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Overview

Part I: Singular Spaces of the Nullcone
Given a complex reductive group G and a complex representation V , one of the main
goals of invariant theory is to describe - in terms of generators and relations - the
ring of invariant polynomial functions, denoted by O(V )G. However, for most pairs
G and V , finding explicitly all generators of O(V )G is very difficult. An important
step in this search is to find homogeneous invariants whose zero set is the nullcone
NV ⊂ V , i.e. the zero set of all homogeneous non-constant invariant functions on
V . Such invariants are strongly related to O(V )G as Hilbert proved the following
result: If f1, . . . , fr are homogeneous invariants whose zero set is equal to NV then
O(V )G is a finitely generated module over the subalgebra C[f1, . . . , fr].

Given some invariants fi ∈ O(V )G as above one can apply the so called polar-
ization process to obtain a set of functions lying in O(V ⊕k)G. Our main interest in
this work is to analyze whether the set of functions obtained in this manner defines
the nullcone NV ⊕k . Due to an observation of Kraft and Wallach, this is equiva-
lent to the question whether for every linear subspace H ⊂ NV of dimension at most
k there exists a one-parameter subgroup λ : C∗ → G such that limt→0 λ(t) ·H = 0.

For example, for G = SL2 and V = Vn, the binary forms of degree n, this
amounts to the question whether every subspace H that consists of forms having
a root of multiplicity greater than n

2 consists of forms having a common root of
multiplicity greater than n

2 . This is indeed the case, as we will see. Furthermore
we settle the question for G = SLn and V = S2(Cn)∗ (symmetric bilinear forms),
V =

∧2(Cn)∗ (skew-symmetric bilinear forms) and G = SL3 and V = S3(C3)∗

(ternary cubics).

Part II: Multiplicities in Tensor Monomials
There exist a lot of formulas to decompose a tensor product of representations
V ⊗W into a direct sum of irreducible representations with respect to an algebraic
group G. However these formulas usually involve summing over the Weyl-group,
which makes explicit calculations often tedious. When considering multiple ten-
sor products, i.e. tensor monomials V ⊗n1

1 ⊗ V ⊗n2
2 · · ·V ⊗nr

r , then, even with the
use of descent computers, an explicit decomposition is mostly impossible because
of the complexity that arises. For this reason problems involving tensor monomi-
als remain challenging. The starting point of this work was the following ques-
tion asked by Finkelberg: For which (d1, d2, . . . , dn−1) ∈ Nn−1 does the tensor

monomial Cn⊗d1 ⊗
∧2Cn⊗d2 ⊗

∧3Cn⊗d3 ⊗ · · · ⊗
∧n−1Cn⊗dn−1 , considered as SLn-

representation, contain the trivial representation exactly once? We solve this prob-
lem and some related generalizations. However, representations occuring with mul-
tiplicity one in the decomposition of a tensor monomial V1

⊗n1⊗V2
⊗n2⊗· · ·⊗Vr

⊗nr

are rather rare as we prove that multiplicities of subrepresentations of tensor mono-
mials grow exponentially with respect to

∑
ni. More precisely, we prove, that if G

is a simple complex group and V1, . . . , Vr and W irreducible non-trivial representa-
tions then there is a constant N and a real number α > 1 such that if

∑
ni ≥ N

then mult(W,V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr ) ≥ α

P
ni unless it is zero.

In its current form, this part is a preprint which evolved from my diploma thesis,
where I solved special cases of the two main results Theorem A and Theorem C.
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Part III: The Hilbert Nullcone on Tuples of Matrices and Bilinear Forms
In this joint work with Jan Draisma we explicitly determine the irreducible com-
ponents of the nullcone of the representation of G on M⊕p, where either G =
SL(W )× SL(V ) and M = Hom(V,W ) (linear maps), or G = SL(V ) and M is one
of the representations S2(V ∗) (symmetric bilinear forms), Λ2(V ∗) (skew bilinear
forms), or V ∗⊗V ∗ (arbitrary bilinear forms). Here V and W are vector spaces over
an algebraically closed field K of characteristic zero. We also answer the question
of when the nullcone in M⊕p is defined by the polarisations of the invariants on M ;
typically, this is only the case if either dim V or p is small. A fundamental tool in
our proofs is the Hilbert-Mumford criterion for nilpotency.
This preprint has already been accepted for publication in the Mathematische
Zeitschrift. I mainly contributed to the first problem we solved: counting and de-
scribing the components of the nullcone of the symmetric bilinear forms. Most other
cases evolved from this one, however.
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CHAPTER 1

Introduction and Generalities

1. Introduction

Let ρ : G → GL(V ) be a finite dimensional complex representation of a complex
reductive group G and denote by NV ⊂ V the nullcone, i.e. the zero set of the
homogeneous non-constant G-invariant functions on V . The nullcone is in many
ways related to the geometry of the representation, in particular it encodes a lot of
information about the structure of orbits and their closure. There is also a strong
connection to the algebra of invariants O(V )G as Hilbert proved the following result
([Kra85, Kap. II.4]): If f1, . . . fr are homogeneous invariant functions whose zero
set is equal to NV then O(V )G is a finitely generated module over C[f1, . . . , fr]. On
such f1, . . . , fr one can apply the polarization process (see below) to obtain a set
of invariants in O(V ⊕k)G. The aim of this work is to determine for which n and k
this set defines the nullcone NV ⊕k in the cases G = SL2 and V = Sn(C2)∗ (binary
forms), G = SLn and V = S2(Cn)∗ (symmetric bilinear forms), V =

∧2(Cn)∗

(skew-symmetric bilinear forms) and G = SL3 and V = S3(C3)∗ (ternary cubics).
Due to an observation of Kraft and Wallach this problem is equivalent to the
problem whether for every linear subspace H ⊂ NV of dimension at most k there
exists a one-parameter subgroup λ : C∗ → G such that limt→0 λ(t) ·H = 0.

We have organized our results as follows: For the rest of Chapter 1 we collect
some general facts and explain the two equivalent problems.

In Chapter 2 we deal with the following situation: If the invariants f1, . . . , fr

defining the nullcone NV ⊕k are algebraically independent and multihomogeneous
with respect to the multiple copies of V , then they are called a multihomogeneous
system of parameters (MHSP) for O(V ⊕k)G. We prove that MHSP’s for O(V ⊕k)G

exist only for small values of k and give an explicit upper bound for k. This is of
interest as the polarization process yields multihomogeneous functions.

In Chapter 3 we consider the representation of SL2 on the binary forms of
degree n, denoted by Vn. We prove that if f1, . . . fr define the nullcone NVn

then
the polarizations of the fi’s define the nullcone NV ⊕k

n
for any k.

In Chapter 4 we let Symn be the quadratic bilinear forms in n variables
under the operation of SLn. The invariant ring O(Symn)SLn is generated by the
determinant det. We prove that the polarizations of det define NSym⊕k

n
if and only

if n < 5 or k = 2. In addition, we classify linear subspaces of NSymn that fulfill
certain rank conditions.

Chapter 5 deals with the representation of SLn on skew-symmetric forms Bn

in n variables. For n even O(Bn)SLn is generated by the pfaffian. We show that the
polarizations of the pfaffian define NB⊕k

n
if and only if n = 2 or 4 or if k = 2.

1



2 1. INTRODUCTION AND GENERALITIES

In Chapter 6 we consider the ternary cubic forms T as representation of SL3.
Its invariant ring O(T )SL3 is generated by two invariants f4 and f6. We show that
the polarizations of f4 and f6 define NT⊕k for any k.

In Appendix A finally, we examine the operation of GLn on the quadratic
n × n-matrices Mn by conjugation. For n > 2 the polarizations of the invariants
O(Mn)GLn do not define any nullcone NM⊕k

n
but by analyzing the subspaces of

NMn we found the following theorem on nilpotent rank one matrices: If A1, . . . , Am

are nilpotent rank one matrices that span a nilpotent space then all Ai can simul-
taneously be triangularized.

2. Generalities

In this section we collect some basic results to which we will refer throughout
our work without further reference.
Our base field is the field of complex numbers C. Let ρ : G → GL(V ) be a finite
dimensional representation of a connected reductive group G. The nullcone NV ⊂ V
is defined by

NV := {v ∈ V | f(v) = 0 for all homogeneous non-constant f ∈ O(V )G}
or equivalently by

NV := {v ∈ V | Gv 3 0}.
It is also called null-fiber since it is the fiber π−1

V (πV (0)) of the quotient morphism
πV : V → V//G, where V//G is the algebraic quotient (see [Kra85, Kap. II.3]). The
following theorem is known as Hilbert-Mumford criterion and is the main tool
in order to decide whether a v ∈ V belongs to NV :

Theorem 1.1 ([Kra85, Kap. III.2]). v ∈ V belongs to the nullcone NV if and
only if there exists a one-parameter subgroup (short: 1-PSG) λ : C∗ → G such that
limt→0 λ(t)v = 0.

This allows to describe the nullcone NV without the knowledge of the invariants
O(V )G. From now on for limt→0 λ(t)v = 0 we will shortly say ‘λ(t) annihilates v’.
Since the torus λ(C∗) ⊂ G is diagonalizable we can even restrict to diagonal 1-
PSG’s: A v ∈ V belongs to the nullcone NV if and only if some v0 in the orbit Gv
is annihilated by a diagonal 1-PSG.

Our interest in finding functions defining the nullcone comes from the following
famous theorem of Hilbert:

Theorem 1.2 ([Kra85, Kap. II.4]). If f1, . . . , fr are homogenous invariants
such that the zero set of f1, . . . , fr in V is equal to NV then O(V )G is a finitely
generated module over the subalgebra C[f1, . . . , fr].

Note that, as a consequence of the theorem of Hochster-Roberts ([HoR74]),
this module is even free if f1, . . . , fr are algebraically independent.

Now we consider invariants in O(V ⊕k)G. It is obvious how an f ∈ O(V )G of
degree d can be trivially embedded in k different ways into O(V ⊕k)G. However, by
the following polarization process, f gives rise to a much bigger set of functions in
O(V ⊕k)G : Consider the decomposition

f(t1v1 + t2v2 + · · ·+ tkvk) =
∑

i1+···+ik=d

ti11 ti22 · · · tik

k Pi1,··· ,ik
f(v1, . . . , vk).



2. GENERALITIES 3

The functions Pi1,··· ,ik
f(v1, . . . , vk) on the right-hand side are multihomogeneous

of different mulitdegree, and since G acts linearly and multidegree-preserving on
functions, they are elements of O(V ⊕k)G. We call them polarizations of f onto k
copies.

Note that functions obtained by polarization are multihomogeneous with re-
spect to the different copies of V . Furthermore, restricting a set of functions ob-
tained by polarization onto k copies to m < k copies yields the same functions
as those obtained by polarization onto m copies. As a consequence, if f1, . . . , fs ∈
O(V )G are invariants such that the polarizations onto m copies do not define the
nullcone NV ⊕m then, since NV ⊕m ×{0}× . . .×{0} ⊂ NV ⊕k , the polarizations onto
any k > m copies do not define the nullcone NV ⊕k as well.

Now we are ready to state the theorem that gives a relation between singu-
lar spaces, i.e. linear subspaces of NV and polarizations of invariants defining the
nullcones NV ⊕k . This theorem is crucial for all following work.

Theorem 1.3 ([KrW05]). Let V be a representation of a connected reductive
group G and let f1, f2, . . . , fs be homogeneous invariants defining the nullcone NV .
For every integer m ≥ 1 the following statements are equivalent:

(1) Every linear subspace L ⊂ NV of dimension ≤ m is annihilated by a
1-PSG of G.

(2) The polarizations of the fi’s define the nullcones NV ⊕k for all k ≤ m.

Proof. A point (a1, . . . , am) ∈ V ⊕m on which all polarizations vanish gives
rise to a subspace H = 〈a1, . . . , am〉 ⊂ NV which is annihilated if and only if
(a1, . . . , am) is. �

We conclude this section with the dimension formula for quotients, which we
will often use:

Theorem 1.4 ([Kra85, Kap. II.4]). If G has a finite character group then

dim V//G = dim V −max
v∈V

dim Gv.





CHAPTER 2

Polarizing and Homogenous Systems of
Parameters

A set of algebraically independent homogeneous functions in O(V )G whose zero
set equals the nullcone NV is called a homogeneous system of parameters (HSP)
for O(V )G. Whenever a set of invariants f1, . . . , fr defines the nullcone we can find
a HSP by taking dimO(V )G generic linear combinations of f

d/d1
1 , . . . , f

d/dr
r where

di := deg fi and d is the least common multiple of d1, . . . , dr. As a drawback, unless
all fi are of the same degree, this procedure increases the degree of the resulting
functions, something that one usually wants to avoid in explicit calculations of
HSP’s.

Polarizing a function f of degree d onto k copies yields
(
d+k−1

d

)
functions (as

many as there exist monomials of degree d in k variables) and hence sets of functions
that are obtained by the polarization process tend to be rather big. If such a set
defines the nullcone NV ⊕k it is therefore of interest to know, if some subset thereof
yields a HSP or if it is necessary to pass over to the generic linear combinations as
above.

If indeed such a subset exists then the resulting HSP for O(V ⊕k)G has the
property that its functions are multihomogeneous with respect to the k copies of V
(since they are obtained by polarization). Such a HSP is called multihomogeneous
system of parameters (MHSP).

Remark. The restriction of a multihomogeneous function on V ⊕k to a subdi-
rect sum of V ⊕k either vanishes identically (if it depends also on some other copy)
or remains unchanged. Hence MHSP’s have the following nice property: if one re-
stricts the functions of a MHSP of O(V ⊕k)G to a subdirect sum of V ⊕k then the
resulting functions are again a MHSP for this subdirect sum.

For G = SL2 all representations whose invariant rings allow MHSP’s are classi-
fied in [Bri82]. There are only 13 of them. We will see now, that for most invariant
rings O(V ⊕k)G MHSP’s exist only for small values of k. Generically, they even
don’t exist for k > 2.

Theorem 2.1. If there exists a MHSP for O(V ⊕k)G then

k dimO(V )G +
k(k − 1)

2
(dimO(V 2)G − 2 dimO(V )G) ≤ dimO(V ⊕k)G.

Proof. Let H be a MHSP for O(V ⊕k)G and denote by Hi resp. Hij the subset
of functions in H that depend exactly on the i-th resp. i-th and j-th copy of V in
V ⊕k. Since V(H) contains the sets {NV ×{0}×. . .×{0}}, . . . , {{0}×. . .×{0}×NV },
it follows from our remark above that |Hi| = dimO(V )G. To count the bihomo-
geneous functions Hij consider the points {(0, . . . , 0, a, 0, . . . , 0, b, 0, . . . , 0)} ⊂ V ⊕k

5



6 2. POLARIZING AND HOMOGENOUS SYSTEMS OF PARAMETERS

with i-th coordinate a and j-th coordinate b where a, b ∈ NV . Indeed all functions
depending on one or three or more copies as well as all functions in Hp,q with
(p, q) 6= (i, j) vanish on these. We conclude |Hij | = dimO(V 2)G − 2 dimO(V )G for
all 1 ≤ i < j ≤ k. Summing up, we find that⋃

i

Hi ∪
⋃
i<j

Hij ⊂ H

and hence

k dimO(V )G +
k(k − 1)

2
(dimO(V 2)G − 2 dimO(V )G) ≤ |H| = dimO(V ⊕k)G.

�

Corollary 2.2. If NV ⊕2 6= NV ×NV then there exists k0 such that for all k ≥
k0 there is no MHSP for O(V ⊕k)G. In particular, functions obtained by polarizing
invariants of O(V )G onto k0 or more copies cannot provide homogeneous systems
of parameters.

Proof. For every k satisfying

k dimO(V )G +
k(k − 1)

2
(dimO(V 2)G − 2 dimO(V )G) > dimO(V ⊕k)G

no MHSP for O(V k)G can exist, by the above theorem. But since NV ⊕2 6= NV ×NV

we have |Hij | = dimO(V 2)G − 2 dimO(V )G > 0 and so the left-hand side of the
inequality grows quadratically in k, hence only finitely many k do not satisfy it. �

It is convenient to use the contra positive form of Theorem 2.1 as a numerical
criterion:

Corollary 2.3. If k satisfies

k dimO(V )G +
k(k − 1)

2
(dimO(V 2)G − 2 dimO(V )G) > dimO(V ⊕k)G

then no MHSP for O(V k)G can exist.

This has some remarkable consequences. Let us start with an application on
binary forms:

Corollary 2.4. Let Vd be the binary forms of degree d. O(V ⊕k
d )SL2 has a

MHSP for a k > 2 if and only if the inequality in Corollary 2.3 is dissatisfied.

Proof. We have dimO(V1)SL2 = 0, dimO(V ⊕2
1 )SL2 = dimO(V2)SL2 = 1 and

dimO(V ⊕2
2 )SL2 = 3. One deduces that for d = 1 and d = 2 the inequality is satisfied

for k ≥ 4 and in both cases the three polarizations of the determinant onto three
copies provide MHSP’s. For d = 1 this is well known and for d = 2 we will prove
it in the next chapter. As for d ≥ 3, one has dimO(V k

d )SL2 = k(d + 1) − 3 and a
simple calculation shows, that for k > 2 the inequality is always satisfied. �

Corollary 2.5. If dimO(V ⊕k)G = k dim V −dim G for all k then O(V ⊕m)G

has no MHSP for m > 2.

Proof. Under the given condition Corollary 2.3 becomes:

k(dim V−dim G)+
k(k − 1)

2
((2 dim V−dim G)−2(dim V−dim G)) > k dim V−dim G
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which simplifies to

−(k − 1) dim G +
k(k − 1)

2
dim G =

1
2
(k − 1)(k − 2) dim G > 0

which holds true for k > 2. �

This corollary can be applied to a wide variety of representations. For example,
due to the dimension formula for quotients, it holds true for every representation V
of a semisimple group G whose generic orbit has finite stabilizer. As an application,
consider Fn,d, the forms in n variables of degree d as representation of SLn:

Corollary 2.6. For n ≥ 2 and d ≥ 3 there exists no MHSP for O(F⊕k
n,d)SLn

for k > 2.

Proof. It is known that for n ≥ 2 and d ≥ 3 the stabilizer of a generic element
in Fn,d is finite (see for example [Bri96]), thus the requirements for Corollary 2.5
are met. �

Remark. We will see in Chapter 6 that the invariant ring of two copies of
ternary cubics O(F⊕2

3,3 )SL3 indeed has a MHSP.





CHAPTER 3

Binary Forms

Let Vn := C[x, y]n denote the space of binary forms of degree n with the SL2

operation g · f = fg−1. The invariant rings O(V ⊕k
n )SL2 for k = 1, n ≤ 6 and

k = 2, n ≤ 4 respectively were already considered by the geometers of the XIX-th
century. However only the cases (k, n) = (1, 8) by Shioda [Shi67] and recently
(2, 5) by Meulien [Meu04] could have been completely solved since then. Even
more, several recent results show that the complexity in terms of generators and
relations increases dramatically in the unsolved cases and hence no fast progress is
expected in this area (see for example [Meu05, Pop92, DiL85]).
In this section we prove that for all n > 1 the polarizations of the generators
of O(Vn)SL2 onto any k copies generate the nullcone NV ⊕k

n
. Recall that from the

Hilbert-Mumford criterion follows that a form belongs to NVn if and only if it has a
linear factor of multiplicity > n

2 . The main step in the proof is the following lemma.

Lemma 3.1. Let f(x), g(x) ∈ C[x] be two polynomials with the property that
for infinitely many t ∈ C the polynomial f(x) + tg(x) has a root of order ` ≥ 2.
Then f and g have a common root of order `.

Proof. Consider

X = V(f(x) + yg(x), f ′(x) + yg′(x), . . . , f (`−1)(x) + yg(`−1)(x)) ⊂ C2.

Clearly, (x0, y0) ∈ X if and only if x0 is a root of order ` of f(x)+y0g(x). From the
first equation in X follows that if g(x0) = 0 then x0 is a zero of f(x). Otherwise we
deduce y0 = −f(x0)

g(x0)
, combined with the second equation we get

f ′(x0)−
f(x0)
g(x0)

g′(x0) = 0.

Thus x0 is a zero of
f ′(x)g(x)− f(x)g′(x)

which vanishes not identically since f · g−1 is not a constant. It follows that there
are only finitely many values for the x-coordinates of points in X, therefore we
can find two different points (s, t1) and (s, t2) in X. But thenf(x) + t1g(x) and
f(x) + t2g(x) have a common root of order ` and we are done. �

Theorem 3.2. Every linear subspace of the nullcone NVn
is annihilated by an

1-PSG of SL2.

Proof. Let H ⊂ NVn be a two dimensional subspace spanned by two forms
f(x, y) and g(x, y) and assume that they have no common factor of order > n

2 . For
infinitely many t ∈ C the x-degree of the factor of multiplicity > n

2 in f(x, y) +
tg(x, y) is nonzero, hence Lemma 3.1 can be applied to f(x, 1) and g(x, 1). It follows
that f(x, y) and g(x, y) have a common factor of desired multiplicity, a contradiction

9



10 3. BINARY FORMS

to our assumption. Since a binary form of degree n can only contain one factor with
multiplicity > n

2 , the case of higher dimensional subspaces follows from an easy
induction. �

Remark 1. After I finished my work on binary forms a preprint [LMP05]
with a completely different proof of Theorem 3.2 appeared.

Remark 2. One may have noticed that in the proof of Lemma 3.1 above there
is no need for the existence of infinitely many t with the given property. Let us
carry out the sharp condition in order that f and g have a common root of order
` = 2. It’s harmless to reduce to the case where f and g have no common single
roots and deg g = m < n = deg f . As the proof shows, it would then be sufficient
to only require that there exist deg(f ′(x)g(x) − f(x)g′(x)) + 1 = n + m different
values of t such that f(x) + tg(x) has a root of order ` = 2. Due to the well-known
possibility of expressing the discriminant disc in terms of the resultant res we have
degt disc(f + tg) = degt res(f + tg, (f + tg)′) ≤ 2n−1− (n−m) = n+m−1, as the
resultant in this case is a determinant of a 2n−1×2n−1 matrix such that in n−m
columns the variable t does not appear. Hence the requirement of n + m different
values of t is optimal. The generalization for roots of order ` > 2 is straightforward.

Let us now turn to the question for which cases polarizing leads to homogenous
systems of parameters. As a consequence of Corollary 2.6 we already know that for
n ≥ 3 and k ≥ 3 no multihomogeneous system of parameters (MHSP) exists for
O(V ⊕k

n )SL2 . The precise answer is as follows:

Theorem 3.3. Functions obtained by polarizing the generators of O(Vn)SL2

onto k copies yield homogenous systems of parameters if and only if (n, k) ∈
{(2, 2), (2, 3), (3, 2), (4, 2)}.

Proof. O(V2)SL2 is generated by an invariant f2 (the index indicating the
degree), O(V3)SL2 by g4 and O(V4)SL2 by h2 and h3. It is easily verified that in the
claimed cases the number of polarizations equals the dimension of the corresponding
quotient. To exclude all other pairs (n, k) we remark that all representations of SL2

that allow MHSP’s are classified in [Bri82]. The ones of the form V ⊕k
n , n ≥ 2, are

exactly the ones given in the theorem. �



CHAPTER 4

Symmetric Bilinear Forms

Consider the usual action of SLn on symmetric bilinear forms in n variables
by means of (gq)(v, w) = q(g−1v, g−1w) or, equivalently, on the symmetric n × n
matrices Symn by gA = (g−1)tAg−1. From classical invariant theory it is known
that O(Symn)SLn = C[det] and that the n + 1 polarizations of det onto two copies
are algebraically independent and generate the invariant rings O(Sym⊕2

n )SLn , see
[AGo77]. Thus the first natural question to ask in this context is, whether the
polarizations of det onto three copies generate O(Sym⊕3

n )SLn , at least for some
small n. The answer however is negative.

Proposition 4.1. The polarizations of det on k > 2 copies do not generate
the invariant rings O(Sym⊕k

n )SLn .

Proof. It suffices to prove the claim for k = 3 as the restriction of a polarized
function onto three copies yields no new function on O(Sym⊕3

n )SLn . Consider the
dimension formula for quotients:

dim V//G = dim V −max
v∈V

dim Gv.

For G = SLn and V = Symn ⊕ Symn this yields

n + 1 = (n2 + n)− (n2 − 1).

Hence the generic orbit is already of maximal dimension and we conclude for V =
Sym⊕3

n : (
n + 2

n

)
=

n2 + 3n + 2
2

= 3
n2 + n

2
− (n2 − 1).

But the number of functions obtained by polarizing det onto three copies equals(
n+2

n

)
as well and it follows that if the polarizations would generate all invariants,

then O(Sym⊕3
n )SLn is isomorphic to a polynomial ring. However representations of

SLn with this property are classified in [Sch78] and Sym⊕3
n is not one of them. �

Main Theorem. The nullcone NSym⊕k
n

is defined by the polarizations of the
determinant if and only if n ≤ 4 or k = 2.

As an immediate consequence we get the following corollary:

Corollary 4.2. For n ≤ 4 the functions obtained by polarizing det onto three
copies are a multihomogeneous system of parameters for O(Sym⊕3

n )SLn .

Proof. We have seen in the proof of the above Proposition 4.1 that the number
of these functions equals the dimension of the corresponding quotients. �

11
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We will establish the Main Theorem by proving that for n ≤ 4 every subspace
H ⊂ NSymn

is annihilated by a 1-PSG of SLn and for n > 4 by exhibiting subspaces
of NSymn

of dimension 3 that are not annihilated. Since the polarizations of det
generate the invariant rings O(Sym⊕2

n )SLn it is clear that every two-dimensional
subspace is annihilated. Note that throughout this chapter we often change whether
we view an element A ⊂ Symn as matrix or as its corresponding bilinear form. For
simplicity’s sake however we introduce no additional notation.

The proof of the Main Theorem is divided into several steps. At first we state
the two crucial lemmas.

Lemma 4.3. Let H be a singular subspace of Symn and let A be an element of
H. Then the restriction of H to radA is still a singular space.

Proof. We can assume that A corresponds to the form x2
1 + . . .+x2

m for some
m < n and so rad A is spanned by em+1, . . . , en. Now take an arbitrary element B
of H whose matrix we represent as [

B1 B2

Bt
2 B4

]
with B4 being an n−m× n−m block. Now we see that

det(sA + B) =
[
sEm + B1 B2

Bt
2 B4

]
= sm det(B4) + {terms of s-degree < m} = 0.

Hence det(B4) = 0 and the claim follows. �

Remark. Let A and H be as in the proof. The action of
[
SLm

SLn−m

]
⊂ SLn

preserves the image as well as the kernel of the restriction map B 7→ B̄ := B|U×U

where U := radA. Since dim rad(A) < n, it is clear how the classification of maximal
singular spaces of forms on less variables will come into play.

Lemma 4.4. Let H be a singular subspace of Symn with the property that there
exists a n − 1-dimensional subspace W of Cn such that the restriction of H to W
is still a singular space. Then H lies in a maximal singular subspace containing a
rank-one matrix.

Proof. We can assume that W = {x1 = 0} and then det11(h) = 0 for all
h ∈ H where det11 means the minor obtained by deleting the first row and column.
Let now A be the matrix corresponding to the form x2

1 and then for all h ∈ H we
find det(sA + h) = sdet11(h) + det(h) = 0. This shows, that CA + H spans still a
singular space. �

1. The Case n = 2

Proposition 4.5. Every subspace of NSym2 is annihilated by a 1-PSG.

Proof. This has already been proved in Theorem 3.2 since symmetric forms
in two variables are also binary forms of degree two. It is an easy consequence of
Lemma 4.3 as well. �
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2. The Case n = 3

Consider the following subspaces of NSym3

W1 =


∗ ∗
∗ ∗

 and W2 =


∗ ∗ ∗
∗
∗


which are clearly annihilated by the one-parameter subgroups

λ1(t) =

t
t

t−2

 respectively λ2(t) =

t2

t−1

t−1

 .

We claim that, up to the action of SL3, these are the two maximal subspaces
of NSym3 (in the set-theoretic sense).

Proposition 4.6. Every subspace H ⊂ NSym3 is equivalent to a subspace of
W1 or W2 and thus is annihilated by a 1-PSG of SL3.

Proof. We assume first that H contains the rank-one form x2
1. Note that we

can annihilate every singular space of NSym2 and so by Lemma 4.3 and its remark,
we end up with every h ∈ H being of the form:

h =

h11 h12 h13

h12 h22 0
h13 0 0


where the right lower 2×2 block corresponds to the singular space of the restriction.
Since det(h) = −h2

13h22 = 0 and H is a linear system we must have either h13 = 0
for all h ∈ H and hence H ⊂ W1 or h22 = 0 for all h ∈ H and so H ⊂ W2. The
claim for arbitrary H follows now from the next lemma. �

Lemma 4.7. Every maximal subspace H ⊂ NSym3 contains a rank-one element.

Proof. Otherwise let H be a maximal singular space of constant rank two.
Assume A ∈ H corresponds to the form x1x2. Now for h ∈ H consider tA + h and
due to Lemma 4.3 applied to A we find tA + h being of form

tA + h =

 h11 t + h12 h13

t + h12 h22 h23

h13 h23 0

 .

Since for all h ∈ H

det(tA + h) = 2th13h23 + {terms of t-degree 0} = 0

it follows that either h13 = 0 for all h ∈ H or h23 = 0 for all h ∈ H. But then one
of the 2 × 2-minors det11(h) = −h2

23 or det22(h) = −h2
13 vanishes, a contradiction

to Lemma 4.4. �
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3. The Case n = 4

Consider the following subspaces of NSym4

W1 =



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗


 and W2 =



∗ ∗ ∗ ∗
∗ ∗
∗
∗




which are clearly annihilated by the one-parameter subgroups

λ1(t) =


t

t
t

t−3

 respectively λ2(t) =


t3

t
t−2

t−2

 .

We claim, that these are the two maximal subspaces of NSym4 .

Proposition 4.8. Every subspace H ⊂ NSym4 is equivalent to a subspace of
W1 or W2 and thus is annihilated by a 1-PSG of SL4.

Proof. As before, assume first H contains the rank one form x2
1. By use of

Lemma 4.3 and the fact, that we can annihilate every subspace of NSym3 , we may
assume that H is a subspace of either

P =



∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗


 or Q =



∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗
∗ ∗




where the right lower 3 × 3 blocks correspond to the two types of singular spaces
of the restriction. In the first case we find

det(P ) = −p2
14 · det

[
p22 p23

p23 p33

]
= 0

and conclude that either p14 = 0 and hence H ⊂ W1, or det
[
p22 p23

p23 p33

]
= 0, which

means that H|U is singular where U := Ce2 ⊕ Ce3. Since we can annihilate every

subspace of NSym2 , with a suitable base change in U we get H|U ⊂
{[

∗ 0
0 0

]}
and

so H ⊂ W2.
For the remaining case where H ⊂ Q we have

det(Q) = −(det
[
q13 q14

q23 q24

]
)2 = 0

and hence B =
{[

q13 q14

q23 q24

]}
is a rank one space. For suitable g, h ∈ SL2 a base

change of the form
[
g

h

]
replaces B by gBht which allows the form

[
∗
∗

]
or[

∗ ∗
]

,(see Part III, proof of Theorem 2) and hence H ⊂ W1 resp. H ⊂ W2. The

claim for arbitrary H follows now from the next lemma. �
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Lemma 4.9. Every maximal subspace H ⊂ NSym4 contains a rank-one element.

Proof. Let H be a maximal singular subspace not containing rank-one ele-
ments. From the normal form for symmetric matrix pencils due to Kronecker and
Weierstrass (see [Gan59, chap. XII.4 ]) one reads off, that spaces of dimension > 1
of constant rank r exist only for even r. Hence we find in H a rank-two matrix A
which we may assume to correspond to the form x1x2. Now for h ∈ H consider
tA + h and due to Lemma 4.3 applied to A we find tA + h being of form

tA + h =


h11 t + h12 h13 h14

t + h12 h22 h23 h24

h13 h23 h33 0
h14 h24 0 0

 .

Now one easily finds

det(tA + h) = 2th14h24h33 + {terms of t-degree 0} = 0
imposing h14h24h33 = 0. But h24h33 = 0 yields det11(h) = 0 and h14 = 0 implies
det22(h) = 0, both a contradiction to Lemma 4.4. �

4. The Case n = 5

Consider the following subspaces of NSym5

W1 =


∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

 W2 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗
∗

 W3 =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗
∗ ∗
∗ ∗


which are annihilated by the one-parameter subgroups

λ1(t) = diag(t, t, t, t, t−4), λ2(t) = diag(t4, t, t, t−3, t−3)
respectively

λ2(t) = diag(t3, t3, t−2, t−2, t−2).

Proposition 4.10. Every maximal subspace H ⊂ NSym5 containing a rank-
one element is equivalent to a subspace of W1, W2 or W3 and hence annihilated by
a 1-PSG of SL5.

Proof. Let H contain the rank-one matrix corresponding to the form x2
1. By

use of Lemma 4.3 and the fact, that we can annihilate every subspace of NSym4 ,
we may assume that H is a subspace of either

P =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗

 or Q =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗
∗ ∗


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where the right lower 4 × 4 blocks correspond to the two types of singular spaces
of the restriction. The condition det(P ) = 0 implies either p15 = 0 for all p ∈ P
and thus H ⊂ W1, or H|U is singular where U := Ce2 ⊕ Ce3 ⊕ Ce4. After a
suitable base change in U we get H ⊂ W2 or H ⊂ W3. The condition det(Q) =

q33(det
[
q14 q15

q24 q25

]
)2 = 0 implies either q33 = 0 for all q ∈ Q and so H ⊂ W3, or

else
{[

q14 q15

q24 q25

]}
is a rank one space. Similarly as in the proof Proposition 4.8,

case of Q, we conclude that H ⊂ W1 or H ⊂ W2. �

In contrast to the cases n ≤ 4 it is no longer true that every maximal singular
space contains a rank one form.

Theorem 4.11. There exist maximal spaces in NSym5 that contain no elements
of rank one and thus cannot be annihilated.

Proof. Consider H = {A1, A2, A3} with

sA1 + tA2 + uA3 =


0 0 0 s t
0 0 s t 0
0 s 0 0 −u
s t 0 2u 0
t 0 −u 0 0

 .

A direct computation shows that det(sA1 + tA2 + uA3) = 0. Assume now H lies
in a maximal singular space containing a rank one element B corresponding to the
form (b1x1 + b2x2 + b3x3 + b4x4 + b5x5)2. The condition that sA1 + B and tA2 + B
are nullforms implies that b5 = b3 = 0. Furthermore the nullforms sA1 + tA2 + B,
tA2 + uA3 + B and sA1 + uA3 + B show that b4 = b1 = b2 = 0. �

To finish the proof of the Main Theorem it remains to exhibit singular spaces of
dimension 3 for n > 5 that cannot be annihilated by a 1-PSG of SLn. To this end we
need the following proposition which will also be of use later. Consider the operation
of SLn×SLn on the quadratic matrices Mn by means of (g, h) ·A = gAh−1.

Proposition 4.12. A subspace H ⊂ Mn is annihilated by a 1-PSG (λ(t), µ(t))
of SLn×SLn if and only if there exists a subspace W ⊂ Cn such that dim HW <
dim W .

Proof. If limt→0 λ(t)Hµ(t)−1 = 0 we may assume λ(t) = diag(ta1 , . . . , tan)
and µ(t)−1 = diag(tb1 , . . . , tbn) with a1 ≥ . . . ≥ an and b1 ≥ . . . ≥ bn. Since
λ(t), µ(t) ∈ SLn we have

∑
i ai =

∑
i bi = 0. If ai + bn+1−i > 0 for all i, then∑

i(ai + bi) > 0, a contradiction. Hence we must have as + bn+1−s ≤ 0 for some
s. But then ai + bj ≤ 0 for i ≥ s, j ≥ n + 1 − s, as the sequences of the ai and bi

are decreasing. Since for an h ∈ H the ij-th entry of λ(t)hµ(t)−1 is hijt
ai+bj we

conclude hij = 0 for i ≥ s, j ≥ n + 1− s and hence

h ∈


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ 0 . . . 0

∗ ∗
...

. . .

∗ ∗ 0 0


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where the left upper 0 is at position (s, n + 1− s). Now set W = {en+1−s, . . . , en}
to see HW ⊂ {e1, . . . , es−1} and hence dim HW = s− 1 < s = dim W .

On the other hand, assume such a W ⊂ Cn exists. Given the operation of
SLn×SLn on H we may assume that W = {ej , . . . , en} and HW = {e1, . . . , ei}
where i < n− j + 1. So we see that

H ⊂


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ 0 . . . 0

∗ ∗
...

. . .

∗ ∗ 0 0


where the left upper 0 is at position (i+1, j). We construct now a 1-PSG (λ(t), µ(t))
of SLn×SLn as follows (cf. Part III, first part of proof of Theorem 1): Let λ(t)
having weights n− i on e1, . . . , ei and −i on ei+1, . . . , en and µ(t)−1 having weights
n− j + 1 on e1, . . . , ej−1 and −j + 1 on ej , . . . , en. Since n− i− j + 1 > 0 it follows
that (λ(t), µ(t)) annihilates every entry at position (p, q) as soon as p < i + 1 or
q < j and so limt→0 λ(t)Hµ(t)−1 = 0. �

As for the representation of SLn on Symn, note that the image of SLn in
GL(Mn) is contained in the image of SLn×SLn under the representation

(g, h) ·A = gAh−1

and hence when viewing the elements of Symn as linear maps we can formulate the
proposition above for SLn on Symn:

Proposition 4.13. A subspace H ⊂ Symn is annihilated by a 1-PSG λ(t) of
SLn if and only if there exists a subspace W ⊂ Cn such that dim HW < dim W .

The space H in Theorem 4.11 cannot be annihilated by a 1-PSG of SL5 hence
there exist no subspace W ⊂ C5 such that dimHW < dim W . It is easy to see that
for n > 5 for the space

sA1 + tA2 + uA3 =



0 0 0 s t
0 0 s t 0
0 s 0 0 −u
s t 0 2u 0
t 0 −u 0 0

s
. . .

s


there does not exist such a subspace W ⊂ Cn as well and thus it cannot be anni-
hilated. This finishes the proof of the Main Theorem.

Remark 3. Theorem 4.11 is remarkable as C.T.C. Wall in his paper [Wall78]
claimed that the nullcone NSymn

for any n is defined by the polarisations of the
determinant. As we have seen this is correct only for n ≤ 4.
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5. The Case n ≥ 5

Under certain rank conditions we can give a somewhat more detailed picture of
the structure of singular spaces of NSymn for n ≥ 5. Note that the orbit structure
of NSymn is given by the rank of the elements:

NSymn
=

n−1⋃
m=0

Om

where Om = SLn ·(x2
1 + . . . + x2

m) is the orbit of the rank m elements and Om =
O0 ∪ . . . ∪ Om. We say a subspace H is bounded by rank m if H ⊂ Om. Consider
the following variant of Lemma 4.3:

Lemma 4.14. Let H be a subspace of Symn bounded by rank m and let A ∈ H
be an element of rank m. Then the restriction of H to rad(A) is zero.

Proof. As before we may restrict to the case where A corresponds to the form
x2

1+ . . .+x2
m. Let B be another element of H with entries bij . By assumption, every

m + 1 × m + 1-minor of tA + B vanishes. Construct now minors like this: Delete
n−m−1 columns but none of the first m ones and delete n−m−1 rows but again
none of the first m ones. From Lemma 4.3 we see that in every minor the entry in
the right bottom corner is zero, hence bij = 0 for i, j > m and we are done.

�

Proposition 4.15. Every singular subspace H ⊂ NSymn bounded by rank m :=
bn−1

2 c is annihilated.

Proof. By the preceding Lemma 4.14 we can assume H to be of form

H =
[
H1 H2

Ht
2 0

]
with H1 being an m×m block and H2 being an m× (n−m) block. Now for

λ(t) = diag(

m︷ ︸︸ ︷
tn−m, . . . , tn−m,

n−m︷ ︸︸ ︷
t−m, . . . , t−m)

we see that limt→0 λ(t) ·H = 0. �

In this context one may ask for spaces of low rank that are not annihilated. To
construct such spaces the following observation of Jan Draisma is helpful:

Lemma 4.16. Let M ⊂ Mn be a subspace that is not annihilated by a 1-PSG

of SLn×SLn. Then F = {
[

0 A
At 0

]
| A ∈ M} ⊂ Sym2n is not annihilated by a

1-PSG of SL2n as well.

Proof. By Proposition 4.13 we have to show, that for all subspaces W ⊂ C2n

we have dim FW ≥ dim W . Consider C2n as C2n = Cn ⊕ Cn =: V1 ⊕ V2 with
projections pi : C2n → Vi, and the elements of M as linear maps V2 → V1. With
this notations we have

dim FW = dim p1(FW ) + dim(FW ∩ V2).

But dim p1(FW ) = dim(M · p2(W )) ≥ dim p2(W ) since M cannot be annihilated.
Furthermore, since FV1 ⊂ V2 we see FW ∩ V2 ⊃ F (W ∩ V1) = M t(W ∩ V1) and
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dim M t(W ∩ V1) ≥ dim W ∩ V1 as M t cannot be annihilated as well. Summing up
we get

dim FW ≥ dim p2(W ) + dim(W ∩ V1) = dim W.

�

Consider now the space M = {A,B, C} ⊂ M3 with

sA + tB + uC =

 0 s t
−s 0 u
−t −u 0

 .

By use of Proposition 4.12 it is easy to see that H cannot be annihilated by an
1-PSG of SL3×SL3. Hence by the above Lemma 4.16 the space[

M
M t

]
⊂ Sym6

under the operation of SL6 cannot be annihilated as well and is bounded by rank
4. Without much effort this can be generalized to spaces

H = {

 A

..
.

A

 | A ∈ M} ⊂ M3m and
[

H
Ht

]
⊂ Sym6m

and thus for n = 6m we find subspaces bounded by rank 2n
3 that cannot be

annihilated. We conclude that - although there is still some gap - the bound found
in Theorem 4.15 is not that bad.

Since every singular space bounded by rank 2 can be annihilated and there
exists singular spaces bounded by rank 4 which cannot, the last open case are
spaces bounded by rank 3:

Theorem 4.17. Every singular subspace H ⊂ NSymn bounded by rank 3 can
be annihilated.

Proof. By Theorem 4.15 the remaining cases to consider are n = 5 and n = 6.
For n = 5 it is clear that a space H bounded by rank 3 remains singular after the
addition of a rank-one element. Thus H is annihilated due to Theorem 4.10.
For n = 6 due to Lemma 4.14 we may assume H to be of the form

H =
[
H1 H2

Ht
2 0

]
with H1,H2 being 3 × 3 blocks. Now det(H) = 0 imposes det(H2) = 0 and we
conclude that H2 is bounded by rank 1 since H is bounded by rank 3. A suitable

base change of form
[
g

h

]
with g, h ∈ SL3 replaces H2 by gH2h

t which can be

brought in the form ∗∗
∗

 or

∗ ∗ ∗


and so H is annihilated by either λ(t) = diag(t4, t1, t1, t−2, t−2, t−2) or λ(t) =
diag(t, t, t, t, t, t−5).

�





CHAPTER 5

Skew-Symmetric Forms

Denote by Bn the skew-symmetric forms in n variables with the usual SLn

operation. For n even it is well-known that the invariant ring O(Bn)SLn is generated
by the Pfaffian which we will denote by Pf and that the polarizations P2(Pf)
generate the invariants O(Bn ⊕ Bn)SLn , see [AGo77]. Since B2 has no nonzero
singular elements we begin our analysis of the singular subspaces with the case
n = 4:

Proposition 5.1. Every singular subspace H ⊂ NB4 is annihilated by a 1-PSG
of SL4.

Proof. Since skew-symmetric forms are of even rank, H is of fixed rank two.
By similar arguments as in Lemma 4.14 we can assume H to be of the form

H =
[

H1 H2

−Ht
2 0

]
with H2 necessarily being a rank one space. A suitable base change of the form[
g

h

]
with g, h ∈ SL2 puts H into form

∗ ∗ ∗
∗ ∗ ∗
∗ ∗

 or


∗ ∗ ∗ ∗
∗ ∗
∗
∗


and hence H is annihilated. �

Theorem 5.2. The polarizations of Pf form a multihomogeneous system of
parameters (MHSP) for O(B⊕k

4 )SL4 if k ≤ 6. For k > 6 no MHSP exists for
O(B⊕k

4 )SL4 .

Proof. By the dimension formula for quotients we have

dimO(B⊕6
4 )SL4 ≥ 6 · 6− 15 = 21.

However the number of functions obtained by polarizing Pf onto 6 copies is
(
2+5
2

)
=

21 as well and since these functions define the nullcone they have to be algebraically
independent which proves the first claim. For the second, note that dimO(B⊕6

4 )SL4 =
6 · 6− 15 = 21 implies that dimO(B⊕k

4 )SL4 = 6k− 15 for k ≥ 6 as the generic orbit
is of maximal dimension. Thus the inequality in Corollary 2.3:

k dimO(V )G +
k(k − 1)

2
(dimO(V 2)G − 2 dimO(V )G) > dimO(V k)G

becomes

k +
k(k − 1)

2
> 6k − 15
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respectively
(k − 5)(k − 6) > 0

which is satisfied for k > 6. �

Proposition 5.3. For n ≥ 3 there are singular subspaces H ⊂ NB2n
of dimen-

sion 3 which are not annihilated by a 1-PSG of SL2n.

Proof. Consider the space H = {A,B, C} ⊂ Mn with

sA + tB + uC =



0 s t
−s 0 u
−t −u 0

s
. . .

s


.

By use of Proposition 4.12 one verifies that H cannot be annihilated by an 1-PSG
of SLn×SLn. Hence by the obvious skew-symmetric version of Lemma 4.16 the

space
[

M
−M t

]
⊂ B2n is not annihilated by a 1-PSG of SL2n as well. �



CHAPTER 6

Ternary Cubic Forms

Let T be the vector space of ternary cubic forms endowed with the action of
G = SL3. According to [Kra85] the nullcone NT consists of six orbits:

NT = {0}∪Gx3 ∪Gx2y ∪Gxy(x + y)∪G(x2− yz)y ∪G(y2z−x3) =: B0 ∪ . . .∪B5

and the closure of the orbits is given by Bi = B0 ∪ . . . ∪ Bi. Inspecting the weight
system reveals that, up to the action of the Weyl group, there is only one maximal
set of weights that is annihilated by a 1-PSG of SL3, namely {x3, x2y, xy2, y3, y2z}.
We will show that under the action of SL3 every subspace H ⊂ NT is equivalent to
a subspace spanned by these weights.

To this end, we need Bertini’s classical theorem (see [Har92]) in the following
setting: let f0, . . . , fs be linearly independent projective plane curves of degree three
and consider the linear system they span, that is the family

Ut : t0f0 + . . . + tsfs = 0
where t = (t0, . . . , ts) ∈ Ps. The base points of Ut are the points in V(f0, . . . , fs).

Bertini’s Theorem. A generic member of Ut has no singular points outside
the base points.

Now we are ready to prove the following theorem:

Theorem 6.1. Every singular subspace H ⊂ T is annihilated by a 1-PSG of
SL3.

Proof. We have to deal with the five different cases where H lies in Bi and
contains elements of Bi, i = 1, 2, . . . , 5.

(1) H lies generically in B5 = G(y2z − x3): Since B5 ∩ H is a dense subset
of H we may choose a basis f0, . . . , fs of H such that every fi ∈ B5. Note that
B5 consists of irreducible elements, hence the corresponding linear system Ut :
t0f0 + . . . + tsfs = 0 has only finitely many base points as long as s ≥ 1. A
generic member of H is a cusp and has therefore exactly one singular point. By
Bertini’s Theorem, these singular points are base points and it follows that all the
fi have a common singular point. Without restriction we set f0 = y2z − x3 and
therefore [0, 0, 1] to be the singular point of the fi. A simple calculation shows, that
a ternary cubic having [0, 0, 1] as singular point lies in the span of the monomials
{x2z, xyz, x3, x2y, xy2, y3, y2z}. Thus we have to show, that the fi don’t depend on
the first two monomials as we can simultaneously annihilate the others. Indeed the
condition that the singularity at [0, 0, 1] is not a double point for f = ax2z+bxyz+
cy2z + . . . amounts to the condition b2− 4ac = 0 (in the via [x, y, 1] dehomogenized
coordinates the quadratic terms have to be a square of a linear form). But since Ut

23
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is a linear system and the coefficient of y2z in f0 is nonzero we deduce, that in all
fi the coefficients of the monomials zx2 and xyz indeed are zero and hence H is
annihilated.

(2) H lies generically in B4 = G(x2 − yz)y: We may assume that f0 = (x2 −
yz)y ∈ H. If the linear system associated to H has only finitely many base points,
then the same argument as above shows that H is annihilated. If there are infinitely
many base points then there exists a common component. In case the common
component is the parabola x2 − yz then the set of all lines tangent to p is given
by L = C{2tx − y − t2z | t ∈ C} and it is easy to see that a linear subspace
contained in L has dimension one. Otherwise the common component is the line
y = 0. A parabola ax2 + bxz + cz2 + dyz + ey2 + lxy to which y = 0 is a tangent
satisfies b2 − 4ac = 0 and since the coefficient of x2 in f0 is nonzero we conclude
that H ⊂ {(ax2 + dyz + ey2 + lxy)y} and therefore is annihilated.

(3) H lies generically in B3 = Gxy(x + y): A generic element of the correspond-
ing system Ut consists of the union of three different lines meeting in one point.
If Ut contains only finitely many base points then by Bertini’s Theorem we may
assume that all fi meet in the same triple point, say [0, 0, 1]. This implies that
the fi are independent of the variable z, as they consist of lines passing through
[0, 0, 1] and thus H is annihilated. If otherwise the base points of Ut consist of two
different lines then we may assume H ⊂ {xy(ax + by)} which is annihilated as
well. Finally, when only one line ` lies in the base points we consider the system
Ut`

−1 : t0f0`
−1 + . . . + tsfs`

−1 = 0 which must contain only finitely many base
points. But then as above all fi`

−1 share the same double point and thus all fi the
same triple point and we are in the case as above.

(4) H lies generically in B2 = Gx2y: We can assume that f0 = x2y ∈ H and
then we claim that H ⊂ {x2(ax + by + cz)}. Assume that f1 ∈ B2 is an element in
H whose quadratic term is linearly independent of x2. After a suitable base change
we find, for all t,

f0 + tf1 = x2p + ty2q = (atx + bty + ctz)2`t

for suitable linear forms p, q and `t. Note however that ct = 0 for all t since the
left-hand side contains no term z2. Furthermore atbt 6= 0 for t 6= 0 as f0 and f1 are
not both divisible by x2 or y2 and hence `t does not depend on z since the left-hand
side contains no term xyz. So finally f0 and f1 do not depend on z and thus are
binary forms of degree three. By Theorem 3.2 they must have a common quadratic
factor, a contradiction to our assumption.

(5) H lies generically in B1 = Gx3: The sum of two linearly independent cubes
is not a cube, hence dim H = 1. �

It is classically known that O(T )SL3 is generated by two invariants f4 and f6

of degree 4 resp. 6, see [Aro58]. From Corollary 2.6 we already know, that for
k > 2 no homogeneous system of parameters for O(T⊕k)SL3 can be found among
the polarizations of f4 and f6. However for k = 2 the set of polarizations contains
5 + 7 = 12 functions and indeed we have

12 = 2 · 10− 8 = dimO(T⊕2)SL3

and thus
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Theorem 6.2. The polarizations of f4 and f6 form a bihomogeneous system
of parameters for O(T⊕2)SL3 .

Using this result we were able to compute the Hilbert series of the invariant
ring O(T ⊕ T )SL3 . It is of the form H(t) = f(t)

(1−t4)5(1−t6)7 with

f(t) = 1 + 4t6 + 9t8 + 11t10 + 30t12 + 62t14 + 98t16 + 125t18 + 140t20

+ 140t22 + 125t24 + 98t26 + 62t28 + 30t30 + 11t32 + 9t34 + 4t36 + t38.

From H(t) one reads off that a set of generators for O(T ⊕ T )SL3 contains at
least 76 elements.





APPENDIX A

Conjugacy Classes of Matrices

Consider the action of GLn on the quadratic n×n-matrices Mn by conjugation.
It is well known that the invariant ring O(Mn)GLn is generated by the n traces of
the powers : trk : A 7→ tr(Ak), k = 1 . . . n and hence the nullcone NMn

consist of
the nilpotent matrices. A space H ⊂ NMn

is annihilated by a 1-PSG of GLn if and
only if it is triangularizable, that is gHg−1 ⊂ Nn for some g ∈ GLn, where Nn are
the strictly upper triangular n× n-matrices.

For n = 2 it is easy to see that every subspace H ⊂ NM2 can be triangularized
(dim H ≤ 1 since it consists of nilpotent rank one matrices). But for n ≥ 3 the
two-dimensional space

H = sA + tB =


0 t 0 . . . 0
s 0 −t
0 s 0
...

. . .

0 0


which consists entirely of nilpotent matrices has some interesting properties. In
fact AB is not anymore nilpotent, and for n = 3 this space was already used in
[MoT52] to show that there exist spaces sA + tB of nilpotent matrices such that,
as an algebra, A and B generate M3. In our context, this means that for every
n ≥ 3 the space H cannot be triangularized.

In contrast to the symmetric bilinear forms or the skew-symmetric forms, where
every singular space - when embedded in some large enough space - could be an-
nihilated (see Prop. 4.15), H has no such property. Moreover, H is of fixed rank
2, thus besides spaces bounded by rank 1 (which are clearly annihilated) not even
spaces of small rank can be annihilated in NMn

.
If H ⊂ NMn

can be annihilated by a 1-PSG of GLn then obviously H can be
spanned by rank one elements or is a subspace of a space that is spanned by rank
one elements. We prove now that the opposite is also true: If H ⊂ NMn is spanned
by rank one elements then H is annihilated. This gives an interesting statement on
triangularizability of nilpotent rank one matrices.

Recall that for an element A ∈ Nn of rank one there exist v, w ∈ Cn such that
A = v · wt. Moreover, if the last non-zero entry of v is vi then w1 = . . . = wi = 0.

Lemma. Let A1, . . . , Ak ∈ Nn be elements of rank one with the property that

A1 ·A2 · . . . ·Ak 6= 0.

Then, for all σ ∈ Sk, σ 6= id, we have

Aσ(1) ·Aσ(2) · . . . ·Aσ(k) = 0.
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Proof. For i = 1 . . . k let Ai = vi ·wt
i and define ci to be the index of the last

non-zero entry of vi.
Now since

A1 ·A2 · . . . ·Ak = v1 · (wt
1 · v2) · . . . · (wt

k−1 · vk) · wt
k 6= 0

it follows that each (wt
i · vi+1) 6= 0. Since the first c1 entries of w1 are zero, we

conclude that c2 > c1. But then the first c2 entries of w2 are zero, hence c3 > c2

and so on to finally find c1 < c2 < . . . < ck. Obviously there is no σ 6= id satisfying
cσ(1) < cσ(2) < . . . < cσ(k) hence we are done. �

Theorem. If H is a nilpotent space spanned by rank one matrices then H can
be triangularized.

Proof. Let H be spanned by A1, . . . , Am. It suffices to prove that every m+1-
fold monomial in the Ai is already zero: in this case the subalgebra - and hence the
Liealgebra - generated by the Ai is nilpotent and so by Lie’s theorem, all Ai can
simultaneously be triangularized. We proceed by induction on m. For m = 2, since

(t1A1 + t2A2)3 = t21t2A1A2A1 + t1t
2
2A2A1A2 = 0

we find A1A2A1 = A2A1A2 = 0.
Let’s assume the statement has been verified up to m− 1, so we have to show

that every m + 1-fold monomial in A1, . . . , Am vanishes. To this end consider the
coefficient of, say, t21t2 · · · tm in (t1A1 + . . . + tmAm)m+1. It consists of the sum of
all monomials containing A1 twice and every other Ai exactly once. By induction
hypothesis it is clear, that every monomial not being of the form A1Ai1 . . . Aim−1A1

is zero (would contain a l+1-fold monomial in l < m factors) and also, that we can
assume that A2, . . . , Am ∈ Nn. If any such monomial is non-zero, then every other
of this type is, by the above lemma. Since the coefficient is zero, in fact all of them
are. �

Remark. A famous result in this context is the classical theorem of Gersten-
haber which states that if H ⊂ Mn is a nilpotent space of dimension

(
n
2

)
then H

is triangularizable. This has recently been considerably generalized in [DKK06].
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Part 2

Multiplicities in Tensor Monomials





MULTIPLICITIES IN TENSOR MONOMIALS

MATTHIAS BÜRGIN

Abstract. This paper is about multiplicities occuring in the decomposition
of tensor monomials V1

⊗n1 ⊗ V2
⊗n2 ⊗ · · · ⊗ Vr

⊗nr where the Vi are irre-

ducible representations of a simple complex algebraic group. We show that
there is a constant N and a real number α > 1 such that if

P
ni ≥ N then

mult(W, V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr ) ≥ α

P
ni unless it is zero.

Also we provide some tools to compute all tensor monomials V1
⊗n1⊗V2

⊗n2⊗
· · · ⊗ Vr

⊗nr that contain a given representation W at most a given time. Es-

pecially we find all (d1, d2, . . . , dn−1) ∈ Nn−1 such that Cn⊗d1 ⊗
V2Cn⊗d2 ⊗V3Cn⊗d3 ⊗ · · · ⊗

Vn−1Cn⊗dn−1 , considered as SLn-representation, contains
the trivial representation exactly once, a question that was asked by Finkel-

berg. Also, using our tools we answer the question of Finkelberg generalized

to the exceptional groups.

1. Introduction

The starting point of this work was the following question asked by Finkelberg.

Question. For which integers d1, d2, . . . , dn−1 does the tensor product

Cn⊗d1 ⊗
∧2Cn⊗d2 ⊗

∧3Cn⊗d3 ⊗ · · · ⊗
∧n−1Cn⊗dn−1

considered as a representation of SLn(C) contain the trivial representation
∧0Cnexactly

once?

From classical invariant theory there are some candidates, namely all tensor
monomials such that d1 + 2d2 + 3d3 + · · ·+ (n− 1)dn−1 = n. They cannot exhaust
the list since every solution produces another one, by dualizing. However, both
together give the full solution as we will prove in Section 2. A similar result holds
for the single occurence of an arbitrary

∧iCn.

Theorem A. Considered as a representation of SLn(C), the tensor monomial

Cn⊗d1 ⊗
∧2Cn⊗d2 ⊗

∧3Cn⊗d3 ⊗ · · · ⊗
∧n−1Cn⊗dn−1

contains the trivial representation
∧0Cn with multiplicity one if and only if either∑

k kdk = n or
∑

k(n − k)dk = n. For 1 ≤ i ≤ n − 1, it contains
∧iCn with

multiplicity one if and only if either
∑

k kdk = i or
∑

k(n− k)dk = n− i.

A priory, it is not clear that the number of solutions to the question above is
finite. However, in Section 3 we prove the following general result.

Date: August 2005.
The author is supported by the Swiss National Science Foundation (Schweizerischer National-

fonds).
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2 MATTHIAS BÜRGIN

Theorem B. Let G be a simple complex algebraic group and V1, V2, V3, · · · , Vr

non-trivial irreducible representations of G. For every integer k > 0 and every
irreducible representation W of G the following set is finite:

{(n1, n2, . . . , nr) ∈ Nr | 1 ≤ mult(W,V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr ) ≤ k}.

This statement can be improved considerably. In fact, we will show that the
multiplicities “grow exponentially” in the following sense.

Let λ1, λ2, . . . , λr be the highest weights of V1, V2, . . . , Vr and let µ be the highest
weight of W . In order that W appears in the tensor monomial

V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr

it is necessary that µ is of the form µ =
∑

i niλi−
∑

positiv roots [Hu72, 21.3 Propo-
sition]. Let us denote by Λroot the root lattice, i.e., the sublattice of the weight lattice
spanned by the roots.

Theorem C. With the notation above there is a constant N and a real number
α > 1 such that the following holds:

mult(W,V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr ) ≥ α

P
ni

if µ ∈
∑

i niλi + Λroot and
∑

i ni ≥ N .

Finally, in Section 4 we introduce a tool which can be used to calculate the finite
sets

{(n1, n2, . . . , nr) ∈ Nr | 1 ≤ mult(W,V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr ) ≤ k}

that appeared in Theorem B above. As an application, we solve the question of
Finkelberg for the exceptional groups G2, F4, E6, E7 and E8 by use of the computer
program LiE [Li96].

2. Tensor monomials of exterior powers

The irreducible representations of GLn = GLn(C) are parametrized by the par-
titions λ = (λ1, λ2, . . . , λn) of height ≤ n where λ corresponds to the GLn-module
Vλ of highest weight λ1ε1 + λ2ε2 + · · · + λnεn in the usual way (see[Kr85, III.1.4
Satz 1] , cf. [GW98, 5.2.1] ). In particular, we have λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0, and
the height of λ is the maximal index i such that λi > 0.

Restricting to SLn the module Vλ remains irreducible, and Vλ|SLn
is trivial if

and only if λ = (m,m, . . . , m) for some m ≥ 0. Finally, define the degree of λ by
|λ| :=

∑
i λi.

The fundamental weights are given by

ωk := (1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, . . . , 0) for k = 1, 2, . . . , n

and the corresponding fundamental representations are Vωk
=

∧kCn. For simplic-
ity’s sake we use in this section the notation Vk :=

∧kCn. Furthermore we identify
V0 with the trivial representation.
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We will represent a partition λ by a Young diagram consisting of square boxes
whose i-th row has length λi, e.g.

represents the partition (4, 3, 2, 2, 1) of height 5 and degree 12.

Remark 1. By what was said above, we see that Vλ and Vλ′ are isomorphic as SLn

modules if and only if λ′ is obtained from λ by adding or removing columns of
lenght n.

Most of the combinatorics involved has a nice description in terms of Young
diagrams. As an example let us recall Pieri’s formula (see [FH91, page 79, formula
(6.9)].

Proposition 1. For any partition λ of height ≤ n we have the decomposition as
GLn-module

Vλ ⊗
∧kCn '

⊕
ν Vν

where ν runs through all partitions of degree |ν| = |λ| + k and height ≤ n whose
Young diagrams are obtained form the Young diagram of λ by adding k boxes, at
most one to each row.

Example 1. We have the following decomposition

V(2,1) ⊗
∧2C4 ' V(3,2) ⊕ V(3,1,1) ⊕ V(2,2,1) ⊕ V(2,1,1,1)

according to the Young diagrams

•
•

•

•
•

• •
•

When decomposing a multiple tensor product Vλ ⊗ Vk1 ⊗ · · · ⊗ Vks
via Pieri’s

formula above, then one Young diagram can always be constructed in a canonical
way which is best described as ‘move as many boxes as possible in the leftmost
columns’. An example will make everything clear:

Example 2. As a GL5-module the canonical Young diagram obtained from the
four-fold tensor product V(2,1) ⊗ V2 ⊗ V3 ⊗ V4 is

4
3 4

2 3
2 4
3 4

where the boxes coming from the module Vi are labeled with i.
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Using this construction of the canonical Young diagram it is obvious that for
0 ≤ i ≤ n − 1 a tensor monomial V1

⊗m1 ⊗ V2
⊗m2 ⊗ · · · ⊗ Vn−1

⊗mn−1 contains the
representation Vi with respect to SLn if and only if

∑
k mkk ≡ i mod n. Let us

write now (2, 1`) for the partition

(2, 1, 1, . . . , 1︸ ︷︷ ︸
` times

, 0, 0, . . . , 0)

whose Young diagram has one row of length 2 and ` rows of length 1, e.g.

(2, 13) =

Using again the construction of the canonical Young diagram the following
lemma is clear:

Lemma 1. Consider the partition µ = (2, 1`) of height `+1 ≤ n and let k1, . . . , ks <
n be positive integers such that

∑
i ki + |µ| ≡ 0 mod n and

∑
i ki + |µ| ≥ 2n. Then

as an SLn-module Vµ ⊗ Vk1 ⊗ Vk2 ⊗ · · · ⊗ Vks contains the trivial representation.

Now we can prove our first main theorem.

Theorem A. Considered as a representation of SLn(C), the tensor monomial

V1
⊗m1 ⊗ V2

⊗m2 ⊗ · · · ⊗ Vn−1
⊗mn−1

contains the trivial representation with multiplicity one if and only if either
∑

k kmk =
n or

∑
k(n − k)mk = n. For 1 ≤ i ≤ n − 1, it contains Vi with multiplicity one if

and only if either
∑

k kmk = i or
∑

k(n− k)mk = n− i.

Proof. (a) We already know that the trivial representation occurs in a tensor mono-
mial V1

⊗m1 ⊗ · · · ⊗ Vn−1
⊗mn−1 if and only if

∑
k kmk ≡ 0 mod n. If

∑
k kmk = n

then the tensor monomial V1
⊗m1 ⊗ · · ·⊗Vn−1

⊗mn−1 is a quotient of V ⊗n. It is well
known from the Schur-Weyl duality that (V ⊗n)SLn =

∧n
V which shows that the

trivial representation occurs exactly once in V1
⊗m1 ⊗ · · · ⊗ Vn−1

⊗mn−1 . By duality,
i.e. V ∗

d ' Vn−d, the same holds if
∑

k(n− k)k = n.
(b) Assume now that

∑
k kmk ≡ 0 mod n and that

∑
k kmk and

∑
k(n− k)mk

are both ≥ 2n. Write the tensor monomial V1
⊗m1 ⊗ · · · ⊗ Vn−1

⊗mn−1 in the form
Vr1⊗Vr2⊗· · ·⊗VrN

where 0 < r1 ≤ r2 ≤ · · · ≤ rN < n. If r1+r2 ≤ n then Vr1⊗Vr2

contains the irreducible summands Vr1+r2 and V(2,1r1+r2−2). Lemma 1 above implies
that V(2,1r1+r2−2)⊗Vr3 ⊗ · · ·⊗VrN

contains a trivial summand, and the same holds
for Vr1+r2 ⊗ Vr3 ⊗ · · · ⊗ VrN

. Thus the multiplicity of the trivial representation in
Vr1 ⊗ Vr2 ⊗ · · · ⊗ VrN

is at least two. By duality the same argument applies to the
case when (n− rN−1) + (n− rN ) ≤ n.

(c) It remains to show that if
∑

j rj and
∑

j(n− rj) are both ≥ 2n then either
r1 + r2 ≤ n or (n− rN−1) + (n− rN ) ≤ n. In fact, r1 + r2 > n implies that rj > n

2
for j ≥ 2. Moreover, N ≥ 3 because

∑
j rj ≥ 2n. Now the claim for the trivial

representation follows.
(d) For 1 ≤ i ≤ n− 1 let T := V1

⊗m1 ⊗ · · · ⊗ Vn−1
⊗mn−1 be a tensor monomial

with
∑

k kmk = i. We have
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mult(Vi, T ) = 1 ⇔ mult(V0, T ⊗ Vn−i) = 1

⇔
∑

k

kmk + n− i = n or
∑

k

(n− k)mk + i = n

⇔
∑

k

kmk = i or
∑

k

(n− k)mk = n− i

�

We like to prove a similar result for tensor products of symmetric powers SkCn =
Vnω1 . First of all there is also a Pieri formula for this situation (see [FH91, page
79, formula (6.8)] ).

Proposition 2. For any partition λ of height ≤ n we have the decomposition as
GLn-module

Vλ ⊗ SkCn '
⊕

ν

Vν

where ν runs through all partitions of degree |ν| = |λ| + k and height ≤ n whose
Young diagrams are obtained form the Young diagram of λ by adding k boxes, at
most one to each column.

Example 3. We have the following decomposition

V(2,1) ⊗ S2C4 ' V(4,1) ⊕ V(3,2) ⊕ V(3,1,1) ⊕ V(2,2,1)

according to the Young diagrams

• • •
•

•

•
•

•

Recall that the dual partition λ∨ of λ is obtained by interchanging rows and
columns of the corresponding Young diagrams, i.e.

λ∨j := #{i | λi ≥ j}.

In particular, |λ| = |λ∨| and λ∨ has heigt λ1. By definition,
∧kCn and SkCn

correspond to dual partitions, and the two Pieri formulas (Proposition 1 and 2)
are dual with respect to this duality of irreducible representations. As a consequence
we get the following result.

Proposition 3. Let m,n be two positive integers and λ a partition of height ≤ n
such that λ1 ≤ m. For any finite set of integers 0 < k1, k2, . . . , kr ≤ n we have

multGLn
(Vλ,

∧k1Cn ⊗
∧k2Cn ⊗ · · · ⊗

∧kr Cn) =

multGLm
(V ∨

λ , Sk1Cm ⊗ Sk2Cm ⊗ · · · ⊗ Skr Cm)

This enables us to carry over the results from Theorem A. We do it explicitely
for the case of the trivial representation. For this we consider, under the assumption
above, the partition λ = (nm) := (n, n, . . . , n︸ ︷︷ ︸

m times

).
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Corollary. (a) The tensor product Sk1Cm ⊗ Sk2Cm ⊗ · · · ⊗ Skr Cm contains the
trivial representation with respect to SLm if and only if there is an integer n ≥ 0
such that

∑
j kj = m · n and kj ≤ n for all j.

(b) If
∑

j kj = m · n and 0 < k1, . . . kr ≤ n then Sk1Cm ⊗ Sk2Cm ⊗ · · · ⊗ Skr Cm

contains the trivial representation (with respect to SLm) with multiplicity one if and
only if

∧k1Cn ⊗
∧k2Cn ⊗ · · · ⊗

∧kr Cn) does (with respect to SLn).

Summing up we obtain the following result.

Theorem. Let k1 ≤ k2 ≤ · · · ≤ kr be positive integers. Then the tensor product
Sk1Cm ⊗ Sk2Cm ⊗ · · · ⊗ Skr Cm contains the trivial representation of SLm with
multiplicity one if and only if there is an integer n ≥ 0 such that the following
holds:

(i)
∑

j kj = n ·m and kj ≤ n for all j.
(ii) ki = n for all i and hence r = m or

∑
kj<n kj = n or

∑
kj<n(n− kj) = n.

3. Growth of Multiplicities

Let G be a simple complex algebraic group, with maximal torus T ⊂ G and
Lie algebra g. We choose a set ∆ = {α1, α2, . . . , α`} of simple roots and denote
by {ω1, ω2, . . . , ω`} the corresponding fundamental weights. They span the weight
lattice Λ :=

∑
i Zωi which contains the root lattice Λroot :=

∑
i Zαi. For every

simple root αi we choose a root vector Xi ∈ gαi
. If W is a representation of G and

λ ∈ Λ then W (λ) denotes the weight space of weight λ.
A basic tool in the study of multiplicities of tensor monomials is the following

result due to Zelobenko [Ze73].

Proposition 4. Let Vµ, Vδ be irreducible representations of G of highest weights
µ, δ where δ =

∑
i riωi. For any representation W of G we have

mult(Vµ, Vδ ⊗W ) = dim{w ∈ W (µ− δ) | Xri+1
i w = 0 for i = 1, 2, . . . , `}.

The following corollary was pointed out by Evgueni Tevelev:

Corollary 1. Let Vδ be an irreducible representation of highest weight δ =
∑

i riωi

and let W1,W2, . . . ,Ws be arbitrary representations of G such that ri ≥ dim Wj for
all i, j. Then

mult(Vδ, Vδ ⊗W⊗n1
1 ⊗W⊗n2

2 ⊗ · · · ⊗W⊗ns
s ) ≥

∏
j

(dim Wj(0))nj .

Proof. The proposition above shows that mult(Vδ, Vδ ⊗ Wj) = dim Wj(0) since
Xri+1

i |Wj
= 0 by assumption. Now the claim follows by induction. �

Proposition 5. Let Vδ be an irreducible representation of highest weight δ =∑
i riωi and let W1,W2, . . . ,Ws be arbitrary representations of G. Assume:
(1) δ ∈ Λroot;
(2) ri ≥ dim Wj for all i and j;
(3) Wj(0) 6= 0 for all j.



MULTIPLICITIES IN TENSOR MONOMIALS 7

Then there exists an N0 > 0 such that Vδ occurs in the tensor monomial

W⊗m1
1 ⊗W⊗m2

2 ⊗ · · · ⊗W⊗ms
s

as soon as
∑

j mj ≥ N0.

Proof. It follows from Lemma 2 below that, for every j, Vδ occurs in some tensor
power W

⊗Nj

j , and Corollary 1 above implies that Vδ occurs in Vδ⊗W⊗n1
1 ⊗W⊗n2

2 ⊗
· · · ⊗ W⊗ns

s for all n1, . . . , ns ≥ 0. Define N0 :=
∑

j Nj . If
∑

j mj ≥ N0 then
mj ≥ Nj for at least one j and so

Vδ ⊂ Vδ ⊗W⊗m1
1 ⊗ · · · ⊗W

⊗mj−Nj

j ⊗ · · · ⊗W⊗ms
s ⊂ W⊗m1

1 ⊗W⊗m2
2 ⊗ · · · ⊗W⊗ms

s

which proves the claim. �

The following well-known result was used in the proof above.

Lemma 2. Let V be an irreducible representation and W a faithful representation
of a semisimple group G. Then V occurs in W⊗N for some N .

Now we are ready to formulate the main result of this section. Let λ1, λ2, . . . , λr

be the highest weights of V1, V2, . . . , Vr and let µ be the highest weight of W . In
order that W appears in the tensor monomial

V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr

it is necessary that µ is a weight of the tensor product, hence of the form µ =∑
i niλi −

∑
positiv roots [Hu72, 21.3 Proposition].

Theorem C. Let V1, V2, . . . , Vr and W be irreducible representations of highest
weights λ1, λ2, . . . , λr 6= 0 and µ. Then there is a constant N and a real number
α > 1 such that the following holds:

mult(W,V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr ) ≥ α

P
ni

if µ ∈
∑

i niλi + Λroot and
∑

i ni ≥ N .

Proof. Since

mult(W,V1
⊗n1 ⊗ · · · ⊗ Vr

⊗nr ) = mult(C, V1
⊗n1 ⊗ · · · ⊗ Vr

⊗nr ⊗W ∗)

it suffices to consider the case W = C, the 1-dimensional trivial representation.
Define

M := {a = (a1, . . . , ar) ∈ Nr |
∑

aiλi ∈ Λroot}.

By Gordan’s Lemma this is a finitely generated monoid: M =
∑s

j=1 Na(j). Put

Wj := V
⊗a

(j)
1

1 ⊗ V
⊗a

(j)
2

2 ⊗ · · · ⊗ V
⊗a(j)

r
r

for j = 1, 2, . . . , s. By construction, the weights of every Wj are in the root lattice.
In particular, Wj(0) 6= 0. Moreover, dim(Wj ⊗Wj)(0) ≥ 2, because Wj ⊗Wj is not
irreducible.

Now choose an irreducible representation Vδ of highest weight δ =
∑

riωi ∈ Λroot

such that ri ≥ (dim Wj)2 ≥ dim Wj for all i, j. It follows from Proposition 5
above that there is an N0 > 0 such that Vδ and V ∗

δ occur in every tensor product
W⊗m1

1 ⊗W⊗m2
2 ⊗ · · · ⊗W⊗ms

s as soon
∑

mj ≥ N0.
If

∑
mi ≥ 2N0 + 2 then m := (m1, . . . ,ms) ∈ Ns can be written in the form

m = p + q + 2r, p = (p1, . . . , ps), q = (q1, . . . , qs), r = (r1, . . . , rs) ∈ Ns
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where
∑

pj = N0,
∑

qj = N0 or N0 + 1 and
∑

rj > 0. Then we see that W⊗m =
W⊗p ⊗W⊗q ⊗W⊗2r contains V ∗

δ ⊗ Vδ ⊗
⊗

j(Wj ⊗Wj)⊗rj . Since

mult(Vδ, Vδ ⊗
⊗

j

(Wj ⊗Wj)⊗rj ) =
∏
j

(dim(Wj ⊗Wj)(0))rj ≥
∏
j

2rj

we get mult(C,W⊗m1
1 ⊗ · · · ⊗W⊗ms

s ) ≥ 2|r| where |r| :=
∑

j rj = b
P

j mj−2N0

2 c.
Now start with a tensor monomial V ⊗n = V ⊗n1

1 ⊗ · · · ⊗ V ⊗nr
r where n =

(n1, . . . , nr) ∈ M , and write n =
∑

j mja
(j). Then V ⊗n = W⊗m where m =

(m1, . . . ,ms), and we have the estimate |n| ≤ |m| · A where A := maxj |a(j)|. This
implies that

mult(C, V1
⊗n1 ⊗ V2

⊗n2 ⊗ · · · ⊗ Vr
⊗nr ) ≥ 2t

for (n1, . . . , nr) ∈ M , |n| :=
∑

ni ≥ (2N0 + 2)A and t = b |n|2A −N0c. From this the
claim follows easily. �

4. Computing Tensormonomials (jointly with H. Kraft)

In this section we provide tools to compute the finite sets

MW
k = {(n1, n2, . . . , nr) ∈ Nr | 1 ≤ mult(W,V1

⊗n1 ⊗ V2
⊗n2 ⊗ · · · ⊗ Vr

⊗nr ) ≤ k}
from Theorem B in Section 1. Using these tools we can answer the question of
Finkelberg for the exceptional groups G2, F4, E6, E7 and E8 by use of the com-
puter program LiE [Li96].

to be written
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Abstract. We describe the null-cone of the representation of G on Mp, where

either G = SL(W ) × SL(V ) and M = Hom(V, W ) (linear maps), or G =

SL(V) and M is one of the representations S2(V ∗) (symmetric bilinear forms),
Λ2(V ∗) (skew bilinear forms), or V ∗ ⊗ V ∗ (arbitrary bilinear forms). Here V

and W are vector spaces over an algebraically closed field K of characteristic

zero and Mp is the direct sum of p of copies of M .
More specifically, we explicitly determine the irreducible components of

the null-cone on Mp. Results of Kraft and Wallach predict that their number

stabilises at a certain value of p, and we determine this value. We also answer
the question of when the null-cone in Mp is defined by the polarisations of the

invariants on M ; typically, this is only the case if either dim V or p is small. A

fundamental tool in our proofs is the Hilbert-Mumford criterion for nilpotency
(also known as unstability).

1. Introduction

For a group G and a finite-dimensional G-module M over an algebraically closed
field K, we denote by K[M ]G the algebra of G-invariant polynomials on M . An
element m ∈ M is called nilpotent (or unstable) if it cannot be distinguished from 0
by K[M ]G, or, in other words, if all G-invariant polynomials on M without constant
term vanish on m. The nilpotent elements in M form a (Zariski-)closed cone in M ,
called the null-cone in M (G being understood) and denoted N (M) = NG(M); it
is a central object of study in representation theory. In this paper we will describe
the irreducible components of the null-cone in some concrete representations.

We will, in fact, be studying the null-cone in a direct sum Mp of p copies of
M , regarded as a G-module with the diagonal action. We recall some relations
between the invariants and the null-cone of Mq and those of Mp, where p and
q are natural numbers. It is convenient, for this purpose, to identify Mp with
Kp ⊗ M where G acts trivially on the first factor, and also, given a linear map
π : Kp → Kq, to use the same letter π for the G-homomorphism Mp → Mq

determined by π(x⊗m) = π(x)⊗m, x ∈ Kp,m ∈ M .
First, from an invariant f ∈ K[Mq]G we can construct G-invariants on Mp as

follows: for any linear map π : Kp → Kq the function f ◦ π is an invariant on
Mp. The functions obtained in this way as π varies are usually called polarisations
of f if q ≤ p and restitutions of f if q ≥ p. Using this construction, due to Weyl
[18], it is easy to see that any linear map π : Kp → Kq maps N (Mp) into N (Mq):

The authors are supported by the Swiss National Science Foundation (Schweizerischer
Nationalfonds).
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indeed, an element v of the former null-cone cannot be distinguished from 0 by any
G-invariants on Mp, let alone by those of the form f ◦ π with f ∈ K[Mq]G; hence
π(v) ∈ N (Mq). Using this observation, we can prove that the number c(Mp) of
irreducible components of the N (Mp) behaves as follows.

Proposition 1. If p ≥ q, then c(Mp) ≥ c(Mq). If in addition q ≥ dim M , then
c(Mp) = c(Mq) and the polarisations to Mp of the invariants on Mq without
constant term define the null-cone set-theoretically.

Proof. Fix any surjective linear map π : Kp → Kq; we claim that it maps N (Mp)
surjectively onto N (Mq). Indeed, if σ : Kq → Kp is a right inverse of π, then any
v ∈ N (Mq) is the image under π of σv ∈ N (Mp). This shows the first statement.
For the second statement it suffices to prove that the map

φ : Hom(Kq,Kp)×N (Mq) → N (Mp), (σ, v) 7→ σv

is surjective for q ≥ dim M , because the right-hand side has precisely c(Mq) irre-
ducible components. To prove surjectivity of φ, let v = (m1, . . . ,mp) ∈ N (Mp).
As q ≥ dim M , we can find a w ∈ Mq whose components span the K-subspace
〈m1, . . . ,mp〉K in M . It follows that there exist linear maps π : Kp → Kq and
σ : Kq → Kp such that πv = w and σw = v. We conclude that w = πv lies
in N (Mq) and v = φ(σ,w). The last statement is proved by a similar argument:
suppose that all polarisations f ◦ π with π ∈ Hom(Kp,Kq) and f ∈ K[Mq]G

without constant term vanish on v ∈ Mp, and let h ∈ K[Mp]G be without con-
stant term. We can choose π and σ with σπv = v as before, and we find that
h(v) = ((h ◦ σ) ◦ π)v = 0, because (h ◦ σ) ◦ π is a polarisation of the G-invariant
h ◦ σ on Mq. �

Remark 1. In characteristic zero the last statement of Proposition 1 also follows
from from Weyl’s stronger result that the invariant ring on Mp is generated by the
polarisations of invariants on Mq for q ≥ dim V [18]. Weyl’s theorem no longer
holds in positive characteristic, though a weaker statement is still true [12]. How-
ever, an analogue of Weyl’s theorem, for separating invariants, is true in arbitrary
characteristic [5]—and, again, implies the last statement of Proposition 1.

Proposition 1 shows that c(Mp) is an ascending function of p that stabilises
at some finite p ≤ dim M . This phenomenon was first observed by Kraft and
Wallach in the case of reductive group representations [14], to which we turn our
attention now. Suppose that G is a connected, reductive affine algebraic group over
K and M is a rational finite-dimensional G-module. One of the most important
results on the null-cone in this setting is the Hilbert-Mumford criterion [15, 16]
for nilpotency: v ∈ M lies in N (M) if and only if there exists a one-parameter
subgroup λ : K∗ → G such that limt→0 λ(t)v = 0; we then say that λ annihilates
v. In this setting much more can be said about the irreducible components of the
null-cone in Mp: one verifies that for every one-parameter subgroup λ, the set

(1) G · {v ∈ Mp | lim
t→0

λ(t)v = 0}

is a closed G-stable irreducible subset of N (Mp), and that a finite number of them
cover N (Mp). Moreover, for p sufficiently large, there are only the “obvious”
inclusions among these sets [14] and this observations gives rise to a combinatorial
algorithm for counting the irreducible components of N (Mp), p >> 0 [3]. However,
for smaller values of p, there are usually many more inclusions, and our goal in this
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paper is to determine the exact “stabilising” value of c(Mp) for the pairs (G, M)
in the abstract.

We note that the notion of “optimal” one-parameter subgroups for elements of
the null-cone gives yet a finer description of the geometry of N (M) [10, 16]—but
this notion is not needed here.

Summarising, we will settle the following two fundamental problems for the pairs
(G, M) of the abstract: first, we describe the irreducible components of N (Mp) and
determine at which value of p their number stabilises; and second, we determine
when N (Mp) is defined by the polarisations of the invariants on M . Note that in
this case, by a result of Hilbert, the invariant ring of Mp is finite over the subring
generated by these polarisations [13, Section II.4.3]. The remainder of this paper
has the following transparent organisation: Sections 2, 3, 4, and 5 deal with tuples of
linear maps, symmetric bilinear forms, skew bilinear forms, and arbitrary bilinear
forms, respectively. In the rest of the text we assume that K has characteristic
0; this allows for the use of some “differential” arguments in the case of linear
maps, while avoiding problems in small characteristics in the case of bilinear forms.
However, most of what is proved here remains valid in arbitrary characteristic.

2. Nilpotent tuples of linear maps

For an m-dimensional vector space V and an n-dimensional vector space W ,
both over our fixed algebraically closed field K of characteristic 0, the group G =
SL(W ) × SL(V ) acts on the space M = Hom(V,W ) of linear maps by (g, h)A :=
gAh−1. By duality we may assume that 0 < m ≤ n, and we let q := d n

me be the
smallest integer ≥ n/m. Then N (Mp) is as follows.

Theorem 1. The null-cone of SL(W ) × SL(V ) in Mp = Hom(V,W )p consists of
all p-tuples (A1, . . . , Ap) of linear maps for which there exist subspaces V ′ of V and
W ′ of W such that n · dim V ′ > m · dim W ′ and AiV

′ ⊆ W ′ for all i.
The p-tuples for which V ′ can be chosen of a fixed dimension k ∈ {1, . . . ,m} form

a closed irreducible subset of N (Mp), denoted C
(p)
k . For p < q the sets C

(p)
k are all

equal to Mp, and for p > q they are precisely the distinct irreducible components
of N (Mp). For p = q there are still inclusions among the C

(q)
k , unless m = 1, in

which case C
(q)
1 = C

(n)
1 = N (Mn) is the irreducible null-cone consisting of singular

n× n-matrices; or n = (q − 1)m + 1 with q ≥ 3, in which case the C
(q)
k are already

the distinct components of the null-cone.

This theorem does not completely answer the question of how many irreducible
components the null-cone on q copies has. Some remarks on this matter can be
found after the proof of the theorem, just before Example 2.

Somewhat prematurely, we will from now on call a pair V ′,W ′ as in the theorem
a witness for the nilpotency of (A1, . . . , Ap). In the proof that follows we use
a theorem from elementary optimisation theory, the max-flow-min-cut theorem,
which states that the maximal size of a flow from a source s to a sink t in a network
equals the minimal capacity of a cut disconnecting s from t. Here a network is
a directed graph with two distinguished vertices s and t and a prescribed real-
valued capacity function c on the arrows; a flow is a real-valued function f on the
arrows that is bounded by c and for which at every vertex other than s and t the
sum of the f -values on the incoming arrows equals the sum of the f -values on the
outgoing arrows; a cut is a set of arrows whose removal disconnects s from t; and
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Figure 1. The graph Γ with a cut.

the capacities of a flow and of a cut are defined in the obvious manner. See [2,
Chapter 3] for details.

Proof of Theorem 1, part one. Suppose that A = (A1, . . . , Ap) lies in the null-cone
and let (µ, λ) : K∗ → SL(V )×SL(W ) be a one-parameter subgroup annihilating A.
Let v1, . . . , vm be a basis of V with λ(t)vj = taj vj , where aj ∈ Z, let w1, . . . , wn be a
basis of W with µ(t)wi = tbiwi, where bi ∈ Z, and note that detλ(t) = det µ(t) = 1
implies

∑
j aj =

∑
i bi = 0.

Now construct a directed graph Γ with arrows of capacity n from a source s to m
vertices 1, . . . ,m, arrows of capacity m from n vertices 1̂, . . . , n̂ to a sink t, and an
arrow—for convenience, of infinite capacity—from j to î if and only if bi − aj > 0.
See Figure 1 for an example with m = 4 and n = 6. From

lim
t→0

µ(t)Akλ(t)−1vj = lim
t→0

µ(t)Akt−aj vj = 0

it is clear that each Ak maps vj into the space spanned by the wi with j → î in Γ.
We claim that the maximal flow from s to t in Γ is strictly smaller than the obvious
upper bound mn. Indeed, suppose that this upper bound were attained by a flow
in which cj,i is the flow from j to î. Then

∑
i cj,i = n for all j and

∑
j cj,i = m for

all i, so that
0 = m

∑
i

bi − n
∑

j

aj =
∑
j,i

cj,i(bi − aj);

but cj,i = 0 whenever bi − aj ≤ 0, so that the right-hand side is strictly positive,
a contradiction. Now the max-flow-min-cut theorem assures the existence of a
cut of capacity strictly smaller than mn and in particular not containing edges of
infinite capacity. Let T ⊆ {1̂, . . . , n̂} be the set of vertices cut off from t, and let
S ⊆ {1, . . . ,m} be the set of vertices not cut off from s. By definition of a cut, no
vertex j of S is connected to any vertex î outside of T , so that V ′ := 〈vj | j ∈ S〉K
is mapped by every Ak into W ′ := 〈wi | î ∈ T 〉K . Finally, the capacity of the cut
is equal to

m|T |+ n(m− |S|) and by assumption < mn,

so that m dim W ′ < ndim V ′ as required.
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Conversely, suppose that V ′,W ′ is a witness for the nilpotency of A, set (k, l) :=
(dim V ′,dim W ′), and choose complements V ′′ and W ′′ of V ′ and W ′, respectively.
Let λ be the one-parameter subgroup of SL(V ) having weights a1 := n(m − k)
on V ′ and a2 := −nk on V ′′; note that ka1 + (n − k)a2 = 0. Similarly, let µ be
the one-parameter subgroup of SL(W ) having weights b1 := m(n − l) on W ′ and
b2 := −ml on W ′′. From the inequalities

b1 − a1 > 0, b1 − b2 > 0, b2 − a1 ≤ 0, and b2 − a2 > 0

we infer that (µ, λ) annihilates any linear map sending V ′ into W ′, so that A ∈
N (Mp). This proves the first statement of the theorem. �

The sets C
(p)
k from Theorem 1 are closed and irreducible by a general argument:

they are of the form (1). Hence to prove the theorem we need only determine
for what values of p there are inclusions among the C

(p)
k . For this we need some

auxiliary notation and results, which are of independent interest and which also
give a formula for the dimensions of the irreducible components of N (Mp). We
write Ma,b for the space of a× b-matrices with entries in K.

Definition 1. Let a, b, c, d, and p be non-negative integers and let

Xi ∈ Mc,a and Yi ∈ Mb,d for i = 1, . . . , p.

Define the cut-and-paste map CP = CP(Xi,Yi)i
: Ma,b → Mc,d by

CPA =
p∑

i=1

XiAYi.

Now the rank of the linear map CP is clearly a lower semi-continuous function
of the p-tuple (Xi, Yi)i, and we let cp(p)(a, b, c, d), the cut-and-paste rank, be the
maximal possible rank of CP, i.e., the rank for a generic p-tuple (Xi, Yi)i.

Remark 2. The following properties of the cut-and-paste rank are easy to check:

cp(p)(c, d, a, b) = cp(p)(a, b, c, d) = cp(p)(b, a, d, c).

Indeed, the second equality comes from the fact that, upon composition with trans-
position on both sides, the cut-and-paste map CP(Xi,Yi)i

: Ma,b → Mc,d yields
CP(Y t

i ,Xt
i )i

: Mb,a → Md,c; and the first equality reflects the fact that the transpose
of CP(Xi,Yi)i

can be identified, via the trace form, with CP(Xt
i ,Y t

i )i
: Mc,d → Ma,b.

Moreover, if a ≤ c and b ≤ d then cp(p)(a, b, c, d) = ab for all p ≥ 1. Thus we reduce
the computation of the cut-and-paste-rank to the case where ab ≤ cd, a ≥ c, and
b ≤ d. Then each of the maps A 7→ XiAYi generically has rank bc, so that

cp(p)(a, b, c, d) ≤ min{ab, pbc}

Moreover, for p ≤ a/c it is easy to see that cp(p)(a, b, c, d) is in fact equal to pbc:
by using suitable Xi and Yi, one can “cut” p non-overlapping c× b-blocks from an
a× b-matrix, and “paste” them in a non-overlapping way into a c× d-matrix. The
same argument shows that for p sufficiently large cp(p)(a, b, c, d) equals ab; this is
the case, for example, as soon as one can cut an a×b-matrix into p non-overlapping
rectangular blocks that fit without overlap into a c × d-matrix. One might think
that the inequality for the cut-and-paste-rank given above is always an equality,
but this is not true: for (a, b, c, d) = (5, 4, 3, 7), for instance, we find cut-and-paste-
ranks 12, 19, 20 for p = 1, 2, 3, respectively. In short, we have no closed formula for
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cp and it would be interesting—but too much of a digression at this point in the
paper—to find such a formula. In small concrete cases, however, the cut-and-paste
rank can be computed easily; see below for some examples.

Proposition 2. Let k, l,m, n, p be integers satisfying 0 < k ≤ m, 0 ≤ l < n, and
p ≥ 0. Then

Q := {(A1, . . . , Ap) ∈ Mp
n,m | ∃U ⊆ Km : dim U = k and dim(

p∑
i=1

AiU) ≤ l}

is an irreducible closed subvariety of Mp
n,m , and a sufficient condition for Q to be

strictly smaller than Mp
n,m is

p >
l

k
+

m− k

n− l
.

Moreover, dim Q equals pmn if pk ≤ l and

pmn− (pk − l)(n− l) + cp(p)(m− k, k,min{p(m− k), n− l}, pk − l)

otherwise.

Proof. The set Q is an irreducible closed variety because it is of the form (1), that
is, the result of a vector space stable under a Borel subgroup of G = SLn × SLm

being “smeared” around by G. For pk ≤ l the proposition is evident: any p-tuple
maps any k-space into an l-space. Suppose therefore that pk ≥ l. In the diagram

Mp
n,m × (Mm,k)reg

µ //

π̃

��

Mn,pk

Mp
n,m

µ maps (A1, . . . , Ap, B) to (A1B| . . . |ApB), π̃ is the projection, and (Mn,k)reg is
the set of rank k matrices. Hence Q = π̃(µ−1(Xl)), where Xl is the variety of
matrices in Mp

n,pk having rank at most l. We will first compute the dimension of
Z := µ−1(Xl) and then the dimension of a generic fibre of π := π̃|Z : Z → Q; the
difference between these numbers is the dimension of Q.

First, µ is surjective and all its fibres have the same dimension km + pn(m− k).
Indeed, for (A1, . . . , Ap, B) to lie in the fibre over (C1, . . . , Cp) we may choose
B ∈ (Mm,k)reg arbitrarily, and then each Ai is determined on the k-dimensional
image of B, but can still be freely prescribed on an (n−k)-dimensional complement.
As Xl has dimension nl+pkl−l2 [9], Z has dimension km+pn(m−k)+nl+pkl−l2.
Now GLk acts freely on the fibres of π by g((Ai)i, B) := ((Ai)i, Bg−1), so that

dim Q = dim π(Z) ≤ dim Z − k2 = pnm− (pk(n− l)− k(m− k)− l(n− l)).

This implies the first statement of the proposition.
For the dimension of Q we compute the dimension of a generic fibre π−1π(z) by

computing the Zariski tangent space Tzπ
−1π(z), as follows. First, we show that Z

is irreducible and determine TzZ for generic z ∈ Z. Observe for this that the group
GLm acts on the fibres of µ by g((Ai)i, B) := ((Aig

−1)i, gB). Now the map

φ : GLm ×Mn,pk ×Mp
n,m−k → Mp

n,k ×Mm,k,

(g, (C1| . . . |Cp), (Ei)i) 7→ g((Ci|Ei)i,

(
Ik

0m−k,k

)
)
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maps GLm × Xl × Mp
n,m−k surjectively onto Z, so Z is irreducible as claimed.

Furthermore, the map

s : Mp
n,m−k → Mp

n,k ×Mm,k, x 7→ φ(1, x, (0)i)

is a right inverse of µ, so by the chain rule dzµ maps Mp
n,m × Mm,k surjectively

onto Tµ(z)Xl for all z ∈ Mp
n,m × Mm,k. In particular, if z lies in Z and µ(z) has

rank exactly l so that it is a smooth point of Xl, then we have

(2) TzZ = (dzµ)−1Tµ(z)Xl.

Now recall that if µ(z) has rank l, then

(3) Tµ(z)Xl = {N ∈ Mn,pk | N ker µ(z) ⊆ im µ(z)};

see [9, Example 14.16]. This will enable us to interpret the right-hand side in (2).
On the other hand, because char K = 0, we have

(4) Tzπ
−1π(z) = ker(dzπ : TzZ → Tπ(z)Q)

for generic z ∈ Z. Now let z = ((Ai)i, B) ∈ Z be generic. In particular, we require
(2) and (4), and what further open conditions on z are needed will become clear
along the way. By the action of GLm above we may assume that B is of the form

B =
[

Ik

0m−k,k

]
,

and we split each Ai = (Ai,1|Ai,2), accordingly. By genericity of the Ai the matrix
µ(z) = (A1,1| . . . |Ap,1) has rank l, and by (2), (3), and (4) we find that Tzπ

−1(π(z))
is isomorphic to the space of all m× k-matrices

D =
[
D1

D2

]
such that

(A1,1D1 + A1,2D2| . . . |Ap,1D1 + Ap,2D2) kerµ(z) ⊆ im µ(z).

This is clearly the case for D2 = 0 (this reflects the GLk-action used earlier), hence
to determine what other D have this property we may assume that D1 = 0. The
kernel of µ(z) has dimension pk−l, so we can choose p matrices Y1, . . . , Yp ∈ Mk,pk−l

such that the columns of the matrix Y1

...
Yp


form a basis of the kernel of µ(z). Again by genericity—the Ai,2 are “independent”
of the Ai,1—the pre-image of im µ(z) under (A1,2| . . . |Ap,2) has codimension c :=
min{p(m−k), n−l} in Kp(m−k), and we may choose matrices X1, . . . , Xp ∈ Mc,m−k

such that the rows of (X1| . . . |Xp) give linear equations for that inverse image. We
now have

{D2 ∈ Mm−k,k | (A1,2D2| . . . |Ap,2D2) ker(A1,1| . . . |Ap,1) ⊆ im(A1,1| . . . |Ap,1)}

= {D2 ∈ Mm−k,k |
∑

i

XiD2Yi = 0}

= ker(CP(Xi,Yi)i
: Mm−k,k → Mc,pk−l).
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Finally, because the Xi and Yi are generic along with the Ai, the dimension of this
space is (m− k)k− cp(p)(m− k, k, c, pk− l). The dimension of the fibre π−1(π(z))
is therefore k2 plus this number, and we find

dim π(Z) =dim Z − dim π−1π(z)

=km + pn(m− k) + nl + pkl − l2

−(k2 + (m− k)k − cp(p)(m− k, k,min{p(m− k), n− l}, pk − l))

=pmn− (pk − l)(n− l)

+ cp(p)(m− k, k,min{p(m− k), n− l}, pk − l),

as claimed. �

Remark 3. The difference dim π−1(π(z)) − k2, expressed above as the nullity of a
certain cut-and-paste map, is the dimension of the variety of k-dimensional sub-
spaces U for which

∑
i AiU is at most l-dimensional.

Example 1. Proposition 2 is particularly useful to prove the existence of tuples of
matrices not mapping any subspace of dimension k into a subspace of dimension l.
Consider the following two questions.

(1) Do all triples (A1, A2, A3) of 8 × 5-matrices map some 4-dimensional sub-
space into some 7-dimensional subspace? Set (m,n, k, l, p) = (5, 8, 4, 7, 3)
and compute

l

k
+

m− k

n− l
=

7
4

+
1
1

< 3 = p,

hence by the proposition the answer is no: there exist triples (A1, A2, A3)
such that for all U of dimension 4 we have

∑
AiU = K8. This may not

come as a surprise; however, it is not entirely obvious how to construct such
a “generic” triple. For instance, we cannot choose them such that each Ai

is monomial in the sense that it maps every standard basis vector of K5 to
some multiple of a standard basis vector of K8: if this is the case, then the
inequality 8 · 2 > 5 · 3 implies that there is a basis vector ei of K8 which is
“hit only once” by some Ap applied to some ek. But then U =

⊕
l 6=k Kel

is mapped into
⊕

j 6=i Kej .
(2) Do all triples of 5 × 5-matrices map some 2-dimensional space into some

3-dimensional space? Set (m,n, k, l, p) = (5, 5, 2, 3, 3) in the proposition.
Now we find

l

k
+

m− k

n− l
=

3
2

+
3
2

= 3 = p,

so we need a more detailed analysis. The cut-and-paste rank in the propo-
sition is

cp(3)(3, 2, 2, 3),
which is 3 · 2 = 6 as one can cut a 3 × 2-matrix into p = 3 rectangular
pieces that can be put together without overlap to make up a 2× 3-matrix.
It follows that the dimension in the proposition is in fact pmn, i.e., that
indeed, every triple of 5 × 5-matrices maps some 2-dimensional space into
some 3-dimensional space. To prove this is a nice exercise for students in
linear algebra. (It is also true in positive characteristic.)

To conclude the proof of Theorem 1 we need the following lemma.
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Lemma 1. Let V,W,m = dim V, n = dim W, and the C
(p)
k for k = 1, . . . ,m and

p ∈ N be as in Theorem 1. Fix k ∈ {1, . . . ,m} and let l be the maximal integer with
l/k < n/m. Then the following two statements are equivalent:

(1) C
(p)
k is not contained in C

(p)
k′ for any k′ 6= k.

(2) There exist a p-tuple (A′1, . . . , A
′
p) ∈ Mp

l,k such that

(*)
∑

i

A′iK
k = Kl

and

(**) dim(
∑

i

A′iU
′) ≥ n

m
dim U ′

for all proper subspaces U ′ ( Kk; as well as a p-tuple (A′′1 , . . . , A′′p) ∈
Mn−l,m−k such that

(***) (l + dim(
∑

i

A′′i U ′′)) ≥ n

m
(k + dim U ′′)

for all non-zero subspaces 0 6= U ′′ ⊆ Km−k.

Proof. First suppose that the second condition is not satisfied, let (A1, . . . , Ap) be
in C

(p)
k , and let V ′,W ′ be subspaces of V,W of dimensions k, l, respectively, such

that AiV
′ ⊆ W ′ for all i = 1, . . . , p.

Suppose that no p-tuple (A′i) as above exists. Then for some k′ < k the closed
set consisting of all (A′i) ∈ Mp

l,k for which there is a k′-dimensional U ′ satisfying
dim(

∑
i A′iU) < k′n/m fills the entire space Mp

l,k. Taking for the A′i the restrictions

Ai|V ′ : V ′ → W ′ we conclude that C
(p)
k ⊆ C

(p)
k′ .

Similarly, if no p-tuple (A′′i ) as above exists, then some k′′ ∈ {1, . . . ,m − k}
has the property that any p-tuple (A′′i ) ∈ Mn−l,m−k maps some k′′-dimensional
space into a space of dimension < (k + k′′)n/m − l. In particular, for the p-
tuple of induced linear maps Ai : V/V ′ → W/W ′ there is a k′′-dimensional space
U ′′ for which dim

∑
i AiU

′ < (k + k′′)n/m − l. But then the preimage U of U ′′

in V is a space of dimension k + k′′ that is mapped into a space of dimension
< (k + k′′)n/m− l + l = (k + k′′)n/m, and we conclude that C

(p)
k ⊆ C

(p)
k+k′′ .

Conversely, suppose that p-tuples (A′i) and (A′′i ) as above do exist. For i =
1, . . . , p let Ai ∈ Mn,m be the block matrix

Ai =
[
A′i

A′′i

]
,

and let U be a subspace of Km unequal to Kk. Let U ′ be the intersection of U
with Kk and let U ′′ be the projection of U on Km−k along Kk. Then dim U =
dim U ′ + dim U ′′ and one readily sees that

(5) dim(
∑

i

AiU) ≥ dim(
∑

i

A′iU
′) + dim(

∑
i

A′′i U ′′).

Now there are two possibilities: either U ′ 6= Kk, or U ′ = Kk but U ′′ 6= 0. In the
first case one finds that the right-hand side is at least

n

m
dim U ′ +

n

m
dim U ′′ =

n

m
dim U,
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where we have used (**) for the first term, and (***) with k and l replaced by 0 for
the second term—note that under this replacement (***) remains valid for U ′′ 6= 0
by the choice of l, and becomes valid for U ′′ = 0, as well.

If, on the other hand, U ′ = Kk but U ′′ 6= 0, then using (*) and (***) we find
that the right-hand side in (5) is at least

l + dim(
∑

i

A′′i U ′′) ≥ n

m
(k + dim U ′′) =

n

m
dim U.

In other words, the pair (Kk,Kl) is the only witness for the nilpotency of (A1, . . . , Ap),
and a fortiori this p-tuple lies in a unique C

(p)
k .

�

Proof of Theorem 1, part two. It is clear that if p < q := d n
me, then for any sub-

space V ′ of V we have dim(
∑p

i=1 AiV
′) ≤ p dim V ′ < n

m dim V ′, so that all C
(p)
k

are equal to Mp = Hom(V,W )p. In other words: there are no invariants on Mp for
p < q.

Next suppose that p ≥ q + 1; then we have to show that there are no inclusions
among the C

(p)
k . For every k ∈ {1, . . . ,m} let lk := dk n

me − 1 denote the maximal
l ∈ {0, . . . , n− 1} with l

k < n
m . One readily verifies that

(6) 1 ≤ lk+1 − lk ≤ q for all k ∈ {1, . . . ,m− 1}

(the first inequality follows from our standing assumption n ≥ m). Fix k ∈
{1, . . . ,m} and set l := lk, so that every p-tuple in C

(p)
k maps some k-space into an

l-space. We will prove the existence of p-tuples (A′i) ∈ Mp
l,k and (A′′i ) ∈ Mp

n−l,m−k

as in Lemma 1, so that C
(p)
k is not contained in any C

(p)
k′ with k′ 6= k.

To find the A′i we show that for all k′ ∈ {1, . . . , k − 1} and l′ ∈ {0, . . . , l − 1}
with l′

k′ < n
m the dimension of the set of p-tuples (A′1, . . . , A

′
p) ∈ Ml,k that map a

k′-space into an l′-space is smaller than plk. To this end we want to apply the suf-
ficient condition of Proposition 2 with m,n, k, l replaced by k, l, k′, l′, respectively.
Compute therefore

l′

k′
+

k − k′

l − l′
<

n

m
+ 1 ≤ q + 1 ≤ p,

where for the second term we used l′ ≤ lk′ and the strict increasingness of the lk.
This shows the existence of A′1, . . . , A

′
p as required.

Similarly, to find the A′′i we show that for all k′ ∈ {k + 1, . . . ,m} and l′ ∈
{l, . . . , n − 1} with l′

k′ < n
m there exists a p-tuple (A′′1 , . . . , A′′p) ∈ Mm−k,n−l that

does not map any (k′−k)-dimensional space into an l′−l-dimensional space. Again,
we apply the proposition, but now with m,n, k, l replaced by m−k, n−l, k′−k, l′−l,
respectively. Consider therefore the expression

l′ − l

k′ − k
+

m− k′

n− l′

As l′ ≤ lk′ and l = lk the first term is at most q by (6). On the other hand, as
l′ < n

mk′, the denominator of the second term satisfies

n− l′ > n− n

m
k′ =

n

m
(m− k′) ≥ m− k′,
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hence the second term is smaller than 1. We conclude that

p ≥ q + 1 >
l′ − l

k′ − k
+

m− k′

n− l′
,

hence by Proposition 2 there exists a p-tuple (A′′i ) as required, and by Lemma 1
we conclude that C

(p)
k is not contained in any C

(p)
k′ with k′ 6= k. This concludes the

case where p > q.
Finally, we assume that p = q. First suppose that there exists a k ∈ {1, . . . ,m−1}

with lk+1 − lk = q. Then any q-tuple (A1, . . . , Aq) ∈ C
(q)
k maps a k-space into an

lk-space, and adding one arbitrary dimension to that k-space yields a (k +1)-space
mapped by all Ai into a space of dimension lk + q = lk+1. In other words, we have
C

(q)
k ⊆ C

(q)
k+1, so that there are indeed inclusions among the C

(q)
k . Next suppose

that no such k exists. Then we have

n− 1 = lm ≤ l1 + (m− 1)(q − 1) = m(q − 1) < m
n

m
= n,

so that n = m(q − 1) + 1, where q ≥ 2. In this case lk = (q − 1)k for all k, and for
q > 2 the inequalities

lk′

k′
+

k − k′

lk − lk′
= (q − 1) +

1
q − 1

< q for k′ < k

and
lk′ − lk
k′ − k

+
m− k′

n− lk′
= (q − 1) +

m− k′

(q − 1)(m− k′) + 1
< q for k′ > k

readily imply that the construction of the Ai above still works to show that C
(q)
k

is not contained in any other C
(q)
k′ . The last case to be considered is q = 2 and

n = m + 1. Then lk = k for all k, and any pair of matrices mapping a k-space into
a k-space also maps a (k − 1)-space into a (k − 1)-space, so that the null-cone on
q = 2 copies is irreducible. �

We should point out that, although Theorem 1 does settle the question of when
all irreducible components of the null-cone in Hom(V,W )p become visible, it does
not conclusively describe the irreducible components in the case where p = q :=
dn/me. Frankly, we do not fully understand the null-cone in this representation:
although an easy dimension count shows that SL(V )×SL(W ) cannot have a dense
orbit on Hom(V,W )q, so that the null-cone does not fill up the entire space, it seems
hard to predict which inclusions there exist among the C

(q)
k . The only thing that we

venture to say in general is that there seem to be many inclusions when n is close or
equal to qm and few inclusions when q ≥ 3 and n is close to (q − 1)m. In concrete
cases, however, Lemma 1 and Proposition 2 allow one to determine explicitly which
of the C

(q)
k are maximal. We have thus reduced the problem of determining the

irreducible components of the null-cone on q copies to the computation of cut-and-
paste ranks—as this is the only non-trivial thing one has to do to apply Lemma
1 and Proposition 2. We conclude the discussion of the null-cone on Hom(V,W )q

with a few examples.

Example 2. (1) If n = qm, then C
(q)
k is the set of q-tuples mapping some

k-dimensional space into a (kq − 1)-dimensional space. Clearly, they form
a chain C

(q)
1 ⊆ C

(q)
2 ⊆ . . . ⊆ C

(q)
m , so that the null-cone is equal to the last

term and irreducible.
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(2) Let m = 4, n = 6, p = q = 2. Then Ck := C
(2)
k is the set of pairs of linear

maps K4 → K6 mapping some k-dimensional space into an lk-dimensional
space, where lk = 1, 2, 4, 5 for k = 1, 2, 3, 4, respectively. One has the inclu-
sions C1, C2, C4 ⊆ C3, so that the null-cone is equal to C3 and irreducible
(we do not claim that these are all inclusions among the Ci). Indeed, the
inclusion C2 ⊆ C3 is easy. To see that C4 ⊆ C3 we apply Proposition
2 with (m,n, k, l, p) equal to (4, 5, 3, 4, 2): the dimension of the variety Q
there equals

40− 2 · 1 + cp(2)(1, 3, 1, 2) = 40,

so that every pair of 5× 4-matrices maps some 3-dimensional space into a
4-dimensional space (this can, of course, also be seen directly).

Similarly, to see that C1 ⊆ C3 we apply Proposition 2 with (m,n, k, l, p)
equal to (3, 5, 2, 3, 2). The dimension of Q is now

30− 1 · 2 + cp(2)(1, 2, 2, 1) = 30,

so that every pair of 5× 3-matrices maps some 2-dimensional space into a
3-dimensional space. Applying, as in Lemma 1, this fact to the linear maps
induced by a pair (A1, A2) ∈ C1, which go from a 3-dimensional quotient
space to a 5-dimensional quotient space, we find that C1 ⊆ C3.

(3) Let m = 5, n = 12, p = 3. Then lk = 2, 4, 7, 9, 11 for k = 1, 2, 3, 4, 5,
respectively; write Ck := C

(3)
k . We readily find C2 ⊆ C3. We claim that

no Ck with k 6= 2 is contained in any Ck′ with k′ 6= k. Again, one can
prove this using Lemma 1 and Proposition 2. Indeed, it turns out that for
k = 1, 3, 4, 5 the sufficient criterion

3 = p > l′/k′ + (m′ − k′)/(n′ − l′)

of Proposition 2 is verified for all values m′ := k, n′ := lk, k′ < k, l′ := lk′ as
well as for all values m′ := m−k, n′ := n−lk, 1 < k′ ≤ m−k, l′ := lk+k′−lk.
Using Lemma 1, this proves that the null-cone has 4 irreducible components,
namely C1, C3, C4, C5.

As promised in the Introduction, we now investigate when the polarisations
of invariants on one copy of Hom(V,W ) define the null-cone on p copies. This
question is interesting only in the case where there are non-trivial invariants on
one copy—hence if dim V = dim W , in which case we may as well assume V = W .
The invariant ring of SL(V )× SL(V ) on End(V ) is generated by the determinant;
this readily follows from the fact that every invertible matrix A has the matrix
diag(det A, 1, . . . , 1) in its orbit. Note that by Theorem 1 the p-tuples in the null-
cone on End(V )p are precisely those whose span in End(V ) is a “compression space”
in the sense that it maps some subspace of V into a strictly smaller subspace; see
[6] for this terminology. On the other hand, the p-tuples on which all polarisations
of det vanish are those that span a “singular space”, i.e., a vector space in which
every linear map is singular. Hence, the polarisations of det define the null-cone
on End(V )p if and only if every singular space in End(V ) spanned by p matrices
is is a compression space. See [4] for interesting small examples of singular non-
compression spaces.

Theorem 2. The null-cone in End(V )p is defined by the polarisations of det if and
only if dim V ≤ 2 or p ≤ 2.
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Proof of Theorem 2. The result for p = 2 follows from the Kronecker-Weierstrass
theory of matrix pencils, see [7]; for completeness we include a short proof in
our terminology. By Theorem 1 we have to show that if A,B ∈ End(V ) satisfy
det(sA + tB) = 0 for all s, t ∈ K, then there exists a witness V ′,W ′ ⊆ V for the
nilpotency of (A,B). Indeed, regarding s, t as variables, sA + tB has a non-zero
vector u(s, t) in K[s, t] ⊗K V in its kernel. But then any non-zero homogeneous
component of u(s, t), say of degree d, is also annihilated by sA + tB; hence we find
u0, . . . , ud ∈ V such that (sA+ tB)(sdu0 + sd−1tu1 + . . .+ tdud) = 0, where we may
assume that u0 6= 0. Taking the of coefficients of sd+1, sdt, . . . , td+1, we find

Au0 = 0, Au1 = −Bu0, . . . , Aud = −Bud−1, and Bud = 0.

But then every element of KA + KB maps the space V ′ :=
∑

i Kui into the space
U ′ :=

∑
i KAui, which is strictly smaller because Au0 = 0 while u0 6= 0.

The statement for dim V = 2 is easy: in a linear space of matrices of rank
≤ 1 either all matrices have the same image, or all matrices have the same kernel
(otherwise the space contains an A = λ ⊗ u and a B = µ ⊗ v such that both
λ, µ ∈ V ∗ and u, v ∈ V are linearly independent—but then A + B has rank 2).
Now suppose that m,n ≥ 3. To show that the null-cone in End(V )3 is then not
defined by the polarisations of det, it suffices to construct a 3-dimensional singular
subspace of End(V ) for which there do not exist V ′,W ′ as above. The space8>>>>>>>>><>>>>>>>>>:

26666666664

0 a b
−a 0 c
−b −c 0

a
a

. . .

a

37777777775
| a, b, c ∈ K

9>>>>>>>>>=>>>>>>>>>;
(empty entries are always zero),

is such a space, as one easily verifies. �

3. SL(V ) on symmetric bilinear forms

The group SL(V ) acts on bilinear forms as follows: if α is a bilinear form and
g ∈ SL(V ), then (gα)(v, w) = α(g−1v, g−1w). It will be convenient to associate to
every bilinear a linear map as follows: we fix, once and for all, a non-degenerate,
symmetric bilinear form (., .) on V , and denote the transpose of A ∈ End(V ) relative
to this form by At. If α is a bilinear form on V , then we associate to α a linear
map A by the requirement that α(x, y) = (x,Ay) for all x, y ∈ V . Then g acts on
A by g ·A := (g−1)tAg−1. Note that the image of SL(V ) in GL(End(V )) under this
representation is contained in the image of SL(V )×SL(V ) under the representation
of Section 2.

If α is a symmetric or skew symmetric bilinear form on V , and if U is a subspace
of V , then we will call the space {v ∈ V | α(v, U) = 0} the α-perp of U . If A is the
linear map associated to α, then this also the (., .)-perp of AU .

As in Section 2 the invariants of SL(V ) on S2(V ∗) are generated by the deter-
minant of (the linear map associated to) the form, and the null-cone on one copy
is therefore the irreducible variety of singular forms.
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Theorem 3. For p ≥ 2 and n := dim V , the null-cone of SL(V ) on S2(V ∗)p has
bn+1

2 c irreducible components given by

C
(p)
k := {(α1, . . . , αp) | ∃U ⊆ W ⊆ V : dim U = k,dim W = n− k + 1, and

αi(U,W ) = 0 for all i = 1, . . . , p}, k = 1, . . . , bn + 1
2

c.

In contrast to our proof for tuples of matrices, we will give explicit pairs of
symmetric forms representing the various components of the null-cone; for this the
following lemma is useful.

Lemma 2. Let m,n, k be non-negative integers and let π1, . . . , πp be partially de-
fined strictly increasing functions {1, . . . ,m} → {1, . . . , n}, that is, every πl is de-
fined on a subset dom(πl) of {1, . . . ,m} and satisfies

i < j ⇒ πl(i) < πl(j) whenever the right-hand side is defined.

For l = 1, . . . , p let Al : Km → Kn be a linear map mapping ei to a non-zero
multiple of eπl(i) if πl is defined at i, and to zero otherwise. Let U be a subspace of
Km and set

grU := {i ∈ {1, . . . ,m} | U ∩ (ei + 〈e1, . . . , ei−1〉K) 6= ∅}.

Then

dim
∑

l

AlU ≥

∣∣∣∣∣⋃
l

πl(grU ∩ dom πl)

∣∣∣∣∣
We will call a p-tuple (A1, . . . , Ap) of linear maps as in this lemma standard.

Proof. We have | gr(U)| = dim U , and defining grW for subspaces W of Kn in a
similar way the conditions on the Ai guarantee that

gr(
∑

l

AlU) ⊇
⋃
l

πl(grU ∩ dom πl),

whence the lemma follows immediately. �

Proof of Theorem 3. Suppose that (α1, . . . , αp) lies in the null-cone, and let Ai

be the linear map associated to αi. Then (A1, . . . , Ap) lies in the null-cone of
SL(V ) acting on End(V ) as indicated above and, a fortiori, in the null-cone of
SL(V )×SL(V ) on End(V ) discussed in Section 2. Hence by Theorem 1 there exist
subspaces U ′ and W ′ of V with dim W ′ = n − dim U ′ + 1 and such that every Ai

maps U ′ into the (., .)-perp of W ′ relative to (., .) (So W ′ here is the (., .)-perp of
the space W ′ in Theorem 1.) But then αi(w, u) = (w,Aiu) = 0 for all u ∈ U ′

and w ∈ W ′. Now set U := U ′ ∩ W ′ and W := U ′ + W ′. Then clearly U ⊆ W ,
dim U + dim W = dim U ′ + dim W ′ = n + 1, and αi(U,W ) = 0 for all i.

The C
(p)
k are closed and irreducible as usual (see the Introduction), and so it only

remains to check that there are no inclusions among them for p ≥ 2. To this end, let
k ∈ {1, . . . , bn+1

2 c}; we will construct a pair (α, β) ∈ C
(2)
k that does not lie in any

C
(2)
k′ with k 6= k′. Take V = Kn and (x, y) :=

∑n
i=1 xiyn+1−i, so that transposition

relative to this form corresponds to reflection of the matrix in the “skew diagonal”;
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we will refer to this symmetric form as the skew diagonal symmetric form. Now
take the standard pair (A,B) for which

sA + tB =

2666666666666666666666664

s t

. . .
. . .

s t

t

s
. . .

. . .
. . .

s t

t

s
. . .

. . . t
s

3777777777777777777777775

,

where the diagonal block sizes are, from top left to bottom right, (k − 1) × k,
(n−2k+1)×(n−2k+1), and k×(k−1). Let α and β be the forms defined by A and B,
respectively. Now if U and W are subspaces of Kn with dim U +dim W = n+1 and
α(U,W ) = β(U,W ) = 0, then one finds dim(AU + BU) < dim U . But by Lemma
2 the only pair of subspaces of Kn having this property are U = 〈e1, . . . , ek〉K
and W = 〈e1, . . . , ek, . . . , en−k+1〉K . This shows that (U,W ) is the unique witness
for the nilpotency of (α, β), and hence (α, β) does not lie in any other component
C

(2)
k′ . �

We now proceed with our second fundamental problem: for which p, n is the
null-cone on p-tuples of symmetric bilinear forms on V defined by the polarisations
of det? Suppose that (α1, . . . , αp) lies in C

(p)
k , and that U and W are a witness of its

nilpotency as in Theorem 3. A dimension argument shows that U must intersect
the radical of each αi non-trivially; in particular, if αi has rank n − 1, then its
radical is contained in U , and W is precisely the αi-perp of U .

Suppose now that all αi have rank n − 1. Then a geometric interpretation of
U,W as in the theorem is the following: PU is a linear subspace of PV common
to all quadrics Qi = {x ∈ PV | αi(v, v) = 0} and containing their radicals, and
for each i, PW is the space tangent to Qi at all of PU . For example, if n = 4 and
p = 2, then a pair (α1, α2) of rank 3 forms lies in C

(2)
1 if and only if α1 and α2 have

the same radical (a projective point); if (α1, α2) 6∈ C
(2)
1 , then the pair lies in C

(2)
2

if and only if the quadrics Q1, Q2 are tangent along the (projective) line through
their radicals. This interpretation yields a nice proof of the following theorem.

Theorem 4. The null-cone on S2(V ∗)p is defined by the polarisations of det if and
only if dim(V ) ≤ 4 or p ≤ 2.

Proof of Theorem 4. On p = 2 copies the null-cone is defined by the polarisations
of the determinant. This follows either from the Kronecker-Weierstrass theory of
pencils of forms [7] or from a direct construction of U and W as in Theorem 3 for
any two-dimensional space of singular forms.

Next we prove that for n ≤ 4 the null-cone on any number p of copies is defined
by the polarisations of det, or, in other words, that any space A of singular sym-
metric bilinear forms is spanned by a tuple (α1, . . . , αp) lying in some C

(p)
k ; slightly
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1rad(Q  )

rad(Q  )0

L

Figure 2. Proof of Theorem 4 for n = 3

rad(Q  )0

rad(Q  )1

rad(Q  )t

L

P

rad(Q  )1 rad(Q  )0

L

Figure 3. Proof of Theorem 4 for n = 4

inaccurately, we will then say that A lies in Ck. Note that we need only prove
this for maximal spaces of singular forms; in particular, we may assume that A
contains forms of rank n−1, because if it does not, we may add any rank 1 form to
A without creating non-degenerate forms. In what follows we heavily use the fact
that any 2-dimensional space of singular forms does already lie in some Ck.

For n = 2, the quadric of a rank 1 form is a point on the projective line PV . As
for any two non-zero forms in A this point coincides, it is the same for all forms in
A. Hence A lies in C1.

For n = 3, the quadric of a rank 2 form α is the union of two lines in the
projective plane PV , whose intersection is the radical of α. If the radicals of any
two forms in A of rank 2 coincide, then A lies in C1; suppose, therefore, that there
exist forms α0, α1 in A of rank 2 whose radicals are distinct. We have (α0, α1) ∈ C2,
so that their quadrics Q0 and Q1 have a line L in common (see Figure 2). Now a
generic element β ∈ A has rank 2, does not have the same radical as α0 or α1, and
its quadric Qβ is not the union of the non-common lines of Q0 and Q1. But Qβ

must have lines in common with both Q0 and Q1, and therefore it contains L. But
then L is isotropic relative to all forms in A, and A lies in C2.

For n = 4, suppose that there exist forms α0, α1 ∈ A of rank 3 whose radicals
do not coincide (otherwise A lies in C1). The corresponding quadrics Q0, Q1 ⊆ PV
are tangent along the line L connecting their radicals (see Figure 3, left). For t ∈ K
set αt := (1− t)α0 + tα1 and

T := {t ∈ K | rk(αt) = 3}.

For each t ∈ T , the quadric Qt of αt is tangent to Q0 along L, and its radical lies
on L; the set of all radicals thus obtained forms a dense set of L.
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If all rank 3 forms in A have their radicals on L, then their quadrics are all
tangent to Q0 along L and A lies in C2. Suppose, on the other hand, that there
exists a rank 3 form β ∈ A whose radical does not lie on L. Then its quadric
Qβ is tangent to each Qt with t ∈ T along the line connecting P := P rad(β) and
P rad(αt); in particular, Qβ contains all lines connecting P with a dense subset of L
(see Figure 3, right). The closure of the union of these lines—the projective plane
spanned by L and P—is therefore contained in Qβ . Hence, the pre-image in V of
this plane is a 3-dimensional β-isotropic space—but this contradicts the assumption
that rk(β) = 3.

Finally, we need to show that if n ≥ 5 and p ≥ 3, then the null-cone is not defined
by the polarisations of det. To this end, take for (., .) on V = Kn the orthogonal
sum of the skew diagonal symmetric form on K5 and the skew diagonal symmetric
form on Kn−5. Consider the triple (α1, α2, α3) of bilinear forms on Kn for which
the linear map associated to sα + tβ + uγ relative to (., .) equals

sA1 + tA2 + uA3 =

26666664

s t 0 0 0
0 s t 0 0

−u 0 0 t 0
0 2u 0 s t
0 0 −u 0 s

sIn−5

37777775 .

A direct computation shows that det(sA1 + tA2 + uA3) = 0. On the other hand,
by Lemma 2 there exists no subspace U of Kn with dim(

∑
i AiU) < dim U . We

conclude that (α1, α2, α3) is not nilpotent, and this concludes the proof of Theorem
4. �

Remark 4. The description of the null-cone in Theorem 3 already appears in [17,
Theorem 0.1(ii)]. However, Wall claims in Corollary 1 of loc. cit. that the null-cone
on any number of copies is defined by the polarisations of det—which, as we have
just seen, is only the case for n < 5.

4. SL(V ) on skew-symmetric forms

Our results for skew-symmetric forms are similar to those for symmetric forms,
except that the irreducible components of the null-cone become visible only from
3 or 4 copies onwards. Recall that if n := dim(V ) is odd, then all skew bilinear
forms are singular and there are no invariants on one copy of

∧2(V ∗), so that the
null-cone is the whole space. If n is even, then the invariant ring is generated by
the Pfaffian and the null-cone is irreducible.

Theorem 5. The null-cone SL(V ) on
∧2(V ∗)p is equal to

{(α1, . . . , αp) |∃U ⊆ W ⊆ V with dim U + dim W = n + 1 and

αi(U,W ) = 0 for all i = 1, . . . , p}.

Let C
(p)
k denote the subset of the null-cone where U can be chosen of dimension

k(= 1, . . . , dn
2 e =: q). Then the irreducible components of the null-cone are as

follows.

(1) If n = 2q ≥ 2 is even, then the null-cone on p = 2 copies is C
(2)
q (hence

irreducible), while the null-cone on p ≥ 3 copies has precisely q components,
namely C

(p)
k for k = 1, . . . , q.
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(2) If n = 2q−1 ≥ 3 is odd, then the null-cone on p = 2 copies is all of
∧2(V ∗)p;

on p = 3 copies there are non-trivial invariants, and the components of the
null-cone are precisely the C

(3)
k with k ∈ {1, 2, . . . , q − 4, q} (in particular,

for n ≤ 7 the null-cone is irreducible); on p = 4 copies the components of the
null-cone are precisely the C

(4)
k with k ∈ {1, 2, . . . , q−3, q} (in particular, for

n ≤ 5 the null-cone is irreducible); and on p ≥ 5 copies the components of
the null-cone are precisely the C

(p)
k with k ∈ {1, 2, . . . , q−2, q} (in particular,

for n ≤ 3 the null-cone is irreducible).

For the proof of this theorem we need a result from [11], which uses the following
notation: d(n, p) is the minimum, taken over all p-tuples (α1, . . . , αp) of skew bi-
linear forms on Kn, of the maximal dimension of a subspace that is isotropic with
respect to all αi. In other words, d(n, p) is the maximal dimension of a common
isotropic subspace of a generic p-tuple of skew bilinear forms on Kn.

Theorem 6 ([11, Main Theorem]). d(n, p) = b 2n+p
p+2 c.

Corollary 1. For n = 0, 2, 4, 6 any triple of skew bilinear forms on Kn has a
common isotropic subspace of dimension n/2. On the other hand, for all odd n ≥ 3
and for all even n ≥ 8 there exist triples (α1, α2, α3) of skew bilinear forms on Kn

for which there are no subspaces 0 ( U ⊆ W of Kn with dim U + dim W = n and
αi(U,W ) = 0 for all i.

Proof. The first statement is immediate from Theorem 6. Now let n = 2q ≥ 8 be
even, fix k ∈ {1, . . . , q}, and suppose that for any triple α1, α2, α3 of skew bilinear
forms on Kn there exist subspaces 0 6= U ⊆ W of Kn with dim U = k = n−dim W
and αi(U,W ) = 0 for all i = 1, 2, 3. The induced forms ᾱi, i = 1, 2, 3, on the
space W/U of dimension 2(q− k) have a common isotropic subspace U ′ ⊆ W/U of
dimension d(2(q − k), 3), by definition of the latter quantity. The pre-image of U ′

in W is then isotropic relative to all αi and has dimension d(2(q − k), 3) + k. We
thus find the inequality d(2q, 3) ≥ d(2(q − k), 3) + k, which by Theorem 6 reads

(7) b4q + 3
5

c ≥ b4(q − k) + 3
5

c+ k = b4q + 3
5

+
k

5
c.

For n = 2q = 8, however, this inequality does not hold for any k ∈ {1, 2, 3, 4}. For
n = 2q = 10 the only k ∈ {1, . . . , 5} for which it holds is k = 1, but it is easy to
construct a triple of bilinear forms on K10 for which there are no U,W as above of
dimensions 1, 9—indeed, one can use for this the construction that follows.

Suppose that n = 2q ≥ 12, and note that inequality (7) can only hold for k ≤ 5.
On the other hand, let α1, α2, α3 be the skew bilinear forms on Kn corresponding
to the triple (A1, A2, A3) of matrices, standard in the sense of Lemma 2, satisfying

t1A1 + t2A2 + t3A3 =

26666666666666664

t2 t3

t1 t2
. . .

. . .
. . . t3
t1 t2

−t2 −t3

−t1
. . .

. . .

. . . −t2 −t3
−t1 −t2

37777777777777775
.
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Using Lemma 2 one verifies that any subspace U of Kn satisfying dim(A1U +
A2U + A3U) ≤ dim U has dimension 0, n/2, or n. In particular, we should have
k ∈ {0, q, n}—but we saw above that 1 ≤ k ≤ 5, a contradiction.

We conclude that for n = 2q ≥ 8 and fixed k ∈ {1, . . . , q} there exist triples
(α1, α2, α3) of skew bilinear forms on Kn for which there are no subspaces U ⊆ W
of Kn with dimU = k = n−dim W and αi(U,W ) = 0 for all i. As the non-existence
of such a pair U,W with dim U = k is an open condition on the triple (α1, α2, α3),
there also exist triples for which there is no pair (U,W ) with U of any dimension.
This proves the corollary for even n.

For n = 2q − 1 ≥ 3 odd we can construct α1, α2, α3 explicitly by a construction
similar to that above: choose them corresponding to a standard triple (A1, A2, A3)
of matrices satisfying

t1A1 + t2A2 + t3A3 =

266666666666664

t2 t3

t1
. . .

. . .

. . . t2 t3
t1 0 −t3

−t1 −t2
. . .

. . .
. . . −t3
−t1 −t2

377777777777775
.

Using Lemma 2 one verifies that there are no subspaces U 6= 0,Kn of Kn with
dim(

∑
i AiU) ≤ dim U . �

Proof of Theorem 5. The description of the null-cone is proved in exactly the same
way as for symmetric bilinear forms; we do not repeat the argument here. We pro-
ceed to prove the inclusions C

(p)
k ⊆ C

(p)
q for the following values of the parameters:

(1) n arbitrary, k arbitrary, and p = 2;
(2) n = 2q − 1 ≥ 3, k = q − 1, and p arbitrary;
(3) n = 2q − 1 ≥ 5, k = q − 2, and p ∈ {3, 4}; or
(4) n = 2q − 1 ≥ 7, k = q − 3, and p = 3.

These statements are proved as follows: let (α1, . . . , αp) ∈ C
(p)
k and let U ⊆ W be

a pair with dim U = k,dim W = n− k + 1, and αi(U,W ) = 0 for all i. Then the αi

induce bilinear forms ᾱi on the space W/U of dimension n− 2k + 1, and we find a
subspace U ′ of W/U of dimension d(n − 2k + 1, p) that is isotropic relative to all
ᾱi. The pre-image of U ′ in W is then a space of dimension d(n− 2k +1, p)+ k and
isotropic relative to all αi. Using Theorem 6 one finds that for the above values of
the parameters this value d(n− 2k + 1, p) + k is at least bn

2 c+ 1, which shows that
(α1, . . . , αp) ∈ C

(p)
q . This proves all inclusions above.

Now we prove that there are no other inclusions among the C
(p)
k for other values

of n, k, and p. Suppose first that n = 2q is even, p ≥ 3 and k ∈ {1, . . . , q}. Then
we find a p-tuple in C

(p)
k not lying in any other C

(p)
k′ by a construction similar to

the constructions in the proof of Corollary 1: Let α1, α2, α3 be forms with matrices
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A1, A2, A3 for which t1A1 + t2A2 + t3A3 equals

(8)

266666666666666666664

t2 t3
t1 t2 t3

. . .
. . .

. . .

t1 t2 t3
t1A

′
1 + t2A

′
2 + t3A

′
3

−t3

−t2
. . .

−t1
. . . −t3
. . . −t2 −t3

−t1 −t2

377777777777777777775

,

where the diagonal blocks have sizes (k − 1) × k, (n − 2k + 1) × (n − 2k + 1),
and k × (k − 1) from top left to bottom right, and where the A′i are chosen such
(skew relative to the skew diagonal) that they map no subspace U 6= 0,Kn−2k+1

of Kn−2k+1 into a subspace of dimension < dim U ; such A′i exist by Corollary 1.
Write V1 := 〈e1, . . . , ek〉K , V2 := 〈ek+1, . . . , en−k〉K , and V3 := 〈en−k+1, . . . , en〉K .
Now suppose that U is a subspace of Kn for which dim

∑
AiU < dim U . Let

U1 := U ∩ V1, let U2 be the projection of U ∩ (V1 ⊕ V2) to V2 along V1, and let U3

be the projection of U to V3 along V1 ⊕ V2. Then dim
∑

i AiU1 ≥ dim U1 unless
U1 = V1, dim

∑
i AiU2 > dim U2 unless U2 = 0 or V2, and dim

∑
i AiU3 > dim U3

unless U3 = 0. Summing up these dimensions, we find dim
∑

i AiU < dim U implies
U1 = V1, U2 = 0 or U2 = V2, and U3 = 0. We conclude that (V1, V1 ⊕ V2) is the
only pair of subspaces U ⊆ W with αi(U,W ) = 0 and dim U + dim W > n. Hence
(α1, α2, α3) lies in C

(3)
k but not in any other C

(3)
k′ .

Next suppose that n = 2q − 1 ≥ 9 is odd. Then we have to show that that
C

(3)
k for k 6∈ {q − 1, q − 2, q − 3} is not contained in any other C

(3)
k . This goes

using a construction similar to that above for even n, choosing the A′i—now square
skew matrices of size n − 2k + 1 = 2(q − k) ≥ 8—such that for all spaces U with
0 ( U ( K2(q−k) we have dim A′1U + A′2U + A′3U > dim U ; such matrices exist by
Corollary 1.

Next, assuming n = 2q− 1 ≥ 7, suppose that p ≥ 4 and k ∈ {1, . . . , q− 3, q}. By
writing down an appropriate standard quadruple of skew matrices (A1, . . . , A4) we
show that C

(p)
k is not contained in any other C

(p)
k′ : take A1, A2, A3, A4 such that∑

i tiAi has the block shape of (8), where the outer two blocks are unchanged (i.e.,
A4 has no non-zero entries there), but the inner block of size 2(q − k) ≥ 6 is as
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follows: 26666666666666666664

t2 t3 t4

0 t2
. . .

. . .

t1 0
. . . t3 t4

. . .
. . . t2 0 −t4

t1 0 −t2 −t3
. . .

−t1 0
. . .

. . . −t4
. . .

. . . −t2 −t3
−t1 0 −t2

37777777777777777775
Again, applying Lemma 2, one readily verifies that this quadruple of skew matrices
does not map any space U into a space of dimension ≤ dim U .

A similar construction for n = 2q − 1 ≥ 5 with the following 4 × 4-block in the
middle: 2664

t3 t4 t5 0
t2 t3 0 −t5
t1 0 −t3 −t4
0 −t1 −t2 −t3

3775
shows that on p ≥ 5 copies the set C

(p)
q−2 is not contained in any other C

(p)
k ,

either. �

Finally, we settle the question, for n even, of when the null-cone on p copies of∧2(V ∗) is defined by the polarisations of the Pfaffian.

Theorem 7. The null-cone N (
∧2(V ∗)p) with dim V =: n even is defined by the

polarisations of the Pfaffian if and only if either p = 2 or n ∈ {2, 4}.

Proof. The proof for p = 2 goes exactly as for symmetric bilinear forms, and for
n = 2 the statement is trivial.

Suppose therefore that n = 4. As the referee of this paper kindly pointed out,
the theorem for this case can be proved using classical invariant theory: the image
of SL4 in GL(

∧2
K4) is precisely SO6, hence by the First Fundamental Theorem for

SO6 [8] one knows precisely the invariants on p copies of this representation, and
from this knowledge one can deduce that the null-cone is defined by the polarisations
of the invariants on one copy.

In keeping with the more geometrical arguments used for the case of symmetric
bilinear forms, we include a short, self-contained proof for the case where n = 4
that does not rely on classical invariant theory: Let A be a vector space consisting
of singular skew forms on K4. We have to show that either the radicals of all forms
in A intersect in a projective point, or there exist a line U and a plane W ⊇ U in
P3 with α(U,W ) = 0 for all α ∈ A. By the statement for p = 2 we know that any
pair of elements in A is of one of these two types.

We prove that in fact every pair α, β ∈ A is of the first type. Indeed, take α, β ∈
A non-zero (and hence of rank 2), suppose that radα and radβ are disjoint lines in
P3, and let U ⊆ W be a line and a plane in P3 such that α(U,W ) = β(U,W ) = 0.
For dimension reasons, U must intersect both radα and rad β, and hence U is
distinct from both of these lines. But then the α-perp of U and the β-perp of U are
both planes containing W , and hence equal to W . On the other hand, the radicals
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of α and β are contained in the α-perp and the β-perp of U , respectively, hence
in W . But this contradicts the assumption that the projective lines P radα and
P radβ do not intersect.

We conclude that all radicals of elements in A intersect. But then they all lie in
some plane W . Now if U is any line in W , then α(U,W ) = 0 for all α ∈ A, so that
A “lies in” C2. This proves the theorem for n = 4.

Finally, for n ≥ 6, we have to exhibit a triple of skew bilinear forms that is
not nilpotent but whose span lies in the null-cone on

∧2
V ∗. Choose for instance

α1, α2, α3 with matrices A1, A2, A3 such that

t1A1+t2A2+t3A3 =

266666666666664

t2
. . .

t2
0 S
S 0

−t2
. . .

−t2

377777777777775
, where S =

24t2 t3 0
t1 0 −t3
0 −t1 −t2

35 .

Using arguments like those for Lemma 2 one verifies that no subspace of Kn is
mapped by all Ai into a strictly smaller subspace. This concludes the proof of the
theorem. �

5. SL(V ) on arbitrary bilinear forms

The invariants of SL(V ) on (V ∗ ⊗ V ∗) are known [1], but in contrast to the
situation for linear maps and symmetric bilinear forms, it is not clear from them
that the null-cone on one copy of V ∗ ⊗ V ∗ is irreducible. The following theorem
states that it is, and also describes the components in several copies.

Theorem 8. For p ≥ 2, the null-cone of SL(V ) on (V ∗ ⊗ V ∗)p has q := bn+1
2 c

irreducible components given by

C
(p)
k := {(α1, . . . , αp) | ∃U ⊆ W ⊆ V : dim U = k,dim W = n− k + 1, and

αi(U,W ) = αi(W,U) = 0 for all i = 1, . . . , p}, k = 1, . . . , q.

On p = 1 copy the sets C
(1)
k form a chain C

(1)
1 ⊆ . . . ⊆ C

(1)
q , and hence the null-cone

equals the irreducible set C
(1)
q .

In the proof of this theorem we use the following lemma.

Lemma 3. Let β be a symmetric form and γ a skew form on the vector space V
of dimension ≥ 2. Then there exists a β-isotropic v0 ∈ V for which

dim{v ∈ V | β(v0, v) = γ(v0, v) = 0} ≥ dim V − 1

Proof. If the radical of γ has dimension ≥ 2, we may take for v0 any β-isotropic
vector in rad γ. If rad γ has dimension 1 and is spanned by v1, then there are two
cases: either v1 is β-isotropic and we may set v0 := v1, or V = Kv1 ⊕ V ′, where
V ′ := v

⊥β

1 . Then γ is non-degenerate on V ′ and if we find a v0 in V ′ satisfying
the conclusion of the lemma for V ′ instead of V , it also does the trick for V , as
β(v1, v0) = γ(v1, v0) = 0.
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Hence the case remains where γ is non-degenerate. Let B,C be the linear maps
corresponding to β, γ relative to (., .) and choose any eigenvector v0 of C−1B.
Then we have Bv0 ∈ KCv0 so that γ(v, v0)(= (v, Cv0)) = 0 implies β(v, v0)(=
(v,Bv0)) = 0. In particular, v0 is β-isotropic, and the vector space on the left-hand
side in the lemma is the γ-perp of v0. �

Proof of Theorem 8. For the first statement, let (α1, . . . , αp) be a nilpotent p-tuple
of bilinear forms and write αi = βi + γi for all i, with βi symmetric and γi skew.
Let Bi, Ci be the linear maps associated βi, γi, respectively. By assumption there
exists a one-parameter subgroup λ : K∗ → SL(V ) with limt→0 λ(t)αi = 0 for all
i. But this implies that also λ(t)βi, λ(t)γi → 0 for t → 0. A fortiori, the 2p-tuple
(B1, . . . , Bp, C1, . . . , Cp) is nilpotent under the larger group SL(V )×SL(V ), and by
Theorem 1 there exist subspaces U ′, U ′′ ⊆ V of dimensions k and k − 1 such that
BiU

′, CiU
′ ⊆ U ′′ for all i. Let W ′ be the perp of U ′ relative to our fixed form (., .),

set U := U ′ ∩W ′ and W := W ′ + U ′. Then U ⊆ W , dim U + dim W = n + 1, and
βi(U,W ) = γi(U,W ) = 0. But then also αi(U,W ) = αi(W,U) = 0, as claimed.

Now we prove C
(1)
k ⊆ C

(1)
k+1 for k < q. To this end, let U ⊆ W be subspaces

of V with dim U + dim W = n + 1. We want to prove that a form α ∈ V ∗ ⊗ V ∗

lying in C
(1)
k by virtue of α(U,W ) = α(W,U) = 0 also lies in C

(1)
k+1. Indeed, write

α = β +γ, where β is symmetric and γ is skew. The forms β, γ induce a symmetric
form β̄ and a skew-symmetric form γ̄ on W/U , respectively, and by the preceding
lemma there exists a w̄0 ∈ W/U for which

dim{w̄ ∈ W/U | β̄(w̄, w̄0) = γ̄(w̄, w̄0) = 0} ≥ dim W/U − 1.

Let w0 be a pre-image of w̄ in W , set U ′ := U ⊕ Kw0, and let W ′ ⊆ W be a
subspace of codimension 1 that contains w0 and whose image in W/U is contained
in the space above. Then we still have α(U ′,W ′) = 0 and dimU ′+dim W ′ = n+1,
but now dim U ′ = k + 1, as claimed.

Finally, we have to show that on p ≥ 2 copies there are no inclusions among
the sets C(k) with k = 1, . . . , q are distinct. But their intersections with the set of
p-tuples of symmetric bilinear forms are already distinct, see Theorem 3. �

The last question to be answered here is whether the polarisations of the invari-
ants on one copy of V ∗ ⊗ V ∗ define the null-cone on more copies. The answer can
be deduced from the answers for symmetric forms and for skew forms.

Theorem 9. The null-cone of SL(V ) on (V ∗⊗V ∗)p is defined by the polarisations
to p ≥ 2 copies of the invariants on V ∗ ⊗ V ∗ if and only if dim V ≤ 2.

Proof. For dim V = 1 the statement is trivial. Suppose that dim V = 2 and let
A be a space of nilpotent bilinear forms on V . If α ∈ A, then by theorem 8 both
the symmetric component and the skew component of α are singular. As the skew
component has even rank, it is then zero. Hence A consists of symmetric forms
only, and therefore the existence of a common radical for forms in A follows from
Theorem 4.

Suppose now that n ≥ 3. Let β1, β2, γ1 be the bilinear forms on Kn whose
matrices B1, B2, C1 relative to the orthogonal sum (., .) of the skew diagonal forms
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on K3 and Kn−3 satisfy

s1B1 + s2B2 + t1C1 =


s1 s2 0
t1 0 s2

0 −t1 s1

sIn−3

 .

A direct computation shows that det(s1B1 + s2B2 + t1C1) is identically zero. We
claim that actually A := 〈β1, β2, γ1〉K consists entirely of nilpotent bilinear forms;
as the determinant is not the only invariant, the preceding computation does not
prove this yet. But let α be in A with matrix A. Then At—where transposition,
as always, is relative to the form (., .)—defines the form αt, which by the definition
of A also lies in A and the singular matrix pencil 〈A,At〉K has a subspace U
of Kn for which W ′ := AtU + AU has dimension < dim U . But then the perp
W of W ′ relative to (., .) is a subspace of Kn of dimension > n− dim U satisfying
α(W,U) = αt(W,U)(= α(U,W )) = 0. Replacing (U,W ) by the pair (U∩W,U+W )
as usual, we find a witness for the nilpotency of α.

However, the pair (β1 + γ1, β2) of bilinear forms is not nilpotent. Indeed, if it
were, then there would be U ⊆ W with dim U + dim W = n + 1 and β1(U,W ) =
β2(U,W ) = γ1(U,W ) = 0, i.e., with dim B1U + B2U + C1U < dim U . By Lemma
2 no U with this property exists. �
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