edoc-vmtest

Reduction of trophic support enhances apoptosis in PC12 cells expressing Alzheimer's APP mutation and sensitizes cells to staurosporine-induced cell death

Leutz, Steffen and Steiner, Barbara and Marques, Celio A. and Haass, Christian and Müller, Walter E. and Eckert, Anne. (2002) Reduction of trophic support enhances apoptosis in PC12 cells expressing Alzheimer's APP mutation and sensitizes cells to staurosporine-induced cell death. Journal of molecular neuroscience, Vol. 18, No. 3. pp. 189-201.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A5253488

Downloads: Statistics Overview

Abstract

Mutations in the amyloid precursor protein (APP) gene are known as causative factors in the pathogenesis of early-onset familial Alzheimer's disease (FAD). In this study, the influence of the Swedish double-mutation form of APP (APPsw; KM670/671NL) on apoptosis regulation in PC12 cells was investigated. APPsw-transfected PC12 cells were compared with wild-type APP (APPwt)-expressing and vector-transfected PC12 cells with regard to their susceptibility to cell death induced by the reduction of trophic support or by additional treatment with staurosporine. Expression of APPsw markedly enhanced the level of apoptotic PC12 cells induced by serum reduction. A similar hypersensitivity of APPsw-expressing PC12 cells could be detected after differentiation with nerve growth factor under serum-reduced conditions. Likewise, the expression of APPsw rendered PC12 cells more vulnerable to staurosporine but only under serum-reduced conditions. This APPsw-effect disappeared in high serum-containing medium. Thus, expression of APPsw seems to enhance cellular sensitivity not in general but after the reduction of trophic factors probably by causing oxidative stress. This, in turn, may sensitize cells to secondary apoptotic stimuli. Moreover, the mutation-specific increase in vulnerability to cell death was only seen at the stage of apoptotic nuclei, but not using methods measuring cell death by determining metabolic activity or membrane integrity. Therefore, the expression of APPsw seems to affect specifically apoptotic cell death rather than overall cell death in vitro. Our study further emphasizes the pathogenic role of mutant APP and may provide new insights in the mechanisms underlying the massive neurodegeneration in brain from patients bearing the APPsw mutation.
Faculties and Departments:03 Faculty of Medicine > Bereich Psychiatrie (Klinik) > Erwachsenenpsychiatrie UPK
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Psychiatrie (Klinik) > Erwachsenenpsychiatrie UPK
UniBasel Contributors:Eckert, Anne
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:Springer
ISSN:0895-8696
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:22 Mar 2012 14:23
Deposited On:22 Mar 2012 13:36

Repository Staff Only: item control page