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Summary 

 

Neural Cell Adhesion Molecule (NCAM) is a member of the large family of Ca2+-

independent, immunoglobulin (Ig)-like cell adhesion molecules. So far, its function in homophilic 

and heterophilic interactions has been mainly studied in neuronal cells, where it is implicated in 

processes such as neurite outgrowth, axon guidance and pathfinding. Apart form its action as a 

cell adhesion molecule, NCAM contributes to these processes by acting as a modulator of 

fibroblast growth factor receptor (FGFR) signaling.  

NCAM is also expressed in a number of non-neuronal tissues and changes in NCAM 

expression levels have been correlated with increased malignancy in various tumors. In the 

Rip1Tag2 mouse model of multistage tumorigenesis, deletion of NCAM expression results in the 

induction of tissue disaggregation, increased lymphangiogenesis and the formation of metastases. 

Comparison of cell lines derived from NCAM-expressing and NCAM-deficient tumors showed 

that NCAM binds to FGFR and thereby activates it, triggering signaling cascades that eventually 

lead to the activation of β1-integrin, resulting in the promotion of cell-matrix adhesion. However, 

it has remained elusive how NCAM loss leads to the induction of lymphangiogenesis and whether 

the impaired cell matrix adhesion of NCAM-deficient cell lines accounted for the tissue 

disaggregation and metastasis formation observed in vivo.  

This study investigates NCAM function on several cellular levels. In in vitro co-

expression studies NCAM complex formation properties on the cell surface were investigated, 

showing that NCAM can bind to several growth factor receptors containing Ig domains in their 

extracellular parts. Studies focusing on the cytoplasmic events and molecular players downstream 

of the NCAM/FGFR complex formation, revealed a novel, inhibiting function of NCAM in 

modulating RTK signaling. Finally, in an in vivo approach, the role of β1-integrin, a target protein 

of NCAM signaling, in tumor progression was analyzed by interfering with β1-integrin 

expression in the Rip1Tag2 tumor model. These studies demonstrated that the induction of 

lymphangiogenesis in NCAM-deficient tumors was not due to the loss of β1-integrin function and 

therefore employed an alternative pathway. Yet, loss of β1-integrin induced tumor cell 

dissemination but not metastasis formation. Instead, a novel function of β1-integrin in tumor 

progression was identified. Upon deletion of β1-integrin, tumor size was decreased, potentially 

through the induction of senescence in β1-integrin-deficient cells. 

Taken together, this study has identified novel NCAM-binding proteins and provides 

insights into NCAM signaling on the molecular level as well as in an in vivo context. 

Furthermore, a so far unrecognized role of β1-integrin in preventing senescence has been 

revealed. 
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Zusammenfassung 

 

Das Neurale Zelladhäsionsmolekül (NCAM) ist ein Mitglied der grossen Familie der  aus 

Immunoglobulin (Ig) Domänen bestehenden, Ca2+-unabhängigen Zelladhäsionsmoleküle. Wie 

aus seinem Namen schliessen lässt, ist seine Funktion vorwiegend in neuronalen Geweben 

untersucht worden. Dort ist es in homophile und heterophile Interaktionen involviert und steuert 

Prozesse wie das Neuritenwachstum oder die Führung von Axonen. In diesen Prozessen spielt 

eine weitere Funktion von NCAM, nämlich die Bindung zu einem Wachstumsfaktor-Rezeptor 

(FGFR-1) und die Modulierung dessen Aktivität, eine essentielle Rolle. 

  NCAM ist auch in anderen, nicht-neuronalen Geweben exprimiert. Interessanterweise 

korreliert eine Veränderung des Expressionsmusters von NCAM in einigen Tumoren mit erhöhter 

Malignität. In einem transgenen Mausmodell für Tumorigenese von Insulin-produzierenden β 

Zellen führt die Deletion von NCAM zu erhöhter Lymphangiogenese, Tumor-Disaggregation und 

der Bildung von Metastasen. Der Vergleich von Zelllinien, die aus NCAM-exprimierenden bzw. 

NCAM-deletierten Tumoren gewonnen wurden, ergab dass NCAM auch in diesen Zellen mit 

einem Wachstumsfaktor-Rezeptor assoziiert ist (FGFR-4). Die Bindung führt zu der Aktivierung 

des Rezeptors, wodurch Signalkaskaden losgelöst werden, die in der Aktivierung von β1-Integrin, 

einem Matrix-bindenden Protein, resultieren. Zellen, die NCAM verloren haben, zeigen daher 

eine geringere Fähigkeit an extrazelluläre Matritzes zu binden. 

 In dieser Studie untersuchten wir die zellulären Funktionen von NCAM auf 

verschiedenen Ebenen. In in vitro Studien erforschten wir, ob NCAM mit zusätzlichen 

Wachstumsfaktor-Rezeptoren an der Zelloberfläche interagieren kann und fanden in der Tat 

mehrere Rezeptoren die an NCAM binden. Ausserdem untersuchten wir auch Vorgänge innerhalb 

der Zelle. In Experimenten, die auf die Identifizierung der einzelnen Moleküle in der 

Signalkaskade abzielten, fanden wir eine neue, den Rezeptor inhibierende Funktion von NCAM. 

 Schlussendlich untersuchten wir, ob die Deletion des Zielproteins der NCAM-induzierten 

Signalkaskade, β1-Integrin, ähnliche Auswirkungen auf die Tumorigenese hat wie die Deletion 

von NCAM selbst. Im speziellen waren wir daran interessiert, ob der Verlust dieser 

Signalkaskade zu erhöhter Lymphangiogenese führt und diese Signalkaskade somit einen 

Regulationsmechanimus für Lymphangiogenese darstellt. Weiters interessierte uns, ob der 

Verlust von β1-Integrin zu Tumorzell-Disaggregation und dies wiederum zur Bildung von 

Metastasen führt. Wir fanden heraus, dass die Regulierung von Lymphangiogenese unabhängig 

von der NCAM induzierten Signalkaskade zu β1-Integrin ist. Deletion von β1-Integrin resultiert 

jedoch in der Loslösung von Tumorzellgruppen in lymphatische Gefässe, nicht aber in der 

Bildung von Metastasen. Interessanterweise sind β1-Integrin-negative Tumoren kleiner, 

vermutlich, weil der Verlust von β1-Integrin zur Zell-Seneszenz führt. Hiermit haben wir eine bis 

dato unbekannte Funktion von β1-Integrin identifiziert. 
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1. GENERAL INTRODUCTION 
 

 

1.1. Cancer 
 

Cancer, from the Greek word carcinos (crab, crayfish) was already described and studied 

by the ancient Greek physician Hippocrates around 400 years BC. Today, cancer is one of the 

leading causes of death in the developed world. Cancer arises when cells acquire fundamental 

changes in their genome, leading to disturbances in their behavior within the context of a multi-

cellular organism. To understand and eventually treat cancer, experimental and clinical research 

from the last decades has accumulated a huge and complex amount of knowledge, focusing on 

oncogenes with dominant gain of function mutations and tumor suppressor genes with recessive 

loss of function mutations as well as other molecular players of cancer development. 

  An increasing body of evidence suggests that tumorigenesis is a multistep process, a 

succession of genetic changes, leading to the progressive conversion of normal cells into cancer 

cells. Despite the fact that the actual molecules or changes important in tumor initiation and 

progression might differ among the hundreds of cancer types, it has becomes more apparent that 

most, perhaps all solid cancers have acquired and share a small number of common, principle 

properties. It has been suggested that six essential alterations in cell physiology together instruct 

malignant growth (Hanahan and Weinberg, 2000)  

These alterations include, in the initial tumor stages, the insensitivity of cells to anti-

proliferative signals, evasion of apoptosis and acquired self-sufficiency in growth signals. For 

further progression from benign to malignant cancers, the genetic changes lead to the gain of 

limitless replicative potential, sustained angiogenesis and finally the capability to invade tissues 

and to form metastases (Figure1).   

 

 

 

 

 

Figure 1: The Hallmarks of Cancer 

Common functional traits acquired by cells during the 

formation of tumors and the progression to malignant 

cancers. Adapted from (Hanahan and Weinberg, 2000) 
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1.2. The Rip1Tag2 mouse model of multistep tumorigenesis 

 

In order to study genetic alterations and the molecular mechanisms of tumorigenesis in 

vivo, various mouse models of tumorigenesis have proven to be invaluable tools. Several 

approaches to induce carcinogenesis have been developed over the last thirty to forty years. For 

example, chemical mutagens such as 7,12-dimethylbenzanthracene (DMBA) or ethyl-nitrosourea 

(ENU) have been used to induce skin cancers (Quintanilla et al., 1986). However, this method is 

currently used preferentially in combination with genetically modified mouse lines (Balmain, 

2002). In another approach, tumor cell suspensions are orthotopically, subcutaneously or 

intravenously injected into immune-deficient mice, allowing investigators to assay potential 

effects of different treatments on tumors as well as to monitor capabilities of cells to metastasize 

to specific organs (Kubota, 1994).  

However, the use of these two model systems is limiting in respect to the investigation of 

type and localization of primary tumor formation, and because of the absence of an intact immune 

system. This limitation can be overcome by the use of genetically modified mice, in which 

oncogenes are introduced into the mouse germ line or gene functions are ablated by homologous 

recombination.  Further improvement can be gained through the development of techniques to 

induce or delete gene function in specific tissues and/or at certain time points (tissue specific, 

inducible transgenic mice or tissue specific, conditional knock out mice). These models therefore 

allow more controlled reproduction of sporadic tumor onset and progression and have been used 

for many proof-of-concept studies, demonstrating the causal function of a particular gene in 

tumor development. 

The introduction of highly oncogenic viral proteins, such as for example the large T 

antigen (Tag) of simian virus 40 (SV40) into the mouse genome is frequently used to generate 

tumor-bearing transgenic mice. Tag expression disrupts cell cycle control by binding to and 

inactivating the tumor suppressor gene products p53 and pRb, leading to cell transformation and 

tumor development.  

The Rip1Tag2 mouse model was established about twenty years ago (Hanahan, 1985). In 

these mice, Tag expression is targeted specifically to the pancreatic islets of Langerhans using the 

β cell specific Rat insulin promoter  (Rip). In the mouse, around 400 islets of Langerhans 

(endocrine tissue of the pancreas) can be found embedded in the exocrine pancreas. Each islet is 

composed of a set of secretory cells, namely glucagon-producing α cells, somatostatin-producing 

γ cells, pancreatic polypeptide (PP) cells and, most abundant in islets, the insulin-producing β 

cells. In the Rip1Tag2 transgenic mice, T antigen expression starts at embryonic day 8.5, but it is 

not until the age of 4 weeks that hyperplastic islets begin to appear. Even though all islets express 

Tag, only 50% develop into hyperplastic lesions at the age of 10 weeks. The onset of an 

angiogenic switch in a subset of hyperplastic islets triggers the formation of new blood vessels, 

resulting in the progression to angiogenic islets at 6 weeks and solid tumors at 9 to 10 weeks of 

age. At 12 to 14 weeks, 2%-4% of all islets have developed into well-encapsulated, benign 

tumors (adenomas) and only 0.5% of all islets advance into de-differentiated, invasive carcinomas 
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(Figure 2). Importantly, these mice never develop metastases, probably because they succumb to 

hypoglycemia around the age of 14 weeks. Thus, the Rip1Tag2 model is a model for multistage 

tumorigenesis in which tumors of all different stages can be reproducibly found and investigated, 

making it a very powerful tool to study distinct molecular events that may influence tumor 

growth and progression as well as tumor angiogenesis, lymphangiogenesis and metastasis.  

 

Figure 2: Multistep ββββ cell carcinogenesis in Rip1Tag2 transgenic mice 

As indicated, islets (black dots) sequentially progress into hyperplastic islets (large brown ellipses), 

angiogenic islets (red ellipses), benign adenoma (large red shapes), and malignant carcinoma (blue 

shape). Percentages indicate the subset of initial islets that have developed into a specific tumor grade at 

12-14 weeks of age. The exocrine pancreatic tissue is drawn in light brown. E8.5, embryonic day 8.5 

(Modified from G. Christofori, Mol Endocrinol, 1995). 
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1.3. Mechanisms contributing to tumor progression and metastasis 

 

Most cancer deaths result from the formation of metastases at distant sites rather than 

from the primary tumors themselves. Just like primary tumor initiation, it is now believed that 

tumor progression and metastasis are processes that involve several rate-limiting steps. 

Importantly, these processes do not only involve changes in the tumor cells per se, but also 

require additional concerted, “pro-metastatic” contributions from the tumor microenvironment, 

(Kopfstein and Christofori, 2006).  

After the initial transformation and growth of cells, and when tumors exceed a mass of  

1 mm, tumors have to induce neo-vascularisation or angiogenesis in order to survive and further 

proceed. The synthesis and secretion of several pro-angiogenic factors by tumor and host cells 

and the absence of anti-angiogenic factors play a key role in establishing a capillary network from 

the surrounding host tissues. The “angiogenic switch” allows not only the tumors to have access 

to required nutrients but also eventually provides a route for haematogenic spread of cancer cells 

(Fidler, 2002; Ahmad and Hart, 1997). Blood vessel endothelial cells (BVECs) also secrete 

growth factors (such as PDGFs, EGFs and FGFs) that stimulate tumor cell growth and facilitate 

tumor lymphangiogenesis (Cao, 2005). 

In order to disseminate from the primary tumor, polarized epithelial cells have to convert 

into motile cells, gaining a fibroblastoid, migratory and invasive phenotype. Cell adhesion 

molecules have been shown to be important players in this process (Cavallaro and Christofori, 

2004) and will be discussed in more detail in the next section and in Chapter 1.5. Next, malignant 

tumor cells have to further invade the local ECM, intravasate into tumor-associated lymphatics or 

vasculatures, avoid immunological attacks as well as survive and proliferate in the circulation and 

the secondary organ tissues after extravasation. However, in these processes, tumor cells get 

supported by their surrounding environment. Among others, tumor associated macrophages 

(TAMs) and carcinoma associated fibroblasts secrete several factors, as for instance growth 

factors, matrix metalloproteinases (MMPs) or cytokines, supporting remodeling of the ECM, cell 

survival, invasion and immune tolerance (reviewed in Bogenrieder and Herlyn, 2003; Fidler, 

2002; Ahmad and Hart, 1997, Kopfstein and Christofori, 2006). 

 

 

1.3.1. Cell adhesion molecules in tumor progression and metastasis 

 

The “prototype” and probably best-studied cell adhesion molecule (CAM) is E-cadherin, 

a member of the classical cadherin family of CAMs. Classical cadherins are single-span 

transmembrane domain glycoproteins, localized in adherens junctions and desmosomes. They 

mediate cell-cell adhesion by homophilic protein-protein interaction at the cell surface in a Ca2+-

dependent way.  

At their cytoplasmic tails, Cadherins interact with various proteins, termed catenins, to 

assemble a cytoplasmic cell adhesion complex (CCC). β-catenin and γ-catenin (also named 
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plakoglobin) bind to the same conserved site at the C-terminus of E-cadherin in a mutually 

exclusive way (Ozawa et al., 1989; Nathke et al., 1994), whereas p120ctn interacts with multiple 

sites on the cytoplasmic tail of E-cadherin, including the juxtamembrane region.  Direct binding 

of β-catenin and γ-catenin to α-catenin links the CCC to the actin cytoskeleton.  Formation of the 

CCC is dependent on cell-cell adhesion, and conversely, disturbance of the CCC compromises 

cadherin-mediated cell-cell adhesion.  

 E-cadherin is expressed in epithelial cells and is a key player in the maintenance of cell 

polarity and epithelial organization (Gumbiner, 2005).  In many tumors of epithelial origin, loss 

of E-cadherin-mediated cell-cell adhesion was observed to coincide with progression towards 

malignancy, and reduced E-cadherin levels were correlated with poor prognosis, suggesting a 

critical role of this CAM in tumor progression. In fact, forced expression of E-cadherin in 

cultured tumor cells lead to the re-establishment of a functional E-cadherin-catenin complex and 

resulted in the reversion from an invasive, mesenchymal phenotype to a benign, epithelial 

phenotype in vitro (Vleminckx et al., 1991).  

Using the above described Rip1Tag2 tumor model, our group demonstrated previously 

that loss of E-cadherin mediated cell-cell adhesion is causally involved in the progression from 

adenoma to carcinoma in vivo and is one rate limiting step in the conversion from adenoma to 

carcinoma as well as the subsequent formation of metastases. Intercrossing Rip1Tag2 mice with 

transgenic mice that maintain E-cadherin expression in the β cells of pancreatic islets lead to 

arrest of tumor progression at the adenoma stage. In contrast, expression of a dominant-negative 

form of E-cadherin in the same tumor model induced early invasion and metastasis (Perl et al., 

1998).  

The mechanisms by which E-cadherin down-regulation in tumors leads to a more 

invasive phenotype might be similar to the mechanisms of a phenomenon that normally occurs 

during embryonic development, inflammation, tissue remodeling and wound healing, namely the 

epithelial to mesenchymal transition (EMT; Grunert et al., 2003).  During EMT, cells down-

regulate epithelial markers such as E-cadherin and up-regulate the expression of various 

mesenchymal markers, like N-Cadherin and vimentin (Thiery, 2002). Recently, our lab revealed 

that E-cadherin down-regulation also induced the expression of the neuronal cell adhesion 

molecule, NCAM (Lehembre et al., submitted). E-cadherin loss leads to the disassembly of 

adhesion junctions between neighboring cells, reduced cell polarity and increased migratory and 

invasive-growth properties. Several potential signaling pathways are thought to have an active 

part in this process and only two of them are discussed hereafter (Cavallaro and Christofori, 

2004).  

Components of the CCC, namely β-catenin and γ-catenin do not only play crucial roles in 

the assembly of the complex but also have important functions in the canonical WNT-signaling 

pathway (Bienz and Clevers, 2000; Polakis, 2000). If they are not engaged in the CCC, free 

cytosolic β-catenin and γ-catenin are phosphorylated by glycogen synthase 3β (GSK3β) in a 

complex also involving the proteins adenomatous polyposis coli (APC) and axin. Following 

phosphorylation, β-catenin and γ-catenin are degraded. If the tumor suppressor APC is non-
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functional (as observed in many colon cancer cells), or GSK3β activity is blocked by the 

activated WNT-signaling pathway, β-catenin is not degraded, therefore accumulates in the 

cytoplasm and further translocates to the nucleus, where it binds to members of the TCF/LEF1 

family of transcription factors. Thereby it modulates the expression of several target genes that 

are implicated in cell proliferation and progression. 

Other signals induced through the loss of E-cadherin might affect the actin cytoskeleton 

and thereby modulate the migratory properties of cells. The family of RHO GTPases, including 

RhoA, Rac1 and Cdc42 are implicated in the formation of actin stress fibers, lamellipodia and 

filopodia (see also section 1.5.3.). E-cadherin, when engaged in cell-cell adhesion, can suppress 

RhoA activity. Furthermore, free (not engaged in the CCC) cytosolic p120ctn is able to recruit and 

activate Rac1 and Cdc42, thereby promoting cell migration (Cavallaro and Christofori, 2004). 

In most cases, E-cadherin is down-regulated on the transcriptional level: the 

transcriptional repressors Snail (Batlle et al., 2000), Slug (Hajra et al., 2002) and Sip1 (Comijn et 

al., 2001) as well as E12/E47 (Perez-Moreno et al., 2001) bind to the promoter of the E-cadherin 

gene and actively repress its expression (see also section 1.5.4.). Furthermore, a negative 

correlation between E-cadherin levels and the expression of the transcription factor Twist have 

been reported (Yang et al., 2004). It is not clear, though, if Twist binds directly to the E-cadherin 

promoter or modulates E-cadherin levels in an indirect way. In many cancers, such as thyroid 

carcinomas, further down-regulation is achieved epigenetically by the subsequent silencing of the 

E-cadherin promoter through hypermethylation (Di Croce and Pelicci, 2003). Moreover, 

mutations in the E-cadherin gene that lead to the expression of a non-functional protein have been 

reported in patients with diffuse gastric cancer, lobular breast cancer, thyroid, bladder and 

gynecological cancers (Strathdee, 2002).  

Finally, tyrosine phosphorylation of the CCC has been implicated in the regulation of 

cadherin function. RTKs such as epidermal growth factor receptor (EGFR), hepatocyte growth 

factor receptor (c-Met) and fibroblast growth factor receptor (FGFR), as well as Src 

phosphorylate E-cadherin, β- and γ-catenin and p120ctn , resulting in the disassembly of the CCC 

(Behrens et al., 1993). One mechanism by which RTKs can disrupt the CCC is by targeting E-

cadherin for degradation: recently, a E3 ligase named Hakai has been identified. Hakai 

specifically binds and ubiquitylates tyrosine-phosphorylated E-cadherin, resulting in endocytosis 

and proteasomal degradation of E-cadherin (Fujita et al., 2002). Interestingly, this process seems 

to be, at least under certain circumstances, dependent on β1-integrin (see section 1.5.4.). 

 

 

1.3.2. Tumor lymphangiogenesis 

 

Angiogenesis, or formation of new blood vessels from pre-existing ones, is essential for 

normal development and wound healing. Abnormal regulation of angiogenesis has been 

implicated in the pathogenesis of several disorders, including cancer.  Newly formed tumor-

associated blood vessels do not only support tumor progression by supplying growing tumors 
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with oxygen but, also contribute to the metastatic process by providing a route for haematogenic 

metastasis of tumor cells. The molecular mechanisms underlying tumor angiogenesis have been 

studied to a great extent, leading to the discovery of potential targets for drug development. For 

example, the vascular endothelial growth factor A (VEGF-A) has been identified in playing a key 

role in angiogenesis. Early clinical experience with the anti-VEGF-A monoclonal antibody 

Avastin (Genentech) support the hypothesis that its inhibition may represent a novel approach for 

cancer treatment (Ferrara, 2002; Carmeliet and Jain, 2000). 

Attention to tumor-lymphangiogenesis, the formation of new tumor-associated lymphatic 

vessels was drawn to researchers only recently. The identification of lymphatic specific markers 

such as the homeobox transcription factor Prox-1 (Wigle and Oliver, 1999) or the lymphatic 

vessel endothelial hyaluronan receptor-1 (LYVE-1) (Banerji et al., 1999), as well as the 

development of new molecular tools advanced research in this area (Pepper and Skobe, 2003).   

The physiological function of lymphatic vascular networks in the body is to drain 

interstitial fluid from tissues and to return it to the blood. Furthermore, lymphatic vessels are also 

an essential part of the body’s immune defense by directing leukocytes and antigens from tissues 

to lymph nodes. Structurally, lymphatic vessels are distinct from blood vessels: lymphatic 

capillaries are thin-walled, relatively large capillaries composed of a single layer of overlapping 

endothelial cells. They are not covered by smooth muscle cells and have little or no basement 

membrane. Lymphatic capillaries are attached to tissue stroma via elastic anchoring filaments. 

With increasing tissue pressure, these filaments pull on the endothelial cells, opening the gaps 

between the overlapping cells and thereby allowing fluid influx (Alitalo et al., 2005).  

Lymphatic vessels could contribute to tumor growth in various ways. They provide a 

route and thereby facilitate the metastatic spread of tumor cells, and indeed, lymphogenic 

metastasis occurs at least as frequently as haematogenous metastasis (Cao, 2005). Because of 

their structural features, it might be even easier for tumor cells to invade into lymphatic vessels 

than into blood vessels. Since lymphatic endothelial cells (LECs), similar to blood vessel 

endothelial cells (BVECs) express matrix metalloproteinases (MMPs) and urokinase plasminogen 

(uPA), they might directly or indirectly potentiate the invasiveness of tumors. Lastly, a rather 

controversial hypothesis suggests that lymphatic growth into tumors is induced in order to reduce 

the increased interstitial fluid pressure of a given tumor. However, it is not clear yet if lymphatic 

vessels within tumors are fully functional (Cao, 2005). 

Several molecular players important for lymphatic development and lymphangiogenesis 

have been identified and are described in detail elsewhere (Alitalo et al., 2005). In general, the 

majority of lymphangiogenic signals are mediated via the vascular endothelial growth factor 

receptor-3 (VEGFR-3; Kaipainen et al., 1995) a member of the (Ig) domain containing receptor 

tyrosine kinase (RTK) family. VEGFR-3 is primarily expressed on lymphatic endothelial cells 

and required for the formation of lymphatic vasculature in both, embryonic development and in 

the adult (Karkkainen and Petrova, 2000). High affinity ligands for VEGFR-3 are vascular 

endothelial growth factor-C (VEGF-C; Joukov et al., 1996) and VEGF-D (Achen et al., 1998). 

Both factors induce, upon binding, receptor activation.  The subsequent signaling events result in 
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lymphangiogenesis as shown in transgenic models for both factors (Mandriota et al., 2001; 

Veikkola et al., 2001).  

Importantly, when VEGF-C and VEGF-D transgenic mice were crossed into the 

Rip1Tag2 tumor mouse model, both factors induced tumor-associated lymphangiogenesis and the 

formation of metastases (Mandriota et al., 2001; Kopfstein et al., submitted). VEGF-C expression 

has been reported to be induced in tumor cells and tumor-associated macrophages, but the 

pathways leading to VEGF-C and VEGF-D de novo expression in tumors remain elusive. 

Interestingly, ablation of the neural cell adhesion molecule (NCAM) in Rip1Tag2 mice results in 

VEGF-C and VEGF-D expression, and in the induction of lymphangiogenesis and metastasis 

formation (Crnic et al., 2004) see also section 1.4.3.   
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1.4. Neural Cell Adhesion Molecule (NCAM) 

 

1.4.1. NCAM structure, expression and function 

 

Neural Cell Adhesion Molecule (NCAM, CD56) was the first CAM to be characterized 

and therefore has been studied extensively (Brackenbury et al., 1977; Cunningham et al., 1987; 

Crossin and Krushel, 2000). NCAM is encoded by a single gene, located on chromosome 11 in 

humans (Nguyen et al., 1986; Walsh et al., 1986) and on chromosome 9 in mice (D'Eustachio et 

al., 1985). Alternative splicing gives rise to three major isoforms, named after their relative 

molecular weight (Mr) (Owens et al., 1987). NCAM140 and NCAM180 are single spanning 

transmembrane proteins and differ in the length of their cytoplasmic domains, whereas 

NCAM120 is attached to the cell membrane via a glycophosphatidyl inositol (GPI-) anchor 

(Figure 3). In addition to the three main isoforms, the molecule also exists in a secreted form 

(soluble NCAM), produced by the expression of the so called SEC-exon that contains a stop-

codon, giving rise to a truncated form of the extracellular part of NCAM with a Mr of around 

115kD (Bock et al., 1987; Gower et al., 1988). Soluble NCAM also exist in a shedded form, 

resulting from the enzymatic removal of NCAM120 from the membrane or by proteolytic 

cleavage of any of the three major isoforms (He et al., 1986). 

NCAM belongs to the immunoglobulin-like superfamily of adhesion molecules (Ig-

CAMs): the extracellular, N-terminal part of all NCAM isoforms consists of five Ig-like domains 

(Ig1-5) followed by two fibronectin type III (F3) modules proximal to the membrane 

(Cunningham, 1995). Variability in the extracellular part is obtained by the optional insertion of 

additional exons, as for example the variable alternative spliced exon (VASE) in the Ig4 domain 

that is expressed at high levels in the adult central nervous system, serving to down-regulate axon 

growth (Doherty et al., 1992; Figure 3)  

Further variation of NCAM expression, and therefore function, is achieved by 

posttranslational modifications of the protein. Attachment of the negatively charged sugar 

polysialic acid to the fifth Ig domain induces a shift in the adhesive properties of NCAM 

(Fujimoto et al., 2001), changing it form a pro-adhesive to a pro-migratory molecule, facilitating 

axon path-finding and plastic changes in the embryonic and adult nervous system (Hoffman et al., 

1982; Angata and Fukuda, 2003; Bruses and Rutishauser, 2001). Additional post-translational 

modifications are found on the C-terminal, intracellular domains of NCAM140 and NCAM180. 

Both cytoplasmic domains can be palmitoylated, which determines NCAMs association with lipid 

rafts in the membrane and thereby its signaling properties (Brackenbury et al., 1987; Little et al., 

1998). 
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Figure 3: The three major NCAM isoforms 

NCAM is expressed as three major isoforms. Two of them are transmembrane forms with either long 

(NCAM180) or short (NCAM140) cytoplasmic domains, while the third isoform (NCAM120), lacking a 

cytoplasmic domain, is anchored to the plasma membrane by a GPI-linkage. All three isoforms have five 

Ig-like domains and two Fibronectin type III (FN3) domains in the extracellular region. NCAM180 has an 

additional 261 amino acid insert at the cytoplasmic tail. The alternatively spliced VASE exon in the Ig4 

domain (see text) is also indicated. All three isoforms can be post-translationally modified by the addition 

of polysialic acid (PSA) to the Ig5 domain. 

 

NCAM is a Ca2+-independent adhesion molecule and engaged in both, homophilic and 

heterophilic interactions. This, together with the above described transcriptional and post-

translational modifications of the NCAM protein, results in a variety of adhesive properties and 

functions. During development, NCAM140 and NCAM180 are transiently expressed in the 

nervous system as well as in several other tissues (Crossin et al., 1985). Expression of these 

isoforms, also called “embryonic” isoforms, plays a pivotal role in developmental events such as 

neuronal cell migration, differentiation and proliferation (Walsh and Doherty, 1997; Kiss and 

Muller, 2001). In the adult, however, NCAM120 is the major isoform to be expressed in the 

nervous system (Gower et al., 1988), in skeletal muscle cells (Dickson et al., 1987) as well as 

some neuroendocrine tissues (Rouiller et al., 1990; Cirulli et al., 1994; Langley et al., 1989). 
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1.4.2. More than just an adhesion molecule-NCAM’s role in signal transduction 

 

The nature of NCAM homophilic interaction and its role in cell-cell adhesion has been 

studied in great detail (reviewed in Walmod et al., 2004). However, NCAM is also involved in 

heterophilic interaction with several proteins, both via the extracellular as well as the intracellular 

regions of the protein.  In neuronal PC-12 cells, NCAM function results in the induction of long 

neuronal processes called neurites (Doherty et al., 1991). Neurite outgrowth therefore has been 

repeatedly used as a read-out assay to study NCAMs intracellular signaling, mediated by the 

induction of downstream signal transduction pathways through the direct or indirect interaction of 

NCAM with heterophilic ligands.  

Already 10 years ago, it has been suggested that NCAMs induction of neurite outgrowth 

involves an interaction with the fibroblast growth factor receptor (FGFR; Doherty and Walsh, 

1996; Kiselyov et al., 2003).  Several studies using dominant negative versions of FGFR (Ronn et 

al., 2000; Saffell et al., 1997) as well as specific inhibitors of enzymes (Kolkova et al., 2000) and 

second messenger molecules (Williams et al., 1994a) lead to the following model (depicted in 

Figure 4): Upon binding to the FGFR, NCAM stimulates FGFR dimerisation and activation by 

auto-phosphorylation. Subsequently, several proteins dock to the receptor’s cytoplasmic tail, one 

of them being the enzyme phospholipase Cγ (PLCγ), which, upon recruitment, becomes activated. 

PLCγ cleaves its substrate phosphatidylinositol 4,5-bisphosphate (PIP2), generating the second 

messenger molecules inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 induces the 

release of Ca2+ by binding to intracellular Ca2+-channels, whereas DAG remains at the membrane 

and can either activate protein kinase C (PKC) or be converted (by DAG lipase) into 2-

arachidonylglycerol (2-AG) and arachidonic acid (AA), inducing various downstream signaling 

events (Walmod et al., 2004).  

Since treatment of cells with AA has been shown to induce Ca2+-influx and neurite 

outgrowth, AA was thought to be the signal-transmitting product downstream of DAG lipase 

(Williams et al., 1994b). However, it has been recently shown that FGF-induced neurite 

outgrowth is mediated by 2-AG (Williams et al., 2003). 2-AG can activate the cannabinoid 

receptors CB1 and CB2 that subsequently, among other signaling events, induce calcium influx. 

Addition of AA to cells might lead to increased levels of 2-AG and therefore indirectly lead to 

stimulation of 2-AG signaling. However, the importance of this process in NCAM-mediated 

neurite outgrowth remains to be determined (Williams et al., 2003).  
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Figure 4: NCAM-mediated signal transduction pathways 

NCAM induces different signal transduction pathways resulting in neurite outgrowth (see text). The 

structure of physical interaction between two fibronectin type III domains of NCAM (see also Figure 3) and 

Ig domains 2 and 3 of FGFR has been recently shown (Kiselyov et al., 2003). Dashed lines represent 

putative interactions. This is a simplified depiction, modified from (Povlsen et al., 2003). 

 

In addition to signaling through FGFR, NCAM has been shown to signal and induce 

neurite outgrowth via non-receptor tyrosine kinases: clustering of the NCAM140 isoform in the 

neural plasma membrane stimulates the activating phosphorylation of mitogen-activated protein 

kinases (MAPKs) and the transcription factor cyclic AMP response-element binding protein 

(CREB). NCAM clustering transiently induces dual phosphorylation (activation) of the MAPKs 

ERK1 and ERK2 (extracellular signal-regulated kinases) by a pathway regulated by the focal 

adhesion kinase FAK and p59Fyn, both of which have been shown to associate with NCAM140 

(Beggs et al., 1997; Schmid et al., 1999; Figure 3). Furthermore, recent reports show that NCAM 

can interact with glial cell line derived neurotrophic factor (GDNF) and the GDNF family 
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receptor GFRα. The interactions induce neurite outgrowth in an FGFR-independent manner, 

involving signaling mediated via p59Fyn (Paratcha et al., 2003). However, it is not yet clear if the 

above mentioned signaling events involving p59Fyn, FAK and MAPK also require GDNF and 

GFRα.  Whether NCAM signals through FGFR/PLCγ or p59Fyn/FAK depends on its localization 

on the membrane: only lipid-raft associated NCAM can induce p59Fyn/FAK signaling, in contrast, 

FGFR signaling is induced by a non-raft fraction of NCAM. Still, both pathways are required for 

NCAM induced neurite outgrowth (Niethammer et al., 2002). Interestingly, our lab has shown 

that depletion of E-cadherin leads to increased expression of NCAM. Upon upregulation, NCAM 

molecules cluster and mediate homophilic binding, thereby modulating cell-cell contacts. 

Furthermore, NCAM localizes to lipid rafts and switches from a FGFR/PLCγ- to a p59Fyn-

containing complex leading to an increased number of focal contacts (Lehembre et al., submitted) 

A recent study, moreover, revealed that NCAM is linked to the cytoskeleton via the 

linker protein spectrin. Spectrin seems to be the bridge between NCAM and PKCβII. Whereas 

NCAM140 and NCAM180 associate with spectrin and PKCβII independent of lipid raft integrity, 

NCAM120’s association to these proteins is only found in a raft-dependent manner. However, 

FGFR-dependent formation of this complex is necessary for the induction of neurite outgrowth, 

indicating that the physical link of NCAM to the cytoskeleton is important for its signaling 

properties (Leshchyns'ka et al., 2003). 

 

 

1.4.3. The role of NCAM in tumor progression: Rip1Tag2;NCAM knock-out mice 

 

As already mentioned, NCAM is also expressed in non-neuronal tissues such as skeletal 

muscle cells (Dickson et al., 1987) as well as some neuroendocrine tissues (Rouiller et al., 1990; 

Cirulli et al., 1994; Langley et al., 1989). Interestingly, in many tumors, such as Wilm’s tumor 

(the most common kidney cancer affecting children), colon carcinoma, Ewing sarcoma 

(Peripheral Primitive Neuroectodermal Tumors (PNET) of bone), neuroblastoma, small cell lung 

cancer and multiple myeloma, NCAM expression changes from the adult, NCAM120 isoform in 

normal tissue to the embryonic, NCAM140 and NCAM180 isoforms in tumors (Johnson, 1991; 

Kaiser et al., 1996; Lipinski et al., 1987; Moolenaar et al., 1992; Roth et al., 1988). 

Furthermore, cancer progression correlates with up-regulation of NCAM in 

neuroblastoma and certain neuroendocrine tumors, and up-regulation of NCAM often coincides 

with extensive polysialylation (Komminoth et al., 1991; Angata and Fukuda, 2003; Lantuejoul et 

al., 1998; Lantuejoul et al., 2000; Gluer et al., 1998). In contrast, reduced or lost expression of 

NCAM in human astrocytoma, colorectal and pancreatic cancer has been correlated with 

increased tumor malignancy (Fogar et al., 1997; Sasaki et al., 1998; Huerta et al., 2001).  These 

findings prompted our group to investigate NCAMs function during tumor progression by 

ablation of NCAM expression in Rip1Tag2 tumorigenesis.  

Even though NCAM plays many important roles during development, NCAM knock-out 

mice (NCAM-/- mice) carrying a deletion in one or both alleles are born normally, are viable, 
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fertile and appear healthy. Adult mutants, however, show reduced brain weight and olfactory bulb 

size, deficits in spatial learning, altered exploratory behavior, increased intermale aggression and 

increased anxiety-like behavior (Stork et al., 1997; Ono et al., 1994; Tomasiewicz et al., 1993; 

Cremer et al., 1994; Stork et al., 1999). Moreover, in pancreatic islets of NCAM-deficient mice 

the normal localization of glucagon-producing α cells in the periphery of pancreatic islets is lost, 

resulting in a more randomized cell distribution (Esni et al., 1999). Notably, the islet-

developmental phenotype is the same in NCAM+/- as well as in NCAM-/- mice, suggesting that 

gene dosage is important for NCAM function in this tissue (Esni et al., 1999). 

During Rip1Tag2 tumorigenesis, NCAM expression changes from the adult, NCAM120 

isoform to the embryonic NCAM140 and NCAM180 isoforms (Perl et al., 1999). When 

intercrossed with NCAM-/- mice, the resulting RipTag2;NCAM-/- mice (RT2;NC-/- mice 

hereafter) do not show altered tumor progression from adenoma to carcinoma. However, in 50% 

of NCAM-deficient tumor mice, formation of metastases to the regional lymph nodes as well as 

distant organs is observed (Perl et al., 1999). Importantly, formation of metastases has not been 

found in hundreds of Rip1Tag2 mice analyzed. The metastatic phenotype of RT2;NC-/- mice is 

indistinguishable from that of RT2;NC+/- mice, which is in accordance with the above mentioned 

haploinsufficiency of the NCAM gene in NCAM+/- mice (Esni et al., 1999).  

Immunohistochemical examination revealed that NCAM-deficient Rip1Tag2 tumors 

exhibit up-regulated expression of the lymphangiogenic factors VEGF-C and -D and, with it, 

increased lymphangiogenesis (Figure 5). Repression of VEGF-C and -D function by adenoviral 

expression of a soluble form of their cognate receptor, VEGF receptor-3, results in reduced tumor 

lymphangiogenesis and lymph node metastasis (Crnic et al., 2004), indicating that loss of NCAM 

function causes lymph node metastasis via VEGF-C- and VEGF-D-mediated lymphangiogenesis.  
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Figure 5: Lymphangiogenesis is induced in RT2;NCAM-/- and RT2;NCAM+/-  mice 

Immunohistochemical staining of PFA-fixed pancreatic sections.  Whereas RT2;NC+/+ tumors are rarely 

associated with lymphatic vessels (panel A), NCAM-deficient tumors (panel B) show ongoing 

lymphangiogenesis, often being fully surrounded by structures positive for the lymphatic endothelial 

marker LYVE-1 (in brown, highlighted by arrowheads). T, tumor; E, exocrine pancreas; 

 

 Additionally to the increased lymphangiogenic phenotype, RT2;NC-/- tumors show 

striking alterations in tumor architecture, notably dramatic tissue disaggregation and the 

appearance of large hemorrhagic cavities. Clusters of tumor cells are frequently found floating in 

these lacunae (Cavallaro et al., 2001; Figure 6). Detailed analysis of cell lines derived from RT2 

control tumors (βT2 cells) and RT2;NC-/- tumors (βTN2 cells) revealed that cell-matrix but not 

cell-cell adhesion is impaired in NCAM deficient tumor cells, as assayed by their capability to 

adhere to the  ECM component Collagen IV. Moreover, βT2 cells show the formation of neurites, 

which are absent in βTN2 cells.  

 

 

Figure 6: Tissue disaggregation 

in RT2;NCAM-/- tumors 

H&E staining of RT2;NCAM+/+ 

(A) and RT2;NCAM-/- (B) tumors. 

In the absence of NCAM, tumors 

seem to fall apart, showing tissue 

disaggregation and the 

appearance of hemorrhagic 

lacunae filled with disseminated 

tumor cell clusters (indicated by 

arrows). 

 

These observations suggested that NCAM is able to modulate integrin mediated matrix 

adhesion, and, similar to the findings in neuronal cells, might be involved in the regulation of 

signaling processes in β cells. Extensive biochemical analysis indeed identified the signaling 
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pathway(s) linking NCAM to β1-integrin activation in vitro. In βT2 cells, NCAM associates with 

and activates a member of the fibroblast growth factor receptor (FGFR) family, FGFR-4. 

Interestingly, N-cadherin but not β1-integrin is also found in the NCAM/FGFR-4 complex.  

Activation of FGFR-4 results in the formation of a classical signaling complex, including 

phospholipase C gamma (PLC-γ), the adaptor protein FRS2, pp60 (c-src), cortactin and growth-

associated protein-43 (GAP-43). Dominant-negative FGFR-4, inhibitors of FGFR signaling and 

anti-β1-integrin antibodies repress matrix adhesion induced by NCAM. FGF ligands can replace 

NCAM in promoting matrix adhesion but not neurite outgrowth (Cavallaro et al., 2001). Taken 

together, the results indicate that NCAM stimulates β1-integrin-mediated cell-matrix adhesion by 

activating FGFR signaling (Figure 7).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Model of NCAM mediated 

signal transduction in ββββ cells 

Upon associating with NCAM and N-

cadherin, FGFR-4 is activated and 

recruits a classical FGFR-signaling 

complex (see text for description). The 

molecular links between NCAM and 

integrin activation remain to be 

elucidated and are indicated by dashed 

arrows. Adapted from (Cavallaro and 

Christofori, 2004). 

 

In summary, the above described findings for the functional contribution of NCAM to 

Rip1Tag2 β cell tumorigenesis lead to the rather provocative suggestion of an alternative 
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metastatic pathway: Loss of NCAM leads to tissue disaggregation and the formation of lacunae 

potentially by the loss of substrate adhesion of β cells. However, the cells comprising the 

disseminated tumor clusters are still able to adhere to each other and exhibit a rather benign 

phenotype. They might be simply washed out by the blood or lymphatic circulation. 

Subsequently, they might be entrapped in the local lymph nodes where they grow out to form 

metastases.  

In contrast to the current view on metastatic processes, this model of “passive 

metastasation” implies that, in order to metastasize, tumor cells do not necessarily have to acquire 

an migratory, invasive phenotype, for example by losing E-cadherin function. The finding that in 

the Rip1Tag2 tumor model, induction of lymphangiogenesis by transgenic expression of the 

lymphangiogenic factor VEGF-C alone is sufficient to induce metastasis supports this idea 

(Mandriota et al., 2001).  

A recent report associated the occurrence of blood filled cavities in RT2;NCAM-/- mice 

with perturbed pericyte-endothelial cell-cell interactions. This study demonstrated that NCAM 

promotes pericyte recruitment during tumor angiogenesis. NCAM-deficient tumors have deficient 

pericyte-endothelial interactions and therefore show increased blood vessel leakage. Furthermore, 

pericyte deficiency per se was shown to cause haematogenous spreading of tumor cells and 

metastasis formation (Xian et al., 2006). Clearly, however, more experiments are needed to 

unravel NCAM function in inducing lymphangiogenesis, cell-matrix adhesion and the formation 

of metastases. 
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1.5. Integrins 

 

1.5.1. Function and composition of integrins 

 

The extracellular Matrix (ECM) is composed of an insoluble network of proteins that are 

secreted, assembled and remodeled throughout the lives of cells. Its function is not only to 

provide a shapeable, but still robust scaffold for the organization of cells in tissues. It also exerts 

control on the behavior of cells. Hence, it is able to dictate whether cells will proliferate or 

undergo growth arrest, migrate or remain stationary, or undergo apoptosis (Guo and Giancotti, 

2004).  Integrins are the major receptors for extracellular matrix proteins and the effects of the 

ECM on cells are mainly mediated by members of this large family of cell-surface receptors. By 

binding to ECM, integrins not only mediate adhesion but also organize the cytoskeleton and 

activate intracellular signaling pathways. In vertebrates, integrins also play certain roles in cell-

cell adhesion (Hynes, 2002). 

Each integrin consists of two type-I transmembrane subunits, one α and one β subunit. 

Mammals have a set of 18 α and 8 β subunits that so far are known to assemble in various 

combinations to form 24 distinct integrins (Figure 8). Depending on their composition, integrins 

bind to distinct ECM components: one set (blue in Figure 8) recognizes the tripeptide sequence 

RGD present in molecules such as fibronectin and vitronectin, another set (pink in Figure 8) binds 

to basement membrane laminins. Additionally, there is a set of integrins representing collagen 

receptors, and some recognize both ECM proteins, such as fibronectin, and Ig-CAM cell surface 

receptors, such as VCAM-1. Vertebrates also have a set of leukocyte specific integrins that also 

recognize Ig-superfamily counter-receptors and mediate heterotypic cell-cell adhesion. Both 

subunits of a given αβ integrin determine the ligand specificity and it should be noted that Figure 

8 is a simplified depiction. 



1. General Introduction 

 19

 

Figure 8: The integrin family in vertebrates 

8 β subunits can assort with 18 α subunits to form 24 distinct integrins, which can be considered in several 

subfamilies, based on evolutionary relationships (coloring of subunits), ligand specificity and, in the case 

of β2 and β7 integrins, restricted expression on white blood cells. Adapted from (Hynes, 2002). 

 

Interestingly, each integrin seems to have a specialized, unique function. All β subunits 

and 14 α subunits have been knocked-out in mice, and each phenotype is distinct, ranging from 

pre-implantation development block (β1-integrin knock out) through major developmental 

defects, peri-natal lethality and defects in hemostasis, inflammation, angiogenesis as well as 

many others (Hynes, 2002). This indicates that, in spite of the big number of different integrins, 

the function of a particular integrin is non-redundant and therefore cannot be complemented by 

other integrins.  

 

 

1.5.2. Integrin signaling 

 

Integrins signal through the cell membrane in either direction. Extracellular binding 

activity to ECM proteins is dictated from signals arising from within the cells, so called inside-out 

signaling. For example, the main integrin on circulating platelets is αIIbβ3. Importantly, it is 

normally inactive, but upon activation by various stimuli (e.g. thrombin, ADP and others) from 

within the platelets, αIIbβ3 binds to its ligands fibrinogen, van Willebrand factor and fibronectin. 
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If it were not inactive in the place, platelets would bind fibrinogen from the plasma and 

aggregate, leading to thrombosis (Giancotti and Ruoslahti, 1999; Ginsberg et al., 2005).  

As already indicated, all integrin subunits are type I transmembrane proteins with large 

extracellular domains, a single-pass transmembrane (TM) domain and a small cytoplasmic tail. 

The cytoplasmic tails are devoid of enzymatic features, therefore, integrin-signals are transduced 

by adaptor proteins that connect integrins to the cytoskeleton, to the cytpolasmic kinases and 

finally to transmembrane growth factor receptors.  Once an integrin has bound to the ECM, it 

elicits signals that are transmitted into the cell (outside-in signaling). Upon binding, integrins 

cluster in the plane of the cell membrane and associate with a cytoskeletal signaling complex that 

promotes assembly of actin filaments. The re-organization of actin filaments into larger stress 

fibers in turn causes more integrin clustering, enhancing matrix binding. The resulting aggregates 

of ECM proteins, integrins and cytoskeletal proteins are known as focal adhesions (Burridge and 

Chrzanowska-Wodnicka, 1996) and this is what integrins were named after: they serve as 

integrators of the ECM and the cytoskeleton (Giancotti and Ruoslahti, 1999) 

The molecular players involved in integrin signaling are too many, and the networks are 

too complex to be discussed here in detail. Generally, as described in Figure 9, most integrins 

signal through Src-family kinases (SFK) that get recruited and activated via the activation of focal 

adhesion kinase (FAK), which in turn is dependent on the assembly of focal adhesions. FAK also 

activates signaling through phosphatidylinositol 3-kinase (PI3K) and therefore AKT/protein 

kinase B (PKB). Src can phosphorylate p130CAS and paxillin, which engages the Crk-DOCK180 

complex and results in the activation of Rac. FAK also activates extracellular signal-regulated 

kinase (ERK)/mitogen-activated protein kinase (MAPK) by employing the RAP1 guanine 

nucleotide exchange factor (GEF) C3G through Crk, resulting in the activation of ERK/MAPK by 

B-Raf.  

In an alternative pathway, FAK activates ERK/MAPK via the recruitment of the growth 

factor receptor bound-2 (GRB2) and son-of-sevenless (SOS) complex (Schlaepfer and Hunter, 

1998; Cary et al., 1999). Some integrins are able to directly interact with SFKs with their β 

subunits (Arias-Salgado et al., 2003), whereas others are coupled to palmitoylated SFKs (such as 

Fyn and Yes) through their α subunits. The palmitoylated SFKs activate the adaptor SHC, which 

combines with GRB2-SOS to activate ERK/MAPK signaling from Ras (Wary et al., 1996). In 

this pathway, caveolin is needed to facilitate the recruitment of Fyn and Yes (Wary et al., 1998). 

The pathways that integrins activate through SFKs are sufficient to induce cell migration and 

survival signals (see below). 
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Figure 9: Pathways employed by integrin signaling 

Integrins employ several pathways to transduce signals resulting in different cellular behavior: Focal 

adhesion kinase (FAK) can activate (either directly or indirectly) ERK/MAPK via the Grb2/Ras/Raf or the 

Crk/Rap1/B-Raf pathway. Alternative pathways via Rac result in JUN and NFκB activation or AKT/PKB 

activation via PI3K (see text). Adapted from (Guo and Giancotti, 2004). 

 

 

Integrins not only signal on their own; they are also necessary for optimal growth factor 

activation. Integrin clustering and association with the cytoskeleton gives rise to integrin-growth 

factor receptor complexes. Only under appropriate cell attachment conditions, growth factor 

receptors such as platelet derived growth factor receptor (PDGFR), VEGFR, and epidermal 

growth factor receptor (EGFR) are optimally activated by their respective ligands, which 

describes the basic mechanisms of anchorage dependence of cell survival and proliferation. 
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1.5.3. The functions of integrin signaling 

 

What are the results of integrin signaling? Integrin signals are essential for cells to 

traverse the cell division cycle (progression through G1). This is, among other factors, mediated 

through cyclin D1 expression, since cells that are not properly attached show suppressed cyclin 

D1 levels. The composition of the ECM is important in this respect: myoblasts, for example, 

proliferate on fibronectin but stop proliferation and form myotubes on laminin, implying that 

integrin signaling also regulates, or at least is necessary, for differentiation. 

Loss of attachment causes apoptosis in many cell types, a phenomenon called anoikis. 

Just like cell growth, anoikis can be regulated in an integrin-specific manner, meaning that 

integrin signaling induces apoptosis in non-attached cells, but gives rise to survival signals in 

properly located cells (Meredith et al., 1993; Frisch et al., 1996). Importantly, most cells in adult 

organisms are not actively dividing, therefore it is likely that other cell adhesion proteins override 

the growth-promoting but not the survival-promoting effects of integrins. This contact inhibition 

of growth, together with integrin-induced anoikis or cell survival respectively, ensures the 

development and maintenance of proper tissue architecture.  

Integrins also regulate cell spreading and migration: a cell that comes in contact with 

ECM usually extends filopodia. Integrins at the tips of these filopodias bind to the ECM and 

induce the formation of focal adhesions. Subsequently, actin-rich lamellipodia are generated and 

the cells spread on the ECM, followed by the full development of focal adhesions and actin stress 

fibers. During cell migration, these same events occur as cells extend lamellipodia and form focal 

adhesions to derive the traction necessary for movement (Giancotti and Ruoslahti, 1999). 

Integrins regulate these events by activating the Rho-family of small guanine nucleotide-binding 

proteins, in which Cdc42 induces filopodia, Rac lamellipodia, and Rho induces focal adhesion 

and associated stress fibers, each of them further controlling the cytoskeleton by associating with 

downstream effectors (Hall, 1998). 

Taken together, integrins can be seen as one class of “master regulators”, being important 

for the establishment and maintenance of tissue architecture.  

 

 

1.5.4. Integrins in tumor progression 
 

As already mentioned in section 1.1 and 1.3, cells that have undergone neoplastic 

transformation are much less dependent on the ECM for their proliferation and survival. To 

eventually form metastases, cancer cells have to undergo critical changes affecting their invasive 

properties. Given the important role of integrins, it is not surprising that in many tumors mutation 

in genes playing a role in integrin signaling have been identified (Guo and Giancotti, 2004). 

 Importantly, despite their relative anchorage independence, tumor cells can still take 

advantage of integrin signals by preferentially expressing integrins that favor proliferation, 

survival and migration. These changes in integrin expression are complex and depend on the 
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tissue of origin of the tumor, its histological type and the stage of progression of the disease 

(Zutter et al., 1995; Albelda et al., 1990; Gladson and Cheresh, 1991). Cell type-dependent 

changes in integrin signaling make it impossible to assign each of the integrins to the “anti-

neoplastic” or “pro-neoplastic” category. It seems that α2β1 and α3β1, at least in some cases, 

suppress tumor progression, whereas αvβ3, αvβ6, and α6β4 often promote it (Guo and Giancotti, 

2004). A recent study, however, demonstrated that β1-integrin is essential for the formation of 

mammary tumors in a mouse model of human breast cancer, but not for the initial stages of 

mammary ductal outgrowth, suggesting that the primary function of β1-integrin is to promote cell 

proliferation (White et al., 2004). 

 As discussed in section 1.3.1, loss of E-cadherin-mediated adhesion is required for 

malignant conversion. Increasing evidence indicates that joint integrin-receptor tyrosine kinase 

(RTK) signaling contributes to disrupting cell-cell adhesion in cancer cells. Blocking β1-integrin 

in a 3D culture of breast carcinoma cells induced these cells to re-assemble adherens junctions 

and deposit a basement membrane, giving rise to acini characterized by a distinct polarity 

(Weaver et al., 1997), whereas over-expression of β1-integrin caused the disruption of adherens 

junction in normal epithelial cells (Gimond et al., 1999).  

Two mechanisms seem to be involved in disrupting cell-cell adhesions: activated RTKs 

and SFKs induce tyrosine phosphorylation of components of the E-cadherin-β-catenin complex 

(see also section 1.3.1). The tyrosine-phosphorylated complex is recognized by the E3 ubiquitin 

protein ligase Hakai and therefore down-regulated by endocytosis (Fujita et al., 2002).  This 

process requires integrin function and FAK phosphorylation in v-Src transformed cells, 

suggesting that v-Src promotes endocytosis of E-cadherin by enhancing integrin signaling 

(Avizienyte et al., 2002). Secondly, integrin signaling operates through SNAIL/SLUG to suppress 

E-cadherin expression and consequently disturb adherens junctions. Both, integrin linked kinase 

(ILK) and in another study SFKs have been implicated in this mechanism (Novak et al., 1998; 

Tan et al., 2001; Zhang et al., 2003) 

 In normal cells, loss of cell-matrix adhesion induces anoikis (see section 1.5.3). 

Resistance to anoikis is essential for metastatic dissemination of tumor cells. FAK promotes the 

survival of cells by signaling through PI3K to AKT/PKB (Frisch et al., 1996; Khwaja et al., 1997) 

and many invasive human cancers have elevated levels of FAK (Gabarra-Niecko et al., 2003), 

which also has been implicated in a more migratory phenotype of cells. FAK also promotes the 

expression of anti-apoptotic and suppression of pro-apoptotic stimuli (Guo and Giancotti, 2004). 

Integrins contribution to tumor progression have been implicated in many more processes, such 

as angiogenesis or matrix remodeling, which is described in great detail elsewhere (Guo and 

Giancotti, 2004; Hood and Cheresh, 2002; Hynes, 2002). 

 Summarizing the effects of integrins in tumor development, it seems that each tumor type 

undergoes characteristic and dynamic changes in integrin expression and function during tumor 

progression. Future studies might uncover the full complexity of these changes. Testing the 

relevance of these changes in integrin expression and signaling in mouse models of cancer could 

open the way to the development of (potentially anti-integrin) compounds for tumor therapy. 
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1.6. Aims of the study 

 

Deletion of NCAM in Rip1Tag2 tumors results in the induction of lymphangiogenesis, 

tissue disaggregation and the formation of metastases. In β tumor cells, NCAM associates with 

FGFR-4 and N-cadherin, thereby the receptor is activated and signaling cascades, leading to the 

activation of β1-integrin and hence cell-matrix adhesion are induced. We therefore wanted to 

investigate whether ablation of β1-integrin function in Rip1Tag2 tumors pheno-copied the NCAM 

deletion.  

 

   Specific research goals: 

 

• To determine whether the in vitro observed 

lack of β1-integrin activation in NCAM 

deleted tumor cells leads to tumor tissue 

disaggregation in vivo, we planned to 

interfere with β1-integrin expression 

specifically in the Rip1Tag2 tumor model. 

 

• Using this approach, we furthermore 

analyzed whether increased 

lymphangiogenesis in NCAM knock-out 

tumors lies downstream of β1-integrin 

inactivation and/or tissue-disaggregation or 

whether it is the result of an alternative, β1-

integrin-independent pathway.  

 

• By interfering with β1-integrin expression 

we furthermore wanted to determine 

whether loss of NCAM-dependent 

activation of β1-integrin alone is sufficient 

to induce the formation of metastasis. 

 

 

• Using specific inhibitors or stimulating reagents on cells and assaying for cell-matrix 

adhesion we wanted to dissect and compare the pathways underlying NCAM and FGF 

induced β1-integrin activation in vitro.  

 

• In co-expression and immunoprecipitation studies, we aimed to investigate whether 

NCAM can associate with and modulate additional receptor tyrosine kinases.
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Abstract 

 

Neural cell adhesion molecule has been studied mainly in neurons where it influences 

processes, such as neurite outgrowth, axon guidance and pathfinding by homophilic and 

heterophilic interaction with the fibroblast growth factor receptor FGFR-1. We have 

previously shown that NCAM modulates FGFR-4 signaling also in non-neuronal tissues by 

exerting stimulating effects as well as inhibiting ligand-induced signaling. Here, we show that 

NCAM associates with a number of receptor tyrosine kinases (RTKs). In particular, NCAM 

binding to the platelet derived growth factor receptor β (PDGFRβ) represses its activity. Our 

results suggest that NCAM acts as a general modulator of Ig-domain containing RTKs. 
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2. NCAM binds to the PDGFRββββ and potentially reduces its activity 

 

 

2.1. Introduction 

 

The neural cell adhesion molecule (NCAM) is a member of the immunoglobulin-like 

superfamily of Ca2+ -independent adhesion molecules (Ig-CAMs; Rutishauser, 1993). Three 

main isoforms of NCAM are produced through alternative splicing of a single gene, namely 

NCAM120, NCAM140 and NCAM180, where the numbers refer the isoforms relative 

molecular weight (Owens et al., 1987). NCAM140 and NCAM180 are single spanning 

transmembrane proteins, in contrast, NCAM120 is linked to the cell membrane via a 

glycophosphatidyl inositol (GPI-) anchor. The N-terminal, extracellular parts of all isoforms 

are composed of five Ig-like domains followed by two fibronectin type III (F3) modules 

proximal to the membrane. The intracellular domain of NCAM180 differs to the one of 

NCAM140 in having an additional, 261 amino acids long insert (Cunningham, 1995). 

Variation of NCAM expression and therefore function of all three isoforms is attained 

through post-translational modifications. For example, the negatively charged sugar polysialic 

acid can be attached to the fifth Ig domain (Fujimoto et al., 2001). Moreover the cytoplasmic 

domains of NCAM140 and NCAM180 can be palmitoylated, which determines the proteins 

association with lipid rafts (Little et al., 1998). 

NCAM is mainly expressed in neuronal tissues, both during development and in the 

adult organism. It is involved in processes such as the migration of neuronal progenitor cells, 

axon growth and pathfinding, synaptic plasticity and long-term potentiation (Walsh and 

Doherty, 1997). The effects of NCAM are mediated through its homophilic binding as well as 

its heterophilic interactions with other Ig-CAMs, extracellular matrix proteins and cell surface 

receptors.  NCAM binding has been shown to affect several intracellular signaling pathways, 

such as the mitogen activated protein kinase (MAPK), phospholipase C-γ (PLC-γ), protein 

kinase C (PKC), phosphatidylinositol 3-kinase (PI3K), diacylglycerol and arachidonic acid 

(reviewed in Povlsen et al., 2003). It has been shown that NCAM association with the 

fibroblast growth factor receptor 1 (FGFR-1) and the resulting induction of signaling cascades 

is crucial for neurite outgrowth in neuronal cells. A recent study identified the interaction 

domains of FGFR-1 and NCAM to be located in the third Ig domain of FGFR-1 and the 

second F3 repeat of NCAM (Kiselyov et al., 2003). 

However, NCAM expression is not only reduced to the nervous system but also 

found in skeletal muscle cells as well as some neuroendocrine tissues (Dickson et al., 1987; 

Rouiller et al., 1990). We have previously shown that NCAM associates with the FGFR-4 in 

fibroblasts and pancreatic β tumor cells (Cavallaro et al., 2001). In these cellular systems, 

NCAM acts as a ligand for FGFR-4, inducing its activation and downstream signaling 

cascades upon ligation with the receptor. In this way, NCAM is able to modulate β1-integrin 

activity and hence cell-matrix adhesion. These findings extended NCAMs function in 

modulating receptor tyrosine kinase (RTK) signaling to another member of the FGFR family 

in non-neuronal tissues. 
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RTK are single transmembrane spanning proteins, all comprising an intracellular 

tyrosine kinase activity and varying extracellular domains, which groups them into several 

subfamilies. The FGFR subfamily is composed of four members, FGFR1-4 (Klint and 

Claesson-Welsh, 1999). Structurally, the extracellular domains are composed of two or three 

Ig-like domains. Similar to the FGFR family, platelet derived growth factor receptors 

(PDGFRα and PDGFRβ) are composed of five Ig-like repeats (Heldin and Westermark, 

1999), whereas other receptors, such a the epidermal growth factor receptor (EGFR) (Ullrich 

and Schlessinger, 1990) or the hepatocyte growth factor receptor (c-Met), do not display these 

structures in their extracellular domain (Giordano et al., 1989). RTKs usually get activated by 

binding to specific ligands, i.e. growth factors. Dimerisation of receptor monomers upon 

ligand binding is a prerequisite for activation of receptor trans-phosphorylation. Upon 

phosphorylation, a number of signal transduction molecules are binding to the receptors 

cytoplasmic tails, triggering a variety of downstream signaling events (Ullrich and 

Schlessinger, 1990). However, as mentioned above, regulation of RTK signaling is also 

achieved by extracellular binding of other factors to RTKs. 

We hypothesized that NCAM could act as a general modulator of RTK signaling by 

interacting with and influencing various members of the RTK family. We show here that 

NCAM can bind to several RTKs. Specifically, NCAM likely acts as a negative regulator of 

PDGFRβ signaling. Our findings extend NCAM’s functions to other RTKs and demonstrate 

that NCAM can have different (stimulating and inactivating) effects on RTK signaling. 
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2.2. Materials and Methods 

 

2.2.1. Antibodies and reagents 

 

Anti-FGFR-2 (C-17), FGFR-3 (C-15), FGFR-4 (C-16), PDGFRα (C-20), PDGFRβ 

(958 and P-20,) all from Santa Cruz; anti-V5 (Invitrogen), anti-P-MAPK and MAPK (Sigma), 

anti human NCAM (OB11, Sigma), anti mouse NCAM (5B8, generous gift from U. 

Cavallaro), anti-P-Tyr (PY-20, Transduction Laboratories). PDGF-BB was obtained from 

Sigma, Protein G Sepharose  from Amersham. 

 

 

2.2.2. Tissue culture 

 

HEK 293T cells were grown in DMEM, 10% FCS, 1% Glutamine, 1% 

Penicillin/Streptomycin (Sigma). NIH 3T3 cells were grown in DMEM, 10% CS, 1% 

Glutamine, 1% Penicillin/Streptomycin (Sigma). 

 

 

2.2.3. Stable transfection of NIH 3T3 cells 

 

For constructing a shRNA vector against mouse N-CAM: Forward primer: 5’-

GATCCCCGTACAAGGCTGAGTGGAAGTTCAAGAGACTTCCACTCAGCCTTGTACT

TTTTGGAAA-3; reverse primer: 5’-AGCTTTTCCAAAAAGTACAAGGCTGAGTGG-

AAGTCTCTTGAACTTCCACTCAGCCTTGTACGGG-3’; after annealing, the sequence 

was cloned into pSuperRetro-neo. As control,  a sequence directed against human E-cadherin 

was used (forward primer: 5'-GATCCCCATCTGAAAGCGGCTGATACT-

TCAAGAGAGTATCAGCCGCTTTCAGATTTTTTGGAAA-3' , reverse primer: 5'-

AGCTTTTCCAAAAAATCTGAAAGCGGCTGATACTCTCTTGAAGTATCAGCCGCTT

TCAGATGGG-3'), after transfection, cells were selected using 200 ng/ml G418 (Sigma),  

resistant clones were expanded for further analysis. 

 

 

2.2.4. Cell stimulation, protein extraction and Western Blot 

 

NIH3T3 cells were cultured in 6-well plates in medium containing serum, then 

serum-starved overnight in serum-free medium. The day of the experiment, cells were 

stimulated with 30 ng/ml PDGF-BB for the time indicated. After the stimulation, cells were 

lysed in lysis buffer (20 mM Tris/HCl pH 8.0, 160 mM NaCl, 1 mM CaCl2, 10 µg/ml 

aprotinin, 1% Triton X-100, 1 µg/ml leupeptin, 1 mM PMSF, 10 mM NaF, and 1 mM sodium 

orthovanadate). Following centrifugation, the protein concentration of cell lysates was 

determined using the Bio-Rad DC Protein Assay (BioRad, Hercules, CA). Proteins were 

resolved by SDS-PAGE and transferred to nitrocellulose membranes (Milipore). Proteins of 

interest were visualized using specific antibodies, followed by peroxidase-conjugated 
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secondary antibodies and by an enhanced chemiluminescence kit (Amersham, Little Chalfort, 

UK). 

 

 

2.2.5. Immunoprecipitation 

 

For immunoprecipitation analyses, cell lysates (1 mg) were pre-cleared with non-

immune IgG (Sigma) plus Protein G-Sepharose (Amersham). Lysates were then incubated 

with specific antibodies overnight at 4 °C, followed by the addition of Protein G-Sepharose 

and further incubation for 2 h at 4 °C. After four washing steps in lysis buffer, proteins were 

eluted with Laemmli buffer and resolved by SDS-PAGE, followed by immunoblotting. 
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2.3. Results 

 

2.3.1. NCAM associates with all members of the FGFR family 

 

We previously showed that all three NCAM isoforms are found in a complex with 

FGFR-4 in fibroblastic L cells (Cavallaro et al., 2001). To investigate whether NCAM is also 

found in association with FGFR-4 in other cell types, FGFR-4 and either of the three NCAM 

isoforms (NCAM120, NCAM140 and NCAM 180) were transiently expressed in human 

embryonic kidney (HEK 293T) cells. Complex formation was assayed by investigating 

proteins associated with the FGFR-4 in co-immunoprecipitation experiments or, conversely, 

by identifying proteins that bind to NCAM. When immunoprecipitated with antibodies 

directed against FGFR-4, all three NCAM isoforms were found to bind to FGFR-4 (Figure 

1A). The same observation was made in the reverse experiment: All three NCAM isoforms 

were able to co-immmunoprecipitate FGFR-4 (Figure 1B). Albeit expression levels of 

NCAM180 were high in both experiments, this isoform was least efficient in binding FGFR-

4. These results confirm our previous observations that all NCAM isoforms can associate 

with FGFR-4 in various cellular system 

 

Figure 1: All three NCAM isoforms associate with the FGFR-4 

Immunoblotting analysis following immunoprecipitations of lysates transfected with FGFR-4 and 

NCAM 120 (left panel), FGFR-4 and NCAM 140 (middle panel) or FGFR-4 and NCAM 180 (right 

panel). A) Lysates were incubated with an antibody against FGFR-4 (IP R4) or an unrelated antibody 

(IP contr). B) Lysates were incubated with an antibody directed agains NCAM (IP NCAM) or an 

unrelated antibody (IP contr). Input: total lysate for expression control. 
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In addition to FGFR-4, a direct interaction between FGFR-1 and NCAM was recently 

demonstrated (Kiselyov et al., 2003). We thus hypothesized that NCAM can bind to all 

members of the FGFR family. To test this, FGFR-3 (Figure 2, upper panel) and FGFR-2 

(Figure 2, lower panel) were co-expressed with the three NCAM isoforms in HEK 293T cells.  

Using anti-FGFR-2 or FGFR-3 antibodies for immunoprecipitation, all three NCAM isoforms 

were found in a complex with the respective FGFR (Figure 2). Hence, we could observe that 

NCAM can bind to all four FGFR family members. 

 

 

 

Figure 2: NCAM binds to FGFR-2 and FGFR-3 

HEK 293T cells were transiently transfected with cDNA for FGFR-3 (upper panel), FGFR-2 (lower 

panel) and the three major NCAM isoforms. Co-immunoprecipitations using anti-FGFR-3 antibodies 

(upper panel) or anti-FGFR-2 antibodies (lower panel) and subsequent Immunoblotting analysis for 

NCAM was performed. IP R3, IP for FGFR-3; R2/120, R2/140, R2/180, lysates expressing FGFR-2 

and NCAM120, NCAM140 or NCAM180; Mock, lysates transfected with a control plasmid; Input, 

total lysate; 

 

 

2.3.2. NCAM associates with PDGFRββββ 

 

All FGFR family members consist of an extracellular domain containing Ig-like 

repeats. Interaction between NCAM and FGFR-1 is dependent of the third Ig-domain of the 

receptor. We therefore investigated if other Ig-domain containing RTKs can bind to NCAM. 

HEK 293T cells were transfected with cDNAs coding for either of the two platelet derived 

growth factor receptors PDGFRα and PDGFRβ, and NCAM140. Furthermore we tested 

complex formation between NCAM and two receptors that do not contain Ig repeats, the 

hepatocyte growth factor receptor (c-Met) and the epidermal growth factor receptor (EGFR). 
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In repeated experiments we never found c-Met or EGFR to associated with 

NCAM140 (data not shown). However, both PDGFRα and PDGFRβ were found to bind 

NCAM140 (Figure 3A and Figure 3B). PDGFRβ binding to NCAM was not restricted to the 

NCAM140 isoform, since NCAM120 and NCAM180 could also be immunoprecipitated 

together with PDGFRβ (Figure 3C).  Taken together, PDGFRα and PDGFRβ can form a 

complex with NCAM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 A and B: NCAM associates with PDGFRαααα and PDGFRββββ 

Western blot analysis of co-immunoprecipitations (co-IPs) of HEK 293T cells expressing either a 

control plasmid (Mock), PDGFRα and NCAM140 (Rα/140, Figure 3A) or PDGFRβ and NCAM140 

(Rβ/140, Figure 3B). IP Rα, IP Rβ, IP using anti-PDGFRα or anti-PDGFRβ antibodies; IP contr, IP 

using unrelated antibodies. 
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Figure 3C: NCAM associates with PDGFRαααα and PDGFRββββ 

HEK 293T were transfected with a control plasmid (Mock), PDGFRβ and NCAM120 (Rβ/120), 

PDGFRβ and NCAM140 (Rβ/140) or PDGFRβ and NCAM180 (Rβ/180). IPs were performed using 

either a specific antibody (IP spec) against PDGFRβ (upper panel), NCAM  (lower panel) or an 

unrelated antibody (IP contr) and analyzed by Western blot with the indicated antibodies. 

 

 

 

2.3.3. NCAM reduces tyrosine phosphorylation on the PDGFRββββ 

 

The complex formation of PDGFRβ and NCAM, but not of PDGFRα and NCAM, 

was confirmed in a number of alternative cellular systems, such as L-cells and NIH 3T3 

fibroblasts (data not shown) and therefore the effects of NCAM on PDGFRβ signaling was 

further investigated. We first examined whether the cellular tyrosine phosphorylation pattern 

was altered in cells expressing PDGFRβ  in the presence or absence of NCAM. The 

experiments were performed under serum starvation (no PDGF-BB) and receptor stimulation 

(addition of PDGF-BB) conditions. Phospho-tyrosine signals could only be detected in cells 

expressing PDGFRβ. Interestingly, the signal was reduced in cells co-expressing PDGFRβ 

and NCAM. Upon PDGF-BB treatment, phosphos-tyrosine levels were increased. However, 

NCAM reduced phospho-tyrosine levels equally in serum free or PDGF-BB-treated cells. 

Thus, it seems that tyrosine phosphorylation reduction by N-CAM is not specific for ligand 

stimulated receptors (Figure 4A, 1st panel). The total amounts of PDGFRβ (Figure 4A, 2nd 
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panel) and NCAM140 (Figure 4A, 3rd panel) were unchanged, suggesting that the observed 

effects were not a result of reduced receptor levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4A: Phosphotyrosine levels are reduced upon NCAM140 expression 

Lysates from HEK 293T cells transfected with the indicated cDNAs and grown in the absence (serum 

free) or presence of PDGF-BB were analyzed for the expression levels of the indicated proteins. P-Tyr, 

phospho-tyrosine; 140/Rβ, NCAM140 and PDGFRβ). Equal loading was confirmed by immunoblotting 

for MAPK. 

 

  

To investigate whether the alleviated phospho-tyrosine levels correlated with a 

decrease in PDGFRβ activation, the PDGFRβ-specific phosphorylation pattern was analyzed 

in the presence or absence of NCAM. As shown in Figure 4B, tyrosine phosphorylation levels 

of PDGFRβ were slightly lessend in cells that co-express NCAM as compared to PDGFRβ 

solely expressing cells. Similar to our previous observation, this could be observed in both, 

serum free and PDGF-BB stimulated conditions, confirming that the presence of the ligand 

does not alter the effects exhibited by NCAM. Taken together, NCAM associates with 

PDGFRβ in a ligand independent manner and negatively influences its tyrosine 

phosphorylation. 
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Figure 4B: Reduced tyrosine phosphorylation levels of PDGFRββββ in the presence of NCAM 

Lysates were prepared from HEK 293T grown in the absence (SF) or presence (BB) of PDGF-B, 

transfected with a control plasmid (Mock), NCAM140 (140),  PDGFRβ (Rβ) or PDGFRβ and 

NCAM140 (140/ Rβ). IPs were performed using a specific antibody against PDGFRβ and analyzed by 

immunoblotting with the indicated antibodies. 

 

 

2.3.4. Loss of NCAM enhances PDGF-BB induced activation of MAPK 

 

Forced expression of proteins usually yields high amounts of the respective protein. 

In the case of RTKs, this often leads to receptor phosphorylation by dimerisation in absence 

of an appropriate stimulus, which was also observed in the case of PDGFRβ expression under 

serum starved conditions (Figure 4A and Figure 4B). Furthermore, not every receptor 

molecule associates with NCAM and vice versa, not every NCAM molecule is engaged in 

receptor binding, since both, NCAM or PDGFRβ were also found in cleared lysates after 

immunoprecipitation (data not shown).  Therefore, detecting the effect of NCAM on a sub-

population of all PDGFRβ proteins might be undermined by the NCAM-unbound fraction of 

PDGFRβ. These drawbacks together with the fact that HEK 293T cells are not PDGF-BB 

responsive, forced us to choose an alternative approach to investigate the effect of N-CAM on 

PDGFRβ signaling.  

Interfering with NCAM expression using an shRNA approach in NIH 3T3 mouse 

fibroblast cells allowed for analyzing NCAMs influence on PDGFRβ signaling in a system 

expressing physiological levels of both proteins. We generated stable clones expressing three 

different shRNAs specific for mouse NCAM. One of the tested shRNAs was effective in 

degrading NCAM mRNA, leading to almost quantitative loss of NCAM protein expression 

(clone 3-1, Figure 5, upper panel). As control, an unrelated shRNA was stably introduced into 

NIH 3T3 cells (clone 6-3, Figure 5), having no effect on NCAM expression levels. 

Stimulating NIH 3T3 cells with PDGF-BB results in extracellular signal-regulated kinase1 
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and 2 (Erk1/2, referred to MAPK hereafter) activation and can therefore be used to analyze 

PDGFRβ signaling. We used clone 6-3 and clone 3-1 to compare PDGFRβ signaling upon 

stimulation in the presence and absence of NCAM.  When grown under serum free 

conditions, loss of NCAM resulted in slightly increased levels of phosphorylated Erk1/2 (P-

MAPK hereafter) (lane 0 in Figure 5, middle panel). Upon addition of PDGF-BB, P-MAPK 

levels were induced in control cells, showing highest MAPK activation after ten minutes of 

ligand addition and dropping to almost serum starved levels after 30 minutes. In contrast, in 

NCAM-deficient cells, P-MAPK was induced to maximum level already after five minutes 

and activation was sustained throughout the entire duration of the time course. Furthermore, 

over all P-MAPK levels were increased in cells having lost NCAM expression. These results 

indicate that N-CAM negatively affects PDGFRβ-induced MAPK-signaling in the absence 

and presence of PDGF-BB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: NCAM reduces PMAPK levels in NIH 3T3 cells 

Immunoblotting analysis of cells expressing control shRNA (clone 6-3) and shRNA against mouse 

NCAM (clone 3-1). 0, 5, 10, 15, 30: minutes of incubation with PDGF-BB. S, serum control.  

 

 

 To determine whether the induction of MAPK was a specific consequence of NCAM 

down-regulation and did not reflect an unspecific effect resulting from the shRNA, human 

NCAM140 tagged with the V5 epitope was transiently re-introduced into clone 3-1. 

Transfection efficacy was rather low since only about 5-10% of all cells expressed the V5-tag 

and thus human NCAM140 (Figure 6, lower left panel). When the cells were stimulated with 

PDGF-BB, P-MAPK levels were not significantly reduced upon re-expression of NCAM 

(Figure 6, 3rd right panel). Furthermore, the kinetics of the stimulation was similar to the 

original, NCAM deficient clone 3-1. However, since only a small percentage of all analyzed 

cells were successfully transfected, the result of NCAM re-introduction may not be 

detectable. Therefore, this experiment is not conclusive. 
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Figure 6: Partial re-introduction of NCAM does not result in P-MAPK reduction 

Right panel: Immunoblotting analysis with the indicated antibodies of clone 3-1 transiently transfected 

with human NCAM140 cDNA in comparison to original clone 3-1 and control clone 6-3. 0, 5, 10, 15, 

30: minutes of incubation with PDGF-BB. Left panel: control of transfection efficacy. Up: Cell density 

at time point of harvesting cells, determined by light microscopy.  Down: Immunofluorescence staining 

of clone 3-1 transfected with human NCAM140 carrying a V5 tag with an antibody recognizing the V5 

epitope.  
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2.4. Discussion 

 

A direct interaction between NCAM and FGFR-1 and 4 was recently demonstrated 

by others and our group (Kiselyov et al., 2003; Francavilla et al., in preparation). In the case 

of FGFR-1, the interaction is dependent on the third Ig domain of the receptor. Among the 

huge family of RTKs, several receptors carry varying numbers of Ig-domains in their 

extracellular parts. Members of the FGFR family for instance are composed of two (Ig 

domain II and III) or three Ig domains (Ig domain I, II and III), depending on the particular 

splice variant (Klint and Claesson-Welsh, 1999).  Other receptors such as PDGFRα and 

PDGFRβ are characterized by five Ig domains (Heldin and Westermark, 1999) or, in the case 

of the vascular endothelial growth factor receptor (VEGFR) family, seven Ig domains. We 

show here that all NCAM isoforms are able to associate with three members of the FGFR 

family (FGFR-2, -3 and -4), as well as PDGFRα and PDGFRβ. The interaction of NCAM 

and RTKs seems to be dependent on the presence of an Ig domain, since RTKs lacking this 

structural feature (EGFR and c-MET) cannot associate with NCAM.  In next steps, it will be 

important to investigate if VEGFRs are also interacting with NCAM to support the idea that 

NCAM can act as a ligand for Ig domain containing RTKs. Furthermore, the identification of 

the exact domain or structure of Ig domain III on FGFR-1 necessary for NCAM binding 

might allow to identify additional binding proteins of NCAM. 

In L-cells, stimulation of the FGFR-4 by NCAM or FGF leads to increased cell-

matrix adhesion in a MAPK dependent manner. Using this assay it was recently shown that in 

the absence of FGF, N-CAM acts on FGFR-4 in a stimulating way, inducing MAPK 

activation. However, NCAM acts as a negative regulator of FGF-induced MAPK activation 

and subsequent cell-matrix adhesion (Francavilla et al., in preparation, Chapter 3 in this 

work). We do not know if NCAM binding to FGFR-2 and 3 influences the receptor’s activity 

in a similar way as observed for FGFR-4. Using a system that is based on the forced 

expression of RTKs is sub-optimal to study signaling events, since the un-physiological 

receptor-levels lead to auto-phosphorylation and hence activation of RTK signaling in the 

absence of appropriate stimuli. It will therefore be crucial to identify or generate an 

appropriate system to unravel the influence of NCAM on FGFR-2 and FGFR-3 signaling. 

Several experiments indicate that NCAM acts as a negative modulator of PDGFRβ 

signaling. Co-expression of NCAM and PDGFRβ leads to reduced tyrosine phosphorylation 

of the receptor, both, in the absence and presence of PDGF-BB. Furthermore, interfering with 

NCAM function in NIH 3T3 cells influenced the kinetics and levels of PDGF-BB stimulation. 

Whereas in the absence of NCAM the ligand elicits a strong, sustained P-MAPK response, 

the presence of NCAM allows only a short, transient and weaker activation of MAPK by 

PDGF-BB. This is very similar to what can be observed in FGF induced FGFR-4 signaling in 

L-cells (Francavilla et al., in preparation, Chapter 3) and suggests that NCAM influences 

PDGFRβ similarly to FGFR-4. However, in contrast to FGFR-4 signaling, NCAM does not 

induce PDGFRβ signaling in the absence of PDGF-BB. 

The specificity of the results obtained with shRNA transfected NIH 3T3 cells remains 

to be confirmed. To exclude that the observed effects on PDGFRβ signaling are due to 

unspecific effects of the transfected shRNA, we currently try to establish stable expression of 
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human NCAM140 in the NCAM-deficient clone 3-1. The finding that NCAM associates with 

all FGFR proteins as well as PDGFRα and PDGFRβ indicates that NCAM might act as a 

general RTK signaling modulator in a variety of cell types. Furthermore, the results described 

here and in Chapter 3 extend NCAMs function from stimulating RTKs to also inhibiting 

ligand induced RTK signaling. Future work will focus on the identification of suitable cellular 

systems to dissect the distinct effects of NCAM on the respective RTK. 
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Abstract 

 

Neural cell adhesion molecule (NCAM) mediates cell-cell adhesion in the central 

nervous system. However, NCAM is also expressed in non-neural tissues where its function 

has in most parts remained elusive. Using a transgenic mouse model of pancreatic β cell 

carcinogenesis (Rip1Tag2), we have previously reported that NCAM stimulates cell-matrix 

adhesion by activating fibroblast growth factor receptor (FGFR) signaling. Here, we 

demonstrate that the direct binding of NCAM to FGFR is necessary and sufficient for 

triggering FGFR activity, which results in mitogen-activated protein kinase (MAPK)-

mediated cell-matrix adhesion. Moreover, our studies reveal that NCAM and FGFs elicit 

distinct FGFR-mediated signaling cascades which account for the differential cell responses 

observed with the two molecules. In addition, NCAM negatively regulates FGF-induced cell-

matrix adhesion, cell proliferation and MAPK activation. Our results indicate an unexpected 

role of NCAM in modulating FGFR functions, thus introducing a novel type of control 

mechanism for receptor tyrosine kinase activity. 
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3. NCAM acts as a molecular switch for FGFR signaling 

 

 

3.1. Introduction 

 

Neural cell adhesion molecule (NCAM) belongs to the immunoglobulin-like 

superfamily of adhesion molecules (Ig-CAMs), and is a cell surface glycoprotein involved in 

calcium-independent intercellular adhesion. The extracellular portion of NCAM contains five 

Ig-like domains (Ig1-5) and two fibronectin type-III (F3) repeats. Alternative splicing yields 

three main NCAM isoforms, two of which are endowed with a transmembrane and a 

cytoplasmic region (NCAM140 and 180), while NCAM120 is linked to the membrane 

through a glycosylphosphatidyl inositol (GPI) anchor (reviewed in Walmod et al., 2004). 

Posttranslational modifications of the protein add further complexity to NCAMs expression 

pattern and function. In particular, the NCAM ectodomain can be polysialylated in a time and 

space-dependent manner, and this process induces a shift in NCAM function from pro-

adhesive to pro-migratory (Angata and Fukuda, 2003). 

NCAM is widely expressed in the central nervous systems, where it plays an 

important role in various processes, both during embryonic development and in adulthood 

(reviewed in Hinsby et al., 2004). Indeed, NCAM is involved in the migration of neural 

progenitor cells, axonal growth and pathfinding, synaptic plasticity and long-term 

potentiation. At the cellular level, NCAM exerts these functions by controlling intercellular 

recognition and adhesion, neurite outgrowth, cell migration, proliferation and survival. These 

events are triggered by the homophilic interaction of NCAM molecules on adjacent cells as 

well as by the heterophilic binding of NCAM to other Ig-CAMs, extracellular matrix 

components, and cell surface receptors. NCAM’s homophilic and heterophilic interactions 

affect a complex network of signaling cascades, which involve many crucial pathways, such 

as mitogen-activated protein kinases (MAPK), phospholipase C-γ  (PLCγ), diacylglycerol and 

arachidonic acid, protein kinase C (PKC), and phosphatidyl inositol 3-kinase (PI3K) 

(reviewed in Walmod et al., 2004). 

Pioneering studies performed by the group of P. Doherty and F. Walsh have 

highlighted a functional interplay between NCAM and the fibroblast growth factor receptor 

(FGFR) in neuronal cells, which underlies NCAM-dependent neurite outgrowth (Walsh and 

Doherty, 1997). Further support for these results came from surface plasmon and nuclear 

magnetic resonance studies that have demonstrated a direct binding of NCAM to FGFR and 

identified the interaction domains in the second F3 repeat of NCAM and the third Ig domain 

of FGFR (Kiselyov et al., 2003). We have confirmed and extended the NCAM/FGFR 

interplay in non-neuronal and tumor cells, such as pancreatic beta tumor cells and fibroblasts, 

implying that it is not restricted to the nervous system (Cavallaro et al., 2001). Our data have 

revealed that the formation of the NCAM/FGFR complex induces FGFR autophosphorylation 

and stimulates an FGFR-dependent signaling cascade that leads to the modulation of β1-

integrin-mediated cell-matrix adhesion. Interfering with this process by abrogating the 

expression of NCAM in a transgenic mouse model of β cell tumorigenesis resulted in the 
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disruption of the tumor tissue architecture, tumor-associated lymphangiogenesis, and lymph 

node metastasis (Perl et al., 1999; Cavallaro et al., 2001; Crnic et al., 2004). These and other 

studies imply that the cross-talk between adhesion molecules and receptor tyrosine kinases 

has important implications and that its dysregulation can play a pathogenetic role in diseases 

such as cancer and neurological disorders (Cavallaro and Christofori, 2004). 

The intracellular signaling pathways elicited by the NCAM/FGFR complex and their 

impact on cellular physiology have been elucidated only to a certain extent, and all the 

information available so far derives from studies on neuronal cell types. In particular, it has 

been shown that, upon NCAM binding to FGFR, a number of intracellular effectors are 

recruited to the phosphorylated residues of the FGFR’s cytoplasmic tail. Among these, PLCγ 
becomes activated when bound to FGFR and then cleaves phosphatidylinositol 4,5-

biphosphate to generate inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). While IP3 

induces an increase in intracellular Ca2+ concentration, DAG can either activate PKC or be 

converted into arachidonic acid (Walmod et al., 2004). In neurons, it has been shown that the 

cytoplasmic tail of NCAM180 and 140 binds to and activate the PKCβII isoenzyme via 

spectrin, a scaffolding protein that contributes to the organization of membrane microdomains 

and to the anchorage of membrane proteins to the cytoskeleton (Leshchyns'ka et al., 2003). 

The formation of this NCAM/spectrin/PKCβII complex was reported to be FGFR-dependent. 

PKC acts as an important nodal point in the signaling cascade elicited by the NCAM/FGFR 

interplay: it activates the neuritogenic protein GAP-43 (involved in signaling and in 

cytoskeletal rearrangements) and it can also stimulate Raf kinase activity. The latter activity 

enables PKC to link the NCAM/FGFR complex to the Raf-MEK-MAPK pathway. Notably, 

homophilic NCAM interactions, which underlie NCAM-mediated cell-cell adhesion, also 

elicit MAPK activation via non-receptor tyrosine kinases, such as pp60c-src or focal adhesion 

kinase (FAK). However, the mutual influence between the signaling cascades elicited by 

NCAM-mediated intercellular adhesion and homophilic interaction and those downstream of 

the NCAM-induced FGFR activation remains elusive. Here, we report novel implications of 

the NCAM/FGFR cross-talk, by showing that i) the direct binding of NCAM to FGFR is 

necessary and sufficient to stimulate MAPK-dependent cell-matrix adhesion; ii ) NCAM and 

FGF activate FGFR signaling in a distinct manner, i.e. they induce different FGFR-mediated 

pathways; and iii ) NCAM can also act as a negative regulator of the cellular response to FGF 

stimulation. Our results highlight a novel, NCAM-dependent mechanism for the modulation 

of FGFR activity. 
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3.2. Experimental Procedures 

 

 

3.2.1. Cell lines and reagents 

 

NCAM-null and NCAM-positive β tumor cells were isolated from the pancreatic 

tumors of Rip1Tag2;NCAM-/- or NCAM+/+ mice and cultured as previously described 

(Cavallaro et al., 2001). Mouse fibroblastic L cells were maintained in DMEM, 10% fetal calf 

serum, L-glutamine and antibiotics. FGF-1 and FGF-2 were purchased from Peprotech 

(London, UK). Heparin, PMA and arachidonic acid were purchased from Sigma (St. Louis, 

MO). The FGFR inhibitor PD173074 (Skaper et al., 2000) was kindly provided by Pfizer 

(Groton, CT). The PKCβII inhibitor CGP53353 was kindly provided by D. Fabbro (Novartis, 

Basel, Switzerland). The MEK inhibitor PD98059 and the broad-spectrum PKC inhibitor 

Calphostin C were from Sigma. The PKC α/γ inhibitor HBDEE and  the Src inhibitor PP1 

were from Calbiochem. Antibodies: mouse anti-phospho-Erk1/2, rabbit anti-phospho-FRS2 

and rabbit anti-phospho-Src (recognizing the activated form of most Src kinases) were from 

Cell Signaling Technology (Danvers, MA); rabbit anti-Erk1/2 was from Sigma; rabbit anti-

PKCα and anti-PKCβII, rabbit anti-FRS2 and mouse anti-Src kinases were from Santa Cruz 

Biotechnologies; rabbit anti-phospho-PKCβII was from Abcam (Cambridge, UK); mouse 

anti-NCAM was from BD Biosciences (San Jose, CA). The pIg3 vectors containing the 

cDNA for the ectodomain of human NCAM, either full-length or with the deletion of the 

second F3 module (∆FN2), fused to the Fc fragment of human IgG, were kindly provided by 

L. Needham (Duke University). The vectors were used to transiently transfect HEK 293 cells, 

and the recombinant proteins were purified from the conditioned medium of transfected cells 

using Protein G-Sepharose chromatography. The FGL peptide from the second F3 module of 

NCAM and its mutated version carrying two alanine substitutions (FGLmut; Kiselyov et al., 

2003) were a generous gift from ENKAM Pharmaceuticals (Copenhagen, Denmark). 

 

 

3.2.2. Stable transfection of L cells 

 

The cDNA for mouse NCAM140 was subcloned into the pcDNA3.1 expression 

vector (Invitrogen). L cells were transfected with the pcDNA-NCAM plasmid (L-NCAM) or 

with the empty vector (L-mock) using Lipofectamine 2000, followed by selection with 0.8 

mg/ml G418 (Invitrogen) and cloning by limiting dilution. 

 

 

3.2.3. Cell stimulation, protein extraction and Western Blot 

 

Cells were cultured in 6-well plates in DMEM with 10% FCS, then serum-starved 

overnight in serum-free medium. The day of the experiment, cells were stimulated with the 

following molecules at the indicated concentrations: 20 µg/ml NCAM-Fc, 20 µg/ml ∆FN2-

Fc, 20 µg/ml FGL or FGLmut, 20 ng/ml FGF-1 plus 10 µg/ml heparin, 20 ng/ml FGF-2. If not 
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indicated otherwise, cells were stimulated for 10 minutes. When needed, cells were pre-

incubated for 1-2 hours with specific inhibitors at the following concentrations: 100 nM 

PD173074, 25 µM PD98059, 10 µM CGP53353, 100 µM HBDEE, 400 nM Calphostin C, 20 

µM PP1. Control cells were pre-incubated with vehicle alone. After the stimulation, cells 

were lysed in lysis buffer (20 mM Tris/HCl pH 8.0, 160 mM NaCl, 1 mM CaCl2, 10 µg/ml 

aprotinin, 1% Triton X-100, 1 µg/ml leupeptin, 1 mM PMSF, 10 mM NaF, and 1 mM sodium 

orthovanadate). Following sonication and centrifugation to remove cell debris, the protein 

concentration of cell lysates was determined using the Bio-Rad DC Protein Assay (BioRad, 

Hercules, CA). Proteins were resolved by SDS-PAGE and transferred to nitrocellulose 

membranes (Protran, Biosciences). Proteins of interest were visualized using specific 

antibodies, followed by peroxidase-conjugated secondary antibodies and by an enhanced 

chemiluminescence kit (Amersham, Little Chalfort, UK). 

 

 

3.2.4. Immunoprecipitation 

 

For immunoprecipitation analyses, cell lysates (2 mg) were pre-cleared with non-

immune IgG (Sigma) plus Protein G-Sepharose (Pharmacia, Uppsala, Sweden). Lysates were 

then incubated with specific antibodies overnight at 4°C, followed by the addition of Protein 

G-Sepharose and further incubation for 2 h at 4°C. After four washing steps in lysis buffer, 

proteins were eluted with Laemmli buffer and resolved by SDS-PAGE, followed by 

immunoblotting. 

 

3.2.5. Cell adhesion assays 

 

Matrix adhesion assays were performed on collagen type-IV, a substrate that 

mediates NCAM-dependent cell adhesion (Cavallaro et al., 2001). Twenty-four well plates 

were coated with 5 µg/cm2 of mouse collagen IV (BD Biosciences). Cells cultured in 6-well 

plates were stimulated with appropriate compounds, and 105 cells were seeded in 24-well 

plates coated with 4 mg/cm2 of collagen IV. After 2 hours, non-adherent cells were removed 

by washing with PBS. Adherent cells were fixed for 30 minutes with 2% formalin, then 

stained with crystal violet, washed and air-dried. Bound dye was solubilized with 10 % acetic 

acid and absorbance measured at 595 nm. Cell-free wells served as blanks. The assays were 

performed in quadruplicate and repeated at least three times. 

 

 

3.2.6. Cell proliferation 

 

L cells were seeded in triplicate on 24-well plates at 5x103 cells/well, serum-starved 

overnight and treated for 4 days with 10% fetal calf serum or 20 ng/ml FGF-2, which were 

added every 24 hours. At each time point, cells were washed with PBS, fixed and stained with 

crystal violet as described for the adhesion assay. The absorbance at 595 nm was measured, 
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and the ratio between stimulated and non-stimulated L cells was determined for each time 

point. The assays were performed in quadruplicate and repeated at least three times. 
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3.3. Results 

 

 

3.3.1. NCAM-induced cell-matrix adhesion requires the binding of NCAM to FGFR. 

 

We have previously reported that membrane-bound NCAM promotes neurite 

outgrowth and cell-matrix adhesion in pancreatic β tumor cells isolated from the Rip1Tag2 

transgenic mouse model of β cell tumorigenesis (Cavallaro et al., 2001). Interestingly, similar 

effects were obtained by treating NCAM-/- β tumor cells with the soluble extracellular 

portion of NCAM fused to the Fc fragment of human IgG (Figure 1A). The Fc fragment alone 

had no effect on cell adhesion (not shown). To verify the cell type-specificity of NCAM 

functions, we stably transfected L cells, a fibroblastic cell line which expresses no NCAM 

(Cavallaro et al., 2001), with NCAM140, and subjected the cells to adhesion assays. As 

shown in Figure 1B, NCAM expression stimulated the adhesion of L cells to collagen IV.  

Moreover, by analogy to β tumor cells, soluble NCAM-Fc promoted matrix adhesion 

of mock-transfected L cells (Figure 1C), while very little effect was obtained in NCAM-

expressing cells (not shown). These data imply that both the anchorage of NCAM to the cell 

surface and its cytoplasmic tail are dispensable for NCAM-induced cell-matrix adhesion, and 

that this functional property of NCAM is not restricted to β tumor cells. 

Both NCAM-/- β tumor cells and L cells lack endogenous NCAM. Hence, the pro-

adhesive effect of NCAM-Fc is not due to homophilic NCAM-NCAM interactions but rather 

implicates a cross-talk of soluble NCAM-Fc with other effectors. We have previously 

reported that NCAM-induced neurite outgrowth and matrix adhesion in β tumor cells are 

mediated by FGFR signaling (Cavallaro et al., 2001). These observations were now extended 

to L cells, where the FGFR inhibitor PD173074 repressed NCAM-dependent matrix 

adhesion, confirming the NCAM/FGFR crosstalk (Figure 1B). NCAM and FGFR have been 

previously found to co-immunoprecipitate from whole cell lysates (Cavallaro et al., 2001), yet 

the implications of their direct physical interaction have remained elusive. To address this 

issue, we took advantage of the recent mapping of the FGFR-binding motifs in the second F3 

repeats of the NCAM’s extracellular portion (Kiselyov et al., 2003), and treated NCAM-/- β 

tumor cells with a version of NCAM-Fc lacking this domain (∆FN2-Fc). As shown in Figure 

1A, ∆FN2-Fc failed to induce cell adhesion to collagen IV. In agreement with our previous 

observations (Cavallaro et al., 2001), FGF-1 was able to induce cell-matrix adhesion almost 

to the same extent as full-length NCAM-Fc. FGFR activation promoted matrix adhesion also 

in fibroblastic L cells, as demonstrated by stimulation with FGF-2 (Figure 1C). The latter was 

used in all the experiments with L cells because this cell type, unlike β tumor cells, is more 

responsive to FGF-2 than FGF-1 (CF and UC, unpublished observations). As expected, the 

FGFR inhibitor PD173074 repressed the adhesion of L cells stimulated with FGF-2. The 

inhibitory effect of PD173074 was specific for FGFR signaling, since the drug did not affect 

the basal adhesion activity of L cells (Figure 1C). By analogy to β tumor cells, ∆FN2-Fc 

failed to promote L cell adhesion to collagen IV. In addition, NCAM-Fc-induced adhesion of 

L cells was repressed by PD173074 (Figure 1C), thus confirming the essential role of FGFR 

in NCAM-mediated signaling. Furthermore, matrix adhesion of L cells was also stimulated by 
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the FGL peptide, which mimics NCAM binding to and activation of FGFR, while a mutated 

version of the peptide unable to bind to FGFR (Kiselyov et al., 2003) showed no effect 

(Figure 1C). Together, the results indicate that the direct association of NCAM to FGFR is 

not only necessary but also sufficient for NCAM-dependent cell-matrix adhesion. 

 

 

Figure 1: NCAM induces cell-matrix adhesion by binding to FGFR 

 NCAM-/- β tumor cells (A) or L cells (B and C) were stimulated for 10 minutes with NCAM-Fc, ∆FN2-

Fc, FGL or FGFmut, FGF-1, or FGF-2. When needed, cells where pre-incubated with PD173074 or 

DMSO alone for 2 hours prior to the stimulus. After the treatment, cells were subjected to adhesion 

assays on collagen IV-coated wells. Adherent cells were counted, and the results are presented 

percentage of control, untreated cells ± standard deviation. Experiments were performed in 

quadruplicate. *p<0.005. 
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3.3.2. NCAM-induced cell-matrix adhesion is mediated by Erk1/2 activation 

 

We and others have shown that various signaling pathways are implicated in neurite 

outgrowth stimulated by NCAM (Cavallaro et al., 2001; Walmod et al., 2004). However, the 

intracellular cascade(s) that underlies NCAM-induced cell-matrix adhesion has been only 

partially unraveled. Since the activation of extracellular signal-regulated kinase 1 and 2 

(Erk1/2) is one of the most prominent effects elicited by membrane-bound NCAM (Cavallaro 

et al., 2001), we initially focused on this signal transduction pathway. To elucidate the role of 

Erk1/2 in NCAM-dependent adhesion, NCAM-/- β tumor cells were treated with NCAM-Fc 

in the presence of the Erk1/2 inhibitor PD98059 prior to the adhesion assay on collagen IV. 

As shown in Figure 2A, PD98059 blocked the matrix adhesion of NCAM-Fc-treated cells, 

implicating Erk1/2 as key mediators of NCAM-induced cell adhesion. Interestingly, also the 

adhesion stimulated by FGF-1 required Erk1/2 activity (Figure 2A), which supports the 

hypothesis that NCAM and FGF elicit common signaling pathways. Very similar results were 

obtained in L cells stimulated with NCAM-Fc or FGF-2, where matrix adhesion was 

repressed in the presence of PD98059 (Figure 2B). Based on these data, we verified whether 

soluble NCAM-Fc stimulates Erk1/2 activation. In agreement with our previous result 

(Cavallaro et al., 2001), NCAM-expressing β tumor cells exhibited constitutive activation of 

Erk1/2, which was not enhanced by the treatment with NCAM-Fc (Figure  2C).  

 

 

Figure 2, A and B: NCAM signaling is mediated by Erk1/2 

 NCAM-/- β tumor cells (A) or L cells (B) were stimulated for 10 minutes with NCAM-Fc, FGF-1 or 

FGF-2. Prior to stimulation, cells where pre-incubated with PD98059 (grey bars) or DMSO alone 

(white bars) for 30 minutes. After treatment, cells were subjected to adhesion assays on collagen IV-

coated wells. Adherent cells were counted and are indicated as percentage of control, untreated cells ± 

standard deviation. Experiments were performed in quadruplicate. *p<0.005. 
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Figure 2C: Constitutive activation of ββββ 

tumor cells 

NCAM+/+ β tumor cells were stimulated 

for 10 or 30 minutes with NCAM-Fc, 

DFN2-Fc, or FGL. Cells were then lysed 

and immunoblotted for phospho-Erk1/2, 

followed by stripping and immnoblotting 

for total Erk1/2. 

 

 

In contrast, NCAM-Fc strongly induced Erk1/2 activation in NCAM-/- β tumor cells, 

an effect that was also recapitulated by the FGL peptide alone, while ∆FN2-Fc was markedly 

less effective (Figure 2D). Once again, the role of NCAM in Erk1/2 activation was not 

restricted to β tumor cells, since we obtained comparable results with fibroblastic L cells. 

Indeed, cells treated with either NCAM-Fc or FGL, but not with ∆FN2-Fc, showed a high 

level of Erk1/2 activation (Figure 2E). This effect was readily inhibited by PD173074 (Figure 

2D), supporting the crucial role of FGFR downstream of NCAM. Besides confirming that the 

membrane insertion is not necessary for certain functions of NCAM, these data imply that the 

direct binding to FGFR is essential for NCAM to stimulate Erk1/2 activation. 

 

Figure 2, D and E: 

(D) NCAM-/- β tumor cells were stimulated for 10 or 30 minutes with NCAM-Fc, ∆FN2-Fc, or FGL. 

Cell lysates were then immunoblotted for phospho-Erk1/2 (top panel), followed by stripping and 

immunoblotting for total Erk1/2 (bottom panel). The densitometric ratio between phosphorylated and 

total Erk1/2 was measured for each time point, and the induction of Erk activation relative to untreated 

cells (time 0) is indicated as arbitrary units.  (E) L cells were stimulated for 10 minutes with NCAM-

Fc, ∆FN2-Fc, FGL, or FGF-2. Cells where pre-incubated for 2 hours with PD173074 prior to the 

stimulus as indicated. Cells were then lysed and immunoblotted for phospho-Erk1/2 (top panel), 

followed by stripping and immunoblotting for total Erk1/2 (bottom panel). The densitometric ratio 

between phosphorylated and total Erk1/2 was measured for each treatment, and the induction of Erk 

activation relative to untreated cells is presented as arbitrary units. 
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3.3.3. NCAM and FGF activate distinct, FGFR-mediated signaling pathways 

 

We have previously reported that NCAM induces both cell-matrix adhesion and 

neurite outgrowth in β tumor cells in an FGFR-dependent manner (Cavallaro et al., 2001). 

However, only cell-matrix adhesion and not neurite outgrowth could be rescued in NCAM-

deficient cells treated with FGF, implying that the interaction of NCAM with FGFR induces a 

downstream signaling that is distinct, although partially overlapping, from that of FGF. Based 

on the observation that NCAM-induced Erk1/2 activation was inhibited by the broad-

spectrum PKC inhibitor calphostin-C in both β tumor cells and L cells (Figure 3A and B), we 

investigated NCAM- and FGF-mediated differences in protein kinase C (PKC) signaling. The 

biological significance of NCAM-induced PKC activation was underscored by the 

observation that the PKC activator phorbol 12-myristate 13-acetate (PMA) induced both 

Erk1/2 activation (not shown) and adhesion of NCAM-/- β tumor cells to collagen IV (Figure 

3C). However, calphostin-C also repressed the Erk1/2 activation induced by FGF-1 in β 

tumor cells and FGF-2 in L cells (Figure 3A and B), indicating that both NCAM and FGF 

signal via PKC. Nevertheless, given that several PKC family members with distinct functions 

and partners are normally co-expressed in most cell types (Jaken and Parker, 2000), the 

activation of different PKC isoenzymes may account for the differential FGFR-mediated 

signaling stimulated by NCAM and FGF. To test this hypothesis, we first set out to identify 

the PKC acting downstream of NCAM. Since PKCβII has been previously implicated in 

NCAM signaling in neurons (Leshchyns'ka et al., 2003), we verified whether this applied also 

to our cellular systems. Indeed, immunoblotting analyses on L cell lysates with an antibody 

against activated PKCβII revealed that NCAM-Fc induces the activation of PKCβII. Notably, 

this effect was inhibited by PD173074 (Figure 4A), indicating that NCAM-Fc-induced 

activation of PKCβII requires FGFR signaling. Based on the implication of PKCβII in NCAM 

signaling, we assessed whether the two molecules are physically associated. Co-

immunoprecipitation analysis on NCAM-positive β tumor cells showed that NCAM 

associated with PKCβII, but not with PKCα, which is also expressed by these cells (Figure 

4B, left). The formation of a NCAM/PKCβII complex was also confirmed in L cells upon 

transfection with NCAM (Figure 4B, right), indicating that it is not a phenomenon restricted 

to β tumor cells. In contrast to NCAM-Fc, FGF failed to promote PKCβII activation (Figure 

4A), supporting the hypothesis of a dichotomy in the FGFR-mediated signaling pathways 

downstream of NCAM and FGF.  
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Figure 3:PKC stimulates Erk1/2 and adhesion 

 (A and B) NCAM-/- β tumor cells (A) or L cells (B) were stimulated for 10 minutes with NCAM-Fc, 

FGF-1 or FGF-2. When needed, cells were pre-incubated with 400 nM Calphostin C for 30 minutes. 

Cells were then lysed and immunoblotted for phospho-Erk1/2, followed by stripping and 

immunoblotting for total Erk1/2. (C) NCAM-/- β tumor cells were treated with the indicated 

concentrations of PMA or arachidonic acid for 1 hour, followed by adhesion assays on collagen IV-

coated wells. Adherent cells were counted, and the results presented as percentage of control, 

untreated cells ± standard deviation. Experiments were performed in quadruplicate. *p<0.005. 
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Figure 4. NCAM-activates PKCββββII in an FGFR-dependent manner 

 (A) L cells were stimulated for 10 minutes with NCAM-Fc or FGF-2, with or without a pre-treatment 

with PD173074 for 2 hours. Cells were then lysed and immunoblotted for phospho-PKCβII (top panel), 

followed by stripping and immunoblotting for total PKCβII (bottom panel). (B) PKC isoforms were 

immunoprecipitated from protein extracts of NCAM+/+ β tumor cells (left panels) or of mock- or 

NCAM-transfected L cells (right panels). Immunoprecipitates were then probed with antibodies 

against NCAM or against the specific PKC isoforms as indicated. 

 

 

To gain further insight into the biological relevance of NCAM-induced PKCβII 

activation, we took advantage of CGP53353, a chemical compound that selectively inhibits 

PKCβII function (Kouroedov et al., 2004). CGP53353 was used to investigate the role of 

PKCβII in NCAM-induced cell adhesion. As shown in Figure 5A and B, CGP53353 repressed 

cell-matrix adhesion of both NCAM-/- β tumor cells and L cells stimulated with NCAM-Fc, 

supporting the role of PKCβII as an effector of NCAM signaling. In contrast, CGP53353 

showed no effect on FGF-induced cell-matrix adhesion (Figure 5A and B), confirming that 

PKCβII is not involved in the signaling cascade elicited by FGF. Rather, FGF appeared to 

induce the activation of PKCα and/or γ, since the compound HBDEE, which selectively 

inhibits PKCα and γ (Kashiwada et al., 1994), blocked the matrix adhesion of L cells 

stimulated with FGF-2, but not with NCAM-Fc (Figure 5C).  A similar picture emerged when 

we analyzed the Erk1/2 activation pathways in both NCAM-/- β tumor cells and L cells: 

while CGP53353 inhibited the phosphorylation of Erk1/2 in cells treated with NCAM-Fc, but 

not with FGF, HBDEE showed the opposite effect (Figure 5D). Finally, in agreement with 

previous reports on the brain-restricted expression of PKCγ (Musashi et al., 2000), we did not 

detect this PKC isoenzyme in our cellular systems (not shown), indicating that in the 

experiments described above HBDEE acted as a selective PKCα inhibitor. Taken together, 

these results indicate that NCAM activates PKCβII in an FGFR-dependent manner whereas 

FGF activates PKCα, strongly supporting the notion that the two molecules induce distinct 

signaling cascades. 
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Figure 5: NCAM and FGF activate different PKC isoenzymes.  

(A) NCAM-/- β tumor cells were stimulated for 10 minutes with NCAM-Fc or FGF-1, in the absence 

(white bars) or presence of CGP53353 (grey bars). Cells were then subjected to adhesion assays on 

collagen IV. Adherent cells were counted and the results are presented as percentage of control, 

untreated cells ± SD. Experiments were performed in quadruplicate. *p<0.005. (B and C) L cells were 

stimulated for 10 minutes with NCAM-Fc or FGF-2, in the absence (white bars) or presence (grey 

bars) of 10 µM CGP53353  (B) or 100 µM HBDEE (C). Cells were then subjected to adhesion assays 

on collagen IV. Adherent cells were counted and are indicated as percentage of control, untreated cells 

± SD. Experiments were performed in quadruplicate. *p<0.005. (D) NCAM-/- β tumor cells (left panel) 

were stimulated for 10 minutes with NCAM-Fc or FGF-1, with or without a pre-treatment with 

CGP53353. L cells (middle and right panels) were stimulated for 10 minutes with either 20 µg/ml 

NCAM-Fc or 20 ng/ml FGF-2, with or without a pre-treatment with 10 µM CGP53353 (middle panel) 

or 100 µM HBDEE (right panel), as indicated. Treated cells were lysed and immunoblotted for 

phospho-Erk1/2, followed by stripping and immunoblotting for total Erk1/2. 

 

 

To gain further insight into the dichotomy in the FGFR signaling activated by NCAM 

and FGF, we focused on additional candidate effectors. Our previous results indicated that 

non-receptor tyrosine kinases of the Src family associate with the NCAM/FGFR complex in β 

tumor cells. Moreover the inhibition of Src kinases with the compound PP1 resulted in the 

neutralization of NCAM function (Cavallaro et al., 2001), thus implicating Src in the 

signaling elicited by the NCAM/FGFR complex. This hypothesis has been confirmed 

biochemically, based on the observation that treating NCAM-negative L cells with NCAM-Fc 

induced Src activation, as revealed by the use of an antibody that specifically recognizes the 

active form of the kinase (Figure 6A). The antibodies that were used in these experiments 

cross-reacted with various members of the Src family, excluding a clear distinction between 

the specific Src family kinase(s) activated by NCAM. NCAM-Fc-induced activation of Src 
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kinases was mediated by FGFR, since it was abolished by PD174074 (Figure 6A). Moreover, 

as shown in Figure 6B, PP1 inhibited the activation of Erk1/2 in cells treated with NCAM-Fc, 

implicating Src kinases as signaling effectors of the NCAM/FGFR complex upstream of 

Erk1/2. Notably, when cells were treated with FGF-2, no Src activation was detected (Figure 

6A). In agreement with this, the Src inhibitor PP1 showed no effect on FGF-induced 

activation of Erk1/2 (Figure 6B). Therefore, NCAM induced Src activation in an FGFR-

dependent, whereas FGF was unable to regulate Src activity. We have also focused on 

another classical target of FGFR signaling, namely FGF-receptor substrate-2 (FRS2) that is 

known to undergo tyrosine phosphorylation upon activation of FGFR (Eswarakumar et al., 

2005). Unlike PKCβII and Src, both NCAM-Fc and FGF-2 were able to induce FRS2 

phosphorylation in L cells, as demonstrated by immunoblotting the lysates of stimulated cells 

with an antibody against phospho-FRS2 (Figure 6C). Finally, PD173074 abolished FRS2 

phosphorylation in cells stimulated either with NCAM-Fc or with FGF-2, confirming the 

involvement of FGFR in the signaling elicited by both proteins. 

Taken together, these results support the notion that both NCAM and FGF induce 

FGFR activation, yet the receptor responses and the downstream signaling pathways evoked 

by the two stimuli are remarkably different. 

 

 

 

 

 

 

Figure 6: NCAM and FGF activate distinct, 

FGFR-mediated signaling pathways 

 L cells were stimulated for 10 minutes with 

NCAM-Fc or FGF-2, with or without a pre-

treatment with PD173074 for 2 hours (A and C) 

or with PP1 for 30 minutes (B). Cells were then 

lysed and immunoblotted for phospho-Src (A, top 

panel), phospho-Erk1/2 (B, top panel) or 

phospho-FRS2 (C, top panel), followed by 

stripping and immunoblotting for total Src, 

Erk1/2 or FRS2, respectively (bottom panels). 
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3.3.4. NCAM regulates the cellular response to FGF 

 

Since both NCAM and FGF stimulate FGFR signaling, we next assessed whether 

NCAM modulates the cellular response to FGF. Although NCAM per se stimulated cell-

matrix adhesion (Cavallaro et al., 2001; Figures 1 and 7A), it strongly inhibited the adhesion 

induced by FGF. Moreover, serum-induced adhesion was also repressed upon expression of 

NCAM (Figure 7A). Finally, NCAM-Fc also slightly represses the adhesion of NCAM-

transfected cells (Figure 7A), suggesting that NCAM homophilic interactions do not account 

for NCAM-dependent cell-matrix adhesion.  

We have previously reported that FGF induces MAPK activation in NCAM-/- β 

tumor cells, whereas wild-type cells, which exhibited a constitutive activation of the MAPK 

pathway, did not further respond to FGF treatment (Cavallaro et al., 2001), suggesting that 

NCAM may interfere with FGF function. However, those results were obtained on cell lines 

derived from tumors of different animals, raising the possibility that the different responses to 

FGF were due to intrinsic differences between the two cell lines, rather than to the expression 

of NCAM. Hence, we performed these experiments on mock- vs. NCAM-transfected L cells. 

Serum-starved L-mock cells showed a very low level of basal activation of Erk1/2, which was 

strongly enhanced by FGF-2. In contrast, the forced expression of NCAM resulted in 

constitutive MAPK activation that was only slightly increased by FGF-2 (Figure 7B, upper 

panel). This differential response to FGF-2 by L-mock and L-NCAM cells recapitulated that 

of NCAM-/- vs. wild-type β tumor cells (Cavallaro et al., 2001). Furthermore, in time-course 

experiments L-mock cells exhibited a strong and sustained response to FGF-2 for at least 4 

hours, while the small peak of Erk1/2 activation in L-NCAM cells declined rapidly to the 

basal level (Figure 7B, bottom panel). Since MAPK activation often represents a proliferative 

signal, we verified whether NCAM affected the proliferation of L cells. Indeed, while L cells 

showed a strong proliferative response to recombinant FGF-2, this effect was markedly 

inhibited by the expression of NCAM (Figure 7C). A similar inhibitory effect was observed 

when cells were stimulated with fetal bovine serum. Thus, NCAM exerts a negative 

regulation on FGF-induced cell adhesion, MAPK activation and cell proliferation, supporting 

a novel role for NCAM in the modulation of FGFR response to its classical ligand FGF. 
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Figure 7: NCAM regulates the cellular 

response to FGF 

(A) Mock (open bars) or NCAM-transfected 

L cells (solid bars) were stimulated for 10 

minutes with either 10% fetal calf serum, 20 

ng/ml FGF-2, or 20 µg/ml NCAM-Fc, 

followed by adhesion assays on collagen IV-

coated wells. Adherent cells were counted 

and the results are presented as percentage 

of control, untreated L-mock cells ± standard 

deviation. Experiments were performed in 

triplicate. *p<0.005. (B) Upper panel: mock- 

or NCAM-transfected L cells were stimulated 

for 10 minutes with FGF-2, followed by cell 

lysis and immunoblotting for phospho-Erk1/2 

and then for total Erk1/2. Bottom panel:  

mock- (solid squares) or NCAM-transfected 

L cells (solid triangles) were treated with 20 

ng/ml FGF-2 for the indicated time lengths. 

After the treatment cells were lysed and 

subjected to SDS-PAGE and immunoblotting 

for phospho-Erk1/2, followed by stripping 

and immunoblotting for total Erk1/2. The 

densitometric ratio between phosphorylated 

and total Erk1/2 was measured for each time 

point. The values relative to the basal 

activation of Erk1/2 (time 0) in a 

representative experiment are shown. The 

experiment was repeated three times with 

similar results. (C) Mock- (open symbols) or 

NCAM-transfected L cells (solid symbols) 

were treated daily with 10% fetal calf serum 

(triangles) or 20 ng/ml FGF-2 (circles) for 4 

days. Cells were counted every 24 hours and 

the ratio with non-stimulated L-mock cells 

was determined for each time point. 

Experiment were performed in quadruplicate 

± SD. *p<0.005 (L-NCAM vs. L-mock). 
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3.4. Discussion 

 

While NCAM has long been known to control various functions in the nervous 

systems, which include progenitor cell migration, axon guidance, mossy fiber fasciculation 

and spatial learning (Hinsby et al., 2004), its role in non-neuronal tissue has remained elusive. 

We have previously shown that the loss of NCAM in pancreatic β cell tumors results in tissue 

disaggregation and lymph node metastasis (Cavallaro et al., 2001). The latter event is likely 

due to the tumor-associated lymphangiogenesis caused by NCAM deficiency (Crnic et al., 

2004). Tissue disaggregation and tumor cell detachment reflect a deficit in β1-integrin-

mediated cell-matrix adhesion. Indeed, we have previously reported that NCAM stimulates 

the activation of β1-integrin and, hence, matrix adhesion by triggering a signaling cascade 

mediated by FGFR. These observations led us to the identification of a novel signaling 

complex in which NCAM associates with FGFR and with N-cadherin (Cavallaro et al., 2001). 

Strong support for this model came from protein-protein interaction studies that revealed the 

direct binding of NCAM to FGFR, with the interaction domains mapping in the two 

membrane-proximal F3 repeats of NCAM and in the second and third Ig loops of FGFR 

(Kiselyov et al., 2003). Thus, given that NCAM homophilic interactions are mediated by the 

membrane-distal Ig1-2-3 domains (Soroka et al., 2003), one should be able to investigate the 

NCAM/FGFR cross-talk independently from the cell-cell adhesive properties of NCAM. In 

this study, we show that the binding of NCAM to FGFR and an intact FGFR signaling are 

essential for the stimulation of specific events such as Erk1/2 activation and cell-matrix 

adhesion. An interplay between adhesion molecules, including NCAM, and FGFR has long 

been proposed in the nervous system (Walsh and Doherty, 1997). We provide further 

experimental support for this model by showing that NCAM acts as a direct inducer of FGFR 

function in non-neuronal cells. Based on our results with soluble NCAM-Fc, the membrane 

localization of NCAM is dispensable for its interaction with FGFR. NCAM shedding has 

been described in cultured cells (Deak et al., 2005; Diestel et al., in press), and soluble forms 

of NCAM have been detected in human cerebrospinal fluid and serum, with high levels in 

severe neurological disorders and in cancer patients (Gower et al., 1988;  Ledermann et al., 

1994;  Lynch et al., 1997; Torado et al., 2004). Moreover, the production of soluble NCAM in 

mice lacking membrane-associated NCAM results in embryonic lethality (Rabinowitz et al., 

1996), thus highlighting the biological relevance of NCAM’s heterophilic interactions. In this 

context, our data point to FGFR as a major effector of soluble NCAM, raising the intriguing 

hypothesis that NCAM acts as a bone fide ligand for FGFR in vivo. Such a novel ligand-

receptor interaction needs further investigation, in particular to verify whether it plays a 

pathogenetic role in diseases characterized by excessive release of soluble NCAM, potentially 

resulting in aberrant activation of FGFR and/or the inhibition of FGF-induced FGFR 

signaling. 

An interesting implication of our data is that, although both NCAM and FGF 

stimulate FGFR activity, only a subset of FGFR-dependent events is elicited by both 

molecules. Indeed, while NCAM induces neurite outgrowth in β tumor cells by binding to 

and activating FGFR, FGF is unable to rescue this process in NCAM-deficient cells 

(Cavallaro et al., 2001). In contrast, both NCAM and FGF stimulate FGFR-mediated matrix 
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adhesion and Erk1/2 activation in NCAM-/- tumor β cells and in L cells. Finally, FGF exerts 

a proliferative effect that is not recapitulated by NCAM, either membrane-associated 

(Cavallaro et al., 2001) or as a soluble molecule (our unpublished data). To gain insights into 

the molecular mechanisms that account for this dichotomy between NCAM and FGF-induced 

FGFR signaling, we have dissected the biochemical cascades elicited by the two molecules. 

Both NCAM and FGF induce the activation of two classical FGFR substrates, namely PLCγ 

and FRS2. However, the signaling pathways elicited by NCAM and FGF were clearly 

divergent at the level of PKC, in that NCAM induced PKCβII whereas FGF stimulated PKCα. 

The activation of PKCβII was not due to NCAM homophilic interactions, since it was induced 

by stimulating NCAM-negative cells (either β tumor cells or fibroblastic cells) with soluble 

NCAM-Fc. Moreover, the inhibition of FGFR signaling repressed NCAM-induced PKCβII 

activation, clearly indicating that it is mediated by FGFR, as previously shown in neurons 

(Leshchyns'ka et al., 2003). The induction of PKC occurs also upon NCAM homophilic 

binding, i.e. during NCAM-mediated cell-cell adhesion and neurite outgrowth. However, in 

that case NCAM activates multiple PKC isoenzymes, including PKCα (Kolkova et al., 2005). 

Hence, NCAM-NCAM and NCAM-FGFR interactions elicit different signaling pathways, as 

it was recently proposed by Kiryushko and co-workers (Kiryushko et al., 2006). In that study, 

however, NCAM-induced activation of Src kinases appeared to be independent of FGFR, 

while we have clearly shown that FGFR signaling is required downstream of NCAM in order 

to stimulate Src activation. Such a discrepancy might be due to the cell type-specificity of 

NCAM functions, given that Kiryushko and co-workers analysed NCAM signaling in 

neurons, while our studies were performed in non-neuronal cells. Our data on the divergent 

FGFR signaling pathways downstream of NCAM and FGF are also supported by the 

observation that the adaptor protein ShcA is phosphorylated in an FGFR-dependent manner 

upon NCAM-induced neurite outgrowth, but not following FGF stimulation (Hinsby et al., 

2004). 

Hence, NCAM and FGF induce FGFR signaling in a different manner, and future 

work should address the molecular basis of this divergence. For example, it would be 

insightful to elucidate whether NCAM, especially when associated to the membrane, induces 

the clustering of FGFR, a property that would not be shared with FGF. Indeed, lateral 

clustering of NCAM has been described and involves the first three Ig domains (Soroka et al., 

2003). Thus, the integration of NCAM cis-oligomerization with FGFR binding would appear 

as a novel mechanism of FGFR activation. Alternatively, NCAM, unlike FGF, might recruit 

FGFR to specific cell surface compartments, implying that the divergence between NCAM 

and FGF signaling is dictated by spatial parameters that are also fulfilled by soluble NCAM-

Fc.  

Our studies demonstrate that NCAM not only directly stimulates FGFR activity, but 

also exerts a regulatory function on the cellular response to FGF. Indeed, we have provided 

experimental evidence that various FGF-induced effects, including matrix adhesion, MAPK 

activation and cell proliferation, are repressed upon concomitant expression of NCAM. An 

inhibitory effect of NCAM on FGF-stimulated cell proliferation has been described in 

astrocytes and in neural progenitor cells. In the first case, it was attributed to NCAM’s 

homophilic interactions (Krushel et al., 1998), whereas heterophilic partners were implicated 
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in the anti-proliferative function of NCAM in neural progenitors (Amoureux et al., 2000). 

Based on the data presented here, we propose that NCAM exerts a tight control on the cellular 

response to FGF, which not only extends beyond the central nervous system (we observed it 

in pancreatic β cells and in fibroblasts), but is also not restricted to the control of cell 

proliferation, in that it also modulates cell-matrix adhesion (see Figure 7A). FGFs induce a 

wide variety of cellular processes that depend on a complex network of signaling and 

transcriptional events that is cell type-specific. Notably, the control mechanisms that have 

been invoked so far to explain the differential responses to FGFs are mostly intracellular 

(Dailey et al., 2005). Our data implicate membrane-associated NCAM as a novel and 

important regulator of FGF signaling, adding a further level of modulation of FGFR activity.  

The aberrant expression and/or function of NCAM have been described in several 

pathological conditions, ranging form neurological to neoplastic diseases (Vawter, 2000; 

Mikkonen et al., 2001; Cavallaro and Christofori, 2004). In addition, NCAM-/- mice exhibit 

significant developmental and behavioral defects (Cremer et al., 1994; Cremer et al., 1997; 

Stork et al., 1997; Stork et al., 1999). The pathogenetic role of NCAM in these disorders has 

been attributed to the dysregulation of its adhesive properties. However, based on the data 

presented here, aberrant FGFR function needs to be considered as an additional consequence 

of NCAM alterations, and investigated as a possible pathogenetic factor. For example, 

excessive FGFR signaling in tumors induces cancer cell proliferation, survival and invasion, 

together with angiogenesis and metastasis (Grose and Dickson, 2005). Together with the 

notion that NCAM expression is reduced during the progression of certain tumor types 

(Cavallaro and Christofori, 2004) and that its loss induces metastasis (Perl et al., 1999), this 

implies that NCAM might act as a tumor suppressor by negatively regulating FGFR 

signaling. Indeed, NCAM-dependent inhibition of FGFR activity has been observed not only 

in β tumor cells (Cavallaro et al., 2001), but also in other cancer cell types (S. Zecchini, A. 

Godwin, M. Bianchi, P, Nuciforo, and U. Cavallaro, manuscript in preparation). 

In summary, we have shown that NCAM can act as an activating ligand for FGFR 

and as a modulator of the cellular response to FGF stimulation. Future studies should address 

the molecular basis of these additional functions of NCAM, thus unraveling a novel 

mechanism for the regulation of FGFR activity and hopefully leading to innovative 

therapeutic approaches for those diseases caused by dysfunction of NCAM and/or FGFR. 
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Abstract 

 

Neural cell adhesion molecule (NCAM) has been mainly studied in the central 

nervous system where it mediates processes, such as neurite outgrowth and axon guidance. 

However, NCAMs function in non-neuronal tissues has remained elusive. Using the Rip1Tag 

2 model of multistage tumorigenesis, we have previously reported that loss of NCAM induces 

tissue disaggregation, lymphangiogenesis and metastasis. These processes might result from 

the loss of FGFR signaling–dependent activation of β1-integrin in NCAM-deficient cells. 

Here we show that interference with β1-integrin function in the Rip1Tag2 model leads do 

tumor cell cluster dissemination into lymphatics but not to increased lymphangiongenesis. 

Moreover, β1-integrin-deficient cells are not able to metastasize, and tumors with reduced β1-

integrin expression are smaller, probably due to the induction of senescence. Our results 

indicate a so far unknown role of β1-integrin in senescence. 
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4. ββββ1-integrin deletion induces tumor cell dissemination and reduction of tumor 

burden in the Rip1Tag2 model 

 

 

4.1. Introduction 

 

 The Neural Cell Adhesion Molecule NCAM is a member of the family of Ca2+-

independent cell adhesion molecules, mediating homotypic cell-cell as well as heterotypic 

cell-matrix adhesion (Cunningham, 1995; Rutishauser, 1993).  NCAM is expressed during 

development and its involvement in developmental processes has been studied in great detail 

(Walsh and Doherty, 1997). In the adult, NCAM expression is mainly found in neuronal 

tissues but also in skeletal muscle cells (Dickson et al., 1987) as well as some neuroendocrine 

tissues such as pancreas (Rouiller et al., 1990; Langley et al., 1989; Cirulli et al., 1994). In 

many human cancers, NCAM expression changes from the adult, 120kD GPI-anchored 

isoform to the embryonic, 140kD and 180kD transmembrane isoforms (Johnson, 1991; Kaiser 

et al., 1996; Lipinski et al., 1987; Moolenaar et al., 1992; Roth et al., 1988). Furthermore, 

reduced overall expression of NCAM has been correlated with poor prognosis in 

astrocytomas, colon and pancreatic cancer (Fogar et al., 1997; Huerta et al., 2001; Sasaki et 

al., 1998). Besides its function as a cell-cell adhesion molecule, recent research has focused 

on NCAMs role in signal transduction (reviewed in Walmod et al., 2004). 

We have previously employed a transgenic mouse model of β cell carcinogenesis 

(Rip1Tag2; Hanahan, 1985) to study NCAM function during tumor progression. In Rip1Tag2 

mice (RT2 mice), the Simian Virus large T oncogene is expressed under the control of the Rat 

insulin promoter, resulting in the reproducible development of β cell tumors following a 

multistage tumorigenesis pathway. These mice usually do not form metastases. However, 

when crossed to NCAM knock-out mice (NCAM-/- mice), formation of metastasis could be 

observed in 50% of the resulting RT2;NCAM-/- mice (Perl et al., 1999). Further 

investigations revealed that in NCAM-deficient tumors, tumor-associated lymphangiogenesis 

is induced via de novo-expression of the lymphangiogenic factors VEGF-C and VEGF-D. 

Repression of VEGF-C and VEGF-D function by adenoviral expression of a soluble form of 

their cognate receptor (VEGFR-3) resulted in reduced metastasis formation in RT2;NCAM-/- 

mice, suggesting that loss of NCAM promotes metastasis by induction of lymphangiogenesis 

(Crnic et al., 2004).  

Another feature of NCAM-/- tumors is the occurrence of alterations in tissue 

architecture, namely tumor tissue disaggregation and the appearance of hemorrhagic cavities. 

Clusters of tumor cells are found floating in these lacunae. Cell lines derived from NCAM 

expressing RT2 tumors (βT2 cells) and NCAM-deficient RT2;NCAM-/- tumors  (βTN2 cells) 

revealed that NCAM deficiency leads to impaired cell-matrix adhesion but does not alter cell-

cell adhesive properties in vitro. Extensive biochemical analysis identified a potential 

mechanism by which NCAM could affect cell-matrix adhesion. In βT2 cells, NCAM 

associates and activates FGFR-4, leading to the assembly of a classical signaling complex. 
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The activation results, via as yet unidentified pathway(s), in the stimulation of β1-integrin 

dependent adhesion to ECM proteins such as collagen IV (Cavallaro et al., 2001).  

β1-integrin belongs to the family of integrin transmembrane receptors consisting of   

8 β and 18 α subunits that assemble as heterodimers to form 24 distinct integrins. The main 

ligands for integrins are extracellular matrix proteins and cellular counter-receptors. In their 

role as the major adhesion receptors, integrins signal across the plasma membrane in both 

directions: high affinity ligand binding requires integrins to become activated by undergoing 

conformational changes regulated by inside-out signals. In turn, integrin ligation triggers 

outside-in signals that regulate different aspects of cell behavior such as cell survival, control 

of transcription, cell proliferation, cell motility and cytoskeletal organization (Hynes, 2002). 

Due to their broad spectrum of features, integrins and integrin signaling have been shown to 

contribute to tumor progression in various ways (Guo and Giancotti, 2004). Recent reports 

have shown that β1-integrin expression is critical for the initiation of mammary tumorigenesis 

in vivo, and for maintaining the proliferative capacity of late stage tumor cells .  

Our aim was to investigate the role of β1-integrin in inducing the phenotypes 

observed in RT2;NCAM-/- mice, namely tissue disaggregation and increased 

lymphangiogenesis. To address this question, we employed the RT2 tumor mouse model 

carrying a conditional, β cell specific knock-out of the β1-integrin locus. We show that a 

partial deletion of β1-integrin in β cell tumorigenesis leads to tumor cluster dissemination into 

lymphatics but does not induce lymphangiogenesis and metastasis. Mice having lost β1-

integrin expression in β cells display reduced tumor burden, most likely through the induction 

of senescence.  Furthermore, tumor cells lacking β1-integrin are not able to form tumors and 

metastases in transplantation experiments.  
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4.2. Materials and Methods 

 

 

4.2.1. Histopathological analysis 

 

The following antibodies were used for immunohistochemistry or 

immunofluorescence on paraffin sections: guinea pig anti-insulin (DakoCytomation, 

Glostrup, Denmark), rabbit anti-mouse LYVE-1 (Reliatech, Braunschweig, Germany), 

biotinylated mouse anti-BrdU (Zymed, South San Francisco, CA) for detection of 

proliferating cells, In Situ Cell Death Detection Kit, (TUNEL, Roche, Basel, Switzerland) for 

visualization of apoptotic cells. All biotinylated secondary antibodies for 

immunohistochemistry (Vector, Burlingame, CA) were used at a 1:200 dilution, and positive 

staining was visualized with the ABC horseradish peroxidase kit (Vector) and DAB 

Peroxidase Substrate (Sigma Chemical Co., St. Louis, MO) according to the manufacturer’s 

recommendations. For analysis of tissue morphology, slides were slightly counterstained with 

hematoxylin or eosin. Alexa Fluor 568- and 488-labeled secondary antibodies (Molecular 

Probes, Eugene, OR) diluted 1:400 were used for immunofluorescence analysis.  

6-Diamidino-2-phenylindole (DAPI) was used for nuclear staining in immunofluorescence 

stainings. All paraffin-embedded sections were subject to antigen retrieval with 10 mM citrate 

buffer (microwave) except for insulin and glucagon (10 min in 0.2% Triton X-100 in PBS), 

BrdU (1 h in 2N HCl and subsequently 1 h 1x trypsin at room temperature), and TUNEL  

(10 min 2 µg/ml Proteinase K (Fluka) at room temperature). Stained sections were viewed on 

a Axioskop 2 plus light microsope (Zeiss, Feldbach, Switzerland) using the axiovision  

3.1. software (Zeiss, Feldbach, Switzerland) or a Nikon Diaphot 300 immunofluorescence 

microscope (Nikon, Egg, Switzerland) using the Openlab 3.1.7. software (Improvision, 

Coventry, England). 

For BrdU labeling, 100 µg BrdU (Sigma Chemical Co., St. Louis, MO) per gram 

body weight were injected 90 min before sacrificing the mice. To determine tumor cell 

proliferation/apoptotic indices, BrdU-/TUNEL-positive nuclei were counted per randomly 

chosen 40x magnification field of tumor tissue, respectively. Approximately 10 fields/mouse 

were counted.  

Lymphangiogenesis was quantified by assessing the extent by which LYVE-1-

positive lymphatic vessels surrounded the tumor perimeter. Tumors from all mice of a 

genotype were grouped into five classes: tumors that were not in contact with any lymphatic 

vessel (0%), tumors that were surrounded less than 10% (< 10%), less that 25% (< 25%), less 

than 50% (< 50%), and tumors that were surrounded more than 50% of the tumor perimeter 

by lymphatics (> 50%).  

Tumor grading: Tumors were categorized into following sub-classes: 

normal/hyperplastic islet (including normal as well as enlarged islets), adenoma (larger than  

1 mm in diameter, well differentiated tumor cells, encapsulated tumor, no invasive tumor 

edges), carcinoma grade 1 (well differentiated, one invasive tumor edge), carcinoma grade  
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2 (partially dedifferentiated, tumor capsule largely absent, more than one invasive tumor 

edge), carcinoma grade 3 or anaplastic tumor (complete loss of tumor cell differentiation).  

 

The islet area was measured on pictures of insulin and glucagon stained slides using 

the ImageJ software of the National Institutes of Health (http://rsb.info.nih.gov/ij/). All 

statistical analyses were performed using the GraphPad software. 

 

 

4.2.2. Mouse tissue processing 

 

Animal care was in accordance with Swiss Animal Protection Ordinance issued by 

the Swiss Federal Veterinary Office. All mice were sacrificed between 12 and 13 weeks of 

age. Tumor incidence per mouse was determined by counting all macroscopically apparent 

tumors with a minimal diameter of 1 mm. Tumor volume was defined as total tumor volume 

per mouse in mm3, calculated by measuring the tumor diameters assuming a spherical or 

elliptical shape of the tumors. Tumors and pancreata were fixed overnight in 4% 

paraformaldehyde in PBS, dehydrated in a Microm Spin Tissue Processor STP-120 (Microm, 

Volketswil, Switzerland) and paraffin-embedded. 5 µm paraffin-embedded tissue sections 

were deparaffinized and re-hydrated prior to usage according to standard procedures. 

 

 

4.2.3. Tissue culture 

 

All cell lines were grown in DMEM supplemented with 10% fetal bovine serum,  

2 mmol/L glutamine and 100 units/mL penicillin. Tumor cell lines were established from 

insulinomas of twelve week-old RT2;β1
fl/fl  and RCre;RT2;β1

fl/fl  mice as described in 

(Cavallaro et al., 2001). In brief, tumors were excised from pancreata and single-cell 

suspended in cold PBS. The suspension was mixed 1:1 with DMEM supplemented with 10% 

fetal bovine serum, 10 % horse serum, 2 mmol/L glutamine and 100 units/mL penicillin. 

After 1 minute of sedimentation at room temperature, the supernatant was transferred to a 

new tube, re-mixed 1:1 with medium and let sediment another 10 min at room temperature. 

The pellet containing the tumor cells was resuspended and cells were plated on 24-well plates 

for further expansion. For transplantation of tumor cells, 106 cells in PBS were injected 

subcutaneously into the two flanks of C57 mice, or intravenously into athymic nude mice 

anesthetized with isoflurane (Minrad Inc., Buffalo, NY). 

 

 

4.2.4. Cell adhesion  

 

Matrix adhesion assays were performed on collagen IV, a substrate that mediates 

NCAM-dependent cell adhesion (Cavallaro et al., 2001). 96-well plates were coated with  

5 µg/cm2 of mouse collagen IV (BD Biosciences).  6x104 cells were seeded per well, after  
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90 minutes, non adherent cells were removed by washing with PBS. Adherent cells were 

fixed for 20 minutes with 25% glutaraldehyde (Sigma), stained with crystal violet, washed 

and air-dried. Bound dye was solubilized with 10 % acetic acid and absorbance measured at 

595 nm. Cell-free wells served as blanks. The assays were performed in triplicates. 

 

 

4.2.5. Cell proliferation 

 

105 cells were seeded onto 24 well plates at t = 0 hours. About every 24 hours, 100 µl 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5mg/ml in PBS) was 

added to the investigated well.  After incubation for 90 minutes at 37 °C, medium was 

removed and 500 µl solubilization buffer (95% isopropanol, 5% formic acid) was added and 

incubated for 5 minutes at RT. Absorption of the solution was determined at 570 nm. 

 For growth in 3D culture, 5x104 cells were mixed in matrigel and seeded on a layer of 

solidified matrigel. After solidification of the upper, cell containing matrigel layer, normal 

growth medium was added to the culture.  

 

 

4.2.6. FACS analysis of tumors 

 

Tumors were dissected out of pancreata, put into ice cold PBS and minced into small 

pieces. After washing with PBS, tumor pieces were incubated with a collagenase mix 

(DMEM, 5% NU-serum (Becton Dickinson), 0.16 mg/mL DNase I, 1 mg/mL collagenase D, 

H and collagenase/dispase (Roche), 0.5 mg/mL Collagenase I (Sigma))  to obtain single cell 

suspensions for 30 minutes at 37 °C, followed by filtration and washing with FACS-PBS (1x 

PBS, 2% FCS). Tumor cell suspensions were incubated with anti- β1-integrin-FITC (Serotec) 

and anti-CD31-PE  (Pharmingen) antibodies and analyzed with a FacsScan (Becton 

Dickinson) using the CellQuest software. 
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4.3. Results  

 

 

4.3.1. β1-integrin is required for islet cell sorting 

 

A complete knock out of the β1-integrin gene results in embryonic lethality. We 

therefore employed mice carrying conditional β1-integrin alleles, β1
fl/fl  mice, (Fassler and 

Meyer, 1995), and crossed them to mice expressing the Cre recombinase under the control of 

the β cell specific Rat insulin promoter, RipCre, (Ahlgren et al., 1998). This mating gave rise 

to RipCre;β1
fl/fl  mice that lack β1-integrin specifically in the β cells of the pancreatic islets of 

Langerhans, enabling investigation of its function specifically in this tissue. The effect of β1-

integrin deletion was first looked at with respect to normal islet development. Islets of 

RipCre;β1
fl/fl  mice were compared to either wild type C57 or β1

fl/fl   control mice. In mice, most 

islets adopt their final shape, namely insulin expressing β cells located in the center, and non-

β cells (glucagon expressing α cells, somatostatin producing γ cells and pancreatic 

polypeptide (PP) cells) in the islet periphery, from the age of four to five weeks.  

Histopathological analysis by H&E staining of islets from 8-10 weeks old 

RipCre;β1
fl/fl  mice showed no apparent changes in islet number, size and architecture  

(Figure 1, upper panel and data not shown). A closer examination by staining pancreata for 

insulin and glucagon, however, revealed differences in the organization of islet cells  

(Figure 1, lower panel). In control animals, most islets (82.4%) displayed a normal 

phenotype, namely α cells located within the three most peripheral cell layers (Figure 1, 

lower left panel). Only in a small percentage of control islets α cells were also found within 

the center of islets (Table1, 17,6%), hereafter referred to as mixed phenotype. In contrast, 

most islets of RipCre;β1
fl/fl  mice were of the mixed phenotype (81% mixed vs. 19% normal 

phenotype,  Figure 1, lower right panel and Table 1). When calculating the average number of 

α cells per islet area, we found that in RipCre;β1
fl/fl  islets, total number of  α cells/1000 µm2  

is increased (1.307 α cells/1000 µm2 vs 2.205 α cells/1000 µm2 , Table 1, P<0.005). Thus, 

deletion of β1-integrin leads to disturbances in cell type segregation during islet development. 

 

Figure 1: Sorting phenotype in RipCre;ββββ1
fl/fl islets 

Immunohistochemical analysis of wild type (upper 

left) and β1-integrin deleted PFA-fixed sections of 

pancreatic islets by H&E staining show no 

alterations in islet architecture. 

Immunofluorescence co-stainings for insulin 

(green), glucagon (red) and nuclei (DAPI, blue) 

reveal that α cells are not properly located to the 

islet periphery in β1-integrin deficient islets.  

 

 

Table I: Quantification of sorting phenotype  
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 C57/β1(fl/fl)  RCre;β1(fl/fl)  

N 28  28 

% normal 82,4%  19,0% 

% mixed 17,6%  81% 

α-cells per 1000µm2 1,307 

+/-0,646 

P<0.005* 2,205 

+/- 1.122 

 

*:  unpaired t-test 

 

 

4.3.2. Deletion of β1-integrin reduces tumor mass 

 

To investigate the role of β1-integrin in vivo during Rip1Tag2 tumorigenesis, we 

crossed Rip1Tag2 (RT2) mice into the β1
fl/fl  background, resulting in RT2;β1

fl/fl  control mice. 

To excise of the β1
fl/fl  allele specifically in the β cells of the islets of Langerhans, RT2;β1

fl/fl  

mice were further crossed to RipCre-mice. Efficient recombination of the β1-integrin gene in 

the resulting RCre;RT2;β1
fl/fl  experimental and RT2;β1

fl/fl  control mice was monitored by 

determining β1-integrin protein levels in tumors of 12 weeks old mice. Tumor cells were 

subjected to FACS analysis by performing a CD31 (endothelial cell marker) and β1-integrin 

co-staining, allowing exclusion of endothelial cells from the analysis. More than 95% of the 

cells derived from RT2;β1
fl/fl  tumors show β1-integrin expression (Region R2 in Figure 2 and 

Table 2), whereas in RCre;RT2;β1
fl/fl  tumors a second, β1-integrin negative population 

appears (R1). This population represents around 40% of all analyzed cells (Table 2). From 

these experiments, we conclude that the β1
fl/fl  allele is efficiently recombined in about 40% of 

all tumor cells.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Histogram of β1-integrin surface levels  

FACS analysis of RT2;β1
fl/fl (left panel) and RCre;RT2;β1

fl/fl (right panel) tumor cell suspensions 

stained for β1-integrin. Dashed and red lines represent control (unstained) cells and β1-integrin stained 

cells respectively. 

 

Table II: Quantification of β1-integrin surface levels in RT2;ββββ1
fl/fl and RCre;RT2;ββββ1

fl/fl tumor cell 
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suspensions 

 

 % of cells in R1 % of cell in R2 

N 3 3 

RT2;ββββ1
fl/fl  2,64 +/- 2,08% 96,42 +/- 2.34 

RCre;RT2;ββββ1
fl/fl  39,24 +/- 3,07% 56,07 +/- 2,62% 

 

 

The effects of β1-integrin depletion on RipTag2 tumorigenesis were examined by 

immunohistochemical and immunopathological analysis. Control and experimental mice were 

sacrificed at the age of 12 weeks. Tumor-bearing pancreata were excised and tumor incidence 

was scored by counting and measuring macroscopically visible (>1 mm) tumors. Tumor 

incidence (i.e. number of tumors per mouse, Figure 3A) remained unchanged in 

RCre;RT2;β1
fl/fl  mice as compared to control mice. However, when the total tumor volumes 

were calculated and compared, tumor burden was found to be significantly reduced in 

RCre;RT2;β1
fl/fl  mice (Figure 3B).  

We next investigated whether the decreased tumor sizes or masses respectively were 

due to a proliferation defect or increased apoptosis in β1-integrin deleted tumors. For this 

purpose, PFA-fixed, paraffin embedded tissue sections of pancreata from 12 weeks old mice 

were prepared followed by immunohistochemical stainings for BrdU (as proliferative marker) 

and TUNEL (marker for cells undergoing apoptosis). RCre;RT2;β1
fl/fl  tumors were not only 

significantly less proliferative (Figure 3C), but also showed a decreased apoptotic rate  

(Figure 3D). Interestingly, tumor progression was not affected since tumors of both genotypes 

showed a similar incidence of adenomas and grade 1, 2 and 3 carcinomas (Figure 3E). 
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Figure 3: Statistics of histopathological and histochemical analyses of RT2;ββββ1
fl/fl and 

RCre;RT2;ββββ1
fl/fl tumors 

Tumor incidences (panel A) and tumor volumes (panel B) of RT2;β1
fl/fl control tumors and 

RCre;RT2;β1
fl/fl experimental tumors. Proliferating cells were visualized by BrdU staining (panel C) 

and apoptotic cells by the TUNEL reaction (panel D). BrdU or TUNEL positive cells per a defined 

area were counted. For tumor grading (panel E), tumors of H&E stained sections were classified 

according to their histological grading. White bars, RT2;β1
fl/fl control tumors; black bars; 

RCre;RT2;β1
fl/fl experimental tumors; HYP, hyperplastic islets; AD, adenoma; G1, carcinoma grade1; 

G2, carcinoma grade 2; G3, carcinoma grade 3; *, P>0.1; **, P<0.05; ***, P<0.01; N, number of 

analyzed mice; 
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4.3.3. Loss of β1-integrin induces tumor cell dissemination into lymphatics  

 

Previously, we have reported that NCAM- deficient insulinomas show increased 

tumor associated lymphangiogenesis (Crnic et al., 2004), as well as tumor tissue 

disaggregation and increased metastasis (Cavallaro et al., 2001; Perl et al., 1999). To 

investigate whether loss of β1-integrin leads to increased lymphangiogenesis, we analyzed 

sections of 11-13 weeks old mice for the presence of lymphatic vessels using the α-LYVE-1 

antibody (Banerji et al., 1999). Tumors were divided into five groups according to the degree 

of lymphatic vessel lining (no lymphatic vessels = 0 %, 1-10 %, 10-25 %, 25-50 % or > 50 % 

of tumor perimeter covered by lymphatic vessels, Figure 4). Statistical analysis revealed that 

no significant changes in lymphangiogenesis were observed for any group. Moreover, as 

asseyed by immunohistochemical staining, VEGF-C levels are not altered in β1-integrin 

deleted tumors (data not shown). We conclude that loss of β1-integrin function does not 

induce lymphangiogenesis and the expression of lymphangiogenic factor VEGF-C.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Lymphatic lining of RT2;ββββ1
fl/fl and RCre;RT2;ββββ1

fl/fl tumors 

RT2;β1
fl/fl (white bars) and RCre;RT2;β1

fl/fl (black bars) tumors were categorized according to the 

degree of lymphatic coverage of the tumor circumference (see text). Statistical analysis (unpaired t-

test) indicated that differences within groups are not statistically significant. 

 

 

Ablation of NCAM in the Rip1Tag2 model leads to a severe change in tumor 

architecture, namely marked tissue disaggregation and the appearance of hemorrhagic lacunae 

(Cavallaro et al., 2001; Xian et al., 2006) Extensive biochemical analysis of NCAM-/- tumor 

cell lines revealed that NCAM-deficient cells have an impaired capability to adhere to extra-

cellular matrix in vitro, arising from the lack of NCAM dependent, FGFR-4 mediated 

activation of β1-integrin. We thus investigated if deletion of β1-integrin in this tumor model 

induces tissue disaggregation by analyzing H&E stained sections of RT2;β1
fl/fl  and 
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RCre;RT2;β1
fl/fl  tumors. We did not observe significantly increased appearance of 

hemorrhagic lacunae and therefore tissue disaggregation within RCre;RT2;β1
fl/fl  tumors. 

Interestingly though, during the analysis of sections stained for LYVE-1 (see above), we 

found disseminated tumor cell clusters enclosed by lymphatic vessels in 60% of 15 analyzed 

RCre;RT2;β1
fl/fl  mice and only in 7.7% of 12 control mice (Figure 5A and 5B). The tumor cell 

clusters were predominantly found in close vicinity to the tumors (Figure 5C, left panel) or 

tumor edges (Figure 5C, right panel). Importantly, immunohistopathological analysis did not 

reveal the occurrence of metastases. 

 

 

Figure 5: Disseminated tumor cell clusters in RCre;RT2;ββββ1
fl/fl mice 

Percent of mice (panel A) showing disseminated tumor cell clusters and average number of 

disseminated tumor cell clusters per mouse (panel B) in RT2;β1
fl/fl (white bars) and RCre;RT2;β1

fl/fl 

(black bars) mice. N, number of analyzed mice; ***, P<0.02; C: LYVE-1 staining (brown, big 

arrowheads) of RCre;RT2;β1
fl/fl tumors. Circulating tumor cell clusters are highlighted with small 

arrowheads. A, artery; E, exocrine pancreas; T, tumor;  
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4.3.4. β1-integrin-deficient ββββ tumor cells exhibit proliferation deficiencies 

 

To investigate how the deletion of β1-integrin contributes to the reduction of tumor 

burden and might limit the metastatic potential of disseminated tumor cells, we established 

cell lines from RCre;RT2;β1
fl/fl  experimental as well as RT2;β1

fl/fl  control tumors. PCR 

analysis confirmed the presence of two floxed β1-integrin alleles in control cells (βTifl/fl) and 

two deleted alleles in cells derived from experimental tumors (βTi∆, Figure 6A, upper panel). 

FACS analysis demonstrated that βTi∆ cells lost β1-integrin expression. Cell lines derived 

from RT2;NCAM+/+ (βT2) and RT2;NCAM-/- (βTN2) tumors (Cavallaro et al., 2001), both 

carrying the wild type β1-integrin alleles, showed β1-integrin expression levels comparable to 

those of the βTifl/fl cell line (data not shown). Importantly, NCAM levels in these cell lines 

vary in that βT2 cells express very high levels of NCAM, whereas in the βTifl/fl and βTi∆  

cell lines NCAM levels are rather low (Figure 6).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6:  Cell lines derived from RT2;ββββ1
fl/fl and RCre;RT2;ββββ1

fl/fl tumors  

A, top: Genotyping of cell lines derived from RT2 (βT2), RT2;β1
fl/fl (βTifl/fl),  RCre;RT2;β1

fl/fl (βTi∆) 

and RT2;NCAM-/- (βTN2)  tumors by PCR analysis. βT2 and βTN2 both carry the wild type β1-

integrin alleles (wt), βTifl/fl carry the conditional alleles (fl) and almost all βTi∆ cells have undergone 

recombination and therefore mainly carry the deleted (∆) alleles. A, bottom: Western Blot analysis of 

NCAM levels in βT2, βTifl/fl, βTi∆  and βTN2 cells. NCAM levels in βT2 cells are very high, whereas 

βTifl/fl and βTi∆ cells have low NCAM expression. βTN2 served as negative control. B: β1-integrin 

surface expression levels of βTifl/fl (black line) and βTi∆ (red line) cells, assayed by FACS analysis. 

βTi∆ cells have no more β1-integrin surface expression.  Dashed line, control (unstained cells);   

  

 

Using adhesion of cells to collagen IV (a specific substrate for β1-integrin) as an 

assay for β1-integrin activation, we have previously shown that activation of β1-integrin is 

abolished in NCAM-deficient βTN2 cells and can be re-established by re-introducing NCAM 

(Cavallaro et al., 2001).  We thus compared the adhesion capabilities of βTifl/fl and βTi∆ cell 

lines to those of βT2 cells in the presence or absence of NCAM. Equal amounts of cells were 

seeded onto either uncoated or collagen IV coated 96-well plates and cells were allowed to 
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adhere for 90 min. Intrinsic adhesion to collagen IV of the βTi∆ cell line was very low   

(6.76 % of βT2, Figure 7) and adhesion could not be increased significantly by re-introducing 

NCAM140 (9.86%). Similarly, adhesion of Mock-transfected βTifl/fl cells was only 16% of 

βT2 cells, however, re-introducing NCAM140 significantly stimulated adhesion to the β1-

integrin specific ligand collagenIV (16% Mock transfected vs. 32% NCAM 140 transfected 

cells) but not to uncoated plastic. Interestingly, even in βT2 cells that express very high 

amounts of NCAM, adhesion could be further stimulated by NCAM transfection.  Thus, 

NCAM signaling lies upstream of β1-integrin activation in β tumor cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Adhesion assay of β tumor cells 

Mock-transfected (clear bars) or NCAM140 transfected (dotted bars) β tumor cells were seeded on 

either uncoated (grey bars) or collagen IV coated (red bars) dishes. Adherent cells were counted as 

described in Materials and Methods. Adhesion of Mock-transfected βT2 cells to collagen was taken as 

100% for reference.  ***: increase in adhesion is statistically significant (P<0.003, unpaired t-test). 

  

Since deletion of β1-integrin in RT2 tumors leads to a reduction of tumor volumes, 

decreased proliferation and apoptosis, we analyzed growth rates of β1-integrin deleted β-

tumor cells in comparison to control cells. As shown in Figure 8, βT2, βTN2 and βTifl/fl 

display very similar growth curves and linear regression curves have comparable slopes 

(0.0024 for βT2, 0.0025 for βTifl/fl and 0.0027 for βTN2). Growth of the β1-integrin deleted 

cell line (βTi∆) however, was significantly slower (0.0014, P < 0.0001, unpaired t-test of 

linear regression curves).  
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Figure 8: Growth curves of ββββ tumor cells in 2D-culture 

MTT assay of β-tumor cell lines. Absorption as an indirect measure for cell counts is plotted against 

the time after seeding cells (0h). Linear regression curves were calculated and are displayed for each 

cell line. *** indicates that decrease in growth rate of βTi∆ cells is statistically significant compared 

to all other cell lines (P<0.001, unpaired t-test of linear regression curves) 

 

 

Since integrins are the major receptors for extracellular matrix (ECM), we 

hypothesized that culturing βTifl/fl and βTi∆ tumor cells in a 3D matrigel culture could 

reflect the potential effects of β1-integrin deletion on cell growth closer to an in vivo system. 

In fact, already two days after seeding the cells in matrigel, differences in cell and cell-cluster 

shape became apparent: many of the plated βTifl/fl cells formed filopodia-like protrusions 

(Figure 9A, left panel) some of them longer than the cell/cell clusters diameter (Figure 9A). 

In contrast, βTi∆ cells did not seem to out-grow cell protrusions and generally looked rather 

unhealthy under this growth conditions (Figure 9A, right panel. Quantification of this effect 

by counting cells with or without protrusion in a defined volume revealed that more than 70% 

of the counted βTifl/fl cells developed protrusions, whereas not a single of the β1-integrin 

deleted cells showed formation of these structures. One week after plating, all βTi∆ cells 

died, whereas β1-integrin expressing βTifl/fl cells were still alive, forming protrusions and 

proliferating.  
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Figure 9: Growth of  

βTifl/fl and βTi∆ cells in 

matrigel 

A: Pictures of cells two 

days after seeding them in 

a 3D matrigel culture. β1-

integrin expressing 

βTifl/fl cells (left panel) 

develop filopodia or 

neurite-like protrusions, 

in contrast, βTi∆ (right 

panel) cells do not 

produce these structures 

and do not seem to 

proliferate. B: 

Quantification of 

protrusion formation of 

βTifl/fl and βTi∆ cells. 

 

 

 
4.3.5. β1-integrin expression, but not NCAM is necessary for metastasis formation 

 

We next asked whether cell lines carrying the β1-integrin or NCAM deletion were 

able to grow and form tumors and metastases in vivo. Equal amounts of tumor cell 

suspensions of βTifl/fl, βTi∆ , βTN2 and βT2 cells were injected subcutaneously into 

immune-competent C57 mice. After five weeks, mice were sacrificed and tumor incidence, 

tumor size and tumor volumes were determined (Figure 10A and 10B). Tumors were formed 

in 12,5% of all βT2 injected sites and in 37,5% of all βTifl/fl injected sites. The average size 

of tumors from βT2 cells was 293,35 +/- 129.4 mm3 as compared to 174,66 +/- 53.11 mm3 for 
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tumors arising from βTifl/fl cells. In contrast, βTi∆ and βTN2 cells did not give rise to any 

tumors. 

 

Figure 10: Ectopic transplantation of β tumor cell lines 

A: Average volumes of tumors arising from either βT2 or βTifl/fl cells (see text and Materials and 

Methods). B: tumor incidence in C57 mice injected with the indicated cell lines. 16 sites were injected, 

the percetage of sites with tumors is displayed. 

 

To assess the metastatic potential of the cell lines, we injected equal amounts of cells 

into the tail vein of athymic nude mice. After four weeks of incubation, mice were sacrificed. 

Pancreata, lungs and livers of all mice were isolated, organs were fixed in PFA and sections 

were cut through the whole organs. As shown in Table 3, by immunopathological 

investigation by H&E staining, metastases to either the lungs and/or the livers were identified 

in all β tumor cell lines except for βTi∆, lacking β1-integrin expression. 

 

 

Table III: Intravenous injection of β-tumor cell lines 

 

Cell line Number of injected sites Number of mice with 

metastases 

Site of metastasis 

βT2 5 4 lung/liver 

βTifl/fl 5 3 lung 

βTN2 5 4 lung/liver 

βTi∆ 5 0 - 

 

  

 

These results indicate that depletion of NCAM and therefore β1-integrin activity in 

βTN2 cells diminishes tumor formation but does not interfere with metastasis formation. 

However, total loss of β1-integrin function results in an incapability of βTi∆ cells to form 

tumors and metastases in vivo indicating a crucial role of β1-integrin in these processes. 
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4.4. Discussion 

 
 
4.4.1. ββββ1-integrin function is required for proper islet development 

 

We show here that deletion of β1-integrin in the β cells of pancreatic islets of 

Langerhans leads to disturbance in proper islet-cell segregation. Interestingly, a similar 

phenotype was observed in NCAM-deficient islets (Esni et al., 1999) and islet expressing a 

dominant negative version of E-cadherin (Dahl et al., 1996), indicating that both cell adhesion 

molecules play an important role in proper cell sorting. Previously, our in vitro studies 

showed that NCAM dependent FGFR signaling leads to β1-integrin activation (Cavallaro et 

al., 2001).  Therefore, one might speculate that this signaling pathway is involved in the 

sorting process during islet development.   

 

 

4.4.2. ββββ1-integrin outside-in signaling but not NCAM mediated inside-out signaling is 

required for metastasis formation 

 

Tissue disaggregation and lymphangiogenesis, have been shown to be sufficient on 

their own to induce the formation of lymph node metastases. Interestingly, in RCre;RT2;β1
fl/fl  

mice, tumor cell clusters were found disseminated into lymphatic vessels. However, the fate 

of the disseminated tumor clusters in RCre;RT2;β1
fl/fl  mice is not clear. They are not able to 

form metastases, since none could be observed in RCre;RT2;β1
fl/fl  mice, neither in the local 

lymph nodes, nor in other organs. In addition RCre;RT2;β1
fl/fl  tumor-derived cells do not form 

metastasis when injected into nude mice. This phenomenon does not seem to be linked to the 

adhesive defects of β1-integrin-deleted cells, since βTN2 cells, which are deficient for β1-

integrin mediated adhesion, can still metastasize. Rather, the proliferation deficiency 

observed in the primary tumor and in the RCre;RT2;β1
fl/fl  tumor-derived cells might be the 

main reason for the incapability to grow metastasis. However, we cannot exclude that the 

clusters are not circulating at all since these cells are very difficult to detect in the circulatory 

system. 

Integrins have been shown to be bi-directional signaling molecules (Hynes, 2002). 

Inside-out signals activate integrin-mediated adhesion to ligands such as collagen, laminin 

and others. On the other hand, outside-in integrin signaling results in cellular responses such 

as proliferation, survival or apoptosis. βT2 cells have very high NCAM levels and hence 

show high levels of β1-integrin activation. βTN2 cells have lost NCAM-dependent, inside-out 

activation of β1-integrin but still express the protein, allowing reception of outside-in signals. 

In the contrary, βTi∆ cells lost both integrin functions. Using these established cell lines in 

adhesion, proliferation and transplantation assays allowed for the discrimination of the role of 

adhesive (inside-out) and growth promoting (outside-in) integrin functions. The cell-line-

derived data are summarized in Table 4.  
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Table IV: Summary of data derived from experiments on β β β β tumor cell lines  

 

 NCAM exp Col IV stim. 2D 3D s.c. i.v. 

βT2 +++ + +  + * + + 

βTifl/fl + + +        + + + 

βTN2 -       +*** +   + * - + 

βTi∆ + - -/+ - - - 

 

NCAM exp, NCAM expression levels of cell lines, +++: high levels, +, low levels, - no expression; Col 

IV stim., adhesion to collagen IV stimulatable by NCAM transfection, +: stimulatable, -: not 

stimulateble; 2D, growth of cell lines in 2D cultures, +: cells growing; -/+: cells grow slower; 3D, 

growth of cell lines in matrigel, +: cells grow, -: cells cannot grow; s.c.,  tumor growth  after 

subcutaneous injection, +: tumors are formed, -: no tumor formation; i.v., metastasis formation after 

intravenous injection, +: metastases formed, -: no metastases formed; * data not shown; *** shown in 

(Cavallaro et al., 2001)  

 

Deletion of β1-integrin clearly reduces the proliferative capability of cells in vitro as 

well as in vivo, which we have shown in 2D and 3D growth assays and subcutaneous 

transplantation experiments. Interestingly, βTN2 cells that have lost NCAM dependent 

inside-out activation cannot form tumors when injected subcutaneously, but are still capable 

of metatasis formation when injected intravenously into nude mice. In contrast, βTi∆ cells 

that can receive neither inside-out nor outside-in signals, do not grow tumors or metastasize at 

all upon transplantation. This suggests that expression of β1-integrin is required to transduce 

outside-in signals that allow cells to survive and proliferate at distant sites.  

One therefore might speculate that tumor cells that have reduced adhesive properties 

due to disturbances in the inside-out signaling to β1-integrin (such as for example 

RT2;NCAM-/- tumors) disseminate and therefore more easily enter routes for metastasis 

formation. Since they still express β1-integrin, the protein is available to transduce pro-

proliferative outside-in signals. In contrast, in RCre;RT2;b1
fl/fl  mice β1-integrin expression is 

lost in 40% of the tumor cells. These cells disseminate but, lacking β1-integrin, cannot receive 

outside-in signals that allow them to proliferate and eventually metastasize. This hypothesis 

could be tested by interfering with β1-integrin function in RT2;NCAM-/- tumors. We are 

currently intercrossing RCre;RT2; β1
fl/fl  and RT2;NCAM-/- mouse strains. If our hypothesis 

holds true, we would expect no more metastases to be formed. 

 

 

4.4.3. Loss of ββββ1-integrin reduces tumor burden potentially by inducing senescence 

 

We found that tumor volumes, but not tumor incidence are reduced in β1-integrin 

depleted tumors, which might be an indication that β1-integrin function is required for later 

stages of tumor progression. When cells are properly attached to the right ECM, they receive 

signals allowing them to survive and proliferate. In contrast, dislocation of cells, or total loss 
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of ECM anchorage induces anoikis, driving cells into apoptosis. The main mediators of these 

signaling processes are integrins, communicating and influencing cell behavior via outside-in 

signaling. Hence we suspected that the reduced tumor burden in β1-integrin-deleted tumors 

might have been due to the induction of anoikis. However, the number of apoptotic cells and 

proliferating cells even decreased in RCre;RT2;β1
fl/fl  tumors. This result suggests that anoikis 

is not induced in the tumors. Rather the general metabolic activity seems to be reduced. Such 

a change in metabolic activity can be associated with quiescence, senescence and tumor 

dormancy. Senescence-associated β-Galactosidase (SA-β-Gal) is expressed in senescent cells 

and is therefore frequently used as a marker. It can be specifically detected at pH 6 via 

histochemistry (Dimri et al., 1995). In contrast, bacterial β-Galactosidase is most active at 

pH7.5. Since the β1
fl/fl  mice are constructed in a way that, upon efficient recombination, a 

bacterial β-Galactosidase reporter comes under the control of the β1-integrin promoter, and 

because bacterial β-Galactosidase also displays activity at pH 6, we could not test for SA-β-

Gal in these mice. However, we recently obtained an alternative mouse line with conditional 

β1-integrin alleles designed in a different way, not carrying a β-Galactosidase reporter (β1EII 

mice). We have intercrossed these mice to the RT2 tumor model giving rise to 

RCre,RT2;β1EII mice. Importantly, when we investigated sections of tumors derived from 

RCre;RT2;β1EII mice, we could detect positive staining for SA-β-Gal (data not shown). This 

suggests that deletion of β1-integrin in RT2 tumors reduces tumor burden by inducing 

senescence. We are currently investigating the expression of other senescence-associated 

markers, such as the formation of heterochromatin protein-1γ (HP-1γ) containing 

heterochromatin foci, in β1-integrin-deficient tumors. To our knowledge, this is the first time 

that integrin function is associated with senescence. 

Interestingly, outside-in signals from integrins are mainly transduced via the focal 

adhesion kinase (FAK) and it has been shown that inhibition of FAK signaling in human 

carcinoma cell lines induces quiescence in vivo. This suggest that FAK activity might be 

reduced in RCre;RT2;β1
fl/fl  tumors and in β1-integrin deleted cell lines. It will be of 

importance to investigate the quality of the focal complexes in our cellular and mouse 

systems in the future.  

Targeting β1-integrin function in tumors might induce senescence and interfere with 

metastasis formation, thus β1-integrin inactivating antibodies might represent a novel 

approach for cancer treatment. Consistent with this notion, studies on cell lines confirmed 

their potential efficacy since blocking β1-integrin could revert the malignant phenotype of a 

breast cancer cell line (Weaver et al.,1997).  

 

 

 

4.4.4. Loss of ββββ1-integrin induces tumor cell cluster dissemination but not 

lymphangiogenesis 

 

It has been shown that increased tumor lymphangiogenesis correlates positively with 

the incidence of metastases (Cao, 2005). Among the factors that contribute to 
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lymphangiogenesis are VEGF-C and VEGF-D. Transgenic expression of these factors 

induces lymphangiogenesis and metastasis in the Rip1Tag2 tumor model (Mandriota et al., 

2001,  Kopfstein et al., submitted). Interestingly, in RT2;NCAM-/- tumors these two ligands 

were found up-regulated. RT2;NCAM-/- tumors also show severe tissue disaggregation and 

the appearance of large lacunae, filled with hemorrhagic fluid, potentially leading to increased 

interstitial fluid pressure. One controversial theory hypothesizes that tumor associated 

lymphangiogenesis is induced to reduce the tumors interstitial fluid pressure. Since the 

observed tissue disaggregation is potentially caused by the reduced capability of β cells to 

adhere to ECM substrates, we hypothesized that the inactivation of β1-integrin might lie 

upstream of the induction of lymphangiogenesis in RT2;NCAM-/- mice. However, our results 

show that β1-integrin deletion does not lead to tumor lymphangiogenesis. Thus, it seems that 

the increased lymphangiogenesis observed in RT2;NCAM-/- mice is not directly due to a 

defect in the β1-integrin function.  

A recent report linked the appearance of hemorrhagic lacunae and the concomitant 

tissue disaggregation phenotype in NCAM-/- tumors to decreased pericyte recruitment to 

endothelial cells. In this study, it was demonstrated that loss of NCAM in β-cells negatively 

influenced pericyte-endothelial cell-cell interactions, which results in increased blood vessel 

leakage. Furthermore, pericyte deficiency per se caused haematogenous spreading of tumor 

cells and metastasis formation (Xian et al., 2006).  

Deletion of β1-integrin in the RT2 model did result in a disaggregation phenotype, yet 

distinct to that observed in NCAM-deficient tumors. In RCre;RT2;β1
fl/fl  mice, tumor 

architecture per se was not altered, but clusters of tumor cells disseminated into lymphatic 

structures were found. Disseminated tumor cells are also found in NCAM-deficient mice, 

suggesting that in RT2;NCAM-/- tumors two different mechanisms are employed, impaired 

pericyte recruitment  and loss of cell matrix adhesion. Both of them result in tumor cell 

dissemination. In the first one, loss of NCAM in β cells seems to induce disaggregation 

indirectly by affecting blood vessel stability. In the second one, intrinsic adhesive properties 

of β cells are affected upon NCAM ablation as we could show by the study of the loss of β1-

integrin activation and function. This leads to the tumor cell cluster dissemination described 

in RCre;RT2;β1
fl/fl  mice and we think this reflects an additional, alternative pathway leading 

to tumor dissemination in NCAM-negative tumors. Still, it is not clear how the disseminated 

cells in RCre;RT2;β1
fl/fl  mice enter the lymphatics. Lymphatic vessels are structurally 

different to blood vessels and are thought to be more permeable, which may be an explanation 

.  

Taken together, our results support our previous findings that loss of β1-integrin 

function in β cells reduces their cell-matrix adhesion and causes tumor cell dissemination. 

Our data furthermore show that the inactivation of β1-integrin does not lie upstream of the 

induction of lymphangiogenesis since RCre;RT2;β1
fl/fl   tumors do not display increased 

lymphatic vessel coverage. Further experiments are needed to unravel the pathways and 

mechanisms leading to the induction of lymphangiogenesis and lymph node metastasis in 

NCAM deleted tumors. 
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5. General discussion 

 

In this work we provide evidence that NCAM binds to all members of the FGFR 

family as well as to PDGFRα and PDGFRβ. Based on the observation that RTKs lacking Ig 

domains in their extracellular domains cannot bind to NCAM, we suggest that the presence of 

an Ig domain is a requisite for NCAM binding. If this holds true, one might expect to identify 

additional, if not all Ig-domain RTKs, as NCAM binding partners.  

So far, the role of NCAM in modulating RTK signaling has been mainly studied with 

FGFR signaling in neurons, and its effects were primarily thought to be pro-stimulatory 

(Povlsen et al., 2003). Here, we broaden NCAMs “place of action” to additional RTKs in 

non-neuronal tissues, such as endocrine and fibroblastic cells. Importantly, we furthermore 

identify a novel way of action for NCAM, since we demonstrate that it can exert also 

inhibitory functions on RTKs. In many human cancers, both a reduction or an increase of 

NCAM levels are correlated with increased malignancy which might be a reflection of 

NCAMs dual role in modulating RTK signaling. 

The Rip1Tag2 tumor model is one example where loss of NCAM correlates with 

increased malignancy. NCAM-deficiency in these tumors leads to tissue disaggregation, 

induction of lymphangiogenesis and the formation of metastases (Perl et al., 1999; Crnic et 

al., 2004; Cavallaro et al., 2001). One target of NCAM signaling in β tumor cells is β1-

integrin. We show here that loss of β1-integrin is sufficient to induce tumor cell 

dissemination. In contrast, lymphangiogenesis induced by NCAM-deficiency is independent 

of β1-integrin function and probably relies on an alternative NCAM dependent pathway. 

Induction of lymphangiogenesis alone has been shown to induce metastasis (Mandriota et al., 

2001), however, interfering with lymphangiogenesis in NCAM depleted tumor mice only 

partially blocked the formation of metastases (Crnic et al., 2004), indicating that an additional 

mechanism contributes to the metastatic phenotype. This additional feature might be tissue 

disaggregation that results from impaired pericyte recruitment to blood vessel endothelial 

cells in NCAM knock out tumors (Xian et al., 2006), since lack of pericyte recruitment also 

resulted in metastasis formation. Importantly, tissue disaggregation induced by blocking β1-

integrin function did not give rise to metastases. Furthermore, tumor sizes were reduced in β1-

integrin deleted tumors, probably due to the induction of senescence. These findings suggest 

β1-integrin to be a more promising target for the intervention with metastasis formation in 

NCAM deficient tumors.  
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