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Abstract

Apoptotic cell death is thought to be the most likely
mechanism of cell death contributing to neurodegenera-
tion in Alzheimer’s disease (AD). Here, we provide evi-
dence that in sporadic AD cases the vulnerability of
peripheral cells to undergo apoptosis is increased com-
pared to non-demented elderly controls and, very impor-
tantly, to patients with subcortical vascular encephalopa-
thy (SVE) as another, but demented control group.
Quiescent ‘native’ and ‘activated’ lymphocytes from AD
patients that were predisposed to commit apoptotic cell
death by priming the cells with interleukin-2, are shown
to accumulate apoptosing cells to a significantly higher
extent in spontaneous and in oxidative stress-induced in
vitro apoptosis. Our results demonstrate robust differ-
ences in cell death sensitivity between AD and vascular
dementia. In none of the conditions investigated, lym-

phocytes from SVE patients were significantly different
from non-demented controls. The comparable findings
of a higher extent of apoptotic features in neurons and in
peripheral blood cells of AD patients are remarkable and
may suggest a rather general modulation of apoptotic
mechanisms by the disease, which even can be picked
up at the level of peripheral lymphocytes under specific
in vitro conditions.

Copyright© 2001 S. Karger AG, Basel

Introduction

Degeneration and death of neurons in brain regions
involved in learning and memory processes and the asso-
ciated deposition of amyloid B-peptide (AB) are features
defining Alzheimer’s disease (AD). A growing body of evi-
dence indicates that apoptotic cell death contributes to
neuronal cell death in AD [1, 2], although some questions
remain to be answered. Apoptotic events are relatively
rare at any given moment, apoptosis may coexist with
other forms of cell death, and apoptotic cell bodies may be
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rapidly phagocytosed by neighboring glial cells. Nonethe-
less, in situ data derived from postmortem brain tissue
indicate that DNA fragmentation is markedly increased
in brain cells of AD patients compared to controls [1, 3].
DNA fragmentation is one of the last and crucial events to
occur during the apoptotic cell death cascade. Further-
more, experimental models in vivo and in vitro, some of
which reproduce the genetic defects responsible for neu-
rodegeneration in hereditary AD, have provided addi-
tional indications. Thus, in vitro studies demonstrate that
the peptide AP and its fragments induce cell death in neu-
ronal cell cultures [4] by exhibiting classic features of
apoptotic degeneration [5]. One possible mechanism ini-
tiating apoptosis could be the free radical generation by
the peptide leading to lipid peroxidation and oxidative
stress [6]. A similar apoptotic pathway has been detected
in cultured cortical neurons after brief exposure to direct
oxidative damage (H,O,) [7]. Moreover, genetic risk fac-
tors might also enhance the cellular vulnerability for
apoptosis. This is amplified by findings indicating that
cells transfected with mutant genes of familial forms of
AD show an enhanced vulnerability to apoptosis [8, 9].

Apoptosis seems to be a program that is regulated by
several ubiquitous genes in many cells. Although a series
of different stimuli can initiate the apoptotic pathway,
events of apoptosis occur in a fixed sequence in all differ-
ent cell types [2]. This is also the case for lymphocytes,
where apoptosis plays an important physiological role.
Moreover, we could previously demonstrate that similar
oxidative stressors that induce apoptosis in neurons are
also active in human lymophocytes [10]. Thus, the lym-
phocyte represents a valuable peripheral system to study
alterations in ongoing mechanisms in the apoptotic pro-
gram in individual humans in general and in AD patients
in specific.

Our hypothesis suggests that in AD, genetic and other
risk factors, which occur in the same pattern in many oth-
er cells, are specifically disturbed not only in brain cells,
but may also be present in peripheral cells like lympho-
cytes. Indeed, first evidence indicates an enhanced cellu-
lar vulnerability to apoptosis in lymphocytes from pa-
tients with sporadic AD, who make up the vast majority
of AD case [11].

On the basis of this evidence, we wanted to address the
question of whether sensitivity to the induction of cell
death is specifically altered in AD patients and whether
this biochemical parameter is able to distinguish AD
patients from patients with other types of dementia, such
as vascular dementia, which is the second most common
type of dementia in the western world, after AD [12].

Sensitivity to Apoptosis in Dementia

Therefore, we included in our present study a well-charac-
terized group of patients with subcortical vascular en-
cephalopathy (SVE) [13]. Very interestingly, specific dif-
ferences in intracellular calcium signalling have been
already reported between AD and SVE [14]. Intracellular
calcium is not only one of the most important second mes-
sengers in signal transduction but also an early event in
the signal cascade of cell proliferation and cell death,
respectively.

Subjects and Methods

Subjects

Twenty patients (13 men and 7 women) with ‘probable’ (n = 11)
or ‘possible’ (n = 9) AD according to the diagnostic standards of the
‘National Institute of Neurological and Communicative Disorders
and Stroke’ and the ‘Alzheimer’s Disease and Related Disorders
Association’ (NINCDS-ADRDA criteria) [15] were studied. The
patients were recruited from an ongoing longitudinal study [16]. The
mean age was 69.8 £ 9.0 years (range 59-83 years). The majority of
cases exhibited moderate dementia. The clinical dementia ratings
ranged from mild to severe (mean 2.1 = 0.98, range 0.5-4). The Mini
Mental State Examination (MMSE) score ranged from 0 to 24 (mean
10.5 = 9.2). Of the 20 AD cases, 11 had early-onset AD, in whom
dementia developed before the age of 60 years (average age at onset
53.3 £ 4.3), and 9 had late-onset AD, in whom onset was after the
age of 60 years (average age at onset 73.2 £ 5.8 years). Familial AD
(FAD) patients could be excluded by patient history and by gene
analysis searching for missense mutations of presenilin 1 (PS-1),
which cause early-onset autosomal-dominat FAD the most frequent-
ly, using cDNA from total RNA extracted from cultivated mononu-
clear blood cells by polymerase chain reaction [17].

Blood cells from 21 patients (12 men and 9 women) with subcor-
tical vascular encephalopathy (SVE) [13, 18-20] following the diag-
nostic criteria for research studies (NINDS-AIREN) [21] were used
as a second group of demented patients, to elucidate differences in
pathogenesis. Patients underwent a structured medical and neurolog-
ical examination as well as neuropsychological interviews following a
research protocol with particular emphasis on the presence of motor
and gait disturbances, urinary incontinence, memory and attention
disorders, frontal release signs, and aspontaneous episodes. All
patients recruited showed evidence of memory impairment with at
least one deficit in cognitive domains (e.g. abstract thinking, lan-
guage, orientation, flexibility or personality changes), or isolated
functional impairment unrelated to physical deficits. Furthermore,
dementia was diagnosed only on the basis of combined information
from the initial and follow-up studies. All patients who entered this
study had repeated follow-ups, with confirmation of the entry diag-
nosis for at least a 2-year period. Several standardized test proce-
dures, including the Structured Interview for the Diagnosis of De-
mentia, Brief Assessment Interview, and the Nuremberg Ageing
Inventory, were used to exclude patients with other psychopathologi-
cal diseases, in particular a significant mood disorder and patients
with degenerative dementing diseases. Moreover, care was taken to
avoid inclusion of patients with mixed forms of dementia by strict
adherence to the NINDS-AIREN and NINCDS-ADRDA criteria
[15, 21]. Essential differences consisted of focal neurological find-
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ings, stepwise versus progressive decline in cognitive functions, pres-
ence or absence of lacunar cortical infarction and white matter
lesions on MRI scans. The mean age was 72.1 = 7.8 years (range
55-85 years). MMSE ranged from 15 to 24 (mean 21.6 £+ 2.9).

Blood cells from 15 non-demented individuals of similar age
(mean age 69.9 = 5.7 years, range 60-79 years, 9 men and 6 women)
were used as a control (average MMSE 29 + 0.5).

The majority of the patients and the controls were treated with
drugs mainly for cardiovascular disease, but then did not receive
medications which are known to interact with lymphocyte functions.
Subjects with acute infections or immunological alterations accord-
ing to the SENIEUR protocol [22] were not included in the study.
The study was approved by the responsible ethical committee, and
written informed consent was obtained from all subjects or, where
appropriate, from their caregivers.

Cell Separation

Peripheral blood lymphocytes were separated from heparinized
blood by centrifugation on Ficoll-Hypaque for 400 g for 40 min as
previously described [23].

After depletion of monocytes, cells were investigated directly (na-
tive cells) or after short-term culture (activated cells) as indicated.
For short-term culture, lymphocytes were resuspended in RPMI-
1640 (Dutch Modification, Sigma, Germany) supplemented with 5%
heat-inactivated fetal bovine serum, 100 units of penicillin/ml and
0.1 mg streptomycin/ml. The lymphocyte suspension was adjusted to
5 x 105 cells/ml and treated with 5 ug/ml concanavalin A for 48 h at
37°C and 5% CO,, washed with 10 mg/ml o-methylmannoside, and
cultured again for 48 h with 50 units of human recombinant interleu-
kin-2 (IL-2, Roche, Germany) according to the method of Lenardo
[24] to predispose to apoptosis. Native or activated cells were washed
with RPMI-1640, transferred into 24-well plates (5 x 105 cells/well),
and incubated with a cell-death-inducing agent to induce apoptosis
or incubated in the absence of inductor to study spontaneous in vitro
apoptosis.

Quantitative Measurement of Cell Death

The detection of histone-associated DNA fragments in one im-
munoassay demonstrating the internucleosomal degradation of ge-
nomic DNA during apoptosis was used. The assay is based on the
quantitative sandwich enzyme immunoassay principle using mouse
monoclonal antibodies directed against DNA and histones, respec-
tively. This allows the specific determination of mono- and oligonu-
cleosomes in the cytoplasmic fraction of cell lysates. Cytoplasmic
fractions (lysates) and cell culture supernatants (5 x 104 cells/200 pl)
were collected at different incubation times, frozen at —80°C for 1
week and analyzed by ELISA (correspond to 5 x 103 cell equiva-
lents). Following the protocol for cytochemistry of the Cell Death
Detection ELISAPLUS (Roche, Germany), nucleosomes were photo-
metrically visualized at 405 nm against blank (reference wavelength
492 nm). Absorption values (calculated for 5 x 103 cells) of each
ELISA were standardized to the positive controls (positive control =
1.0).

Induction of Apoptosis

Based on recent findings [25], lymphocytes were incubated with
2-deoxy-D-ribose (d-Rib, Sigma, 50 mmol/l) for 0-48 h. Incubation
led to a marked increase in cells undergoing apoptosis analyzed by
propidium iodide staining using flow cytometry [10]. The time-
dependent detection of cytoplasmic histone-associated DNA frag-
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ments (mono- and oligonucleosomes) after incubation of lympho-
cytes with d-Rib (50 mmol/l) confirms the flow-cytometric findings
(data not shown). Four hours after incubation of activated lympho-
cytes with d-Rib, nucleosomes became detectable in the cytoplasm of
apoptotic cells. The maximum level was reached after 6-12 h. In con-
trast, no nucleosomes were detected in the supernatant during the
first 12 h after cell death induction indicating that DNA fragmenta-
tion occurred prior to plasma membrane lysis discriminating be-
tween apoptosis and necrosis. A similar pattern of cell death was
detected for induction of apoptosis in native cells, but maximum lev-
els of nucleosomes were reached later [10].

Statistics
Statistical analyses (ANOVA) were carried out with the SAS
package (SAS Institute, Cary, N.C., USA).

Results

Susceptibility to Apoptosis of Native Mature

Lymphocytes

Freshly isolated lymphocytes from AD patients
showed significantly enhanced basal levels of DNA frag-
mentation when compared to elderly non-demented con-
trols and SVE patients, respectively (p < 0.01, ANOVA;
fig. 1). Thereby, lymphocytes from AD patients exhibited
a threefold increase in absorption values compared to the
lymphocytes from control subjects and a twofold increase
in absorption compared to SVE patients (mean values of
absorption = SEM: AD 0.20 = 0.03; controls 0.06 *
0.01; SVE 0.1 % 0.03; calculated for 5 x 103 cells in each
case). This defect itself appears not to be sufficient to lead
to a pathological leukopenia in AD patients, since the
absorption values correspond to only about 3% apoptotic
cells of AD lymphocytes under baseline conditions as
detected by flow cytometry [26].

Furthermore, we determined the enrichment in nu-
cleosomes in native cells depending on the culture period
in the absence or presence of a cell-death-inducing agent
(fig. 2). Significantly elevated levels of nucleosomes (cor-
responding to a higher portion of fragmented DNA) were
found in lymphocytes from AD patients undergoing spon-
taneous in vitro apoptosis (fig. 2A) compared to non-
demented controls and SVE patients over the whole time
period (0-48 h; p< 0.05, ANOVA).

We additionally determined the enrichment in nu-
cleosomes in cells as a function of the time in tissue cul-
ture in the presence of d-Rib (50 mmol/l; fig. 2B) to study
cell death induced by oxidative stress. As expected, higher
absorption values were observed than in our experiments
on spontaneous apoptosis in lymphocytes from patients
and controls, respectively (fig. 2A). Again, elevated levels
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Fig. 1. Basal levels of nucleosomes in native freshly isolated lympho-
cytes from SVE patients (n = 21), from AD patients (n = 18), and
from elderly non-demented controls (Co; n = 14) quantitated by
CDD ELISAPIUS, Apoptotic nucleosomes (indicated by absorption
values referring to 5 x 103 cells per well performed in triplicates)
were significantly enhanced in lymphocytes from AD patients com-
pared to non-demented controls and SVE patients, respectively (p <
0.01, ANOVA, Bonferroni’s post-hoc test * p < 0.05 vs. SVE patients,
**p < 0.01 vs. elderly controls). Data are presented as a box and
whiskers graph (the box extends from the 25th percentile to the 75th
percentile, with a line at the median, the whiskers extend above and
below the box to show the highest and lowest values; medians: con-
trols: 0.05; SVE: 0.04; AD: 0.17).

of nucleosomes, e.g. a higher portion of apoptotic cells,
were found in lymphocytes from AD patients over the
whole time period (0-48 h; p< 0.01, ANOVA).

In none of the conditions investigated, lymphocytes
from SVE patients were significantly different from non-
demented controls. In addition, no differences were
found in levels of nucleosomes between the early- and the
late-onset AD group and between female and male pa-
tients or controls. Moreover, there were no significant cor-
relations between the scores of severity of disease and lev-
els of nucleosomes, respectively (data not shown).

Susceptibility to Apoptosis of Activated Lymphocytes

Lymphocytes which are undergoing proliferation can
be triggered to programmed cell death by IL-2. IL-2 is the
most critical determinant in this process, and activated

Sensitivity to Apoptosis in Dementia
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Fig. 2. A Enrichment in nucleosomes in native lymphocytes from
SVE patients (n = 21), from AD patients (n = 18), and from elderly
non-demented controls (n = 14) undergoing spontaneously apoptosis
quantitated by CDD ELISAPLUS (total amount of nucleosomes). Data
are means = SEM. Apoptotic nucleosomes (see legend to fig. 1) were
significantly elevated in AD compared to elderly controls or SVE
patients over the whole period of incubation (p < 0.05, ANOVA).
Inset: Increase in nucleosomes over basal levels at time point 0 h. A,
B @ = AD; A =SVE; O = elderly controls. B Enrichment in nucleos-
omes in native lymphocytes from SVE patients (n = 21), from AD
patients (n = 18), and from elderly non-demented controls (n = 14)
undergoing activation-induced (d-Rib, 50 mmol/l) apoptosis quanti-
tated by CDD ELISAPLUS (total amount of nucleosomes). Data are
means = SEM. Apoptotic nucleosomes (see legend to fig. 1) were
elevated in AD compared to elderly controls or SVE patients over the
whole period of incubation (p < 0.01, ANOVA). Inset: Increase in
nucleosomes over basal levels at time point 0 h. * p < 0.05 vs. SVE
and controls, * p < 0.05 vs. SVE, ** p < 0.01 vs. SVE, ** p < 0.01 vs.
controls; Student’s t test.
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Fig. 3. A Enrichment in nucleosomes in activated lymphocytes from
patients with SVE (n = 8-13), AD (n = 10-11), and from elderly non-
demented controls (n = 7-10) undergoing spontaneously apoptosis
quantitated by CDD ELISAPLUS (total amount of nucleosomes). Data
are means = SEM. Apoptotic nucleosomes (see legend to fig. 1) were
significantly elevated in AD patients compared to elderly controls or
SVE patients over the whole period of incubation (p < 0.05,
ANOVA). Inset: Increase in nucleosomes over basal levels at time
point O h. A, B @ = AD; A = SVE; O = elderly controls. B Enrich-
ment in nucleosomes in activated lymphocytes from patients with
SVE (n = 8-13), AD (n = 10-11), and from elderly non-demented
controls (n = 7-10) undergoing activation-induced (d-Rib, 50 mmol/
1) apoptosis quantitated by CDD ELISAPLUS (total amount of nu-
cleosomes). Data are means = SEM. Apoptotic nucleosomes (see
legend to fig. 1) were significantly elevated at the time point 6 h in
AD (*p < 0.05 vs. SVE, Student’s t test) before reaching a plateau
level of nucleosomes. Inset: Increase in nucleosomes over basal levels
at time point O h. * p<0.05 vs. SVE and controls, * p <0.05 vs. SVE
(Student’s t test).
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lymphocytes have been shown to be more sensitive to
apoptosis than non-treated ‘native’ cells [24].

Accordingly, in our experiments basal levels of nu-
cleosomes as well as levels of nucleosomes after stimula-
tion with d-Rib were always elevated in activated lympho-
cytes, which were primed to apoptosis by IL-2 treatment
followed by IL-2 withdrawal compared to ‘native’ cells. In
addition, the time to get maximal increase in apoptotic
features in short-term tissue culture was reduced.

In contrast to freshly prepared native cells (fig. 2),
short-term lymphocyte cultures showed a high portion of
cells undergoing spontaneous apoptosis per se (fig. 3) cor-
responding to about 10% apoptotic cells as detected by
flow cytometry [10]. Basal absorption values at time point
0 h were three to four times the values from native lym-
phocytes (mean values of absorption + SEM: AD 0.58 +
0.18; controls 0.24 £ 0.06; SVE 0.37 = 0.06; calculated
for 5 x 103 cells in each case), but did not differ signifi-
cantly among the groups.

However, significantly elevated levels of apoptotic nu-
cleosomes were found in activated lymphocytes from AD
patients undergoing spontaneous in vitro apoptosis com-
pared to non-demented controls or SVE patients at 6, 12,
and 24 h (fig. 3A).

We also investigated the enrichment in nucleosomes in
activated cells as a function of the incubation time in the
presence of d-Rib (50 mmol/l; fig. 3B) to study oxidative
stress-induced cell death. Significantly higher levels of
apoptotic features were found in AD lymphocytes at 6 h,
just before maximum levels of accumulated nucleosomes
were obtained, indicating a faster turnover of the apoptot-
ic pathway in AD patients (fig. 3B).

Again, lymphocytes from SVE patients did not signifi-
cantly differ from lymphocytes of non-demented con-
trols.

Discussion

Our results indicate that the susceptibility to apoptosis
is significantly enhanced in lymphocytes from AD pa-
tients compared to non-demented controls and patients
with vascular dementia. Quiescent native as well as short-
term-cultured activated lymphocytes from AD patients
accumulate apoptosing cells to a significantly higher ex-
tent in spontaneous and in oxidative stress-induced apop-
tosis. We are not aware of any other studies demonstrat-
ing robust differences in cell death sensitivity between AD
and vascular dementia. As already mentioned, lympho-
cytes from SVE patients show reduced calcium response
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after mitogenic stimulation [14]. The relationship be-
tween impaired calcium signalling and sensitivity to the
induction of cell death is not clear, but might explain why
in our experiments the sensitivity to apoptotic cell death
is even slightly lower than DNA fragmentation levels in
non-demented control subjects after activation-induced
cell death, and might be the reason, as demonstrated by
others [27], that lymphocytes from patients with multi-
infarct dementia show an altered sensitivity to the inhibi-
tion of cell proliferation compared to AD patients.

Most of our data are compatible with the assumption
that mainly the sensitivity or vulnerability to apoptosis is
elevated, rather than the maximum number of cells,
which can be triggered to undergo apoptosis for a specific
condition. In addition, we demonstrated that AD lym-
phocytes are clearly more vulnerable to oxidative stress.
Consistent with findings of Barbieri et al. [25], d-Rib,
which interferes with the glutathione metabolism provok-
ing oxidative stress [28], induced apoptosis in these cells.

Apoptosis is thought to be the most likely mechanism
of cell death contributing to progressive neuronal loss in
AD. Several reports indicate that DNA fragmentation,
which represents an important and typical apoptotic fea-
ture, is increased in postmortem brain sections of AD
patients [1, 2, 29]. Among other things, AD is pathologi-
cally characterized by the presence of extracellular senile
plaques with amyloid deposits, the main component of
which is AB. AB is located partially within the transmem-
brane region of the amyloid precursor protein (APP) and
proteolytically cleaved from APP before secretion [30]. In
rare cases of FAD, mutations have been detected within
the APP gene. In the majority of autosomal dominant
FAD cases, mutations in a gene on chromosome 14 have
been found (presenilin 1, PS-1). The highly homologous
gene PS-2 on chromosome 1 is also affected in a small
number of FAD cases. Both PS-1 and PS-2 have been
linked to apoptotic cell death. This has been shown in
cells transfected with wild-type or mutant constructs en-
coding for human PS-1 or PS-2 [8, 9, 31] and in cells
derived from PS-1 transgenic mice [32]. In addition, first
evidence is provided that expression of mutant APP (e.g.
V717F) induces apoptosis in transfected PC12 cells [33].
Both missense mutations (APP and PS) also lead to an
enhanced production of the elongated AP fragment AB1-
42(43) [34], the main component of the neuritic plaques.
Enhanced cellular vulnerability and/or elevated produc-
tion of neurotoxic AB1-42(43) might contribute to the
early onset and the rapid progression of AD in those FAD
cases.

Sensitivity to Apoptosis in Dementia

The present findings clearly show an enhanced vulner-
ability to apoptosis in clearly defined cases of sporadic
AD. The enhanced vulnerability of lymphocytes and pre-
sumably other cells to apoptosis in those patients might be
due to a dysfunction of apoptosis-relevant genes or regu-
lating mechanisms, respectively, lowering the threshold of
sensitivity to the induction of apoptosis. Similar mecha-
nisms together with the increased AP load might be the
cause for the enhanced apoptotic cell death found in
brains of sporadic AD patients. In agreement with this
assumption, changes in the regulation of genes associated
with apoptosis (c-jun, bcl-2, p53) and the involvement of
caspases in the neurodegenerative process have already
been detected in AD brains [3, 29, 35-37] as well as in
neuronal cells of APP/AB mutant transgenic mice [38]. As
already mentioned above, increased vulnerability to cell
death appears to be a pathogenic mechanism of PS-1
mutations in AD [32]. In a very recent study, we could
demonstrate that lymphocytes from PS-1 mutant trans-
genic mice exhibited an elevated sensitivity to apoptosis
compared to cells from wild-type PS1 mice or non-trans-
genic littermate controls in a pattern similar to lympho-
cytes from AD patients [39]. Our findings indicate that
increased susceptibility to cell death contributes to the
pathogenic mechanisms of sporadic as well as FAD with
PS-1 mutations in vivo, which even can be picked up at
the level of peripheral lymphocytes under specific in vitro
conditions. Furthermore, data on lymphocytes from
young and elderly non-demented controls show that AD-
induced changes are different from the effects of aging
[40].

Our results are furthermore in accordance with find-
ings that oxidative stress damage to DNA in AD brain
and, in parallel, in AD lymphocytes is increased [41, 42],
and that skin fibroblasts from AD patients show en-
hanced susceptibility to free radicals [43]. These defects
may result in an increased production of reactive oxygen
products and may participate in a cascade of events possi-
bly leading to the enhanced basal levels of DNA fragmen-
tation in lymphocytes from AD patients. Consistent with
our findings of elevated DNA fragmentation in activated
lymphocytes from AD patients after IL-2 exposure are
recent results that natural killer cells show enhanced cyto-
toxic response to IL-2 in AD [44]. The interpretation of
these data should not be an oversimplification in so far as
that they appear only to be related to changes in immune
system function in AD, e.g. enhanced IL-2 production, as
postulated in some studies. It is important to consider
that a similarly increased IL-2 production has been shown
in vascular dementia patients [45] besides the upregula-
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tion of other cytokines [46]. However, our vascular de-

mentia patients do not show an enhanced sensitivity to

apoptosis. Finally, impaired apoptosis has been demon-
strated in lymphocytes of patients with multiple sclerosis,
that represents an autoimmune disease [47, 48].

—
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