 1975, 131- 136. [Russisch, engl. Zusammenfass.]
Haag-Wackernagel	1998	D. Haag-Wackernagel, Die Taube. Vom heiligen Vogel der Liebesgöttin zur Strassentaube (Basel 1998).
Haas et al.	1998	J. N. Haas/I. Richoz/W. Tinner/L. Wick, Synchronous Holocene climatic oscillations recorded on the Swiss Plateau and at timberline in the Alps. The Holocene 8/3, 1998, 301-309.
Habermehl	1975	K H. Habermehl, Die Altersbestimmung bei Haus- und Labortieren (Berlin/Hamburg 1975).
Habermehl	1985	K H. Habermehl, Alterbestimmung bei Wild- und Pelztieren (Berlin/Hamburg 1985).
Hainard	1962	R. Hainard, Mammifères sauvages d'Europe 1 et 2 (Neuchâtel/Delachaux/Niestlé 1962).
Häni et al.	1994	H. Häni/J. Lang/G. Ueltschi, Ehemalige Richtstätte des Standes Luzern in Emmen (1562-1798) und dazugehöriger Wasenplatz (1562-1866): Pathologisch- anatomische Befunde am Tierknochenfundgut. Schweizer Archiv für Tierheilkunde 136, 1994, 24-37.
Hartmann-Frick	1960	H. Hartmann-Frick, Die Tierwelt des prähistorischen Siedlungsplatzes auf dem Eschner Lutzengüetle FL. Jahrbuch des Historischen Vereins für das Fürstentum Liechtenstein 59, Sonderdruck, 1960, 9- 223.
Hartmann-Frick	1965	H. Hartmann-Frick, Die Fauna der befestigten Höhensiedlung auf dem Borscht, Fürstentum Liechtenstein. Jahrbuch des Historischen Vereins für das Fürstentum Liechtenstein 63, 1965, 187- 253.
Heierli	1907	J. Heierli, Die bronzezeitliche Quellfassung von St. Moriz. Anzeiger für Altertumskunde, neue Folge, 9/4, 1907, 265- 278.
Helmer	1992	D. Helmer, La domestication des animaux par les hommes préhistoriques (Paris 1992).
Helmer	1994	D. Helmer, La domestication des animaux d'embouche dans le Levant Nord (Syrie du Nord et Sinjar), du milieu du Ixe millénaire BP à la fin du VIIe millénaire BP. Nouvelles données d'après les fouilles récentes. Anthropozoologica 20, 1994, 41-54.
Helmer	2000	D. Helmer, Discrimination des genres <i>ovis</i> et <i>capra</i> à l'aide des prémolaires inférieures 3 et 4 et interprétation des âges d'abattage: l'exemple de Dikili Tash (Grece). Anthropozoologica 31, 2000, 29-38.
Henseler	1913	H. Henseler, Untersuchungen über den Einfluss der Ernährung auf die morphologische und physiologische Gestalt des Tierkörpers. Kühnarchiv 4, 1913.
Herre u. Röhrs	1990	W. Herre und M. Röhrs M., Haustiere - zoologisch gesehen (Stuttgart/New York 1990)

Hesse	1984	B. Hesse, These are Our Goats: The Origins of Herding in West Central Iran. In: J. Clotton-Brock und C. Grigson, Animals and Archaeology: 3. Early Herders and their Flocks. BAR International Series 202, 1984, 243- 264.
Hescheler u. Rüeger	1940	K. Hescheler und J. Rüeger, Die Wirbeltierreste aus den Pfahlbauten des Baldeggersees nach den Grabungen von 1938 und 1939. Sonderabdruck aus der Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 85, 1940, 59-70.
Hescheler u. Rüeger	1942	K. Hescheler und J. Rüeger, Die Reste der Haustiere aus den neolithischen Pfahlbaudörfern Egolzwil 2 (Wauwilersee, LU) und Seematte-Gelfingen (Baldeggersee, Kt. Luzern). Sonderabdruck der Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 75, 1942, 383-486.
Hildebrandt	1966	K. Hildebrandt, Tierknochenfunde aus der Stadt auf dem Magdalenensberg bei Klagenfurt in Kärnten. 5. Die Rinderknochen. Dissertation Universität München, Kärntner Museumsschrift 42 (Klagenfurt 1966).
Hill	1975	A. P. Hill, Taphonomy of contemporary and Late Cenozoic East African vertebrates. Dissertation University of London (London, 1975).
Hill	1979	A. P. Hill, Butchery and Natural disarticulation: an investigatory Technique. American Antiquity 44/4, 1979, 739- 744.
Hochuli et al.	1998	St. Hochuli/U. Niffeler/V. Rychner (Hrsg.), Die Schweiz vom Paläolithikum bis zum Mittelalter 3 (SPM III), Bronzezeit (Basel 1998).
Holz	1965	H. Holz, Zur innerartlichen Variabilität und phylogenetischen Stellung des afrikanischen Hyänenhundes Lycaon pictus. Zoologischer Anzeiger 174, 1965, 362-395.
Hongo u. Meadow	1998	H. Hongo und R. H. Meadow, Pig Exploitation at Neolithic Çayönü Tepesi (Southeastern Anatolia). MASCA Research Papers in Science and Archaeology 15, 1998, 77-98.
Horard-Herbin	1998	MP. Horard-Herbin, Dog management and use in the late iron age: the evidence from the gallic site of Levroux (France). In: S. J. Crockford (Hrsg.), Dogs through time: an archaeological perspective. Proceedings of the 1st ICAZ Symposium on the History of the Domestic Dog, Eighth Congress of the International Council for Archaeozoology (ICAZ 98), August 23-29, 1998, Victoria, B.C., Canada (Victoria 1998) 115-121.
Howay	1918	F. W. Howay, The dog's hair blanket of the Coast Salish. Washington Historical Quarterly 9, 1918, 83-92.
Hüster-Plogmann	2005	H. Hüster-Plogmann, Die glockenbecherzeitlichen Knochenreste. In: E. Rigert/S. Jacomet/S. Hosch/H. Hüster-Plogmann/Ph. Rentzel/Ch. Pümpin/J. Affolter, Eine Fundstelle der Glockenbecherzeit in Wetzikon ZH-Kempten, Tösstalstrasse 32-36. Jahrbuch der Schweizerischen Gesellschaft für Ur- und Frühgeschichte 88, 2005, 97-98.

Hüster-Plogmann u. Schibler	1997	H. Hüster-Plogmann und J. Schibler, Archäozoologie. In: J. Schibler/H. Hüster-Plogmann/S. Jacomet/Ch. Brombacher/ E. Gross-Klee/A. Rast-Eicher, Ökonomie und Ökologie neolithischer und bronzezeitlicher Ufersiedlungen am Zürichsee. Monographien der Zürcher Denkmalpflege 20 (1997 Zürich/Elgg) 40-121.
Ijzereef	1981	G. Ijzereef, Bronze Age Animal Bones from Bovenkarspel. The Excavation at Het Valkje. Nederlandse Oudheden 10, 1981, 83-95.
Jarman	1975	H. N. Jarman, The Fauna and Economy of Fiavé. Preistoria Alpina 11, 1975, 65-73.
Jacomet u. Karg	1996	St. Jacomet und S. Karg, Ackerbau und Umwelt der Seeufersiedlungen von Zug-Sumpf im Ramen der mitteleuropäischen Spätbronzezeit: Ergebnisse archäologischer Untersuchungen. In: M. Seifert/St. Jacomet/S. Karg et al., Die spätbronzezeitlichen Ufersiedlungen von Zug-Sumpf. 1, Die Dorfgeschichte (Zug 1996) 198- 267.
Jacomet u. Schibler	1999	St. Jacomet und J. Schibler, Archäobiologie: Rekonstruktion der Umwelt. In: M. Seifert, Von eisenzeitlichen Hirschjägern in Haldenstein. Haldensteiner Bote 15, 1999, 23-25.
Jacomet et al.	1999	St. Jacomet/Ch. Brombacher/E. Schraner, Ackerbau und Sammelwirtschaft während der Bronze- und Eisenzeit in den östlichen Schweizer Alpen – vorläufige Ergebnisse. In: Ph. Della Casa (Hrsg.), Prehistoric alpine environment, society, and economy. Papers of the international colloquium PAESE `97 in Zürich. Universitätsforschungen zur prähistorischen Archäologie 55 (Zürich 1999) 231- 244.
Jacquat	1989	Ch. Jacquat, Hauterive-Champréveyres 2. Les plantes de l'age du Bronze. Contribution à l'histoire de L'environnement et de l'alimentation. Archéologie neuchâteloise 8 (St. Blaise 1989).
Johansson	1982	F. Johansson, Untersuchungen an Skelettresten von Rindern aus Haitabu. Berichte über die Ausgrabungen in Haitabu 17 (Neumünster 1982).
Jubb et al.	1985	K. V. F. Jubb/P. C. Kennedy/N. Palmer, Pathology of Domestic Animals. Academic Press 1, 3rd Ed. (San Diego, California 1985)
Kaufmann	1983	B. Kaufmann, Die Skelettreste von Scuol-Munt Baselgia. In: L. Stauffer-Isenring, Die Siedlungsreste von Scuol-Munt Baselgia (Unterengadin GR). Ein Beitrag zur inneralpinen Bronze- und Eisenzeit. Antiqua 9,1983, 164- 179.
Klein	1998	R. G. Klein, Fur Seal bones reveal variability in prehistoric human seasonal movements on the southwest African coast. In: I. Plug und R. G. Klein, Archaeozoology in Africa. Archaeozoologia 10/1.2, 181-188.
Klein u. Cruz-Uribe	1984	R. G. Klein und K. Cruz-Uribe, The analysis of animal bones from archeological sites. The University Chicago Press (Chicago 1984).
Knecht	1966	G. Knecht, Mittelalterlich-frühneuzeitliche Tierknochenfunde aus Oberösterreich (Linz und Enns). Dissertation an der Universität München (München 1966).

Knipper	in Vorb	. C. Knipper, Archäologische und isotopenchemische Untersuchungen zur möglichen Transhumanz in der Linearbandkeramik (Arbeitstitel).
von Königswald	1999	W. v. Koenigswald, Palökologie und Vorkommen des pleistozänen Auerochsen (Bos primigenius BOJANUS, 1827) im Vergleich zu den grossen Rindern des Pleistozäns. In: GCh. Weniger (Hrsg.), Archäologie und Biologie des Auerochsen. Wissenschaftliche Schriften des Neanderthal Museums 1 (Mettmann 1999) 24-33.
Koop et al.	1998	B. F. Koop/M. Burbidge/A. Byun/U. Rink, Ancient DNA evidence of a separate origin for North American indigenous dogs. In: S. J. Crockford (Hrsg.), Dogs through time: an archaeological perspective. Proceedings of the 1st ICAZ Symposium on the History of the Domestic Dog. Eighth Congress of the International Council for Archaeozoology (ICAZ98), August 23- 29 (Victoria, B.C., Canada 1998).
Koubek et al.	2004	P. Koubek/V. Barus/B. Koubkova, Troglotrema acutum (Digenea) from carnivores in the Czech Republic. Helminthologia 41, 2004, 25-31
Kreutzmann	1989	H. Kreutzmann, Hunza: ländliche Entwicklung im Karakorum. Abhandlungen Anthropogeographie 44 (Berlin 1989).
Kreutzmann	1989	H. Kreutzmann, Entwicklung und Bedeutung des Fremdenverkehrs in Hunza. In: Beiträge und Materialien zur Regionalen Geographie 2, 1989, 19-31.
Kuhn	1937	E. Kuhn, Die Fauna der Wallsiedlung im Borscht (Endneolithikum- La Tène). Jahrbuch des Historischen Vereins für das Fürstentum Liechtenstein 37, 1937, 4-42.
Larson et al.	2007	G. Larson/U. Albarella/K. Dobney/P. Rowley-Conwy/J. Schibler/A. Tresset/JD. Vigne/C. J. Edwards/A. Schlumbaum/A. Dim/B. Bălăçescu/G. Dolman/A. Tagliacozzo/N. Manaseryan/P. Miracle/L. Van Wijngaarden-Bakker/M. Masseti/D. G. Bradly/A. Cooper, Ancient DNA, pig domestication and the spread of the Neolithic Into Europe. Proceedings of the National Academy of Scienses 10, 2007, 1073.
Legge	1996	A. Legge, The Beginning of Caprine Domestication in Southwest Asia. In: D. R. Harris (Hrsg.), The Origins and Spread of Agriculture and Pastoralism in Eurasia. Smithsonian Institution Press (Washingtion 1996) 238- 263.
Leidlmair et al.	069-1999	A. Leidlmair/J. Aistleitner/ W. Keller (Hrsg.), Tirol-Atlas: eine Landeskunde in Karten (Innsbruck 1969).
Leinders u. Sondar	1974	J. J. M. Leinders und P.Y. Sondar, On functional fusions in footbones of Ungulates. Zeitschrift für Säugetierkunde 39, 1974, 109-115.
Von Lengerken	1953	H. von Lengerken, Der Ur und seine Beziehung zum Menschen. Die Neue Brehm Bücherei 105 (Leipzig 1953).
Lundholm	1947	B. Lundholm, Abstammung und Domestikation des Hauspferdes. Zoologiska bidrag från Uppsala 47 (Uppsala 1947).
Lyman	1994	R. L. Lyman, Vertebrate Taphonomy. Cambridge manuals in Archaeology (Cambridge 1994).

Lyon	1970	P. Lyon, Differential Bone Destruction: an Ethnographic Example.American Antiquity 35, 1970, 213-215.
Maargaard u. Graugaard	1994	L. Maargaard und J. Graugaard, Female Arctic wolf, Canis lupus arctos, mating with domestic dogs, Canis familiaris, in norheast Greenland. Canadian Field-Naturalist 108, 1994, 374- 375.
Magny et al.	1998	M. Magny/Ch. Maise/St. Jacomet/C. A. Burga, Umwelt und Subsistenzwirtschaft. In: St. Hochuli/U. Niffeler/V. Rychner (Hrsg.), SPM III, Die Schweiz vom Paläolithikum bis zum Mittelalter. Bronzezeit. (Basel 1998) 135-170.
Martin	1987	T. Martin, Artunterschiede an den Langknochen grosser Artiodactyla des Jungpleistozäns Mitteleuropas. Cour. ForschInst. Senckenberg 96, 1987, 1- 124.
Martin	1990	T. Martin, Jungpleistozäne und holozäne Skelettfunde von Bos primigenius und Bison priscus aus Deutschland und ihre Bedeutung für die Zuordnung isolierter Langknochen. Eiszeitalter und Gegenwart 40, 1990, 1-19.
Mason	1984	I. L. Mason, Evolution of domesticated Animals (London 1984).
Mainland	1995	I. L. Mainland, Reconstructing the diet of archaeological domesticates: the potential of dental microwear analysis. In: R. J. Radlanski und H. Renz (Hrsg.), Proceedings of the Tenth International Symposium on Dental Morphology (Berlin 1995) 156- 161.
MacHugh et al	1999	D. E. MacHugh/Ch. S. Troy/F. McCormick/I. Olsaker/ E. Ethórsdóttir/D. G. Bradley, Early medieval cattle remains from a Scandinavian settlement in Dublin: genetic analysis and comparison with extant breeds. Philosophical Transactions of the Royal Society in London, Biological Sciences 354, 1999, 99- 109.
Meadow	1999	R. H. Meadow, The use of scaling techniques for research on archaeozoological collections from the Middle East. In: C Becker/H. Manhart/J. Peters/J. Schibler (Hrsg.), Historia animalum ex ossibus. Festschrift für Angela von den Driesch. Internationale Archäologie Studia honoraria 8 (Rhaden 1999) 285- 299.
Meier	1992	C. Meier, Die Vögel Graubündens. Desertina (Disentis 992).
Méniel	1984	P. Méniel, Contribution à l'histoire de l'élevage en Picardie: du néolithique à la fin de l'âge du fer. Revue archeologique de Picardie, numéro special, 1984.
Morey	1994	D. F. Morey, The early evolution of the domestic dog. American Scientist 82, 1994, 336- 347.
Morgantini u. Hudson	1989	L. E. Morgantini und R. J. Hudson, Nutritional significance of wapiti (Cervus elaphus) migrations to alpine ranger in Western Alberta, Canada. Arctic and Alpine Research 21, 1989, 288-295.
Murbach-Wende	2001	I. Murbach-Wende, Die Frühbronze- bis Eisenzeitliche Keramik der Siedlung Cazis-Cresta (GR) – eine Entwicklungsgeschichte über 1500 Jahre. Dissertation an der Philosophisch-historischen Fakultät der Universität Bern (Bern 2001).
Mysterud	1999	A. Mysterud, Seasonal migration pattern and home range of roe deer (Capreolus capreolus) in an altitudinal gradient in southern Norway. Journal of Zoology 247, 1999, 479- 486.

Mysterud	2001	A. Mysterud/R. Langvatn/N. G. Yoccoz/N. Chr. Stenseth, Plant phenology, migration and geographical variation in body weigth of a large herbivore: the effect of a variable topography. Journal of Animal Ecology 70, 2001, 915-923.	
Von Nathusius	1864	H. von Nathusius, Vorstudien zur Geschichte und Zucht der Haustiere, zunächst am Schweineschädel (Berlin 1864).	
Nieberle	1970	K. Nieberle und P. Cohrs, Lehrbuch der speziellen pathologischen Anatomie der Haustiere (Jena 1970).	
Nobis	1971	G. Nobis, Vom Wildpferd zum Hauspferd. Fundamenta B/6 (Kölnund Wien 1971).	
Nowak u. Kienlin	2002	P. V. Nowak und T. L. Kienlin, Neolithische Transhumanz in den Mittelgebirgen: Ein Survey im westlichen Schwarzwald. Prähistorische Zeitschrift 77/1, 2002, 29-76	
Oosenbrug u. Theberge	1980	S. M. Oosenbrug u. J. B. Theberge, Altidudinal movements and summer habitat preferences of woodland caribou in the Kluane Ranges, Yukon Territory. Arctic 33/1, 1980, 59-72.	
Ottiger u. Reeb	1991	H. Ottiger und U. Reeb, Gerben: Leder und Felle selbst gerben (Stuttgart 1991).	
Payne	1973	Payne, Kill-off patterns in sheep and goats: the Mandibles from Aşvan Kalé. Anatolian Studies 23, 1973, 281-303.	
Payne	1985	S. Payne, Morphological Distinctions between the Mandibular Teeth of Young Sheep, Ovis, and Goats, Capra. Journal of Archaeological Science 12, 1985, 139- 147.	
Pavlov	1982	M. P. Pavlov, Volk (Der Wolf) (Moskau 1982).	
Pietschmann	1977	W. Pietschmann, Zur Grösse des Rothirsches (Cervus elaphus L.) in vor- und frühgeschichtlicher Zeit. Dissertation Universität München (München 1977).	
Poplin	1976	F. Poplin, Origine du porc. Ethnozootechnie 16, 1976, 6-13.	
Pucher	1986	E. Pucher, Bronzezeitliche Tierknochen vom Buchberg, O.G. Wiesing, Tirol. Fundberichte aus Österreich 23, 1986, 209-220.	
Pucher	1992	E. Pucher, Das bronzezeitliche Pferdeskelett von Unterhautzenthal, P.B. Korneuburg (Niederösterreich), sowie Bemerkungen zu einigen anderen Funden "früher" Pferde in Österreich. Annalen des Naturhistorischen Museums. Wien 93 B, 1992, 19-39.	
Pucher	1994	E. Pucher, Eine Gegenüberstellung prähistorischer Tierknochenfundkomplexe des Ostalpenraums- Verbindungen und Gegensätze. Forschungen und Berichte zur Vor- und Frühgeschichte in Baden Württemberg 53 (Stuttgart 1994) 231- 249.	
Pucher u. Engl	1997	E. Pucher und K. Engl, Studien zur Pfahlbauforschung in Österreich. Materialien I. Die Pfahlbaustationen des Mondsees. Tierknochenfunde. Österreichische Akademie der Wissenschaften, Philosophisch-historische Klasse 33 (Wien 1997).	
Prilloff	2001	R J. Prilloff, Die Bestimmung der Tierknochen von Untervaz, Haselboden. Jahresbericht des Archäologischen Dienstes Graubünden und der Denkmalpflege Graubünden (Haldenstein/Chur) 59- 64.	

Primas	1985	M. Primas, Cazis-Petrushügel in Graubünden: Neolithikum, Bronzezeit, Spätmittelalter. Zürcher Studien zur Archäologie (Zürich 1985).
Primas	1979	M. Primas, Archäologische Untersuchungen in Tamins GR – die spätneolithische Station "Crestis". Jahrbuch der Schweizerischen Gesellschaft für Ur- und Frühgeschichte 62, 1979, 13- 26.
Primas	1998	M. Primas, Der bronzezeitliche Landausbau in den Alpen. In: B. Hänsel (Hrsg.), Mensch und Umwelt in der Bronzezeit Europas. Abschlusstagung der Kampagne des Europarates: Die Bronzezeit: das erste goldene Zeitalter Europas (Berlin 1998) 355- 365.
Primas	1999	M. Primas, From fiction to facts. Currrent research on prehistoric human activity in the Alps. In: Ph. Della Casa (Hrsg.), Prehistoric alpine environment, society, and economy. Papers of the international colloquium PAESE '97 in Zürich. Universitätsforschungen zur prähistorischen Archäologie 55 (Zürich 1999) 1- 10.
Prummel	1988	W. Prummel, Distinguishing features on postcranial skeletal elements of cattle, Bos primigenius f. taurus, and red deer, Cervus elaphus. Schriften aus der Archäologisch- Zoologischen Arbeitsgruppe Schleswig-Kiel, 1988.
Prummel u. Frisch	1986	W. Prummel und H J. Frisch, A Guide fort he Distinction of Species, Sex and Body Side in Bones of Sheep and Goat. Journal of Archaeological Science 13, 1986, 567- 577.
Rageth	1986	J. Rageth, Die wichtigsten Resultate der Ausgrabungen in der bronzezeitlichen Siedlung auf dem Padnal bei Savognin (Oberhalbstein GR). Jahrbuch der Schweizerischen Gesellschaft für Ur- und Frühgeschichte 69, 1986, 63- 103.
Rageth	1998	J. Rageth, Ein prähistorischer Kultplatz auf Scuol- Motta Sfonderaz. In: Jahresbericht Archäologischer Dienst und Denkmalpflege Graubünden (Haldenstein/Chur 1998) 34- 46.
Rageth	2000	J. Rageth, Die Urgeschichte. In: J. Simonett (Hrsg.), Handbuch der Bündnergeschichte 1 (Chur 2000) 15- 60.
Von Raesfeld	1964	F. von Raesfeld, Das Rotwild (Hamburg-Berlin 1964).
Reverdin	1921	L. Reverdin, La faune néolithique de St-Aubin (Port Conty). Verhandlungen der Schweizerischen Naturforschenden Gesellschaft 102 (Schaffhausen 1921).
Reverdin	1930	L. Reverdin, La faune néolithique de la station de Port Conty (St-Aubin, Neuchâtel) d'après le matériel recueilli de 1928 à 1930. Comptes rendus des séances de la Société de Physique et d'Histoire Naturelle de Genève 47, 1930, 41-46.
Riedel	1975	A. Riedel, La fauna del villaggio preistorico di Isolone della Prevaldesca. Bollettino del Museo Civico di Storia Naturale di Verona 2, 1975, 355- 414.
Riedel	1976a	A. Riedel, La fauna del villaggio preistorico di Barche di Solferino. Estratto dagli Atti del Museo Civico di Storia Naturale 29/4/12, 1976.

Riedel	1976b	A. Riedel, La fauna del villaggio preistorico di Ledro. Archeozoologia e paleo- economia. Rivista del Museo Tridentino di Scienze Naturali 53, 1976, 1-102.
Riedel	1979	A. Riedel, Investigations on the development of the fauna in Northern Italy from Late Neolithic to the Middle Ages. In: M. Kubasiewicz (Hrsg.), Archaeozoology. Agricultural Academy Szczecin, 1979, 322- 329.
Riedel	1980	A. Riedel, The horse of the Tilde Cave. Atti dei Civici Musei di Storio Naturale Trieste 32, 1980, 19- 110.
Riedel	1981	A. Riedel, La fauna di Braida Roggia a Pozzuolo del Friuli. Atti dei Civici Musei di Storia ed Arte di Trieste 12/1, 1981, 121-131.
Riedel	1982	A. Riedel, Die Fauna von Feniletto (Verona). Rivista di Archeologia 6, 1982, 28-30.
Riedel	1984a	A. Riedel, Die Fauna der Sonnenburger Ausgrabungen. Preistoria Alpina 20, 1984, 261- 280.
Riedel	1984b	A. Riedel, The Fauna of the excavations of Pozzuolo del Friuli (1980- 1983). Atti dei Civici Musei di Storia e Arte di Trieste 14, 1984, 215- 275.
Riedel	1985	A. Riedel, Die Fauna einer bronzezeitlichen Siedlung bei Eppan (Südtirol). Rivista di Archeologia 9, 1985, 9-25.
Riedel	1986a	A. Riedel, Archäozoologische Untersuchungen im Raum zwischen Adriaküste und Alpenhauptkamm (Padusa 1986).
Riedel	1986b	A. Riedel, Die Fauna der vorgeschichtlichen Siedlung des Fingerhofes (Völser Aicha). Preistoria Alpina 22, 1986, 177- 182.
Riedel	1987	A. Riedel, Mozzecane, Quarto del Tormine. La fauna. Quaderni di Archeologia del Veneto 3, 1987, 117- 118.
Riedel	1990	A. Riedel, La fauna dell'età del bronzo di Cisano (Verona). In: L. Perini (Hrsg.), Nuovi scavi nella Palafitta di Cisano (Bardolino 1990) 53- 59.
Riedel	1992	A. Riedel, The bronze age animal bone deposit of Nogarole Rocca i Camponi (Verona). Padusa 28, 1992, 87- 104.
Riedel	1993	A. Riedel, La fauvna di Sabbionara di Veronella (Verona). In: L. Balzani (Hrsg.), L'abitato e la necropoli di Sabbionara a Veronella. Prime Ricerche (Cologna/Veneta 1993) 79-85.
Riedel	2001	A. Riedel, Die Fauna der vorgeschichtlichen Siedlung von Pfatten. 90. pubblicazione del Museo Civico di Rovereto (Rovereto 2001).
Riedel u. Tecchiati	1992	A. Riedel und U. Tecchiati, La fauna del Riparo del Santuario (Comune di Lasino-Trentino): aspetti archeozoologici, paleoeconomici e rituali. Annali del Musei Civico di Rovereto 8, 1992, 1-46.

Riedel u. Tecchiati	1998	A. Riedel und U. Tecchiati, Die Tierknochenfunde der mittel- bis spätbronzezeitlichen Siedlung von Sotciastel im Gadertal. In: U. Tecchiati (Hrsg.), Sotciastel. Un insediamento fortificato dell'età del bronzo in Val Badia (BZ). Institut Ladin Micurà de Rü, Soprintendenza Provinciale ai Beni Culturali di Bolzano (Bolzano, 1998) 285-319.
Riedel u. Tecchiati	1999	A. Riedel und U. Tecchiati, The faunistic remains of the hill top settlement of the early and middle Bronze Age of Nössing in Isarco Valley (Commune of Varna, Bolzano). Atti dell'Accademia roveretana degli Agiati 9, 1999, 285- 327.
Riedel u. Tecchiati	2000	A. Riedel und U. Tecchiati, La fauna dell' antica età del bronzo di Naturno-Naturns, loc. Schnalserhof (Bolzano). Atti del 2° Convegno Nazionale di Archeozoologia in Asti 1997 (Forli 2000) 225- 229.
Rizzi	1997	J. Rizzi, Lo studio della fauna dell'età del bronzo medio di Albanbühel. Tesi di Laurea discussa nell'A.A. 1996/97 presso l'Università degli Studi di Padova, Facoltà di Scienze Matematiche, Fisiche e Naturali, Dipartimento di geologia, paleontologia e geofisica.
Rizzi	1995	J. Rizzi, The middle Bronze Age fauna of Albanbühel. Padusa Quaderni 1, 1° Convegno Nationale in Rovino (Rovigo 1995) 171- 183.
Röhrs	1959	M. Röhrs, Neue Ergebnisse und Probleme der Allometrieforschung. Zeitschrift für wissenschaftliche Zoologie 162, 1959, 1-95.
Rüeger	1942	J. Rüeger, Die Tierreste aus der spätbronzezeitlichen Siedlung Crestaulta (Kanton Graubünden) nach den Grabungen 1935- 1938. Revue Suisse de Zoologie 49, 1942, 251- 267.
Rüeger	1945	J. Rüeger, Die tierischen Reste, In: G. Bersu, Das Wittnauer Horn Im Kanton Aargau. Seine Ur- und Frühgeschichtlichen Befestigungsanlagen. Monographien zur Ur- und Frühgeschichte der Schweiz 4/14, 1945, 106- 110.
Rütimeyer	1862	L. Rütimeyer, Die Fauna der Pfahlbauten der Schweiz. Basel, Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft der gesamten Naturwissenschaften 19, 1862.
Ryder	1983	M. L. Ryder, Sheep and man (London 1983).
Schibler	1996	J. Schibler, Archäozoologische Auswertung der Tierknochen. In: L. Berger/M. Brianza/P. Gutzwiller u.a., Sondierungen auf dem Wittnauer Horn 1980 1982. Basler Beiträge zur Ur- und Frühgeschichte 14 (Derendingen 1996) 71- 73.
Schibler	1998	J. Schibler, OSSOBOOK, a database system for archaeozoology. In: P. Anreiter u.a. (Hrsg.), Man and the animal world: Festschrift for Sandor Bökönyi. Archaeolingua (Budapest 1998) 491- 510.
Schibler	2001	J. Schibler, Glockenbecherzeitliche Tierknochen aus Grube G 211. In: U. Gnepf Horisberger und S. Hämmerle, Cham-Oberwil, Hof (Kanton Zug). Befunde und Funde aus der Glockenbecherkultur und der Bronzezeit. Antiqua 33/146 (Basel 2001).
Schibler u. Chaix	1995	J. Schibler und L. Chaix, Wirtschaftliche Entwicklung aufgrund archäozoologischer Daten. In: W. E. Stöckli/U. Niffeler/ E. Gross-Klee (Hrsg.), SPM II, Die Schweiz vom Paläolithikum bis zum Mittelalter. Neolithikum. (Basel 1995) 97- 120.

Schibler u. Jacomet	2005	J. Schibler und S. Jacomet, Fair-weather Archaeology? A possible Relationship between Climate and the Quality of Archaeological Sources. In: D. Gronenborn (Hrsg.), Klimaveränderung und Kulturwandel in neolithischen Gesellschaften Mitteleuropas, 6700-2200 v. Chr. RGZM- Tagungen 1 (Mainz 2005) 27- 39.
Schibler u. Sedlmeier	1993	J. Schibler und J. Sedlmeier, Die Schneehuhn- und Schneehasenknochen aus dem Abri Büttenloch bei Ettingen (Kanton Basel-Landschaft, Schweiz). Ein Beitrag zur Kenntnis der Jagdbeutenutzung im Spätmagdalénien. Archäologisches Korrespondenzblatt 23/1, 1993, 15-35.
Schibler u. Studer	1998	J. Schibler und J. Studer, Haustierhaltung und Jagd während der Bronzezeit der Schweiz. In: St. Hochuli/U. Niffeler/V. Rychner (Hrsg.), SPM III, Die Schweiz vom Paläolithikum bis zum Mittelalter. Bronzezeit. (Basel 1998), 171- 192.
Schibler u. Veszeli	1996	J. Schibler und M. Veszeli, Die Tierknochen der Seeufersiedlung Zug- Sumpf und ihre Bedeutung im Rahmen der bronzezeitlichen Wirtschaft im nördlichen Alpenvorland. In: Die spätbronzezeitliche Ufersiedlung von Zug- Sumpf, Band 1: Die Dorfgeschichte (Zug 1996) 305- 377.
Schibler et al	1997	J. Schibler/H. Hüster-Plogmann/S. Jacomet/Ch. Brombacher/ E. Gross-Klee/A. Rast-Eicher, Ökonomie und Ökologie neolithischer und bronzezeitlicher Ufersiedlungen am Zürichsee. Monographien der Zürcher Denkmalpflege 20 (1997 Zürich/Elgg) 40-121.
Schmid	1952	E. Schmid, Die Tierknochen vom Kestenberg, Grabung 1951. Ur- Schweiz 16, 1952, 96.
Schmid	1955	E. Schmid, Die Tierknochen vom Kestenberg, Grabung 1952. Ur- Schweiz 19, 1955, 31- 32.
Schmid et al.	1998	H. Schmid/R. Luder R/B. Naef-Daenzer/R. Graf/N. Zbinden N., Schweizer Brutvogelatlas. Verbreitung der Brutvögel in der Schweiz und im Fürstentum Liechtenstein 1993- 1996. Schweizerische Vogelwarte (Sempach 1998).
Schoenenberger	1971	Paläopathologische Untersuchungen an römerzeitlichen Fundknochen der Colonia Augusta Raurica. Dissertation an der Universität Zürich (Zürich 1971).
Schulting	1994	R. Schulting, The hair of the dog: the identification of a coast Salish dog-hair blanket from Yale, B.C. Canadian Journal of Archaeology 18, 1994, 57-76.
Scott	1967	J. P. Scott, The evolution of social behaviour in dogs and wolves. American Zoologist 7, 1967, 373-381.
Seifert	2000	M. Seifert, Vor 3466 Jahren erbaut! Die Quellfassung von St.Moritz. Archäologie der Schweiz 23/2, 2000, 63-75.
Sherratt	1983	A. Sherratt, The secondary expoitation of animals in the Old World. World Archaeology 15/1, 1983, 90- 104.
Silbersiepe et al.	1965	E. Silbersiepe/E. Berge/H. Müller, Lehrbuch der Speziellen Chirurgie für Tierärzte und Studierende, 14. Auflage (Stuttgart 1965).

Van Soest	1994	P. J. Van Soest, The Nutritional Ecology of the Ruminant. Cornell University Press (Ithaca/New York, 1994).
Spangenberg	2004	J. E. Spangenberg, Food residues: Chemistry. In: St. Jacomet/ U. Leuzinger/J. Schibler J (Hrsg.), Die jungsteinzeitliche Seeufersiedlung Arbon/Bleiche 3. Umwelt und Wirtschaft. Archäologie im Thurgau 12 (Thurgau 2004) 284- 293.
Stöckli et al	1995	W. E. Stöckli/U. Niffeler/ E. Gross-Klee (Hrsg.), SPM II, Die Schweiz vom Paläolithikum bis zum Mittelalter. Neolithikum. (Basel 1995).
Stubbe u. Krapp	1993	Stubbe und Krapp (Hrsg.), Handbuch der Säugetiere Europas, Raubsäuger, Teil 2 (Wiesbaden 1993).
Studer	1991	J. Studer 1991: La faune de l'âge du bronze final du site d'Hauterive-Champréveyres (Neuchâtel, Suisse). Synthèse de la faune des sites littoraux contemporains. Thèse de l'Université de Genève (Genève 1991).
Studer	1883	Th. Studer, Die Thierreste aus den Pfahlbauten des Bielersees. Mitteilungen der Naturforschenden Gesellschaft Bern, 1882.
Svensson et al.	1999	L. Svensson/P. J. Grant/K. Mullarney/D. Zetterström D., Der neue Kosmos-Vogelführer. Alle Arten Europas, Nordafrikas und Vorderasiens (Stuttgart 1999).
Teichert	1969	M. Teichert, Osteometrische Untersuchungen zur Berechnung der Widerristhöhe bei vor- und frühgeschichtlichen Schweinen. Kühn-Archiv 83, 1969, 237- 292.
Teichert	1970	M. Teichert, Der Wisent aus Oberdorla. Wissenschaftliche Zeitschrift der Universität Halle 19, 1970, 117- 121.
Thawley	1982	C. R. Thawley, The animal remains. In: J. S. Wacher/F. S. A. u. A. D. Mc Whirr, Cirencester Excavations I. Early Roman occupation at Cirencester (Cirencester 1982) 211- 227.
Toots	1965	H. Toots, Sequence of disarticulation in mammalian skeletons. University of Wyoming Contributions in Geology 4/1, 1965, 37-39.
Tomek u. Bocheński	2000	T. Tomek und Z.M. Bocheński, The comparative osteology of european corvids (aves: corvidae), with a key to the identification of their skeletal elements. Institute of Systematics and Evolution of Animals, Polish Academy of Sciences (Kraków 200).
Uerpmann	1990	HP. Uerpmann, Die Domestikation des Pferdes im Chalkolithikum West- und Mitteleuropas. Madrider Mitteilungen 31, 1990, 109- 153.
Vilà et al.	1997	C. Vilà/P. Savolainen/J. E. Maldonado/I. R. Amorim/J. E. Rice/R. L. Honeycutt/K. A. Crandall/J. Lundeberg/R. K. Wayne, Multiple and ancient origins of the dog. Science 276, 1997, 1687-1689.
Villa u. Mathieu	1991	P. Villa und E. Mathieu, Breakage patterns of human long bones. Journal of Human Evolution 21, 1991, 27-48.
Vigne u. Buttenhuis	1999	J. D. Vigne und H. Buttenhuis (in Zusammenarbeit mit S. Davis), Les premiers pas de la domestication animale à l'Ouest de l'Euphrate: Chypre et l'Anatolie centrale. Paléorient 25/2, 1999, 49- 62.

Vigne u. Guilaine	2004	JD. Vigne und J. Guilaine, Les premiers animaux de compagnie 8500 ans avant notre ère? ou comment j'ai mangé mon chat, mon chien et mon renard. Anthropozoologica 39/1, 2004, 249- 273.
Wahl	1982	J. Wahl, Leichenbranduntersuchungen: ein Überblick über die Bearbeitungs- und Aussagemöglichkeitne von Brandgräbern. Prähistorische Zeitschrift 57/1, 1982.
Wäsle	1976	R. Wäsle, Gebissanomalien und pathologisch-anatomische Veränderungen an Knochenfunden aus archäologischen Ausgrabungen. Dissertation an der Universität München (München 1976).
Weller	1999	O. Weller, Une place pour le sel dans le Néolithique alpin. In: Ph. Della Casa (Hrsg.), Prehistoric alpine environment, society, and economy. Papers of the international colloquium PAESE 97 in Zürich. Universitätsforschungen zur prähistorischen Archäologie 55 (Zürich 1999) 295- 301.
Wettstein	1924	E. Wettstein, Die Tierreste aus dem Pfahlbau am Alpenquai in Zürich. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 69, 1924, 78- 128.
Würgler	1956	F. E. Würgler, Beitrag zur Kenntnis der mittelalterlichen Fauna der Schweiz. Burgstellen: Iddaburg, Clanx, Hohensax, Starkenstein. Jahrbuch der St. Gallischen Naturwissenschaftlichen Gesellschaft 75, 1956, 1-90.
Würgler	1962	F. E. Würgler, Veränderungen des Haustierbestandes während der Bronze- und Eisenzeit in zwei schweizerischen "Melauner"- Stationen, Montlingerberg und Mottata Ramosch. Sonderdruck aus der Zeitschrift für Tierzüchtung und Züchtungsbiologie 77/I, 1962, 35- 46.
Wyss	2002	R. Wyss, Die bronzezeitliche Hügelsiedlung Cresta bei Cazis, Ergebnisse der Grabungen von 1943 bis 1970. Archäologische Forschungen 1 (Zürich 2002).
Zeder	1999	M. A. Zeder, Animal domestication in the Zagros: a review of past and current research. Paléorient 25/2, 1999, 11-26.
Zeder	2000	M. A. Zeder, The Initial Domestication of Goats (Capra hircus) in the Zagros Mountains 10 000 Years Ago. Science 287, 2000, 2254-2257.
Zoller et al.	1996	H. Zoller/Ch. Erny-Rodmann/P. Punchakunnel, The history of vegetation and land use in the lower Engadin (Switzerland); pollen record of the last 13000 years. Nationalparkforschung 86 (Zernez 1996).

Verzeichnis der Literatur aus dem Internet

Ballenger u. Dewey	2002	Ursus arctos (On-line), Animal Diversity Web. Accessed October 03, 2005. Auf http://animaldiversity.ummz.umich.edu/accounts/ursus/u_arctos\$narrative.html
Das erste Suedtiroler Jagdpo	ortal 2002	Das Steinwild. Das Überleben und Verhalten. Auf http://www.jagd.bz/hochwild/steinbock.htm (S. 1-5)
Grischuna	Stand 2006	http://www.grischuna.ch/productsD.html
Kappeler	2003	M. Kappeler, Europäische Wildkatze (Felis silvestris silvestris). WWF Conservation Stamp Collection, Groth AG (Unterägeri 2003). Auf http://:www.markuskappeler.ch/tex/texs2/wildkatze4.html
Kohls	1998	G. Kohls, Untersuchungen über die Braunbären (Ursus arctos) in der Slowakei unter besonderer Berücksichtigung ihrer Situation im Tatra-Nationalpark. Magisterarbeit an der Universität Oldenburg (Oldenburg 1998). Auf http://fatra.de/braunbaer.htm
Naturspot	Stand 2006	http://magazin.naturspot.de/text/braunbär.html
Neuhaus Schulen	Stand 2006	http://www.hs-neuhaus.at/korn/geschichtekorn.htm
Panorama-Park Sauerland	2003	http://www.panoramapark.de/html/rotwild.html
Payer	2001	A. Payer und M. Payer, Skript zur Lehrveranstaltung "Einführung in Entwicklungsländerstudien" Teil I: Grundgegebenheiten/ Kapitel 8: Tierische Produktion/ 2. Ziegen und Schafe. Fassung vom 2001-02-08. Erstmals publiziert: 2000-02-21, HBI Stuttgart, 1998/99. Auf http://www.payer.de/entwicklung/entw0821.htm
Schweizer Nationalpark	Stand 2006	Der Steinbock. Auf http://www.nationalpark.ch (unter A_2_2_2.php, S. 1)
Westfalia Jagdreisen GmbH	2004/5	Steinwild. Auf http://www.westfalia-jagdreisen.de/jagdland/europa/spanien/ preise04/ronda_steinwild.php (S. 1)
World of Animals	Stand 2005	http://www.world-of-animals.de/tierlexikon/tierart_Steinboecke.html (S. 1-3)

Literaturverzeichnis zu den Abbildungen

Abb. 19: In: W. Fasnacht, Schlacken ausserhalb der Eisenmetallurgie. In: Technique des fouilles. Minerai, scories, fer. Cours d'initiation à l'étude de la métallurgie du fer ancienne et à l'identification des déchets de cette industrie. GSAF/SAGEA, 2é ed.

renouvellée. (Basel 1997) 61.

Abb. 40:	1998	In: St. Hochuli/U. Niffeler/V. Rychner (Hrsg.), Die Schweiz vom Paläolithikum bis zum Mittelalter (SPM) III, Bronzezeit (Basel 1998) 139, Abb. 46.
Abb. 56:	2005	In: http://www.grischuna.ch/productsD.html
Karte I:	1998	In: C. A. Burga und R. Perret, Vegetation und Klima der Schweiz seit dem jüngeren Eiszeitalter (Thun1998), Fig. 4.28.
Karte II:	1969	Grundlage: W. Keller, Alpen (Reliefgrundkarte): Einzelblatt A2 im Massstab 1:1 200 000. In: A. Leidlmair/J. Aistleitner/ W. Keller (Hrsg.), Tirol-Atlas: eine Landeskunde in Karten (Innsbruck 1969).

Anhang

Abkürzungsverzeichnis Tabellen (I-VIII) Abbildungen (I-IV) Fotos (I-V) Karten (I-III)

Abkürzungsverzeichnis

Abb.	Abbildung	m	Meter
BK	Bruchkanten	MBZ	Mittelbronzezeit
В	Bos taurus, Hausrind	m ü.M.	Meter über Meer
BZ	Bronzezeit	n	Anzahl der Fragmente (n%:
bzw.	beziehungsweise		relative Häufigkeit der
ca.	circa		Fragmente)
C. f.	Canis familiaris	n1	unveränderte Angabe der
d.h.	das heisst		Fragmentzahl
ev.	eventuell	n2	proportional modifizierte
EZ	Eisenzeit		Angabe der Fragmentzahl
cm	Centimeter	o.Ä.	oder Ähnliches
DG	Durchschnittsgewicht	O/C	Ovis aries/Capra hircus,
ex	Exkremente		Hausschaf/Hausziege
F	Feld	P, p	Planum
FBZ	Frühbronzezeit	SBZ	Spätbronzezeit
(Kastanas-) G	Griechenland	Sus	Sus domestica, Hausschwein
g	Gewicht der Fragmente		(g%: Gewichtsprozente der
g1	unveränderte Gewichtsangabe		Fragmente)
g2	proportional modifizierte	Tab.	Tabelle
	Gewichtsangabe	T.Fts.	Transversalfortsatz
g	Gramm	u.a.	und andere
GWK	grosse Wiederkäuer	usw.	und so weiter
Hrsg.	Herausgeber	v.a.	vor allem
	hwein/Wildschwein	vgl.	vergleiche
i. V.	in Vorbereitung	vgl.bar	vergleichbar
J	Jagdtiere	W	Wildtiere
kg	Kilogramm	z.B.	zum Beispiel
KWK	kleine Wiederkäuer	z.T.	zum Teil
L	Körperlänge		
	1 0		

Symbole

♀♀/m	männlich
ðð/w	weiblich
/ox	Kastrat
/9	

/ox? unsicherer Kastrat
< kleiner als
> grösser als

Skelettelemente

C	Caninus, Eckzahn	mp	Metapodien
ca	Carpalia, Handwurzel	mt	Metatarsus, Mittelfuss
calc	Calcaneus, Rollbein	P	Prämolar
cost	Costae, Rippen	pe	Pelvis, Becken
dP	Milch-Prämolar	ph ant	Phalanx anterior, Finger
fe	Femur, Oberschenkel	ph post	Phalanx posterior, Zeh
fi	Fibula	ra	Radius, Speiche
hu	Humerus, Oberarm	sc	Scapula, Schulterblatt
hz	Hornzapfen	sch	Schädel
I	Inzisivus, Schneidezahn	ta	Tarsalia, Fusswurzel
M	Molar, Stockzahn	tal	Talus, Fesselbein
mand	Mandibula, Unterkiefer	ti	Tibia, Schienbein
max	Maxilla, Oberkiefer	ul	Ulna, Elle
mc	Metacarpus, Mittelhand	vert	Vertebrae, Wirbel

TABELLEN I-VIII

Alterscodierung Bos

Code All		11	10	9	8	7	6	5	4	3	2	1
dazugeh. Al2:		9+++	9++	9+	9	7+8	6	5	4	3	2	1
Dentes	М3	39	38	37	36	35	34					
		stark bis sehr	deutlich abg	leicht abg	hochgewachsen, nicht	im Durchbruch	nicht gewechselt	l			l	
		stark abg			od. partiell abgekaut							
	M2	29	28	28	28	27	26	25	24			
1 1		stark bis sehr	deutlich bis	gds .ltusb	leicht bis deutl. abg.	leicht abg.	hochgewachsen, nicht	im Durchbruch	nicht gewechselt			1 1
		stark abg.	stark abg.				od. partiell abgekaut					
	M1	19	18	18	18	17	17	17	16	15	14	
l		stark bis sehr	deutlich bis	deuti. abg.	deutl. abg.	leicht bis deutl. abg.	leicht abg.	part. bis leicht abg.	hochgewachsen, nicht	im Durchbruch	nicht gewechselt	
1 1		stark abg.	stark abg						od. partiell abgekaut			
	PM	9	8	7	6	5	4					
		stark bis sehr	deutlich abg.	leicht abg.	hochgewachsen, nicht	im Durchbruch	nicht gewechselt					
		stark abg.			od. partiell abgekaut							
	m					63 (m1, m2)	63 (m3)	62	62	62	61	60
						sehr stark abg	stark abg.	deuff. abg.	leicht bis deutl. abg.	leicht abg.	hochgewachsen, nicht	im Durchbruch
											od partiell abgekaut	
Alter ca.			>6 J.		> 3 J	25 · 34 Mt.	19 - 24 Mt.	15 - 18 Mt.	7 - 14 Mt.	4 - 6 Mt.	1 bis 3 Mt.	bis 3 Wo.
postkranial, mi				Wi, Hu prox., Red. dist.,		Ti.dist.,Mp, Calc.	Ph.1	Hu.dist., Ph.2	Scap ,Rad.prox			
verwachsen ca.	im Alter vo	n:		Ulna, Pelv.höcker,					Pelvis Acetab.			
				fe,Ti.prox.								
Code All	0	29 27		7	26	5		24		22	21	
(Kn.oberfläche	indet.	"adult-senil" "jung-adult"			"suba	"subadult" "juvenil"			"infantil"		"fotal-neonat"	
keine Epiph.)		28					25					
				"adult"			nicht erw	achsen				

Die Al1-Codes von 1 bis 11 können als einigermassen genau angesehen werden, da sie anhand der Zahnalter definiert werden. Zusätzlich werden auch diejenigen postkranialen Altersangaben mit eingearbeitet, die durch den Zustand der Epiphysenfugen ebenfalls eine einigermassen korrekte Alterseinschätzung ermöglichen.

Die Altersangaben "postkranial mit Epiph." gelten nur für den Zeitpunkt der Verwachsung der Epiphysenfugen, so dass je nach deren Zustand (unverwachsen, im Verwachsen, Naht sichtbar, keine Naht sichtbar) eine entsprechende Alterscodierung gewählt werden muss.

Die Al1-Codes von 21 bis 28 sind Alterseinschätzungen, die hauptsächlich auf der Beurteilung der Oberfläche beruhen, bei Jungtieren z.T. auch auf der Knochengrösse. Es handelt sich um eine relativ unsichere Altersangabe.

Die Al2-Angaben könnten fakultativ verwendet werden und beinhalten wie bisher Angaben zur genauen Abkauung eines Zahnes bzw. zum Epiphysenfugenzustand.

Alterscodierung für Ovis/Capra

Code All		11	10	9	8	7	6	5	4	3	2	1
dazugeh. Al2:		7+++	7++	7+	7	6	5	4	3	2	1	
Dentes	M3	39	38	37	36	35	34					
		stark bis sehr	deutl. stg.	leicht abg.	hochgewachsen, nicht	im Durchbruch	nicht gewechselt					
		stark abg.			od. partiell abgekaut							
	M2	29	28	28	27	27	26	25	24			
		stark bis sehr	deutl. bis stark	deutl. abg.	leicht bis deutl. abg.	leicht abgekaut	hochgewachsen, nicht	im Durchbruch	nicht gewechselt			
		stark abg.	abg.				od. partiell abgekaut					
	M1	19	18	18	18	18	17	17	16	15	14	
		stark bis sehr	deutl. bis stark	deuti. abg.	deuti. sbg.	leicht bis deufl.	leicht abg.	part, bis leicht abg.	hochgewachsen, nicht	im Durchbruch	nicht gewechselt	
		stark abg.	abg.			abg.			od. partiell abgekaut			
	PM	9	8	7	6	5	4					
		stark bis sehr	deufl. abg.	leicht abg.	hochgewachsen, nicht	im Durchbruch	nicht gewechselt					
		stark abg.			od, partiell abgekaut							
	m					63	63	63	62	62	61	60
l 1						sehr stark abg.	stark abg.	deutl. abg.	leicht bis deutl, abg.	leicht abg.	hochgewachsen, nicht	im Durchbruch
											od. partiell abgekaut	
Alter ca.				> 3 J.	> 2 J.	18 - 24 Mt.	12 - 17 Mt.	9 - 12 Mt.	5 - 8Mt.	3 - 4 Mt.	1 bis 2 Mt.	bis 4 Wo
postkranial, mit			Wi, Hum prox.,Rad.dist.,	Calcaneus		Tib.dist.,Mp		PhaLI	Phal.II,Scap.	Hum.dist.,		
verwachsen ca.	im Alter vor	N:	Ulna, Pelvishöcker, Fem.,							Rad. prox.		
			Tib prox.									
Code All	0	29 2		27		26	24			22	21	
(Kn.oberfläche,	indet.	*ad	ult-senil*	*jun	g-adult"	*sub	edult*	50	venil*	"infantil"		"fötal - neonat"
keine Epiph.)			25	3			i	25				
			*adu	ilt"			nicht er	wachsen				

Die Al1-Codes von 1 bis 11 können als einigermassen genau angesehen werden, da sie anhand der Zahnalter definiert werden. Zusätzlich werden auch diejenigen postkranialen Altersangaben mit eingearbeitet, die durch den Zustand der Epiphysenfugen ebenfalls eine einigermassen korrekte Alterseinschätzung ermöglichen.

Die Altersangaben "postkranial mit Epiph." gelten nur für den Zeitpunkt der Verwachsung der Epiphysenfugen, so dass je nach deren Zustand (unverwachsen, im Verwachsen, Naht sichtbar, keine Naht sichtbar) eine entsprechende Alterscodierung gewählt werden muss.

Die Al1-Codes von 21 bis 28 sind Alterseinschätzungen, die hauptsächlich auf der Beurteilung der Oberfläche beruhen, bei Jungtieren z.T. auch auf der Knochengrösse. Es handelt sich um eine relativ unsichere Altersangabe.

Die Al2-Angaben könnten fakultativ verwendet werden und beinhalten wie bisher Angaben zur genauen Abkauung eines Zahnes bzw. zum Epiphysenfugenzustand.

Alterscodierung für Sus 11 10 dazugeh. Al2: 7+++ 7++ 7+ Dentes 39 38 stark bis sehr deuti, shg. leicht abgekaut im Durchbruch night gewechselt stark sbg od. partiell abgekau 28 28 26 stark bis sehr deutl, bis stark deutl, shg. leicht bis deutl. leicht abgekaut hochgewachsen, nicht im Durchbruch nicht gewechselt stark abg od, partiell abgekaut 18 18 18 15 14 stark bis sehr deuff, bis stark deuti, sbg. deuff, abg. leicht bis deutl. leight shg. partiell bis leicht im Durchbruch nicht gewechselt stark abg. od, partiell abgekaut 8 5 4 (P1: 5) stark bis sehr deutl, bis stark leicht bis deutl. leicht abgekaut hgewachsen, nicht im Durchbruch night gewechselt P1: im Wechsel od, partiell abgehaut 63 63 62 62 sehr stark abgekaut leicht abgekaut deuff, bis stark leicht bis deutl.abg. im Durchbruch d. partiell abgekaut I/C 41.45 40 51,56 50.55 12 im Wechsel II im Wechsel, II nicht gewechsel 13 u. C im Wechsel 13 u. C nicht 12 nicht gewechselt 68 66 65 sehr stark abgekaut deuff. bis stark leicht bis deutl.abg. leicht abgekaut im Durchbruch od, partiell abgekau > 3 J. 2 · 3 J. 16 - 24 Mt. 12 - 16 Mt. 10 - 12 Mt. 6 - 10 Mt. 4 - 6 Mt. 2 - 3 Mt. bis 8 W. postkranial, mit Epiph. Wi, Hu prox., Rad. dist. Ti.dist.,Mp,Ph.1,Calc Scap, Hu.dist, Pelvis Acetabulum verwachsen ca. im Alter von: Ul.dist_Fe,Ti.prox_Fi Rad prox, Ph.2 Pelvis Höcker Code All 29 26 21 (Kn.oberfläche indet. "adult-senil" jung-adult* "subadult" "juvenil" "infantil" "lötal-neonat" keine Epiph.) 25 "adult" nicht erwachsen Die Al1-Codes von 1 bis 11 können als einigermassen genau angesehen werden, da sie anhand der Zahnalter definiert werden. Zusätzlich werden auch diejenigen postkranialen Altersangaben mit eingearbeitet, die durch den Zustand der Epiphysenfugen ebenfalls eine einigermassen korrekte Alterseinschätzung ermöglichen. Die Altersangaben "postkranial mit Epiph." gelten nur für den Zeitpunkt der Verwachsung der Epiphysenfugen, so dass je nach deren Zustand (unverwachsen, im Verwachsen, Naht sichtbar, keine Naht sichtbar) eine entsprechende Alterscodierung gewählt werden muss. Die Al1-Codes von 21 bis 28 sind Alterseinschatzungen, die hauptsächlich auf der Beurteilung der Oberfläche beruhen, bei Jungtieren z.T. auch auf der Knochengrösse. Es handelt sich um eine relativ unsichere Altersangabe. Die Al2-Angeben könnten fakultativ verwendet werden und beinhalten wie bisher Angaben zur genauen Abkauung eines Zahnes bzw. zum Epiphysenfugenzustand.

Tabelle I/C: Alterscodierung Hausschwein. Nach Becker u. Johansson 1981 und Habermehl 1975, 1985.

Alterscodierung Cervus

Code All		11	10	9	8	7	6	5	4	3	2	1
dazugeh. Al2:		8+++	8++	8+	8	7	6	5	4	3	2	1
Dentes	M3	39	38	37	36	35	34					
		stark bis sehr	deult, abg.	leicht abg.	hochgewachsen, nicht.	im Durchbruch	nicht gewechselt					
		stark abg.			od. partiell abgekaut							
	M2	29	28	28	27	27	26	25	24			
		stark bis sehr	deufl. bis stark	deutl, abg.	leicht bis deutl. abg.	leicht abg.	hochgewachsen, nicht.	im Durchbruch	nicht gewechselt			
		stark abg.	abg.				od. partiell abgekaut					
	M1	19	18	18	18	17	17	17	16	15	14	
		stark bis sehr	deuti, bis stark	deutl. abg.	deutl, abg.	leicht bis deutl. abg.	leicht abg.	part, bis leicht abg.	hochgewachsen, nicht.	im Durchbruch	nicht gewechselt	
		stark abg.	abg.						od, partiell abgekaut			
	PM	9	8	7	6	5	4					
		stark bis sehr	deult, abg.	leicht abg.	hochgewachsen, nicht.	im Durchbruch	nicht gewechselt					
		stark abg.			od. partiell abgekaut							
	m					63	63	63	62	62	61	60
						sehr stark abg.	stark abg.	deutl. abg.	leicht bis deutl, abg.	leicht abg.	hochgewachsen, nicht.	im Durchbruch
											od, partiell abgekaut	
Alter ca.				älter als 30 Mt.	27 - 30 Mt.	24 - 28 Mt.	12 · 24 Mt.	11 - 12 Mt.	5 - 12 Mt.	4 - 5 Mt.	2 - 5 Mt.	unter 2 Mt.
postkranial, m		Wirbel, Pelvis-		Hum. prox, Ulna prox.,	Red. dist., Ulna dist.		Tib. dist., Mp, Phal.		Rad. prox., Scap.,			
	a. im Alter von:	höcker		Fe,Ti,prox,Calc.					Hum.dist.			
Code Al1	0	29		27			26		24		22	21
(Kn.oberfläch	indet.	"adult-s	enil"	"jung-a	dult"	"sub	padult*		venil*	Tr.	nfantil"	"lötal-neonat"
keine Epiph.)				28 "adult"			2	-				
				aduit			nicht en	wachsen				

Die Al1-Codes von 1 bis 11 können als einigermassen genau angesehen werden, da sie anhand der Zahnalter definiert werden. Zusätzlich werden auch diejenigen postkranialen Altersangaben mit eingearbeitet, die durch den Zustand der Epiphysenfugen ebenfalls eine einigermassen korrekte Alterseinschätzung ermöglichen.

Die Altersangaben "postkranial mit Epiph." gelten nur für den Zeitpunkt der Verwachsung der Epiphysenfugen, so dass je nach deren Zustand (unverwachsen, im Verwachsen, Naht sichtbar, keine Naht sichtbar) eine entsprechende Alterscodierung gewählt werden muss.

Die Al1-Codes von 21 bis 28 sind Alterseinschätzungen, die hauptsächlich auf der Beurteilung der Oberfläche beruhen, bei Jungtieren z.T. auch auf der Knochengrösse. Es handelt sich um eine relativ unsichere Altersangabe.

Die Al2-Angaben könnten fakultativ verwendet werden und beinhalten wie bisher Angaben zur genauen Abkauung eines Zahnes bzw. zum Epiphysenfugenzustand.

Tabelle I/E: Alterscodierung Hirsch. Nach Becker u. Johansson 1981 und Habermehl 1975, 1985.

		Faktor	Faktor	Faktor	
Tierart	Skelettelement	weiblich	männlich	Kastrat/indet	Autor
Bos taurus	Metacarpus	6	6.3	6.2	Matolesi 1970
	Metatarsus	5.3	5.6	5.5	
Ovis aries	Humerus			4.3	Teichert 1975
	Radius			4	
	Metacarpus			4.9	
	Metatarsus			4.5	
	Calcaneus			11.4	

Tabelle II/1: Faktoren für die Berechnung der Widerristhöhe.

Tierart	Standardindividuum
Bos taurus	Hinterwälderkuh, 13 Jahre, WRH 116,9 cm , Vergleichssammlung des Instituts
	für prähistorische und naturwissenschaftliche Archäologie (IPNA) der Universität
	Basel, InvNr. BS 2431, osteometrische Daten: Frau Dr. R. Ebersbach
Ovis aries (x musimo:	n?) Männlicher Mufflon, adult WRH, Vergleichssammlung der Abteilung für
	Archäobiologie des Instituts für prähistorische und naturwissenschaftliche
	Archäologie (IPNA) der Universität Basel, InvNr. 2266
Capra hircus	Männlicher Ziegenbock, adult, Vergleichssammlung des Instituts für prähistorische
	und naturwissenschaftliche Archäologie (IPNA) der Universität Basel,
	InvNr. BS 1597
Sus scrofa	Männliches Wildschwein, ca. 3 Jahre, ca. 120 kg Lebendgewicht, Vergleichssammlung
	des Instituts für prähistorische und naturwissenschaftliche Archäologie (IPNA) der
	Universität Basel, InvNr. BS 1446

Tabelle II/2: Standardindividuen für die verschiedenen Tierarten zur Berechnung der Grössenindizes (LSI).

Tierart	Standardindividuum
Bos taurus	Hinterwälderkuh, 13 Jahre, WRH 116,9 cm , Vergleichssammlung des Instituts
	für prähistorische und naturwissenschaftliche Archäologie (IPNA) der Universität
	Basel, InvNr. BS 2431, osteometrische Daten: Frau Dr. R. Ebersbach
	Hinterwälderkuh, 17 Jahre, WRH 113 cm , Lebendgewicht 340 kg,
	Vergleichssammlung des Instituts für prähistorische und naturwissenschaftliche
	Archäologie der Universität Basel, InvNr. BS 2426
Ovis aries (x musimon?)	Männlicher Mufflon, adult WRH: ca. 73 cm, Vergleichssammbung der Abteibung für
	Archäobiologie des Instituts für prähistorische und naturwissenschaftliche
	Archäologie (IPNA) der Universität Basel, InvNr. 2266
apra hircus	Männlicher Ziegenbock, adult, Vergleichssammlung des Instituts für prähistorische
	und naturwissenschaftliche Archäologie (IPNA) der Universität Basel,
	InvNr. BS 1597
Sus domesticus	Weibliches Wildschwein, ca. 4 Jahre, 56 kg, WRH: 67 cm, Vergleichssammlung
	des Instituts für prähistorische und naturwissenschaftliche Archäologie (IPNA) der
	Universität Basel, InvNr. BS 2268
Sus scrofa	Männliches Wildschwein, ca. 3 Jahre, ca. 120 kg Lebendgewicht, Vergleichssammlung
	des Instituts für prähistorische und naturwissenschaftliche Archäologie (IPNA) der
	Universität Basel, InvNr. BS 1446
Canis familiaris	Männlicher deutscher Schäferhund, 29,Skg, Vergleichssammlung des Instituts für
	prähistorische und naturwissenschaftliche Archäologie (IPNA) der
	Universität Basel, InvNr. BS 1448

Tabelle II/3: Standardindividuen für die verschiedenen Tierarten zum Grössen- und Wuchsformvergleich.

Hausr	ind	Hausschaf	Hausziege	Hauss	chwein
InvNr. 2426: Hinter	wäldler, 17 J.,w,	InvNr. 1449: Capr	a hircus, adult,	InvNr. 1446: Wild	lschwein, m, ca. 3 J.,
Lebendgewicht 340 kg	, WRH 113 cm,	homlos, WRH ca. 7:	3 cm	Lebendgewicht ca. l	20 kg
alte Rasse		InvNr. 2266: Ovis	musimon, m, adult,	InvNr. 2268: Wild	lschwein, w, ca. 4 J.,
		WRH ca. 73 cm		WRH 67 cm, Gewic	ht 56 kg
		Heidschmicke: Mutt	erschaf, adult,	Wildschwein: adult,	Sammbing AZA
		schweres Gehörn, Sa	mmbing AZA	Schleswig	
		Schleswig			
Referenzskelett : Inv. -1	Nr. 2426	Referenzskelett : Du	rchschnitts-	Referenzskelett : Du	rchschnitts-
		gewicht der oben v	vermessenen	gewicht der oben	vermessenen
		Tiere		Tiere	

Tabelle II/ 4: Referenzskelette für die Skelettelement- und Fleischregionanalyse. Mit Inv.-Nr. bezeichnete Tiere stammen aus der Vergleichssammlung der archäozoologischen Abteilung des Seminars für Ur- und Frühgeschichte der Universität Basel.

	Planum 1									Planum 2								
Tierart	n1	n1%	n2	n2%	q1	g1%	g2	g2%	D1	n1	n1%	n2	n2%	q1	g1%	q2	g2%	D1
Bos taurus	244	48.1	281	41.5	6927.1	70.1	7191.4	67.8	28.4	466	55.1	499	48.9	11575.5	76.7	11727.9	74.4	24.
Ovis aries**	25	4.9	25	3.7	260.9	2.6	260.9	2.5	10.4	52	6.2	52	5.1	535.0	3.5	535.0	3.4	10.3
Capra hircus**	4	0.8	4	0.6	29.5	0.3	29.5	0.3	7.4	3	0.4	3	0.3	37.6	0.2	37.6	0.2	12.
Ovis/Capra*	138	27.2	268	39.6	1009.7	10.2	1383.7	13.0	7.3	284	33.6	427	41.8	2176.2	14.4	2702.7	17.1	7.
Sus domestica	106	20.9	108	16.0	1503.8	15.2	1586.4	14.9	14.2	75	8.9	75	7.3	906.5	6.0	906.5	5.7	12.
Canis familiaris	3	0.6	3	0.4	17.4	0.2	17.4	0.2	5.8	1	0.1	1	0.1	8.9	0.1	8.9	0.1	8.3
Total Haustiere	491	96.8	660	97.5	9458.0	95.7	10178.9	95.9	19.3	826	97.8	1002	38.1	14667.1	97.2	15346	97.5	17.
Bos primigenius (J)																		
Cervus elaphus (J)	9	1.8	10	1.5	312.3	3.2	324.2	3.1	34.7	5	0.6	5	0.5	130.2	0.9	131.9	0.8	26.
Capra ibex (J)	3	0.6	3	0.4	66.7	0.7	66.7	0.6	22.2	6	0.7	6	0.6	177.2	1.2	177.2	1.1	29.
Sus scrofa (J)										1	0.1	1	0.1	18.6	0.1	18.6	0.1	18.
Canis lupus (J)	4	0.8	4	0.6	41.9	0.4	41.9	0.4	10.5	4	0.5	4	0.4	27.9	0.2	27.9	0.2	7.
Ursus arctos (J)										3	0.4	3	0.3	65.3	0.4	65.3	0.4	21.
Felis silvestris (J)																		
Carnivora indet. (J)																		
Aves (J)																		
Maus																		
Amphibien																		
Mollusken																		
Total Inilatiere	16	3.2	17	2.5	420.9	4.5	432.8	4.1	26.3	19	2.2	19	1.9	419.2	2.8	420.9	2.7	22
Total Bestimmte	507	100.0	677	100.0	9878.9	100	10611.7	100	19.5	845	100	1021	100.0	15086.3	100	15766.9	100.0	17.3
Equidae																		
Bos primigenius/taurus										1		1		30.0		30.0		30.
Cervide/Bovide (GWK)	38		-		276.2		-		7.3	33		-		154.1		-		4.
GWK/KWK	43		43		167.6		167.6		3.9	1		1		3.6		3.6		3.
KWK	130		-		374.0		-		2.9	143		-		526.5		-		3.
Sus scrofa/domestica	2		-		82.6		-		41.3									
Canis lupus/familiaris										1		1		1.1		1.1		1
Total Haus- o. Inilatiere	210		45		900.4		167.6		4.2	17.9		S		715.3		34.7		4.
indet.	20		20		42.6		42.6		2.1	88		88		132.1		132.1		1.
Grösse Ovis	3		3		3.0		3.0		1.0	1		1		2.1		2.1		2
Grösse Ovis-Sus	80		80		131.7		131.7		1.6	52		52		75.8		75.8		1
Grösse Bos/Cervus	16		16		69.2		69.2		4.3	36		36		166.8		166.8		4.
Total indet.	119		119		246.5		246.5		2.1	177		177		376.8		376.8		2
Total Unbestimmte	332	39.6	162	19.3	1146.9	10.402	414.1	3.8	3.5	356	29.6	180	15.0	1092.1	6.8	411.5	2.5	3
Total Bestimmte	507	60.4	677	80.7	9878.9	89.6	10611.7	96.2	19.5	845	70.4	1021	85.0	15086.3	93.2	15766.9	97.5	17.
Homo																		
TOTAL GESAMT:	839	_	839		11025.8	$\overline{}$	11025.8		13.1	1201		1201		16178.4		16178.4		13.

Tabelle III: Tierartenliste Planum 1- 14. *alle kleinen Hauswiederkäuer zusammengezählt (Schaf+Ziege+Schaf/Ziege), **artbestimmte Hornzapfen nicht dazugezählt, [] Geweihreste1: nicht proportional modifiziert, 2: proportional modifiziert, D1: Durchschnittsgewicht (g1/n1).

	Planum 3									Planum 4								
Tierart	n1	n1%	n2	n2%	g1	g1%	g2	g2%	D1	n1	n1%	n2	n2%	g1	91%	g2	g2%	D1
Bos taurus	1336	52.8	1520	43.8	32764.4	74.2	34095.1	70.9	24.5	476	49.0	525	39.4	11635.0	74.0	11991.5	70.1	24.4
Ovis aries**	137	5.4	137	3.9	1419.3	3.2	1419.3	3.0	10.4	68	7.0	68	5.1	606.6	3.9	606.6	3.5	8.8
Capra hircus**	12	0.5	12	0.3	103.9	0.2	103.9	0.2	8.7	2	0.2	2	0.2	13.6	0.1	13.6	0.1	6.8
Ovis/Capra*	827	32.7	1584	45.6	7023.6	15.9	9531.6	19.8	8.5	357	36.8	667	50.1	2818.4	17.9	3803.1	22.2	7.8
Sus domestica	333	13.2	334	9.6	3709.1	8.4	3762.9	7.8	11.1	129	13.3	131	9.8	1210.4	7.7	1235.3	7.2	9.4
Canis familiaris	2	0.1	2	0.1	13.0	0.03	13.0	0.03	6.5	1	0.1	1	0.1	18.3	0.1	18.3	0.1	18.3
Total Haustiere	2498	98.8	3440	39.1	43510.1	98.5	47402.6	98.6	17.4	963	99.2	1324	99.4	15682.1	39.7	17048.2	39.7	16.3
Bos primigenius (J)	1	0.04	1	0.03	40.2	0.1	40.2	0.1	40.2									
Cervus elaphus (J)	11	0.4	12	0.3	376.6	0.9	391.4	0.8	34.2	1 [1]	0,1 [0,1]	1 [1]	0,1 [0,1]	6,9 [9,5]	0,04 [0,	7,3 [9,5]	0,04 [0,	8.2
Capra ibex (J)	11	0.4	11	0.3	167.4	0.4	167.4	0.3	15.2	2	0.2	2	0.2	15.7	0.1	15.7	0.1	7.9
Sus scrofa (J)																		
Canis lupus (J)	5	0.2	5	0.1	26.1	0.1	26.1	0.1	5.2									
Ursus arctos (J)	2	0.1	2	0.1	44.8	0.1	44.8	0.1	22.4									
Felis silvestris (J)										1	0.1	1	0.1	11.7	0.1	11.7	0.1	11.7
Carnivora indet. (J)										1	0.1	1	0.1	0.5	0.003	0.5	0.003	0.5
Aves (J)	1	0.04	1	0.03	0.3	0.001	0.3	0.001	0.3	2	0.2	2	0.2	1.2	0.01	1.2	0.01	0.6
Maus																		
Amphibien																		
Mollusken																		
Total Inilatiere	31	1.2	32	0.9	655.4	1.5	670.2	1.4	21.1	8	0.8	8	0.6	45.5	0.5	45.9	0.5	5.7
Total Bestimmte	2529	100.0	3472	100	44165.5	100	48072.8	100	17.5	971	100	1332	100	15727.6	100	17094.1	100	16.2
Equidae	1		1		39.4		39.4		39.4									
Bos primigenius/taurus																		
Cervide/Bovide (GWK)	185		-		1345.5		-		7.3			-		356.9		-		7.3
GWK/KWK	14		14		45.2		45.2		3.2	10		10		51.4		51.4		5.1
KWK	757		-		2508.0		-		3.3	310		-		984.7		-		3.2
Sus scrofa/domestica	1		-		53.8		-		53.8	2		-		24.9		-		12.5
Canis lupus/familiaris	1		1		5.1		5.1		5.1									
Total Haus- o. Inilatiere	959		16		3997.0		89.7		4.2			10		1417.9		51.4		3.8
indet.	250		250		437.0		437.0		1.7	65		65		126.9		126.9		2.0
Grösse Ovis	14		14		23.6		23.6		1.7			1		0.5		0.5		0.5
Grösse Ovis-Sus	288		288		450.2		450.2		1.6	130		130		186.8		186.8		1.4
Grösse Bos/Cervus	143		143		757.1		757.1		5.3	44		44		214.5		214.5		4.9
Total indet.	6.95		6.95		1667.9		1667.9		2.4	240		240		528.7		528.7		2.2
Total Unbestimmte	1654	39.5	711	17.0	5664.9	11.4	1757.6	3.5	3.4	611	38.4	250	15.7	1946.6	10.9	580.1	3.3	3.2
Total Bestimmte	2529	60.5	3472	83.0	44165.5	88.6	48072.8	96.5	17.5	971	61.6	1332	84.3	15727.6	89.1	17094.1	96.7	16.2
Homo	3		3		7.7		7.7		2.6	8		8		130.3		130.3		16.3
TOTAL GESAMT:	4186		4186		49838.1		49838.1		11.9	1590		1590		17804.5		17804.5		11.2

Tabelle III: Tierartenliste Planum 1- 14. *alle kleinen Hauswiederkäuer zusammengezählt (Schaf+Ziege+Schaf/Ziege), **artbestimmte Hornzapfen nicht dazugezählt, [] Geweihreste1: nicht proportional modifiziert, 2: proportional modifiziert, D1: Durchschnittsgewicht (g1/n1).

	Planum 5									Planum 8								
Tierart	n1	n1%	n2	n2%	g1	g1%	g2	g2%	D1	n1	n1%	n2	n2%	g1	g1%	g2	g2%	D1
Bos taurus	294	43.8	318	36.9	6441.8	67.3	6513.1	64.2	21.9	1223	63.6	1227	56.1	34199.9	83.5	34216.5	81.4	28.0
Ovis aries**	54	8.0	54	6.3	399.1	4.2	399.1	3.9	7.4	140	7.3	140	6.4	1414.9	3.5	1414.9	3.4	10.1
Capra hircus**	10	1.5	10	1.2	92.4	1.0	92.4	0.9	9.2	15	0.8	15	0.7	180.1	0.4	180.1	0.4	12.0
Ovis/Capra*	276	41.1	441	51.2	2071.3	21.6	2563.3	25.3	7.5	559	29.1	817	37.3	4698.5	11.5	5562.4	13.2	8.4
Sus domestica	94	14.0	95	11.0	954.7	10.0	961.8	9.5	10.2	127	6.6	131	6.0	1824.4	4.5	1978.2	4.7	14.4
Canis familiaris										6	0.3	6	0.3	100.7	0.2	100.7	0.2	16.8
Total Haustiere	664	99.0	854	99.2	9467.8	98.9	10038.2	98.9	14.3	1915	99.6	2181	99.6	40823.5	99.6	41857.8	39.6	21.3
Bos primigenius (J)																		
Cervus elaphus (J)	1	0.1	1	0.1	47.0	0.5	47.5	0.5	47.0	2	0.1	2	0.1	55.7	0.1	55.7	0.1	27.9
Capra ibex (J)	1	0.1	1	0.1	53.4	0.6	53.4	0.5	53.4	2	0.1	2	0.1	18.4	0.0	18.4	0.04	9.2
Sus scrofa (J)										1	0.1	1	0.05	34.5	0.1	37.4	0.1	34.5
Canis lupus (J)																		
Ursus arctos (J)										1	0.1	1	0.05	47.9	0.1	47.9	0.1	47.9
Felis silvestris (J)																		
Carnivora indet. (J)	1	0.1	1	0.1	0.5	0.01	0.5	0.005	0.5									
Aves (J)	2	0.3	2	0.2	5.4	0.1	5.4	0.05	2.7	1	0.1	- 1	0.05	0.4	0.0	0.4	0.001	0.4
Maus										1	0.1	1	0.05	0.2	0.0	0.2	0.0005	0.2
Amphibien	2	0.3	2	0.2	0.4	0.004	0.4	0.004	0.2									
Mollusken																		
Total Iniilatiere	7	1.0	- 7	0.8	106.7		107.2	1.1	15.2	8	0.4	ε	0.4	157.1	0.4	160	0.4	19.6
Total Bestimmte	671	100	861	100	9574.5	100	10145.4	100	14.3	1923	100	2189	100.0	40980.6	100.0	42017.8	100.0	21.3
Equidae																		
Bos primigenius/taurus	1		1		93.1		93.1		93.1									
Cervide/Bovide (GWK)	24		- 1		71.8		-		3.0	4		-		16.6		-		4.2
GWK/KWK	8		8		35.9		35.9		4.5	4		4		19.5		19.5		4.9
KWK	165		-		492.0		-		3.0	258		-		863.9		-		3.3
Sus scrofa/domestica	1		- 1		7.1		-		7.1	4		-		156.7		-		39.2
Canis lupus/familiaris										2		2		2.1		2.1		1.1
Total Haus- o. Iniliations	199		9		699.9		129.0		3.5	272		6		1058.8		21.6		3.9
indet.	48		48		87.8		87.8		1.8	222		222		284.7		284.7		1.3
Grösse Ovis			- 12															
Grösse Ovis-Sus	87		87		94.6		94.6		1.1	98		98		132.3		132.3		1.4
Grösse Bos/Cervus	33		33		153.5		153.5		4.7	91		91		402.7		402.7		4.4
Total indet.	168		168		335.9		335.9		2.0	411		411		819.7		819.7		2.0
Total Unbestimmte	367	35.4	177	17.1	1035.8	9.8	464.9	4.4	2.8	683	26.2	417	16.0	1878.5	4.4	841.3	2.0	2.8
Total Bestimmte	671	64.6	861	82.9	9574.5	90.2	10145.4	95.6	14.3	1923	73.8	2189	84.0	40980.6	95.6	42017.8	98.0	21.3
Homo		2.10						23.0		1		1	2.74	14.5		14.5		14.5
TOTAL GESAMT:	1038		1038		10610.3		10610.3		10.2	2607		2607		42873.6		42873.6		16.4

Tabelle III: Tierartenliste Planum 1- 14. *alle kleinen Hauswiederkäuer zusammengezählt (Schaf+Ziege+Schaf/Ziege), **artbestimmte Hornzapfen nicht dazugezählt, [] Geweihreste1: nicht proportional modifiziert, 2: proportional modifiziert, D1: Durchschnittsgewicht (g1/n1).

	Planum 10									Planum 11								
Tierart	n1	n1%	n2	n2%	g1	g1%	q2	g2%	D1	n1	n1%	n2	n2%	q1	g1%	q2	g2%	D1
Bos taurus	234	51.7	237	43.6	5719.6	75.8	5727.1	72.7	24.4	518	63.2	522	57.7	17195.4	80.3	17264.2	78.1	33.2
Ovis aries**	23	5.1	23	4.2	224.2	3.0	224.2	2.8	9.7	14	1.7	14	1.5	167.1	0.8	167.1	0.8	11.9
Capra hircus**	6	1.3	6	1.1	41.4	0.5	41.4	0.5	6.9	2	0.2	2	0.2	19.6	0.1	19.6	0.1	9.8
Ovis/Capra*	164	36.2	251	46.2	1189.1	15.8	1515.7	19.2	7.3	143	17.4	219	24.2	1325.8	6.2	1714.6	7.8	9.3
Sus domestica	52	11.5	52	9.6	568.2	7.5	568.2	7.2	10.9	153	18.7	158	17.5	2730.7	12.7	2947.8	13.3	17.8
Canis familiaris										5	0.6	5	0.6	148.4	0.7	148.4	0.7	29.7
Total Haustiere	450	39.5	540	99.4	7476.9	99.2	7811.0	99.2	16.6	819	99.9	904	99.9	21400.3	99.9	22015	99.9	26.1
Bos primigenius (J)																		
Cervus elaphus (J)																		
Capra ibex (J)	1	0.2	1	0.2	7.4	0.1	7.4	0.1	7.4									
Sus scrofa (J)	1	0.2	1	0.2	56.4	0.7	56.4	0.7	56.4	1		1		21.3		21.3		
Canis lupus (J)																		
Ursus arctos (J)																		
Felis silvestris (J)																		
Carnivora indet. (J)																		
Aves (J)																		
Maus																		
Amphibien																		
Mollusken	1	0.2	1	0.2	0.1	0.001	0.1	0.001	0.1									
Total Iniilatiere	5	0.7	8	0.6	63.9	0.8	68.9	0.8	21.3	7	0.1	7	0.1	21.3	0.1	21.5	0.1	
Total Bestimmte	453	100	543	100	7540.8	100	7874.9	100	16.6	820	100.0	905	100	21421.6	100	22096.3	100	26.1
Equidae																		
Bos primigenius/taurus																		
Cervide/Bovide (GWK)	3		-		7.5		-		2.5	4		-		68.8		-		17.2
GWK/KWK	1		1		3.4		3.4		3.4									
KWK	87		-		326.6		-		3.8	76		-		388.8		-		5.1
Sus scrofa/domestica										5		-		217.1		-		43.4
Canis lupus/familiaris																		
Total Haus- o. Inilatiere	91		- /		337.5		S.4		3.7	85		0		674.7		0.0		7.9
indet.	45		45		82.4		82.4		1.8	78		78		152.3		152.3		2.0
Grösse Ovis																		
Grösse Ovis-Sus	52		52		68.9		68.9		1.3	37		37		67.5		67.5		1.8
Grösse Bos/Cervus	22		22		116.7		116.7		5.3	29		29		152.2		152.2		5.2
Total indet.	119		119		268.0		268.0		2.3	144		144		372.0		372.0		2.6
Total Unbestimmte	210	31.7	120	18.0995	605.5	7.4	271.4	3.3	2.9	229	21.8	144	13.7	1046.7	4.6	372.0	1.7	4.6
Total Bestimmte	453	68.3		81.9	7540.8	92.6	7874.9	96.7	16.6	820	78.2	905	86.3	21421.6	95.4		98.3	26.1
Homo										1		1		42.7		42.7		42.7
TOTAL GESAMT:	663		663		8146.3		8146.3		12.3	1050		1050	-	22511.0		22511.0		21.4

Tabelle III: Tierartenliste Planum 1- 14. *alle kleinen Hauswiederkäuer zusammengezählt (Schaf+Ziege+Schaf/Ziege), **artbestimmte Hornzapfen nicht dazugezählt, [] Geweihreste1: nicht proportional modifiziert, 2: proportional modifiziert, D1: Durchschnittsgewicht (g1/n1)

	Planum 12									Planum 14								
Tierart	n1	n1%	n2	n2%	g1	g1%	g2	g2%	D1	n1	n1%	n2	n2%	q1	g1%	g2	g2%	D1
Bos taurus	1403	61.3	1424	56.8	48479.8	81.2	48575.8	79.4	34.4	1138	71.4	1169	66.7	28192.4	85.4	28359.2	83.1	24.8
Ovis aries**	41	1.8	41	1.6	380.1	0.6	380.1	0.6	9.3	38	2.4	38	2.2	398.4	1.2	398.4	1.2	10.5
Capra hircus**	13	0.6	13	0.5	244.6	0.4	244.6	0.4	18.8	2	0.1	2	0.1	11.0	0.03	11.0	0.03	5.5
Ovis/Capra*	499	21.7	675	26.9	4378.5	7.3	5219.5	8.5	8.8	290	18.2	407	23.2	2300.9	7.0	3025.6	8.9	7.8
Sus domestica	375	16.3	390	15.6	6303.9	10.6	6833.3	11.2	16.8	156	9.8	166	9.5	2190.3	6.6	2383.0	7.0	14.0
Canis familiaris	6	0.3	6	0.2	72.8	0.1	72.8	0.1	12.1	1	0.1	1	0.1	8.1	0.02	8.1	0.02	8.
Total Haustiere	2289	99.5	2495	99.6	59,235,0	99.2	60701.4	99.2	25.9	1585	99.4	1743	99.5	S2691.7	99.0	33775.9	99.0	20.6
Bos primigenius (J)																		
Cervus elaphus (J)	4	0.2	4	0.2	218.6	0.4	219.0	0.4	54.7									
Capra ibex (J)																		
Sus scrofa (J)	5	0.2	5	0.2	178.2	0.3	193.2	0.3	35.6	9	0.6	9	0.5	318.7	1.0	346.7	1.0	35.4
Canis lupus (J)																		
Ursus arctos (J)	1	0.04	1	0.04	75.7	0.1	75.7	0.1	75.7									
Felis silvestris (J)																		
Carnivora indet. (J)																		
Aves (J)	1	0.04	1	0.04	0.7	0.001	0.7	0.0	0.7									
Maus																		
Amphibien																		
Mollusken																		
Total Inilatiere	"	0.5	- #	0.4	473.2	0.8	488.6	0.8	43.0	9	0.6	9	0.5	318.7	1.0	346.7	1.0	35.4
Total Bestimmte	2300	100.0	2506	100.0	59708.2	100	61190.0	100.0	26.0	1594	100	1752	100	33010.4	100	34122.6	100	20.1
Equidae										1		1		14.4		14.4		14.4
Bos primigenius/taurus	1		1		16.9		16.9		16.9									
Cervide/Bovide (GWK)	15		-		96.4		-		6.4	31		-		166.8		-		5.4
GWK/KWK	8		8		44.2		44.2		5.5									
KWK	176		-		841.0		-		4.8	117		-		724.7		- 1		6.2
Sus scrofa/domestica	15		-		544.4		-		36.3	10		-		220.7		- 1		22.
Canis lupus/familiaris										1		1		2.8		2.8		2.8
Total Haus- o. Inilatiere	215		9		1542.9		61.1		7.2	160		2		1129.4		17.2		7.
indet.	617		617		374.7		374.7		0.6	349		349		477.5		477.5		1.4
Grösse Ovis																		
Grösse Ovis-Sus	99		99		84.2		84.2		0.9	55		55		58.1		58.1		1.
Grösse Bos/Cervus	45		45		221.2		221.2		4.9	102		102		671.7		671.7		6.6
Total indet.	761		761		680.1		680.1		0.9	506		506		1207.3		1207.5		2.4
Total Unbestimmte	976	29.8	770	23.5	2223.0	3.6	741.2	1.2	2.3	666	29.4	508	22.4	2336.7	6.6	1224.5	3.5	3.5
Total Bestimmte	2300	70.2	2506	76.5	59708.2	96.4	61190.0	98.8	26.0	1594	70.6	1752	77.6	33010.4	93.4	34122.6	36.5	20.7
Homo										4		4		14.3		14.3		3.6
TOTAL GESAMT:	3276		3276		61931.2		61931.2		18.9	2264		2264		35361.4		35361.4		15.6

Tabelle III: Tierartenliste Planum 1- 14. *alle kleinen Hauswiederkäuer zusammengezählt (Schaf+Ziege+Schaf/Ziege), **artbestimmte Hornzapfen nicht dazugezählt, [] Geweihreste1: nicht proportional modifiziert, 2: proportional modifiziert, D1: Durchschnittsgewicht (g1/n1).

	Planum 1-14								
Tierart	n1	n1%	n2	n2%	g1	g1%	g2	g2%	D1
Bos taurus	7338	58.2	7722	50.6	203130.9	79.0	205661.8	76.5	27.7
Ovis aries**	472	3.7	592	3.9	5805.6	2.3	5805.6	2.2	12.3
Capra hircus**	64	0.5	56.5	0.4	773.7	0.3	773.7	0.3	12.1
Ovis/Capra*	2896	23.0	5756	37.7	28992.0	11.3	37022.2	13.8	10.0
Sus domestica	1600	12.7	1640	10.7	21902.0	8.5	23163.4	8.6	13.7
Canis familiaris	25	0.2	25	0.2	387.6	0.2	387.6	0.1	15.5
Total Haustiere	12500	99.1	15143	99.2	254412.5	99.0	266235.0	39.0	20.4
Bos primigenius (J)	1	0.0	1	0.01	40.2	0.02	40.2	0.0	40.2
Cervus elaphus (J)	32	0.3	34	0.2	1140.4	0.4	1169.7	0.4	35.6
Capra ibex (J)	26	0.2	26	0.2	506.2	0.2	506.2	0.2	19.5
Sus scrofa (J)	18	0.1	18	0.1	627.7	0.2	673.6	0.3	34.9
Canis lupus (J)	13	0.1	13	0.1	95.9	0.04	95.9	0.04	7.4
Ursus arctos (J)	7	0.1	7	0.05	233.7	0.1	233.7	0.1	33.4
Felis silvestris (J)	1	0.0	1	0.01	11.7	0.005	11.7	0.004	11.7
Carnivora indet. (J)	2	0.0	2	0.01	1.0	0.0004	1.0	0.0004	0.5
Aves (J)	7	0.1	7	0.05	8.0	0.003	8.0	0.003	1.1
Maus	1	0.0	1	0.01	0.2	0.0001	0.2	0.0001	0.2
Amphibien	2	0.0	2	0.01	0.4	0.0002	0.4	0.0001	0.2
Mollusken	1	0.0	1	0.01	0.1	0.00004	0.1	0.00004	0.1
Total Inilatiere	115	0.9	115	0.8	2681.9	1.0	2757.5	1.0	23.7
Total Bestimmte	12613	100	15258	100	257094.4	100	268992.5	100	20.4
Equidae	2		2		53.8		53.8		26.9
Bos primigenius/taurus	3		3		140.0		140.0		46.7
Cervide/Bovide (GWK)	386		0		2560.6		0.0		6.6
GWK/KWK	89		89		370.8		370.8		4.2
KWK	2219		0		8030.2		0.0		3.6
Sus scrofa/domestica	40		0		1307.3		0.0		32.7
Canis lupus/familiaris	5		5		11.1		11.1		2.2
Total Haus- o. Inilatiere	2744		99		12473.8		575.7		4.5
indet.	1782		1782		2198.0		2198.0		1.2
Grösse Ovis	19		19		29.2		29.2		1.5
Grösse Ovis-Sus	978		978		1350.1		1350.1		1.4
Grösse Bos/Cervus	561		561		2925.6		2925.6		5.2
Total indet.	3340		3340		6502.9		6502.9		1.8
Total Unbestimmte	6084	32.5	3439	18.4	18976.7	6.9	7078.6	2.6	3.1
Total Bestimmte	12613	67.5	15258	81.6	257094.4	93.1	268992.5	97.4	20.4
Homo	17		17		209.5		209.5		12.3
TOTAL GESAMT:	18714		18714		276280.6		276280.6		14.8

Tabelle III: Tierartenliste Planum 1- 14. *alle kleinen Hauswiederkäuer zusammengezählt (Schaf+Ziege+Schaf/Ziege), **artbestimmte Hornzapfen nicht dazugezählt, [] Geweihreste1: nicht proportional modifiziert, 2: proportional modifiziert, D1: Durchschnittsgewicht (g1/n1).

Planem 1	В	GWK	B+GWK	B+GWK	0/C	KWK		0/C+KWK	HS		HS+HS/WS	
<u> </u>	n1	n1	n1	n1%	n1	n1	n1 3	n1%	n1	n1	n1	n1%
Oscornu	9		9	3.2	3				- 40			40.0
Cranium	52		52	18.4	26	6	32	11.9	13		13	12.0
Mandibula	46	1	47	16.7	41	12	53		16		16	14.8
Wirbel	11	4	15	5.3		5	5	1.9	3		3	2.8
Rippen	12	17	29	10.3		23	23	8.6	9		9	8.3
Scapula	4	1	5	1.8	8	10	18	6.7	9		9	8.3
Humerus	11	1	12	4.3	11	6	17	6.3	7	1	8	7.4
Radius	13	2	15	5.3	4	7	11	4.1				
Ulna	8	1	9	3.2	1	5	6	2.2	4		4	3.7
Radius/Ulna	1	1	2	0.7	1		1					
Carpalia	1		1	0.4	1	1	2	0.7	3		3	2.8
	2	1	3	1.1	7	7	14	5.2	2		2	1.3
Metacarpus		- '										1.0
Phalanges ant.	4		4	1.4	2		2	0.7				
Pelvis	11	1	12	4.3	6	3	9	3.4	16		16	14.8
Femur	15	4	19	6.7	4	4	8	3.0	8		8	7.4
Patella												
Tibia	13	2	15	5.3	20	15	35	13.1	12		12	11.1
Fibula									1		1	0.8
Tarsus	10		10	3.5	2	1	3	1.1		1	1	0.8
Metatarsus	10	1	11	3.9		19	19	7.1	1		1	
		- '				10	10	1.1				0.0
Phalanges post.	4		4	1.4	ļ .	-	-					
Metapodia	1	1	2	0.7	1	5	6	2.2				
Phalanges	6		6	2.1		1	1	0.4	2		2	1.3
Sesamoid												
Total	244	38	282	100.0	138	130	268	100.0	106		108	100.0
Planum 2	В	GWK	B+G Y K	B+G Y K	01C	KWK	0/C+K Y K	O/C+KWK	HS	HS/\S	HS+HS/\s	HS+HS/\S
	n	n	n	n%	n	n	n	n%	n	n	n	n%
Os cornu	12		12	2.4	20		20	4.7				
Cranium	63	3	66	13.2	39	4	43	10.1	1		1	1.3
Mandibula	31	1	32	6.4	90	10	100	23.4	15		15	20.0
Wirbel	33	6	39	7.8		4	4	0.9	1		1	
	57	18	75	15.0		47	47	11.0	11		11	14.7
Rippen					_							
Scapula	39	1	40	8.0	8	6	14	3.3	3		3	4.0
Humerus	16		16	3.2	22	5	27	6.3	6		6	8.0
Radius	20		20	4.0	18	17	35	8.2	3		3	4.0
Ulna	11		11	2.2	8	1	9	2.1	1		1	1.3
Radius/Ulna	2		2	0.4	2		2	0.5				
Carpalia	2		2	0.4		1	1	0.2	1		1	1.3
Metacarpus	21		21	4.2	10	9	19	4.4	1		1	
Phalanges ant.	10		10	2.0				7.7	3		3	4.0
					-			4.0				
Pelvis	10		10	2.0	7		7		12		12	16.0
Femur	30	1	31	6.2	15	8	23	5.4	3		3	4.0
Patella	1		1	0.2	1		1	0.2				
Tibia	33	2	35	7.0	27	18	45	10.5	8		8	10.7
Fibula	0								1		1	1.3
Tarsus	15		15	3.0	7		7	1.6	3		3	4.0
Metatarsus	31		31	6.2	8	10	18		1		1	
	9		9	1.8		- 10	10	4.2	1		1	
Phalanges post.									- 1		1	1.3
Metapodia	8	1	9	1.8		3	3					
Phalanges Sesamoid	12 0		12	2.4	2		2	0.5				
Total	466	33	499	100.0	284	143	427	100.0	75		75	100.0
Planem 3	В	GWK	B+G¥K	B+G V K	0/C	KWK	OJC. KUK	O/C+KWK	HS	нелое	HS+HS/WS	петпетое
7141411 5	n	n	n	n%	n	n	n	n%	n	noi w o	no-norma	n2
Os cornu	25		25	1.6	47		47	3.0				
Cranium (5+6+8+	169	5	174	11.4	104	39	143		37		37	11.1
Mandibula	220	12	232	15.3	260	138	398		80		80	
Wirbel	121	43	164	10.8	200	23	23		26		26	
Rippen	191	50	241	15.8	1	112	113		37		37	
Scapula	47	19	66	4.3	20	35	55		26		26	
Humerus	62	7	69	4.5	61	22	83	5.2	21		21	6.3
Radius	57	7	64	4.2	61	70	131	8.3	5		5	1.5
Ulna	23	3	26	1.7	18	14	32		19		19	
Radius/Ulna	7	2	9	0.6	9	1	10		.,,			5.1
Carpalia	11		11	0.7	ı "	1	1		1		1	0.3
					40							
Metacarpus	56	1	57	3.7	13	49	62		10		10	3.0
Phalanges ant.	27		27	1.8	1	0	1					
Pelvis	27	4	31	2.0	35	20	55		13		13	
Femur	42	12	54	3.6	43	44	87	5.5	10		10	3.0
Patella					2		2		2		2	
Tibia	85	17	102	6.7	98	81	179		15			4.8
Fibula	- 03		102	0.1	33	- 01	113	11.0	2		2	
i ibula	45		,-									
T	45		45	3.0	14	5	19		13		13	
		2	64	4.2	25	60	85		6		6	1.8
Tarsus Metatarsus	62											0.3
	17		17	1.1	1		1	0.1	1		1	0.3
Metatarsus		1		1.1 0.7	2	41			3		3	
Metatarsus Phalanges post. Metapodia	17 10		11	0.7	2		43	2.7	3		3	0.3
Metatarsus Phalanges post. Metapodia Phalanges	17 10 31		11 31	0.7 2.0		41		2.7				
Metatarsus Phalanges post. Metapodia	17 10		11	0.7 2.0 0.1	2		43	2.7 0.8	3		3 6	0

Tabelle IV: Cresta-Cazis. Skelettelementverteilung bei Hausrind, Hausschaf/Hausziege und Hausschwein.

Planum 4	В	GWK	B+G ¥ K	B+G ∀ K	010	KWK		0/C+K W K	HS	HS/WS		HS+HS/¥S
0	n 44	n	n 44	n% 7.0	n 19	n	n 19	n% 	n	n	n n	n%
Os cornu	41		41	7.8								
Cranium	52		52	9.9	53	10	63		15		15	11.5
Mandibula	69	3	72	13.7	110	27	137		29		29	22.1
Wirbel	37	15	52	9.9		17	17		8		8	6.1
Rippen	44	10	54	10.3		65	65	9.7	16		16	12.2
Scapula	19	4	23	4.4	17	9	26	3.9	15		15	11.5
Humerus	20	2	22	4.2	19	10	29	4.3	10		10	7.6
Radius	27	3	30	5.7	20	20	40	6.0				
Ulna	21	2	23	4.4	9	6	15	2.2	2		2	1.5
Radius/Ulna					1		1				_	
Carpalia	2		2	0.4		1	1		1		1	0.8
	17		17	3.2	13	24	37	5.5	1		1	
Metacarpus						24						0.0
Phalanges ant.	8		8	1.5	3		3					
Pelvis	17		17	3.2	16	5	21	3.1	10		10	7.6
Femur	13	4	17	3.2	24	26	50	7.5	4		4	3.1
Patella	2		2	0.4								
Tibia	27	4	31	5.9	29	39	68	10.2	11	1	12	9.2
Fibula	0											
Tarsus	17		17	3.2	8		8	1.2	2		2	1.5
Metatarsus	26		26	5.0	14	43	57	8.5	2	1		2.3
	3		3	0.6	1	43	1			'	- 3	2.3
Phalanges post.					1							
Metapodia	7	2	9	1.7		8	8		1		1	
Phalanges	7		7	1.3	1		1	0.1	2		2	1.5
Sesamoid Total	476	49	525	100.0	357	310	667	100.0	129	2	131	100.0
Planum 5	B	GWK	B+GWK	B+GWK	01C	KWK	0/C+KWK	0/C+KWK	HS n	HS/A2	HS+HS/WS	HS+HS/WS
Os cornu	8		. 8	2.5	- 8	1	. 9		"		<u> </u>	
Cranium	28	1	29	9.1	49	9	58		13		13	13.7
Mandibula	45	4	49	15.4	90	2	32	20.9	21		21	22.1
					30							
Wirbel	29	6	35	11.0		21	21		7		7	7.4
Rippen	37	10	47	14.8		25	25		5		5	
Scapula	10	1	11	3.5	4	5	9		3		3	
Humerus	9		9	2.8	15	6	21	4.8	9		9	9.5
Radius	13	1	14	4.4	15	10	25	5.7	4		4	4.2
Ulna	- 6		6	1.9	5	3	8	1.8	3		3	3.2
Radius/Ulna	2		2	0.6	1		1	0.2				
Carpalia	3		3	0.9			-					
Metacarpus	10	1	11	3.5	6	18	24	5.4				
Phalanges ant.	7		7	2.2	·	- 10		2.4	1		1	1.1
					8	45	00	5.0	6			6.3
Pelvis	12		12	3.8		15	23				6	
Femur	20		20	6.3	16	21	37	8.4	8		8	8.4
Patella												
Tibia	21		21	6.6	22	9	31	7.0	7		7	7.4
Fibula									2		2	2.1
Tarsus	9		9	2.8	11	1	12	2.7				
Metatarsus	12		12	3.8	15	14	29	6.6	- 1		1	1.1
Phalanges post.	7		7	2.2	1		1		2	1		3.2
Metapodia	2		2	0.6		4	4		1		1	
	4		4	1.3	10	1	11		1		1	1.1
Phalanges Sesamoid	4		4	1.3	10			2.5			'	1.1
Total	294	24	318	100.0	276	165	441	100.0	94		95	100.0
Planem 8	В	GWK	B+GWK	B+GWK	0/C	KWK	O/C+KWK	O/C+KWK	HS	HS/WS	HS+HS/WS	HS+HS/WS
	n	n	n	n%	n	n	n	n%	n	n	n	n%
Os cornu	99		99	8.1	26		26	3.2				
Cranium	141	1	142	11.6	84	9	93	11.4	5		5	3.8
Mandibula	134		134	10.9	128	8	136		30	1		
Wirbel	93		93	7.6	,20	27	27		4	'	4	
	140		140			49			10		10	
Rippen				11.4	_							
Scapula	98	2	100	8.1	6	12			10		10	
Humerus	55		55	4.5	54	7	61		7		7	
Radius	55		55	4.5	49	11	60	7.3	2		2	1.5
Ulna	36		36	2.9	21	7	28	3.4	11		11	8.4
Radius/Ulna	7		7	0.6	5		5		· · · ·		1	1
Carpalia	6		6	0.5		3	3		1		1	0.8
			45		- 44				1		1	
Metacarpus	45			3.7	14	31	45	5.5	1		1	0.8
Phalanges ant.	6		6	0.5				_				_
Pelvis	49	1		4.1	16	11			7		7	
Femur	42		42	3.4	47	21			6		6	
Patella					4		4	0.5	1		1	0.8
Tibia	61		61	5.0	54	36	90	11.0	18	1	19	14.5
Fibula	- 1							1	3		3	
Tarsus	52		52	4.2	21	3	24	2.9	3		3	
	57		57	4.6	12	20	32		2		2	
Metatarsus						20						
Phalanges post.	8		8	0.7	1		1		1		1	
Metapodia	15		15	1.2		2	2			2		
Phalanges	24		24	2.0	17	1	18	2.2	5		5	3.8
Sesamoid	45.7.	,										
Total	1223	4	1227	100.0	559	258	817	100.0	127	4	131	100.0

 $\textbf{\textit{Tabelle IV}}{:} \ Cresta-Cazis. \ Skelettelement verteilung \ bei \ Hausrind, \ Hausschaf/Hausziege \ und \ Hausschwein.$

Planum 10	В	GWK	B+G¥K	B+G ∀ K	010	KWK		0/C+K \ K	HS	HS/WS		HS+HS/¥S
_	n	n	n	n%	n	n	n	n%	n	n	n	n%
Os cornu	2		2	0.8	7		7		_			45.4
Cranium	26		26	11.0	22	3	25		8		8	15.4
Mandibula	32		32	13.5	37		37		8		8	15.4
Wirbel	16		16	6.8		4	4	1.6	6		6	11.5
Rippen	47	2	49	20.7		23	23		9		9	17.3
Scapula	10		10	4.2	2	10	12		2		2	3.8
Humerus	15		15	6.3	16	1	17	6.8	4		4	7.7
Radius	17		17	7.2	16	2	18		1		1	
Ulna	5		5	2.1	4	1	5	2.0	2		2	3.8
Radius/Ulna	4		4	1.7								
Carpalia												
Metacarpus	9	1	10	4.2	4	6	10	4.0				
Phalanges ant.												
Pelvis	10		10	4.2	- 6	2	8	3.2				
Femur	10		10	4.2	14	8	22	8.8	3		3	5.8
Patella												
Tibia	8		8	3.4	19	15	34	13.5	2		2	3.8
Fibula	Ť		Ť	0.4		- 10		10.5				0.0
Tarsus	9		9	3.8	7		7	2.8	3		3	5.8
			8			- 44						
Metatarsus	8			3.4	5	11	16	6.4	2		2	3.8
Phalanges post.	2		2	0.8	3		3		1		1	1.9
Metapodia	2		2	0.8	1	1	2					
Phalanges	2		2	0.8	1		1	0.4	1		1	1.9
Sesamoid												
Total	234	3	237	100.0	164	87	251	100.0	52		52	100.0
Planem 11	В	GYK	B+GWK	B+GWK	01C	KWK	0/C+KWK	0/C+KWK	HS	HS/WS	HS+HS/WS	HS+HS/WS
	n	n	n	n%	n	n	n	n%	n	n	n	n%
Os cornu	15		15	2.9	9		9	4.1				
Cranium	60		60	11.5	15	3	18	8.2	18		18	11.4
Mandibula	65		65	12.5	54	1	55	25.1	28	1	29	18.4
Wirbel	41		41	7.9		8	8	3.7	10	1	11	7.0
Rippen	50	1	51	9.8		8	8	3.7	8		8	5.1
Scapula	38		38	7.3	2	1	3		8		8	5.1
Humerus	16	1	17	3.3	11	6	17	7.8	14	1		9.5
Radius	32	1	33	6.3	9	5	14	6.4	5		5	3.2
Ulna	14		14	2.7	3		3		11	1		7.6
Radius/Ulna	8		8	1.5	,		,	1.4	- "	- '	ie.	1.0
	°		۰	1.5								
Carpalia	40		40	0.5	_	40	40	5.0				0.5
Metacarpus	13		13	2.5	3	10	13		4		4	2.5
Phalanges ant.	5		5	1.0	1		1		1		1	
Pelvis	26		26	5.0	4	1	5		12		12	7.6
Femur	30		30	5.7	5	3	8	3.7	10		10	6.3
Patella	1		1	0.2								
Tibia	36	1	37	7.1	21	17	38	17.4	9	1	10	6.3
Fibula									1		1	0.6
Tarsus	28		28	5.4	1	3	4	1.8	6		6	3.8
Metatarsus	19		19	3.6	2	9	11	5.0	2		2	1.3
Phalanges post.	2		2	0.4	1		1	0.5	1		1	0.6
Metapodia	6		6	1.1	1	1	2	0.9	4		4	2.5
Phalanges	13		13	2.5	- 1		1	0.5	1		1	0.6
Sesamoid												
Total	518	4	522	100.0	143	76	219	100.0	153	5	158	100.0
Planum 12	В	GWK	B+G¥K	B+GWK	0/C	KWK	U\C+K∧k	O/C+KWK	HS	HS/WS	2V\2H+2H	HS+HS/\S
	n	n	n	0%	n	n	n	n%	n	n	n	n%
Os cornu	15		15	1.1	12		12				"	
Cranium	191		191	13.4	57	5			30		30	7.7
Mandibula	201		201	14.1	198	,	198		114	1		
Wirbel	100	1		7.1	130	24	24		20			
		14	101			24	24 26		16	2	16	
Rippen	176	14		13.3								4.1
Scapula	83		83	5.8	1	13			25		25	
Humerus	62		62	4.4	28	5			42		42	
Radius	63		63	4.4	36	5			8		8	
Ulna	28		28	2.0	5	3			15	4	19	4.9
Radius/Ulna	5		5	0.4	5		5	0.7				
Carpalia	6		6	0.4					3		3	
Metacarpus	55		55	3.9	17	10	27		3		3	0.8
Phalanges ant.	9		9	0.6	1		1	0.1				
Pelvis	92		92	6.5	8	12	20	3.0	21	2	23	5.9
Femur	74		74	5.2	26	12			24	1		
Patella									2		2	
Tibia	98		98	6.9	53	37	90	13.3	22	2		
Fibula	"			0.0				10.0	1		1	
Tarsus	60		60	4.2	18	3	21	3.1	15			
Metatarsus	61		61	4.2	12	16	28		1		1	
					12	16	28	4.1	3			
Phalanges post.	7		7	0.5			-				3	
			7	0.5	2	4	6	0.9	3		3	0.8
Metapodia	7								-		-	
Metapodia Phalanges	16		16	1.1	20	1	21	3.1	7		7	1.8
Metapodia		15			20 499	176			375	15		1.8

Tabelle IV: Cresta-Cazis. Skelettelementverteilung bei Hausrind, Hausschaf/Hausziege und Hausschwein.

Planem 14	В	GWK	B+G¥K	B+GWK	01C	KWK	O/C+KWK	0/C+KWK	HS	HS/WS	H2+H2/A2	H2+H2\A2
	n	n	n	n%	n	n	n	n%	n	n	n	n%
Os cornu	5		5	0.4	10		10	2.5				
Cranium	126		126	10.8	42		42	10.3	17		17	10.2
Mandibula	163	12	175	15.0	112	1	113	27.8	36		36	21.7
Wirbel	72	11	83	7.1		14	14	3.4	5		5	3.0
Rippen	121	3	124	10.6		8	8	2.0	7		7	4.2
Scapula	84		84	7.2	4	5	9	2.2	14	3	17	10.2
Humerus	61	1	62	5.3	21	7	28	6.9	18	2	20	12.0
Radius	80		80	6.8	15	19	34	8.4	4		4	2.4
Ulna	18		18	1.5					6	3	9	5.4
Radius/Ulna	7		7	0.6	1		1	0.2				
Carpalia	4		4	0.3								
Metacarpus	46		46	3.9	8	7	15	3.7	1		1	0.6
Phalanges ant.	9		9	0.8	1		1	0.2				
Pelvis	62	1	63	5.4	9	3	12	2.9	9	5	14	8.4
Femur	86		86	7.4	12	9	21	5.2	10	5	15	9.0
Patella	1		1	0.1								
Tibia	64	1	65	5.6	32	30	62	15.2	12	2	14	8.4
Fibula												
Tarsus	39	2	41	3.5	9	2	11	2.7	6		6	3.6
Metatarsus	56		56	4.8	9	12	21	5.2				
Phalanges post.	8		8	0.7	3		3		1		1	0.6
Metapodia	9		9	0.8			_					
Phalanges	17		17	1.5	2		2	0.5				
							_					
Sesamoid												
Sesamoid Total	1138	31	1169	100.0	290	117	407	100.0	146	20	166	100.0
Sesamoid Total	1138	31	1169	100.0	290	117	407	100.0	146	20	166	100.0
	1138 ⁾ B	31 G ∀ K	1169 B+G W K	100.0 B+G\K		117 KWK			146 HS	20 HS/\\$		
Total					290 0/C			100.0				
Total	В	GWK	B+G V K	B+G V K	01C	KWK	0/C+K Y K	0/C+K ∀ K	HS	HS/WS	HS+HS/WS	HS+HS/\S
Total total Os cornu	B n 231	GYK	B+G∀K n 231	B+G∀K n% 3.0	O/C n	KYK n	0/C+K¥K	0/C+K¥K n% 2.8	HS n	HS/WS	HS+HS/¥S	HS+HS/\S n%
Total total Os cornu Cranium	B n 231 908	GYK n	B+G∀K n 231	B+G∀K n% 3.0 11.9	0/C n 161 491	K¥K n 1 88	0/C+KYK n 162 579	0/C+KWK n% 2.8	HS n	HS/VS	HS+HS/¥S	HS+HS/YS n%
Total total Os cornu	B n 231	GYK	B+G∀K n 231	B+G∀K n% 3.0	O/C n	KYK n	0/C+K¥K	0/C+KWK n% 2.8 10.1 22.9	HS n	HS/WS	HS+HS/WS n 157 380	HS+HS/\S n%
Total total Os cornu Cranium Mandibula Wirbel	B n 231 308 1006 553	GWK n 10 33 86	B+GWK n 231 918 1039 639	B+G\K n\2 3.0 11.9 13.5 8.3	0/C n 161 491 1120	KWK n 1 88 199 147	0/C+KWK n 162 579 1319	0/C+K¥K n% 2.8 10.1 22.9 2.6	HS n 157 377 30	HS/∀S	HS+HS/VS n 157 380 93	HS+HS/WS n% 9.6 23.2 5.7
Total total Os cornu Cranium Mandibula Wirbel Rippen	B n 231 908 1006	GVK n 10 33	B+GWK n 231 318 1033	B+G∀K n½ 3.0 11.9 13.5	0/C n 161 491 1120 0	KWK n 1 88 199	0/C+KWK n 162 579 1319	0/C+K¥K n% 2.8 10.1 22.9 2.6 6.7	HS n 157	HS/∀S	HS+HS/WS n 157 380 93 128	HS+HS/WS n% 9.6 23.2
Total total Os cornu Cranium Mandibula Wirbel Rippen Scapula	B n 231 908 1006 553 875 432	G∀K n 10 33 86 125 28	B+GWK n 231 918 1039 639 1000 460	B+G\K n2 3.0 11.9 13.5 8.3 12.9 6.0	0/C n 161 491 1120 0 1	KWK n 1 88 199 147 386 106	0/C+KWK n 162 579 1319 147 387 178	0/C+K∀K n¾ 2.8 10.1 22.9 2.6 6.7 3.1	HS n 157 377 90 128 115	HS/WS n	#S+HS/WS n 157 380 93 128 118	#S+HS/WS n% 9.6 23.2 5.7 7.8 7.2
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus	B 231 908 1006 553 875 432 327	G∀K n 10 33 86 125 28 12	B+G\(\frac{1}{2}\) 231 318 1033 633 1000 460 333	B+GWK n2 3.0 11.3 13.5 8.3 12.9 6.0 4.4	0/C n 161 491 1120 0 1 72 258	NWK n 1 88 199 147 386 106 75	0/C+KYK n 162 579 1319 147 387 178	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8	HS 157 377 30 128 115 138	HS/VS n	hS+HS/¥S h 157 380 93 128 118 142	#S+HS/¥S n2 3.6 23.2 5.7 7.8 7.2 8.7
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius	B n 231 908 1006 553 875 432	GWK n 10 33 86 125 28 12 14	B+G¥K n 231 918 1033 633 1000 460 333 391	B+GWK n% 3.0 11.9 13.5 8.3 12.9 6.0 4.4 5.1	0/C n 161 491 1120 0 1 72 258 243	KWK n 1 88 199 147 386 106 75	0/C+KVK n 162 579 1319 147 387 178 333 409	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1	HS n 157 377 90 128 115	HS/WS n	#S+HS/WS n 157 380 93 128 118	#S-HS/WS n% 3.6 23.2 5.7 7.8 7.2 8.7 2.0
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna	B n 231 308 1006 553 875 432 327 377 170	GWK n 10 33 86 125 28 12 14 6	B+G¥K n 231 918 1039 639 1000 460 339 391 176	B+GWK n% 3.0 11.9 13.5 8.3 12.9 6.0 4.4 5.1 2.3	0/C n 161 491 1120 0 1 72 258 243 74	NWK n 1 88 199 147 386 106 75 166	0/C+KYK n 162 579 1319 147 387 178 333 409	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0	HS n 157 377 90 128 115 138 32	#S/VS n 3 3 4	n 157 380 33 128 118 142 32	#S+HS/¥S n2 3.6 23.2 5.7 7.8 7.2 8.7
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Radius/Ulna	B n 231 308 1006 553 875 432 327 377	GWK n 10 33 86 125 28 12 14	B+G¥K n 231 918 1033 633 1000 460 333 391	B+GWK n% 3.0 11.9 13.5 8.3 12.9 6.0 4.4 5.1	0/C n 161 491 1120 0 1 72 258 243	KWK n 1 88 199 147 386 106 75	0/C+KVK n 162 579 1319 147 387 178 333 409	0/C+KWK n% 2.8 10.1 22.3 2.6 6.7 3.1 5.8 7.1 2.0 0.5	HS n 157 377 90 128 115 138 32	#S/VS n 3 3 4	n 157 380 33 128 118 142 32	#S-HS/WS n% 3.6 23.2 5.7 7.8 7.2 8.7 2.0
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Radius/Ulna Carpalia	B n 231 308 1006 553 875 432 327 377 170 43 35	6 G W K n 10 33 86 125 28 12 14 6 3	B+GWK n 231 918 1033 633 1000 460 333 391 176 46	B+G\(\forall K\) 3.0 11.9 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5	0/C n 161 491 1120 0 1 72 258 243 74 25	NWK n 188 199 147 386 106 75 166 40	0/C+K\(\frac{1}{2}\)K\(\frac{1}\)K\(\frac{1}{2	0/C+KWK n½ 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5	HS n 157 377 90 128 115 138 32 74	#S/VS n 3 3 4	HS-HS/WS n 157 380 93 128 118 142 32 82	#S+#S/WS n2 9.6 23.2 5.7 7.8 7.2 8.7 2.0 5.0
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Radius/Ulna Carpalia Metacarpus	B n 231 908 1006 553 875 432 327 170 43 35 274	GWK n 10 33 86 125 28 12 14 6	B+G\(\foats\) 818 231 318 1039 633 1000 460 333 331 176 46 35 278	B+GWK n2 3.0 11.9 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5 3.6	0/C n 161 491 1120 0 1 72 258 243 74 25 1 1	NWK n 1 88 199 147 386 106 75 166 40 1 17	0/C+K\(\frac{1}{2}\)K\(\frac{1}\)K\(\frac{1}{2	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1	HS n 157 377 90 128 115 138 32 74 10 23	#S/VS n 3 3 4	HS-HS/WS n 157 380 93 128 118 142 32 82 10 23	#S+#S/\sigma S
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Radius/Ulna Carpalia Metacarpus Phalanges ant.	B n 231 908 1006 553 875 432 327 170 43 35 274 85	G₩K n 10 33 86 125 28 12 14 6 3	B+GWK n 231 318 1033 633 1000 460 333 391 176 46 35 278	B+GWK n2 3.0 11.3 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5 3.6	0/C n 161 491 1120 0 1 72 258 243 74 25 1 95	NWK n 188 199 147 386 106 75 166 40 1 171	0/C-KWK n 162 579 1319 147 387 178 333 409 114 26 8 266	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6	HS n 157 377 90 128 115 138 32 74 10 23 5	#S/\subseteq S	HS+HS/WS n 157 380 93 128 118 142 32 82 10 23 5	#S+HS/WS n% 9.6 23.2 5.7 7.8 8.7 2.0 5.0 0.6 1.4 0.3
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Radius/Ulna Carpalia Metacarpus Phalanges ant. Pelvis	B n 231 308 1006 553 875 432 327 377 170 43 35 274 85 316	GWK n 10 33 86 125 28 12 14 6 3	B+GWK n 231 918 1039 633 1000 460 3339 176 46 35 278 85	B+GWK n2 3.0 11.3 13.5 8.3 12.3 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2	0/C n 161 491 1120 0 1 72 258 243 74 25 35 9 115	KWK n 1 88 199 147 386 106 75 166 40 1 1 7 7 7 7 7	0/C+KWK n 162 579 1319 147 387 178 333 409 114 26 8 266 9 187	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2	HS n 157 377 90 128 115 138 32 74 10 23 5	#S/WS n 3 3 3 4 4 8 8	HS+HS/WS n 157 380 93 128 118 142 32 82 10 23 5 113	#S+HS/WS n% 9.6 23.2 5.7 7.8 7.2 8.7 2.0 5.0 0.6 1.4 0.3 6.9
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Radius/Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur	B n 231 908 1006 553 875 432 327 377 170 43 35 274 85 316	G₩K n 10 33 86 125 28 12 14 6 3	B+GWK n 231 918 1033 633 1000 460 333 1176 46 35 278 85 323 383	B+G\K n\forall 3.0 11.3 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0	0/C n 161 491 1120 0 1 72 258 243 74 25 1 95 91 115 206	NWK n 188 199 147 386 106 75 166 40 1 171	0/C+KWK n 162 579 1319 147 387 178 333 409 114 26 8 266 9 187	0/C+KWK n% 2.8 10.1 22.3 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3	HS n 157 377 90 128 138 32 74 10 23 5 106 86	#S/\subseteq S	HS+HS/WS n 157 380 93 128 118 142 32 82 10 23 5 113 92	#S+HS/WS n% 9.6 23.2 5.7 7.8 7.2 8.7 2.0 5.0 0.6 1.4 0.3 6.3 5.6
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur Patella	B n 231 308 1006 553 875 432 327 170 43 35 274 856 362 5	GWK n 10 33 86 125 28 12 14 6 3 4	B+GWK n 231 918 1033 633 1000 460 333 391 176 46 35 278 85 323 383	B+GWK n% 3.0 11.9 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0 0.1	0/C n 161 491 1120 0 1 72 258 243 74 25 1 95 9 115 206	### KWK n 1 88 8 199 147 386 106 75 166 166 177 171 0 2 156	0/C-KWK n 162 579 1319 147 387 178 333 409 114 26 8 266 9 187 362	0/C+KWK n% 2.8 10.1 22.3 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3 0.1	HS n 157 377 900 128 115 138 32 74 100 23 5 106 86 5 5	#\$/\subseteq 8	HS+HS/WS n 157 380 93 128 118 142 32 82 10 23 5 113 92 5	#S+HS/WS n2 n2 9.6 23.2 5.7 7.8 7.2 8.7 2.0 5.0 0.6 1.4 0.3 6.3 5.6 0.3
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur Patella Tibia	B n 231 908 1006 553 875 432 327 377 170 43 35 274 85 316	GWK n 10 33 86 125 28 12 14 6 3	B+GWK n 231 918 1033 633 1000 460 333 1176 46 35 278 85 323 383	B+G\K n\forall 3.0 11.3 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0	0/C n 161 491 1120 0 1 72 258 243 74 25 1 95 91 115 206	KWK n 1 88 199 147 386 106 75 166 40 1 1 7 7 7 7 7	0/C+KWK n 162 579 1319 147 387 178 333 409 114 26 8 266 9 187	0/C+KWK n% 2.8 10.1 22.3 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3 0.1	HS n 157 377 90 128 115 138 32 74 10 23 5 106 5 5 116	#S/WS n 3 3 3 4 4 8 8	HS+HS/WS n 157 380 93 128 1188 1442 32 82 10 23 5 113 92 5 124	#S-HS/WS n% 9.6 23.2 5.7 7.8 8.7 2.0 5.0 0.6 1.4 0.3 6.9 5.6 0.3 7.6
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur Patella Tibia Fibula	B n 231 308 1006 553 875 432 777 170 43 35 316 362 5 446	GWK n 10 33 86 125 28 12 14 6 3 4 7 21	B+GWK n 231 318 1033 633 1000 460 333 391 176 46 35 278 85 323 383 5 473	B+GWK n2 3.0 11.3 13.5 8.3 12.3 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0 0.1 6.0	0/C n 161 491 1120 0 1 72 258 243 74 25 1 1 95 9 115 206 7 375	KWK n 11 88 199 147 386 106 75 166 40 1 7 7 171 171 100 722 156	0/C-KWK 162 579 1319 147 387 178 333 409 114 26 8 266 9 187 362 7 672	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3 0.1 11.7	HS n 157 377 390 128 115 138 32 74 10 23 5 106 86 86 116 116 11	#S/\subseteq S	HS+HS/WS 157 380 93 128 118 142 32 82 10 23 5 113 92 5 124	#S+HS/WS n% 9.6 23.2 5.7 7.8 8.7 2.0 5.0 0.6 1.4 0.3 6.9 5.6 0.3 7.6 0.7
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur Patella Tibia Tarsus	B n 231 308 1006 553 875 432 327 170 43 35 274 85 316 362 5 446	GWK n 10 33 86 125 28 12 14 6 3 4 7 21 27	B+GWK n 231 318 1039 633 1000 460 3339 176 46 35 278 35 323 383 5 473	B+GWK n2 3.0 11.3 13.5 8.3 12.3 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0 0.1 6.1	0/C n 161 491 1120 0 1 72 258 243 74 25 1 1 95 9 9 115 206 7 375	KWK n 11 18 88 88 199 147 386 106 106 40 11 7 171 171 171 175 156 297	0/C+KWK n 162 579 1319 147 387 178 333 409 114 26 8 266 9 187 362 7 672	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3 0.1 11.7	HS n 157 377 90 128 32 74 10 23 5 106 86 5 116 111 51	#\$/\subseteq 8	HS+HS/WS 157 380 93 128 118 142 32 82 10 23 5 113 92 5 124 111	#S+HS/WS n% 9.6 23.2 5.7 7.8 7.2 8.7 2.0 5.0 0.6 1.4 0.3 6.9 5.6 0.3 7.6 0.7 3.4
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur Patella Tibula Tarsus Metatarsus	B n 231 306 553 875 432 327 170 43 35 274 446 284 342	GWK n 10 33 86 125 28 12 14 6 3 4 7 21	B+GWK n 231 918 1039 639 1000 460 3339 176 46 35 278 85 323 383 5 473 266 345	B+G\K n\forall 3.0 11.3 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0 0.1 6.1 3.7 4.5	0/C n 161 491 1120 0 1 72 258 243 74 25 1 95 115 206 7 375	KWK n 11 88 199 147 386 106 75 166 40 1 7 7 171 171 100 722 156	0/C-KWK n 162 579 1319 147 387 178 333 409 114 26 8 266 9 187 362 7 672	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3 0.1 11.7 2.0 5.5	HS n 157 377 90 128 115 138 32 74 106 86 5 116 15 11 18	#\$/\subseteq 8	HS+HS/WS n 157 380 93 128 118 142 32 82 10 23 5 113 92 5 124 111 555	#S+HS/WS n% 9.6 23.2 5.7 7.8 7.2 8.7 2.0 0.6 1.4 0.3 6.3 5.6 0.3 7.6 0.7 3.4
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur Patella Tibia Tibia Tarsus Metatarsus Phalanges post.	B n 231 308 1006 553 875 432 327 170 43 35 274 836 362 5 446 284 342 67	GWK n 10 33 86 125 28 12 14 6 3 4 7 21 27	B+GWK n 231 918 1033 633 1000 460 333 391 176 46 35 278 85 323 383 5 473 286 345	B+G\kspace K n\begin{align*} 3.0 11.3 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0 0.1 6.1 3.7 4.5 0.9	0/C n 161 491 1120 0 1 72 258 243 74 25 1 95 91 15 206 7 375	### KWK n 1 88 8 199 147 3866 1066 755 1666 400 1 77 1711 0 72 1566 297 18 214	0/C-KWK n 162 579 1319 147 387 178 333 409 114 26 8 266 9 187 362 7 672	0/C+KWK n% 2.8 10.1 22.3 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3 0.1 11.7 2.0 5.5 0.2	HS n 157 377 90 128 115 138 32 23 15 6 86 5 116 11 51 18 11 11 18	#\$/\subseteq 8	#S+#S/\scripts in 157 380 93 128 118 142 32 82 10 23 5 113 92 5 124 11 55 19 12 12 12 12 12 12 12	#S+HS/WS n% 9.6 23.2 5.7 7.8 7.2 8.7 2.0 5.0 0.6 1.4 0.3 6.9 5.6 0.3 7.6 0.7 3.4 1.2
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur Patella Tibia Fibula Tarsus Metapasys Phalanges post. Metapodia	B n 231 308 1006 553 875 432 327 377 170 43 35 316 362 5 446 284 342 67 67 67	GWK n 10 33 86 125 28 12 14 6 3 4 7 21	B+G\(\frac{\pi}{k}\) 1039 1039 1039 1000 460 339 391 176 46 35 278 85 323 383 5 473 286 345 67 72	B+GWK n2 3.0 11.3 13.5 8.3 12.3 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0 0.1 6.1 3.7 4.5 0.3 0.3	0/C n 161 491 1120 0 1 172 258 243 74 25 1 95 9 115 206 7 375 98 102 11 7	KWK n 11 88 199 147 386 106 106 40 11 7 171 0 72 156 297 18 214	0/C-KWK 162 579 1319 147 387 178 333 409 114 266 8 266 9 187 362 7 672	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3 0.1 11.7 2.0 5.5 0.2 1.3	HS n 157 377 90 128 115 138 32 74 100 23 5 106 86 5 116 11 51 18 11 12	#\$/\subseteq 8	HS+HS/WS n 157 380 93 128 118 142 32 82 10 23 5 113 92 5 124 111 555 19 122 14	#S-#S/WS #% 9.6 23.2 5.7 7.8 8.7 2.0 5.0 0.6 1.4 0.3 6.9 5.6 0.3 7.6 0.7 3.4 1.2 0.7 0.9
Total Os cornu Cranium Mandibula Wirbel Rippen Scapula Humerus Radius Ulna Carpalia Metacarpus Phalanges ant. Pelvis Femur Patella Tibia Tibia Tarsus Metatarsus Phalanges post.	B n 231 308 1006 553 875 432 327 170 43 35 274 836 362 5 446 284 342 67	GWK n 10 33 86 125 28 12 14 6 3 4 7 21 27	B+GWK n 231 918 1033 633 1000 460 333 391 176 46 35 278 85 323 383 5 473 286 345	B+G\kspace K n\begin{align*} 3.0 11.3 13.5 8.3 12.9 6.0 4.4 5.1 2.3 0.6 0.5 3.6 1.1 4.2 5.0 0.1 6.1 3.7 4.5 0.9	0/C n 161 491 1120 0 1 72 258 243 74 25 1 95 91 15 206 7 375	### KWK n 1 88 8 199 147 3866 1066 755 1666 400 1 77 1711 0 72 1566 297 18 214	0/C-KWK n 162 579 1319 147 387 178 333 409 114 26 8 266 9 187 362 7 672	0/C+KWK n% 2.8 10.1 22.9 2.6 6.7 3.1 5.8 7.1 2.0 0.5 0.1 4.6 0.2 3.2 6.3 0.1 11.7 2.0 5.5 0.2 1.3	HS n 157 377 90 128 115 138 32 23 15 6 86 5 116 11 51 18 11 11 18	#\$/\subseteq 8	#S+#S/\scripts in 157 380 93 128 118 142 32 82 10 23 5 113 92 5 124 11 55 19 12 12 12 12 12 12 12	#S-#S/WS n% 9.6 23.2 5.7 7.8 8.7 2.0 5.0 0.6 1.4 0.3 6.9 5.6 0.3 7.6

Tabelle IV: Cresta-Cazis. Skelettelementverteilung bei Hausrind, Hausschaf/Hausziege und Hausschwein.

			Humer	res Bd			Radiu	s Bp			Metaca	rpus Bd		М	etacar	pus Mp	•	м	etatar	sus Bd		м	etata	rsus Bp	,
		min	max	med	n	min	max	med	n	min	max	med	n	min	max	med	n	min	max	med	n	min	max	med	n
	SBZ			78,9"	1	66.4	83.5	74.9	2			61,6*	1	51.1	58.5	55.3	3	45.9	46.1	46	2			42,4"	
Cazis GR- Cresta	MBZ	64.5	82.8	75.1	9	68.2	83.0	75.5	6	50	59.67	54.3525	4	52.3	62.3	56.3	12	46.3	60.8	54.5	7	42.7	51.5	46.8	
	FBZ	66.2	96.3	78.1	12	69.8	85.5	77.4	15	49.46	65.63	56.6328	7	49.6	62.3	55.5	13	48.5	61.7	52.4	11	39.5	55.7	46.7	18
Zürich ZH- Alpenquai	SBZ			-				-		47	65	56.3	39	46	63	54.9	39	44	59	52.8	26	38	54	44.8	2
Cortaillod- NE	SBZ	69.5	80.5	74.8	6	61.5	82.7	74.4	22	43.2	59.2	51.9	7	44.3	56.5	51.2	15	44.5	52.8	49.9	8			-	
Vex VS-le-Château	FBZ+SBZ	65.5	66.5	66.0	2			71,1"	1			-				-				-				42,5"	
Naturns I- Schnalserhof	FBZ			-				-				-				55,6"	1			-				51,9"	
Nössing- I	FBZ/MBZ	71.1	90.4	80.0	5			74,0"	1	49.2	68.9	60.4	- 6	52.3	66.2	56.5	- 6			53,3"	1	40.5	57.1	48.1	
Sonnenburg-I	BZ			-				-				64,0"	1			52,3"	1			-				-	
Albanbühel- I	FBZ+MBZ			-				71.7	7			50.5*	1			51.6	10			-				44.9	1
Sotciastel- I	MBZ-SBZ			75.0"	1	72.6	72.9	72.7	2			-		48.9	49.9	49.4	2			-	1	40.7	42.4	41.7	
Eppan I- Gamberoni	SBZ			74.3"	1(w)	67.6		70.7	4	51	57.9	53.8	3	46		49.5	7	45.2	47	46.1	2	40.3	44		
Pfatten I- Vadena	SBZ				.()		- 1111	-	_			-	_	46.2		48	5			49.5"	1	34.5	44.5		
Ledro- I	FBZ	63.0	89.6	74.3	39	57.8	85.6	69.9	23	45.9	73.5	56.6	22	41.9		51.4	49	41.7	60.9	52	18	35	49.6		
Ripario I- del Santuario	FBZ+MBZ			-				81.1	2	42.0	10.5	-		7	00.4	-	10	7		-			40.0	-	1
Fiavé I- Carrera	FBZ+MBZ			-		59	74.8	66.5		41.6	50,6	45.0	5	59.8	71.4	66.8	6	43.4	59.1	48.8	7			-	+
Barche I- di Solferino	FBZ	67	93.5	80.7	33	61.8		72.4		44.3		57.7	53	44.3		55.1		43.2	60.1	51.5	33	36.6	49.9	43.4	34
Wiesing AU- Buchberg	FBZ	75.0			2	69		78.1	6	53		58.1	5	50		56.5	5	42.0	63.5	55.0	10	35.5	51.5		
litabühl I- Kelchalpe	SBZ	65			2	63		67.9	5	43		44.0	2	43.5		46.5	5	42.0	00.5	41"	1	36	40		
Kastanas- GR	SBZ	60.8			21		30.7	76	40	44.4				45.2	64.3	51.1	50	47	56.3	51.7	2	37.2	50.8		_
Kastanas- GH	FBZ/MBZ	60.6	01.2	14.3	- 21	03.0	30.1	10	40	49.3		55.7	2	45.2	04.3	31.1	50	45.2	61.1		8	31.2	50.0	43.4	32
	FDZIIVIDZ		_		_				-	43.3	04.3	33.1	'	_	_	_	-	45.2	01.1	32.2	٥			-	+
			Tiki	a Bd			Phalan	- -a-		DI	kalang I	post Gipe			Seanul	la SLC			Tales	r Cl			Tale	s Bd	_
		min	max	med	n	min '	max	med	n	min	max	med	n	min	max	med	n	min	max	med	n	min	max	med	n
	SBZ	54.9			8	49.7		53.7		52.0			_	41.9			_	56.9	65.0		16	35.0	44.3		_
Cazis GR- Cresta	MBZ	56.5			16	54.5		56.4	5	52.9	61.2	57.4	8	44.3		48.2	7	57.5	66.3	61.5		33.1	44.3		
340.5 41. 514.4	FBZ	53.1			21	49.5		55.3	22	51.3		57.1		45.2			5	54.3	70.6	62.9	31	33.3	46.3		
Zürich ZH- Alpenguai	SBZ	- 50.1	62			40.5	00.1	-	20	71.0	01.4		10	50		51.5	2	34.0	10.0	-	01	00.0	40.0		+~
Cortaillod- NE	SBZ	46.4			22	47.6	66.7	53.3	12	49.3	74.7	57.1	10	33.5			-	50.6	78.3	59.9	24	28.9	48.4	37.0	23
Vex VS- le-Château	FBZ+SBZ	40.4	01.5	52.5*		49.5		52.7	3	40.0	14.1	- 31.1	10	33.3	31.3			30.0	10.5	33.3	24	20.3	40.4	31.0	
Naturns I- Schnalserhof	FBZ			32,3	-	40.5	33.3	56.4	- 4	54.5	63.9	59.3	3			-		59.7	59.9	59.8	-	39.6	39.9	39.8	
	FBZ/MBZ	55.7	61.2	58.5	2	53	62.7	57.7	8	38.7	62.5	53.7	_					57.7	68	61.9	8	33.6	42.5		
Nössing-1	BZ	52			4	53		56.2	2	52		54.1	13	39.8	59.5	50.1	7	51.1	66.8	60.5	16	33.6	42.5		_
Sonnenburg- I Albanbühel- I	FBZ+MBZ	52	50	57.4	10	- 55	55.6	30.2	-	52	30.2	34.1	,	33.0	55.5	50.1	-	31.1	00.0	61	55	33.6	4.3	30.3	19
	MBZ/SBZ	49.1	60.9		10			49.5*		54	F2.0	55.3		-				54	65.6	59.3	15	20.4	41.8	_	4/
Sotciastel- I		43.1	60.3		0	45	F0 F		8		57.3		4		47.5			54	65.6 64.9		15	32.1			_
Eppan I- Gamberoni	SBZ	47.0		53.8		45	58.5		8	49	58.9	54	ſ	38			4	54	64.3	59.4	4	35.8	43.5	38.8	1
Pfatten I- Vadena	SBZ	47.6	54.3		3			55,8*	1	45.0		50,9*	1	41.5			2			55,8*	1			-	
Ledro-I	FBZ	45.8	60.8		23	47.5	63.3	52.8	17	47.6	55.2	50.9	10	30.7	58.6		66	48.2	65			30	43.7	36.9	45
Ripario I- del Santuario	FBZ+MBZ			59.6	3			-				-				-	-			66.1	5			-	\vdash
Fiavé I- Carrera	FBZ+MBZ	51			7									L				53.5	68	59.1	_				+-
Barche I- di Solferino		47.4			27	46.6		56.5		46.4	64.2	54.6	37	34		48.2	34	49.5	68	60.2		30.2	45		_
Wiesing AU- Buchberg	FBZ	53			7	46.5	68	57.5	13	47.5	65	57.6	4	47.5	71	56.6	4	54.5	81		10	35	49		1
litzbühl I- Kelchalpe	SBZ	34	49		2			-	-		_	-				-	-			58*	1			36"	1
Kastanas- GR	SBZ	56.4	63		8	46.9	64.2	52.8	81	46.9 51.7				41.4	47	45.2	7	56.4	61.8 71.1	58.8 62.1	- 5	33.8	45.3	38.4	74
	FBZ/MBZ	53	65.9	60.1								57.3	5					54.5			12				

Tabelle V/1 (Fts. Auf nächster Seite): Cresta-Cazis. Hausrind. Vergleichsmasse. *Einzelmass.

			Calcan	eus GL	
		min	max	med	n
Cazis GR- Cresta	SBZ			133,8"	1
	MBZ	115.5	130	124.4	3
	FBZ	110.9	137.3	123.4	7
Zürich ZH- Alpenquai	SBZ	110	139	121.8	30
Cortaillod- NE	SBZ	104.3	152	127.4	10
Vex VS- le-Château	FBZ+SBZ			-	
Naturns I- Schnalserhof	FBZ			-	
Nössing- I				118,4"	1
Sonnenburg- I	BZ	113.2	119.2	116.2	2
Albanbühel- I	FBZ+MBZ			118.2	8
Sotciastel- I		112.2	114.5	113.6	3
Eppan I- Gamberoni	SBZ	122	129.5	125.8	2
Pfatten I- Vadena	SBZ			-	
Ledro- I	FBZ	102	138.5	117	34
Ripario I- del Santuario	FBZ+MBZ			-	
Fiavé I- Carrera	FBZ+MBZ			-	
Barche I- di Solferino		110.7	151.6	126.9	32
Wiesing AU- Buchberg	FBZ	113.5	144	126.3	5
litzbühl I- Kelchalpe	SBZ			-	
Kastanas- GR	SBZ	104.9	142.1	118.1	35
	FBZ/MBZ				

Tabelle V/1 (Fortsetzung): Cresta-Cazis. Hausrind. Vergleichsmasse.* Einzelmass.

		erus		Scapela							Ula						Radius					
_	\$D	Bd	ВТ	514		GLP	LG	BG	H coll	HS			LO	BPC	DPA	SDO	514	Bp	\$D	BFp		
.2	32.0			Pl.1	43.5	52.4	50.3				PI.1	-		39.3			PI.1	83.5			-	
.2	36.3		70.0	PI.2	47.0	0.0				-	PI.1	-		40.2		47.4	PI.1	73.7		75.0		
.2	32.9	81.3		PI.2	43.0	57.9	50.6				Pl.1	-			59.1		PI.2	84.8		75.9	-	
.2			57.7	PI.2	47.6			49.6			Pl.1	-			55.2		PI.2	85.5				
.3	31.4			PI.2	51.2	65.6	55.7				PI.2	_		44.0			PI.2		33.0			
.3	33.8			PI.2	42.5	55.2					PI.2	-		44.0			PI.3	77.5				
.3	32.3			PI.2		58.6	55.8				PI.2			36.6			PI.3	69.8				
.3	0.0			PI.2		60.8	51.4				PI.2	_			56.4	48.2	PI.5	77.0				
.3	29.3			PI.3	50.5	60.1					PI.2			41.2			PI.8	74.3				
.3	31.7		68.7	PI.3	41.9	52.4					PI.3			44.0	56.0		PI.8	74.0		69.9		
.3	33.7			PI.3			54.3				PI.3		89.1				PI.8	70.0		63.6		
.3	33.3		71.2	PI.3			61.2				PI.4		71.5		50.1	44.3	PI.8	83.7				
.3	0.0			Pl.4	51.3	65.3	56.8				PI.5			42.5			PI.8	80.6		74.1		
.3	0.0	95.3		Pl.4	59.4	74.0					PI.5				76.1		PI.8	75.8		70.5		
.3			56.8	Pl.4			50.4				PI.8				77.0		PI.8	72.3				
1.4	34.1			PI.8	46.9	58.7		41.4	21.7	1	PI.8				71.7		PI.8	78.4	l	70.0	j .	
1.4	42.1	96.3	85.8	PI.8	44.9						PI.8				58.8		PI.8		39.4			
1.4	33.1	70.2	65.4	PI.8	45.5	59.3	51.7	43.9	19.0)	PI.8			40.3			PI.8		36.8			
1.8	36.3			PI.10	51.9	65.7	57.4	47.2	20.5	312.2	PI.8			42.0			PI.10		43.5			
1.8	30.7			PI.12	54.2		61.9	47.5	25.0)	PI.8			45.2			PI.10		31.8			
.8	34.5		75.5	PI.12	47.3	61.6	53.4	43.0	20.5		PI.8			42.8	65.8		PI.11	81.0)	75.9	1	
.8	26.9			PI.12	47.1	59.7			20.5	5	PI.8			40.7			PI.11		40.4			
1.8	30.9			PI.12	46.7	58.8					PI.8			43.2			PI.12	80.2		74.3		
1.8	30.6			PI.12	44.3	58.1					PI.8			43.0			PI.12	68.2		61.6		
1.8	29.9			PI.12	46.3						PI.8			37.4			PI.12		37.2			
1.8	33.7			PI.12		61.0	54.3	44.5	20.8	1	PI.8		84.3	39.5			PI.12		37.9			
1.8		86.2	74.3	PI.14	53.0	65.9			21.8		PI.10			39.7			PI.12		39.1			
1.8	31.8		68.3	PI.14	45.4	*****	24.0				PI.11				66.9		PI.12	83.0				
1.11	28.9			PI.14	55.2	66.9	55.4	47.7	24.2	,	PI.12				57.1		PI.12	71.8		66.1		
1.11	31.6		01.2	PI.14	50.8		22.4	41.1		-	PI.12			38.6			PI.12	68.7		62.4		
1.11	33.0			PI.14	45.2	62.5	55.4	45.3			PI.12			40.3			PI.12		37.4			
1.12	37.6		76.9	PI.14	45.2	59.4	52.4				PI.12	-		40.0	50.0		PI.12	_	39.7			
1.12	33.7			Pl.14		56.9	49.6			1	P1.12				50.1		PI.12		34.0			
1.12	31.0			Pl.14		30.0	53.8				P1.12			39.3			PI.14	83.5				
.12	0.0			F1.14			30.0	45.2			PI.12			33.3	64.3		Pl.14	66.4		62.3		
.12															74.5		P1.14	00.4	•	62.3	-	
	29.9										PI.12					64.2		+				+
.12	26.8										PI.12				56.6			+			+	+
.12	0.0		64.8								PI.14				60.2	51.4					-	
1.12	41.1		70.7								PI.14				61.3	50.6		-			-	
1.12			70.7								PI.14				66.1			-			-	_
1.12			60.3								PI.14				60.8	49.5		-			-	
1.12			70.8	Radius+									_									
.12	33.0		67.0		Вр	\$D	Bd	BFp	BFd		Radius+Ulna						Radius	•Ulna (Ft				
.12	34.2			PI.3		39					Вр		\$D	Bd	BFp	BFd		Вр	\$D	Bd	BFp	BFd
1.12			76.2	PI.5			69		64		PI.11		42.1	75.6		72.4	PI.12		39.3		1	5
.14	34.4		73.6	PI.8		37			56		PI.11			73.7		65.0	PI.12		41.8			
.14	27.6			PI.8			83		70		PI.11					69.0	PI.14			59.5		
.14	30.7			PI.8			72		64		PI.11		32.4				PI.14			68.7		
.14	39.4			PI.10			63		57	'	PI.11	73.7			67.1							
.14	30.8			PI.11					63)	PI.12		41.8									
				PI.11		32					PI.12		39.3	68.0		58.8						

-																					-		
Metacarp						Phalan	_				Ph:	Janz II ant							Ph:	lanz III ar	_		
	Вр	\$D	Bd	DD	GL		Вр	SD	Bd	Glpe		BP	\$D	Bd	Glpe	s.Depth		Dp		DLS	L	d '	MBS
1.2	58.9					Pl.1	30.5				PLS	31.					31.3	34.7	1 111				3
1.2	62.3					PI.2	32.2					28.9					29.7		PI.1		80.4	62.4	26
1.2		29.2				PI.2	27.7			52.1		28.3							PI.2		64.2	52.5	22
1.2			58.6	30.3		PI.2	31.8					26.0							PI.2		66.8	52.1	20
1.2			53.6			PI.2		22.7				29.6							PI.2			50.6	20
1.3	54.3					PI.2	32.4	27.2				28.					28.9		PI.2				22
1.3	50.5	29.1				PI.2	35.3					31.0					29.7	29.4			60.2	47.8	
1.3	54.6					PI.2	31.6					27.5							PI.3		85.6	63.4	27
1.3			60.0			PI.2	27.9										27.1	30.5			71.3	57.5	2
1.3		27.6				PI.2	26.9			51.9		34.0					35.2	34.5				68.8	
1.3			49.5			PI.3	30.1	24.3			PI.4	28.					30.2		PI.3				23
1.3	52.6					PI.3	29.2					27.3					25.9		PI.3		69.4	49.2	24
PI.3	49.6					PI.3	26.6				P1.5						26.6	31.5			67.7	50.0	2.
PL3	52.1					PI.3	27.3				PI.8	30.3					32.1		PI.3		63.6	53.6	
PL3	59.7					PI.3	26.6										29.9	31.4					26
PL3			53.4			PI.3	34.7			65.2		32.		28.0	39.4		33.2		PI.4				2.
PL3			55.8			PI.3		22.4	25.2		PI.8	30.	5 25.3	26.3	35.9		33.1		PI.4		73.3	54.4	24
91.3			65.6			PI.3	29.6		28.2	57.0	PI.1	31.4	24.4				33.8		PI.4		69.8	50.1	20
PL5	59.2					PI.3	25.2	21.9	24.1	49.5	PI.1	25.8	20.2	22.8	34.3	19.4	25.3	27.1	PI.5		23.0		23
PL5		29.5				Pl.4	25.2	22.4	23.8	52.2	PI.1	29.3	23.6	23.7	34.1	23.4	28.9	30.2	PI.5		64.3	48.8	18
PL8	54.6	28.0			199.3	Pl.4	28.1	23.2	28.5		PI.1	26.	7 28.3	21.8	35.4		22.0	28.6	PI.5		62.6	51.0	19
PL8	60.1	37.1				PI.5	33.9	26.9	33.7	62.4	PI.1	28.	7 22.4	25.2	37.0		26.3	31.4	PI.8		73.0	58.7	23
91.8	53.2	30.0				PI.5	29.6	25.1	29.7	58.7	PI.1	29.0	23.5	9	37.1			29.6	PI.8		75.9	55.2	26
91.8		28.0				PI.5	25.6	22.0	24.1	51.6	PI.1	29.3	22.	25.8	37.4		33.5	32.7	PI.8		75.1	56.4	24
91.8		29.5				PI.8	29.5	25.1	29.3	55.0	PI.1	27.	21.2	23.4	31.8		27.9	29.4	PI.8		70.2	51.9	22
PL8		28.6				PI.8	28.2	23.3	26.1	55.5	PI.1	27.3	22.2	22.7	33.2			29.7	PI.8		65.9	52.7	20
91.8		32.1				PI.11	34.4	26.8	29.9	60.6									PI.8				26
1.8		35.1				PI.11	32.3	25.5	30.5	55.2		Phalant	l ant/po	st					PI.8				22
PI.10			54.6	30.0		PI.11	32.6	24.4	27.7	55.4			Вр	SD	Bd	Gipe			PI.8				21
9.11	54.7	28.6	53.1	29.4	195.0	PI.12	30.2	22.7	26.3	61.2		PI.2	0.0	23.0	24.8	54.6			PI.8			54.1	
9.11	55.1	29.9				PI.12	30.4	24.8	28.3	60.2		PI.2	0.0	26.7	31.8				PI.1		67.5	50.9	20
9.11		34.4			178.6	PI.12	26.2	21.1	24.4	52.9		PI.3	28.						PI.1	2			25
91.12	55.6	32.9	59.7	31.0		PI.12	31.8	28.0				PI.3	33.0						PI.1		81.5	63.2	21
9.12	59.5					PI.12	31.3					PI.3		25.0					PI.1		68.9	56.5	23
9.12	62.3					PI.12		25.5				PI.3				58.1			PI.1			56.8	28
1.12	53.3	29.2				PI.14	33.2					PI.3	31.0	26.9	27.1				PL1		72.4	54.1	22
9.12	52.3					PI.14	29.1					PI.4		25.5					PI.1		74.2	52.8	23
1.12	53.2					PI.14	34.1			53.5		PI.4			31.4				Pl.1		76.2	60.2	27
1.12	58.9					PI.14	27.5			49.7		PI.8	29.	1 22.5					PL1		67.5	53.1	24
1.12	60.2									49.1		PI.8	20.	26.3					Pl.1		66.8	51.0	19
1.12	56.0	28.6										PI.11	30.6			57.6			PL1		66.6	48.9	22
1.12	54.1	20.0										Pl.11	26.						PL1				26
1.12	24.1	34.4			130.9	Metac	arpus (Fts	1				PI.11	20.	25.8					1	_		\rightarrow	
1.12		34.7			100.0	metac	Bp Bp	SD	Bd	DD	GL	PI.12	24.3		21.6			Phalaer	II ant/post			\rightarrow	
1.12		27.1				PI.12	- OP	28.9			-	PI.12	24.3		21.6				Bp SD	GLp	e D	d	Dp
9.12		26.3			 	PI.12	_	20.0	30.0	32.2		Pl.12	27.0					PI.8	28.7		35.3	26.6	29
1.12		20.3				PI.12				32.2	181.7	PI.12	21.0	22.4		52.1		F1.0	20.1	22.0	33.3	20.0	
						PI.12	58	34			101.1	PI.12	-	24.2				Ph III an			-	\rightarrow	
						Pl.14 Pl.14	51					Pl.14	27.5					2 m 3 m	C Ld	MB		\rightarrow	
						Pl.14 Pl.14	56					P1.14	21.3	22.4	20.4	52.3		PI.3	63.4		24.8	\rightarrow	
						P1.14	36	33					1					P1.0	03.4	40.2	£4.0		

Femur			Femur (F	ts.1	Tibia			GL w.p.		Tibia (Fts.)			GLw.p.		Metat	arsus (Fts.	1			
	SD			\$D		Bp SD	Bd	Epi		,	Bp	SD	Bd	Epi	Dd		Bp`		Bd	GL	DD
PI.5	36.3		PI.12	28.8	Pl.1		56.8		43.9	PI.14		36.3	60.2		46.8	PI.8		25.4			
PI.8	45.8		PI.12	36.8	Pl.1		60.1	7		PI.14		36.2	58.4		43.0	PI.8		26.4	50.7		27.0
PI.8	30.5		PI.12	29.1	PI.2	3	7.5 56.0)	42.5	PI.14		36.5				PI.8		24.3			
PI.8	30.4		PI.14	36.1	PI.2	3-	.2 0.0)		PI.14		34.3	54.9		37.9	PI.8		34.8			
PI.8	29.8		PI.14	34.2	PI.2	3-	.0 54.6	5	40.0	PI.14		36.9	55.3		42.6	PI.8			50.8		
PI.12	31.3		PI.14	32.8	PI.2		58.1		44.5	PI.14		36.0				PI.11			59.8		32.2
PI.12	34.4		PI.14	30.7	PI.3	3	4.1 53.	1	41.0	PI.14	34.1					PI.11	51.5	28.1			
PI.12	33.1		PI.14	29.2	PI.3		67.2	2	49.5	PI.14			62.5		44.4	PI.11		24.6			
					PI.3		56.	1	43.6	PI.14			58.3		41.3						
Pelvis					PI.3	92.2				PI.14			58.4		40.5	Metat	arsus (Fts.	1			
	LAR	\$B	SH	LA	PI.3		62.2	2		PI.14			60.8		45.9		Bp `	SD	Bd	GL	DD
PI.3	53.7			66.3	PI.3		58.4								1212	PI.11		25			
PI.3	63.4				PI.3		57.8		44.2	Metata	arsus					PI.12	49		61	216	33
PI.3	55.2			63.9	Pl.4		62.6		46.3		Вр	\$D	Bd	GL	DD	PI.12	44.8				
PI.4	53.0	25.1	40.7	66.8	Pl.4		64.		1111	PL1	47.0			216.0		PI.12	46.5				
PI.5	55.2	20.1			PI.5	3	5.7 0.0			Pl.1		28.5	61.7			PI.12	46.4	26.7			
PI.5			37.2		PI.8		3.8 55.4		41.8	Pl.1			48.8		27.1	PI.12	42.7	23.1			
PI.8	50.7			66.3	PI.8		1.2 53.4		7.1.2	Pl.1			54.4		29.0	PI.12	72	21.8			
PI.8	45.8			55.2	PI.8		3.5 58.2		43.9	Pl.2	43.5	24.0			20.0	PI.12		27.2			
PI.8	42.0	21.5	37.3	63.7	PI.8		.2 68.1		49.8	Pl.2	50.6					PI.12		25.7	56.8		
PI.8		19.2		99.1	PI.8		5.5	<u> </u>	70.0	Pl.2	46.0					PI.12		24.2	46.3		
PI.8		21.8	35.4		PI.8		1.3			PI.2	44.2					PI.12		28.3	56.5		31.6
PI.8		21.0	05.4	73.7	PI.8		60.2	,	44.2	PI.2	39.5					PI.12		28.3	20.2		
PI.10		24.6	36.2	10.1	PI.8		56.3		41.2	Pl.2	46.3					PI.12		20.0	53.9		29.0
PI.11	62.6	24.0		68.8	PI.8		60.5		46.6	Pl.2	40.0	24.9				PI.12			47.2		26.3
PI.11	52.4			59.4	PI.8		65.5		49.6	PL2	_	26.6				PI.14	42.4		41.2		20.0
PI.11	52.1			63.1	PI.10		57.3		48.1	PI.2	_	23.6				PI.14	42.4	24.8			
PI.11	72.1	23.7	35.6	00.1	PI.11		58.8		46.6	PI.2	_	24.2			27.6	PI.14	-	23.4			
PI.12	52.1	22.7		65.2	PI.11		59.3		46.9	PI.2	_	27.1			21.0	PI.14		29.1			
PI.12	52.7		01.0	59.4	PI.11	4	2.6 66.4		48.2	PI.3	49.7					PI.14		22.7			
PI.12	50.4			56.1	PI.11		3.7 54.5		40.2	PI.3	40.1	22.1				PI.14		25.8			
PI.12	55.2	19.2	33.8	58.0	PI.11		1.6 58.5			PI.3		24.3				PI.14		23.0	45.9	193.4	26.6
PI.12	55.4	10.2	00.0	64.5	PI.11		3.5 0.0			PI.3		24.5				PI.14		19.7	45.0	100.4	20.0
PI.12	49.8			56.0	PI.11).6 63.8		45.2	PI.3	42.7					PI.14	_	23.9			
PI.12	52.2	24.0	38.2	67.7	PI.12		2.7 51.3		45.2	PI.3	46.1					PI.14		24.9			
PI.12	59.0	24.0		VI	PI.12		5.2 53.6		41.1	PI.3	40.1	23.3	48.5			PI.14		21.5			
PI.12	20.0	23.7	41.7		PI.12		61.3		51.1	PI.4	43.1					PI.14		24.0			
PI.12		20.9	42.3		PI.12		58.7		44.8	PI.4	40.1		51.9		28.8	PI.14		24.9			
PI.12		18.2	30.0		PI.12		55.8		41.0	PI.5		29.2			29.3	PI.14		23.8			
PI.12		22.2	42.7		PI.12		52.8		39.8	PI.5		20.2	57.2		32.6	PI.14		20.0	46.1		26.8
PI.12		23.0	35.3		PI.12	3:	3.3		77.0	PI.8	43.6	23.7				1			40.1		
PI.12		20.1	37.0		PI.12		7.7 60.0)	44.7	PI.8	47.4										
PI.12		22.8	36.8	65.0	PI.12		5.5 51.1		44.1	PI.8	53.6										
PI.12		24.5	55.0	02.0	PI.12		2.0			PI.8	48.3										
PI.12		24.5		54.5	PI.12		2.7			PI.8	46.5										
PI.12				61.0	PI.12		7.3			PI.8	55.7										
PI.14	54.9			60.8	PI.12		3.2			PI.8	47.0										
PI.14	55.2			59.4	PI.12		3.2			PI.8	41.0	29.9									
PI.14	JJ.E	19.0	37.0	30.4	PI.12	J.	56.5		43.5	PI.8	_	25.9			29.1		_				_

belle Yá	2/A)																				
				T-1						0			0-1	_			DL - 1	1 > (5)			
01 -	Bd	DI		Tales	GLI	01-	Bd	DI	n .	Centro	tarsale		Calcaneu		CD		Pasisas	t I post (Fts		D.I	CI.
GLm		37.1	Dm of o	D140	68.0	GLm	44.3		Dm .	PI.2	GB		1.0	GL 105.0	GB		PI.3	Bp 8	\$D	Bd	Glpe
59.6	42.9	34.3	35.8	PI.12		61.2		38.7	39.0		57.1 44.0			125.0			PL4	21.4	21.7		
55.0 54.7	37.7 41.5	33.5	34.7 34.4	PI.12	61.8 57.6	56.4 54.0	42.8	34.9 33.3	35.1 33.8	PI.2 PI.3	47.7		PL2 PL3	110.9			PL4	29.1	20.2		
58.5	41.6	33.5	36.9	PI.12	0.0	55.0	40.4 33.1	34.3	0.0	PI.5	52.7		PI.3	124.8	48.0		PI.5	23.1	23.3	21.2	57.6
57.6	38.4	35.2	35.3	PI.12	60.2	55.0	35.6	32.3	32.4	PI.5	60.7		PI.3		45.7		PI.5		27.5	34.6	
55.9	40.4	33.7	35.2	PI.12	0.0	0.0	33.1	0.0	0.0	PI.8	62.1		PI.3		42.0		PI.5		21.5	34.0	60.0
58.5	45.1	35.5	35.6	PI.12	61.6	57.8	40.2	35.7	36.8	PI.8	55.9		PI.3		44.0		PI.5		22.5	27.5	
60.4	40.8	35.5	36.1	PI.12	63.6	59.1	40.2	35.8	37.0	PI.8	54.4		PI.3	131.6	41.0		PI.8		22.0		61.4
56.2	36.9	33.6		PI.12	57.9	52.9	35.6	32.0	32.0	PI.8	50.0		PI.3	121.2			PI.8	27.9	24.6		
58.8	40.7	36.4	34.1 35.9	PI.12	64.0	0.0		35.8	37.0	PI.8	51.0		PI.5	116.7	39.2		PI.8	27.9 28.0	23.4		
	40.1	41.2	39.8	PI.12	64.0	0.0	39.7 38.0	36.2	0.0	PI.8	49.5		PI.4 PI.5	116.1	40.0		PI.8	27.3	24.4		
65.3 55.8	07.6			PI.12				33.3		PI.0			PI.8		48.0 48.0			28.0	22.2		
58.5	37.6 43.2	34.3 36.1	34.2		62.2 64.2	58.6	39.5	36.2	34.7 35.5		60.6 56.5		PI.8		39.6		PI.10 PI.11	28.9	21.5		
	38.7	36.1	36.1	PI.12		56.0	41.0	35.7	34.9	PI.12					42.2			30.0			
55.4			04.4	PI.12	61.4	56.2	43.0			PI.12	49.0		PI.8				PL11		24.7		
54.3	38.9	34.8	34.1	PI.12	61.0	54.7 53.5	36.6	33.0	33.5	PI.12	57.7		PI.8	440.0	42.0		PI.12	30.2 30.4	22.7		
63.0	44.6	37.6		PI.12	56.5		36.6	32.5	32.0	PI.12	50.0		PI.8	113.2	38.0		PI.12		24.8		
54.6	39.7	33.8	04.6	PI.12	57.5	0.0	38.0	31.8	0.0	PI.12	51.8		PI.8	137.3	42.5		PI.12	26.2	21.1		
56.3	43.1	35.4	34.6	PI.12	58.8	52.0	34.4	31.4	31.0	PI.12	51.7		PI.12	130.0	42.6		PI.12	30.4	25.3		
52.3	38.6	32.3	33.4	PI.14	63.2	56.9	44.3	35.5	37.2	PI.14	47.5		PI.12	115.5	38.7		PI.12			29.0	
58.7	44.4	37.0	36.6	PI.14	64.4	59.4	43.6	36.6	37.1				PI.12	127.8			PI.14	29.3	23.2		
59.4	44.8	36.8	37.0	PI.14	59.9	55.4	41.7	35.0	34.1				PI.14	133.8			PI.14	28.2	22.1		54.4
61.4	42.1	37.3	37.5	PI.14	60.3	55.4	38.8	31.7	33.5				PI.14		38.2		PI.14	30.5	23.5		
60.7	42.5	36.6	37.6	PI.14		56.5	39.1	33.8	33.4								PI.14	31.7	23.9		
54.6	39.5	32.5	33.2	PI.14	57.6	55.3	36.0	32.5	33.0								PI.14	23.9	19.3	19.8	52.0
54.7	38.5	32.1	33.5	PI.14	56.9	50.5	38.0	32.0	32.6												
53.1	38.8	34.4	35.3	PI.14		56.7	39.8		34.2	Phalan	z II post					_					
58.4	40.2	35.8	245	PI.14	F2.0	51.4	36.0		30.0		Вр	\$D		Glpe	Dd	Dp					
56.3	37.8	34.7	34.5	PI.14	57.6	0.0	35.0	31.1		PI.1	33.9	25.8	26.5	41.1							
54.0	37.1	32.6	32.8	PI.14	60.7		44.0			PI.2	28.6	22.6	24.1	42.3		32.4					
49.0	33.3	28.9	29.0	PI.14	64.0	60.1	41.6	35.6	36.0	PI.2	24.4	20.1	20.6	36.9		28.6					
			37.7	PI.14	59.7	54.5	41.5	32.7	32.6	PI.2	25.7	20.4	21.0	35.7		27.1					
		34.7		PI.14	64.3	58.0	37.9	35.0	35.0	PI.3	25.0	20.1	0.0	35.1							
	40.0	33.1	40.0	PI.14	57.6	53.0	36.8	32.4	32.0	PI.3	28.2	21.2	22.8	34.7							
60.5	46.3	37.4	40.0	PI.14	58.4	53.6	36.3	31.9	32.3	PI.3	26.0	20.7	21.0	38.4							
53.5	35.5	32.0	32.4	PI.14	61.8	56.6	38.3	34.5	34.6	PI.3	27.9	21.6	22.7	37.8							
0.0	41.2	31.0	31.8	PI.14	65.0	59.2		36.0		PI.3	29.2	22.7	22.9	33.6		0.0					
		33.3		PI.14	59.6	52.8			32.8	PI.4	31.8	25.5	24.0	43.6		35.4					
55.2	37.8	33.3	32.9		_					PI.8	29.8	22.8	24.0	41.4		31.4					
55.2	38.2	32.2	33.3	Phalanz		00				PI.8	28.4	23.0	22.6	37.1		30.6					
55.9	40.8	34.6	35.6	51.0	Вр	\$D		Glpe		PI.8	26.3	21.0	0.0	36.7		28.5					
56.5	39.9	33.8	33.7	PI.2	00.7	00.0	26.8			PI.8	28.9	23.9	24.5	38.0		31.2					
	44.5		33.0	PI.2	30.7	26.2	29.0	60.5		PI.10	25.0	18.9	21.5	34.0		27.1					
55.0	41.8	33.7	36.2	PI.2	26.3	22.9	27.8	56.8		PI.12	26.6	22.0	21.2	36.4		29.0					
59.5	41.8	37.7	39.3	PI.2	25.3	21.3	23.0	53.6		PI.12	27.2	21.7	22.4		25.0						
					24.2			55.3		PI.14	24.6	19.4	19.8	33.7		25.7					
					04.5																
56.5	38.7		34.4					F4 -													
F0.6																					
53.6	33.8	33.3	33.2																		
								56.7													
58.7 57.2 55.8 56.5 53.6		43.2 44.0 41.5 38.7 39.8	43.2 36.5 44.0 35.0 41.5 35.0 38.7 34.6 33.0	43.2 36.5 36.5 44.0 35.0 36.1 41.5 35.0 35.8 38.7 34.6 34.4 33.0	43.2 36.5 36.5 PL2 44.0 35.0 36.1 PL2 41.5 35.0 35.8 PL3 38.7 34.6 34.4 PL3 33.0 PL3	43.2 36.5 96.5 Pl.2 25.9 44.0 35.0 36.1 Pl.2 24.2 41.5 35.0 35.8 Pl.3 24.5 38.7 34.6 34.4 Pl.3 24.5 33.0 Pl.3 25.5 39.8 33.3 33.2 Pl.3 25.0 Pl.3 26.7	43.2 36.5 36.5 PI.2 25.9 22.6 44.0 35.0 36.1 PI.2 24.2 21.7 41.5 35.0 35.8 PI.3 24.7 38.7 34.6 34.4 PI.3 24.5 21.6 33.0 PI.3 25.5 22.0 39.8 33.3 33.2 PI.3 25.0 20.8 PI.3 26.7 21.2	43.2 36.5 36.5 Pl.2 25.9 22.6 24.3 44.0 35.0 36.1 Pl.2 24.2 21.7 24.8 41.5 35.0 35.8 Pl.3 24.7 28.5 38.7 34.6 34.4 Pl.3 24.5 21.6 23.2 33.0 Pl.3 25.5 22.0 24.3 39.8 33.3 33.2 Pl.3 25.0 20.8 23.3 Pl.3 26.7 21.2 25.5	43.2 36.5 36.5 Pl.2 25.9 22.6 24.3 56.6 44.0 35.0 36.1 Pl.2 24.2 21.7 24.8 55.3 41.5 35.0 35.8 Pl.3 24.7 28.5 38.7 34.6 34.4 Pl.3 24.5 21.6 23.2 33.0 Pl.3 25.5 22.0 24.9 54.7 39.8 33.3 33.2 Pl.3 25.0 20.8 23.3 56.8 Pl.3 26.7 21.2 25.5 56.7	43.2 36.5 36.5 PI.2 25.3 22.6 24.3 56.6 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 41.5 35.0 35.8 PI.3 24.7 28.5 38.7 34.6 34.4 PI.3 24.5 21.6 23.2 33.0 PI.3 25.5 22.0 24.9 54.7 39.8 33.3 33.2 PI.3 25.0 20.8 23.3 56.8 PI.3 26.7 21.2 25.5 56.7	43.2 36.5 36.5 Pl.2 25.9 22.6 24.3 56.6 Pl.14 44.0 35.0 36.1 Pl.2 24.2 21.7 24.8 55.3 Pl.14 41.5 35.0 35.8 Pl.3 24.7 28.5 28.5 38.7 34.6 34.4 Pl.3 24.5 21.6 23.2 33.0 Pl.3 25.5 22.0 24.9 54.7 39.8 33.3 33.2 Pl.3 25.0 20.8 23.3 56.8 Pl.3 26.7 21.2 25.5 56.7	43.2 36.5 36.5 PI.2 25.3 22.6 24.3 56.6 PI.14 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 41.5 35.0 35.8 PI.3 24.7 28.5 28.5 28.5 38.7 34.6 34.4 PI.3 24.5 21.2 23.2 33.0 PI.3 25.5 22.0 24.9 54.7 39.8 33.3 33.2 PI.3 25.0 20.8 23.3 56.8 PI.3 26.7 21.2 25.5 56.7	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 41.5 35.0 35.8 PI.3 24.7 28.5 PI.14 24.6 19.4 38.7 34.6 34.4 PI.3 24.5 21.6 23.2 PI.3 25.0 24.9 54.7 PI.3 25.0 24.9 54.7 PI.3 25.0 20.8 23.3 56.8 PI.3 25.0 20.8 25.0 2	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 41.5 35.0 35.8 PI.3 24.7 28.5 PI.3 24.6 19.4 19.8 38.7 34.6 34.4 PI.3 24.5 21.6 23.2 23.2 23.2 24.7 24	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 41.5 35.0 35.8 PI.3 24.7 28.5 9.1 9.1 9.1 24.5 24.7 28.5 9.1 9.1 9.1 24.7 28.5 9.1 9.1 9.1 9.1 24.7 28.5 9.1	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 41.5 35.0 35.8 PI.3 24.7 28.5 9.2 9.2 9.2 38.4 19.8 33.7 33.0 PI.3 24.5 21.6 23.2 9.2 9.2 9.2 9.2 38.4 25.7 39.8 33.3 33.2 PI.3 25.0 20.8 23.3 56.8 9.2 9.2 9.2 38.4 25.7 39.8 33.3 33.2 PI.3 25.0 20.8 23.3 56.8 9.2 9.2 9.2 38.4 25.7 4.0 1.0<	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 9.1 24.6 19.4 19.8 33.7 25.7 38.7 34.6 34.4 PI.3 24.5 21.6 23.2 9.2 24.9 24.7 28.5 39.8 33.0 PI.3 25.5 22.0 24.9 54.7 9.1 9.1 24.7 28.5 39.8 33.3 33.2 PI.3 25.0 20.8 23.3 56.8 9.1 <t< td=""><td>43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 9.3 24.7 28.5 9.3 25.0 28.3 25.0 28.3 25.0 28.3 25.7 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.7 28.3 28.3 28.3 28.3 2</td><td>43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 PI.3 24.7 28.5 38.7 34.4 PI.3 24.5 21.6 23.2 PI.3 25.0 24.9 54.7 39.8 33.3 33.2 PI.3 25.0 20.8 23.3 56.8 PI.3 25.0 20.8 23.3 56.8 PI.3 26.7 21.2 25.5 56.7 PI.3 25.0 20.8 23.3 56.8</td><td>43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 28.5 28.3 25.7 25.7 33.0 PI.3 24.5 21.6 23.2 23.2 25.7 25</td><td>43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 9.1 25.0 24.9 25.0 26.7 28.2 9.2 9.2 38.4 25.7 25</td></t<>	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 9.3 24.7 28.5 9.3 25.0 28.3 25.0 28.3 25.0 28.3 25.7 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.0 28.3 25.7 28.3 25.7 28.3 28.3 28.3 28.3 2	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 PI.3 24.7 28.5 38.7 34.4 PI.3 24.5 21.6 23.2 PI.3 25.0 24.9 54.7 39.8 33.3 33.2 PI.3 25.0 20.8 23.3 56.8 PI.3 25.0 20.8 23.3 56.8 PI.3 26.7 21.2 25.5 56.7 PI.3 25.0 20.8 23.3 56.8	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 28.5 28.3 25.7 25.7 33.0 PI.3 24.5 21.6 23.2 23.2 25.7 25	43.2 36.5 36.5 PI.2 25.9 22.6 24.3 56.6 PI.14 28.3 22.0 22.2 38.4 25.7 28.3 44.0 35.0 36.1 PI.2 24.2 21.7 24.8 55.3 PI.14 24.6 19.4 19.8 33.7 25.7 41.5 35.0 35.8 PI.3 24.7 28.5 9.1 25.0 24.9 25.0 26.7 28.2 9.2 9.2 38.4 25.7 25

												1									
Schädel					Mandib	ula				H mand	H mand	H mand	M3 man	d		M3 mai	d (Fts.)		M1 mai	•d	
	GB occ.	Condyl.				P1-M3	M1-M2	P1-P2	P2-M3		M1	M3			GB			GB			GB
9.2	96.1				Pl.1			52.8	86.0	33.9			PI.1	36.1		PI.14		15.0	PL1	24.6	15.
91.5	96.1				PI.3			45.4					PI.2		14.3	PI.14		15.4	PI.2	21.6	14.
					PI.3			51.3					PI.3	33.1	15.0	PI.14		14.2	PI.3		13.
Məzillə					PI.3			55.3					PI.3	34.3	14.1				PI.3	21.3	14.
	P1-M3	M1-M4	P1-P4		PI.3					36.8			PI.3	35.5	13.6	M2 mai	d		PI.3	25.6	17.
PI.2			47.1		PI.3					33.2	43.8		PI.3		12.1			GB	PI.3	20.6	14.8
PI.2			52.5		PI.3					39.3			PI.4	33.1	14.3	PL1	23.9	15.9	PI.3	18.5	
PI.3			56.3		PI.4	136.3	89.8						PI.4	33.6		PI.2		15.7	PI.4	21.0	
PI.3		71.8			PI.4			54.4					PI.4	36.8		PI.3	21.4	14.1	PI.10	20.2	14.0
PI.4			49.8		PI.4			51.6					PI.5	34.8	13.9	PI.3	23.9	16.2	PI.11	22.0	15.2
PI.5		87.0			PI.8	132.5				43.1			PI.5	38.7	16.2	PI.3	25.3	15.0	PI.12	20.2	14.
PI.5		79.3			PI.8	142.2				42.2	49.5		PI.5	33.4	14.0	PI.3	23.9	15.4	PI.12	20.8	15.5
PI.8		81.6			PI.8	138.8							PI.8	33.2	14.6	PI.3	23.2	16.5	PI.14	20.3	14.0
PI.12	124.5	78.1	48.9		PI.8		83.8						PI.8	36.9	16.1	PI.3	21.8	16.7	PI.14	21.1	14.5
PI.12		75.3			PI.8		89.0			0.0	51.4	72.9	PI.8	38.5	16.4	PI.4	24.8		PI.14	20.4	14.2
					PI.8		81.5						PI.8	41.5	17.6	PI.4	24.6				
					PI.8			48.4					PI.8	35.5	15.3	PI.4	21.5	14.9	M2/3		
					PI.8			48.1		30.3	43.4		PI.10	33.0	14.5	PI.4	23.8	24.3			GB
					PI.8				104.1				PI.10	34.8	14.1	PI.5	27.3	16.4	PI.2	23.1	14.5
					PI.8						47.5		PI.10	33.3	15.5	PI.10	22.8	15.2	PI.2	25.1	16.5
					PI.8	138.4					42.3		PI.11	34.4	14.4	PI.10	22.7	15.1	PI.3	28.3	16.1
					PI.8	144.3	86.9	60.0		34.5	47.6		PI.11	33.8	13.6	Pl.11	24.1	15.9	PI.3	20.3	13.5
					PI.11							65.5	PI.11	35.5	15.0	PI.11	23.7	16.2	PI.5	21.3	
					PI.11			50.0		40.1			PI.11	36.3	14.7	PI.12	25.4	16.3	PI.5	20.3	
					PI.11				92.4	36.5			PI.11	35.9	14.8	PI.12	25.2		PI.5	21.9	15.1
					PI.12	123.2					41.2		PI.11	33.9	14.7	PI.12	22.6	15.3	PI.8	21.7	13.5
					PI.12	136.8				37.0			PI.12	36.2	16.4	PI.12	19.9	14.6	PI.8	19.9	13.7
					PI.12	131.4				32.0		64.7	PI.12	34.6	14.1	PI.12	24.8	15.1	PI.8	22.0	15.2
					PI.12	132.5				34.4			PI.12	34.6	14.5	PI.12	21.2	14.1	PI.10	23.2	15.0
					PI.12		83.8						PI.12	34.9	14.7	PI.12	25.1	16.8	PI.11	20.2	14.5
					PI.12			48.8		30.5			 PI.12	35.5		PI.12	25.1	16.0	PI.11	20.7	14.4
					PI.12			57.0		30.4			PI.12	35.5	14.8	PI.12		14.2	PI.11	24.0	15.1
					PI.12			50.0					PI.12	32.7	14.3	PI.12	23.0		PI.11	22.5	14.8
					PI.12			54.6					PI.12	35.0	14.7	PI.12	22.0	15.3	PI.11	20.9	15.1
					PI.12			47.0					PI.12	34.4	14.8	PI.14	21.0	15.3	PI.12	21.5	14.5
					PI.12						51.8		PI.12		15.4	PI.14	21.7	13.6	PI.12	19.6	14.1
					PI.14		90.8						PI.12		15.0	PI.14	24.6	16.3	PI.12	22.7	15.6
					PI.14		80.8						PI.12	30.0	12.8	PI.14	25.1	15.8	PI.14	20.7	14.5
					PI.14			46.4	-	38.1			PI.12	31.1	13.7	PI.14	23.4	15.6	PI.14	26.2	16.7
	_												PI.14	31.3	13.8	PI.14	23.1	15.4	PI.14	21.1	14.3
Hornsəl													PI.14	34.2	14.0	PI.14	24.0	16.3	PI.14	20.7	14.7
	GD		U	5.K.	i.K.								PI.14	34.2	15.0	PI.14	24.4	15.8	PI.14	21.5	15.8
PI.1	39.3	44.5	133			w							PI.14	33.6	14.2	PI.14	23.7	15.7	PI.14	20.8	14.4
PI.3	51.2	37.1	145			w	Hornsah	fen (Fts.					PI.14	37.0	14.2	PI.14	25.6	16.4	PI.14	20.0	13.6
PI.8	51.0	39.9	150			w		GD	KD	U	5.K.	i.K.	PI.14	34.6	13.7	PI.14	23.1	15.2	PI.14	21.6	14.7
PI.8	52.7	38.4	150	14			PI.12	48.2					PI.14	34.4	17.4	PI.14	21.2	14.4			
PI.8	71.0	54.4	200	200	145		PI.12	66.8					PI.14	37.8	15.8		-				
PI.8	78.3	60.9	228			ox	PI.12	87.0			>280		PI.14	35.5	14.3						
PI.8	81.6	53.6	220			ox	PI.14	66.1		190			PI.14	32.5	12.9						
PI.8	72.6	57.1	210			ox	PI.14	73.7	57	210			PI.14	36.0	15.3						
PI.8	73.7	60.2	220			ox							PI.14	32.6							

		Tabelle V2/A)									
M3 max			M2 max			M1 max			M1/M2	max (Fts.)
	GL	GB		GL	GB		GL	GB		GL `	GB
PI.1	30.4	24.7	PI.2	22.6	20.3	PI.1	23.8	23.3	PI.14	22.1	21.4
PI.2	24.3	22.3	PI.2	25.2	20.5	PI.1	20.6	23.8	PI.14	19.2	21.0
PI.3	25.8	22.0	PI.3	22.1	23.1	PI.2	19.9	20.9	PI.14	22.4	22.8
PI.3	30.8	21.7	PI.3	21.1	22.5	PI.3	23.4	18.1	PI.14	22.8	22.
PI.3	25.1	21.4	PI.3	23.4	20.3	PI.3	20.6	21.9	PI.14	23.7	20.1
PI.3	25.0	20.6	PI.3	26.2	18.4	PI.3	21.0		PI.14	22.8	21.3
PI.3	26.6	17.3	PI.3	26.4	17.8	PI.3	23.0	24.3	PI.14	20.0	23.0
PI.3	23.6	14.9	PI.3	28.9	17.5	PI.3	21.7	24.5	PI.14		22.8
PI.4	29.8	24.4	PI.3	24.3	23.2	PI.8	19.5	20.8			
PI.5	27.4	22.4	PI.3	25.6		PI.8	21.2	21.9			
PI.8	29.1	23.7	PI.3	25.4	21.2	PI.10	19.6	22.4			
PI.8	26.7	23.4	PI.4	21.5	23.2	PI.11	21.1	23.4			
PI.8	22.3		PI.4	22.2	21.5	PI.12	20.3				
PI.8	29.5	21.7	PI.5	25.1		PI.12	21.3				
PI.10	25.0	23.0	PI.8	19.9	21.5	PI.12	21.3				
PI.11	26.6	22.2	PI.8	23.2	25.4	PI.12	20.8				
PI.11	30.6	24.8	PI.8	23.6	23.0	PI.14	22.0				
PI.11	27.8	22.5	PI.8	24.5	22.2	Pl.14	19.7				
PI.11	28.4	24.1	PI.8	22.0	23.4	PI.14	21.6				
PI.12	27.5	23.1	PI.10	22.8	21.8	PI.14	20.6				
PI.12	24.5	23.3	PI.10	23.4	23.6	Pl.14	23.1				
PI.12	26.0		PI.10	22.4	23.8	Pl.14	17.4				
PI.12	26.0	23.6	PI.10	21.4	22.5	Pl.14	20.0		-		
PI.12	24.2	21.6	PI.11	25.1	25.0	Pl.14	18.5		-		
PI.12	28.1		PI.11	24.7	22.3	Pl.14	21.7				
PI.12	27.3	24.5	PI.12	24.2	23.9	F1.14	21.1	21.3			
PI.12	23.7		PI.12	23.0	24.6	M1/M2					
PI.12	23.5		PI.12	24.1	24.2	miime	GL	GB			
PI.12	26.5	22.5	PI.12	22.8	23.9	Pl.1	21.8				
PI.12	31.3	19.3	PI.12	22.5	23.5	Pl.2	22.3				
PI.14	28.8		PI.12	22.1	20.5	Pl.2	19.8				
PI.14	27.0	22.3	PI.12	19.2	21.4	Pl.2	21.2				
PI.14	23.3	21.2	PI.12	23.8	22.3	Pl.2	21.2				
PI.14	28.3		PI.14	21.5	22.7	PI.2	22.3				
PI.14	28.4	24.2	PI.14	23.2	22.8	PI.3	28.5				
PI.14	26.6	22.2	PI.14	20.8	21.9	PI.3	24.3				
PI.14					21.3	PI.3					
	23.7	20.4	PI.14	24.9	04.0		24.3				
PI.14	25.0	200	PI.14	22.7	21.8	PL4	22.7				
PI.14	26.9	23.2	PI.14	24.2	25.2	PL8	21.9				
PI.14	25.1		PI.14	25.6	23.1	PI.11	23.0				
PI.14	26.9	23.0	PI.14	23.6	23.3	PI.11	22.1				
PI.14	29.3		PI.14	22.6	22.6	PI.11	20.3				
PI.14	28.2	25.1	PI.14	23.1	24.0	PI.12	23.2				
PI.14	27.1		PI.14	22.9	22.1	PI.12	20.1				
PI.14	24.5					PI.12	23.0				
PI.14	27.5	22.6				PI.12	20.9				
						PI.12	21.9				
						PI.14	23.0				
						PI.14	22.4				
						PI.14	22.6				
						PI.14	24.1	23.8			

Humeru										Humeru	s Fts.)							Ulna (F					
	Schicht	Bp S		3d	GL	GLC	Dp	BT			Schicht	Вр	\$D	Bd	GL	GLC	Dp		Schicht	LO	BPC	DPA	SDO
Ovis	P1		16.3	32.5				31.1	010	P.1			32.7	'			30.3	Capra			20.4		
	P1			28.1				28.9		P 2		14.5							P 80		19.8		7 21.
	P1			31.2				28.1		P.2		13.9							P 80		21.6		
	P1			29.5				28.1		P.2		16.4						010	P.1			25.2	!
	P.1							28.9		P 2		14.3							P.2		17.8		
	P 2		17.3	35.4				31.3		P 30		18.1	29.5	1			29.5		P 2		16.9		
	P 2			32.4				28.4		P 30		15.3							P 2			22.8	
	P 2			33.4				31.9		P 30		15.7							P.2				22.
	P 2			32.0				28.3		P 31			32.3				31.2		P 4	36.8	19.1		
	P 2		16.2							P 32			31.5						P 4	37.9	17.9		
	P 2		15.6							P 32			31.6				29.0		P 4		17.4	0.0	
	P 30		15.8	40.0						P.4	38.5								P 50		18.9		
	P 30			30.5				28.8		P.4		15.6	30.0				28.4		P 80		19.2		
	P 30			29.6				27.5		P 4			29.2	2			28.0		P 80		18.1		
	P 31			30.6				28.3		P 50		18.8							P 10		15.7		
	P 31			28.9				26.5		P 50			30.4				28.4		P 11			23.8	
	P 31			29.1				27.2		P 51		16.7						KAK	P 30	26.2		26.2	
	P 32			32.9						P 55		15.5							P 32			25.5	i
	P 32							27.4		P 80	39.1					48.8	3						
	P 4			29.3				28.1		P 80		16.5						Radius					
	P 4			28.3				26.7		P 80		15.5							Schicht		\$D	DPA	SDO
	P 4			30.3				27.5		P 11		16.3						Ovis	P 31	29.1			
	P 4			33.1				30.8		P 11			32.8					Capra		29.4	17.7		
	P 4			30.6				29.6		P 12		16.9							P 80	27.8	17.0		
	P 50		15.8	31.6				29.9		P 12		15.7							P 80	28.3		23.4	20.0
	P 50			30.3				29.5		P 12		17.3							P 12	31.6	17.8		
	P 50			28.9				28.0		P 12			28.0				28.0		P 12		15.7		
	P 51			31.8				31.2		P 14		15.2	27.1	I				010	P1		14.8		
	P 80	35.0	13.9	28.7		127.4	42.7			P 14		16.1							P.2		16.7		
	P 80		13.9	28.8				27.6	KYK	P 2		11.0							P2		16.9		
	P 80		14.5	29.7				28.6											P 30		19.3		
	P 80		14.9	31.1				29.6	Ulna						_				P 30		15.2		
	P 80		16.3	31.5				30.5		Schick			DPA	SDO	_				P.4		17.4		
	P 80			30.3				28.9	Ovis	P2	40.3	17.0	24.4		.5				P 51	31.0	15.8		
	P 80			28.5				27.6		P 30	37.7	15.6	26.7										
	P 80			29.5				28.0		P 4		16.3	23.0										
	P 80		40.4		400 5	440.9		26.2		P 4		44.0		20.	9								
	P 10	36.7	13.1	29.1		118.7	39.9			P 50		16.8											
	P 10			29.5				27.6		P 50		45.0	25.8										
	P 10			31.5				31.5		P 80	35.4	15.9	25.3										
	P 10			29.5				30.3		P 80	36.3	16.4	25.8										
	P 10			29.2				29.0		P 80		18.0	27.3										-
	P 11			29.8				29.1		P 80		17.9	27.4						-				-
	P 12			30.2				28.8		P 80		15.7	24.2						_				-
	P 14			28.6				28.3		P 80		17.4	26.3	23.	ь				-				
α	P 14			27.7				20.5		P 80		15.7	05.5										
Capra	P 2			31.3				30.5		P 80	97.0	18.7	25.5						-				-
	P 32			30.9				28.9		P 12	37.3	15.8	24.8						-				-
	P 51			26.9				200		P 12	36.4	15.7	25.6						+				+
	TP 10			32.1				29.8		P 12	1	16.5	26.6	22.	۲				1				
	P 12		19.2							P 12		16.0											

Scapela	1 2 2 2 330 331 332 332 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	GLP 32 19.7 21.3 21.7 21.2 34 20.1 32 21.2 33 16.7 16.6 30 19.8 3 10.4 3 19.4 3 19.4 3 19.4 3	8 26. 4 261 221 26. 3 26. 4 24. 8 26. 8 25. 22. 5 22. 7 25.	7 0.0 4 19.5 5 18.7 4 17.8 8 20.0 4 20.4 8 21.0 7 18.2 9 19.0	20.0			Radies Capra	P80 P80 P80 P80 P80 P10 P12 P14 P14	8p 28.9	\$D 16.9 15.0 15.6 15.1 16.1 15.3 16.3		BFp	Radius KWK	P 2 P 2 P 12 P 14 P 14	17.4 18.1 18.7 17.0 16.4				
P1 P2 P3 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4 P4 P4 P4 P6 P1 P1 Capra P2 P1 P2 P2 P2 P2 P4 P4 P4 P4 P4 P4 P8	1 1 2 2 2 2 330 331 332 332 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	33 34 19.7 21.3 21.7 21.2 34 20.1 32 20.2 33 16.7 16.6 30 19.8 31 9.4 33	2 24.4 8 26. 4 26. 1 22. 1 26. 3 26. 4 24. 8 26. 8 25. 5 22. 5 22. 7 25.	5 19.8 7 0.0 4 19.5 5 18.7 4 17.8 8 20.0 4 20.4 8 21.9 6 21.0 7 18.2 9 19.0	20.0				P 80 P 80 P 80 P 10 P 12 P 14		16.9 15.0 15.6 15.1 16.1		BFp	KYK	P 12 P 14	17.4 18.1 18.7 17.0				
P1 P2 P3 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4 P4 P4 P4 P6 P1 P1 Capra P2 P1 P2 P2 P2 P2 P4 P4 P4 P4 P4 P4 P8	1 2 2 2 330 331 332 332 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	34 19.7 21.3 21.7 21.2 20.1 22.2 33 20.2 33 16.7 16.6 36 19.8 3 90.4 3 3 19.4 3	8 26. 4 26. 1 22. 1 26. 3 26. 3 26. 4 24. 8 26. 8 25. 22. 5 22. 7 25.	7 0.0 4 19.5 5 18.7 4 17.8 8 20.0 4 20.4 8 21.0 7 18.2 9 19.0	20.0				P 80 P 80 P 80 P 10 P 12 P 14	28.9	15.0 15.6 15.1 16.1 15.3			KYK	P 12 P 14	18.1 18.7 17.0				
P2 P2 P3 P3 P3 P3 P3 P3 P4 P4 P4 P4 P4 P4 P6 P1 Capra P2 P1 O/C P2 P2 P2 P2 P4 P4 P4 P4 P5 P6 P7	2 2 3 3 3 3 3 3 3 2 4 4 4 4 4 4 4 4 4 4	19.7 21.3 32.17 21.2 34 20.1 32.2 33 20.2 33 16.7 16.6 33 19.4 32 19.4 32	4 26. 1 22. 1 26. 3 26. 4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	4 19.5 6 18.7 4 17.8 8 20.0 4 20.4 8 21.0 7 18.2 9 19.0	20.0				P 80 P 80 P 10 P 12 P 14	28.9	15.6 15.1 16.1 15.3				P 12 P 14	18.7 17.0				
P2 P3 P3 P3 P3 P3 P4 P4 P4 P4 P4 P4 P6 P1 Capra P2 P1 O/C P2 P2 P2 P4 P4 P4 P4 P5 P6 P7	2 30 31 31 32 32 32 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	21.3 3: 21.7 21.2 34 20.1 32 21.2 33 00.2 33 16.7 16.6 30 19.8 3 19.4 32 19.4 33	.1 22. .1 26. 3 26. 4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	5 18.7 4 17.8 8 20.0 4 20.4 8 21.9 5 21.0 7 18.2 9 19.0	20.0				P 80 P 10 P 12 P 14	22.9	15.1 16.1 15.3				P 14	17.0				
P 30 P 37 P 37 P 37 P 44 P 44 P 44 P 44 P 58 P 11 P 11 P 12 P 12 P 12 P 12 P 12 P 14 P 14 P 15 P 15 P 16 P 17 P 18	30 31 32 32 32 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	21.3 3:21.7 221.7 34 20.1 32 21.2 33 16.7 16.6 30 19.8 30.4 32 19.4 32 19.4 34 34 34 35 4 35 4 35 4 35 4 35 4 35	.1 22. .1 26. 3 26. 4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	5 18.7 4 17.8 8 20.0 4 20.4 8 21.9 5 21.0 7 18.2 9 19.0	20.0				P 10 P 12 P 14	28.9	16.1 15.3									
P 31 P 36 P 37 P 36 P 37 P 36 P 4 P 4 P 4 P 4 P 5 P 6 P 11 P 12 P 12 P 12 P 12 P 12 P 12 P 14	31 32 32 32 4 4 4 4 4 4 4 1 1 1 1 1 1 1 2	21.3 3: 21.7 21.2 34 20.1 32 21.2 33 20.2 33 10.2 33 16.6 30 16.6 30 19.4 32 19.4 33	.1 26. 3 26. 4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	4 17.8 8 20.0 4 20.4 8 21.9 6 21.0 7 18.2 9 19.0					P 12 P 14	28.9	15.3				P 14	16.4				
P32 P33 P34 P44 P44 P44 P44 P47 P48 P49 P49	32 32 4 4 4 4 4 4 6 8 0 111 14 2 2	21.3 3: 21.7 21.2 34 20.1 32 21.2 33 20.2 33 10.2 33 16.6 30 16.6 30 19.4 32 19.4 33	.1 26. 3 26. 4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	4 17.8 8 20.0 4 20.4 8 21.9 6 21.0 7 18.2 9 19.0					P 14	28.9	15.3									
P32 P33 P34 P44 P44 P44 P44 P47 P48 P49 P49	32 32 4 4 4 4 4 4 6 8 0 111 14 2 2	21.3 3: 21.7 21.2 34 20.1 32 21.2 33 20.2 33 10.2 33 16.6 30 16.6 30 19.4 32 19.4 33	.1 26. 3 26. 4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	4 17.8 8 20.0 4 20.4 8 21.9 6 21.0 7 18.2 9 19.0					P 14	28.9			1							
P30 P30	32 32 4 4 4 4 5 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6	21.7 21.2 34 20.1 32 21.2 33 21.2 33 20.2 33 16.7 16.6 31 19.8 32 19.4 33 19.4 34	3 26. 4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	8 20.0 4 20.4 8 21.9 6 21.0 7 18.2 9 19.0						28.9				Metaca	rous					
P30 P4 P4 P4 P4 P4 P5 P5 P5	32 4 4 4 4 4 4 4 80 11 11 2	21.2 34 20.1 32 21.2 33 20.2 33 16.7 16.6 30 19.8 3 20.4 3 19.4 32	4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	4 20.4 8 21.9 6 21.0 7 18.2 9 19.0					1 14				28.2		Schicht	Bo	SD	Bd	DD	GL
P4 P4 P4 P4 P4 P8 P8 P11 P11 P12 P2 P2 P2 P2 P4	4 4 4 4 4 4 80 111 114 2	20.1 32 21.2 33 20.2 33 16.7 16.6 30 19.8 3 20.4 3 19.4 32	4 24. 8 26. 8 25. 22. 5 23. 5 22. 7 25.	4 20.4 8 21.9 6 21.0 7 18.2 9 19.0					P 1		28.1		20.2	Ovis	P 2		13.2			
P4 P4 P4 P4 P8 P10 P11 P11 P12 P12 P12 P2 P2 P2 P2 P2 P4 P14 P14 P14 P14 P16 P17 P18	4 4 4 4 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1	21.2 33 20.2 33 16.7 16.6 30 19.8 3 20.4 3 19.4 32	8 26. 8 25. 22. 5 23. 5 22. 7 25.	8 21.9 6 21.0 7 18.2 9 19.0					P2	15.8	20.1			0115	P 30	+	13.0			
P4 P4 P4 P80 P11 P14 Capra P2 P11 O/C P2 P2 P2 P2 P4 P14 P14 P14 KWK P10	4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 : 4 :	20.2 33 16.7 16.6 30 19.8 3 20.4 3 19.4 32	8 25. 22. 5 23. 5 22. 7 25.	6 21.0 7 18.2 9 19.0					P 30	30.6					P 4		15.0	27.1		
P 4 P 4 P 8 P 11 P 14 P 16 P 17 P 14 P 17	4 4 80 111 114 2 111 2 2 111 2 2	16.7 16.6 30 19.8 3 20.4 3 19.4 32 19.4 33	22. 5 23. 5 22. 7 25.	7 18.2 9 19.0												00.6	40.7			405
P4 P80 P81 P11 P14 Capra P2 P10 O/C P2 P2 P2 P2 P4 P14 P14 KWK P10	4 80 111 144 2 111 2 2 111 2 2	16.6 30 19.8 3 20.4 3 19.4 32 19.4 32	5 23. 5 22. 7 25.	9 19.0					P 32	31.9	46.7				P 80	23.6	13.7			
P80 P11 P14 P14 P15 P16 P17 P17 P17 P17 P17 P17 P17 P18 P18	80 11 14 2 11	19.8 3 20.4 3 19.4 32 19.4 34	5 22. 7 25.						P 32		16.7				P 80			23.3		
P 11 P 14 P 14 P 17 P 18	11 14 2 2 11 2	20.4 3 19.4 32 19.4 34	.7 25.	/: 100					P 32			29.1			P 80			25.7		-
P 14 Capra P 2 P 11 O/C P 2 P 2 P 2 P 2 P 2 P 4 P 14 F 14 KWK P 10	14 2 11 2	19.4 32 19.4 34							P 4	29.9					P 12	22.9				
Capra P2 P11 O/C P2 P2 P2 P2 O/C P10 P14 KWK P10	2 11 2	19.4 34	5 26.						P.4	34.0					P 12		15.0			
P11 O/C P2 P2 P2 P2 P2 P2 P14 P14 P14 KWK P10	11 2								P 4		17.1				P 14	23.0				
0/C P2 P2 P2 P2 0/C P10 P14 P14 KWK P10	2	18.7	.1 25.1						P 4		16.3				P 14	21.7				
P 2 P 2 P 2 O/C P 10 P 14 P 14 KWK P 10				21.4					P 50		15.3				P 14	21.9				
P 2 P 2 O/C P 10 P 14 P 14 KWK P 10	2	19.9 33	.7 26.	5 20.3					P 50		16.0				P 14		13.6			
P 2 O/C P 10 P 14 P 14 KWK P 10		20.3							P 80		17.7			Capra	P 80			23.2	14.7	
O/C P 10 P 14 P 14 KWK P 10	2	19.4							P 80		20.2			010	P 32	23.2				
P 14 P 14 KWK P 10	2	20.9							P 80		17.4				P.4	22.5				
P 14 P 14 KWK P 10	10	18.4 3	.7 25	1 21.9	11.4				P 80		16.8				P 80	23.3	i			
P 14 KWK P 10		33							P 80		16.0				P 80	21.6				
KWK P10		34			12.1			010	P 80		16.0				P 80	23.2				
		16.4	•	20.4	10.5			0.0	P 80		15.7				P 11	24.0				
FIE		18.3		20.4	10.5				P 80		16.0				P 12	24.8				
	12	10.0							P 10		16.5				P 12	24.0	14.4			_
Radius									P 10		17.0				P 12		12.9		16.1	
Kadies	-	0.0	ъ.			BE	DE I				11.0								10.1	_
	Вр	\$D	Bd	GL	GL w. d.	Brp	BFd		P 10						P 12		12.0			-
Ovis P2			28.	.1			19.4		P 11		16.4				P 14	23.3				
P2			4		137.8	17.1			P 12	32.5	17.7		30.1		P 14		14.4			
P2		9.6				15.6			P 12	29.4	17.5		27.5	KYK	P 32			25.4		
P2			9						P 12	29.5			27.8		P.4			25.5	16.5	\vdash
P2		16							P 12		16.3				P 50		12.6			
P 30			6						P 12		17.4				P 50		13.7			
P 32		9.2							P 12		15.6				P 51		17.5			
P 33	32		28.	В					P 12		16.6				P 51		14.0			
P 32	32		28.	9					P 12		15.6				P 80		14.2			
P.4	4		27.	2					P 12		19.3				P 80		13.7			
P.4	4	0.4							P 12		15.5				P 80		13.3			
P 50		9.9							P 12		17.8				P 11		15.1			
P 50			.5						P 12		15.4									
P 51		31.7 16				29.6			P 12		17.6			Ph I and		-				
P 51			9						P 14		17.3				Schicht	Во	SD	Bd	Glpe	
P 58			9	+					P 14		16.6			Ovis	P1	11.5				\vdash
P 80			2 29.	1 154.2		31.3	24.0		P 14	_	15.4			JHS	P4	12.4				
P 80			0	1 154.2		27.6			P 14					010	P4	12.4				_
						21.6					19.3			U/G						
P 80		16	.5				-		P 14		16.7				P 4	12.7 12.1				
P 80	80		28.	.1			24.1		P 14 P 14		15.6		1 1		P 14			44.7	34.4	1

Femur						Pelvis ((Fts.)					Tibia (Fts.1				Tibia (Fts.1	
	Schicht	Вр	\$D	Bd	DC	1 41112 ,		t LAR	\$B	SH	LA		,	SD	Bd	Dd	11212		\$D
Otis	P 80	47.7				Capra	P1		8.6				P 80	14.9				P 12	13
	P 80		16.2				P 51		7.2	14.5			P 80	14.8				P 12	14
	P 80			36.6			P 80	29.8			31.9		P 80	11.0				P 12	14
	P 54		15.8				P 12	28.2			31.6		P 80	12.8				P 12	14.
	P 80		15.6			010	P 30		9.2	13.9			P 80	11.9				P 12	14.
	P 80		14.4				P 80		9.3	15.2			P 80	12.9				P 12	14
	P 14		19.0				P 10		11.6	16.8			P 81	15.0	25.3	20.0		P 14	15.
01C	P1		15.8				P 10		10.3	14.8			P 10	13.7		19.3		P 14	14.
	P 2		16.3				P 12	27.9		15.7	30.6		P 10	13.6				P 14	15.
	P 32		18.2			KWK	P 32	25.0			26.9		P 10		26.9	19.7		P 14	16.
	P 30		16.2				P 50		10.9	16.4			P 10	14.0				P 14	13.
	P 4		17.3				P 12	29.9			27.4		P 11	14.5				P 14	14.
	P 50		16.3				P 12				29.3		P 12	14.6		20.6		P 14	17.
	P 50		16.1										P 12	14.2				P 14	14.
	P 50			39.2		Tibia							P 14	15.3				P 14	15.
	P 80		14.4					SD	Bd	Dd			P 14	13.5		19.5		P 14	15.4
	P 80		13.5			Ovis	P1		25.5				P 14	15.1				P 14	17.
	P 80		17.0				P1		24.6				P 14	13.1				P 14	15.4
	P 80		16.8				P2	14.6					P 14	14.0				P 14	13.
	P 80		16.8				P2	15.5					P 14	13.7		40.0		P 14	14.
	P 80		17.0				P 2	13.9		20.0		Capra	P 80	15.7		19.5		P 14	13.
	P 12		17.5				P2	14.6				210	P 80	14.6		20.4	KAK	P2	15.3
	P 12		15.7				P2	14.2				010	P 32	40.0	27.1			P 2	14.3
	P 12		18.2				P2	16.4					P4	13.9				P 11	12.3
	P 12		17.8				P2	12.4					P 4	14.7				P 11	13.4
	P 12		17.8 13.8				P2	13.3					P 51	14.3				P 12	15.3 15.3
	P 12		16.0				P2	14.2	26.6	21.1			P 52	17.3				P 12	14.3
	P 12		14.3				P 30	14.0					P 54	16.2				P 14	15.1
	P 14		14.7				P 30	13.8		20.4			P 80	15.1				P 14	16.3
	P 14		15.8				P 30	15.3		20.5			P 80	14.4				P 14	15.
KWK	P1		15.0	'	20.9		P 30	13.6					P 80	12.4				P 14	16.
	P2		12.6		20.5		P 30	15.0	24.7				P 80	12.9				P 14	13.3
	+-		12.0				P 4	14.4					P 80	13.7				P 14	16.3
Pelvis							P.4	13.5					P 10	13.4		19.9		P 14	16.
	Schicht	LAR	\$B	SH	LA		P.4	15.9					P 10	14.5		10.0		P 14	16.
Otis	P2	23.8					P.4	15.0					P 11	14.1				P 14	16.3
	P 30		9.2				P 50	15.5		21.3			P 11	16.3					
	P 31		10.3				P 51	13.3					P 11	15.9					
	P.4	25.5			28.1		P 51	14.6					P 11	17.0					
	P.4	24.2					P 80	15.5		19.8			P 12	13.3					
	P 50	26.1	12.8	17.6			P 80	13.6	25.8	20.1			P 12	14.1					
	P 50	25.1			28.7		P 80	14.3					P 12	16.6					
	P 50	23.8	11	15.8	27.6		P 80	13.8					P 12	15.2					
	P 80	28.5					P 80	14.3					P 12	14.2					
	P 80	28.0			26.1		P 80	15.1					P 12	15.5					
	P 80		9.1	14.4			P 80	15.4					P 12	15.2					
	P 11	26.1					P 80	13.6					P 12	15.6					
	P 11	25.3				Ovis	P 80	14.7					P 12	14.7					
	P 14		11.3	15.8			P 80	16.3					P 12	14.9					
							P 80	14.3					P 12	14.8					
							P 80	15.9					P 12	15.2					

Metata	rene	1				-	Tales						-	Phip	net				
metata	1545	Вр	SD	Bd	GL	DD	1 4145		GLI	GLm	Bd	DI	Dm.	FEIP	Schicht	Bn	SD	Bd	Glpe
) Tis	P2		11.6				010	P 12	53.0					Oris	P 11	12.5			
	P2		11.0					P 14	57.0					010	P 30	10.1			
	P 31	22.5						P 14	56.8						P 50	10.8		-	
	P 32			24.3			Ovis	P1	27.7		18.4	15.8	16.8		P 10		10.	1 11.4	\$ 35.
	P.4	21.3						P2	27.9						P 14	13.6		12.3	
	P 80	20.9	11.9					P2	30.2						P 14	13.4			
	P 80		11.7					P2	29.3		17.8				P 14	11.0			
	P 12	22.5						P2	29.1		18.6	16.3							
	P 12	20.5						P2	29.1		19.3	16.2							
	P 14	21.2						P 30	28.2					Ph II p	ost				
Capra	P 51		13.3					P 30	28.2		19.6	15.6			Schicht	Вр	\$D	Bd	Glpe
_	P 10			24.6		15.7		P 32	32.0			17.5		Ovis	P 10	11.9	8.4	9.1	
)/C	P 32	21.2						P 32	27.0					0/C	P 10	11.2			
	P.4	18.9						P.4	27.5										
	P.4			24.5	i			P.4	27.8										
	P.4			23.7		16.7		P.4	30.4										
	P 50	18.6	11.3					P.4	28.2										
	P 50	18.0	11.0					P 50	27.3	26.2	18.5	15.4	15.3						
	P 80	19.9						P 51	30.4	29.5	20.6	16.7	18.6						
	P 80		11.5	23.6		15.7		P 51	31.5	30.2	20.2	17.2	18.4						
	P 80			24.6		16.9		P 51	28.9	27.7	19.3	16.1	17.7						
	P 12	20.5	10.7	22.6	133.9	15.9		P 80	29.9	28.1	19.4	16.9	17.8						
	P 12	22.8						P 80	28.7	27.3	17.9	15.8	16.4						
	P 12		10.5	22.5		16.5		P 80	28.8	27.3	19.6	16.2	17.2						
	P 12		10.2	23.9		15.8		P 80	26.2	24.8	17.9	14.8	16.1						
	P 12		12.8					P 80	31.4	29.5		17.1							
	P 12		11.5					P 10	27.7	26.8	18.5	15.5	17.0						
	P 14	20.3						P 10	27.7	27.0	18.7	15.7	16.8						
	P 14		10.6	23.1		15.4		P 12	26.5	25.3	18.1	14.3	15.9						
KWK	P 52		10.0					P 12	27.6	26.0	17.7	15.7	16.7						
	P 80		14.1					P 12	27.8	26.9	18.6	15.5	18.7						
	P 80		11.4					P 12	27.5	26.6	18.2	15.7	16.5						
	P 80		13.2					P 12	28.3										
	P 80		10.9					P 12	28.4	25.9	18.0								
	P 10		14.3					P 14	27.7	26.9	18.7	15.7	16.5						
	P 11		12.5					P 14	26.7										
	P 14		12.7				Capra	P.1	29.3										
	P 14		14.0					P 30	27.6										
	P 14		13.2					P 51	27.6										
								P 80	28.2			14.8	15.4						
Calcan	tus							P 80		29.2									
		GL	GB					P 10	27.0										
Dvis	P 30		21.6					P 12	29.5				15.7						
	P 32	53.4	20.1					P 14	30.6										
	P 32		22.8				010	P 4	29.0			16.1	17.5						
	P 50		18.8					P 50	28.3										
	P 80	52.8	18.5					P 80	27.9										
	P 80	52.9	19.3					P 10	29.7										
	P 80	53.4						P 12	29.2			15.9	15.8						
	P 11	54.2						P 12		25.8									
	P 12	56.7	18.0					P 12		24.8		14.3							
							KWK	p 32	29.3	27.6	18.9	15.5							

Mandi	hela					H mand	H mand	H mand	Mandi	bula (Fts.)	i				H mand	H mand	H mand
DIC	M3-P1	M1-M3	P1-P4	L diast.	M3- 14		M1	M3	0/C		M1-M3	P1-P4	L diast.	M3- 14		M1	M3
1						15.9	21.1		P4	67.3	45.1	21.6			18.5		
1						17.1			P.4			24.0			19.4	22.1	
21						17.2			P.4			22.1			16.5		
2	73.5	51.4	21.6			17.9	20.4		P.4			23.7			16.8	20.9	
2		49.4					24.6		P.4			23.2			17.7	21.4	
2		48.7						36.2	P.4			21.1			17.5		
2			21.0			16.5	24.2		P.4			22.8			16.3		
2			24.2	38.0		15.2			P.4			19.1					
2						18.1			P.4			23.1			16.0		
2						19.7			P 4			21.8			17.2	18.8	
2		47.8							P 4			24.2			16.7		
30	71.9	47.6	24.2			16.4	21.1	35.6	P 4						16.7		
30	72.0	47.8	24.3			16.1	20.3		P 4						18.2		
30	69.6	48.4	22.9			16.8	20.4	37.5	P.4						14.9		
30	73.8	49.2	24.2			15.9	19.3		P 4								36.
30	68.7	48.7	21.9			16.2			P 4							22.7	
30			27.1			14.1			P 50	73.9	50.7	24.0			15.6		
30			21.5			16.9	21.1		P 50	76.2	51.7	25.1			15.1	20.0	
30			23.4			15.3	18.2		P 50	71.6	49.9	22.3			18.3	21.0	
30			25.8			15.9	21.3		P 50			23.6					
30			22.1						P 50			20.8			18.4		
30			21.0			18.0	22.0		P 50			26.0			14.1	20.8	
30			22.4						P 50			23.2			15.8		
30			24.5						P 50						17.1		
31	72.8	49.5	22.4	40.4		19.0	20.7	33.1	P 51	73.5	46.3	37.8			18.5	18.5	
231	73.8	50.2	23.6			18.0	19.8		P 51	73.7	49.8	23.3				21.3	
231	71.4	43.0	22.9			19.0	20.2	34.8	P 51	68.7	45.3	23.3			16.3	18.4	
231	78.0	54.6	23.4			19.2	22.9	37.0	P 51	74.4	49.7	24.9			14.4	21.4	
231			19.5			17.6	19.8		P 51		47.8						
31			23.8			20.0	21.2		P 51						15.5		
231						19.2			P 56			25.0	39.1		17.9	23.5	
32	73.1	49.1	22.9			19.1	22.4		P 56			23.1			17.0	21.9	
32	71.3	47.7	23.7			20.3			P 80	70.0	46.3	23.0			16.1	19.9	
32	79.2	54.4	24.6			17.3	26.2		P 80	74.9	49.9	22.1	36.0	110.9	18.4	20.4	32.
32	71.5	48.6	23.7			17.8	21.6	35.3	P 80	78.9	54.2	25.7				20.2	
32		50.5							P 80	76.9						21.8	
32		45.9				17.8	21.8	33.3	P 80	76.2					20.3	22.3	
32		45.2						35.6	P 80		44.7						
32			23.2						P 80		48.4						
32			22.9			16.9			P 80		47.2						
32			25.9			16.3	20.6		P 80		47.0						
32			22.3						P 80			24.6			16.7		
32			21.3			16.9			P 80			21.2			19.6	22.1	
32			24.0			17.4			P 80			31.7					
32			23.7			16.0			P 80			23.9			19.0		
32			23.6			14.9			P 80			23.3				20.3	
32			25.3			19.1	24.0		P 80			22.4					
32			23.2						P 80			23.9			17.8		
32						16.7			P 80						17.7		
94	67.0		23.3			15.3			P 10	76.1	49.7				15.1		
4	72.1	49.3	22.8	39.1	110.0	16.8	20.3	38.2	P 10			37.1			17.1	20.9	

_																				
	bela (Fts.)					H mand				d (Fts.)		M3 mane				and (Fts.)			nd (Fts.)	
),C	M3-P1	M1-M3	P1-P4	L diast.	M3- 14		M1	M3	010	GL	GB		GL	GB	010	GL	GB	010	GL	GB
10						16.6			P2	20.44		P 50	23.18		P 12	20.77	7.57	P 32	10.59	
11	70.3		22.5			16.9	17.5		P2	20.71		P 50	22.80	7.70	P 12		8.04	P 32	12.52	
11		48.3				15.6		31.9	P2	25.03	9.18	P 50	20.60	8.37	P 14	21.96	7.81	P.4	12.74	
11			25.2			14.9	19.6		P2		8.27	P 50	19.24	6.68	P 14	21.11	7.77	P.4	11.23	7.
11			26.4			20.2	22.8		P2	-	8.97	P 50	21.49		P 14	19.05	7.58	P.4	11.30	7.
11			23.5			18.1			P 2	40.47	7.54	P 50		7.95	P 14	21.10	7.66	P 4	11.17	7.
11			23.1			17.0			P 30	19.17		P 50		8.00	P 14	19.61	7.56	P 50	12.17	8
11 11				16.3		17.1			P 30	23.00 19.20	8.40 7.67	P 50		8.31 8.17	P 14 P 14	22.06	7.83 7.77	P 51	11.54	7
11			21.4						P 30	20.36	7.70	51	22.04	8.48	P 14	23.25	8.28	P 80	11.70 12.32	8
11			22.5	17.5					P 30	20.85		51		8.20	P 14	20.15	7.62	P 80	13.45	8
11			20.9	15.7					P 30	19.97	1.30	56		7.22	P 14	20.41	8.42	P 80	12.38	
11			23.3						P 30	22.68		P 80	20.31	7.87	P 14		0.42	P 80	11.84	8. 7.
12	67.1	47.2		10.1	21.0		19.6		P 30	21.31		P 80	20.03	7.91	M2 ma			P 10	10.76	7.
12	72.0					16.3	19.7		P 30	19.86	7.47	P 80	20.03		0/0	GL	GB	P 10	10.16	7.
12	75.5					15.5	21.6		P 30	22.33	8,13	P 80	21.70		P1	10.08	6.83	P 10	12.03	7.
12	72.7	48.5				17.1	21.4		P 30	20.34	8.14	P 80	22.81	7.50	P1	10.77	7.24	P 11	11.31	7
12	68.0					16.4	19.1		P 30	19.49		P 80	20.31		P1	11.73	7.74	P 11	11.50	7.
12	68.5					16.8	19.8		P 30	21.58	7.90	P 80	20.63		P1	11.77	8.03	P 11	12.34	8.
12	70.1					17.1	23.9		P 31	20.11		P 80	22.42		P 2	13.28	7.86	P 12	11.88	7.
12	78.8	54.1	26.0			16.7	22.0		P 31	22.07	8.27	P 80	21.64	7.61	P 2	11.25	6.84	P 12	11.93	7.
12	76.3	51.1	24.1			18.8	22.0		P 31	22.46	7.34	P 80	19.99	8.53	P 2	11.30	7.89	P 12	11.34	1
12	79.0					17.2	22.7		P 31	19.76		P 80	20.80	8.03	P 30	11.36	1.03	P 12	11.67	8.
12	10.0	48.8	24.2			11.2	22.1	36.0	P 31	21.05		P 80	22.13	8.19	P 30	11.62		P 12	11.76	7.
12		40.0	20.9			16.2	19.3		P 31	22.01		P 80	21.90	7.54	P 30	12.47	8.76	P 12	11.77	7.
12			24.9			10.2	19.6		P 32	22.36	9.30	P 80	21.00	8.56	P 30	11.59	7.46	P 12	13.17	8.
12			24.0				20.2		P 32	21.18		P 80		8.30	P 30	12.35	8.76	P 12	11.80	8.
12			21.4			17.3	22.9		P 32	21.66	8.77	P 10	20.18		P 30	9.95	7.16	P 12	12.43	8.
12			25.1			16.5	22.0		P 32	21.84	7.82	P 10	19.55	7.77	P 30	11.90	7.68	P 12	11.35	7.
12			22.6			17.4	22.8		P 32	22.32	7.72	P 10	20.18	7.50	P 30	14.63	8.00	P 12	12.12	8.
12			20.8						P 32	20.72		P 10	21.21	7.44	P 31	15.41	8.73	P 12	10.63	7.
12			22.2			20.1			P 32	25.85	8.64	P 10	20.61	8.09	P 31	14.31	7.79	P 12	13.15	8.
12			21.1			14.8	20.2		P 32	20.55		P 10	21.30		P 31	14.44	8.17	P 12	12.68	8.
12						18.5			P 32	22.14	7.91	P 10	200	7.81	P 31	19.07	7.64	P 14	11.90	7.
12			23.5			16.0	22.9		P 32	21.06	7.81	P 11	21.05	7.55	P 31	14.70	1.04	P 14	12.27	8
12			24.6			17.6	23.3		P 32	21.76		P 11	21.62		P 31	13.89	7.58	P 14	13.29	8
12			25.8			19.4	24.2		P 32	21.94	8.35	P 11	21.77	7.69	P 31	18.14	7.54	P 14	12.66	8.
14	68.4	48.3				18.7	21.6		P 32	20.40		P 11	20.88		P 31	17.20	7.55	P 14	11.62	7
14	71.8	49.4	22.4			16.8	20.4		P 32	20.43	7.72	P 11	23.58	8.50	P 31	16.34	6.84	P 14	11.80	7
14	71.1	46.7	21.7			14.5	18.0		P 32	22.58		P 11	20.06	7.98	P 32	15.27	7.90	P 14	11.25	7.
14	73.3		23.5			. 7.12	.510		P 32	18.44	7.28	P 11	21.36	8.31	P 32	12.10	7.94	P 14	12.06	7.
14	10.0	20	21.4			15.8			P 32	10.44	7.33	P 11	18.70		P 32	11.93	7.64	- 1.17	12.00	
14			22.5			17.5	23.1		P 32		7.67	P 11	121112	8.20	P 32	12.96	8,99	M1 ma	ad .	
14			20.9			15.7			P.4	20.39	7.54	P 11	19.61	13.25	P 32	11.95	8.24	010	GL	GB
14			23.9			16.1	21.0		P.4	22.32		P 12	23.74	8.80	P 32	12.15		P1	9.7	
14			0.0			16.3			P.4	19.74	7.24	P 12	19.40		P 32	12.17	8.33	P2	11.5	
-			3.0			.510			P.4	22.34		P 12	19.17	7.56	P 32	12.11	7.86	P2	10.3	
l3 ma	nd			M3 man	d (Fts.)				P.4	22.00	6.72	P 12	21.40	8.17	P 32	12.62	8.22	P2	10.4	
/C	GL	GB		0/C	GL	GB			P.4	19.69		P 12	18.83	6.40	P 32	10.82		P 30	10.0	
1	19.66	7.64		P.2	23.39				P.4	21.89	7.59	P 12	21.80	7.00	P 32	11.97		P 30	11.7	
1	19.94			P.2	19.71				P.4		6.82	P 12	21.74	7.56	P 32	12.79	8.33	P 30	10.6	
1	21.56			P2	21.34				P.4	İ	6.95	P 12	18.86	7.35	P 32	11,49		P 30	10.4	

M1 mai	nd (Fts.)		M1/2	based		M1/2 i	and (Fts.))		M3 max	(Fts.)		M2 ma	ı (Fts.)		M2 ma	x (Fts.)	
01C	GL	GB	010	GL	GB	010	GL	GB		0/C	GL	GB	0/C	GL	GB	O/C	GL	GB
930	10.1	6.8	P.1	11.5	7.3	P 14	11.6			P 50	18.9	12.6	P 2	11.9	12.0	P 12	12.8	12.4
P 30	11.5	7.2	P.2	11.3		P 14	11.4			P 50	17.1		P 2	14.0		P 12	13.0	
P 30	195.5	7.2	P.2	12.1		P 14	11.4			P 50	18.2		P2	10.4	12.2	P 14	14.2	
P 30	13.7	7.8	P 2	12.5		P 14	12.6	7.9		P 51	19.3		P2	12.7		P 14	12.8	
P 31	12.6	8.1	P 2	10.3						P 51		12.4	P2	10.6		P 14	12.9	
P 31	13.6	7.2	P 2	11.9		Mazill	_			P 51		11.1	P2	10.8		P 14	13.0	
P 31	10.8	7.2	P 30	11.5		010	M3-P1	M1-M3		P 80	20.1		P 2	11.8		P 14	12.5	12.3
P 31	10.7	6.8	P 30	11.0		P2			24.4	P 80	18.5	10.9	P2	10.9				
P 32	14.7	7.3	P 31	16.6		P 32		43.8		P 80	18.0		P2	13.2		M1 ma		
P 32	13.3	7.7	P 31	16.4		P 4		47.4		P 80	15.1		P 30	11.0		010	GL	GB
P 32	9.7	7.2	P 31	14.5		P 51	75.1		40.7	P 80	20.1		P 30	12.4		P1	11.3	
P 32	9.9	7.1	P 31	13.1		P 80	67.8		24.5	P 80	19.8		P 31	17.4		P1	10.8	
P 32	10.3		P 31	13.5		P 80		44.4		P 80	17.3	10.5	P 31	15.7		P1	10.1	
P 32	10.5	6.6	P 31	13.5		P 80		43.9	212	P 80	19.9	11.3	P 32	17.2		P1	9.4	
P 32	10.0	6.8	P 32	11.9		P 10		44.5	21.9	P 80	19.1		P 32	16.7		P2	8.7	
P 32	10.2	6.6	P 4	8.8		P 11		44.0		P 80	22.0		P 32	13.4		P2	8.6	
P 32	10.7	7.7	P 4	9.6		P 12			25.0	P 80	17.8		P 32	11.3		P 32	10.1	1 11.5
P 32	10.1	7.1	P 50	10.5		P 12			27.1	P 80	22.4	13.3	P 32	13.6				
P 32	10.3		P 50	10.1						P 80	18.0	11.7	P 32	14.8		M1 ma		
P 32	10.6		P 50	10.4		M3 ma				P 80	20.2		P 32	12.4		010	GL	GB
P 32	11.7	7.5	P 50	10.7		010	GL	GB		P 80	19.2		P 32	15.5		P 32	10.9	
P.4	10.5	7.5	P 50	10.2		P1	16.1			P 10	21.1		P 4	12.6		P 32	11.9	
P.4	9.6	6.5	P 50	11.8		P 2	19.1			P 10	14.7	12.0	P 4	12.3	100	P 32	12.0	
P.4	8.6	5.8	P 51	12.7		P 2	16.8			P 10	19.1	12.7	P 4	12.6		P 32	9.9	
P 4	10.8	7.6	P 80	11.7		P 2	18.4			P 11	16.4	11.9	P 4	12.1		P 32	10.6	
P 51	11.0	6.8	P 80	10.2		P2	18.7			P 11	20.7	11.7	P 4	12.3		P.4	10.3	
P 80	10.0	6.7	P 80	11.0		P 2	19.8			P 11	15.1		P 4	11.6		P.4	10.0	
P 80	9.9	6.6	P 80	11.2		P 2	18.8			P 11	19.9		P 4	10.8		P 4	10.6	
P 80	10.0	6.5	P 80	11.9		P 2	17.9			P 11	17.5		P 4	11.2		P 50	9.2	
P 80	9.8	7.1	P 80	10.9		P 30	16.9			P 12	16.4	12.5	P 50	12.0		P 50	8.9	
P 80	10.1	7.2	P 81	10.7		P 30	15.3			P 12	16.2		P 50	12.7		P 51	9.4	
P 10	10.1	6.9	P 12	10.7		P 30	19.2			P 12	19.1	11.2	P 50	11.9		P 80	9.8	
P 10	9.4	7.2	P 12	12.4		P 30	18.4			P 12	16.9	12.1	P 50	12.4		P 80	9.2	
P 11	10.8	6.6		10.6			17.0			P 12	14.5		P 51				10.1	
P 12 P 12	9.8	6.1	P 12	10.4		P 31	17.4			P 12	18.9 21.5	11.8 11.8	P 55	11.9		P 80	10.4	
P 12		6.6 6.7	P 12			P 31	17.0			P 14	17.1		P 80	12.2		P 80	10.0	
P 12	9.8	211	P 12	9.9		P 31	17.8			P 14	16.7	11.5	P 80	11.1		P 10		
P 12	9.8	7.0 6.9	P 12	11.4		P 32	18.6			P 14	19.3		P 80	12.8		P 14	9.8	
P 12	9.7	7.3	P 12	10.3		P 32	17.6			P 14	18.5	11.1	P 80	13.4		P 14	10.7	
P 12	10.3	7.3	P 12	11.9		P 32	15.8			P 14	17.0	11.4	P 80	12.6		P 14	10.1	
P 12	10.3	6.4	P 12	10.4		P 32	16.3			P 14	18.5		P 80	14.3		P 14	10.4	
P 14	10.1	7.2	P 12	10.4		P 32	17.9			P 14	19.9		P 81	12.4		P 14	11.9	
P 14	10.4	7.3	P 12	11.8		P 32	16.1			P 14	18.2		P 10	13.9		r 14	11.3	11.6
P 14	10.4	7.0	P 12	10.1		P 4	17.7			P 14	10.2	11.2	P 10	12.5			+	
P 14	11.7	8.4	P 12	10.4		P 4	18.9			M2 max			P 12	14.3			+	
P 14	10.2	6.8	P 12	11.4		P 4	18.4			0/C	GL	GB	P 12	12.3			+	
P 14	10.2	7.1	P 12	10.7		P 4	16.4			P1	12.1		P 12	12.4				
P 14	10.0	6.9	P 14	12.1		P 50	17.5			P1	13.0	11.6	P 12	13.6				
P 14	10.7	7.3	P 14	12.5		P 50	18.0			P1	12.3		P 12	12.7			+	
144	10.1	1.0	P 14	11.5		P 50	19.8			P1	12.0	11.3	P 12	13.8			+	
			F 14	11.5	1.0	P 50	17.8			P2	11.3		P 12	13.1			+	

Masse	kleine Hau	swiederk	äuer (Tabelle V2	/B)
M1/2	B9I			+
01C	GL	GB		
P1	10.6	12.0		
P 2	10.6	11.9		
P 30	9.7			
P 30	10.5	10.3		
P 30	13.3	11.4		
P 30	9.8	10.4		
P 32	12.5	10.7		
P 32	15.1	9.7		
P 32	15.1	11.6		
P 32	12.6	10.9		
P 32	12.2			
P 50	9.1			
P 50	11.9	12.5		
P 80	10.6	11.9		
P 10	10.7	10.9		
P 10	12.6	13.1		
P 10	9.8	10.6		
P 10	11.8	11.5		
P 11	10.7	11.9		
P 12	12.4			
P 12	11.0	10.6		
P 12	11.0	10.8		
P 12	11.6	11.0		
P 12	9.0	11.7		
P 14	13.5	12.3		
P 14	14.5	12.5		
P 14	12.2	10.8		
P 14	12.7	11.5		
P 14	12.4	11.8		
P 14	12.3	12.1		
P 14	12.9	13.0		
P 14	11.9	11.8		
P 14	14.5	13.6		
P 14	12.0	12.0		

			rein (Tabelle	•																		
	der Wildsch	wein	DM: Durchmes:	ser Caninus																		
••Wilds	chwein																					
Humeru				Radius	(Fts.)			Scapul						MT IV						Calcaneu:		
	\$D	Bd	ВТ		Вр	SD			SLC	GLP	LG	BG	H coll		Вр	В	Bd	GL		- 0	GL	GB
P 2		39.1		P 14	28.6	17.3		P1	25.1					P 11	15.5	5			P	11	78.7	20.
P 2	17.3			P 14	31.3	20.6		P1	25.2	35.5	24.3			P 11	15.8	8			P	11		26.
P 2	19.1		34.0	P 14**	39.5	26.0		P 30	23.3	34.0	26.7			P 2**		16	.0 19	.2 97.9	P	12		24.
P2	14.5	37.9	28.0					P 30	23.3	36.7	30.1	25.6	12.4						P	111	86.7	33.
P.4	15.7	37.7	29.9	Ulas				P 80	25.1					Phalai	ngen II ant				P	12"	85.9	25.
P.4		40.2	29.4		BPC	DPA S	SDO	P 80	25.2		29.8	22.8	12.6		Вр	\$D	Bd	Glpe		12"		25.
P 51	19.5			P1		39.8	29.8	P 80	23.4					P 11	16.3	3 14	.0 14		P	12"		24.
P 52	16.5		31.2	P 30		38.7		P 80	23.4													
P 80	16.6		- 112	P 30		37.3	29.6	P 80	21.3					Phalai	ngen I ant/	post			Т	alus		
P 80	18.6			P 30		35.9	20.0	P 11	28.9			28.7	13.9		Вр	\$D	Bd	Glpe			GLI	GLm
P 80	17.1			P 31	22.5		29.8	P 11	25.3			27.3	12.6	P1	16.8			36.3	-	2		38.
P 11	18.0		33.7	P 51	20.8	34.4	26.6	P 11	27.3			21.0	12.0	P 80	15.3			1.1 34.9		30	42.8	39.
P 11	17.5		33.1	P 80	24.0	34.4	32.4	P 11	29.2					P 80	15.4	39		5.1 34.3		82	45.4	41.3
P 11	18.7			P 80	20.2	36.8	27.9	P 11	23.4					P 12	16.4			.0 34.4		111	45.5	41.
P 11				P 80		30.0	21.0	P 11	20.4		20.0	05.5									46.0	
	18.2		20.6		21.8				05.4	36.7	30.9		44.4	P 12	16.4			5.1 33.7		11		41.3
P 11	42.0	42.5	32.6	P 80	21.6		00.4	P 12	25.1		31.7	24.5		P 12	16.4	4 13	.1 15	.7 33.1		12	40.9	36.
P 12	17.0		29.6	P 80	23.5		29.1	P 12	26.4				12.6								44.9	40.
P 12	18.0		30.0	P 80	21.6			P 12	22.9				12.6	Phalai	ngen II anti	•				14	41.7	37.
P 12	18.9		35.7	P 80	24.2			P 12	26.4						Вр	\$D	Bd	Glpe	P	11**	49.8	45.
P 12	16.2			P 80	22.4	41.9	31.1	P 12	28.5		32.2		15.4	P 80	14.6	5 12	1.1 12	.3 19.4				
P 12	16.9			P 82	23.2	39.8		P 12	26.4		33.6	29.4	12.2						F	emur .		
P 12	18.1			P 10	21.4			P 12	24.9				13.2	Pk III	ant/post						SD O	
P 12	17.2			P 11	21.0	36.6	28.9	P 12	26.3				14.5		Вр	\$D	Bd	Glpe	P	52	18.3	
P 12	16.4			P 11	21.3			P 12	26.2					P 10	32.3			l.1	P	80	21.2	
P 12	17.4			P 11	24.3	43.5	35.6	P 14		37.3	30.4	26.1		P 12	28.8	8 27	.5 11	.8	P	80	21.5	
P 12	16.7			P 11	25.0	42.7	31.4	P 14	24.6	37.3	32.0	25.2	12.2						P	80	20.2	
P 12	19.7			P 11	25.4	41.6		P 14	24.3	34.7	29.2	23.9	11.8	Phalai	ngen I post	t			P	11	23.4	
P 12	20.1			P 11	23.1	38.9	32.3	P 14	24.4				13.8		Вр	\$D	Bd	Glpe	P	11	22.4	
P 12		39.3		P 12	21.6	36.7		P 14	25.9				14.5	P 50	16.8	В			P	14	19.7	
P 12		44.5	35.8	P 12	23.4	35.8								P 80	16.1		.1 16	5.1 40.4	P	12	20.0	
P 14	16.9			P 12	24.4	42.2	37.1	MC III						P 11	15.3	9 12	.3 14	.8 37.4	P	12	17.7	
P 14		39.6	32.5	P 12	23.9	42.0			Вр	В	Bd	GL		P 50**	17.	1 16	.6 18	.5	P	12	20.0	
P 14		42.4	32.8	P 12	27.1		34.8	P1	17.9	15.3	17.9	78.6							P	12	17.7	
P 1"		45.6	33.7	P 12	22.2		28.4	P 30	16.4				Til	bia						12	22.9	
P 11"	20.0			P 12	25.6			P 32	19.4		1,110	1		SD	Bd	DD				12	19.9	
P 10**	21.6		38.4	P 12	23.6			P 80	17.9			81.9	P.1		29.4					12	21.2	
P 12**	21.6		37.9	P 12	23.8	42.9		P 11	18.2			1	P.3		28.4		.0			14	19.4	
P 14**	21.0		39.5	P 14	22.4	37.8		P 11	15.6	10.10		73.4	P 3		0.1					14**	23.5	
	20	41.0	77.5	P 14	25.1	00		P 12	.5.0	13.6			P 4		33.4	4				.,		
Radius				P 14	25.1	42.2		P 14	22.0				P4		28.8		6	_				
	Вр	SD		P 14	22.9	38.5		F 194	22.0	15.2			80'		3.2 32.3			_		-		
P 80	28.0			P 14	25.4	42.0	33.2	MC Y					P 8		3.2	20		_				
P 80	28.0			P 11"	26.7	42.0	33.2	mu T	Bd	GL			P8		32.3	3 25	6	_		-		
				1 11				P.4								25	.0	_				
P 11	33.2 31.3			P 12"	26.9	44.9		P 4	10.7	56.4			P 1).8 3.0	-		Tible (F)	- >			
P 11					23.6			B 07 171					P 11					Tibia (F			nn.	
P 11	30.6			P 12*	22.3			MT III	-	_	В.		P 1		35.2	2 3	1.1				DD	
P 11	33.0			P 14**		42.1			Вр	В	Bd	GL	P 13		1.4			P 14	17.8	27.6	23.2	
P 11		19.7						P 10	15.0	13.0	16.4	87.3	P 1:		32.5			P 14	20.0	30.5	25.2	
P 12	31.4												P12		30.6	5 27	1.1	P 14	18.6			
P 12	30.7												P 1		2.4			P 14*		32.3	28.1	
P 12	29.8												P 13	2*	32.1	7 26	.1	P 14*	24.0	35.7	27.7	

Masse	Haus- und	Wildsch	wein (Tal	belle Y2/	C)																
	oder Wildsch																				
"" Wilds	chwein																				
Mandil	bela					H mand	H mand	H mand		M3 ma	ad			M1/M2	2 mand				M1 m	ì	
	M3-P2	M1-M3	P1-P4	P2-P4	M3-P1	P1	M1	M3	DM C		GL	GB			GL	GB				GL	GB
P1			51.8	34.4						P.4	36.3		15.9	P 31	21.8	14.6			P 10	15.3	3 14.
P1				34.1						P 80	29.8		19.3						P 12	14.3	3 13.4
P1			44.1	34.4						P 80	32.2		18.8	Maxilla							
P2				37.3						P 80	34.6		16.3		M1-M3	P1-P4	M3-P1	DM C			
P 30			56.5							P 11			15.8	P 30							
P 31		71.4								P 12	32.5		15.2	P 30							
P 31		1		34.5		39.9	37.0			P 12	33.4		15.4	P 31		42.6					
P 32			54.2							P 12	34.0		15.8	P 31		72.0					
P 32			60.6							P 12	31.2		15.2	P 32	68.2						
P 32	_		00.0	35.9						P 12	34.0		15.5	P 11	65.1						+
P 32			47.9		1					P 12	37.0		16.1	P 12	64.1					_	
P 32			41.3	36.8						P 12	35.9	-	16.2	P 12	69.0					_	+
			55.0						40.0											_	-
P 50	-		55.2			40.0			13.0	P 12	36.7		16.7	P 12	67.9			-		-	
P 53			57.1	37.4		46.0				P 12	33.1		15.4	P 12	63.4						
P 80		63.2								P 12	34.6		16.6	P 12	71.2						-
P 80			54.3							P 12	34.9	-	16.6	P 12	65.7						-
P 80			58.5							P 12	31.9		15.2	P 12	67.4						
P 80			50.3	33.5						P 12	36.4		17.6	P 12		43.5					
P 80						42.6				P 12	35.0		17.2	P 12		48.0					
P 80				37.3					19.6	P 12	30.9		14.9	P 12							
P 80								48.2		P 12	33.7		15.1	P 12			104.6				
P 10		68.0								P 12	33.5		15.6	P 12				16.3			
P 11		53.3								P 14	34.4		16.7								
P 11		72.7					41.3							M3 ma							
P 11			52.9	35.1						M2 ma	ad				GL	GB					
P 11			60.5	37.2							GL	GB	i	P 30	31.2						
P 11			59.9	38.7						P 30	20.5		14.1	P 30	31.1	17.5	5				
P 11				38.1						P 31	21.8		14.6	P 4	31.6	19.1	1				
P 12		62.2							22.1	P 32	19.3		14.4	P 50	33.0	19.0	1				
P 12	129.6	71.9	72.8	52.9	137.3					P.4	20.3		15.2	P 80	29.8	19.3					
P 12	118.0	61.1	54.7	33.9	123.2	45.8	39.5			P 80	19.8		16.6	P 80	32.2	18.8					
P 12		70.3		34.9						P 11	21.4		15.9	P 80	31.2	18.9	1				
P 12		53.7		35.9			40.7			P 12	21.2		14.5	P 12	31.5	18.4					
P 12		72.2								P 12	19.4		13.9	P 12	30.5						
P 12		72.4								P 12	20.5		15.2	P 12	35.4						
P 12			58.1	33.0						P 12	19.0		14.3	P 12	30.0						
P 12			55.3							P 12	19.8	-	14.5	P 12	32.8						
P 12			56.4							P 14	20.6		15.0	P 12	32.7						
P 12			57.9											P 14	36.2						
P 12			53.3			42.4				M1 mai	.d			1.14		10.0					
P 14	102.5	52.8				72.4				2111 124	GL	GB		M2 ma	T						
P 14	102.3	52.0	54.3							P 10	15.1	_	11.1		GL	GB					+
P 14	1		55.5			50.0			 	P 11	16.4		12.5	P 30	18.3			 			
P 14	+		60.4			30.0				P 12	15.1		11.3	P 30	22.4			 			+
P 80*			64.5			53.5				P 12	16.2		11.8	P 50	18.6						
P 11"	+		56.3			33.5	47.7			P IE	10.2		11.0	P 10	19.7	18.1					
P 80"			50.3	34.2			41.1		23.9						20.2						+
F 00		63.6	34.7			58.8			23.3		+			P 12	20.2						-
P 12**																					

Masse Hausbund	I (Taballa	Vojini																				
* Individuum mit Zah			5 7 1- 17212	l Lacköst eick	st au den in	diocer Arb	it beenree	honon Abet	ichen													
"Wolf	mache (siene	Rapiter Z.a		genore nici	ic za den in	aleser AFD	ek besproc	nenen Abst	renen.													
[] ungenaues Mass	_																					
[] ungenaues iviass		GB occ.																				
0-1-1-1																						
Schädel	triang.	cond.																				
P 11	39.5	36.9				H mand	H mand	H mand					pc/pa-			H mand						
Unterkiefer	M3-P1	M1-M3	P1-P4	P2-P4	M3-C	P1	M1	M3	L total	pa-inf	pc-C	pc/pa-C	inf	pa-C	M3-P2	P2/P3	L M1	B M1	LC	BC	L P4	B P4
P.4			37.4	33.1												17.2	20.0	7.6	9.3	6.3	10.6	5.3
P 80	68.6	34.8	35.7	31.1	73.3	19.0	24.5	29.4	126.9		106.8	107.17	122.8	:	65.5	19.0	20.4	7.8	10.6	7.3	10.7	5.4
P 11	65.1	32.6	33.2	28.5	70.8	17.5	19.0	23.4	118.5		102.75	95.8	112.24		60.3	17.4	19.4	7.0	8.6	5.7	9.6	4.4
P 11	66.4	33.2	33.3	28.8	71.3	18.2	19.5								62.2	17.5	20.0	7.4	8.5	5.4	6.7	4.7
P 11		30.6					25.3	28.4									18.6	7.3				
P 12															60.9	19.08	20.18	7.7	9.76	6.52	9.37	4.35
P 12															61.05		18.8	7.9			10.8	
17717*		1	1					1			126.4	117.93	1	1	69.9		21.34					
17/17"									142.13	139.23		117.41		123.05					11.15			
P.1"							29.4									24.2					14.9	7.2
Oberkiefer																						
P 80		18.3															12.93	14.62			17.17	7,43/9,43
P 11	59.9		46.3														10.81					8,6/10
P 2**		†									·		†····	·	†····	†····	†				22.7	
Humerus	\$D	Bd	Тр	GL																		
P 80	14.2																					
Radius	\$D	Bd	Вр	GL																		
P 2	11.0		- P	-																		
Femur	Вр	SD	Bd	GL																		
P 12	31.0																					
Tibia	Вр	\$D	Bd	GL																		
P 80		10.1		u.																		
P 14	29.4																					
Calcaneus	GL	GB	·····										†····	·	·····	†	·····	·····				
P 1"	57.1																					
Ph I prox	Вр	SD	GL																			
P 31"	10.9		[30,6]																			
MC4	Bd	GL	\$D	Вр																		
P 1"		- JL	8.4																			
MT2**	+		0.4	10.1																		
P 2"	11.3	84.9	8.3	6.4																		
P 3"	11.0	04.0	8.6											-								
MT3	Bd	GL	\$D	0.4																		
P 32"	12.2																					
MT4"	12.2	34.1																				
	+		0.5	[01																		
P 2**			8.5																			
P 3"			8.6	7.9																		
MT5"																						
P 2**			9.2	9.5																		

Masse Hirsch (T	abelle Y2	/E)					Masse	Braunbär	(Tabelle '	V2/F)	Masse Stein	bock (Tabe					
											M3 mand	GB	GL				
Unterkiefer		M1-M3					MC 2	Вр	SD		P2	2:	9.5 9.3	9			
P 50		79.2					P 32	18.7	70.9		Humerus	Вр	SD	Bd	BT	Dd	Glpe
M3 max	GB	GL					Femur		SD		P 51		24.0	5	46.5	;	
P1	23.7	25.3					P 12		27.3		P 2		24.4	48.0	46.5	;	
Scapula	SLC	GLP	LG	BG	H coll												
P 80	32.9	51.7	42.3	35.9	18.8												
Humerus	Вр	\$D	Bd	BT	Glpe						Femur						
P 12		26.4	55.0	52.6							P2		23.	1			
Metacarpus	Вр										Tibia						
P1	40.5										P 32			33.3		27.1	
Metatarsus	Вр	SD	Bd								P 32			38.1			
P 32			43.4								Phal I ant						
P 12	38.0	23.1									P 30	1	7.5 15.3	16.5			
P 12		23.6									Phal I post						
Phal II ant/post	Вр	SD	Bd		Glpe						P 80	13	.6 15.	17.9			48
P1	21.5	14.1	18.1		43.7						Phal I ant/po	st Bp	SD				
Phal III ant/post	DLS	MBS									P 10		.0 14.0	5			
P2	50.9	12.8									Tales	GLI	GLm	Bd	DI	Dm.	
Talus	GLI	GLm	Bd	DI	Dm.						P2	42	.8 38.3	28.3	24.3	23.2	
P2	54.5	51.8	33.7	29.6	31.1						Centrotarsa	le GB					
Calcaneus		GB									P.4	3:	2.1				
P2		33.0															
Masse Vögel" (1	[ab. V2/H]	l															
Ulaa		GL	Вр	Dp	SD	Dd											
Kolkrabe	P 55	109.78						-					_				
Kolerane Tambe	P 4	53.41						+					+	-			
7ambe	P 4	53.42						+					+	-	-		
Häusebussard								+									
	P 52	0.00	0.00	0.00	6.09	8.58											

H occ. triang.	Abkürzungen für Mandibula und Maxilla beim Hund: Höhe des Occipital Triangle		
GB occ. cond.	Grösste Breite der Occipital Condylen		
L total	Prozessus condylus-Infradentale		
pa-inf	Prozessus angularis-Infradentale		
pc-C	Prozessus condylus-Caninus hinten		
pc/pa-C	Einschnitt zwischen Proz. Condylus und Proz. Angularis- Caninus hinten		
pc/pa-inf	Einschnitt zwischen Proz. Condylus und Proz. Angularis- Infadentale		
pa-C	Prozessus angularis-Caninus hinten		
n – – Massabkürzunge			
5.K.	Länge des Hornzapfens an der äusseren Kurvatur	H coll	Höhe des Collum (Scapula-Halses)
В	Breite in der Mitte des Schafts	H mand P1	Höhe des Unterkiefers vor P2
Bd	grösste Breite des distalen Gelenks	H mand M1	Höhe des Unterkiefers vor M1
BFp	grösste Breite der Facies articularis proximalis	H mand M3	Höhe des Unterkiefers hinter M3
BFd	grösste Breite der Facies articularis distalis	HS	Höhe längs der Spina
BG	Breite des Glenoids	i.K.	Länge des Hornzapfens an der inneren Kurvatur
Вр	grösste Breite des proximalen Gelenk	KD	kleinster Durchmesser an der Hornzapfenbasis
BPC	grösste Breite der proximalen Gelenkfläche (über die Proc. Coronarii)	LA	Länge des Acetabulum einschliesslich des Labiu
ВТ	Breite der Trochlea	LAR	Länge des Acetabulum auf dem Rand (Kamm)
DC	grösster Durchmesser des Caput femoris	LD	Länge dorsal
DD	Tiefe des distalen Gelenks	L diast.	Länge des Diastema
DI	grösste Tiefe der lateralen Seite	LG	Länge der Gelenkfläche
DLS	grösste diagonale Länge der Sohle	LO	Länge des Olecranum
Dm .	grösste Tiefe der medialen Seite	MBS	mittlere Breite der Sohle
DM C	Durchmesser des Caninus	M1-M3	Länge der Molarreihe
Dp	Tiefe des proximalen Gelenks	M3-P1	Länge der ganzen Zahnreihe
DPA	Tiefe über den Processus anconaeus	M3-P2	Länge der Zahnreihe von P2 bis M3
GB	grösste Breite	P2-P4	Länge von P2 bis P4
GB occ. Condyl.	grösste Breite über die Condyli occipitales	P1-P4	Länge der Prämolarreihe
GD	grösster Durchmesser an der Hornzapfenbasis	SB	kleinste Breite der Darmbeinsäule
GL	grösste Länge	SD	kleinste Breite der Diaphyse
GLC	grösste Länge vom Caput Humeri aus	SDO	kleinste Tiefe des Olecranum
GLI	gösste Länge der lateralen Hälfte	s. Depth	kleinste Tiefe des Schaftes
GL=	grösste Länge der medialen Hälfte	SH	kleinste Höhe der Darmbeinsäule
GLP	grösste Länge des Processus articularis	SLC	kleinste Länge am Collum (Scapula-Hals)
Glpe	grösste Länge der peripheren Hälfte	U	Umfang an der Hornzapfenbasis
GL ₩.p.Epi	gösste Länge ohne proximale Epiphyse		

	Foto	Skelettelement	Alter	Beschreibung	Interpretation
Arthropaties	IV/A1,2	Pelvis, Acetabulum	adult	zerklüftete Gelenkfläche mit Schliffusuren (i.d.R. auf Pubis-Acetabulum, eine	Coxarthrose (Alter,
				Ausnahme auf Ischium-Acetabulum), Exostosen am Acetabulumrand, durch	Überbelastung?)
				Knochensubstanz geschlossene Incisurae acetabuli	
	IV/A3	Femur, Caput	adult	3 kleine Exemplare: Schliffusuren auf der mit dem Pubis-Acetabulum	Coxarthrose
				artikulierenden Region der Caputfläche (caudal)	
			adult	1 grosses Exemplar: Caputfläche in der Region um die Fovea capitis (proximal)	
				mit Schliffusuren und zerklüftet	
	IV/A4	Unterkiefergelenk	subadult o. adult	keine Schliffusuren, aber stark zerklüftete Gelenkfläche	Mangelerscheinung?
	IV/A5	Oberkiefergelenk	subadult o. adult	keine Schliffusuren, zerklüftete Gelenkfläche	Mangelerscheinung?
	IV/A6,7	Phalanx I und II	adult	proximale Gelenkfläche "lippig" ausgeweitet	
				jeweils 1 Phalanx I und 1 Phalanx II mit zusätzlichen äusseren	Arthropathie (Alter,
				Knochenwucherungen in proximaler Diaphysenregion	Überbelastung?)
"Bienenwaben"	IV/A9	Metapodien	nicht erwachsen- adult?	zusätzliche Knochenablagerungen auf der Innenseite der Kompakta (erinnern	Osteom, hormonelle Störung,
(Knochenwacherungen				an Gespinste/Kokons von Insekten), scheinen die Gesamtmorphologie	Mangelerscheinung?
in der Markhöhle)				des Skelettelements nicht zu beeinflussen, bis jetzt nur an MP beobachtet	
Pathologien am Gebiss		Unterkiefer	jungadult	sekundärer Zahnverlust: Alveole des P4 durch Knochensubstanz teilweise	Alter, Entzündung?
				zugewachsen, Zahn rausgefallen	
Anomalien am Gebiss	IV/A13	M3 mand/max	adult	Abkauungsanomalie: aboraler Ast überragt den boralen	
		M1/M2 mand	adult	Abkauungsanomalie: aboraler Ast überragt den boralen	
Abkauungsanomalie	IV/A14	Ober- und Unter-	adult	Abkauungsanomalie: unregelmässig abgekaut, meistens in der Zahnmitte am	
		kieferzähne		stärksten	
	IV/A20	M1 mand	adult	seitlich an Zahnkrone Einkerbung, unregelmässige Abkauung?	Zahnstellungsanomalie-> Ein-
					kerbung und Abkauungsanomalie
Oligodontie	IV/A15	M3 mand	adult	Reduktion der dritten Säule	genetisch bedingte Entwicklungs-
	IV/A16	P2 mand	adult	primäre Reduktion des P2	anomalie?
Zahnanomalien	IV/A17	M3 mand	adult	"Einschnürungen" der Zahnkrone, nahe der Basis	Störung in der Zahnschmelzentwicklung?
	IV/A18	dP4 mand	infantil	"Einschnürungen" der Zahnkrone, nahe der Basis, kleine Löcher im Schmelz	Störung in der Zahnschmelzentwicklung?
				auf der Lingulalseite	
	IV/A19	M2 mand	subadult o. adult	in der proximalen Hälfte der Zahnkrone (lingual) horizontale, wulstartige	Störung in der Zahnschmelzentwicklung?
				Verdickung	
Perforationen am	IV/A11	Schädel, Parietale	nicht erwachsen- adult	unregelmässig rundliche, verschieden grosse Löcher in der Parietale- bzw.	genetisch bedingte Entwicklungs-
Hinterschädel				Interparietaleregion mit abgerundeten Rändern, keine anderen Auffälligkeiten	anomalie?
				in der Knochenmorphologie der benachbarten Region	
Asymmetrie beim Schädel	IV/A10	Schädel, Basis	jungadult?	Basioccipitale und Condylen sind unsymmetrisch: links breiter und kürzer als	Haltungsschaden, ev. genetisch bedingt?
•		& Condylen	Basioccipitale nicht mit	rechts, in der Vertikalen rechte Seite tiefer als linke, Grenze zwischen	,
			Basisphenoid verwachsen	Basioccipitale und Condylen sehr stark ausgeprägt ("Berge" anstatt "Hügel")	
Asymmetrie bei Metapodien	IV/A8	Metatarsus	adult	mediale Gelenkrolle verbreitert	Überbelastung?
,,			adult	mediale Gelenkrolle verbreitert (+"Beule")	Überbelastung?
				, , ,	
	IV/A8	Metacarpus	adult	mediale Gelenkrolle verbreitert (+"proximale Eindellung")	Überbelastung?
Folgen von Traumata		Metatarsus	subadult o. adult?	in Schaftmitte an der Kompaktaaussenseite Bildung von zusätzlichem	verletzte Knochenhaut?
(Verletzungen)?		iviecatarsus	subdault o. adult?		verietzte Knochennaut?
[Terreczangen]:	IV/A22	Metatarsus	adult	Knochengewebe zusätzliche Knochenbildung seitlich (lateral oder medial) bis anterior in	verletzte Knochenhaut?
	IVINZZ	iviecatarsus	aguit	proximaler Schafthälfte	verietate Knochennaut?
		1		proximater ocharchalitte	

Tabelle VI/A: Cresta-Cazis. Hausrind. Pathologisch-anatomische Veränderungen. Gelb unterlegt: Veränderungen, die im Text beschrieben werden.

diverse pathologisch-	IV/A21	Metapodien	subadult oder adult	zusätzliche Knochenablagerungen auf der Aussenseite der Kompakta	
anatomische				(von der Struktur her mit den "Bienenwaben" auf der Innenseite vergleichbar),	
Veränderungen				keine anderen Störungen der Knochenoberfläche	
_		Metatarsus	adult	Störung der äusseren Knochenoberfläche (1- 2 mm tief reichend) in proximaler,	
				anteriorer Region der Diaphyse	
		Pelvis	adult	zusätzliche Knochenwucherungen (Region Illium, Ischium, Incisura acetabuli)	siehe Coxarthrose
	IV/A24	Rippe	adult	Oberfläche faltig und verwurstelt	
	IV/A24	Rippe, vorne	nicht erwachsen	veränderte Knochenstruktur am äusserer Rand unmittelbar hinter dem	
				proximalen Rippenende	
Pathologie,	IV/A23	Radius	subadult-subadult o. adult	tiefe Eindellung (Durchmesser ca. 0,5-1 cm) unterhalb des proximalen	
Anomalie oder	1			Gelenks, immer medial	
individuelle Variation?	IV/A23	Phalanx I	subadult o. adult	Eindellung unterhalb des proximalen Gelenks, immer medial	
	IV/A23	Metacarpus	subadult o. adult	tiefe Eindellung (Loch) unterhalb proximaler Gelenkfläche, lateral	
	IV/A25	Metatarsus	subadult o. adult	"beulenartige" Ausbuchtungen unter proximaler Gelenkfläche in der Region	
				des anterioren Foramens	
	IV/A26	Humerus	adult	knapp oberhalb der Fossa olecrani eine runde Eintiefung in die Kompakta	
				(Durchmesser ca. 1 cm), Ränder nicht glatt	
	IV/A27	Hornzapfen	adult	an Basis eingeschnürt	
	IV/A28	Centrotarsale	adult	Centrotarsale mit Naviculare fusioniert	

Tabelle VI/A (Fts.): Cresta-Cazis. Hausrind. Pathologisch-anatomische Veränderungen. Gelb unterlegt: Veränderungen, die im Text beschrieben werden.

	Foto	Skelettelement	Alter	Tierart	Beschreibung	Interpretation
Pathologien am Gebiss	IV/B1	Unterkiefer	subadult-altadult	0/C	Alveolen ausgeweitet, Alveolenrand ausgebuchtet,	eine durch Abnutzung oder den Zahnwechsel
					z.T. Unterkieferknochen seitlich ausgebuchtet, im Extremfall	gesteigerte Empfindlichkeit gegenüber
					aufgelöst	Verletzungen des Zahnfachs (Zahnfachentzündung)
	IV/B3		adult (v.a. altadult)	0/C	sekundärer Zahnverlust: Zuwachsen der Prämolar-Alveolen	Abnutzung, Vitaminmangel?
Anomalien am Gebiss	IV/B4	M3 max	altadult	O/C	Abkauungsanomalie: aboraler Teil-des Zahnes überragt den oralen	
	IV/B5	PM4 mand	jungadult	0/C	Abkauungsanomalie: Zahnmitte überragt aboralen und vorallem	
			1		oralen Zahnteil	
	IV/B2	Unterkiefer	altadult	0/C	Abkauungsanomalie: die Zähne der durch die Zahnfachaus-	durch Zahnfachentzündung bedingte
					buchtung betroffenenRegion (P3 bis M1) stehen schräg im Kiefer	Abkauungsanomalie?
					und sind teilweise ungleichmässig und vorallem verstärkt abgekaut	
	IV/B6	P2 mand	subadult u. altadult	0/0	primäre Zahnreduktion: weder Zahn noch Alveole vorhanden	
					(Oligodontie)	
Anomalien an Zähnen	IV/B7	M3 max	jungadult	0/C	hervorstehender "Buppel" (zusätzliche Bildung des Zahn-	
			i -		schmelzes?) in der Mitte der Zahnkrone an der bucalen Seite oral	
	IV/B8	M3 mand	altadult	0/C	Veränderungen baw. Störungen des Zahnschmelzes	
					("Gekräusel") an der Kronenbasis	
diverse pathologisch- anatomische	IV/B9	Metatarsus	subadult o. adult	KWK	an proximalem oder distalem Schaftende zusätzliche äussere	Verletzung, Entzündung der Knochenhaut?
Veränderungen					Knochenablagerungen bzwwucherungen	
			subadult	KWK	poröse Knochenablagerungen an anteriorer Schaftseite, Diaphyse	
					stärker durchgebogen als normal	
	IV/B10	Metacarpus	subadult o. adult	0/C	tiefe Eindellung am distalen Schaftende auf der Posteriorseite,	
					Anteriorseite ausgebuchtet	
		Tibia	?	KWK	Wucherungen an der distalen Sehnenansatzstelle	
	IV/B11	Tibia	subadult o. adult	0/C	oberhalb distalem Gelenk Durchlochung (ca. 4 mm Durchmesser)	
					von der ventralen auf die mediale Seite, die die Gestalt der	
					unmittelbar angrenzenden Diaphysenregion sowie des Gelenks	
					beeinflusst	
	IV/B12	Phalangen	subadult o. adult	0/0	in der Schaftmitte auf der medialen Seite Knochenwucherungen	
Pathologie,		Radius	subadult o. adult	Capra	Delle an der proximalen Sehnenansatzstelle (anteriore Seite)	
Anomalie oder		Tibia	subadult o. adult	Ovis?	zwei Foramen anstatt eines	
individuelle Variation?		Epistropheus	subadult o. adult	KWK	Wirbelkörper (Centrum) asymmetrisch verzogen	
		Scapula	subadult o. adult	KWK	Loch an der Spinabasis (gelenknahes Ende)	

Tabelle VI/B: Cresta-Cazis. Hausschaf/Hausziege. Pathologisch-anatomische Veränderungen. Gelb unterlegt: Veränderungen, die im Text beschrieben werden.

	Foto	Skelettelement	Alter	Tierart	Beschreibung	Interpretation
Arthropathie	IV/C1	Tibia	adult	Sus dom	lokale Auflösungen auf distaler Gelenkfläche, unmittelbar über dem	Arthritis?
					Gelenk stark vergrösserte Sehnenansatzstelle auf Dorsalseite,	
					z.T. wulstiger Gelenkrand	
Pathologien am Gebiss	IV/C2	Oberkiefer	jungadult	Sus dom	Alveole des M1 ausgeweitet, am zuwachsen	
			jungadult	Sus dom	Alveole des P4 am zuwachsen, ev. auch Molaren	
	IV/C3	Unterkiefer	adult	Sus scrof	sekundärer Zahnverlust: Zuwachsen der Alveolen von PM bis	
					Molaren	
Anomalien am Gebiss	IV/C4	P1 mand	adult	Sus dom	primäre Zahnreduktion: weder Zahn noch Alveole vorhanden	
			adult	Sus dom/scrof	(Oligodontie)	
			adult	Sus scrof		
diverse pathologisch- anatomische	IV/C5	Tibis	subadult o. adult	Sus dom	zusätzliche Knochenbildung (ca.3 cm lang, 1 cm breit) in Schaftmitte	Entzündung der Knochenhaut?
Veränderungen					auf der medialen Seite ventral	

Tabelle VI/C: Cresta-Cazis. Suidae. Pathologisch-anatomische Veränderungen. Gelb unterlegt: Veränderungen, die im Text beschrieben werden, kursiv: nur schwach ausgeprägte Veränderung.

Artefakte Wyss												
Tierart	Skelettelement	р1	p2	р3	р4	p5	р8	p10	p11	p12	p14	total
Hausrind	Incisivus							1				
	Mandibula									1	1	2
Hausschaf	Ulna				2							2
	Tibia					1						1
Hausziege	Ulna					1	1	1				3
Hausschaf/Hausziege	Ulna				1			1				2
Hausschwein	Fibula			3	2	2	1					8
Edelhirsch	Geweih			1	2				1	1		5
Braunbär												
GWK	Ulna				1						1	2
	Rippe			1					1			2
	indet Röhrenknochen						2					2
KWK	Metatarsus								1			1
	Rippe			1								1
	indet Plattenknochen							1				
	indet Röhrenknochen			1	1	1				- 1		4
	Tibia?			2	1	-						3
Grösse Schaf-Schwein				_								<u> </u>
Grösse Hirsch-Rind												
indet												
total												40
1010												
Artefakte Plüss												
Tierart	Skelettelement	р1	p2	р3	р4	р5	р8	p10	p11	p12	p14	total
Hausrind	Mandibula	Pi	Pε	ро	р4	Po	1	pio	P 1	PIE	річ	2
Haustillu	Brustwirbel (T.Fts.)					1	2					3
	Rippen			3	1	- '	10			2		16
	Scapula		1	3	- '		1			-		2
	Radius		'				1			1		2
						1	1			_ '		2
	Metacarpus Femur				1	- 1	1					1
	Tibia T				- 1					1		
	1									1		1
	Metatarsus						1					
Hausschaf	Ulna			1	3		1					5
	Tibia					1						1
Hausziege	Ulna				1	1	1	1				4
Hausschaf/Hausziege	Ulna			2	1			1				4
	Tibia			1						1		2
Hausschwein	Ulna						1					
	Fibula				1							
Edelhirsch	Geweih				1							
Braunbär	Eckzahn (Mandibula)				-		_				1	
GWK	Scapula			1							<u> </u>	
KWK	Ulna			- '		1						
rwr.	Tibia	1		1	1	3	3			1		10
	Radius			1	- '	3	1					2
				- '	1							
	Metatarsus			1	- 1							
0.70.1.7.0.17	Metapodium											
Grösse Schaf-Schwein	indet Röhrenknochen			1								
Grösse Hirsch-Rind	indet Röhrenknochen				1							1
indet	indet Röhrenknochen						1					_ 1
							2					2
	indet Plattenknochen indet			1			~					-

Tabelle VII: Cresta-Cazis. Verteilung der Artefakte auf Tierarten, Skelettelemente und Schichten. "Artefakte Wyss" sind bereits publiziert (Wyss 2002), Fortsetzung auf der nächsten Seite.

Artefakte Wyss un Tierart	Skelettelement	р1	p2	р3	р4	р5	р8	p10	p11	p12	p14	total
Hausrind	Incisivus+Mandibula	ъ.	F-	P-	P T	P-	1	1	1	1	1	5
	Brustwirbel (T.Fts.)					- 1	2	- 1	- 1	- 1		3
	Rippen			3	- 1		10			2		16
	Scapula		- 1	-			1					2
	Radius		-				1			1		2
	Metacarpus					- 1	1			-		2
	Femur				- 1	-	-					1
	Tibia				-					- 1		1
	Metatarsus						1			-		1
Hausschaf	Ulna			- 1	3		1					5
	Tibia			-		1	-					1
Hausziege	Ulna				- 1	1	- 1	- 1				4
Hausschaf/Hausziege	Ulna			2	1	-	-	1				4
	Tibia			1	-			-		- 1		2
Hausschwein	Ulna			-			1			-		1
	Fibula			3	3	2	- 1					9
Edelhirsch	Geweih			1	3				1	1		6
Braunbär	Eckaahn (Mandibula)										1	1
GWK	Ulna				1						1	2
	Rippe			1					1			2
	Scapula			1								1
	indet Röhrenknochen						2					2
KWK	Ulna					1						1
	Tibia	1		1	1	3	3			1		10
	Radius			1			1					2
	Metatarsus				1				1			2
	Metapodium			1								1
	Rippe			1								1
	indet Röhrenknochen			1	1	1				1		4
	indet Plattenknochen							1				1
	Tibis?			2	1							3
Grösse Schaf-Schwein	indet Röhrenknochen			1								1
Grösse Hirsch-Rind	indet Röhrenknochen				1							1
indet	indet Röhrenknochen						1					1
	indet Plattenknochen						2					2
	indet			- 1								1
total				-								104

Tabelle VII: Cresta-Cazis. Verteilung der Artefakte auf Tierarten, Skelettelemente und Schichten. "Artefakte Wyss" wurden bereits publiziert (Wyss 2002). Fortsetzung.

SCHWEIZ	Sion VS-F		Vex VS-I	6	Ayent VS	-le	Visp VS-	Höhle in	Lumbrein-	
JOHN EIE		, dol. MXI BZ		007	Château	007	Albon		Crestault	
				SBZ		SBZ		,SBZ		BZ
Rind	n 187	n% 28.0	n 131	n% 28.1	n 59	n% 19.6	n 25	n% 48.1	MIZ 175	MIZ% 19.
Schaf	381	57.0	131	20.1	- 55	13.6	- 25	40.1	ca. 450	50.
Ziege	301	51.0							ca. 450	16.3
Schaf/Ziege			285	61.0	199	66.1	23	44.2	Ca. 150	10.
Schwein	78	11.7	30	6.4	39	13.0	1	1.9	80	9.0
Hund	17	2.5	1	0.4	2	0.7	1	1.3	4	0.5
Pferd	- "	2.5	<u> </u>	0.2	1	0.1	- '	1.3	1	0.
Prera Total Haustiere	665	99.1	447	95.7	300	99.7	50	96.2	860	97.0
Vildrind (Ur oder Wiesent)	860	33.7	447	35.1	300	33.7	- 30	36.2	?	31.0
Hirsch			6	1.3					1	0.
Elch			°	1.3					<u>'</u>	0.
Steinbock			8	1.7					4	0.5
			·	1.1					3	
Gämse Reh									,	0.3
Wildschwein									7	0.8
Wildschwein Bär			1	0.2					4	
			1	0.2					4	0.5
Wolf										
Fuchs										
Wildkatze			ļ .						1	0.
Dachs	_		1	0.2					_	
Marder	2	0.3							2	0.2
kleiner Carnivor										
Murmeltier			4	0.9					1	0.
Biber										
Kleinnager (Maus etc.)							1	1.9	1	0.
Hase					1	0.3				
lgel .										
Vogel							1	1.9	3	0.3
Reptilien	3	0.4								
Amphibien										
Fisch	1	0.1								
Wirbellose (Schnecken etc.)										
Total Irilatiere	6	0.9	20	4.5	- /	0.5	2	5.8	24	2.7
Bestimmte (WT+HT)	669	44.2	467	39.6	301	37.4	52	44.8	887	
Total (Best.+Unbest.)	1515	100	1178	100	804	100	116	100	-	
		CD	Oberriet :							
										-
SCHWEIZ	Savognin	un-			Ramosch	GR-	Scuol GR	-Munt	Scuol GR	
SCHVEIZ	Padnal		Montling	erberg	Mottata		Baselgia		Motta Sf	onderaz
\$CH¥EIZ	Padnal St	3Z	Montling	erberg BZ	Mottata	:-SBZ	Baselgia MBZ	:-SBZ	Motta Sf SE	onderaz Z?
	Padnal St n 1971	3Z n 1972	Montling	erberg BZ n%	Mottata	7-8BZ n%	Baselgia MB2 n	-SBZ	Motta Sf SE n	onderaz Z? n%
Rind	Padnal St n 1971 59.64	3Z	Montling	erberg BZ	Mottata	:-SBZ	Baselgia MBZ	:-SBZ	Motta Sf SE n 193	onderaz Z? n% 44.4
Rind Schaf	Padnal SI n 1971 59.64 1.66	3Z n 1972	Montling	erberg BZ n%	Mottata	7-8BZ n%	Baselgia MB2 n	-SBZ	Motta Sf SE n 193 2	onderaz Z? n% 44.4 0.5
Rind Schaf Ziege	Padnal SI n 1971 59.64 1.66 0.73	3Z n 1972 45.71	Montling	erberg BZ n% ca. 55	Mottata	r-SBZ n% ca. 39	Baselgia MB2 n 1389	:-SBZ n% 56.6	Motta Sf SE n 193 2	onderaz Z? n% 44.4 0.5
Rind Schaf Ziege Schaf/Ziege	Padnal SI n 1971 59.64 1.66 0.73 29.2	3Z n 1972 45.71 42.35	Montling	erberg BZ n% ca. 55 ca. 19	Mottata	ca. 41	Baselgia MB2 n 1389 631	-SBZ n% 56.6 25.7	Motta Sf SB n 193 2 11 162	onderaz Z? n% 44.4 0.5 2.5 37.2
Rind Schaf Ziege Schaf/Ziege Schwein	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72	3Z n 1972 45.71 42.35 11.54	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21	Mottata	ca. 41	Baselgia MB2 n 1389 631 358	-SBZ n% 56.6 25.7 14.6	Motta Sf SE n 193 2	onderaz Z? n% 44.4 0.5 2.5 37.2
Rind Schaf Ziege Schaf/Ziege Schwein Hund	Padnal SI n 1971 59.64 1.66 0.73 29.2	3Z n 1972 45.71 42.35 11.54 0.1	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21	Mottata	ca. 41	Baselgia MB2 n 1389 631 358 43	-SBZ n% 56.6 25.7 14.6 2.0	Motta Sf SB n 193 2 11 162	onderaz Z? n% 44.4 0.5 2.5 37.2
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16	3Z n 1972 45.71 42.35 11.54 0.1	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21	Mottata	ca. 41	Baselgia MB2 n 1389 631 358 43	-SBZ n2 56.6 25.7 14.6 2.0 0.2	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.9 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72	3Z n 1972 45.71 42.35 11.54 0.1	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21	Mottata	ca. 41	Baselgia MB2 n 1389 631 358 43	-SBZ n% 56.6 25.7 14.6 2.0	Motta Sf SB n 193 2 11 162	onderaz Z? n% 44.4 0.5 2.9 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd <i>Total Houstiere</i>	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16	3Z n 1972 45.71 42.35 11.54 0.1	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21	Mottata	ca. 41	Baselgia MB2 n 1389 631 358 43 4	25.7 14.6 2.0 9.2 9.9	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaf/Ziege Schwein Heferd Total Houstiere Wildrind (Ur oder Wiesent)	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 \$88.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 +	Mottata	ca. 41 ca. 5	Baselgia MB2 n 1389 631 358 43 4 243/	2-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Haustiere Wildrind (Ur oder Wiesent) Hirsch	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16	3Z n 1972 45.71 42.35 11.54 0.1	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21	Mottata	ca. 41	Baselgia MB2 n 1389 631 358 43 4	2-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd <i>Total Houstiere</i> Wildrind (Ur oder Wiesent) Hirsch	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 \$88.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 •	Mottata	ca. 41 ca. 5	Baselgia MB2 n 1389 631 358 43 4 243/	2-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaflziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elich Steinbock	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 eca. 5	Mottata	ca. 41 ca. 5	Baselgia MB2 n 1389 631 358 43 4 2437 15	25.7 14.6 20.0 0.2 33.0 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd <i>Total Houstiere</i> Wildrind (Ur oder Wiesent) Hirsch	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 \$88.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 + ca. 5	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5	Baselgia MB2 n 1389 631 358 43 4 243/	25.7 14.6 20.0 0.2 33.0 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaflziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elich Steinbock	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% cs. 55 cs. 19 cs. 21 + cs. 5	Mottata	-SBZ n% cs. 39 cs. 41 cs. 14 cs. 5 xxx	Baselgia MB2 n 1389 631 358 43 4 2437 15	25.7 14.6 20.0 0.2 33.0 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaflziege Schwein Hund Pferd Total Haustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse	Padnal SI n 1971 59.64 1.666 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% cs. 55 cs. 19 cs. 21 + cs. 5	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5	Baselgia MB2 n 1389 631 358 43 4 2437 15	25.7 14.6 20.0 0.2 33.0 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Haustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh	Padnal SI n 1971 59.64 1.666 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 + ca. 5 ×xxx x	Mottata	-SBZ n2 ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx xx xx (x)	Baselgia MB2 n 1389 631 358 43 4 2437 15	25.7 14.6 20.0 0.2 33.0 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Haustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 * ca. 5 *	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gömse Reh Wildschwein Bör	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 * ca. 5 *	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 • ca. 5	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaflziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 • ca. 5	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total/Noustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bör Wolf Fuchs Wildkatee	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 • ca. 5	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkstee Dachs	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 • ca. 5	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildstee Dachs Marder	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 • ca. 5	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkstee Dachs Marder kleiner Carnivor Murmeltier	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total/Noustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 21 • ca. 5	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildstae Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.)	Padnal SI n 1971 59.64 1.666 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total/Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.9 2.9 37.2 14.8
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkate Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase	Padnal SI n 1971 59.64 1.666 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motts Sf SE n 193 2 11 162 65	onderae Z? n½ 44.4 0.9 2.1 37.2 14.3 99.5 0.2
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total/Austiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bör Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Vogel	Padnal SI n 1971 59.64 1.666 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motta Sf SE n 193 2 11 162 65	onderae Z? n½ 44.4 0.9 2.1 37.2 14.3 99.5 0.2
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total Noustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Vogel Reptilien	Padnal SI n 1971 59.64 1.666 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motts Sf SE n 193 2 11 162 65	onderaz Z? n% 44.4 0.5 2.5 37.2 14.3
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildstee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Vogel Reptillen Amphibien	Padnal SI n 1971 59.64 1.666 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motts Sf SE n 193 2 11 162 65	onderae Z? n½ 44.4 0.9 2.1 37.2 14.3 99.5 0.2
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Tota/Hbustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Vogel Reptillen Amphibien Fisch	Padnal SI n 1971 59.64 1.666 0.73 29.2 9.72 0.16 98.7 0.7	3Z n 1972 45.71 42.35 11.54 0.1 9.89	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 4 2437 15	-SBZ n% 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motts Sf SE n 193 2 11 162 65	onderaz Z? n½ 44.4 0.9 2.1 37.2 14.3 99.5 0.2
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total/Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämze Reh Wildschwein Bär Wolf Fuchs Wildschwein Bör Wildschwein Hace Igel Vogel Reptillien Amphibien Fisch Wirbellose (Schnecken etc.)	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	32 n 1972 45.71 42.35 11.54 0.17 39.9	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 49 24/3/ 15 1	-SBZ n½ 56.6 25.7 14.6 2.0 0.2 39.0 0.6 0.0	Motts Sf	onderaz Z? n½ 44.4 0.5 37.2 14.5 99.5 0.2
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total Noustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bör Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Vogel Reptillien Amphibien Fisch Wirbellose (Schnecken etc.) Total InWaltiere	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7 0.08 0.2 0.04 0.04 0.04	32 n 1972 45.71 42.35 11.54 0.17 98.9	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 43 4 2437 15 1	-SBZ n½ 56.6 25.7 14.6 2.0 0.2 33.0 0.6 0.0	Motta Sf 193 2 111 162 65 433 1	onderae 2? n% 44.4 0.9 2.1 14.3 99.5 0.2
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildstee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Vogel Reptillien Amphibien Fisch Wirbellose (Schnecken etc.)	Padnal SI n 1971 59.64 1.66 0.73 29.2 9.72 0.16 98.7 0.7	32 n 1972 45.71 42.35 11.54 0.17 39.9	Montling	erberg BZ n% ca. 55 ca. 19 ca. 51 ca	Mottata	-SBZ n% ca. 39 ca. 41 ca. 14 + ca. 5 xxx xx	Baselgia MB2 n 1389 631 358 49 49 24/3/ 15 1	-SBZ n ² 56.6 25.7 14.6 2.0 0.2 3.9.0 0.6 0.0 0.1	Motts Sf	onderae Z? n% 44.4 0.9 2.1 14.3 99.5 0.2

Tabelle VIII: Cresta-Cazis. Vergleichssiedlungen der Alpen. Tierartenzusammensetzung. x 0- 10%, xx 10- 50%, xxx 50- 90%, xxxx 90- 100%, () gemischte Schicht, + vorhanden, - nicht vorhanden.

Eschner F		Bludenz-	AU	Wiesing		Kitabühel					
Lutzengü				Buchberg		Kelchalpe					
_			_								
297	47.1										
						221					
99	15.7	271	23.5	358	19.3	592	14.8				
132	20.9	47	4.1	637	34.2	2444	61.1				
7	1.1	17	1.5	1	0.05						
15	2.4	80	6.9	8	0.4						
550	87.2	1002	89.6	1843	99.2	3997	100.0				
				1	0.05						
59	3.4	100	8.7								
	7.1										
			0.3		0.2						
		-	0.0								
-	0.2		0.0								
		,	0.0								
			0.0								
		ſ	0.6								
1	0.2										
1	0.2										
†											
—											
t				1	0.05						
-				- '	0.05						
	-										
		120	10.4	15	0.8		0.0				
631	100	1152		1858		3997					
Naturns I	-	Nössing-	i	Albanbüh	iel-l	Sotciaste	:1-1	Sonnenbu	ırg-l	Eppan I-G	iamberon
Schnalser	rhof								•	i	
F	BZ	FBZ	'MBZ	MBZ	Z/SBZ	MBZ	YSBZ	FBZ.M	BZ.SBZ	SE	3Z
n	n%								_	n	n%
											50.3
243							40.5				20.8
	1 65.01	759	42.2	I 5454	50.4	1000		120	211	297	20.0
		759	42.2	5454	52.4	1020	49.5	120	31.1	297	04.0
19	5.1	171	9.5	661	6.4	89	4.3	42	10.9	304	
	5.1			661				42 4	10.9 1.0	304 57	21.3 4.0
19 10	5.1 2.7	171 6	9.5 0.3	661 35	6.4 0.3	89 13	4.3 0.6	42 4 1	10.9 1.0 0.3	304 57 29	4.0 2.0
19	5.1	171	9.5	661	6.4	89	4.3	42 4	10.9 1.0	304 57	4.0 2.0
19 10	5.1 2.7	171 6 <i>1748</i>	9.5 0.3 97.3	661 35 <i>10293</i>	6.4 0.3 98.9	89 13 <i>2050</i>	4.3 0.6 99.5	42 4 1 377	10.9 1.0 0.3 97.7	304 57 29 <i>M04</i>	4.0 2.0 <i>98.5</i>
19 10	5.1 2.7	171 6	9.5 0.3	661 35 <i>10293</i>	6.4 0.3 98.9	89 13	4.3 0.6 99.5	42 4 1	10.9 1.0 0.3 97.7	304 57 29	4.0 2.0 <i>98.5</i>
19 10	5.1 2.7	171 6 <i>1748</i>	9.5 0.3 97.3	661 35 <i>10293</i>	6.4 0.3 98.9	89 13 <i>2050</i>	4.3 0.6 99.5	42 4 1 377	10.9 1.0 0.3 97.7	304 57 29 <i>M04</i>	4.0 2.0 <i>98.5</i>
19 10	5.1 2.7	171 6 <i>1748</i>	9.5 0.3 97.3	661 35 <i>10293</i>	6.4 0.3 98.9	89 13 <i>2050</i>	4.3 0.6 99.5 0.1	42 4 1 377	10.9 1.0 0.3 97.7	304 57 29 <i>M04</i>	4.0 2.0 <i>98.5</i>
19 10	5.1 2.7	171 6 <i>1748</i>	9.5 0.3 97.3 2.0	661 35 <i>M2593</i> 83	6.4 0.3 98.9	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377	10.9 1.0 0.3 97.7	304 57 29 <i>M04</i>	4.0 2.0 98.5 1.4
19 10	5.1 2.7	171 6 1748 36	9.5 0.3 97.3 2.0	661 35 <i>M2293</i> 83	6.4 0.3 58.9 0.8	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377	10.9 1.0 0.3 97.7	304 57 29 <i>M04</i> 20	4.0 2.0 98.5 1.4
19 10	5.1 2.7	171 6 1748 36	9.5 0.3 97.9 2.0 0.05 0.3	661 35 <i>M2293</i> 83	6.4 0.3 58.9 0.8	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377	10.9 1.0 0.3 97.7	304 57 29 <i>M04</i> 20	4.0 2.0 <i>98.5</i> 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 <i>A0283</i> 83	6.4 0.3 98.9 0.8	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36	9.5 0.3 97.9 2.0 0.05 0.3	661 35 <i>A0283</i> 83 1 8 1	6.4 0.3 98.9 0.8 0.0 0.1	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377	10.9 1.0 0.3 57.7 2.1	304 57 29 4404 20	4.0 2.0 <i>98.5</i> 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 <i>A0283</i> 83	6.4 0.3 98.9 0.8	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 <i>A0283</i> 83 1 8 1	6.4 0.3 98.9 0.8 0.0 0.1	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 <i>A0283</i> 83 1 8 1	6.4 0.3 98.9 0.8 0.0 0.1	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 <i>A0283</i> 83 1 8 1	6.4 0.3 98.9 0.8 0.0 0.1	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 <i>A0283</i> 83 1 8 1	6.4 0.3 98.9 0.8 0.0 0.1	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 <i>A0283</i> 83 1 8 1	6.4 0.3 98.9 0.8 0.0 0.1	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 <i>A0283</i> 83 1 8 1	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.3 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.5 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.5 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.3 1.4 0.
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.5 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.3 1.4 0.
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.5 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.3 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.5 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.3 1.4
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.5 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.3 1.4 0.
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.5 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.3 1.4 0.
19 10	5.1 2.7	171 6 1748 36 1 6 3	9.5 0.3 97.5 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.3 1.4 0.
19 10 374	5.1	171 6 1748 36 1 6 3 3 3	9.5 0.3 97.9 2.0 0.05 0.2 0.2	661 35 83 83 1 1 8 1 1 16	6.4 0.3 38.9 0.8 0.0 0.1 0.0 0.2	33 2050 3 2	4.3 0.6 9.9.5 0.1 0.2	42 4 1 377 8	10.9 1.0 0.3 97.7 2.1	304 57 23 4404 20	4.0 2.0 983 1.4 0.
19 10	5.1	171 6 1748 36 1 6 3	9.5 0.3 97.5 2.0 0.05 0.3 0.2	661 35 83 83 1 1 16	0.8 0.8 0.8 0.0 0.0 0.1 0.0 0.2	89 13 <i>2050</i> 3	4.3 0.6 99.5 0.1	42 4 1 377 8	10.9 1.0 0.3 587 2.1	304 57 29 4404 20	4.0 2.0 38.3 1.4 0.
	93 132 7 15 550 59 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	297 47.1 99 15.7 132 20.3 7 1.1 15 2.4 550 57.2 59 9.4 2 0.3 17 2.7 1 0.2 1 0.2 1 0.2 Naturns I- Schnalserhof FBZ n n² 102 27.3 16 4.3	Naturns Natu	n n½ n n½ 297 47.1 617 53.6 135 11.7 135 11.7 39 15.7 271 23.5 132 20.9 47 4.1 7 1.1 17 1.5 15 2.4 80 6.3 550 87.2 8032 83.6 53 3.4 100 8.7 2 0.3 3 0.8 17 2.7 0.6 0.6 1 0.2 7 0.6 1 0.2 7 0.6 1 0.2 7 0.6 1 0.2 7 0.6 1 0.2 7 0.6 1 0.2 6 0.6 81 10.2 10.2 10.2 81 10.2 10.2 10.2 81 10.2 10.2 10.2	n n² n n² n 297 47.1 617 53.6 839 135 11.7 168 39 15.7 271 23.5 358 132 20.9 47 4.1 637 7 1.1 17 1.5 1 15 2.4 80 6.3 8 550 87.2 89.6 84.3 59 9.4 100 8.7 8 4 0.3 - 4 4 0.3 2 0.3 3 0.8 - 4 4 4 0.3 - 4 4 0.3 - 4 4 0.3 - 4 4 0.3 - 8 - - 4 4 0.3 - - - - - - - - - - - - - - - -	n n² n n² n n² 297 47.1 617 53.6 839 45.0 135 11.7 168 9.0 136 11.8 5 0.3 39 15.7 271 22.5 358 19.3 132 20.9 47 4.1 637 34.2 7 1.1 17 1.5 1 0.05 15 2.4 80 6.9 8 0.4 550 87.2 88.6 88.6 89.4 39.2 53 3.4 100 8.7 8 0.4 4 0.3 4 0.2 4 0.2 2 0.3 9 0.8 1 0.2 1 0.2 7 0.6 1 0.05 1 0.2 7 0.6 1 0.05 1 0.2 1 0.05 1 0.05 <td>n n² n n² n n² n 297 47.1 617 53.6 839 45.0 361 135 11.7 168 3.0 371 136 11.8 5 0.3 221 39 15.7 271 23.5 358 19.3 532 132 20.9 47 4.1 637 34.2 2444 7 1.1 17 1.5 1 0.05 44 550 87.2 8032 89.6 1843 39.2 3997 53 3.4 100 8.7 8 0.4 0.2 2 0.3 9 0.8 0.4 0.2 0.4 0.2 1 0.2 7 0.6 0.4 0.05 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <</td> <td>n n% n n% n n% 297 47.1 617 53.6 833 45.0 361 24.0 135 11.7 168 3.0 371 3.3 39 15.7 271 23.5 358 13.3 592 14.8 132 20.3 47 4.1 637 34.2 2444 61.1 7 1.1 17 1.5 1 0.05 1 15 2.4 80 6.9 8 0.4 6.1 550 57.2 6032 59.6 6843 59.2 3997 600.0 59 3.4 100 8.7 8 0.4 0.2 0.0 2 0.3 9 0.8 1 0.2 0.0 0.0 1 0.2 7 0.6 1 0.05 0.0 0.0 1 0.2 7 0.6 1 0.05<!--</td--><td>n n% n n n% n <th< td=""><td>n n% n n n% n <</td><td>n n²√ n n²√</td></th<></td></td>	n n² n n² n n² n 297 47.1 617 53.6 839 45.0 361 135 11.7 168 3.0 371 136 11.8 5 0.3 221 39 15.7 271 23.5 358 19.3 532 132 20.9 47 4.1 637 34.2 2444 7 1.1 17 1.5 1 0.05 44 550 87.2 8032 89.6 1843 39.2 3997 53 3.4 100 8.7 8 0.4 0.2 2 0.3 9 0.8 0.4 0.2 0.4 0.2 1 0.2 7 0.6 0.4 0.05 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <	n n% n n% n n% 297 47.1 617 53.6 833 45.0 361 24.0 135 11.7 168 3.0 371 3.3 39 15.7 271 23.5 358 13.3 592 14.8 132 20.3 47 4.1 637 34.2 2444 61.1 7 1.1 17 1.5 1 0.05 1 15 2.4 80 6.9 8 0.4 6.1 550 57.2 6032 59.6 6843 59.2 3997 600.0 59 3.4 100 8.7 8 0.4 0.2 0.0 2 0.3 9 0.8 1 0.2 0.0 0.0 1 0.2 7 0.6 1 0.05 0.0 0.0 1 0.2 7 0.6 1 0.05 </td <td>n n% n n n% n <th< td=""><td>n n% n n n% n <</td><td>n n²√ n n²√</td></th<></td>	n n% n n n% n <th< td=""><td>n n% n n n% n <</td><td>n n²√ n n²√</td></th<>	n n% n n n% n <	n n²√ n n²√

Tabelle VIII: Cresta-Cazis. Vergleichssiedlungen der Alpen. Tierartenzusammensetzung.

	Pfatten I-	Vadena	Bozen I-f	ingerhof	Fiavé I-C	агега	Ledro-I		Lasino I-F	Ripario de
NORDITALIEN									Santuario)
	SI	BZ	F	BZ	BZ (MBZ)	FBZ	/MBZ	FBZ	,MBZ
	n	n%	n	n%	n	n%	n	n%	n	n%
Rind	187	31.6	63	63.6	1400	32.3	2469	26.6	651	31.63
Schaf					169	3.9				
Ziege					73	1.7				
Schaf/Ziege	258	43.6	17	17.2	2491	57.5	5676	61.2	1023	49.7
Schwein	121	20.4	18	18.2	317	7.3	822	8.9	289	14.04
Hund	8	1.4			9	0.2	35	0.4	9	0.43
Pferd	4	0.7								
Total Haustiere	578	97.6	98	99.0	4217	97.4	9002	97.0	1972	95.62
Wildrind (Ur oder Wiesent)										
Hirsch	3 [7]	0,5 [1,2]			71	1.6	183	2.0	79	3.83
Elch										
Steinbock			1	1.0						
Gämse					9	0.2	3	0.03		
Reh					22	0.5	16	0.2	2	0.03
Wildschwein	1	0.2								
Bär					3	0.1	70	0.8	2	0.03
Wolf									1	0.04
Fuchs							2	0.02		
Wildkatze	1	0.2								
Dachs										
Marder										
kleiner Carnivor	1*	0.2			3	0.1				
Murmeltier										
Biber										
Kleinnager (Maus etc.)										
Hase	1	0.2			1	0.02			2	0.03
lgel									_	
Vogel					2	0.05				
Reptilien										
Amphibien					1	0.02				
Fisch					1					
Wirbellose (Schnecken etc.)										
Total Inilatiere	14	2.4	- /	1.0	113	2.6	274	5.0	86	4.17
Bestimmte (WT+HT)	592	100	99	16.7	4330	80.5	9276	91.2	2058	69.0
Total (Best.+Unbest.)	1		594	100	5377			100	2981	

Tabelle VIII: Cresta-Cazis. Vergleichssiedlungen der Alpen. Tierartenzusammensetzung. [] Geweih.

	Hochdorf	10-	Zug ZG- :	Sumpf	Zürich ZH		Arbon TC		Cortaillo	a NE-Est	Hauterive	
SCHWEIZ	Baldegg	67	007		Alpenqua	i	Bleiche 2				Champré	veyres
		BZ	SBZ	-	SBZ	-	FBZ		SBZ		SBZ	-
	MIZ	MIZ%	n	n%	n	n%	MIZ	MIZ%	n	n%	n	n%
Rind	30		377	43.0	1550	28.5	69	33.8	82	24.5	653	11.3
Schaf	27	18.6			424	7.8	31	15.2				
Ziege	20	13.8			160	2.9	31	15.2				
Schaf/Ziege	47	32.4	306	34.9	1621	29.8	62	30.4	139	41.5	3168	54.8
Schwein	21	14.5	75	8.6	1253	23.1	54	26.5	68	20.3	932	16.
Hund	3	2.1	25	2.9	252	4.6	7	3.4	7	2.1	136	2.4
Pferd	3	2.1	17	1.9	195	3.6	4	2.0	2	0.6	17	0.3
Total Haustiere	104	74.7	800	91.3	4871	89.7	196	96.1	298	89.0	4906	84.8
Wildrind (Ur oder Wiesent)	2	1.4			120	2.2						
Hirsch	21	14.5	60	6.8	301	5.5	3	1.5	24	7.2	592	10.2
Elch		14.5		0.0			Ť	1.0		1.2	202	10.6
Steinbock												
Gämse												
	L .											
Reh	2	1.4	1	0.1	4	0.1	1		5	1.5	27	0.5
Wildschwein	8		10	1.1	86	1.6	1		8	2.4	38	0.1
Bär	3		2	0.2	21	0.4	1	0.5			30	0.5
Wolf	1	0.7									1	0.0
Fuchs											13	0.2
Wildkatze											7	0.
Fischotter			1	0.1								
Dachs			<u>'</u>	V.1								
Marder	1	0.7									5	0.
	 '	0.1									٠,	0.
kleiner Carnivor												
Murmeltier												
Biber	3	2.1	2	0.2	29	0.5	1	0.5			3	0.
Kleinnager (Maus etc.)											4	0.
Hase											53	0.3
lgel											26	0.4
Vogel							1	0.5			76	1.3
Reptilien											5	0.1
Amphibien											-	
Fisch												
	-											
Wirbellose (Schnecken etc.)							_					45.4
Total Iniidtiere	41	28.3	76	8.7	561	10.5	8	5.9	37	11.0	880	15.2
Bestinnte (VT+HT)	145		876		5432		204		335	36.2	5786	
Total (Best.+Unbest.)	l						l		926		l	
HODDE LUE								. 5. 1				
NORDITALIEN	Trana-I		Viverone	· I	Barche di			i Piadena	Nogarole			
NORDITALIEN					Solferino	- 1	I- Palafitt	icolo	Nogarole i Campon	i- I		
NORDITALIEN		3Z?		· I	Solferino Fl	- I BZ	I- Palafitt Fl	icolo BZ	Nogarole i Campon Anfan	i- I g MBZ		
		32?			Solferino Fl n	- BZ n%	I- Palafitt FI n	icolo BZ n%	Nogarole i Campon Anfand	i-l g MBZ n%		
NORDITALIEN Rind		3Z?			Solferino Fl	- I BZ	I- Palafitt Fl	icolo BZ	Nogarole i Campon Anfan	i- I g MBZ n% 36.9		
	SE	32?	E		Solferino Fl n	- BZ n%	I- Palafitt FI n	icolo BZ n%	Nogarole i Campon Anfand	i-l g MBZ n%		
Rind Schaf	SE	3Z?	E		Solferino Fl n	- BZ n%	I- Palafitt FI n 478	icolo BZ n% 29.3	Nogarole i Campon Anfanon n	i- I g MBZ n% 36.9 3.4		
Rind Schaf Ziege	SE	3Z?	XX		Solferino Fl n 963	- BZ n%	I- Palafitt FI n 478 43	icolo BZ n% 29.3 2.6	Nogarole i Campon Anfand n 487 45	i- I g MBZ n% 36.9 3.4		
Rind Schaf Ziege Schaf/Ziege	SE	32?	XX XX		Solferino Fl n 963	- I 3Z n% 31.1 23.9	I- Palafitt FI n 478 43 10 667	icolo BZ n% 29.3 2.6 0.6 40.8	Nogarole i Campon Anfanon n 487 45 7 437	i-1 g MBZ n% 36.9 3.4 0.5 33.2		
Rind Schaf Ziege Schaf/Ziege Schwein	SE xx	3Z?	xx xx xx		Solferino Fl n 963 741 766	-1 3Z n% 31.1 23.9 24.7	I- Palafitt FI N 478 43 10 667 401	icolo BZ n% 29.3 2.6 0.6 40.8 24.5	Nogarole i Campon Anfanon n 487 45 7 437 228	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3		
Rind Schaf Ziege Schaf/Ziege Schwein Hund	XX X	3Z?	xx xx xx xx		Solferino FI n 963 741 766 75	-1 3Z n% 31.1 23.9 24.7 2.4	I- Palafitt FI n 478 43 10 667	icolo BZ n% 29.3 2.6 0.6 40.8	Nogarole i Campon Anfanon n 487 45 7 437 228	i-1 g MBZ n2 36.9 3.4 0.5 33.2 17.3		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd	SE xx	3Z?	xx xx xx		Solferino FI n 963 741 766 75	-1 3Z n% 31.1 23.9 24.7 2.4 0.3	I- Palafitt Fi n 478 43 10 667 401	icolo BZ n% 29.3 2.6 0.6 40.8 24.5	Nogarole i Campon Anfanon N 487 45 7 437 228 19	i-1 g MBZ n2 36.9 3.4 0.5 33.2 17.3 1.4 0.5		
Rind Schaf Ziege Schaf/Ziege Schwein Herd Pferd	xx x x xx	52?	xx xx xx xx		Solferino FI n 963 741 766 75 10	-1 3Z n% 31.1 23.9 24.7 2.4 0.3 82.5	I- Palafitt FI N 478 43 10 667 401	icolo BZ n% 29.3 2.6 0.6 40.8 24.5	Nogarole i Campon Anfanon n 487 45 7 437 228	i-1 g MBZ n2 36.9 3.4 0.5 33.2 17.3		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Haustiere Wildrind (Ur oder Wiesent)	XX XX XXX	32?	xx xx xx xx x		Solferino FI n 963 741 766 75 10 2555 6	23.9 24.7 2.4 0.3 2.5 0.2	I- Palafitt FI N 478 43 10 667 401 20	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2	Nogarole i Campon Anfan n 487 45 7 437 228 19 7	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Haustiere Wildrind (Ur oder Wiesent)	xx x x xx	32?	xx xx xx xx		Solferino FI n 963 741 766 75 10	-1 3Z n% 31.1 23.9 24.7 2.4 0.3 82.5	I- Palafitt Fi n 478 43 10 667 401	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2	Nogarole i Campon Anfanon N 487 45 7 437 228 19	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Mustiere Wildrind (Ur oder Wiesent) Hirsch	XX XX XXX	32?	xx xx xx xx x		Solferino FI n 963 741 766 75 10 2555 6	23.9 24.7 2.4 0.3 2.5 0.2	I- Palafitt FI n 478 43 10 667 401 20 5566	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.8	Nogarole i Campon Anfan- n 487 45 437 228 19 7 430 51	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Haustiere Wildrind (Ur oder Wiesent)	XX XX XXX	52?	xx xx xx xx x		Solferino FI n 963 741 766 75 10 2555 6	23.9 24.7 2.4 0.3 2.5 0.2	I- Palafitt FI N 478 43 10 667 401 20	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.8	Nogarole i Campon Anfan- n 487 45 437 228 19 7 430 51	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Mustiere Wildrind (Ur oder Wiesent) Hirsch	XX XX XXX	52?	xx xx xx xx x		Solferino FI n 963 741 766 75 10 2555 6	23.9 24.7 2.4 0.3 2.5 0.2	I- Palafitt FI n 478 43 10 667 401 20 5566	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.8 2.3	Nogarole i Campon Anfan- n 487 45 437 228 19 7 .630	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Haustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock	XX XX XXX	32?	xx xx xx xx x		Solferino FI n 963 741 766 75 10 2555 6	23.9 24.7 2.4 0.3 2.5 0.2	I- Palafitt FI N 478 43 100 667 401 20 /566 37	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.8 2.3 0.1	Nogarole i Campon Anfanen 1 487 45 7 437 228 3 7 839	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$9.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino FI n 963 741 766 75 10 2333 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6	I- Palafitt FI n 478 433 100 667 401 20 566 37 1 2 8	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 35.6 0.1 0.1 0.1	Nogarole i Campon Anfanon n 487 7 437 228 19 7 6230 51	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$9.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd <i>Total Houstiere</i> Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein	x x xx xx xx	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt n 478 43 100 667 401 20 5566 37	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 35.6 0.1 0.1 0.1	Nogarole i Campon Anfanon n 487 7 437 228 19 7 6230 51	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$9.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd <i>Total Haustiere</i> Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino FI n 963 741 766 75 10 2333 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6	I- Palafitt FI n 478 433 100 667 401 20 566 37 1 2 8	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 35.6 0.1 0.1 0.1	Nogarole i Campon Anfanon n 487 7 437 228 19 7 6230 51	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$9.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI n 478 433 100 667 401 200 /566 37 1 2 8 5	2000 2000	Nogarole i Campon Anfanon n 487 7 437 228 19 7 6230 51	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$9.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI n 478 433 100 667 401 20 566 37 1 2 8	2000 2000	Nogarole i Campon Anfanon n 487 7 437 228 19 7 6230 51	i-1 g MBZ n% 36.9 3.4 0.5 33.2 17.3 1.4 0.5 \$9.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkstee	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI n 478 433 100 667 401 200 /566 37 1 2 8 5	2000 2000	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildstee Dachs	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI 1 478 433 100 667 401 200 5566 37 1 2 8 5 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.6 0.1 0.1 0.5 0.3	Nogarole i Campon Anfanon n 487 7 437 228 19 7 6230 51	i-1 g MBZ n2 36.9 3.4 0.5 33.2 17.3 1.4 0.5 93.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd <i>Total Haustiere</i> Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatze Dachs Marder	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI n 478 433 100 667 401 200 /566 37 1 2 8 5	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.6 0.1 0.1 0.5 0.3	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkstee Dachs Marder kleiner Carnivor	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI 1 478 433 100 667 401 200 5566 37 1 2 8 5 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.6 0.1 0.1 0.5 0.3	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd <i>Total Haustiere</i> Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatze Dachs Marder	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI 1 478 433 100 667 401 200 5566 37 1 2 8 5 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.6 0.1 0.1 0.5 0.3	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkstee Dachs Marder kleiner Carnivor	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI 1 478 433 100 667 401 200 5566 37 1 2 8 5 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.6 0.1 0.1 0.5 0.3	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI 1 478 433 100 667 401 200 5566 37 1 2 8 5 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.6 0.1 0.1 0.5 0.3	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bör Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.)	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI 1 478 433 100 667 401 20 5666 37 1 2 8 5 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.0 0.1 0.1 0.1 0.1	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd 7-stal Haustiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildstee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 100 2555 6 267	-1 32 n% 31.1 23.9 24.7 2.4 0.3 82.5 0.2 8.6 3.5 2.9	I- Palafitt FI 1 478 433 100 667 401 200 5566 37 1 2 8 5 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.0 0.1 0.1 0.1 0.1	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino Fi n 963 741 766 750 6 2677 90 7	-1 32	I- Palafitt FI 1 478 433 100 667 401 20 5666 37 1 2 8 5 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.0 0.1 0.1 0.1 0.1	Nogarole i Campon Anfanon n 4877 437 2288 199 7 7 62300 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatze Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Kleinsäuger	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 100 2555 6 267	-1 32	I- Palafitt FI 1 478 433 100 667 401 200 566 37 1 1 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.6 2.3 0.1 0.1 0.1 0.1 0.1	Nogarole i Campon Anfanon n 487 455 7 437 228 139 7 7 6290 51	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total/Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatae Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Kleinsäuger Vogel	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino 963 741 766 750 6 267 107 90 7	-1 32 n% 31.1 23.9 24.7 2.4 0.3 6.2 5 0.2 3.6 2.9 0.2 0.2 0.5 0.3	I- Palafitt FI 1 478 438 100 667 401 200 5566 37 1 2 8 5 1 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.6 2.3 0.1 0.1 0.5 0.3 0.1 0.1 0.1	Nogarole i Campon Anfanon n 4877 437 228 19 9 7 7 62300 51 433 44 4	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bör Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Kleinsäuger Vogel Reptillen	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 100 2555 6 267	-1 32	I- Palafitt n 478 433 100 667 401 20 5566 37 1 1 2 8 5 1 1 1 1 1 3 6	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	Nogarole i Campon Anfanon n 4877 437 228 19 9 7 7 4330 51 433 44 4	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total/Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatae Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Kleinsäuger Vogel	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino 963 741 766 750 6 267 107 90 7	-1 32 n% 31.1 23.9 24.7 2.4 0.3 6.2 5 0.2 3.6 2.9 0.2 0.2 0.5 0.3	I- Palafitt FI 1 478 438 100 667 401 200 5566 37 1 2 8 5 1 1	icolo BZ n% 29.3 2.6 0.6 40.8 24.5 1.2 95.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	Nogarole i Campon Anfanon n 4877 437 228 19 9 7 7 4330 51 433 44 4	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bör Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Kleinsäuger Vogel Reptillen	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino 963 741 766 750 6 267 107 90 7	-1 32 31.1 23.9 24.7 2.4 0.3 82.5 0.2 3.5 2.9 0.2 0.2 0.5 0.3 1.2	I- Palafitt n 478 433 100 667 401 20 5566 37 1 1 2 8 5 1 1 1 1 1 3 6	100 100	Nogarole i Campon Anfanon n 4877 437 228 19 9 7 7 4330 51 433 44 4	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bör Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Kleinsäuger Vogel Reptillen Amphibien Fisch	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 10 2555 6 267 107 90 7	-1 32 31.1 23.9 24.7 2.4 0.3 82.5 0.2 3.5 2.9 0.2 0.2 0.5 0.3 1.2	I- Palafitt Fi n 478 43 100 667 401 20 //s66 37 1 1 1 1 1 1 1 1	100 100	Nogarole i Campon Anfanon n 4877 437 228 19 9 7 7 4330 51 433 44 4	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		
Rind Schaf Ziege Schaf/Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bär Wolf Fuchs Wildkatze Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Kleinsäuger Vogel Reptillien Amphibien Fisch Wirbellose (Schnecken etc.)	XX XX XX XX XX XX	32?	xx xx xx xx x		Solferino 741 766 75 75 66 267 107 90 7	-1 32	I- Palafitt Fi 1 478 433 100 667 401 200 5566 37 1 1 1 1 1 2 3 6 1 2 2 3 6 1 1 2 2 3 6 1 2 2 3 6 1 2 2 3 6 1 2 2 3 6 1 2 2 3 6 1 2 2 3 6 1 2 2 3 6 1 2 2 3 6 1 2 2 2 2 3 6 1 2 2 2 3 6 1 2 2 2 3 6 1 2 2 2 2 3 6 1 2 2 2 2 2 2 2 2 2 2 2 2	100 100	Nogarole i Campon Anfanon Nogarole i Campon Anfanon Nogarole i Campon Nogarole i Cam	i-1 g MBZ nX 36.9 3.4 0.5 33.2 17.3 1.4 0.5 93.5 2.5		
Rind Schaf Ziege Schaf/Ziege Schwein Hund Pferd Total Houstiere Wildrind (Ur oder Wiesent) Hirsch Elch Steinbock Gämse Reh Wildschwein Bör Wolf Fuchs Wildkatee Dachs Marder kleiner Carnivor Murmeltier Biber Kleinnager (Maus etc.) Hase Igel Kleinsäuger Vogel Reptillen Amphibien Fisch	XX XX XX XX XX XX	52?	xx xx xx xx x		Solferino Fi n 963 741 766 75 10 2555 6 267 107 90 7	-1 32 31.1 23.9 24.7 2.4 0.3 82.5 0.2 3.5 2.9 0.2 0.2 0.5 0.3 1.2	I- Palafitt Fi n 478 43 100 667 401 20 //s66 37 1 1 1 1 1 1 1 1	100 100	Nogarole i Campon Anfanon n 4877 437 228 19 9 7 7 4330 51 433 44 4	i-1 g MBZ n½ 36.9 3.4 0.5 33.2 17.3 1.4 0.5 99.9		

Tabelle VIII: Cresta-Cazis. Vergleichssiedlungen Flachland. Tierartenzusammensetzung. x 0- 10%, xx 10- 50%, xxx 50- 90%, xxxx 100%.

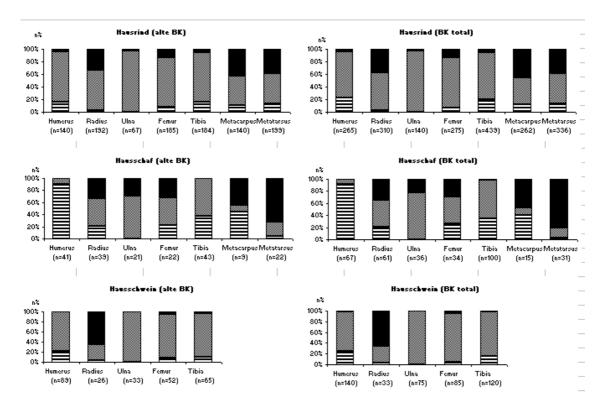

NORDITALIEN	Isolone d	ella	Sabbiona	ira di	Cisano I-	Palafitta	Quarto d	el Tormine
	Prevaldes	ca- I	Veronella	ı- I			I- Mozze	cane
	S	BZ	S	BZ	FBZ	/MBZ		g MBZ
	n	n%	n	n%	n	n%	n	n%
Rind	1284	40.4	720	64.6	199		100	38.2
Schaf					32		24	9.2
Ziege					2			
Schaf/Ziege	1056	33.2	232	20.8	294		122	46.6
Schwein	585	18.4	94	8.4	90		35	13.4
Hund	43	1.4	11	1.0	4		1	0.4
Pferd	65	2	43	3.9			4	1.5
Total Haustiere	೫೫೫	95.4	1100	98.7	621		262	100.0
Wildrind (Ur oder Wiesent)								
Hirsch	102	3.2	10	0.9	1			
Elch								
Steinbock								
Gämse								
Reh	30	0.9						
Wildschwein	10	0.3	5	0.4				
Bär	1	0.03						
Wolf					1			
Fuchs	2	0.1						
Wildkatae								
Dachs								
Marder								
kleiner Carnivor								
Murmeltier								
Biber								
Kleinnager (Maus etc.)								
Hase	1	0.0						
lgel								
Kleinsäuger								
Vogel								
Reptilien								
Amphibien								
Fisch								
Wirbellose (Schnecken etc.)								
Total Inilatiere	146	4.6	15	1.3	2		0	
Bestimmte (\(\pi\text{T+HT}\)	3179		1115		588	48.0	262	33.9
Total (Best.+Unbest.)					637		774	

Tabelle VIII: Cresta-Cazis. Vergleichssiedlungen Flachland. Tierartenzusammensetzung.

Fundstelle	Literatur	Fundstelle	Literatur	
Sion VS-Petit Chasseur, dolmen MXI	Chaix 1976a	Bozen I- Fingerhof	Riedel 1986b	
Vex VS- le Château	Chaix 1990b	Fiavé I- Carera	Jarman 1975	
Ayent VS- le Château	Chaix 1990a		Gamble u. Clark 1987	
Visp VS-Höhle in Albon	Chaix 1987	Ledro-1	Riedel 1976b	
Lumbrein-Surin GR- Crestaulta	Rüeger 1942	Lasino I- Ripario del Santuario	Riedel u. Tecchiati 1992	
Savognin GR- Padnal	Rageth 1986 (Auswertung der	Wittnau AG- Wittnauerhorn	Rüeger 1945	
	Tierknochen: Ph. Morel und C. Gamble)		Schibler 1996	
	Bopp in Vorbereitung	Möriken AG- Kestenberg	Schmid 1952 und 1955	
Oberriet SG-Montlingerberg	Würgler 1962	Kirchberg SG- St. Iddaburg	Würgler 1956	
Ramosch GR- Mottata	Würgler 1962	Hochdorf LU- Baldegg	Hescheler u. Rüeger 1940	
Scuol GR- Munt Baselgia	Kaufmann 1983	Arbon TG- Bleiche 2	Kuhn u. Güller 1946	
Scuol GR- Motta Sfonderaz	Rageth 1998 (Auswertung der	Zug ZG- Sumpf	Schibler u. Veszeli 1996	
	Tierknochen: A. Rehazek)	Zürich ZH- Alpenquai	Wettstein 1924	
Eschner FL- Lutzengüetle	Hartmann-Frick 1960	Cortaillod NE- Est	Chaix 1986	
Bludena- AU	Amschler 1937	Hauterive NE- Champréveyres	Studer 1991	
Wiesing AU- Buchberg	Pucher 1986	Trana- I	Fedele 1983	
Kitabühel AU- Kelchalpe	Amschler 1937	Viverone	Fedele 1983	
Boira Fusca- I	Fedele 1983	Barche di Solferino	Riedel 1976a	
Monfenera I- Laghetto	Giacobini et al 1980	Lagazzi di Piadena I- Palafitticolo	Cavallo 2000	
	Fedele 1983	Nogarole Rocca i Camponi- I	Riedel 1992	
Naturns I- Schnalserhof	Riedel 2000a	Isolone della Prevaldesca- I	Riedel 1975	
Nössing- I	Riedel u. Tecchiati 1999	Sabbionara di Veronella- I	Riedel 1993	
Albanbühel-I	Rizzi 1995 und 1997	Cisano I- Palafitticolo	Riedel 1990	
Sotciastel-I	Riedel u. Tecchiati 1998	Quarto del Tormine I- Mozzecane	Riedel 1987	
Sonnenburg-I	Riedel 1984a	Braida Roccia- I	Riedel 1981	
Eppan I-Gamberoni	Riedel 1985	Pozzuolo del Friuli- I	Riedel 1384b	
Pfatten I- Vadena	Riedel 1981	Kastanas- G	Becker 1986	

Tabelle VIII: Cresta-Cazis. Vergleichssiedlungen der Alpen und des Flachlandes, Literaturangaben.

ABBILDUNGEN I-IV

Abbildung I: Cresta-Cazis. Fragmentanalyse A beim Hausrind, Hausschaf und Hausschwein unter Berücksichtigung aller (rechts) bzw. nur der alten (links) Bruchkanten. Schwarz: proximale Epipysenregion gerastert: Diaphyse, gestreift: distale Epiphysenregion.

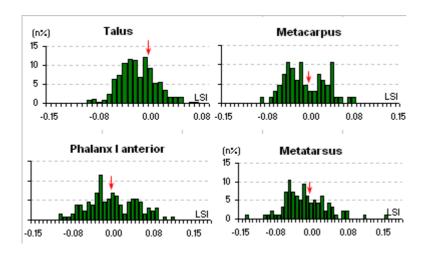


Abbildung II: Cresta-Cazis. Hausrind. Häufigkeitsverteilung der Grössenindizes (LSI) bei einzelnen Skelettelementen. In den Diagrammen Talus, Metacarpus und Phalanx I sind Ansätze einer bimodalen Verteilung erkennbar, im Diagramm Metatarsus nicht. Der rote Pfeil markiert das Standartindividuum.

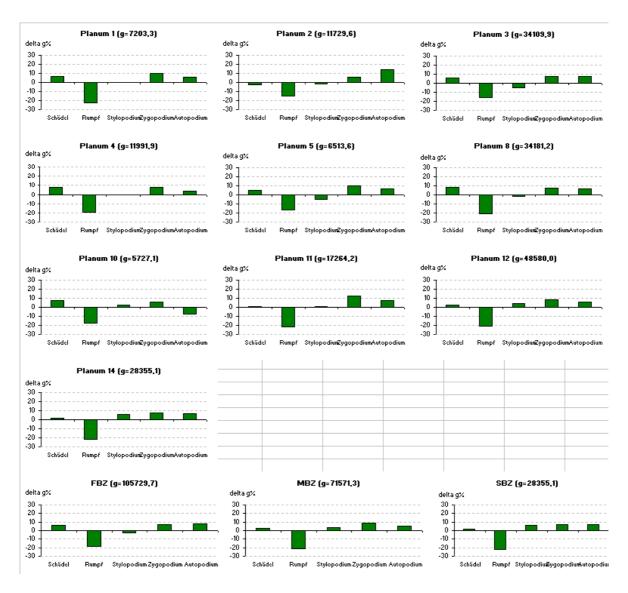


Abbildung III/A: Cresta-Cazis. Hausrind. Fleischregionverteilung in den einzelnen Schichten. Die Null-Linie entspricht dem Standartskelett(siehe Tabelle II/4 im Anhang).

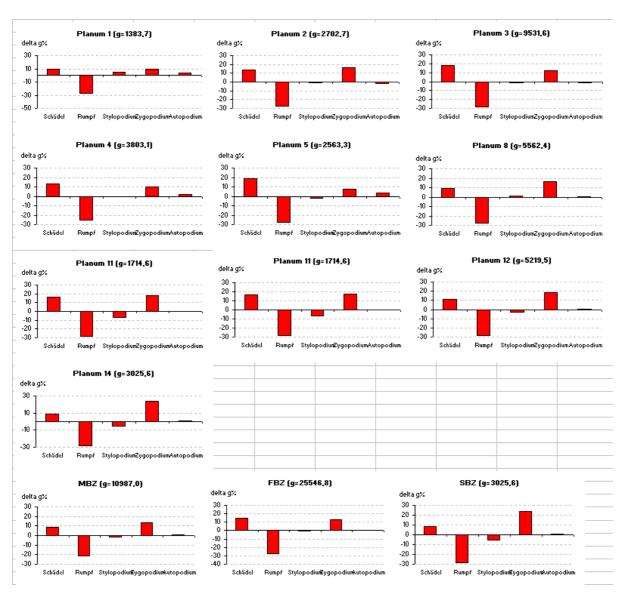


Abbildung III/B1: Cresta-Cazis. Hausschaf/Hausziege. Fleischregionverteilung in den einzelnen Schichten. Die Null-Linie entspricht dem Standartskelett (siehe Tabelle II/4 im Anhang).

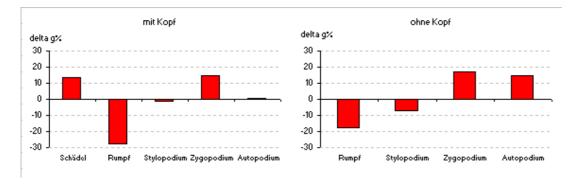


Abbildung III/B2: Cresta-Cazis. Hausschaf/Hausziege. A Kopf nicht berücksichtigt B Kopf berücksichtigt.

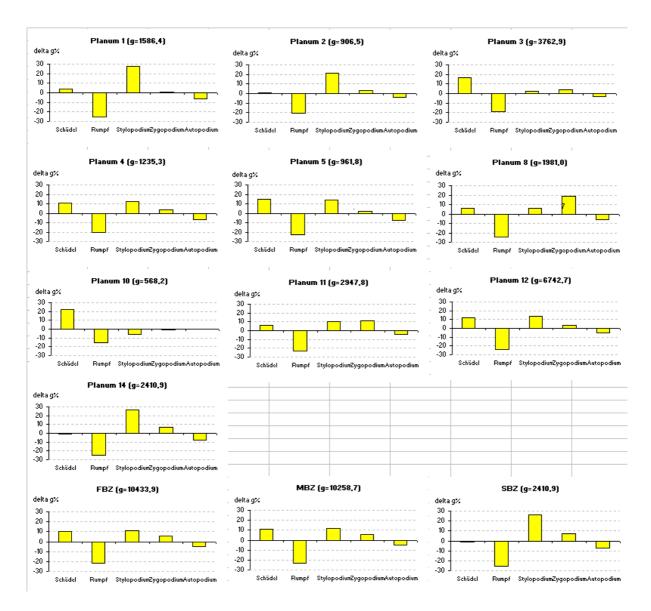
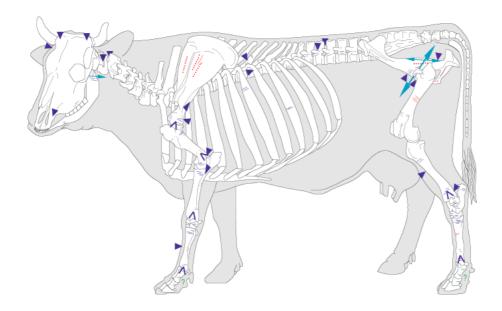
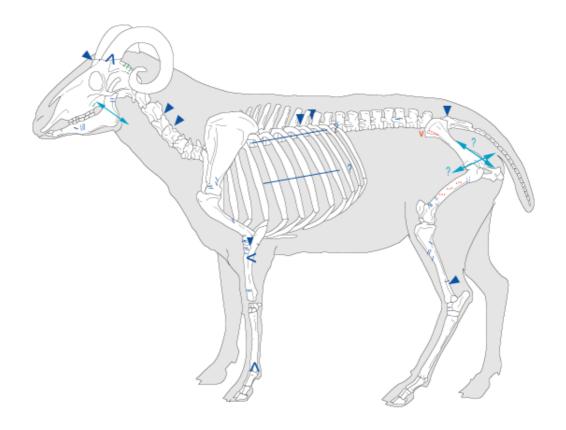
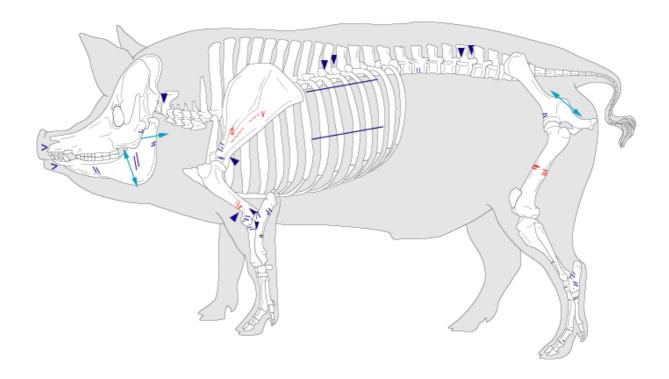




Abbildung III/C: Cresta-Cazis. Hausschwein. Fleischregionverteilung in den einzelnen Schichten. Die Null-Linie entspricht dem Standartskelett.(siehe Tabelle II/4 im Anhang).

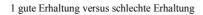

Abbildung IV/A: Hausrind. Schlachtspuren. Rohzeichnung M. Coutueau (inrap) d'après R. Barone, Anatomie compare des mammifres, Tl, d. Vigot 1976. Blau: Zerlegen, rot: Entfleischen, grün: Häuten

- p Hackspur
- 1 Trennspur?
- > längsgehackt
- tiefe Schnittspur, mit v daneben befindet sie sich auf der Ventralseite
- Schnittspur
- ? unsicher

Abbildung IV/B: Hausschaf. Schlachtspuren. Rohzeichnung M. Coutueau (inrap) d'après R. Barone, Anatomie comparé des mamifres, T1, d. Vigot, 1976. Blau: Zerlegen, rot: Entfleischen, grün: Häuten.

- Hackspur
- 1
- Trennspur längsgehackt >
- proportioniert
- tiefe Schnittspur, mit v daneben befindet sie sich auf der Ventralseite
- Schnittspur
- unsicher

Abbildung IV/C: Hausschwein. Schlachtspuren. Rohzeichnung M. Coutueau (inrap) d'après R. Barone, Anatomie comparé des mamifres, T1, d. Vigot, 1976. Blau: Zerlegen, rot: Entfleischen, grün: Häuten.


- р 1
- Hackspur Trennspur längsgehackt >
- proportioniert
- tiefe Schnittspur, mit v daneben befindet sie sich auf der Ventral-, mit d auf der Dorsalseite
- Schnittspur
- ? unsicher

FOTOS I-IV

Foto I

Unterschiedliche Erhaltzungszustände der Knochen (1-3)

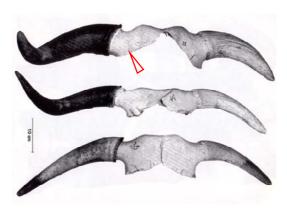
2 "Harzpatina", typisch für die frühesten Schichten

versus

rezente Brandspuren

Foto II Schlachtspuren (1-3)

1 Markentnahme: Längsspaltung bei Röhrenknochen (links Humerus, rechts Metapodien) vom Rind


2 Zerlegen: Schnitt- und Hackspuren an Gelenken (links Humerus, rechts Pelvis Hausschwein)

3 Zerlegen?: Typische Hackspuren (in Längsrichtung) am Radius

Foto II

Schlachtspuren (4-8)

4 Zerlegen (Hirnentnahme?): rezenter Schlachtabfall (Knecht 1966)

5 Zerlegen (Hirnentnahme?): sichtbare Beilspuren ? Vergleiche mit Foto 4

6 Zerlegen?: Längsspaltung der Scapula beim Rind

7 Entfleischen: tiefe Schnittspuren in Längsrichtung auf der Scapula von Rindern (und Schweinen)

8 Entfleischen: tiefe Schnittspuren auf dem Femurschaft eines kleinen Hauswiederkäuers

Foto III/A

Hausrind Wuchsformen (1)

1 Geschlechtsdimorphismus beim Rind (rechts: Weibchen, links: Männchen)

Foto III/A

Hausrind Wuchsformen (2- 6)

2 Kuh

3 Ochse?

4 Stier?

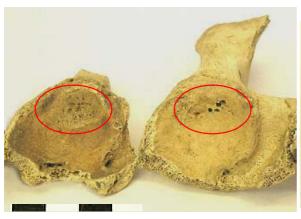
5 stark variierende Kompaktadicke zweier ungefähr gleich alter Kälber

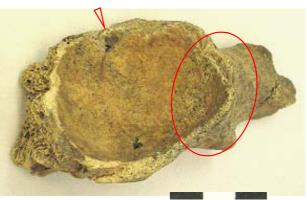
6 verschiedene Wuchsformen beim Rind: Metacarpus (links) und Metatarsus (rechts)

Foto III/B

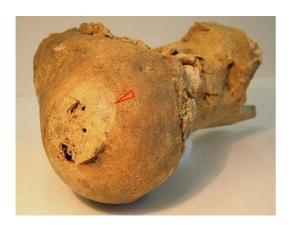
Hausschaf und Hausziege Wuchsformen: Hornzapfen (1-4)

1 Grössenreduktion bei den männlichen Hornzapfen


2 Extrem dünnwandiger und runder Hornzapfen eines Ziegenbockes (vgl. Foto 3)

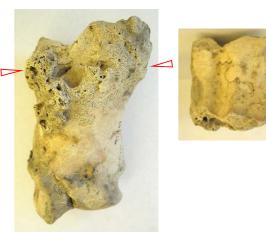

3 rezenter Schafsschädel mit krakheitsbedingt anomalen (sehr dünnwandigen) Hornzapfen (vgl. Foto 2). Osteologische Vergleichssammlung des Instituts für prähistorische und naturwissenschaftliche Archäologie (IPNA), Basel

4 Morphologische Variationen bei Hornzapfen (Spitze) weiblicher Ziegen


Hausrind Pathologisch-anatomische Veränderungen an den Knochen (1-6)

1 Coxarthrose Pelvis (Kuh)

2 Coxarthrose Pelvis (Ochse?)

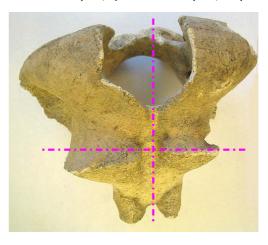

3 Coxarthrose Femur

4 Arthropatie Kiefergelenk (Mandibula)

5 Arthropatie Kiefergelenk (Maxilla)

6 proximale Gelenkfläche "lippig" azsgeweitet (Phalanx I) + äussere Knochenwucherungen

Hausrind Pathologisch-anatomische Veränderungen an den Knochen (7-12)

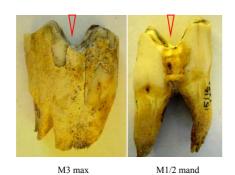

7 proximale Gelenkfläche "lippig" ausgeweitet (Phalanx II)

8 Arthropatie (Asymmetrie und Arthropathie) Metapodien

9 Knochenwucherung in der Markhöhle (Metatarsus)

10 Assymmetrie beim Schädel+Arthropathie

11Perforationen im Hinterschädel (Frontale)


Hausrind Pathologisch-anatomische Veränderungen an den Knochen (12-16)

12 Abkauungsanomalie, einseitig (M3 Maxilla)

13 Abkauungsanomalie, einseitig (M3 Mandibula)

14 Abkauungsanomalie (M1 und/oder M2, Mandibula und/oder Maxilla)

15 Oligodontie: zweisäuliger M3 (Mandibula)

16 Oligodontie: Primäre Zahnreduktion (P2 Mandibula)

Hausrind Pathologisch-anatomische Veränderungen an den Knochen (17-20)

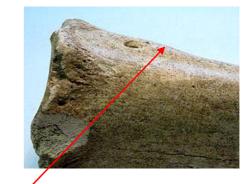
17 "Einschnürung" der Zahnkrone (M3 Mandibula)

18 "Einschnürung" der Zahnkrone+ kleine Dellen im Zahnschmelz , Oberfläche wie aufgelöst (dP4 Mandibula)

19 Verdickung der Zahnkrone (M2 Mandibula)

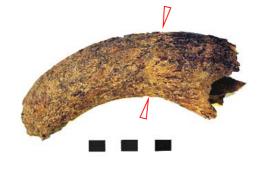
20 seitliche Einkerbung

Hausrind Pathologisch-anatomische Veränderungen an den Knochen (21-25)



22 Zusätzliche Knochenbildung bei Metapodien

23 Eindellungen bzw. Löcher unterhalb des proximalen Gelenks bei Phalangen, Radien und Metapodien



24 Veränderung der Knochenoberfläche bei Rippen

25 "Ausbeulung" unterhalb des proximalen Gelenks bei Metapodien

Hausrind Pathologisch-anatomische Veränderungen an den Knochen (26-28)

26 Veränderung der Knochenoberfläche beim Humerus

27 Hornzapfen an Basis eingeschnürt (Kuh)

28 Centrotarsale: leichte Arthropathie

Foto IV/B

Hausschaf/Hausziege Pathologisch-anatomische Veränderungen an den Knochen (1-6)

1 Alveolenrand und z.T. Unterkieferknochen ausgebuchtet

2 Alveolenrand und Unterkieferknochen ausgebuchtet + Abkauungsanomalie

4 Abkauungsanomalie (M3 Maxilla)

 $3\,$ Sekundärer Zahnverlust (Zuwachsen der Prämolar-Alveolen)

5 Abkauungsanomalie (PM4 Mandibula)

6 Oligodontie, primärer Zahnverlust (P2 Mandibula) + äussere Knochenwucherungen

Foto IV/B

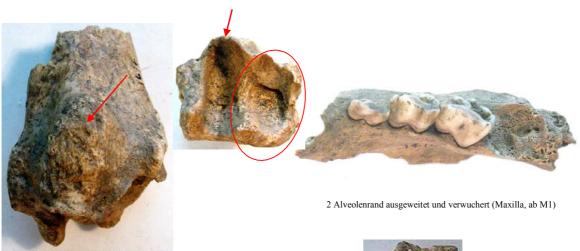
Hausschaf/Hausziege Pathologisch-anatomische Veränderungen an den Knochen (7-13)

7 "Buppel" in Zahnkrone

8 Veränderungen des Zahnschmelzes

9 Zusätzliche äussere Knochenablagerungen (Metatarsus)

10 Delle oberhalb des distalen Gelenks (Metacarpus)


11 Durchlochung oberhalb distalem Gelenk (Tibia)

12 Knochenwucherungen an Phalanx II

Foto IV/C

Hausschwein Pathologisch-anatomische Veränderungen an den Knochen (1-6)

1 Arthropathie an Tibia

3 Alveolenrand ausgeweitet und verwuchert (Mandibula, ab P4)

5 Knochenwucherung an Tibia

Hausschwein

4 Oligodontie (primärer Zahnverlust von P1, Mandibula)

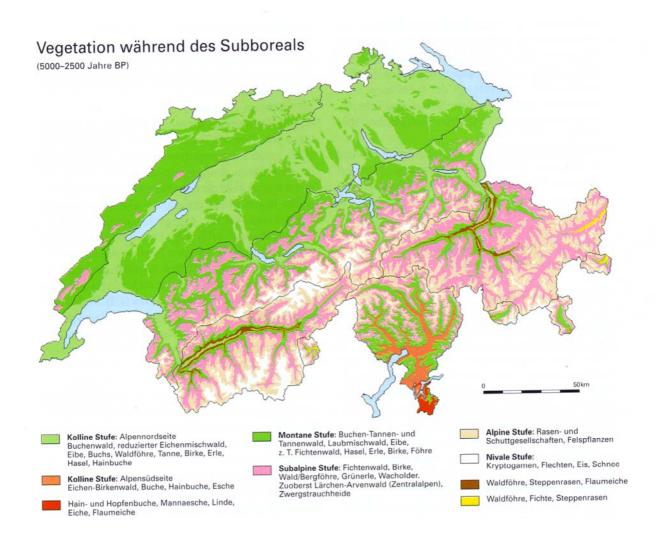
Foto IV/D

Haushund Pathologisch-anatomische Veränderungen an den Knochen (1)

1 "Zahnlücke" (P4 fehlt) Individuum aus Abstich 17/17 (FBZ)

Foto ausgewählte A

1 Ulnaspitze aus den Knochen von Schafen und Ziegen


3 "Haken" aus dem Unterkiefergelenk von Rindern


ihne?)

5 Bärenzahn mit durchlochter Wurzel (Anhänger?)

KARTEN I, II

Karte I: Vegetation während der Bronzezeit. Aus: Burga u. Perret 1998.

Karte II: Vergleichssiedlungen. Stumme Karte der Alpen aus Tiroler Atlas. Ausgefüllte Kreise (bzw. blaue Schrift): alpine Fundstellen, leere Kreise (bzw. grüne Schrift): Fundstellen des Flachlandes, B: Hausrind, O/C: kleine Hauswiederkäuer (Schafe und Ziegen), S: Hausschwein, >: mehr als, = gleich viel.

-Dank-

Ich danke

Herrn Prof. Dr. J. Schibler vom Institut für prähistorische und naturwissenschaftliche Archäologie (IPNA) der Universität Basel für das spannende Projekt, das meinen Neigungen sehr entgegen kam sowie für die Durchsicht und Korrektur des Manuskripts

Frau Dr. C. Becker vom Institut für prähistorische Archäologie der freien Universität Berlin für die konstruktiven, sehr motivierenden Anregungen und Gespräche sowie für die Durchsicht und Korrektur des Manuskripts

allen meinen MitarbeiterInnen: Frau Dr. R.-M. Arbogast, Frau lic. phil. M. Bopp, Herrn dipl. zool. G. Breuer, Frau Dr. S. Deschler-Erb, Herrn lic. phil. R. Frosdick, Frau lic. phil. F. Ginella, Frau Dr. H. Hüster-Plogmann, Frau lic. phil. E. Marti-Grädel, Herrn Dr. A. Rehazek, Frau dipl. zool. M. Schäfer, Frau Dr. B. Stopp für das fruchtbare und sehr freundschaftliche Umfeld, für die unterstützende Einführung in die Arbeit mit Tierknochen, dafür, dass sie mich von ihrem grossen Erfahrungsschatz profitieren liessen und für den kreativen Gedankenaustausch besonders Guido, Fels in der Brandung

Sabine, Frau für alle möglichen und unmöglichen Fälle Marguerita, "Herzblutbiologin" und Seelenverwandte Barbara, Detektivin für die besonders kniffligen Knochen

Herrn Dr. W. Brinkmann vom Paläontologischen Institut der Universität Zürich, der mich mit seiner Begeisterung für die Archäozoologie ansteckte

Herrn Dr. R. Wyss vom Landesmuseum in Zürich, dessen detailliert und akribisch dokumentierter Bericht mir das Zurückgreifen auf eine zuverlässige archäologische Basis ermöglichte

Frau Dr. I. Murbach-Wende für ihre Informationen über die Keramik aus Cresta-Cazis, die bei der Auswahl des Knochenmaterials von massgebendem Einfluss waren

Frau dipl. zool. Ch. Boschi, Wildtierbiologin am Institut für Natur, Landschaft und Umwelt (NLU) der Universität Basel, für die inspirierenden Informationen zum Thema Wildwiederkäuer Herrn lic. phil. P. Stohler vom Historischen Seminar in Basel für die lehrreichen Auskünfte zum Thema Vögel

Cindy Malnasi für das Waschen der Knochen

Herrn G. Jäger, Leiter des Amtes für Kultur Graubünden sowie Frau R. Cathomas-Bearth aus Chur für die Vermittlung bzw. Übersetzung der Zusammenfassung auf Romantsch grischun Frau C. Ferraiuolo, med. Laborantin aus Zürich, für die Übersetzung der Zusammenfassung auf

Italienisch

Herrn dipl. biol. P. Burri aus Zürich für die Übersetzung der Zusammenfassung auf Französisch Herrn Dr. Ph. Renzel, Abteilungsleiter der Geoarchäologie am Institut für naturwissenschaftliche und prähistorische Archäologie (IPNA) der Universität Basel, für die Aufklärung einiger Fragen betreffend der Erhaltung der Knochen

Frau Dr. J. Studer, Kuratorin am Musé naturel de Genève, die mir für meine Untersuchungen die Benutzung der umfangreichen Museumssammlung von Gämsenknochen ermöglichte Olja & Pedro, bei denen ich Ida in den besten Händen wusste, und die mir dadurch die

vorliegende Arbeit überhaupt erst ermöglicht haben

Matthias & Ida sowie allen grossen und kleinen Freunden, die dazu beitrugen, dass sich die Welt nicht nur um Knochen drehte

den Damen und Herren der Wolfermann-Nägeli-Stiftung, welche die Projektfinanzierung des ersten Jahres bewilligten

den Damen und Herren der Roche Research Foundation (RFR), welche die Projektfinanzierung des zweiten Jahres übernahmen

den Damen und Herren der Marie Heim-Vögtlin Stiftung (MHV), welche das Projekt in den letzten eineinhalb Jahren finanziell unterstützten