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2. List of abbreviations 

 
 

5-HT 5-hydroxytryptamine (or serotonin) 

7β-forskolin 7-deacetyl-7-(O-N-methylpiperazino)-γ-butyryl-forskolin 

7TM 7-transmembrane spanning domain 

ACh acetylcholine 

aCSF artificial cerebrospinal fluid 

AMN082 N,N'-dibenzhydrylethane-1,2-diamine
 
dihydrochloride 

APPA 3-aminopropylphosphinic acid 

baclofen β-p-chlorophenyl GABA 

CaM calmodulin 

CAM constitutively active mutant 

cAMP  cyclic AMP, cyclic 3',5'-adenosine-monophosphate 

Calhex 231 chlorophenylcarboxamide or (1S,2S,1'R)-N
1
-(4-clorobenzoyl)-N

2
-[1-(1-

naphtyl)ethyl]-1,2-diaminocyclohexane 

CaSR calcium-sensing receptor 

CGP13501 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenaldehyde 

CGP35348 3-aminopropyl-(diethoxymethyl)-phosphinic acid 

CGP47656 3-aminopropyl-(difluoromethyl)-phosphinic acid 

CGP52432 3[[(3,4-(dichlorophenyl)methyl]amino)-propyl](diethoxymethyl) 

phosphinic acid 

CGP56999 [3-[1-(R)-[[3-cyclohexylmethyl)hydroxyphosphinyl]-2-(S)-

hydroxypropyl]amino]ethyl]-benzoic acid 

CGP62349 [3-[1-(R)-[[(2S)-2-hydroxy-3-[hydroxyl[4-

methoxyphenyl]methyl]phosphynyl]propyl]amino]ethyl]-benzoic acid 

CGP7930 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol 

CHO Chinese hamster ovary 

Cinacalcet N-2-(1-naphthyl)ethyl-3-(3-trifluormethylphenyl)propylamine 

CNS central nervous system 

CPA N
6
-cyclopentyladenosine 

CRF1 Corticotropin-releasing factor type I receptor 

CRH of CRF corticotropin-releasing hormone or factor 

DA Dopamine 

DFB 3,3'-difluorobenzaldazine 

DIV day in vitro 

DMEM Dulbecco’s modified eagle medium 

DMSO dimethyl sulfoxide 

FLIPR  fluorescence imaging plate reader 

G-protein guanine nucleotide-binding protein 

GABA  γ-aminobutyric acid 

GAP GTPase activating protein 

GHB γ-hydroxybutyric acid 

GIRK (or Kir3) inwardly rectifying potassium channels 
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GPCR  G-protein-coupled receptor 

GRK GPCR kinase 

GS39783 N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine 

GTP(γ)S guanosine 5'-O-(3-thiophosphate) 

HBSS Hanks’ buffered salt solution 

HEK human embryonic kidney 

HTS high-throughput screen 

i2 or i3 intracellular loop 2 or intracellular loop 3 

IBMX  isobutyl-methylxanthine 

IP inositol-phosphate 

IPSC inhibitory postsynaptic current 

Kir3 (or GIRK) inwardly rectifying potassium channels 

LY354740 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid 

LY544344 [(1S,2S,5R,6S)-2-[(2'S)-(2'-amino)propionyl]aminobicyclo[3.1.0]hexane-

2,6-dicarboxylic acid hydrochloride] 

M1-M5 muscarinic acetylcholine receptor type 1-5 

mGluR  metabotropic glutamate receptor 

NPS2143 N-[R-2-hydroxy-3-(2-cyano-3-chlorophenoxy)propyl]-1,1-dimethyl-2-(2-

naphthyl)ethylamine 

PACAP pituitary adenylate cyclase activating protein 

PBP periplasmic binding protein 

PBS phosphate-buffered saline 

PD81’723 2-amino-4,5-dimethyl-3-thienyl-[3(trifluoromethyl)-phenyl]methanone 
PIP3 phosphatydilinositol-3,4,5-triphosphate 

PLC phospholypase C 

PKA cAMP dependent protein kinase or protein kinase A 

PKC protein kinase C 

PTH parathyroid hormone 

R-121919 3-[6-(dimethylamino)-4-methyl-pyrid-3-yl]-2,5-dimethyl-N,N-dipropyl-

pyrazolo[2,3-a]pyrimidin-7-amine 

RGS regulator of G-protein signaling 

RIA  radioimmunoassay 

SCH50911 (2S)-(+)-5,5-dimethyl-2-morpholineacetic acid 

SPA  scintillation proximity assay 

T62 1-amino-4,5,6,7-tetrahydrobenzo(β)thiophen-3-yl 

TCM  ternary complex model 

VFTM  Venus flytrap module 

VTA ventral tegmental area 

WGA wheat germ agglutinin 

WT wild-type 
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3. Summary 

Allosteric modulators of G-protein coupled receptors (GPCRs) interact with binding sites on 

the receptor molecule that are topographically distinct from the classic orthosteric site. Having 

only a marginal effect by themselves, they induce conformational changes of receptors that 

result in the modulation of agonist-induced function in either a stimulating or an inhibiting 

way, depending on whether they are positive or negative allosteric modulators, respectively. 

Their mechanism of action is, thus, in synchrony with the frequency and the magnitude of 

physiological signaling. This is the main reason why allosteric modulators are considered to 

have a better side-effect profile and to be less prone to induction of tolerance than classic 

orthosteric agonists. Allosteric modulators have gained significance in the scientific 

community in the past decade. 

This thesis comprises four parts and focuses on the positive allosteric modulation of the 

GABAB receptors. Two prototypal positive allosteric modulators CGP7930 and GS39783 

have recently been discovered and characterized in Novartis Pharma (Urwyler et al. 2001 and 

2003). A number of questions regarding their further characterization, namely their effects on 

orthosteric ligands with distinct intrinsic properties, the role allosteric modulation plays in 

GABAB receptor desensitization and biochemical effects of GS39783 in vivo are addressed in 

this thesis. 

 

Mechanisms of allosteric modulation at GABAB receptors by CGP7930 and GS39783: 

effects on affinities and efficacies of orthosteric ligands with distinct intrinsic properties 

The first part of this thesis shows that, as it is predicted by theoretical models of receptor 

activation, all GABAB ligand species are amenable to allosteric modulation. A number of  
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selective GABAB receptor ligands were tested in the presence and the absence of positive 

allosteric modulators CGP7930 and GS39783 in in vitro assays, such as radioligand binding, 

GTP(γ)S and cellular cyclic AMP (cAMP) measurements. A decrease in affinity of 

antagonists was observed in radioligand binding experiments, without a change of the 

receptor number, oppositely to increases in affinity of partial agonists. In the GTP(γ)S 

experiment the presence of CGP7930 and GS39783 revealed intrinsic efficacies for 

CGP35348 and 2-OH-saclofen, two “silent” GABAB receptor antagonists. In the cAMP 

measurements, an even more sensitive experimental system, the two abovementioned 

compounds acted as partial agonists, with increased efficacies in the presence of positive 

allosteric modulators. Inverse agonistic tendencies were observed with the “silent” antagonist 

CGP52432. In this part of the thesis, the positive allosteric modulators GS39783 and 

CGP7930 have been shown to be useful experimental tools for elucidating intrinsic properties 

of orthosteric ligands.  (Chapter 5, Section 5.1.) 

 

Receptor activation involving positive allosteric modulation, unlike full agonism, does 

not result in GABAB receptor desensitization: an in vitro study 

To inspect the role of the positive allosteric modulator GS39783 in GABAB receptor 

desensitization, receptor function and cell surface receptor density were examined in a 

recombinant GABAB cell line and in primary neuronal cultures upon persistent treatments 

with GABAB agonists, and combinations of agonists and GS39783. While the GABAB 

receptor desensitized after lasting pretreatments with saturating concentrations of GABAB 

agonists GABA or R(-)-baclofen, the combined treatment with low concentration of agonists 

and GS39738 did not lead to desensitization, despite activating the receptor to the same extent 

as desensitization-inducing agonists. These results indicate that it is the degree of occupancy 

of the orthosteric binding site that determines desensitization, rather than the degree of 
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receptor activation. Desensitization experiments with the GABAB receptor and GS39783 in 

this study demonstrate that, according to predictions, positive allosteric modulation as a 

therapeutic principle may indeed be more promising than orthosteric agonism, having less 

propensity for developing tolerance due to receptor desensitization.  (Chapter 5, Section 5.2.) 

 

Changes in behavior of allosteric and orthosteric GABAB receptor ligands after a 

continuous agonist pretreatment 

Investigating the effects of GS39783 on GABAB receptor desensitization, interesting findings 

revealed changes in ligand behavior upon receptor desensitization in the GABAB recombinant 

cell line. “Silent” antagonists such as CGP62349, CGP52432, CGP56999 and SCH50911 

were found to have inverse agonistic properties, the partial agonist 2-OH-saclofen was devoid 

of positive intrinsic efficacy and the positive allosteric modulator GS39738 was acting in a 

manner of an allosteric agonist. The possibility of residual GABA present from the 

pretreatment and responsible for these effects was ruled out. All observed phenomena point 

toward an increase in constitutive activity of the receptor. Increase of constitutive receptor 

activity after lasting agonist pretreatments have previously been reported for the β2-adrenergic 

and the opioid receptors. This is, however, the first such finding for the GABAB receptor, 

which might be important in elucidating the valence of orthosteric ligands as well as their 

effects upon a chronic drug treatment. It would be interesting to see whether the same 

phenomena would be observed also for other members of GPCR family 3.   (Chapter 5, 

Section 5.3.) 

 

The positive allosteric modulator GS39783 enhances GABAB receptor-mediated 

inhibition of cyclic AMP formation in rat striatum in vivo 
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In the last part of this thesis, I provide the first biochemical evidence of in vivo activity of a 

positive allosteric modulator of GPCRs. By using in vivo microdialysis in striata of freely 

moving rats, changes in extracellular levels of cAMP following GABAB receptor activation 

were monitored. Locally applied GABAB receptor agonist R(-)-baclofen inhibited cAMP 

formation stimulated by 7β-forskolin in a concentration-dependent manner, which was 

reversed by the co-application of the selective GABAB antagonist CGP56999. Orally applied 

positive allosteric modulator GS39783 lacked effects on its own but, together with a threshold 

concentration of R(-)-baclofen, it significantly decreased cAMP formation in a dose-

dependent fashion. Effects of GS39783 were revoked with CGP56999, showing dependence 

on concomitant GABAB receptor activation by an agonist and suggesting allosteric 

modulation as its mechanism of action in vivo.  (Chapter 5, Section 5.4.) 
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4. Introduction 

The focus of this thesis is allosteric modulation of the GABAB receptor. There are two 

positive allosteric modulators of the GABAB receptors, CGP7930 and GS39783, that have 

recently been discovered and characterized in Novartis Pharma AG (Urwyler et al. 2001 and 

2003). I was interested in further biochemical characterization of the allosteric mechanism of 

action of these compounds. 

In this introduction, I will address allosteric modulation in general and potential advantages of 

the use of allosteric modulators over orthosteric ligands in receptor activation. Subsequently, 

the main points of the GABAB receptor discovery and its unique structure and function, 

potential role in central nervous system (CNS) disorders and mechanisms of desensitization 

will be outlined. Finally, I will describe the actions of GABAB positive allosteric modulator 

and summarize the questions addressed in this thesis. 

 

  

4.1. Allosteric modulation of G-protein-coupled receptors (GPCRs): a novel 

therapeutic principle 

 

4.1.1. General aspects of allosteric modulation 

The term allosteric originates from Greek, with άλλος (allos) meaning other and στερεός 

(stereos) meaning shape. It describes different mechanisms by which protein functions can be 

regulated and fine-tuned in either a positive or a negative direction. The initial observation of 

the phenomenon of allostery was made by C. Bohr in his early studies on hemoglobin in 
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1904, when he revealed that hemoglobin could simultaneously bind more than one molecule 

of oxygen and introduced the term cooperativity referring to the interactions between the 

binding of oxygen molecules (Bohr et al. 1904). The term allosteric has, however, been 

coined in 1965 by J. Monod, J. Wyman and J.P. Changeux to explain control of enzyme 

activity by a regulatory molecule that binds to sites that are distinct and often removed from 

the catalytic site and that exerts its action through conformational changes (Monod et al. 

1965). One classical example of an allosteric interaction in pharmacology is the effect of 

benzodiazepines (e.g. diazepam) on GABAA receptors, which enhance receptor function by 

binding to a separate site on the receptor. 

When it comes to receptor function, allosteric modulators are substances that bind to receptors 

at the site termed the allosteric binding site (the alternative binding site), which is 

topographically distinct from the orthosteric (Greek ορθός or orthos means correct) binding 

site that binds orthosteric ligands, either orthosteric agonists (e.g. the natural ligands) or 

competitive antagonists. The binding of an allosteric modulator to its binding site induces a 

conformational change of the receptor. The transmission of this conformational change from 

the allosteric to the orthosteric binding site and/or directly to effector coupling sites enables 

allosteric ligands to modulate receptor activity. A reliable proof of a true allosteric mechanism 

is a demonstration of a change in affinity of an orthosteric ligand in the presence of the 

alleged allosteric agent by utilizing kinetic (non-equilibrium) radioligand binding experiments 

(Christopoulos and Kenakin 2002). However, allosteric modulators can either affect affinity 

(or potency) of orthosteric ligands, their efficacy or both. There are also examples of allosteric 

agonism or allosteric inverse agonism; these compounds bind to the allosteric binding site on 

the receptor and stimulate the receptor on their own, independently of orthosteric ligands 

(Figure 1). This thesis, however, focuses only on modulating compounds depicted by 

mechanisms (1) and (2)  on Figure 1, and not on allosteric agonists (mechanism (3) on Figure 

1).  
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Figure 1. The binding of an allosteric modulator can either affect the binding affinity of an orthosteric 

ligand (1) and/or the orthosteric ligand efficacy (2). Allosteric agonists can directly activate the 

receptor on their own (3). Taken from (Langmead and Christopoulos 2006), with permission from 

Elsevier. 

 

There are numerous advantages of allosteric modulators over conventional orthosteric ligands. 

To begin with, upon their binding to the allosteric site in the absence of an orthosteric ligand, 

allosteric modulators on their own usually affect the signaling cascade of the receptor in a 

limited fashion (which can only be detected in very sensitive experimental systems) or not at 

all. This means that not the whole population of receptors is affected by the binding of the 

allosteric species, but only the fraction of receptors that is activated by the endogenous 

agonist; thus is the action of the allosteric drug in spatial and temporal synchrony with 

physiological stimulation (Figure 2). In this light, the probability of the target receptor 

desensitizing (which is one of the mechanisms for acquired tolerance) is smaller even in a 

continuous presence of an allosteric agent, when compared to continuous activation via the 

orthosteric ligand. In addition, for the same reason allosteric modulators are expected to have 

a better side-effect profile than agonists and are less likely to elicit toxic effects due to an 

overdose.  

Moreover, since the allosteric binding sites are usually situated in non-conserved regions of a 

receptor, allosteric agents can often be selective for a certain receptor subtype, which is more 

unlikely for orthosteric ligands, that bind to highly conserved sites on receptors. This could be 

explained with less evolutionary pressure for the conservation of allosteric binding sites, most 

likely due to the lack of endogenous allosteric ligands. An interesting variant of this notion  
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Figure 2. An allosteric modulator is a more physiological alternative when compared to a synthetic 

agonist. An allosteric modulator acts only in the presence of an endogenous agonist, mimicking  the 

duration (and the spatial organization) of the natural signaling. Taken from (Soudijn et al. 2004), with 

permission from Elsevier. 

 

 

implies different degrees of cooperativity between the orthosteric and the allosteric site at 

different receptor subtypes leading to absolute subtype selectivity, introduced by the group of 

N.J.M. Birdsall (Lazareno et al. 1998). A remarkable example of this phenomenon was 

demonstrated at the muscarinic acetylcholine (ACh) receptors, which exist in five subtypes 

(M1-M5). Whereas thiochrome was shown to bind to all subtypes, it was absolutely selective 

for M4, by increasing the affinity for ACh 3- to 5-fold, while having only negligible effects 

(neutral cooperativity) on ACh binding at the other four muscarinic receptor subtypes 

(Lazareno et al. 2004). 

Further, it has been shown that different GPCR conformations can stimulate distinct signaling 

pathways (see Kenakin 2003; Perez and Karnik 2005; Maudsley et al. 2005 for reviews). It is 

thus possible for the activation involving an allosteric agent to activate a particular signaling 

pathway. In fact, agonist-directed trafficking has recently been demonstrated for the allosteric 
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agonist of the metabotropic glutamate receptor (mGluR) type 7 AMN082. Namely, Suzuki et 

al. (2007) have shown that while AMN082 inhibited cAMP formation by activating the 

mGluR7, it failed to induce intracellular Ca
2+

 mobilization when the receptor was artificially 

coupled to the phospholipase C (PLC) pathway. In addition, one part of the work presented in 

this thesis, regarding continuous exposure of the GABAB receptor to the positive allosteric 

modulator GS39783, goes in this direction (see Chapter 5, Section 5.3.). 

Finally, allosteric ligands offer new opportunities to medicinal chemistry aiming at receptors 

considered to be problematic drug targets. Such are for example large molecular weight 

ligand (e.g. peptide) receptors, regarded as difficult targets for small molecules due to the size 

of their binding sites or the calcium-sensing receptor (CaSR), orthosteric agonists of which 

are inorganic cations (see Christopoulos 2002; Jensen and Spalding 2004; May et al. 2007; 

Langmead and Christopoulos 2006 for reviews). 

Another example where allosteric modulation provides new possibilities for medicinal 

chemistry are the mGluRs. There are eight known mGluRs divided into three families, with 

L-glutamate being a natural ligand for all the receptor subtypes (Conn and Pin 1997). There 

are two main hurdles for developing orthosteric ligands for mGluRs, namely subtype 

selectivity and physicochemical properties of ligands. As mentioned above, because of the 

highly conserved orthosteric binding site, it is extremely difficult to develop subtype specific 

orthosteric ligands. Moreover, all the known orthosteric ligands of mGluRs are amino acid 

derivatives and it seems that this structural element is crucial for their binding and efficacy. 

Unfortunately, amino acid-like structures consist of charged and polar moieties, which is the 

reason for both their limited absorption from the gut and their poor brain penetrability. The 

development of allosteric modulators has thus proven to be a promising alternative solution 

for specific targeting of mGluRs subtypes and elucidation of their therapeutical potential in 

diseases (Ritzen et al. 2005). 
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To summarize, the fact that there are less structural constraints for compounds with allosteric 

properties has opened new avenues in medicinal chemistry. The attractiveness of GPCR 

allosteric modulators as novel drug targets has resulted in an increasing body of literature on 

the subject in recent years, which is represented by a large number of review articles 

(Christopoulos 2002; Christopoulos and Kenakin 2002; Rees et al. 2002; Soudijn et al. 2002; 

Conigrave and Franks 2003; Birdsall et al. 2004; Christopoulos et al. 2004; Jensen and 

Spalding 2004; May et al. 2004 and 2007; Soudijn et al. 2004; Bowery (ed), 2006; Gao and 

Jacobson 2006; Langmead and Christopoulos 2006; Noeske et al. 2006; Schwartz and Holst 

2006). 

It is worthwhile looking at mechanisms of allosteric modulation in the light of classical and 

more recent receptor models. 

 

4.1.2. Theoretical receptor models 

  a) The two state model of receptor activation (Figure 3) 

The two-state model of receptor activation illustrates the intrinsic efficacies of orthosteric 

ligands, but does not account for allosteric modulation (Leff 1995). The major assumption in 

the two state model is that there are two interchangeable conformations of a receptor: the  

 

A + R    A + R *    
                            

         L    

  

    K    αK 

 

                           αL  

 

AR    AR* 
 

 

Figure 3. The two-state model of receptor activation. R: resting state of the receptor, R*: active state 

of the receptor, A: ligand, K: binding constant of A, L: receptor isomerisation constant, α: intrinsic 

efficacy of A. Taken from (Urwyler, Gjoni et al. 2005) with permission from Elsevier.  
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resting (R) and the active state (R*) (Figure 3). The exchange between the two states is 

characterized by an equilibrium constant L. The existence of R* in an absence of the ligand 

(A) is the basis for constitutive activity. The constant K describes the binding affinity of the 

ligand (A) to the receptor (R). If the ligand bound stabilizes the active (R*) over the resting 

state (R), the equilibrium is shifted toward the active state (α >1) and the ligand is an agonist. 

Contrarily, an inverse agonist prefers and stabilizes the inactive form of the receptor and has 

an α value smaller than 1. A silent antagonist binds to both states of the receptor with equal 

affinity and does not affect the proportions of the active and the resting state (α =1), but 

inhibits agonist binding by blocking the binding site. 

 

  b) The ternary complex model (TCM) (Figure 4) 

The TCM was originally developed to describe the changes in agonist affinity induced by the 

receptor-G-protein coupling, a prototype example of allosteric interactions (De Lean et al. 

1980). It can, however, also be applied to allosteric modulation by small molecules. The TCM 

takes into consideration the influence on binding affinity that the allosteric ligand (B) has on  

 

 

A + R + B     A + RB 
 

        M 
  

    K     γK 

 

 

       γM 

 

     AR + B      ARB 

 
Figure 4. The ternary complex model of receptor activation. R: receptor, A: orthosteric ligand, B: 

allosteric ligand, K: binding constant of A, M: binding constant of B, γ: binding cooperativity between 

A and B. Taken from (Urwyler, Gjoni et al. 2005) with permission from Elsevier. 
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the orthosteric ligand (A) when it binds to the receptor (R) to a distinct binding site. The 

constant K depicts the binding affinity of the orthosteric ligand (A) for the receptor and M is 

the affinity constant of the allosteric ligand B toward the receptor R. The binding 

cooperativity between A and B is described by the factor γ. This model, unlike the two-state 

model, takes into account allosteric interactions, but it does not account for the intrinsic 

efficacy of the orthosteric ligand, i.e. the activation of the receptor by ligand binding.  

    

  c) The allosteric two-state model (Figure 5) 

 

 

         βM 

   A + B + R*                             A + BR* 

 
         L                                                            βL 

                                   αK          

        

                                          M                                                       αγδK 
A + B + R     A + RB 
 

      
  

  B + AR*                      AR*B 

       βγδM  

K       αL                      γK 

                                                                                           αβδL 

   

 

AR + B      ARB 
   γM 
 

 

Figure 5. The allosteric two-state model of receptor activation. R: resting state of the receptor, R*: 

active state of the receptor, A: orthosteric ligand, B: allosteric ligand, K: binding constant of A, L: 

receptor isomerisation constant, M: binding constant of B, α: intrinsic efficacy of A, β: intrinsic 

efficacy of B, γ: binding cooperativity between A and B, δ: activation cooperativity between A and B.  

Taken from (Urwyler, Gjoni et al. 2005) with permission from Elsevier. 
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Although the “allosteric ternary complex model” (ATCM) (Lefkowitz et al. 1993) was the 

first attempt to combine the two previous models, the allosteric two-state model described by 

Hall (2000), allows for the first time the allosteric modulator to simultaneously affect the 

affinity of orthosteric ligands as well as their efficacy. The extension of the two-state model 

of receptor activation introduces the allosteric constant δ, by which the intrinsic efficacy of 

the orthosteric ligand α is modified. This model treats the allosteric interactions strictly in 

numerical terms, i.e. the constants γ and δ are independent of the qualitative nature of α. This 

means that the orthosteric agonist (intrinsic efficacy of which is described by α) can be a 

partial or full agonist, a silent antagonist or an inverse agonist, with and all the chemical 

entities equally amenable to allosteric modulation. This topic is addressed and further 

discussed in Chapter 5, Section 5.1. of this thesis or (Urwyler, Gjoni et al. 2005). 

 

 

4.2. The GABAB receptor 

GABA is the main inhibiting neurotransmitter in the CNS. It modulates the neuronal activity 

by mediating its action via GABAA, GABAB and GABAC receptors. GABAA and GABAC 

receptors are ligand-gated ion channels while the GABAB receptor is a metabotropic receptor 

coupled to heterotrimeric G-proteins. The GABAA receptor, a pentameric ligand-gated ion 

channel that mediates a fast neuronal inhibition (hyperpolarization) by enabling the influx of 

chloride ions into the postsynaptic terminal, is known longest. There are many drugs currently 

on the market that target the GABAA receptor, namely benzodiazepines (e.g. diazepam) or 

barbiturates (such as pentobarbital) which are widely used in the clinical practice as 

anticonvulsants, myorelaxants, sedatives and anesthetics. It was believed that the GABAA 

receptor was the only GABA receptor until the late 1970ies, when the existence of the 

GABAB receptor was first proposed (Bowery et al. 1980). The GABAC receptors were 
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postulated even later, in the 1990s, as mediators of the GABA response that is insensitive to 

GABAA and GABAB antagonism (Johnston 1996). 

 

4.2.1. The discovery and structure of the GABAB receptor 

The prototypical GABAB agonist baclofen (β-p-chlorophenyl-GABA) has been in clinical 

practice as an antispastic agent under the name of Lioresal for more than thirty years, long 

before GABAB receptors were known as a distinct entity (see more in Subsection 4.2.4.). 

In the late seventies of the 20
th

 century the group of N. G. Bowery observed that the actions of 

GABA and baclofen to inhibit noradrenaline, dopamine and serotonin release were not 

blocked by the known GABA antagonist bicuculline, nor mimicked by GABA-mimetics such 

as isoguvacine or 3-aminopropanesulphonic acid. Moreover, they were independent of the 

concentrations of chloride ions, but not of Mg
2+

 and Ca
2+

. As a consequence the novel 

baclofen-sensitive bicuculline-insensitive receptor termed the GABAB receptor was 

postulated (Bowery et al. 1980). 

The main breakthrough in the GABAB receptor research occurred 17 years later, with its 

cloning by the group of B. Bettler (Kaupmann et al. 1997). The delay in the cloning of the 

receptor was due to the fact that there were difficulties in coupling of the receptor to its 

effector systems in heterologous cells and the lack of pharmacological tools suitable for 

expression cloning at the time (see Bettler et al. 2004). Only after an iodinated high-affinity 

GABAB ligand was finally available, two isoforms of the same protein, structurally similar to 

the mGluRs, GABAB(1a) and GABAB(1b) were discovered using a radioligand-binding 

screening approach (Kaupmann et al. 1997). Rat GABAB(1a) and GABAB(1b) proteins are 

composed of 960 and 844 amino acids, respectively, with the only difference being the 

presence or the absence of the so-called “Sushi repeats” (or “short consensus repeats”) at their 

extracellular NH2-terminal domain (N-terminus), respectively. It was found later that the 
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human GABAB(1a/b) proteins share 99% sequence identity with the rat GABAB(1a/b) proteins 

(Kaupmann et al. 1998b). Despite the success in isolating two GABAB receptor proteins, it 

was noted that there was a hundred-fold decrease in binding affinities of GABAB agonists 

when compared to the wild-type (WT) receptors. In addition, there was little functional 

response upon agonist binding and only at agonist concentrations which were saturating in 

native tissues. This aroused an interest of the scientific community, which soon afterward 

resulted in the cloning of another GABAB receptor protein, termed GABAB(2), that shared 

35% homology to the first two GABAB proteins. The discovery was made by six groups 

simultaneously (Kaupmann et al. 1998a; Jones et al. 1998; Kuner et al. 1999; Martin et al. 

1999; Ng et al. 1999; White et al. 1998). 

 

Figure 6.  Phylogenetic analysis of human family C GPCRs. Taken from (Bettler et al. 2004), with 

permission of the American Physiological Society. 

 

The GABAB receptor belongs to the GPCR family 3 (or C), together with eight mGluRs, the 

CaSR, taste and pheromone receptors and five orphan receptors (Figure 6) (Pin et al. 2003). 

The peculiarity of the GABAB receptor is the fact that in order to be functional it needs to be a 

heterodimeric complex, composed of the GABAB(1a) or the GABAB(1b) and the GABAB(2) 

subunit (Figure 7). 

As the other members of GPCR family 3, the GABAB receptors possess the seven 

transmembrane spanning domain (7TM), an intracellular COOH-terminal tail (C-terminus), 
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which has been shown to bind many proteins that regulate the GABAB receptor function (see 

Bettler et al. 2004 and Emson 2007 for reviews) and a large extracellular NH2-terminal 

domain (N-terminus) that contains the orthosteric site for agonist/competitive antagonist 

binding, which, like it is the case with mGluRs, is related to the bacterial periplasmic binding 

proteins (PBP) (O'Hara et al. 1993). However, in contrast to the mGluRs, the N-terminal part 

of the GABAB subunits lacks a cysteine-rich region that connects the PBP-like domain to the 

TM1 (Malitschek et al. 1999). The agonist-binding site consists of two large globular lobes 

connected by a hinge region. A conformational change occurs in the hinge region upon 

agonist binding which brings the two lobes closer together trapping the agonist similarly to 

the trapping of the insect by a carnivorous plant called the Venus flytrap (Galvez et al. 1999; 

Bessis et al. 2000; Galvez et al. 2000a; Bernard et al. 2001; Kniazeff et al. 2004). Even  

 

 

 
Figure 7. A cartoon of the GABAB receptor. GABAB(1a) (green) and GABAB(2) (grey) form a 

heterodimer mainly interacting via the C-terminal tail forming a coiled-coil domain. Both GABAB(1) 

and GABAB(2) subunits contain a VFTM, but only the VFTM of GABAB(1) is able to bind orthosteric 

ligands. In addition, the N-terminus of GABAB(1a) has two Sushi motifs, which are missing in the 

GABAB(1b) isoform. The GABAB(2) subunit is crucial for the interaction with the G-protein (blue) and 

it also contains the binding site for the positive allosteric modulator GS39783 (Dupuis et al. 2006). 
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though both the GABAB(1) and the GABAB(2) subunits contain the “Venus flytrap module” 

(VFTM), only the GABAB(1) subunit is able to bind orthosteric ligands. The amino acids 

critical for ligand binding in the VFTM of the GABAB(2) subunit have not been conserved 

(Galvez et al. 2000a). 

The functional importance of the presence of the GABAB(2) receptor subunit lies in the surface 

trafficking of the GABAB(1) receptor subunit and the GABAB receptor coupling to effector 

systems and signal transduction. The GABAB heterodimer is assembled mainly through the 

interaction of the two subunits at the C-terminal tail forming a coiled-coil domain. Although 

there is evidence that other parts of the two receptor subunits can interact with each other, it 

has been shown that the formation of the coiled-coil domain is crucial for GABAB receptor 

surface trafficking. In the absence of the GABAB(2) subunit the GABAB(1) does not reach the 

cell surface but remains in the endoplasmatic reticulum because of the amino acid sequence of 

four amino acids (RSRR) known as the retention signal at its cytoplasmic tail (Margeta-

Mitrovic et al. 2000; Pagano et al. 2001). In the presence of the GABAB(2) receptor subunit, 

by the formation of the coiled-coil domain, the retention signal of the GABAB(1) is masked 

and the receptor is successfully expressed at the cell surface (Couve et al. 1998). GABAB(2), 

however, does not need the co-expression of the GABAB(1) subunit to reach the cell surface. 

Moreover, it has been shown that there is an allosteric interaction between the VFTMs of both 

subunits, which results in a higher affinity of agonists for the VFTM of GABAB(1). This is an 

explanation for the lower affinity for agonist binding when only the GABAB(1) subunit was 

cloned in 1997 (see Kaupmann et al. 1997 or Bettler et al. 2004 for a review). Finally, the 

coupling of the GABAB receptor to its effector systems happens exclusively via the GABAB(2) 

receptor subunit. Namely, it is the intracellular loop 2 (i2) of the GABAB(2) that is crucial for 

G-protein coupling (Margeta-Mitrovic et al. 2001; Robbins et al. 2001; Havlickova et al. 

2002; Grünewald et al. 2003; Thuault et al. 2004; Duthey et al. 2002). This ”sideways” signal 
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transduction from GABAB(1) subunit, that binds orthosteric ligands, to GABAB(2) subunits, 

that couples to the effector systems, is a unique feature of the GABAB receptor. 

 

4.2.2. The anatomical expression pattern of the GABAB receptor 

The GABAB receptor is abundantly expressed in the mammalian CNS. It has been found that 

GABAB binding sites are present in almost all neuronal populations (Bischoff et al. 1999), as 

well as in glial cells (Hosli et al. 1990; Oka et al. 2006), with the highest expression levels in 

the thalamic nuclei, the molecular layer of the cerebellum, the cerebral cortex, the 

interpeduncular nucleus and the dorsal horn of the spinal cord (Bowery et al. 1987; 

Kaupmann et al. 1997; Bischoff et al. 1999; Fritschy et al. 1999; Charles et al. 2001; Chu et 

al. 1990; Liang et al. 2000). 

Functional GABAB receptors are not only confined to the CNS. They are also expressed in 

peripheral tissues, for example heart, spleen, lung, liver, small intestine, large intestine, 

kidney, stomach, adrenal gland, testis, ovary and urinary bladder (see Bettler et al. 2004 for a 

review). 

 

4.2.3. The GABAB receptor and its effector systems 

The GABAB receptors are coupled to many different effector systems. They mostly couple to 

the Gαi and Gαo proteins (Asano and Ogasawara 1986; Morishita et al. 1990; Campbell et al. 

1993; Menon-Johansson et al. 1993; Greif et al. 2000).This mainly results in an inhibition of 

the adenylyl cyclase activity, as has been shown for many native experimental setups in vitro 

(Wojcik and Neff 1984; Cunningham and Enna 1996; Knight and Bowery 1996; Olianas et al. 

2005) and in vivo (Hashimoto and Kuriyama 1997; Gjoni et al. 2006), as well as in 

recombinant systems in vitro (Wise et al. 1999; Hirst et al. 2003; Urwyler, Gjoni et al. 2005). 

However, there are also reports of GABAB-mediated stimulation of adenylyl cyclase activity 
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in conjunction with activation of noradrenalin, pituitary adenylate cyclase activating protein 

(PACAP) or corticotrophin-releasing hormone (CRH) receptors in native preparations. These 

effects are most likely a result of a receptor-receptor crosstalk and have been postulated to 

involve the Gβγ subunits released upon GABAB receptor activation, which stimulate certain 

types of adenylyl cyclase in the presence of Gαs that originated from Gs coupled-GPCR 

activation  (Cunningham and Enna 1996; Knight and Bowery 1996; Olianas and Onali 1999; 

Onali and Olianas 2001). 

The function of GABAB receptors in the CNS mainly depends on their pre- or post-synaptic 

localization (Figure 8). When expressed presynaptically, they act as either autoreceptors or 

heteroreceptors, inhibiting the release of GABA or other neurotransmitters,  e.g. glutamate, 

various neuropeptides, catecholamines, serotonin or acetylcholine, into the synaptic cleft 

(Bowery et al. 1980; Taniyama et al. 1992; Waldmeier et al. 1994; Teoh et al. 1996; Bonanno 

et al. 1998; Bonanno et al. 1999). These effects are mainly mediated via the inhibition of the 

high-voltage activated calcium channels of the N-type or P/Q type which are both expressed 

in presynaptic terminals and shown to trigger neurotransmitter release (Takahashi et al. 1998). 

There is also evidence of interaction between presynaptically expressed GABAB receptors and 

L-type and T-type Ca
2+

 channels (for review see Bettler et al. 2004). Postsynaptic GABAB 

receptors, on the other hand, activate inwardly rectifying potassium channels (GIRK or Kir3) 

resulting in a prolongation of the slow inhibitory postsynaptic current (also known as late 

IPSC). This regulation involves Gβγ signaling (Lüscher et al. 1997). 
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Figure 8. Presynaptic and postsynaptic localization of the GABAB receptor in the CNS. Presynaptic 

autoreceptors (regulating the release of GABA) and heteroreceptors (regulating the release of other 

neurotransmitters, in this case glutamate) mediate their effect by inhibiting the influx of Ca
2+

 into the 

presynaptic terminals. Postsynaptically expressed GABAB receptors induce hyperpolarization of the 

postsynaptic terminal (late IPSC) by activating Kir3 channels. From (Cryan and Kaupmann 2005), 

with permission from Elsevier. 

 

4.2.4. The potential role of GABAB receptors in disease 

The GABAB receptor has been implicated in many neurological disorders, namely spasticity, 

pain, drug addiction, anxiety and depression, absence epilepsy and cognition (see Vacher and 

Bettler 2003; Bettler et al. 2004; Ong and Kerr 2005; Bowery 2006 for reviews). The 

widespread peripheral expression in mammalian organisms (see Subsection 4.2.2.) points to 

intestinal, pulmonary and bladder dysfunction as possible therapeutic applications for GABAB 

drugs. Insights in the potential role of the GABAB receptor in diseases were mostly obtained 

from experiments performed with baclofen and recently with GABAB knock-out mice 

(Schuler et al. 2001; Prosser et al. 2001). 

The selective GABAB receptor agonist baclofen is a lipophilic brain-penetrable derivative of 

GABA with central muscle-relaxant properties. It was synthesized in 1962 and has been in 
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clinical use in its racemic form under the trade name Lioresal since 1972 as a drug of choice 

for treating spinal spasticity and skeletal muscle rigidity, associated with cerebral palsy, 

multiple sclerosis, stiff-man syndrome and tetanus (Bowery 1993), even though its 

mechanism of action was unclear at the time of its release. The anti-spastic effects of baclofen 

are most likely mediated by the activation of the presynaptic GABAB receptors in the spinal 

cord, which inhibit the release of excitatory neurotransmitters onto the motoneurons in the 

monosynaptic reflex arc, resulting in relaxation of the contracted muscles. Additionally, 

baclofen has also been used in the treatment of chronic pain, e.g. neuropathic pain (see 

Fromm 1994 or Vacher and Bettler 2003; Bowery 2006; Bettler et al. 2004; Ong and Kerr 

2005 for reviews). The mechanism underlying GABAB-mediated antinociceptive effects is 

mediated via both the spinal cord (Malan et al. 2002) and higher brain centers (Ipponi et al. 

1999; Jasmin et al. 2003). 

A growing preclinical and clinical literature implicates the GABAB receptors in drug 

addiction. GABAB agonists were found to promote abstinence and reduce the use of cocaine, 

heroin, alcohol and nicotine (reviewed in Cousins et al. 2002) by modulating the mesolimbic 

dopamine system, also known as the reward and reinforcement circuitry (Robbins and Everitt 

1999). Efficiency of GABAB agonists to diminish cocaine self-administration and 

reinforcement has been observed in rats (Roberts et al. 1996; Roberts and Andrews 1997; 

Brebner et al. 1999, 2000 and 2002; Shoaib et al. 1998; Campbell et al. 1999) and clinical 

studies demonstrated effectiveness of baclofen in reducing cocaine craving in cocaine addicts 

(Ling and Shoptaw 1998; Shoptaw et al. 2003; Kaplan et al. 2004). Further, baclofen has not 

only been found to reduce self-administration of alcohol in rats (Colombo et al. 2002 and 

2004), but it was also found to be palliative against alcohol withdrawal and craving in humans 

patients, albeit in high doses (Ameisen 2005; Bucknam 2007; Addolorato et al. 2002a 

and.2002b). GABAB receptor activation has also been found to block the locomotor 

stimulatory effect of amphetamine and reduce its self-administration in animals (Bartoletti et 
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al. 2004; Brebner et al. 2005). Decrease in the self-administration of heroin (Xi and Stein 

1999; Di Ciano and Everitt 2003) and nicotine (Paterson et al. 2004a and 2004b) were also 

demonstrated upon administration of baclofen and the GABAB agonist CGP44532 in rats. 

Moreover, a significant association between variants of the human GABAB(2) gene and 

nicotine dependence has been reported that is thought to play a crucial role in the etiology of 

nicotine addiction (Beuten et al. 2005). 

GABAergic neurotransmission has been implicated in several psychiatric and emotional 

disorders, including anxiety and depression (Cryan and Kaupmann 2005). The involvement of 

the GABAB receptor in depression was first suggested by (Lloyd et al. 1985). Later, GABAB 

receptor antagonists were demonstrated to be effective in animal models for depression 

(Nakagawa et al. 1999; Slattery et al. 2005a), which could be linked with the finding that 

GABAB antagonists produced a rapid increase in the neurotrophins nerve growth factor 

(NGF) and brain-derived neurotrophic factor (BDNF) (Heese et al. 2000; Froestl et al. 2004). 

The anti-depressant effects of GABAB antagonists are in line with the findings that the genetic 

deletion of either GABAB(1) or GABAB(2) subunits in mice resulted in their antidepressant-like 

behavior in the forced swim test (FST), a model for the assessing of antidepressant action of 

drugs (Mombereau et al. 2004 and 2005). 

 Baclofen was demonstrated effective in panic disorders in human patients (Breslow et al. 

1989), which is in alignment with the fact that GABAB(1)-deficient mice display a more 

anxious phenotype than the WT animals (Mombereau et al. 2004). In addition, anxiolytic 

effects of baclofen were also shown in several animal models (see Cryan and Kaupmann 2005 

for a review). 

GABAB receptors appear to play a role in absence epilepsy, which is thought to be related to a 

predominance of inhibitory activity in the reticular thalamic nucleus, a part of the 

thalamocortical circuit responsible for development of seizures, that comprises mainly 

GABA-containing neurons (see Manning et al. 2003 for a review). Namely, GABAB receptor 
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antagonists inhibited spike and wave discharges in genetically modified animals, that are used 

as animal models for absence epilepsy, while administration of R(-)-baclofen aggravated the 

spontaneous seizures (Marescaux et al. 1992; Hosford et al. 1992). In addition, bilateral 

injections of R(-)-baclofen into specific relay nuclei and reticular nuclei of the thalamus 

increased spike and wave discharges in a concentration dependent fashion in rats with 

spontaneous absence seizures (Liu et al. 1992). Although this seems to be in contradiction 

with the fact that mice lacking functional GABAB receptors were more prone to spontaneous 

seizures (Schuler et al. 2001; Prosser et al. 2001), it must be noted that GABAB(1)-deficient 

mice suffer from a different type of absence seizures than observed in genetic animal models 

of absence epilepsy (see Bettler et al. 2004 for a review). 

Further, GABAB receptor antagonism has also been shown to improve spatial memory (Helm 

et al. 2005). The cognitive enhancer SGS742 is the first GABAB antagonist in clinical trials 

(Froestl et al. 2004). 

Peripherally, baclofen inhibited lower esophageal sphincter relaxation in dogs (Lehmann et al. 

1999), healthy humans (Lidums et al. 2000) and esophageal reflux disease patients (Zhang et 

al. 2002). 

Despite these numerous implications of the GABAB receptor in neurological and non-

neurological disorders, the only drug on the market that targets the GABAB receptor is 

baclofen. Its main shortcomings are deleterious side-effects such as sedation, motor 

impairment, hypothermia and fast onset of tolerance, observed in several animal models 

(Wang et al. 2002; Cryan et al. 2004; Lobina et al. 2005; Jacobson and Cryan 2005), as well 

as in human patients (Fromm 1994; Loubser and Akman 1996), which limit its widespread 

utility in preclinical and clinical settings. This is the main reason for the interest the discovery 

of positive allosteric modulators of the GABAB receptors CGP7930 and GS39783 arose 

within the scientific community (see Subsection 4.2.6.). 
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4.2.5. GABAB receptor desensitization 

The phenomenon of receptor desensitization plays an important physiological role acting as 

the feedback mechanism limiting both acute and lasting (chronic) overstimulation of GPCR 

signaling cascades. Desensitization of GPCRs has been extensively explored. There seems to 

be a “universal” mechanism by which most GPCRs desensitize. This “canonical” pathway 

mainly involves agonist-induced receptor phosphorylation of serine/threonine residues 

(usually in the i3 and/or the C-terminus) by intracellular kinases, usually GPCR kinases 

(GRKs). Phosphorylation is followed by the recruitment of cytoplasmic accessory proteins 

such as β-arrestins, which sterically hinder further coupling of the receptor to the G-protein 

thus acting as a turn-off switch of the signal. Subsequently most GPCRs internalize into 

clathrin-coated vesicles. Once internalized, receptors are targeted to specialized compartments 

where they are either dephosphorylated and recycled back to the plasma membrane 

(resensitization) or targeted to lysosomes for degradation (see Ferguson 2001; Tsao et al. 

2001; Clark and Rich 2003; Gainetdinov et al. 2004 for reviews). 

Desensitization of the GABAB receptor has been studied for a long time. It has been observed 

in in vivo studies in which chronic baclofen treatments resulted in the loss of its 

antinociceptive effects (Malcangio et al. 1992), the absence of GABAB-mediated induction of 

late IPSCs (Malcangio et al. 1995) and the loss of baclofen-induced hypothermic effects in 

rats (Lehmann et al. 2003). Although early in vitro studies have implicated phosphorylation 

by protein kinase C (PKC) (Taniyama et al. 1992) and protein kinase A (PKA) (Yoshimura et 

al. 1995) as a key step in GABAB receptor desensitization, several lines of evidence suggest 

that the GABAB receptor does not follow the β-arrestin-mediated desensitization pathway 

described above. Couve et al. (2002) have shown that the PKA-mediated phosphorylation of a 

single serine residue (Ser892) in the cytoplasmic tail of the GABAB(2) subunit enhanced the 

stability of the receptor at the cell surface. GABAB agonists thus reduced PKA activity, by 
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inhibiting cAMP formation, resulting in a lesser degree of phosphorylation, thereby leading to 

desensitization of the receptor. Soon afterwards another study proposing an atypical 

mechanism of receptor desensitization came out, in which GRK4 was implicated as crucial 

for GABAB receptor desensitization in cerebellar granule cells (Perroy et al. 2003). 

Surprisingly, GRK4-mediated desensitization was found to be phosphorylation-independent, 

as it was promoted even in the absence of agonist-induced phosphorylation as well as by a 

mutant GRK4 lacking its kinase domain. Another report recently linked both GRK4 and 

GRK5 to GABAB receptor desensitization (Kanaide et al. 2006). However, this process is 

probably not generalized as GRK4 is absent from many brain regions that express high level 

of the GABAB receptor such as the cerebral cortex or the hippocampus (Sallese et al. 2000). 

Fairfax et al. (2004) provided evidence for endocytosis-independent degradation of the 

receptor at the cell surface as a mechanism of GABAB receptor desensitization (there was no 

proof of internal receptor pools, but the decrease in the cell surface receptor number was 

evident). Receptor degradation was found to correlate with a reduced phosphorylation at the 

Ser892 residue of the GABAB(2) receptor subunit, which is in alliance with the previously 

mentioned finding by Couve et al. (2002). In a recent report by Pontier et al. (2006) the 

phosphorylation by PKC was found to induce GABAB receptor desensitization, the pre-

association of the NEM sensitive fusion protein (NSF) with the GABAB receptor being a 

critical step in its phosphorylation by PKC. Further mechanisms that were proposed for 

GABAB receptor desensitization comprise regulation of  receptor-G-protein coupling by 

endogenous regulators of G-protein signaling (RGS) proteins (Mutneja et al. 2005) and 

agonist-induced endocytosis (Gonzales-Maeso et al. 2003; Laffray et al. 2007). Interestingly, 

Grampp et al. (2007) recently observed a high constitutive clathrin-mediated internalization 

of the receptor, which was not altered in the lasting presence of GABAB agonists/antagonists. 

Apparent divergences among findings in abovementioned studies might be due to different 

experimental systems employed to study receptor desensitization. It is possible that varying 
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expression levels of intracellular regulatory proteins, which serve as parts of the 

“desensitization machinery”, give rise to different desensitization pathways in different 

cellular contexts (see Chapter 5, Section 5.3. for further discussion). 

 

4.2.6. Positive allosteric modulators of the GABAB receptor 

The development of functional and cell-based assays represents an important progress in 

discovery of GPCR drugs. In contrast to radioligand binding experiments, which are based on 

the displacement of a known (orthosteric) labeled ligand, the use of functional assays in high 

throughput screening (HTS) facilitates the identification of compounds with different 

mechanisms of activation, e.g. allosteric modulators (Rees et al. 2002; Christopoulos et al. 

2004). One functional assay, that is frequently used to measure GPCR function, is agonist-

promoted GTP(γ)
35

S binding in cell membrane preparations. This experimental system 

measures the first step in the signaling cascade of a GPCR (Hilf et al. 1989; Harrison and 

Traynor 2003). As a result of a GTP(γ)
35

S screen in membranes of a recombinant Chinese 

hamster ovary (CHO) cell line stably expressing the GABAB heterodimer the two positive 

allosteric modulators CGP7930 and GS39783 came out (Urwyler et al. 2001 and 2003). These 

two compounds are structurally different, but they exerted similar actions with similar 

potencies (in the low micromolar range) on both native and recombinant receptors. Without 

effects on their own in the absence of agonists, CGP7930 and GS39783 increased not only the 

potencies of the GABAB agonists GABA and R(-)-baclofen in the GTP(γ)
35

S assay system, 

but also their maximal efficacies (Urwyler et al. 2001 and 2003). Together with allosteric 

enhancers of the mGluR1 receptor (Knoflach et al. 2001), CGP7930 was the first example of 

a compound with a dual mechanism of action (an effect on both agonist potency and the 

maximal effect, as predicted by the allosteric two-state model of receptor activation, see 

Subsection 4.1.2.). For example, benzodiazepines, possibly the best-described class of 
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positive allosteric modulators, act only by increasing the potency of GABAA agonists, without 

influencing their maximal effects. The dual mode of action of CGP7930, an enhancement of 

both the potencies and the maximal effects of the agonists GABA, APPA and the active R(-) 

enantiomer of baclofen in the GTP(γ)
35

S assay in membranes from human cortex, was 

confirmed by others (Olianas et al. 2005). 

An increase of agonist affinity by CGP7930 and GS39783 also became apparent in 

radioligand binding experiments. A saturation experiment with the selective GABAB agonist 

[
3
H]-APPA in the presence of CGP7930 revealed an increase in affinity, without a change in 

the Bmax value (Urwyler et al. 2001). Radioligand kinetic experiments in rat brain cortex 

membranes, examining the rates of association and dissociation of [
3
H]-APPA, in the 

presence of GS39783 have yielded surprising results. The rate of association of the 

radioligand in the presence of GS39783 was lower than in its absence. However, this effect  

was overcompensated by an even greater effect on slowing down the dissociation, resulting in 

a net increase of affinity (Urwyler et al. 2003). An increase in agonist affinity was also 

observed in displacement experiments. The curves describing the displacement of the 

radiolabeled GABAB antagonist CGP62349 from rat brain membranes by GABA were fitted 

better when a two-site model was used, rather than a one-site model (Figure 9). The two states 

-9 -8 -7 -6 -5 -4 -3
0

25

50

75

100

log[GABA] (M)

%
 s

p
e
c
if
ic

 b
in

d
in

g

 

Figure 9. Effects of CGP7930 on the displacement of the GABAB antagonist [
3
H]-CGP62349 by 

GABA from native GABAB receptors in rat cortical membranes. Filled circles: control curve with 

GABA alone, open squares: concentration-response curve of GABA in the presence of 30 µM 

CGP7930. Adapted from (Urwyler, Gjoni et al. 2004), with permission from Elsevier. 
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correspond to the receptor being either coupled or uncoupled from its G-protein which results 

in different affinities for the two states (Hill et al. 1984; Parmentier et al. 2002). The positive 

allosteric modulators CGP7930 and GS39783 increased the affinities for both receptor states 

(Urwyler et al. 2001 and 2003). Moreover, the proportion of receptors in the high affinity 

state was increased in their presence, suggesting that CGP7930 and GS39783 also promoted 

the coupling of the receptor to G-proteins. 

Concerning other in vitro experimental setups, increases of GABA effects by CGP7930 and 

GS39783 were also seen measuring the activation of Kir3 channels co-transfected in Xenopus 

laevis oocytes together with the GABAB receptor. No potassium currents were elicited in the 

presence of either modulator in the absence of GABA (Urwyler et al. 2001 and 2003). 

Further, the modulators were found to increase the potency and the maximal effects of 

agonists to inhibit 7β-forskolin-induced cAMP production, only with marginal effects on their 

own (Onali et al. 2003; Olianas et al. 2005; Urwyler, Gjoni et al. 2005). CGP7930 also 

increased the potencies and the maximal efficacies of R(-)-baclofen or GABA to stimulate 

either basal or CRH-stimulated cAMP production in the membranes of rat frontal cortex and 

the granule cell layer of rat olfactory bulb (Onali et al. 2003). This effect is likely mediated 

via the stimulatory action of βγ subunits of the Gi/Go proteins on adenylyl cyclase type II and 

IV (see Tang and Gilman 1992 for a minireview). Moreover, in a more physiological setting 

(Chen et al. 2005) have observed effects of CGP7930 on baclofen-induced depression of the 

spontaneous activity in dopamine (DA) cells of the ventral tegmental area (VTA) in rat brain 

slices, which probably occurs via the activation of Kir3 channels. CGP7930 increased the 

potency of baclofen to inhibit the spontaneous spiking. Since baclofen fully blocked the firing 

of DA neurons in the VTA at its highest concentrations, no further enhancement of its 

maximal effect was observed in the presence of CGP7930. This kind of a ceiling effect was 

also present when GABAB-mediated inhibition of calcium fluctuations was measured in 

neuronal cortical cultures (Urwyler et al. 2001). 
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To summarize, the in vitro studies mentioned above have found positive allosteric modulators 

of the GABAB receptor CGP7930 and GS39783 to increase both the affinities and the 

efficacies of agonists, without having a significant effect on their own in their absence. On the 

other hand, there was one study by (Binet et al. 2004), in which the binding site of CGP7930 

was identified to lay in 7TM of GABAB(2), that showed a direct activation of the receptor by 

CGP7930 in a manner of a partial agonist. It must be noted that a very sensitive system was 

used in this study, seemingly with a high degree of receptor reserve, which is most likely the 

reason why the low efficacy partial agonism of CGP7930 alone was detected. Another 

mapping study by (Dupuis et al. 2006) discovered that the binding site for GS39783 was also 

located in the 7TM of GABAB(2). 

 

So far there has only been one study, that is a part of this thesis (Chapter 5, Section 5.4.), in 

which the principles of allosteric modulation of the GABAB receptor were shown on a 

biochemical level in vivo (Gjoni et al. 2006). In vivo microdialysis in the rat striatum was 

employed to measure cAMP, the second messenger of GABAB receptor activation, the results 

of which strongly suggested an allosteric mechanism of action of GS39783 in vivo (see 

Chapter 5, Section 5.4. or Gjoni et al. 2006). 

On the other hand, behavioral effects of CGP7930 and GS39783 have been extensively 

studied in animal models. CGP7930 synergistically increased the sedative/hypnotic effects of 

baclofen and γ-hydroxybutiric acid (GHB) in mice, without having an effect on its own (Carai 

et al. 2004), which again supports the notion of an allosteric enhancement. GS39738 was 

found to have anxiolytic properties when tested in the classical behavioral paradigms, for 

example in the elevated zero maze or the light-dark box (Cryan et al. 2004; Mombereau et al. 

2004). However, it had no antidepressant action in the forced swim test (Cryan et al. 2004; 

Slattery et al. 2005a). Importantly, GS39783 lacked all baclofen- and benzodiazepine-related 
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side-effects, namely sedation, hypothermia, muscle relaxation, cognitive impairment, 

impairment of motor abilities and the potentiation of ethanol effects (Cryan et al. 2004).  

Because the implications of GABAB receptors in drug addiction have been extensively 

studied (see Subsection 4.2.4.), effects of the positive allosteric modulators CGP7930 and 

GS39783 have also been assessed in animal models of drug abuse. Smith et al. (2004) 

demonstrated that CGP7930 and GS39783 decreased cocaine-self administration in rats, with 

no evidence of inducing sedation or motor ataxia. In addition, Slattery et al. (2005b) showed 

that GS39783 attenuated the reward-facilitating effects of cocaine by using intracranial self-

stimulation procedure in rats. GS39783 attenuated chronic cocaine-induced locomotor 

sensitization in mice, without affecting the basal locomotor activity. It also blunted ∆FosB 

upregulation in dorsal striatum and blocked the upregulation and activation of dopamine- and 

cAMP-regulated phosphoprotein of 32kDa (DARPP-32) and cAMP-response-element-

binding protein (CREB), all associated to chronic cocaine (Lhuillier et al. 2006). Similarly, 

GS39783 reduced the nicotine-induced accumulation of ∆FosB in rat dorsal striatum 

(Mombereau et al. 2007). Decreases of ethanol-intake mediated CGP7930 and GS39783 in 

rats have also been reported (Orru et al. 2005; Liang et al. 2006). 

In conclusion, although it is difficult to definitely confirm allosteric mechanisms in vivo, the 

findings outlined above indicate that CGP7930 and GS39783 act via similar mechanisms as 

they do in vitro. The positive allosteric modulators of the GABAB receptor mimic/potentiate 

the effects of baclofen in behavioral animal models, but lack the severe side-effects of 

baclofen, which makes them valuable tools in GABAB receptor research. 

   

Other members of the family 3 GPCR, namely the CaSR and certain mGluRs, have been 

shown to be either directly activated or modulated by extracellular calcium, respectively 

(Kubo et al. 1998; Saunders et al. 1998). GABAB receptor function was also demonstrated to 

be susceptible to Ca
2+

 ions in two independent studies (Wise et al. 1999; Galvez et al. 2000b). 
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Sensitivity to a regulation by Ca
2+

-ions was observed in both native and recombinant GABAB 

receptors. In the GTP(γ)
35

S assay system, Ca
2+

 increased the potency, but not the maximal 

effect of GABA. Similar observations originated from other experimental systems, such as 

potassium channel regulation in Xenopus oocytes, measurement of IP turnover (via artificial 

coupling to the PLC pathway) or inhibition of forskolin-amplified adenylyl cyclase activity 

(cAMP). In all the experimental systems, apart from cAMP, baclofen was insensitive to the 

potentiation mediated by Ca
2+

 ions. Point mutation experiments have identified the Ser269 

residue on the GABAB(1), which lies in the close vicinity of the orthosteric ligand binding site 

(Galvez et al. 1999; Bernard et al. 2001), as being responsible for the effects of Ca
2+

 ions on 

GABAB receptor function (Galvez et al. 2000b). If a true allosteric mechanism underlies the 

effects of calcium ions on GABAB receptor function, the presence of Ca
2+

 should change the 

conformation of the receptor protein, possibly to optimize the binding of GABA in the 

binding pocket (see Galvez et al. 2000b for further discussion). Alternatively, it has been 

proposed that Ca
2+

 acts as a chelator of the carboxylic group of GABA and residues of Ser269 

and Tyr366 (Costantino et al. 2001). Whereas this alternative hypothesis provides an 

explanation for the insensitivity of baclofen to modulation by Ca
2+

, it is difficult to distinguish 

the two mechanisms experimentally. The facts that the EC50 of calcium, that is responsible for 

its enhancing actions, lies in the low micromolar range (37 µM) (Galvez et al. 2000b) and the 

concentrations of calcium in the cerebrospinal fluid being in the milimolar range, make it 

unclear whether calcium-mediated modulation of GABAB receptor function is of any 

physiological relevance, as in normal conditions the calcium site in the GABAB binding 

pocket is most likely saturated. However, under pathophysiological conditions such as 

epileptic seizures or ischemia, synaptic calcium concentrations might drop significantly 

(Pumain et al. 1983; Heinemann et al. 1986; Lazarewicz 1996). 

Arylalkylamine-like compounds and certain L-amino acids and dipeptides, which are known 

to allosterically modulate the CaSR (Hammerland et al. 1998; Nemeth et al. 1998; Conigrave 
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et al. 2000) have also been claimed to be positive allosteric enhancers of GABAB receptors 

(Kerr et al. 2002; Kerr and Ong 2003). Electrophysiological recordings in brain slices were 

used to demonstrate their action. The abovementioned compounds increased the potency and 

the maximal effect of baclofen to induce field potentials, without inducing field potentials by 

themselves when applied alone. However, in such an electrophysiological setup the enhancing 

effects of these compounds could well have been due to other mechanisms, not necessarily of 

allosteric nature, for example receptor-receptor cross-talk or downstream effects. Since we did 

not observe any effects of these compounds on the affinity or efficacy of GABA in various 

assay systems, more suitable for detecting true allosteric interactions (Urwyler, Gjoni et al. 

2004), it is unlikely that the mechanism of action of these compounds is of allosteric nature. 

The mechanism of action of these compounds, thus, remains unclear and more investigations 

are needed to answer that question. 

 

 

4.3. The questions addressed in this thesis 

During this PhD project, I have focused mostly on the positive allosteric modulators of 

GABAB receptors, evaluating their effects biochemically both in vitro and in vivo. 

Despite the comprehensive previous in vitro characterization of the positive allosteric 

modulators of GABAB receptors CGP7930 and GS39783, the effects these compounds exert 

upon ligands with different intrinsic properties (competitive antagonists and partial agonists) 

were not known. According to the theoretical models of receptor activation (see Subsection 

4.1.2.), all chemical species can be influenced by allosteric modulators. To address the 

question of the effects that positive allosteric modulators CGP7930 and GS39783 have on 

ligands other than agonists, I have examined both affinities and the efficacies of a number of 

GABAB receptor ligands and confirmed the theoretical predictions that antagonists and partial 
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agonists are also amenable to positive allosteric modulation. Moreover, CGP7930 and 

GS39783 have also been demonstrated to be excellent tools for elucidating the intrinsic 

properties of orthosteric ligands. See Chapter 5, Section 5.1. 

Secondly, as discussed in Section 4.1., allosteric modulators act only upon receptors 

stimulated by endogenous agonists and not upon the whole receptor population. This means 

that they affect the strength of the physiological signaling, while preserving the pattern of 

activation (e.g. patterns of neuronal signaling), unlike exogenous orthosteric agonists, which 

activate all their receptors, indiscriminately of the temporal and the spatial organization (see 

Figure 2). For this reason, one of the postulated advantages of allosteric over orthosteric 

ligands is that continuous activation involving positive allosteric modulation is less likely to 

induce receptor desensitization, compared to a lasting exposure to an orthosteric ligand. This 

assumption was tested in Chapter 5, Section 5.2. The approach used in this thesis was to 

continuously activate (both native and recombinant) GABAB receptors in vitro to the same 

extent, using either an orthosteric agonist or a combination of an orthosteric agonist and 

GS39783, and subsequently assess their functional responses and expression levels at the cell 

surface.  

Further, while studying GABAB receptor desensitization, surprising changes in behavior of 

ligands were observed in the recombinant cell line stably expressing the GABAB receptor 

upon receptor desensitization. A number of selective GABAB antagonists were found to have 

inverse agonistic efficacy, the partial agonist 2-OH-saclofen lost its efficacy and the positive 

modulator GS39783 now had an agonistic effect on its own. Nothing similar has been 

observed for the GABAB receptor so far, but there are a few reports on the µ-, δ- and κ-opioid 

and β2-adrenergic receptors describing similar phenomena. See Chapter 5, Section 5.3. 

Finally, effects of positive allosteric GABAB receptor modulators have been extensively 

studied in behavioral models (see Subsection 4.2.6.). While they were effective in, for 

example, many anxiety paradigms, the positive allosteric modulators were devoid of side-
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effects that are usually displayed by baclofen, such as sedation, muscle relaxation or 

locomotor impairment. Although, this is compatible with an allosteric enhancement, there 

were no studies demonstrating the allosteric mechanism of action in vivo. The final part of 

this thesis describes in vivo microdialysis experiments in rat striatum, measuring the second 

messenger cAMP as an assessment of GABAB receptor activation. It demonstrates that the 

effects of the positive allosteric modulator GS39783 on the GABAB receptor in vivo is similar 

to the one observed in vitro, strongly suggesting an allosteric mechanism of action in living 

animals (Chapter 5, Section 5.4.). 
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5. Results and discussions 
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5.1. Mechanisms of allosteric modulation at GABAB receptors by CGP7930 

and GS39783: effects on affinities and efficacies of orthosteric ligands with 

distinct intrinsic properties 
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Published in Neuropharmacology 48 (2005) 343-353, republished in this thesis with 

permission from Elsevier. 

 

All data in this study, except for the GTP(γ)
35

S assay, were produced by T. Gjoni 

(GTP(γ)
35

S was performed by scientific associates D.Monna and M. Horvath) 

 



 

45 
 

 

 

 

5.1.1. Abstract 

We determined the effects of the allosteric γ-aminobutyric acid B receptor modulators 

CGP7930 and GS39783 on binding and function of orthosteric ligands with distinct intrinsic 

properties. In radioligand binding (saturation or displacement) experiments, the affinities of a 

number of competitive antagonists were decreased by the modulators, with no change in 

receptor number. The binding curves of the partial agonist CGP47656 comprised a high and a 

low affinity component; the affinity of the former was increased by the allosteric agents. The 

maximal stimulation of GTP(γ)
35

S binding via recombinant GABAB receptors by CGP47656 

was increased 4-fold in the presence of 30 µM CGP7930 or GS39783. Two compounds 

known so far as “silent” competitive GABAB receptor antagonists, CGP35348 and 2-OH-

saclofen, did not stimulate GTP(γ)
35

S binding on their own, but became low efficacy partial 

agonists in the presence of the two modulators. The potency of GABA to inhibit the formation 

of cAMP induced by a forskolin analog in a recombinant CHO cell line expressing GABAB 

receptors was increased by the modulators. CGP35348 and 2-OH-saclofen, like CGP47656, 

were partial agonists on their own in this assay, and the allosteric modulators increased the 

potency as well as the efficacy of all three compounds. With CGP52432, there was a trend 

toward inverse agonism in the cAMP assay. These results show that the intrinsic properties of 

orthosteric ligands are highly dependent on the characteristics of the assay system used and 

that allosteric modulators are useful tools for elucidating these properties.  

 

Keywords: CGP7930; GS39783; GABAB receptor; Allosteric modulation; Affinity; Efficacy  
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Abbreviations: cAMP, cyclic 3',5'-adenosine-monophosphate; CHO, Chinese hamster ovary; 

7β-forskolin, 7-deacetyl-7-(O-N-methylpiperazino)-γ-butyryl-forskolin, dihydrochloride; 

GABA, γ-aminobutyric acid; GPCR, G-protein-coupled receptor; GTP(γ)S, guanosine 5'-O-

(3-thiotriphosphate); IBMX, isobutyl-methylxanthine; mGluR, metabotropic glutamate 

receptor; RIA, radioimmunoassay; SPA, scintillation proximity assay; TCM, ternary complex 

model; VFTM, Venus flytrap module; WGA, wheat germ agglutinin 

 

5.1.2. Introduction 

Allosteric modulators are molecules that bind to a site on a neurotransmitter or hormone 

receptor which is topographically distinct from the orthosteric binding pocket for agonists or 

competitive antagonists. Allosteric agents usually have little or no intrinsic agonistic activity 

of their own, but induce conformational changes in the receptor protein which affect its 

interaction with orthosteric ligands. The therapeutically widely used benzodiazepines are 

well-known examples of such drugs. They enhance the sensitivity of the ionotropic inhibitory 

GABAA receptor without stimulating it directly themselves and without affecting the 

magnitude of the maximal response. A number of allosteric enhancers are also known for G 

protein - coupled receptors (GPCRs) (for reviews see Christopoulos 2002; Christopoulos and 

Kenakin 2002; Jensen and Spalding 2004). Interestingly, several examples of allosteric drugs 

which not only enhance the potency, but also the intrinsic efficacy of agonists at GPCRs have 

been recently described for GABAB (Urwyler et al. 2001 and 2003), metabotropic glutamate 

mGluR1 (Knoflach et al. 2001), mGluR2 (Schaffhauser et al. 2003) and mGluR4 (Maj et al. 

2003; Mathiesen et al. 2003), as well as adenosine A3 receptors (Gao et al. 2002).  

Several theoretical receptor models describe various aspects of ligand binding and receptor 

activation. The two state - model (reviewed by Leff 1995; Fig. 3 in Chapter 4) asserts that a 
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receptor exists in two interconvertible conformations, a resting (R) and an activated (R
*
) state. 

The spontaneous formation of R
*
 without agonist binding is the basis for constitutive receptor 

activity. The binding of an agonist stabilizes the activated form R
*
 (α > 1), whereas an inverse 

agonist preferentially binds to and shifts the equilibrium to the resting state (α < 1). 

Competitive antagonists block the access of agonists to their binding site, but are themselves 

neutral in terms of receptor activation (α = 1). This model thus accounts for intrinsic 

efficacies (α) of orthosteric ligands, but does not allow understanding the effects of allosteric 

drugs. Changes in the binding affinity of orthosteric ligands induced by allosteric agents have 

traditionally been described by a ternary complex model (TCM) (Fig. 4 in Chapter 4), which 

was originally designed for the regulation of agonist binding by receptor - G-protein coupling 

(De Lean et al. 1980), but also encompasses mechanisms of reciprocal regulation of the 

binding of two low molecular weight compounds to distinct sites on the same receptor 

protein. However, this model does not take into account the degree of agonist-induced 

receptor activation. Although the “allosteric ternary complex model” (Lefkowitz et al. 1993) 

was a first attempt to combine the two previous  models, the newly observed phenomenon 

that allosteric modulators in some cases enhance both agonist affinity and efficacy (see 

above), is accommodated only by more recently developed theoretical concepts (Hall 2000; 

Christopoulos and Kenakin 2002). An extension of the two state model of receptor activation 

(Hall 2000; Fig. 5 in Chapter 4), introduces the allosteric constant δ, by which the intrinsic 

efficacy α of a ligand is modified. This model treats the allosteric interactions in purely 

numerical terms, i.e. the constants γ and δ are a priori independent of the qualitative 

(agonistic or antagonistic) nature (i.e., the values of α) of the orthosteric ligand. Therefore, 

antagonists or inverse agonists should be amenable as much as agonists to allosteric 

modulation. Recent concepts state that compounds devoid of any intrinsic activity (α exactly 
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equaling one) are likely to be rare, and that most compounds considered being “silent” 

competitive antagonists are in fact low efficacy partial agonists or inverse agonists 

 

 

Fig. 1. Chemical structures of the compounds tested and referred to in this study. Agonists: GABA, 

baclofen, APPA. Partial agonist: CGP47656. Allosteric modulators: CGP7930, GS39783. The other 

compounds shown are known from the literature (Bowery et al. 2002) as competitive antagonists, but 

some of them were found in this study to be partial (CGP35348, 2-OH-saclofen) or inverse 

(CGP52432) agonists. 
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(Strange 2002; Milligan 2003; Kenakin 2004). The detection of these properties is highly 

dependent on the assay system used. In this study, we have tested and confirmed these various 

predictions by examining the effects of the two GABAB receptor modulators CGP7930 and 

GS39783 (Urwyler et al. 2001 and 2003) on a number of well known orthosteric ligands 

(Bowery et al. 2002) with distinct intrinsic efficacies (Fig. 1). In particular, we show that 

allosteric modulators decrease the affinities of competitive antagonists and strongly increase 

the efficacies of partial agonists, thus revealing intrinsic activities of compounds previously 

believed to be “silent” antagonists. 

 

5.1.3. Materials and methods 

Radioligand binding experiments: The binding of [
3
H]-CGP62349 (85Ci/mMol, American 

Radiolabeled Chemicals Inc., St. Louis, MO) to rat cortical membranes was measured in the 

scintillation proximity assay (SPA) format as described previously (Urwyler et al. 2003). The 

assay mixture in a final volume of 250 µl contained 20 mM Tris-HCl buffer (pH 7.4), 118 

mM NaCl, 4.7 mM KCl, 1.8 mM CaCl2, 1.2 mM KH2PO4, 1.2 mM MgSO4, 5 mM D-glucose, 

1 nM [
3
H]-CGP62349 (or differing concentrations in saturation experiments), the test 

compounds at the desired concentrations, rat cortical membranes (ca. 15 µg protein), and 1.5 

mg wheat germ agglutinin (WGA) - coated SPA beads (Amersham Biosciences, Little 

Chalfont, Buckinghamshire, UK). Non-specific binding was assessed in the presence of 5 µM 

CGP56999. The samples were incubated for 90 min at room temperature, before being 

counted in a Wallac 1450 Microbeta liquid scintillation counter. Saturation and displacement 

curves were analyzed with nonlinear regression using Prism 3.0 (GraphPad software, San 

Diego, CA). 
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GTP(γ)
35

S assay: These experiments using membranes from Chinese hamster ovary (CHO) 

cells stably expressing GABAB receptors were also performed as described previously 

(Urwyler et al. 2001). The composition of the assay mixtures (in a final volume of 250µl in 

96-well clear-bottom microtiter plates [WALLAC Isoplates
TM

]) was as follows: 50 mM Tris-

HCl buffer, pH 7.7; 10 mM MgCl2; 0.2 mM EGTA; 2 mM CaCl2; 100 mM NaCl; 10 µM 

guanosine 5‘-diphosphate (Sigma Chemical, Buchs, Switzerland), 50 µl of the membrane 

suspension (approximately 10-20 µg of protein), 1.5 mg WGA-coated SPA beads (Amersham 

Biosciences), 0.3 nM GTP(γ)
35

S (ca 1000 Ci/mmol, stabilized solution, Amersham 

Biosciences), and the test compounds at the appropriate concentrations. Non-specific binding 

was measured in the presence of unlabelled GTP(γ)S (10 µM, Sigma). The samples were 

incubated at room temperature for 60 min, before the SPA beads were sedimented by 

centrifugation at 2600 rpm for 10 min. The plates were then counted in a Wallac 1450 

Microbeta liquid scintillation counter. For data analysis, basal activity, measured in the 

absence of agonist, was subtracted from all the other values. The effects of test compounds 

were calculated relative to the stimulation above baseline obtained with a maximally active 

concentration (100µM) of GABA. Concentration - response curves were analyzed by non-

linear regression using GraphPad Prism 3.0. 

 

Adenylyl cyclase assays: A stable CHO cell line co-expressing human GABAB(1b) together 

with rat GABAB(2) (Urwyler et al. 2001) was used for these experiments. The cells were 

cultured in Dulbecco's modified eagle medium (DMEM, glutamine-free, Invitrogen, Basel, 

Switzerland) supplemented with 10% fetal calf serum, 20µg/ml L-proline, 500µM glutamine, 

1mg/ml geneticin, 250µg/ml zeocin. The cells were grown to 80-90 % confluency in 15 cm 

cell culture dishes. For the cyclic 3',5'-adenosine-monophosphate (cAMP) measurements, the 

cells were treated with DMEM supplemented with 1 mM 3-isobutyl-1-methylxanthine 
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(IBMX) (Fluka, Buchs, Switzerland) for 15 minutes at 37°C and 5% CO2. The cells were 

harvested by trypsinization, resuspended in Hepes buffer (Invitrogen) supplemented with 1 

mM IBMX and 2 mM CaCl2 and splitted into 96-well clear-bottom microtiter plates 

[WALLAC Isoplates
TM

]) at a density of 15’000 – 30’000 cells per well. The cell suspension 

was then incubated for 20 minutes at 37
o
C in a total volume of  45µl with Hepes buffer 

containing IBMX (1 mM), CaCl2 (2 mM), the water-soluble forskolin analog 7-deacetyl-7-(O-

N-methylpiperazino)-γ-butyryl-forskolin dihydrochloride (7β-forskolin, Calbiochem, Juro 

Supply, Lucerne, Switzerland) (100µM), and  the test compounds at the concentrations given 

in the Subsection 5.1.4. The amount of cAMP formed was quantified by radioimmunoassay 

(RIA)  following the cAMP SPA Biotrak direct screening assay system protocol from  

Amersham Biosciences: At the end of the incubation period, 5µl of lysis reagent (containing 

dodecytrimethylammonium bromide [10%]) were added to each well. After 5 minutes of 

shaking, 150µl of immunoreagent solution (containing rabbit anti-succinyl cAMP serum, 

donkey anti-rabbit IgG second antibodies coated at the surface of SPA beads, and adenosine 

3',5'-cyclic phosphoric acid 2'-O-succinyl-3-[
125

I]iodotyrosine methyl ester as a tracer) were 

added to each sample. The plates were incubated at room temperature for 15-20 hours and 

then counted on a WALLAC 1450 microbeta Trilux scintillation counter. The quantification 

of the cAMP formed was performed with the aid of an appropriate RIA cAMP standard curve. 

 

Protein concentrations were measured with the Bradford assay method, using the Bio-Rad 

protein assay kit and bovine serum albumin as a standard. 

 

Chemicals: The sources of commercially obtained chemicals are given above. The GABAB 

receptor modulators GS39783 and CGP7930, as well as the orthosteric ligands tested in this 

study (Fig. 1) were all available in house. Stock solutions were usually prepared in DMSO 
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and subsequently diluted in the respective assay buffers. The final DMSO concentrations 

usually did not exceed 0.3% and did not interfere with the measured parameters. 

 

5.1.4. Results  

Saturation binding experiments with [
3
H]-CGP62349. The effects of the allosteric 

modulators CGP7930 and GS39783 in saturation binding experiments with [
3
H]-CGP62349 

are shown in Fig. 2. Both compounds slightly, but significantly and consistently, decreased 

the affinity of this antagonist radioligand for native GABAB receptors in rat cortical 

membranes. In fact, the Kd was significantly increased from 0.54 ± 0.04 nM (without 

modulator, mean ± SEM, N = 4) to 0.83 ± 0.04 nM (p < 0.05) or to 0.92 ± 0.11 nM (p < 0.01) 

in the presence of 30 µM CGP7930 or 30 µM GS39783, respectively. These Kd values were 

used accordingly for the conversion of IC50 values obtained in subsequent displacement 
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Fig. 2. Effects of allosteric modulators on the binding of the antagonist radioligand [
3
H]-

CGP62349 to native GABAB receptors in rat cortical membranes. Saturation curves were 

measured in the absence of modulators (filled squares) or in the presence of CGP7930 (30 µM, 

squares) or GS39783 (30 µM, circles). The mean Kd and Bmax-values from four such experiments are 

given in the text. 

 



 

53 
 

 

 

 

experiments into their corresponding Ki-values. On the other hand, Bmax-values for [
3
H]-

CGP62349 binding remained unchanged upon the addition of the two modulators (in 

pmol/mg protein: control 4.5 ± 0.4; with CGP7930: 4.4 ± 0.3; with GS39783: 4.6 ± 0.4). 

 

Effects of allosteric modulators on the displacement of [
3
H]-CGP62349 by orthosteric 

GABAB receptor ligands. Some representative curves illustrating the displacement of the 

antagonist radioligand [
3
H]-CGP62349 from native GABAB receptors in rat cortical 

membranes are shown in Fig. 3. 
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Fig. 3. Displacement of [
3
H]-CGP62349 from native GABAB receptors in rat cortical membranes 

by, from left to right, CGP54626 (open symbols, solid lines), CGP47656 (filled symbols, solid lines), 

SCH50911 (open symbols, dotted lines) and 2-OH-saclofen (filled symbols, dotted lines). Diamonds: 

control curves; triangles: curves measured in the presence of 30 µM GS39783; inverted triangles: 

curves with 30 µM CGP7930. The graph shows typical curves from a single experiment; a summary of 

the data from a number of such experiments is given in Table 1. 
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The curve fit parameters for all the compounds tested are given in Table 1. Best curve fits 

were obtained with a one-site model in all cases, with the exception of CGP47656. The 

displacement curves with this partial agonist were shallow (Fig. 3), consisting of a high 

affinity and a low affinity component (Table 1). The affinities of the high affinity, but not of 

the low affinity, sites were significantly increased by the allosteric modulators CGP7930 and 

GS39783 (Table 1). The relative proportion of high affinity sites was also increased, although 

this change did not quite reach statistical significance (ANOVA: p = 0.07). The inhibition 

 

Displacing 

ligand 

pKi control  

(-log M) 
Ki  

pKi with 30µM 

CGP7930 

(-log M) 

Ki  
pKi with 30µM 

GS39783 

(-log M) 

Ki  

CGP35348 5.11 ± 0.05 (6) 7.7 µM
 

5.18 ± 0.08 (6) 6.6 µM
 

5.20 ± 0.07 (6) 6.3 µM 
 

CGP47656 7.15 ± 0.05  

(44 ± 3.4 %) 

5.97 ± 0.12 (6) 

71 nM 

 

1.07 µM 

7.39 ± 0.10  * 

(54 ± 2.9 %) 

6.01 ± 0.18 (6) 

41 nM 

 

0.98 µM 

7.45 ± 0.10 * 

(53 ± 2.6 %) 

6.06 ± 0.10 (6) 

35n M 

 

0.87 µM 

CGP52432 7.25 ± 0.10 (4) 57 nM
 

7.09 ± 0.12 (4) * 81 nM
 

7.04 ± 0.08 (4) ** 91 nM
 

CGP54626 8.44 ± 0.05 (4) 3.6 nM 8.39 ± 0.09 (4) 4.1 nM 8.23 ± 0.04 (4) * 5.9 nM 

CGP56999 9.60 ± 0.06 (4) 0.25 nM 9.37 ± 0.04 (3) * 0.43 nM 9.39 ± 0.03 (3) * 0.41 nM 

CGP62349 9.26 ± 0.05 (8) 0.55 nM 9.07 ± 0.05 (8) ** 0.85 nM 8.99 ± 0.06 (8) ** 1.02 nM 

2-OH-saclofen 4.62 ± 0.05 (8) 24 µM 4.66 ± 0.05 (8) 21.9 µM 4.70 ± 0.07 (8) 20 µM 

SCH50911 6.30 ± 0.08 (4) 0.5 µM 6.17 ± 0.09 (4) ** 0.68 µM 6.11 ± 0.11 (4) ** 0.78 µM 

 

 

Table 1. Effects of CGP7930 and GS39783 on the affinities of orthosteric ligands for native 
GABAB receptors from rat cortical membranes in radioligand binding assays. The binding of 

[
3
H]-CGP62349 to membranes from rat brain cortex was measured as described in the Subsection 

5.1.3. Inhibition curves with the ligands shown as displacers were constructed as illustrated in Fig. 3. 

Best curve fits were obtained with a one-site model in all cases, with the exception of CGP47656 (the 

relative proportion of high affinity sites is given in percent). The results shown are means ± SEM from 

(N) independent experiments. *: p<0.05, **: p<0.01 compared to the corresponding control values 

(ANOVA / Dunnett’s test).  
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curves of the other compounds, previously described as competitive GABAB receptor 

antagonists, seemed to be little affected or, in some cases, slightly shifted toward lower 

concentrations by the two allosteric modulators (Fig. 3). However, a precise calculation of the 

corresponding Ki-values, taking into account the modulator effects on the affinity of the 

radioligand (Cheng and Prusoff 1973), revealed a slight, but significant decrease in binding 

affinities for most orthosteric ligands (Table 1). The only noteworthy exceptions were 

CGP35348 and 2-OH-saclofen. The affinities of these two compounds were slightly, but not 

significantly, increased in the presence of the allosteric modulators. 

 

Effects on allosteric modulators on orthosteric ligands in GTP(γ)
35

S assays (experiments 

performed by scientific associates D. Monna and M. Horvath). The compound CGP47656 

stimulated GTP(γ)
35

S binding to recombinant GABAB receptors to maximally 25% of the 

maximal effect of GABA, and thus was found to be a partial agonist (Fig. 4, Table 2). In the 

presence of the allosteric modulators CGP7930 or GS39783 (30 µM each), the maximal 

stimulation obtained by CGP47656 was substantially increased by about 4-fold, to about the 

same maximal effect as the one obtained with a saturating concentration of GABA alone (Fig. 

4). The potency of CGP47656 in this assay was increased by 2- to 3-fold by the two 

modulators (Table 2). 

Some compounds previously described as competitive GABAB receptor antagonists 

(CGP35348, CGP52432, CGP54626, CGP56999, CGP62349, 2-OH-saclofen and SCH50911) 

were also tested in the GTP(γ)
35

S assay. As expected, when applied alone at different 

concentrations in the range of their antagonist potencies (or binding affinities), none of them 

stimulated GTP(γ)
35

S binding, confirming that these compounds are devoid of intrinsic 

agonistic activity in this assay (see Fig. 4 for two representative examples). However, in the 

presence of 30 µM GS39783 or CGP7930, two of the antagonists, CGP35348 and 
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Fig. 4. GTP(γ)
35

S binding to membranes from a recombinant CHO cell line stably expressing 
GABAB receptors. The stimulation of GTP(γ)35S binding by CGP47656 (top), CGP35348 (middle) 

and 2-OH-saclofen (bottom) was measured in the absence of modulators (squares) or in the presence 

of 30 µM CGP7930 (triangles) or 30 µM GS39783 (circles). The data represent the stimulation above 

basal activity relative to the effect of a maximally active concentration of GABA (100 µM) alone. The 

data points are means ± SEM from quadruplicate determinations. 
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Control + 30µM CGP7930 +30µM GS39783 

compound 
pEC50 

(-log M) 

EC50 

(µM) 

Max. 

Effect  

(%) 

pEC50 

(-log M) 

EC50 

(µM) 

Max. 

Effect  

(%) 

pEC50 

(-log M) 

EC50 

(µM) 

Max. 

Effect  

(%) 

CGP47656 
5.98 ± 0.08 

(4) 
1.11 25 ± 2.7 

6.43 ± 0.07 

(5) ** 
0.39 

105 ± 12  

** 

6.33 ± 0.07 

(5) * 
0.50 

109 ± 10  

** 

CGP35348 -- --  0 
5.7 ± 0.04 

(7) 
2.1 36 ± 3  ** 

5.5 ± 0.07 

(7) 
3.0 

37 ± 5 

** 

2-OH-

saclofen 
-- --  0 

5.11 ± 0.18 

(4) 
7.76 

31 ± 2.9 

** 

4.96 ± 0.10 

(4) 
11 

35 ± 4 

** 

 

Table 2. Effects of allosteric modulators on potencies and efficacies of a partial agonist and 

neutral antagonists to enhance GTP(γγγγ)
35

S binding stimulated by recombinant GABAB receptors 
expressed in CHO cells. Concentration-response curves for CGP47656, CGP35348 and 2-OH-

saclofen (Fig. 4) were measured in membranes from CHO cells stably expressing GABAB receptors, in 

the absence and in the presence of a fixed concentration (30µM) of allosteric modulators. The 

maximal stimulation above basal activity (i.e., the relative intrinsic efficacy of partial agonists) is 

expressed in percent of the effects obtained with a saturating concentration of GABA (100µM) alone. 

The Hill-coefficients of the concentration-response curves were not significantly different from one. 

The data shown are means ± SEM from (N) independent experiments.  *: p<0.05, **: p<0.01 

compared to the corresponding control values (ANOVA / Dunnett’s test). Because CGP35348 and 2-

OH-saclofen were inactive under control conditions, this statistical analysis could not be performed for 

the pEC50 values of these two compounds. Their maximal effects, however, were significantly 

different from zero (** p < 0.01, one sample t-test). 

 

2-OH-saclofen, stimulated GTP(γ)
35

S binding to maximally 30–40% of the full GABA effect, 

i.e., they became partial agonists at the GABAB receptor (Fig. 5 and Table 2). The other 

antagonists tested remained “neutral” or “silent” in the GTP(γ)
35

S binding experiments, also 

in the presence of the two allosteric modulators (data not shown). 

 

Regulation of cAMP formation in a recombinant cell line stably expressing GABAB 

receptors. The stimulation of adenylyl cyclase activity by the forskolin analog 7β-forskolin 

(Laurenza et al. 1987) in a recombinant GABAB receptor expressing CHO cell line was 

inhibited by GABA in a concentration-dependent manner (Fig. 5a). The inhibition of cAMP 

formation by GABA was reverted by the competitive antagonist CGP56999, and no effect of 
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GABA was seen in CHO cells which had not been transfected with cDNA encoding the 

GABAB receptor (data not shown). The potency of GABA was enhanced by CGP7930 and 

GS39783; although GABA produced a close to full inhibition of adenylyl cyclase activity by 

itself, a small further increase in the maximal inhibition by the modulators was seen as a trend 

(Fig. 5a, Table 3). As can be seen from the respective control levels in Fig. 5,  CGP7930 and 

GS39783 produced a small inhibition of cAMP formation by themselves. Although this effect 

was observed quite consistently in our experiments, its small magnitude precluded 

determining EC50 values for the two modulators. With the partial agonist CGP47656, an 

increase of both the potency and the maximal effect of adenylyl cyclase inhibition was 

observed in the presence of the modulators. In this assay system, CGP35348 and 2-OH-

saclofen, applied alone, turned out to be low efficacy partial agonists. Again, both 
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Fig. 5. 7β-forskolin stimulated adenylyl cyclase activity in a recombinant CHO cell line stably 

expressing GABAB receptors. The inhibition of cAMP formation by GABA (a), CGP47656 (b), 2-

OH-saclofen (c) and CGP35348 (d) was measured in the absence (filled squares) or in the presence of 

10µM CGP7930 (filled triangles) or 10 µM GS39783 (filled circles). The control values in the absence 

or presence of the modulators are indicated by the corresponding open symbols. The dotted lines 

represent basal cAMP levels. The data shown represent means ± SEM from triplicate (controls: 

quadruplicate) determinations. The results from several such experiments are summarized in Table 3.  
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Control + 10 µM CGP7930 +10 µM GS39783  

 

Compound 

pEC50 

(-log M) 

EC50 

 

M
ax

.e
ff

ec
t 

 

(%
 i

n
h
ib

it
io

n
)  

pEC50 

(-log M) 

EC50 

 

M
ax

. 
ef

fe
ct

  

(%
 i

n
h
ib

it
io

n
) 

pEC50 

(-log M) 

EC50 

 

M
ax

. 
ef

fe
ct

 

(%
 i

n
h
ib

it
io

n
) 

GABA 
7.08 ± 0.05 

(7) 
83 nM 83 ± 1 

7.45 ± 0.09 

(7) ** 
35 nM 86 ± 1.8 

7.64 ± 0.09 

(6) ** 
23 nM 85 ± 1.4 

CGP47656 
6.62 ± 0.09 

(4) 
240 nM 70 ± 4.9 

6.95 ± 0.07 

(4) * 
112 nM 

78 ± 2.8 

* 

7.04 ± 0.11 

(4) * 
91 nM 

79 ± 3.2 

* 

CGP35348 
5.41 ± 0.05 

(5) 
3.9 µM 55 ± 4.7 

5.72 ± 0.16 

(4)  
1.9 µM 

71 ± 1.9 

* 

5.83 ± 0.08 

(4) * 
1.5 µM 67 ± 5.3 

2-OH-saclofen 
4.65 ± 0.08 

(6) 
22.4 µM 46 ± 8.9 4.97 ± 0.35 10.8 µM 55 ± 6 

5.13 ± 0.29 

(6)  * 
7.5 µM 

65 ± 8.4 

** 

 

 

Table 3. Effects of allosteric modulators on the potencies and efficacies of partial and full agonists to 

inhibit adenylyl cyclase activity in a recombinant GABAB receptor expressing cell line. Concentration-

response curves for GABA, CGP47656, CGP35348 and 2-OH-saclofen (Fig. 5) were measured in 

CHO cells stably expressing GABAB receptors, in the absence and in the presence of a fixed 

concentration (10µM) of allosteric modulators. The maximal effects are expressed in percent 

inhibition of the control stimulation obtained with 100 µM 7β-forskolin above basal cAMP levels. The 

Hill-coefficients of the concentration-response curves were not significantly different from one. The 

data shown are means ± SEM from (N) independent experiments.  *: p<0.05, **: p<0.01 compared to 

the corresponding control values (ANOVA / Dunnett’s test).  

 

 

 

their potencies and maximal efficacies were enhanced by CGP7930 and GS39783 (Fig. 5, 

Table 3). With CGP52432, results suggestive of inverse agonism were seen as a trend (data 

not shown); it marginally increased the formation of cAMP induced by 7β-forskolin by 

maximally 25 ± 5%. The inverse agonistic potency of CGP52432 seemed to be decreased by 

the allosteric modulators (pEC50 = 6.6 ± 0.2 and 6.8 ± 0.2 in the presence of 10µM CGP7930 

or GS39783, respectively, compared to 7.5 ± 0.1 (N=7) in the absence of modulators). The 



 

60 
 

 

 

 

other compounds tested (CGP54626, CGP56999, CGP62349 and SCH50911) did not affect 

7β-forskolin stimulated cAMP formation (data not shown). 

 

5.1.5. Discussion 

According to the TCM (Fig. 4 in Chapter 4) an orthosteric and an allosteric ligand mutually 

influence each other’s binding affinities to the same extent, which is determined by the 

allosteric constant γ. The formalism of the TCM does not at all take into account the intrinsic 

efficacies of the compounds, i.e. whether the orthosteric ligand is an agonist or an antagonist. 

Therefore, the binding affinities of competitive antagonists are expected to be amenable to 

allosteric modulation like those of agonists. This prediction has been entirely confirmed in the 

present study. In saturation experiments, it has been shown that the affinity of the antagonist 

radioligand [
3
H]-CGP62349 for native GABAB receptors is decreased by the allosteric 

modulators CGP7930 and GS39783, whereas the maximal binding capacity remains 

unchanged (Fig. 2). The affinities of several other compounds previously known to be 

GABAB receptor antagonists CGP52432, CGP54626, CGP56999, CGP62349 (Froestl and 

Mickel 1997; Bowery et al. 2002) and SCH50911 (Bolser et al. 1995) were also decreased in 

displacement experiments (Table 1). Only with 2-OH-saclofen (Kerr et al. 1988) and 

CGP35348 (Olpe et al. 1990) a small, but not significant, trend toward an increase in binding 

affinity was observed in the presence of the two modulators (Table 1). However, these two 

compounds were found in our functional assays not to be completely devoid of intrinsic 

agonist activity (see below). Previously, we have observed that CGP7930 and GS39783 

produced increases in the affinities of both high affinity (G protein – coupled) and low affinity 

states of native GABAB receptors for agonists (Urwyler et al. 2003; Urwyler, Gjoni et al. 

2004). At the same time, the relative proportion of high agonist affinity states was increased 

by the modulators. In the experiments shown here, we also found biphasic binding curves 
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with CGP47656, but only the high affinity component was affected by the modulators (Table 

1). It seems possible that the somewhat lesser effects of the two modulators on the binding of 

CGP47656 to GABAB receptors are related to the partial agonistic nature of this compound. 

 

Similar to the allosteric constant γ in the TCM (affecting binding affinities), the extended two-

state model of receptor activation (Hall 2000) introduces a factor δ by which the intrinsic 

efficacy of an orthosteric ligand (α) may change under the influence of an allosteric agent. 

This concept explains the finding, quite unique at the time of the discovery of CGP7930, that 

allosteric modulators are able to increase the maximal GABAB receptor stimulation produced 

by agonists. Here we show that the same phenomenon occurs with the partial agonist 

CGP47656 (Froestl et al. 1995; Knight and Bowery 1996). The efficacy of this compound 

was modulated by CGP7930 and GS39783 even more strongly than that of GABA. In fact, in 

the GTP(γ)
35

S assay its maximal effect was increased by about a four-fold by both modulators 

(Fig. 4, Table 2), whereas 1.5 to 2-fold increases were reported previously for their effects on 

GABA (Urwyler et al. 2001 and 2003). Apparently, the less  efficacious receptor activation 

with a partial agonist leaves more room for positive modulation. Different degrees of 

increases in efficacies produced by an allosteric modulator with different partial or full 

agonists have also recently been reported for the mGluR2 receptor (Schaffhauser et al. 2003). 

 

We have found two compounds, CGP35348 and 2-OH-saclofen, which did not stimulate 

GTP(γ)
35

S binding at all on their own, but became partial GABAB receptor agonists in the 

presence of the allosteric modulators (Fig. 4). These compounds are both structurally closely 

related to two well known GABAB receptor agonists, APPA and baclofen (Fig. 1). Like that 

of other “family 3” GPCRs, the orthosteric binding site of GABAB receptors consists of a 

“Venus flytrap module” (VFTM), two hinge lobes in the large extracellular domain, which 
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oscillate between open and closed states. The binding of an agonist in the cleft between the 

lobes causes them to close, whereby the agonist is trapped (Galvez et al. 1999 and 2000a; Pin 

et al. 2003). It seems that although CGP35348 and 2-OH-saclofen are still able to bind to the 

receptor pocket, the chemical modifications which distinguish them from APPA and baclofen 

prevent them from activating the receptor by closing the VFTM (smaller modifications in 

CGP47656, compared to CGP35348 [Fig. 1], result only in a partial loss of efficacy). 

However, the conformational change induced in the receptor by the allosteric modulators 

obviously results in a better fit of these molecules, not only increasing their affinities, but to a 

certain extent also their intrinsic efficacies. Another example of changes in the receptor-ligand 

interaction at the orthosteric binding site of a family 3 GPCR, which convert antagonists into 

agonists has been reported by Bessis et al. (2002). In that case, structural changes in the 

VFTM (site directed mutations of two critical amino acids) converted two mGluR8 

antagonists into agonists. In our case, it does not become clear from the GTP(γ)
35

S 

experiments whether the modulators confer partial agonistic activity to otherwise completely 

silent antagonists (α = 1,  δ > 1), or whether CGP35348 and 2-OH-saclofen possess some 

marginal agonistic properties, which cannot be detected in this assay under normal 

circumstances but are unmasked by the allosteric modulators. According to recent concepts, 

neutral antagonists that bind to receptors without altering the equilibrium between their active 

and inactive states at all, i.e. having an intrinsic efficacy constant α of exactly one (Figs 3, 4 

and 5 in Chapter 4) are likely to be rare (Kenakin 2004). Compounds appearing at first as 

“silent” antagonists may in reality be low efficacy partial agonists or inverse agonists (Strange 

2002; Kenakin 2004). The detection of inverse agonism depends on the availability of an 

assay system with measurable constitutive receptor activity f. On the other hand, the detection 

of low efficacy partial agonism is facilitated in a system with a high degree of receptor 

reserve.  
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GABAB receptor agonists inhibit forskolin-stimulated activity of adenylyl cyclase in native 

and recombinant assay systems (Wojcik and Neff 1984; Karbon and Enna 1985; Hirst et al. 

2003). Recently, it has been shown that CGP7930 enhances this effect in rat brain 

preparations (Onali et al. 2003), and here we show the same to occur with both modulators in 

a recombinant cell line expressing GABAB receptors (Fig. 5, Table 3). In this assay system, 

the partial agonist CGP47656 had an intrinsic efficacy which was higher than that found in 

GTP(γ)
35

S experiments (Fig. 4). This discrepancy is likely due to the existence of a large 

receptor reserve in the cAMP assay system, as suggested by the much higher potency of  

GABA (EC50 = 83 nM) when compared to the GTP(γ)
35

S assay (EC50 = 4.9 µM, Urwyler et 

al. 2001). This interpretation is further corroborated by the finding that the partial agonistic 

nature of CGP35348 and 2-OH-saclofen, which was hidden in the GTP(γ)S assay and only 

revealed by the allosteric modulators, was visible in the cAMP assay even when the 

compounds were applied on their own. Both the potencies and the maximal inhibitions 

produced by CGP47656, CGP35348 and 2-OH-saclofen were enhanced by GS39783 and 

CGP7930. Interestingly, the allosteric modulators CGP7930 and GS39783 also had some 

small inhibitory effect on cAMP formation on their own, whereas they had been found 

previously to be devoid of any intrinsic activity at GABAB receptors in various assay systems 

(Urwyler et al. 2001 and 2003). This is again in line with the existence of a large receptor 

reserve in the cAMP signaling pathway. Recently, Binet et al. (2004) have also reported that 

CGP7930 is a partial agonist in a seemingly even more sensitive assay system with a high 

degree of receptor reserve, by directly activating the heptahelical domain of GABAB(2). This is 

not at variance with the concept of allosteric modulation, since the extended ternary complex 

model allows for allosteric modulators having some efficacy on their own via the allosteric 

binding site (β, see Fig. 5 in Chapter 4). SCH50911 and CGP54626 have recently been 
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reported to be inverse agonists in cAMP assays with recombinant GABAB receptors 

(Grünewald et al. 2003; Hirst et al. 2003). We found inverse agonism as a trend only with 

CGP52432. It is not clear whether low intrinsic inverse agonist efficacies or a small 

constitutive activity of the GABAB receptor in our recombinant cell line explain why we have 

not detected any inverse agonism with SCH50911 and CGP54626, and possibly also with 

CGP56999 and CGP62349. 

 

In conclusion, this study shows that agonists and competitive antagonists at GABAB receptors 

are amenable to allosteric modulation by CGP7930 and GS39783. Whereas the positive 

modulators enhance agonist affinity by further stabilizing the closed conformation of the 

VFTM, they decrease the affinities of silent competitive antagonists or inverse agonists, 

which bind to or even stabilize the open state of the VFTM. They also enhance the intrinsic 

efficacies of partial and full agonists, thus making possible the detection of partial agonism in 

little sensitive systems such as the GTP(γ)
35

S assay. The cAMP signaling cascade in a 

recombinant cell line, due to its high degree of receptor reserve, also is a very sensitive assay 

system to detect partial agonism at the GABAB receptor. Compounds believed to be “silent” 

competitive antagonists are often used as tools for pharmacological studies in vitro and in 

vivo. In a physiological context, especially in vivo and unlike in a recombinant cell line, 

important variables such as constitutive receptor activity and receptor reserve are largely 

unknown, and hidden partial or inverse agonistic effects of such compounds might introduce 

unpredictable confounding effects. Therefore, powerful tools, such as suitable cellular assay 

systems in conjunction with allosteric modulators, to unmask the true intrinsic properties of 

orthosteric ligands, should be of great value. 
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5.2.1. Abstract 

Allosteric modulators act more physiologically than orthosteric ligands, targeting only 

endogenously activated receptors and not their whole population, which is why they are 

expected to produce less side-effects and tolerance. To inspect the role of the positive 

allosteric modulator GS39783 in GABAB receptor desensitization, we examined receptor 

function and cell surface expression in a recombinant GABAB cell line and in primary 

neuronal cultures upon persistent treatments with GABAB agonists, and combinations of 

agonists and GS39783. The potency of GABA to inhibit 7β-forskolin-induced cAMP 

formation in recombinant cells decreased after the exposure to a saturating GABA 

concentration, but not after a combination of a low GABA concentration and GS39783, that 

activated the receptor to the same extent. Concordantly, a significant decrease of cell surface 

receptors was found after GABA-induced desensitization, unlike after the combined treatment 

with GABA and GS39738. Similar observations regarding receptor function were found in 

primary neurons for baclofen-induced inhibition of spontaneous Ca
2+

 oscillations. However, 

the cell surface receptor density remained unaffected upon baclofen-induced desensitization 

in the primary neurons, possibly due to different mechanisms of desensitization in the neurons 

and the recombinant cell line. These findings indicate that the degree of occupancy of the 

orthosteric site determines desensitization rather than  the degree of receptor activation. In 

summary, our results conform to predictions that positive allosteric modulators have less 

propensity for the development of tolerance due to receptor desensitization than classical 

agonists. 

 

Abbreviations: GABA, γ-aminobutyric acid; GPCR, G-protein-coupled receptor; mGluR 

metabotropic glutamate receptor; CHO, Chinese hamster ovary; CNS, central nervous system; 

CPA, N
6
-cyclopentyladenosine; GTP(γ)S, guanosine 5'-O-(3-thiotriphosphate); DIV, day in 
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vitro; FLIPR, fluorescence imaging plate reader; HBSS, Hanks’ buffered salt solution; HEK, 

human embryonic kidney.   

 

 5.2.2. Introduction 

G-protein coupled receptors (GPCRs) represent the most “popular” drug targets in modern 

pharmacology: more than 1000 membrane-bound receptors compose the GPCR superfamily 

and almost 40% of all the pharmaceuticals on the market today act through them, mainly by 

binding as agonists or antagonists to the same (“orthosteric”) site as their endogenous ligands  

(Hopkins and Groom 2002; Maudsley et al. 2005). The use of such drugs is, however, often 

limited by their side-effects and/or receptor up- and downregulation underlying tolerance 

(Gainetdinov et al. 2004). 

Allosteric modulation, an alternative way of acting at GPCRs, is expected to be devoid of 

abovementioned disadvantages. Allosteric modulators are substances that bind to and act 

through topographically distinct (“allosteric”) sites on receptors than orthosteric ligands. 

Positive modulators act synergistically with agonist-induced receptor activation by enhancing 

it. Many of them do not stimulate receptors on their own. Their action is, therefore, in concert 

with physiological signaling, both temporally and spatially. Because of this use-dependent 

mechanism, they are expected to produce less side-effects and tolerance than orthosteric drugs 

(Christopoulos 2002; Christopoulos and Kenakin 2002; Langmead and Christopoulos 2006). 

Despite the fact that allosteric modulators of GPCRs are presently in the focus of 

pharmacological research, so far there have been only few studies performed to assess 

whether they play a role in GPCR desensitization and downregulation (Klaasse et al. 2005; 

May et al. 2005; Bhattacharya and Linden 1996). 

GABA is the major inhibitory neurotransmitter in the CNS, the action of which is mediated 

via ionotropic GABAA and GABAC receptors and the metabotropic GABAB receptor. 
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Dysfunctions of the GABAergic neurotransmission in the CNS have been linked with many 

disorders such as epilepsy, spasticity, anxiety, stress, sleep disorders, depression, addiction 

and pain. Heterodimeric GABAB receptors belong to the family 3 of GPCRs together with the 

metabotropic glutamate receptors, the calcium-sensing receptors and mammalian taste and 

odorant receptors (Pin et al. 2003). They mediate slow synaptic inhibition by negative 

coupling to adenylyl cyclase and modulating voltage-gated calcium channels and inwardly 

rectifying potassium channels (reviewed in Bowery et al. 2002). 

The only marketed drug that acts via the GABAB receptor is its selective agonist baclofen, 

introduced in the clinical practice as an anti-spastic agent more than thirty years ago. 

However, side-effects as well as rapid development of tolerance are its main shortcomings 

(Malcangio et al. 1992; Lehmann et al. 2003; Malcangio et al. 1995, reviewed in Vacher and 

Bettler 2003). 

This explains the interest in the recently discovered positive allosteric modulators of GABAB 

receptors CGP7930 and GS39783 (Urwyler et al. 2001 and 2003). They were found to 

increase both the affinity and the efficacy of agonists, with none or very little effect in their 

absence, in many assay systems in vitro (Urwyler et al. 2001 and 2003; Urwyler, Gjoni et al. 

2005; Onali et al. 2003; Olianas et al. 2005) and in vivo (Gjoni et al. 2006). 

In this study, we aimed to investigate whether receptor activation involving positive allosteric 

modulation leads to GABAB receptor desensitization. To this end, we have used both a 

recombinant (a cell line stably expressing the GABAB receptor) and a native assay system 

(mouse primary neuronal cortical cultures). Our key strategy was to persistently activate the 

receptor either with desensitizing agonist concentrations or with combinations of low agonist 

concentrations and GS39783 that activate the receptor to the same extent. The functional 

responses of the receptor as well as the cell-surface receptor expression were then compared 

after these different pretreatments. 
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5.2.3. Materials and Methods 

Materials: GS39783, R(-)-baclofen, S(+)-baclofen, CGP56999, CGP52432 and CGP54626 

were available in-house. Mastoparan was purchased from Tocris bioscience, UK. Stock 

solutions of R(-)-baclofen, S(+)-baclofen, CGP56999, CGP52432 and CGP54626 were made 

in appropriate experiment buffers freshly before each experiment. GS39783 was dissolved in 

DMSO to give a stock solution that was further diluted in appropriate buffers. Sources of 

other chemicals are given in method descriptions. 

 

Adenylyl cyclase assays in a recombinant cell line stably expressing GABAB receptors: A 

stable Chinese hamster ovary (CHO) cell line co-expressing human GABAB(1b) together with 

rat GABAB(2) (Urwyler et al. 2001) was cultured in Dulbecco's modified eagle medium 

(DMEM, glutamine-free, Invitrogen, Basel, Switzerland) supplemented with 10% fetal calf 

serum, 20 µg/ml L-proline, 500 µM glutamine, 1 mg/ml geneticin, 250 µg/ml zeocin). The 

cells were grown to 80–90% confluency in 15 cm cell culture dishes. Prior to the cAMP 

measurement, they were treated with the appropriate concentrations of agonists and GS39783 

diluted in the cell growth medium for 2 hours. After the pretreatment, cells were washed twice 

with PBS. The cAMP accumulation experiment was then performed as has been described 

previously (see Urwyler, Gjoni et al. 2005 for details). 

 

Calcium oscillations in neuronal networks: Primary cultures of cortical neurons were 

prepared from embryonic (day 16 to 18) BALB/c mice (adapted from Wang and Gruenstein 

1997, as described in Urwyler et al. 2001). Dissociated cells were plated on poly-D-lysine 

coated 96-well plates at ca. 60’000 cells/well in 200 µL medium and incubated at 37°C in 5% 

CO2 for 7 to 10 days. Half of the medium was changed every 2 days. Two hours before the 
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experiment, half of the medium was replaced with fresh medium or fresh medium containing 

R(-)-baclofen, S(+)-baclofen, GS39783 and CGP52432 or their combinations to give the final 

concentrations described in the Subsection 5.2.4. 

After the preincubation period, the culture medium was removed, cells were washed twice 

with Hank’s buffered saline solution (HBSS, Invitrogen, Switzerland) supplemented with 10 

mM HEPES (pH adjusted to 7.4) and loaded with 2 µM fluo-4 AM in the same buffer. After 

loading (10 min), cells were washed twice with Mg
2+

-free HBSS/10 mM HEPES and then 

transferred to the fluorescence imaging plate reader (FLIPR). Fluorescence was measured at 

room temperature and at a sampling rate of 0.5 Hz for 10 minutes. Drugs were dissolved in 

Mg
2+

-free HBSS and added to the cultures during recording. Oscillations were analyzed using 

IgorPro (Wavemetrics, Lake Oswego, OR) by peak detection and calculation of the ratio of 

peak frequencies before and after compound addition. 

 

Cell surface [
3
H]-CGP62349 labeling in the recombinant GABAB cell line. The CHO-K1 

cells stably expressing the GABAB receptor (vide supra) were grown to confluency, treated, 

washed and  trypsinized as described above. The cells were counted, resuspended in Krebs-

Tris 7.4 buffer (20 mM Tris HCl pH 7.4, 118 mM NaCl, 4.7 mM KCl, 1.8 mM CaCl2, 1.2 

mM KH2PO4, 1.2 mM MgSO4, 5.6 mM D(+)-glucose) and 200’000 cells were dispensed per 

well. A high-affinity GABAB selective radioligand [
3
H]-CGP62349 (85 Ci/mMol, American 

Radiolabeled Chemicals Inc., St. Louis, MO) was added at a saturating concentration (15 nM) 

and incubated with the cells while mildly shaking for 20 min. Nonspecific binding was 

measured in the presence of the GABAB specific antagonist CGP54626 (1 µM). After the 

incubation, the cell suspension was filtered on a Packard Filtermate Harvester and 50 µL/well 

of scintillation fluid was added. The plate was shaken for 1 hour and counted on a Packard 

TopCount NXT (counting time: 20 min/well). 
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Protein concentrations for the samples in each treatment group were measured with the 

Bradford assay method, using the Bio-Rad protein assay kit and bovine serum albumin as a 

standard, and the specific binding was expressed relative to protein content. 

To verify that the radioligand [
3
H]-CGP62349 does not cross the cell membrane, Human 

embryonic kidney (HEK-FT) cells were transfected either with human GABAB(1a) subunit 

alone (8 µg) or with human GABAB(1a) (8 µg) and rat GABAB(2) (16 µg) subunits together 

(Fugene 6, Roche, Switzerland). 48h post-transfection, the binding experiment with whole 

cells was performed as described above. Also, the same procedure was applied to membranes 

prepared (as described previously in Urwyler et al. 2001) from cells transfected with human 

GABAB(1a) or human GABAB(1a) and rat GABAB(2). 

 

Cell surface [
3
H]-CGP62349 labeling in mouse cortical neuronal cultures: Cortical neuronal 

cultures were prepared from BALB/c mice, seeded and maintained as described above. Two 

hours before the experiment, half of the medium was replaced either with fresh medium or 

fresh medium containing R(-)-baclofen. The cells were then washed twice with HBSS 

supplemented with 10 mM HEPES (pH adjusted to 7.4), a saturating concentration of [
3
H]-

CGP62349 (15 nM) in Krebs-Tris buffer, or the mix of the radioligand with 1 µM CGP54626 

for the assessment of nonspecific binding, was added to each well and the plate was shaking 

for 20 minutes. The plate was put on ice and cells were washed three times with cold Krebs-

Tris buffer to remove the unbound radioligand. 200 µL of 0.1 M NaOH was added to each 

well and the plate was left to shake for 20 minutes. The contents of three wells were pooled 

into one vial and an aliquot was removed for protein content analysis. Scintillation fluid was 

added to each vial, vials were shaken for 1h and measured on a Packard TRI-CARB 3100TR 

Liquid Scintillation Analyzer (counting time 20 min per vial). 
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5.2.4. Results 

cAMP measurement in CHO-K1 cells stably expressing the GABAB receptor. To 

examine the effect of prolonged pretreatments of GABAB receptor-expressing cells with 

GABA, GS39783 and their combinations, inhibition of cAMP formation stimulated by 7β-

forskolin was measured as a readout of GABAB receptor activation. The concentrations for 

the pretreatments were chosen on the basis of the previously obtained GTP(γ)S assay data 

(Urwyler et al. 2003). In the GTP(γ)S experimental system, receptor activation corresponds to 

occupancy (same agonist potencies as binding affinities) and thus seems to be devoid of 

receptor reserve, which would have had confounding effects in our experimental design. As 

has been shown previously (Gonzales-Maeso et al. 2003), after a two-hour exposure to a 

saturating GABA concentration (100 µM),  the potency of GABA to inhibit cAMP production 

significantly decreased as well as its maximal effect (Fig. 1).  
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Fig. 1. cAMP measurement in a recombinant cell line stably expressing GABAB receptors. 

Comparison of the effects of different cell pretreatments (2h) on agonist potency and efficacy. Control: 

squares, 100 µM GABA: circles, 0.3 µM GABA + 10 µM GS39783: triangles, 100 µM GABA + 10 

µM GS39783: diamonds. These are representative curves done in triplicates (means ± SEM). The data 

from several such experiments are summarized in Table 1. 
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GABA 

Pretreatment conditions (2h): 

pEC50 EC50 

Maximal 

inhibition (%) N 

Control (no pretreatment) 6.95 ± 0.03 118 nM 84.4 ± 1.2 25 

GABA, 100 µM  6.25 ± 0.06** 653 nM 71.6 ± 3.4* 16 

GABA, 0.3 µM + GS39783, 10 µM  7.08 ± 0.06 90 nM 90.4 ± 2.1 9 

GABA, 100 µM + GS39783, 10 µM 6.21 ± 0.04**  622 nM  70.6 ± 8.3** _ 4 

 

Table 1. Effects of different pretreatments (2h) on the potency and maximal effect of GABA to inhibit 

7β-forskolin-induced cAMP production. Concentration-response curves with GABA were measured in 

CHO cells stably expressing GABAB receptors after different pretreatments. The maximal effects are 

expressed in percent inhibition of the control stimulation obtained with 100 µM 7β-forskolin above 

basal cAMP values. The data shown are means ± SEM from (N) independent experiments. * p<0.05, 

** p<0.01 vs. control group (no pretreatment), one-way ANOVA, Dunnett’s test. 

 

 

 

Similar effects were observed with R(-)-baclofen, but not with its inactive S(+)-enantiomer 

(data not shown). However, the exposure to a combination of a low GABA concentration (0.3 

µM) and GS39783 (10 µM), that activated the receptor to the same extent as 100 µM GABA 

alone, did not lead to desensitization. On the other hand, when the cells were incubated with a 

saturating GABA concentration and the positive allosteric modulator GS39783 (100 and 10 

µM, respectively), desensitization of the GABAB receptors still occurred (Table 1, Fig. 1). 

The pretreatment with GS39783 alone, did not lead to receptor desensitization (data not 

shown). 

The responsiveness of adenylyl cyclase to mastoparan, a direct activator of Gi/o signaling, to 

inhibit cAMP, was the same in the control and the pretreated cells (data not shown). 

To verify that there were no confounding effects of GS39783 accidentally carried over from 

the pretreatment containing GS39783, LC/MS analysis of washing and assay buffers was 
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performed and showed that there was no GS39783 left in the assay buffer (data not shown, 

courtesy of Dr. M. Koller, internal communication). 

 

GABAB receptor cell surface labeling with [
3
H]-CGP62349 in the recombinant cell line. 

Radioligand binding with a saturating concentration of the selective GABAB receptor 

antagonist [
3
H]-CGP62349 was employed to investigate cell-surface receptor expression upon 

different two-hour pretreatments (vide supra). Bmax values were calculated for each 

pretreatment. Firstly, to verify that the radioligand does not cross the cell-membrane, we took 

advantage of the fact that the GABAB(1) subunit containing the ligand binding site, is not 

expressed at the cell surface in the absence of the GABAB(2) subunit (Pagano et al. 2001). 

Binding experiments were performed on intact cells transiently expressing the human 

GABAB(1a) subunit alone, or the human GABAB(1a) and rat GABAB(2) subunit together. 

Additionally, binding was measured on membranes prepared from cells transiently expressing 

the human GABAB(1a) subunit alone. There was substantial specific binding either when both 

receptor subunits were expressed in intact cells or when membranes were prepared from cells 

expressing the human GABAB(1a) subunit alone, but there was no specific binding on intact 

cells expressing only the human GABAB(1a) subunit (data not shown). 

In line with the functional readout, a two-hour preincubation with the saturating concentration 

(100 µM) of GABA led to a significant decrease of cell surface receptor labeling by 23 ± 

2%**. In contrast, exposing the receptor to a combination of low GABA and the allosteric 

modulator GS39783 (0.3 and 10 µM, respectively) that activate the receptor to the same 

extent as a desensitizing GABA concentration (100 µM), the cell-surface binding of the 

radioligand remained same as in the control group. On the other hand, when the cells were 

incubated with a saturating GABA concentration and the positive allosteric modulator 

GS39783 (100 and 10 µM, respectively), there was a reduction of 24 ± 2 %** in the cell 

surface binding (means ± SEM, N=8, **p<0.01, One-way ANOVA, Dunnett’s test) (Fig. 2). 
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Figure 2. Assessment of GABAB receptor cell-surface expression upon different two-hour 

pretreatments. Their effects on receptor number were measured by radiolabeling with a saturating  

concentration of [3H]-CGP62349 (15 nM). Control: white bar, 100 µM GABA: vertical stripes, 100 

µM GABA + 10 µM GS39783: checkered bar, 0.3 µM GABA + 10 µM GS39783: horizontal stripes. 

Data are means ± SEM of a typical experiment done in sextuplicates. ** p<0.01, One-way ANOVA 

vs. control followed by Dunnett’s test. 

 

R(-)-baclofen-mediated inhibition of spontaneous Ca
2+

 oscillations in primary mouse 

neuronal cultures is enhanced by GS39783. In order to observe these phenomena in a 

native system, experiments were carried out in mouse primary cortical neurons. As has been 

shown previously, when dissociated neurons are plated densely and left for sufficient time 

(DIV 6-10) in culture, they form a network. In the absence of Mg
2+

 in the medium, 

spontaneous oscillations of intracellular Ca
2+

 concentrations are observed in this network 

reflecting the net outcome in excitatory and inhibitory signaling (Wang and Gruenstein 1997). 

We have shown previously that these spontaneous oscillations of  Ca
2+

 are inhibited when the 

GABAB receptor is activated (Urwyler et al. 2001). In the first series of experiments 

establishing a concentration-response relationship for R(-)-baclofen to inhibit spontaneous 

Ca
2+

 spikes, the pEC50 of the agonist was found to be 6.01 ± 0.04 (means ± SEM, N=12) (Fig. 

3a). This inhibition was antagonized by the potent and GABAB selective antagonist 

CGP56999 and the relative Ca
2+

 spiking frequency was brought back to the control level (Fig. 

3a). In the presence of the GABAB positive allosteric modulator GS39783 at 1 and  
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Fig. 3. (a) Inhibition of spontaneous Ca2+ oscillations (no drug added: open squares connected by a 

dotted line) in mouse primary cortical neurons by R(-)-baclofen (filled squares, full lines) enhanced in 

the presence of 1 (open circles) and 3 µM (filled squares) GS39783. GABAB competitive antagonist 

CGP56999 (1 µM) brings the R(-)-baclofen-inhibited (10 µM) spiking frequency back to the control 

level (open diamonds connected by a dotted line). The graph shows typical curves done in 

quadruplicates as means ± SEM Corresponding pEC50 values are indicated in the text. (b) Two-hour 

pretreatments with 10 (N=3) and 100 µM R(-)-baclofen (N=11), but not 3 µM (N=3), induce GABAB 

receptor desensitization. Data on the graph are differences in pEC50 between control and treated cells 

presented as means ± SEM One way ANOVA followed by Dunnett’s test, **p<0.01. (c) 

Desensitization of the GABAB response with prolonged activation (2h) with a saturating concentration 

(100 µM)  R(-)-baclofen can be inhibited with a selective GABAB antagonist CGP52432. 

Concentration-response curve of R(-)-baclofen inhibiting spontaneous Ca2+ spiking in unpretreated 

(control) cultures (filled squares, full line), 100 µM R(-)-baclofen-pretreated cultures (for 2h; 

desensitized cultures: filled circles, full line) and 100 µM R(-)-baclofen + 100 µM CGP52432-

pretreated cultures (antagonized desensitization: open squares, dotted line). Data are means ± SEM of 

representative curves done in quadruplicates. (d) Stereospecificity of the GABAB receptor 

desensitization. Concentration-response curve of R(-)-baclofen in non pretreated (control) cultures 

(filled squares, full line), 100 µM R(-)-baclofen-pretreated cultures (for 2h; desensitized cultures: 

filled circles, full line) and 100 µM S(+)-baclofen-pretreated cultures (for 2h; open circles, dotted 

line). Data are means ± SEM of one typical experiment done in quadruplicates. 

 



 

78 
 

 

 

 

3 µM, the potency of R(-)-baclofen to inhibit Ca
2+

 spikes significantly increased to pEC50 

values of 6.29 ± 0.07** (means ± SEM, N=6) and 6.46 ± 0.07** (means ± SEM, N=6, ** 

p<0.01 one way ANOVA followed by Tukey’s test), respectively (Fig. 3a). 

 

Desensitization of the GABAB receptors in primary cortical cultures. The ability of R(-)-

baclofen to inhibit spontaneous Ca
2+

 oscillations in primary cortical neurons was significantly 

decreased after a two-hour exposure to 10 and 100 µM R(-)-baclofen, but not to 3 µM (Fig. 

3b), i.e. the response of the GABAB receptors desensitized. Differences in R(-)-baclofen 

pEC50 values between control cells and cells treated with 3, 10 and 100 µM R(-)-baclofen 

were  0.13 ± 0.04 (N=3), 0.56 ± 0.08** (N=4) and 0.73 ± 0.05** (N=11) (**p<0.01, one-way 

ANOVA vs. control followed by Dunnett’s test), respectively (Fig. 3b). Desensitization 

induced with a 2h 100 µM R(-)-baclofen preincubation was successfully antagonized by a co-

pretreatment with the selective high affinity GABAB antagonist CGP52432 (Fig. 3c, Table 2).  

 

 

 

R(-)-baclofen 
Pretreatment conditions (2h): 

pEC50 EC50 
N 

Control (no pretreatment) 6.12 ± 0.02 821 nM 44 

R(-)-baclofen, 100 µM  5.47 ± 0.04** 3.85 µM 24 

R(-)-baclofen, 100 µM + CGP52432, 100 µM  6.28 ± 0.15  623 nM 5 

S(+)-baclofen, 100 µM  5.98 ± 0.02  1.05 µM 2 

R(-)-baclofen, 3 µM + GS39783, 1 µM  6.19 ± 0.08  790 nM 8 

R(-)-baclofen, 100 µM + GS39783, 1 µM  5.99 ± 0.09 1.03 µM 6 

 

 

Table 2. Effects of different pretreatments (2h) on the potency of R(-)-baclofen to inhibit spontaneous 

Ca
2+

 oscillations in mouse primary neuronal cultures. The potencies of R(-)-baclofen were obtained 

from concentration-response curves measured after the indicated pretreatments. The data shown are 

means ± SEM from (N) independent experiments. ** p<0.01, compared vs. control group, one-way 

ANOVA vs. control (no pretreatment) and Tukey’s test. 
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Moreover, when the cultures were preincubated with the inactive enantiomer S(+)-baclofen, 

the potency of R(-)-baclofen stayed the same as in the control cultures (Fig. 3d), which further 

supports the conclusion that desensitization of the R(-)-baclofen response was GABAB 

receptor specific. When the cultures were preincubated with a combination of R(-)-baclofen 

(3 µM) and GS39783 (1 µM), that activated the GABAB receptor to the same extent as a 

saturating R(-)-baclofen concentration (100 µM), which desensitized the receptor, there was 

no desensitization of the GABAB receptors (Fig. 4, Table 2). Further, in contrast to our 

finding in the GABAB stably expressing cell-line, the presence of 1 µM GS39783 diminished 

the GABAB receptor desensitization which 100 µM R(-)-baclofen normally produced (Fig. 4, 

Table 2). The preincubation of the cultures with 1 µM GS39783 alone (2h) had no effects on 

either the R(-)-baclofen potency or the Ca
2+

 spiking pattern (data not shown). 
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Fig. 4. The role of GS39783 in the R(-)-baclofen-induced GABAB receptor desensitization in mouse 

primary cortical neurons. Concentration-response curve of R(-)-baclofen in non pretreated (control: 

filled squares, full line) cultures, 100 µM R(-)-baclofen- (filled circles, full line), 3 µM R(-)-baclofen + 

1 µM GS39783- (open triangles, dotted line) and 100 µM R(-)-baclofen + 1 µM GS39783-pretreated 

(2h) cultures (open circles, dotted line). Data on the graph are means ± SEM of typical curves done in 

quadruplicates. 
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Cell-surface GABAB receptor labeling in primary cortical neurons with [
3
H]-CGP62349. 

Contrary to the recombinant GABAB cell-line, there was no decrease in the cell-surface 

receptor expression in cultured primary neurons upon desensitization with 100 µM R(-)-

baclofen. The GABAB receptors at the cell surface amounted to 0.79 ± 0.02 fmol/µg protein 

(N=24) in the control group (no pretreatment) and 0.77 ± 0.02 fmol/µg protein (N=24) in the 

100 µM R(-)-baclofen pretreated group. The data are pooled from 5 experiments performed in 

pentuplicates, means ± SEM. 

 

5.2.5. Discussion 

Receptor desensitization, the most common cause underlying tolerance or lack of sustained 

efficacy, has been shown for many GPCRs after a persistent high degree of receptor activation 

(reviewed in Gainetdinov et al. 2004). Because of its use-dependent mechanism, it is expected 

that positive allosteric modulation has less potential to induce receptor desensitization. We 

have therefore set out to investigate whether this holds true in the case of the GABAB receptor 

and its positive allosteric modulator, GS39783, as predicted earlier (Pin et al. 2001). Our 

major finding is that GABAB receptor activation involving positive allosteric modulation by 

GS39783 did not lead to receptor desensitization. 

The approach used was to compare different two-hour pretreatments corresponding to equal 

degrees of receptor activation. They consisted of either a desensitization-inducing 

concentration of a GABAB agonist alone or of a combination of an agonist and the positive 

allosteric modulator GS39783. Assuming that it might be agonist-occupancy of the orthosteric 

binding site that drives desensitization, the choice of pretreatment concentrations was made 

on the basis of the GTP(γ)S assay system (Urwyler et al. 2003). Since the GTP(γ)S 

experimental paradigm seems to be devoid of receptor reserve, levels of receptor activation 

essentially correspond to receptor occupancy (further discussed in Urwyler, Gjoni et al. 2005 
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or Section 5.1.). Had the choice been based on a system with a high receptor reserve (e.g. 

cAMP measurement), induction of desensitization could have failed, as in such systems the 

receptor is maximally active even with low agonist occupancy. GABAB receptor function and 

the cell-surface receptor number were examined in both a recombinant and a native assay 

systems following the described pretreatments.  

Our results confirm that in both, the recombinant (inhibition of cAMP formation in the 

GABAB stable cell line) and the native (inhibition of Ca
2+

 oscillations in primary mouse 

cortical neurons) systems,  there was no functional desensitization after the pretreatment with 

a low concentration of agonist together with GS39783 (Figs 1 and 4) as opposed to the 

desensitization occurring following pretreatments with saturating concentrations of agonists. 

Given that the degrees of receptor activation were the same in the different pretreatments 

used, we conclude that it is indeed the degree of occupancy of the orthosteric binding site that 

determines whether the receptor desensitizes or not. From the known affinities of GABA 

alone and in the presence of GS39783 (Urwyler et al. 2003) it can be calculated that the 

occupancy of the orthosteric binding site by 100 µM GABA alone, that desensitized the 

receptor in the recombinant cell line, amounts to about 97%, whereas it is only approximately 

8% in the case of 0.3 µM GABA alone, which is the low agonist concentration used for the 

pretreatment combination with GS39783 (Fig. 1, Table 1). However, because the positive 

allosteric modulator GS39783 increases the binding affinity of agonists toward the receptor 

(Urwyler et al. 2003), the occupancy of the orthosteric site by 0.3 µM GABA in the presence 

of 10 µM GS39783 rose to ca. 35% which is apparently still not sufficient to lead to receptor 

desensitization. 

As predicted by the allosteric two-state model (Hall 2000), the enhancing influence of a 

positive allosteric modulator can be a result of its effect on agonist affinity, efficacy or a 

combination of both. The positive allosteric modulator GS39783 enhances both the affinity 

and the efficacy of GABAB agonists (Urwyler et al. 2003). However, it has been calculated 
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that it is the effect on agonist efficacy, rather than affinity, which is predominantly 

responsible for its positive modulatory action (May et al. 2007). Exertion of positive allosteric 

effects by primarily affecting the efficacy of agonists, seems to perfectly match the profile an 

ideal positive allosteric modulator should have. Oppositely, a positive allosteric modulator 

that acts by enhancing primarily the affinity of agonists, instead of their efficacy, will increase 

the occupancy of the orthosteric site, potentially leading to receptor desensitization. 

Although these mechanisms may differ from one receptor to another, a comparison with other 

GPCRs is worthwhile. In fact, little has been investigated regarding allosteric modulation and 

its effect on GPCR desensitization and no study pursuing a strategy similar to ours has been, 

to our knowledge, published to date. Together with a report on the lasting effects of negative 

allosteric modulators on M2 muscarinic acetylcholine receptor (May et al. 2005), only studies 

examining long term receptor activation involving positive allosteric modulation were 

conducted on the adenosine A1 receptors and its allosteric enhancers PD81’723 and T62. 

Bhattacharya and Linden (1996) reported desensitization after a pretreatment with a saturating 

concentration of A1 receptor agonist N
6
-cyclopentyladenosine (CPA) alone and in 

combination with the positive enhancer PD81’723. Moreover, the degree of receptor 

internalization, produced by CPA concentration at, or close to, a saturation level, was 

magnified in the presence of PD81’723 (Klaasse et al. 2005). It is known that PD81’723 

exhibits its allosteric effects primarily by increasing agonist affinities and thereby increasing 

receptor occupancy (Bruns and Fergus 1990). However, the high intrinsic efficacy of the 

compound that has also been reported, seems to be confounding in this context (Bruns and 

Fergus 1990). In line with these findings, an in vivo study by Li et al. (2004) showed that 

repeated oral administration of the oral allosteric modulator T62, which belongs to the same 

chemical class as PD71’723, produces tolerance in rats with neuropathic pain. 

It could be argued that desensitization of the functional response observed in our experiments 

happens downstream of the receptor at the effector level and not at the level of the receptor 
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itself. In our case, we find this highly unlikely, because desensitization of the effector system 

should be activation-dependent. Since the pretreatments used differ only in the way 

(allosterism vs. orthosterism), but not the degree of receptor activation, the decreased response 

to agonism should be seen in both treatments, were it due to desensitization of the effector, 

which is not the case. This is further corroborated by the fact that we did not see a change in 

responsiveness of adenylyl cyclase to direct Gi/o-protein activation by mastoparan in 

desensitized cells, when compared to control. 

Although the main findings, showing that GS39783 is not prone to inducing receptor 

desensitization, are the same in both assay systems, we have also come across differences 

between the two experimental setups. Namely, in the recombinant cell line, 10 µM GS39783 

has no influence on the 100 µM GABA-induced desensitization of the GABAB response, 

regarding both the decrease in GABA potency as well as its maximal inhibition (Fig. 1, Table 

1). However, in the primary neurons it seems that 1 µM GS39783 prevents desensitization 

induced by a saturating concentration of R(-)-baclofen (Fig. 4, Table 2). Another divergence 

between the two systems is a decrease in the number of receptors at the cell surface (Bmax) 

that correlates with functional desensitization found in the recombinant cell line (Fig. 2) and 

no such decrease in the Bmax in the neurons upon receptor desensitization. This is in 

agreement with previous findings, Gonzales-Maeso et al. (2003) having shown receptor 

internalization to underlie functional desensitization of the GABAB receptor in a recombinant 

cell line similar to ours. Also, our inability to observe a decrease in receptor number at the cell 

surface in the cultured cortical neurons upon desensitization is in line with a report by Perroy 

et al. (2003). These differences might reflect distinctive processes of desensitization in the 

two examined systems. Several diverse mechanisms of GABAB receptor desensitization have 

been proposed in the literature. So far it has been undisputed that it does not involve β-arrestin 

recruitment, which is a part of desensitization pathways for most GPCRs. Numerous 

mechanisms of GABAB receptor desensitization have, however, been proposed: degradation 
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of the receptors at the cell surface (Fairfax et al. 2004), regulation of G-protein-receptor 

coupling by endogenous regulator of G-protein signaling proteins (Mutneja et al. 2005), 

internalization (Gonzales-Maeso et al. 2003; Laffray et al. 2007), phosphorylation-

independent G-protein receptor kinase 4 regulation without changes in the receptor number 

(Perroy et al. 2003), protein kinase A-mediated phosphorylation as stabilization of the 

receptor at the cell surface (Couve et al. 2002) and a co-regulation mechanism by NEM 

sensitive factor and protein kinase C (Pontier et al. 2006). It is possible that the varying 

expression levels of intracellular regulatory proteins (that are a part of the “desensitization 

machinery”) in the two types of cells examined in this study give rise to the abovementioned 

differences. 

The main finding in this study i.e. that activation involving allosteric modulation by GS39783 

enhances GABAB receptor signaling but does not promote desensitization, is reminiscent of 

agonist directed  trafficking, a phenomenon described for various GPCRs, which involves the 

ability of different agonists activating different transduction pathways by acting upon the 

same receptor (reviewed in Urban et al. 2007). The prolonged presence of an orthosteric 

agonist both stimulates the receptor and promotes receptor desensitization. However, the 

change in the receptor conformation induced by the binding of an allosteric modulator 

apparently enhances only the signaling of the GABAB receptor, but does not lead to receptor 

desensitization. 

To conclude, in this study we have shown that, according to the expectations, the positive 

allosteric modulator GS39783 has no propensity for producing desensitization of the GABAB 

receptor, a key mechanism that underlies tolerance. To our knowledge, this is the first study 

demonstrating that it is indeed possible to enhance receptor function with allosteric 

modulation, to the same extent as with agonists alone, without inducing receptor 

desensitization. This confirms that positive allosteric modulation as a therapeutic principle 

may be advantageous over classical receptor activation by agonists. 
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5.3.1. Abstract 

It has been estimated that only 15% of the compounds classified as silent GPCR antagonists 

are indeed devoid of either positive or negative intrinsic efficacy. Considering that 40% of all 

drugs on the market target GPCRs mainly as orthosteric ligands, elucidating their true nature 

is becoming increasingly important. While agonism can be demonstrated using appropriately 

sensitive experimental setups, the detection of  inverse agonism can be limited by a low 

degree of constitutive activity in many assay systems. 

In this study, changes in ligand behavior upon a lasting pretreatment with GABA, that 

induced receptor desensitization, were observed, measuring the second messenger cAMP in a 

GABAB receptor-expressing recombinant cell line. The GABAB partial agonist 2-OH-

saclofen lost its ability to inhibit 7β-forskolin-induced cAMP production upon GABA-

pretreatment. The “silent” antagonists CGP62349, CGP52432, CGP56999 and SCH50911, on 

the other hand, stimulated 7β-forskolin-induced cAMP production under these conditions. 

The inverse agonism of CGP56999 was inhibited by the efficacy-deficient 2-OH-saclofen, 

proving it was truly mediated through the orthosteric site of the GABAB receptor. Finally, the 

positive allosteric modulator GS39783, which previously only marginally inhibited cAMP 

production, suppressed it by 60% both alone and in the presence of the competitive antagonist 

2-OH-saclofen, thus GS39783 became an allosteric agonist at desensitized GABAB receptors. 

These changes likely reflect adaptations in the mechanisms of GABAB receptor 

desensitization and may be important in the elucidation of intrinsic ligand efficacies as well as 

for the consequences of chronic drug treatment. 
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5.3.2. Introduction 

Chronic drug treatment often brings about not only receptor desensitization (the main cause of 

tolerance), but also other adaptations and changes as a response to it. In this study, we report 

apparent changes in efficacies of GABAB receptor ligands after a lasting desensitizing 

pretreatment with a saturating concentration of GABA. 

According to the two-state model of receptor activation (reviewed by Leff 1995), it is 

assumed that a given receptor exists in at least two interchangeable conformations: the resting 

(R) and activated (R*) state. The equilibrium between the two states can be described with an 

equilibrium constant L. Spontaneous conversion from R to R* without agonist binding is the 

basis for constitutive receptor activity, also known as basal or ligand-independent signaling, a 

concept that was first proposed by (Costa and Herz 1989). An agonist has a high preferential 

affinity for the activated state R* and upon binding to the receptor shifts the equilibrium 

toward it. Partial agonists do the same, only to a lesser extent (due to a smaller intrinsic 

efficacy). On the other hand, compounds with inverse agonistic properties favor binding to the 

inactive state of the receptor, thus pushing the R ↔ R* equilibrium toward the inactive state 

R. The prerequisite for detecting inverse agonism is a certain degree of constitutive receptor 

activity. Neutral (or silent) antagonists do not distinguish R from R* and therefore do not 

affect the equilibrium between the resting and the active state. It is important to note that the 

display of inverse agonism is conditional and not a molecular property in itself. Although 

there is a molecular mechanism that underlies inverse agonism, not observing it 

experimentally does not mean that the examined compound does not have negative efficacy. 

Instead, it is often the case that the experimental system used for elucidating the “true” 

valence of a ligand lacks constitutive activity, precluding the detection of negative efficacy. 



 

89 
 

 

 

 

Constitutively active mutant receptors (CAMs) mimic, at least to some extent, conformational 

changes induced by agonist binding to a WT receptor.  It is suggested, that a structural 

“constraint” keeps WT receptors in the resting state in the absence of an agonist, whereas in 

CAMs a mutation releases such a constraint and brings about receptor activation. These 

mutations in CAMs can be either artificially inserted or they can occur spontaneously in 

diseases (Seifert and Wenzel-Seifert 2002). Generation of CAMs has been shown to be very 

useful in detecting the negative efficacy of many inverse agonists (for reviews see Seifert and 

Wenzel-Seifert 2002; Cotecchia et al. 2003). It has been estimated that only 15% of all the 

compounds usually considered silent antagonists are indeed silent, the other ones having 

either a low partial agonistic or inverse agonistic properties (Strange 2002; Milligan 2003; 

Kenakin 2004). 

Considering a large number of clinically used inverse agonists acting upon GPCRs, a broad 

pharmacotherapeutic relevance of inverse agonism is implicated, including the treatment of 

hypertension, heart failure, type I allergies, opiate overdose, depression and schizophrenia 

(see Seifert and Wenzel-Seifert 2002 for a review). For example, it is known that true silent 

antagonists of µ-opioid receptors produce fewer adverse effects such as withdrawal 

symptoms, compared to inverse agonists (Sadee et al. 2005). In similar lines, atypical 

antipsychotic agents, which mostly act as inverse agonists on serotonin 5-HT2C and 5-

HT1A/B/D, are generally considered to be more effective in treating symptoms of schizophrenia 

than the typical antipsychotic drugs, that are mainly found to be neutral antagonists (Greasley 

and Clapham 2006).  

For these reasons and since the intrinsic efficacies of ligands are conditional, it is important to 

test them in adequate experimental settings. In this study, we report changes in ligand 

behavior after persistent activation of the GABAB receptor with GABA, which induced 

desensitization. Measuring cAMP, the second messenger of GABAB receptor activation, in a 
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recombinant cell line, we have observed compounds that were previously believed to be silent 

(or neutral) antagonists having inverse agonistic properties, a partial agonist became a silent 

antagonist and the positive allosteric modulator GS39783, that was previously shown to only 

marginally inhibit cAMP accumulation (Urwyler, Gjoni et al. 2005), significantly decreased 

cAMP in a manner of an allosteric agonist. Such changes are of potential importance because 

of functional consequences following a continuous drug treatment. 

 

5.3.3. Method description 

Materials: GS39783, CGP56999, CGP52432, CGP54626, SCH50911 and 2-OH-saclofen 

were available in-house. CGP56999, CGP52432, CGP54626, SCH50911 and 2-OH-saclofen 

were freshly dissolved in the assay buffer before each experiment. The stock solution of 

GS39783 was made up in DMSO and was further diluted in the assay buffer. 

 

Adenylyl cyclase assays in a recombinant cell line stably expressing GABAB receptors: A 

stable CHO cell line co-expressing human GABAB(1b) together with rat GABAB(2) (Urwyler et 

al. 2001) was cultured in Dulbecco's modified eagle medium (DMEM, glutamine-free, 

Invitrogen, Basel, Switzerland) supplemented with 10% fetal calf serum, 20 µg/ml L-proline, 

500 µM glutamine, 1 mg/ml geneticin, 250 µg/ml zeocin. The cells were grown to 80–90% 

confluency in 15 cm cell culture dishes. Prior to the cAMP measurement, they were treated 

with 100 µM GABA diluted in the cell growth medium for 2 hours. After the pretreatment, 

cells were washed twice with PBS. The cAMP accumulation experiment was then performed 

as has been described previously (see Sections 5.1. and 5.2. for details). 
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5.3.4. Results 

The partial agonist 2-OH-saclofen becomes a silent antagonist at desensitized GABAB 

receptors. It was shown previously that the GABAB receptor desensitized after a 2h 

incubation with a saturating concentration of GABA (see Gonzales-Maeso et al. 2003 and  
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Fig. 1. The partial agonist 2-OH-saclofen loses its efficacy at desensitized GABAB receptors. 

Measurement of the inhibition of 7β-forskolin-stimulated cAMP formation in recombinant cells stably 

expressing the GABAB receptor: a comparison between control (no pretreatment, filled squares) and 

desensitized conditions (2h pretreatment with 100 µM GABA, open squares). Data on the graph 

represent mean ± SEM (quadruplicates) of a typical experiment that was performed three times. 

 

 

Section 5.2.), which was apparent as a decrease in agonist potency to inhibit 7β-forskolin-

induced cAMP production as well as its maximal inhibitory effect. In this assay system 2-OH-

saclofen was found to be a partial agonist i.e. it inhibited 7β-forskolin-stimulated cAMP 

production to a maximal extent that was less than the one obtained by GABA (Urwyler, Gjoni 

et al. 2005). However, upon GABAB receptor desensitization, induced with a two-hour 
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pretreatment with a saturating concentration of GABA, the compound completely lost its 

ability to inhibit production of cAMP, suggesting that it became a silent antagonist (Fig. 1). 

 

The positive allosteric modulator GS39738 becomes an allosteric agonist in a 

desensitized recombinant system. Interestingly, the intrinsic efficacy of the allosteric 

modulator GS39783 increased after GABAB receptor desensitization, i.e. the compound 

inhibited cAMP production on its own (Fig. 2). The pEC50 of GS39783 was found to be 5.88 

± 0.11 (mean ± SEM, N=8), which is in alignment with the previously measured pEC50 of 
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Fig. 2. The positive allosteric modulator GS39783 acts like an allosteric agonist upon desensitized 

GABAB receptors (2h pretreatment with 100 µM GABA). 2-OH-saclofen has no effect on the 

concentration-response curve of GS39783. Measurement of the inhibition of 7β-forskolin-stimulated 

cAMP formation in recombinant cells stably expressing the GABAB receptor. Filled squares: GS39783 

alone, open diamonds: GS39783 + 100 µM 2-OH-saclofen, filled line: 100 µM 7β-forskolin control, 

dotted line: basal cAMP level. Data on the graph represent mean ± SEM (quadruplicates) of a typical 

experiment that was repeated four times. 
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GS39783 as a positive modulator under normal conditions (Urwyler et al. 2003). Unlike in 

non-pretreated cells, where GS39783 only slightly inhibited 7β-forskolin-stimulated cAMP 

production (Urwyler, Gjoni et al. 2005), in desensitized cells GS39783 maximally inhibited 

cAMP production by 60 ± 4.7 % (mean ± SEM, N=8). 

To make sure that the increase in efficacy of GS39783 was not a result of an effect of GABA 

left from the pretreatment due to insufficient washing, the concentration-response curve of 

GS39783 was measured in the presence of 100 µM 2-OH-saclofen, which could now be used 

as a (silent) competitive antagonist under these conditions (see above). This concentration of 

2-OH-saclofen is close to saturating (Urwyler, Gjoni et al. 2005) and sufficient to antagonize 

potential residues of GABA in the assay buffer. The concentration-response curve of 

GS39783 in desensitized cells was the same in the presence and the absence of 2-OH-

saclofen, confirming that the phenomenon of increased efficacy of GS39783 was indeed due 

to the compound only and demonstrating that it was not mediated via the orthosteric binding 

site (Fig. 2). 

 

Compounds known as silent antagonists become inverse agonists at desensitized GABAB 

receptors. The compounds CGP56999, CGP62349, CGP52432, CGP54626 and SCH50911, 

that were previously shown to be either devoid of any intrinsic efficacy or, in the case of 

CGP52432, to marginally increase cAMP stimulation in the same recombinant cell line that 

was used in this study (Urwyler, Gjoni et al. 2005), acted as inverse agonists upon a 

continuing exposure to GABA leading to GABAB receptor desensitization (Fig. 3). The 

potencies of these compounds and their maximal increase of cAMP stimulation are given in 

Table 1. The inverse agonistic efficacy of CGP56999 was antagonized with increasing 

concentrations of 2-OH-saclofen (Fig. 4), which proves that the effects were mediated via its 

binding to the orthosteric site of the GABAB receptor. 
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Fig. 3. CGP56999 (open squares), CGP62349 (filled diamonds), CGP52432 (open triangles) and 

CGP54626 (open circles) act as inverse agonists upon desensitized GABAB receptors (2h pretreatment 

with 100 µM GABA). cAMP measurement in a stable cell line expressing the GABAB receptor. 

Dotted line: 100 µM 7β-forskolin control. Data on the graph represent mean ± SEM (quadruplicates) 

of typical curves done at least three times; see Table 1 for potencies and maximal effects. 

 

 

ligand pEC50 EC50 
maximal effect 

(% of 7β-forskolin control) 
N 

CGP56999 8.40 ± 0.09 4.0 nM 161 ± 24 9 

CGP54626 8.43 ± 0.48 3.7 nM 259 ± 41 3 

CGP62349 8.41 ± 0.17 3.9 nM 279 ± 51 3 

CGP52432 7.14 ± 0.01 72 nM 216 ± 26 3 

SCH50911 6.01 ± 0.17 977nM 208 ± 28 3 

 

Table 1. The silent antagonists CGP56999, CGP54626, CGP62349 and CGP52432 behaved like 

inverse agonists in the desensitized GABAB stable cell line potentiating 7β-forskolin-stimulated cAMP 

production in desensitized recombinant cells stably expressing the GABAB receptor. Desensitization 

was induced by a two-hour pretreatment with 100 µM GABA. Typical curves are shown in Fig. 3. 
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Fig. 4. 2-OH-saclofen, which is devoid of intrinsic efficacy at desensitized receptors (open squares), 

antagonizes the inverse agonistic effect of 3 nM CGP56999 (filled squares). cAMP measurement in a 

recombinant cell line stably expressing the GABAB receptor. Desensitization was induced by a two-

hour pretreatment with 100 µM GABA. Dotted line: 7β-forskolin control (100 µM); full line: 7β-

forskolin 100 µM + 3 nM CGP56999. Data on the graph represent mean ± SEM (quadruplicates) of a 

typical experiment repeated three times. 

 

 

5.3.5. Discussion  

In this study, we report changes in ligand behavior of different GABAB receptor ligands upon 

persistent agonist treatment leading to receptor desensitization (Gonzales-Maeso et al. 2003 

and see Section 5.2.). We demonstrate that the compounds CGP62349, CGP52432, 

CGP56999, CGP54626 and SCH50911, originally considered as silent (or neutral) antagonists 

at the GABAB receptor, became inverse agonists, i.e. they stimulated cAMP production. 2-

OH-saclofen, a partial agonist in this assay system, lost its intrinsic efficacy and became a 

silent antagonist. Moreover, the positive allosteric modulator GS39783, which was previously 

shown to only slightly decrease cAMP on its own (Urwyler, Gjoni et al. 2005), significantly 

inhibited cAMP production in a manner of an allosteric agonist. 
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There were other reports in which silent GABAB receptor antagonists were claimed to be 

inverse agonists. Grünewald et al. (2003) have found that CGP54626 and SCH50911 

increased cAMP formation and Hirst et al. (2003) have seen it with CGP54626, SCH50911 

and CGP62349. In a recently published publication on constitutively active GABAB receptor 

mutants inverse agonistic properties were observed for CGP54626, CGP52432 and 

CGP55845 (Mukherjee et al. 2006). In addition, we have previously observed a trend toward 

inverse agonistic activity for CGP52432 in the same recombinant cell line, that was used in 

the present study, but under non-desensitized conditions (Urwyler, Gjoni et al. 2005). 

To prove that the increase in cAMP production in the presence of these compounds was a 

specific GABAB-mediated phenomenon, we took advantage of the loss of efficacy of 2-OH-

saclofen in desensitized cells (Fig. 1) and used it as a neutral antagonist to bring the 

CGP56999-stimulated increase of cAMP back to the level of 7β-forskolin control  (Fig. 4). 

According to the measured potencies of inverse agonists (see Table 1), all the compounds 

were weaker when compared to their binding affinities in control (non pretreated) membranes 

(Urwyler, Gjoni et al. 2005). This is suggestive of an increase in constitutive receptor activity 

in the sense that, according to the two-state model (Leff 1995), inverse agonists stabilize and 

prefer binding to the inactive receptor conformation, while agonists favor the activated 

receptor. Similar trends, with apparent lowering of inverse agonist potencies in response to an 

elevation of the degree of constitutive activity of the receptor, were also observed in reports 

mentioned above by Grünewald et al. (2003) and Mukherjee et al. (2006). An additional 

factor contributing to a decrease in inverse agonist potency might also be the decrease in 

receptor density (loss of receptor reserve) concomitant with receptor desensitization 

(Gonzales-Maeso et al. 2003 and see Section 5.2.). 

The detection of inverse agonism is possible only in an experimental system with a sufficient 

degree of constitutive activity (ligand-independent receptor activation). Apparently, upon a 
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continuous agonist treatment (100 µM GABA, 2h), which has previously been demonstrated 

to lead to GABAB receptor desensitization (see Gonzales-Maeso et al. 2003 and Section 5.2.), 

a phenomenon reminiscent of an increase in constitutive activity occurs, that enables detecting 

inverse agonistic properties of the abovementioned ligands. It seems likely that the increased 

constitutive activity reflects a change in receptor conformation after a prolonged agonist 

treatment. This finding is in concordance with a report on a constitutively active GABAB 

receptor mutant (Mukherjee et al. 2006), where it was found that a mutation of a single 

amino-acid residue, either near the binding pocket for orthosteric ligands on GABAB(1) 

subunit or near the binding site for the G-protein on GABAB(2) subunit, increased the 

constitutive activity of the receptor. 

Comparable effects of prolonged agonist treatments increasing constitutive receptor activity 

were reported for β2-adrenergic (Chidiac et al. 1996) and µ-, δ- and κ-opioid receptors (Liu 

and Prather 2001 and 2002; Wang et al. 2000 and 2007). 

Research on the µ-opioid receptor (MOR) revealed changes in ligand behavior upon receptor 

desensitization similar to ours, namely a loss of maximal efficacy of agonists upon morphine 

and DAMGO-induced desensitization. At the same time, the authors noted a more 

pronounced negative efficacy of inverse agonists (Wang et al. 2007). These effects were 

explained by interactions of the receptor with calmodulin (CaM). Apparently, CaM and the G-

protein both bind to the intracellular loop 3 (i3) of MOR (Wang et al. 1999). In the absence of 

an agonist, CaM is predominantly bound to i3, sterically hindering MOR-G-protein coupling, 

which keeps the receptor in an inactive (resting) state. Upon activation, however, and 

especially upon MOR desensitization, CaM dissociates from the receptor, enabling a more 

efficient receptor-G-protein coupling. This results in an enhancement of the constitutive 

activity of the receptor (Wang et al. 2000). This phenomenon, an increase of basal receptor 

signaling after prolonged exposure to agonists, was also proposed to be one of the 
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mechanisms responsible for development of opioid dependence (Wang et al. 1994; Wang et 

al. 2001). 

There is no evidence of the GABAB receptor binding to CaM. However, a similar mechanism 

as described above for MOR might be involved with other intracellular proteins interacting 

with the GABAB receptor (Bettler et al. 2004). On the other hand, it can be speculated that 

regulator of G-protein signaling (RGS) proteins, that were shown to play a role in determining 

the level of constitutive activity for other receptors, e.g. the 5-hydroxytryptamine receptors 

type 1A and 2A (Welsby et al. 2002; Ghavami et al. 2004, reviewed in Milligan 2003), might 

also play a role in the regulation of the GABAB receptor function. RGS proteins are GTPase 

activating proteins (GAPs). They increase the GTPase activity of the Gα subunit, i.e. they 

accelerate hydrolysis of Gα-GTP upon GPCR activation and thus act as a “switch” that 

controls the intensity, duration and specificity of the G-protein-mediated signal, also keeping 

the basal receptor activity low (see De Vries et al. 2000 for review). GAP activity of most 

RGS proteins is inhibited by phosphatydilinositol-3,4,5-triphosphate (PIP3) (Popov et al. 

2000). Another mechanism inhibiting the GTPase activity of RGS proteins involves a 

scaffolding protein 14-3-3 (Benzing et al. 2000), a protein that also binds to the C-terminal 

part of the GABAB(1) receptor subunit (Couve et al. 2001). In analogy to PIP3-dependent 

inhibition of RGS GAP activity, the inhibition by 14-3-3 could also result in an increase of 

basal receptor signaling. Findings by Grünewald et al. (2003), indicating that the coiled-coil 

domain of the GABAB receptor is crucial for maintaining an active receptor conformation in 

the absence of an agonist, are in line with the speculation that RGS proteins might play a role 

in determining constitutive activity of the GABAB receptor. 

The loss of efficacy of 2-OH-saclofen to inhibit 7β-forskolin-stimulated cAMP accumulation 

is also in line with the increase of constitutive activity following desensitization. In this case, 

the “window” for detecting partial agonism becomes smaller, while the one for inverse 
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agonism broadens (Fig. 5). The proportion of receptors in the inactive (R) and the activated 

state (R*) determines the width of the “window” between the bottom and the ceiling for 

detecting agonism and inverse agonism, respectively (reviewed in Milligan and Bond 1997; 

Negus 2006). 

The allosteric modulator GS39783 became an allosteric agonist at the desensitized GABAB 

receptor, i.e. it significantly inhibited 7β-forskolin-stimulated cAMP formation. This 

inhibition was shown to be an effect mediated via the allosteric binding site: it was not 

antagonized in the presence of 2-OH-saclofen, which could be used as a silent competitive  

 

 

 

Fig. 5. The window-shift for the detection of agonism, antagonism and inverse agonism upon a lasting 

agonist treatment is reminiscent of an increase of constitutive receptor activity. Silent antagonists 

become inverse agonists (A), partial agonists lose their efficacy to become silent antagonists (B) and 

full agonists lose their efficacy to become partial agonists (C) upon a lasting agonist treatment. Panel 

(1): control condition (low constitutive receptor activity); panel (2): after a lasting agonist pretreatment 

(higher constitutive receptor activity). Adapted from (Milligan and Bond 1997) and (Negus 2006), 

with permission from Elsevier. 
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antagonist tool under these conditions. It should be noted that the other “silent” antagonists, 

which had inverse agonistic effects, could not be used for that purpose because their 

stimulatory effects on cAMP production would have been confounding. This shows the 

importance of choosing adequate tools for addressing such situations.  

 The allosteric two-state model allows activation of the receptor by the binding of an allosteric 

agent alone (Hall 2000). This can be detected in cases of high intrinsic efficacy of the 

allosteric agent, for example the activation of the mGluR7 by its allosteric agonist AMN082 

in its own right (Mitsukawa et al. 2005). Another possibility for detecting receptor activation 

by an allosteric agent alone is using very sensitive experimental systems, e.g. due to a high 

degree of receptor reserve, in which even effects of ligands with low intrinsic efficacies can 

be discerned. For instance, the other positive allosteric modulator of the GABAB receptor 

CGP7930 (Urwyler et al. 2001), that has similar in vitro activity as GS39783, was found to 

significantly activate the receptor in the absence of an agonist in a system with a seemingly 

high receptor reserve (IP turnover) (Binet et al. 2004), while its inhibition of cAMP formation 

was only minor in our hands (Urwyler, Gjoni et al. 2005). 

However, the fact that GS39783 in this study significantly inhibited cAMP production (by 

60%), whereas it did so only marginally under non-desensitized conditions in the same assay 

system (Urwyler, Gjoni et al. 2005), requires an additional explanation. According to a model 

for the functioning of family 3 GPCRs proposed by Parmentier et al. (2002), GPCRs are 

“allosteric machines” that consist of two parts: the VFTM (that comprises the orthosteric 

binding site) and the 7TM (that usually contains the allosteric binding site). The two domains 

can both adopt either inactive or active conformations, allosterically interacting with each 

other. The adoption of the active state by the VFTM (for instance due to agonist binding) will 

increase the possibility for the 7TM to also assume the active conformation, leading to G-

protein stimulation. These allosteric interactions between domains can either be “loose”, as in 
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the case of mGluRs, or “tight”, as in the case of the GABAB receptor, possibly due to the lack 

of the cysteine-rich region between the VFTM and the 7TM. 

It was recently shown, in a study on deletion mutants of the mGluR5 lacking the VFTM that 

the positive allosteric modulator 3,3'-difluorobenzaldazine (DFB) directly activated the 7TM 

as an allosteric agonist. As DFB is usually devoid of intrinsic efficacy, the fact that it 

displayed allosteric agonistic properties was explained by the loss of the allosteric inhibition 

of 7TM by the non agonist-occupied VFTM, present at the WT receptor (Goudet et al. 2004). 

It can be speculated that, in our case, the long-term activation by GABA disrupted or 

weakened allosteric interactions between the orthosteric and the allosteric binding sites, 

allowing GS39783 to have an effect in its own right and activate the receptor directly via the 

7TM. In line with this assumption is a recent finding by (Dupuis et al. 2006), where it is 

shown that GS39783 is able to activate a point-mutated GABAB(2) subunit alone, by binding 

to a site in its 7TM. 

In conclusion, this is the first demonstration of apparent changes in behavior of both 

orthosteric and allosteric GABAB receptor ligands upon continuous agonist treatment, most 

likely due to conformational changes and an increase of constitutive activity of the GABAB 

receptor. Although the mechanism responsible for these actions needs to be clarified, this 

assay system can be useful for observing properties of GABAB receptor ligands under 

conditions mimicking a chronic drug treatment in vitro. 
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5.4.1. Abstract 

In this work we studied effects of the positive allosteric modulator GS39783 on GABAB 

receptors at a biochemical level in vivo.  Changes in extracellular levels of cAMP following 

GABAB receptor activation were monitored in the striatum of freely-moving rats using 

microdialysis. The locally applied GABAB agonist R(-)-baclofen concentration-dependently 

inhibited cAMP formation stimulated by a water-soluble forskolin analog (EC50 = 7.3 µM, 

maximal inhibition = 40%). The selective GABAB antagonist CGP56999 reversed R(-)-

baclofen-induced cAMP inhibition to control levels, but not higher. Orally applied GS39783 

lacked effects on its own, but together with a threshold concentration of R(-)-baclofen (1 µM), 

it significantly and dose-dependently decreased cAMP formation. Effects of GS39783 were 

revoked with CGP56999 showing dependence on GABAB receptor activation and suggesting 

allosteric modulation as a mechanism of action in vivo. Administered with a maximally active 

R(-)-baclofen dose, GS39783 failed to further inhibit cAMP formation. The data obtained 

with CGP56999 and the lack of effect of GS39783 alone suggest there is no detectable 

endogenous activation of the GABAB receptors controlling cAMP formation in rat striatum. 

To our knowledge, these results provide the first biochemical demonstration of in vivo activity 

of a G-protein coupled receptor positive allosteric modulator. 

 

Keywords: GABAB receptor, GS39783, R(-)-baclofen, allosteric modulation, cyclic AMP, in 

vivo microdialysis 

 

Abbreviations used: aCSF, artificial cerebrospinal fluid; cAMP, cyclic AMP; 7β-forskolin, 

7-deacetyl-7-(O-N-methylpiperazino)-γ-butyryl-forskolin; GPCR, G-protein-coupled 

receptor; IBMX, 3-isobutyl-1-methylxanthine; ns, not significant; RIA, radioimmunoassay; 

SPA, scintillation proximity assay.   
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5.4.2. Introduction 

G protein-coupled receptors (GPCRs) comprise one of the largest protein superfamilies and 

the most diverse form of transmembrane signalling proteins. It has been estimated that 1% of 

the mammalian genome encodes GPCRs and about 450 of 950 predicted human GPCRs are 

expected to be receptors for endogenous ligands (Takeda et al. 2002). They are most 

important drug targets, as almost 40% of all current therapeutic agents, mostly identified in 

ligand-binding assays, act upon GPCRs in a competitive manner to the natural ligand, i.e. as 

orthosteric drugs (agonists and competitive antagonists) (Hopkins and Groom 2002; 

Maudsley et al. 2005). However, more recent concepts of drug action and modern drug 

discovery technologies have raised interest in molecules acting at GPCRs through other sites 

or other mechanisms (Rees et al. 2002; Brink et al. 2004). 

Allosteric modulators are molecules that modify receptor function by binding to a site on a 

receptor that is distinct from the orthosteric site, which binds agonists and competitive 

antagonists. Positive modulators usually do not stimulate receptors by themselves, but 

synergistically enhance receptor activation produced by agonists. This means that they would 

act mainly in concert with physiological signalling in its temporal and spatial organization in 

vivo, i.e. act only when and where endogenous transmitter has been released. Therefore, 

positive allosteric modulators are expected to have a better side-effect profile than agonists 

which activate receptors independently of synaptic activity. They should also have less 

propensity for developing tolerance subsequent to desensitization, which is observed 

following continuous receptor activation with agonists. For these reasons, allosteric 

modulation of GPCRs as a therapeutic principle has been attracting considerable attention 

lately (Christopoulos and Kenakin 2002; Christopoulos 2002; Jensen and Spalding 2004; 

Soudijn et al. 2004). 
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GABAB receptors are metabotropic GABA receptors which belong to the class III GPCR 

group, together with the metabotropic glutamate receptors, the calcium-sensing receptor, and 

mammalian taste and odorant receptors (Pin et al. 2003). They directly couple negatively to 

adenylyl cyclase (Wojcik and Neff 1984) and modulate voltage-gated calcium channels and 

inwardly rectifying potassium channels (Lüscher et al. 1997). They are located both 

presynaptically and postsynaptically to inhibit neurotransmitter release and neuronal 

excitability, respectively (reviewed in Bowery et al. 2002). 

The selective GABAB receptor agonist baclofen was introduced into clinical practice more 

than 30 years ago for treating spasticity, for example that originating from spinal injuries and 

multiple sclerosis. Its use as a therapeutic agent or a tool in preclinical studies is, however, 

limited on account of its side-effects, such as sedative/hypnotic effects and muscle atonia (a 

severe side-effect for potential indications other than spasticity), as well as the development 

of tolerance upon chronic treatment. 

The first GABAB receptor-positive allosteric modulators, CGP7930 and GS39783, were 

discovered only recently (Urwyler et al. 2001 and 2003). They have been characterized 

extensively in vitro and were found to increase both the affinity and efficacy of agonists in 

many different assays (Urwyler et al. 2001 and 2003; Urwyler, Gjoni et al. 2005; Onali et al. 

2003; Binet et al. 2004; Chen et al. 2005; Olianas et al. 2005). CGP7930 and GS39783 have 

also been tested in behavioural models in vivo in which, according to expectations, they 

lacked the side-effects seen with baclofen (Cryan et al. 2004). They were found to 

synergistically increase the sedative/hypnotic effects of baclofen (with no such effect of the 

modulator alone) (Carai et al. 2004), to have anxiolytic properties (Cryan et al. 2004; 

Mombereau et al. 2004) and to reduce cocaine self-administration in rats (Smith et al. 2004). 
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However, so far the enhancement of GABAB receptor function by allosteric drugs has not 

been demonstrated at a mechanistic (signal transduction) level in vivo. The activity of GPCRs 

coupled to Gi proteins can best be monitored by measuring the inhibition of cyclic AMP 

(cAMP) formation stimulated by forskolin, which directly activates the enzyme adenylyl 

cyclase. Hashimoto and Kuriyama (1997) have demonstrated that measuring extracellular 

cAMP levels in the striatum of freely moving rats by microdialysis is a suitable means of 

monitoring the activation of GABAB receptors in vivo. We have therefore chosen this 

approach to show, for the first time, the biochemical effects of the positive allosteric 

modulator GS39783 on GABAB receptors in vivo. 

 

5.4.3. Materials and methods 

All experiments complied with the Swiss law on animal experimentation and were approved 

by the relevant local authorities. 

Chemicals: The sources of commercially obtained chemicals are given below. GS39783, R(–

)-baclofen and CGP56999 were available in house. R(–)-baclofen and CGP56999 were 

dissolved and diluted in aCSF containing 3-isobutyl-1-methylxanthine (IBMX) freshly before 

each experiment. GS39783 was suspended in cremophor EL, propylenglycol and H2O in a 

ratio of 15 : 10 : 75 (vehicle) to give a fine suspension after ultrasonication (20 min). 

Surgery: Male Wistar rats (280–350 g) were anaesthetized with isoflurane inhalation (3–5% 

for induction and 0.5–1% for maintenance; Forene
®

; Abbott AG, Baar, Switzerland) using a 

mixture of N2O and O2 (1/3 and 2/3 respectively) (Carbagas, Basel, Switzerland). The 

anaesthetized animal's head was shaved and the animal was placed in a Kopf stereotaxic 

apparatus. A midline incision was made to expose the skull. The stereotaxic coordinates of the 
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caudate–putamen (striatum) were determined from a rat stereotaxic atlas (Paxinos and Watson 

1986). All anterior–posterior and lateral measurements were made relative to bregma and the 

ventral measurements were taken from the dura surface (flat head, i.e. with bregma and 

lambda in the same horizontal plane). One home-made 4-mm probe was placed at + 0.2 mm 

anterior, + 3.0 mm lateral and − 7.4 mm ventral, and secured in place with two skull screws 

and acrylic dental cement. Additionally, a long screw was fixed in the cement by which to 

later connect the animal to the freely moving microdialysis system. In preliminary 

experiments in separate animals, the coordinates were confirmed by histological verification 

of the probe placement. Microdialysis probes were constructed in a concentric design using 

23-G stainless steel tubing (Coopers Needles Works, Birmingham, UK), vitreous silica tubing 

(Schmidlin AG, Neuheim, Switzerland) and Hospal AN69 hydrogel-type dialysis membrane 

(Hospal, Lyon, France) with an active length of 4 mm. They were implanted while perfused 

with artificial CSF (aCSF) (141 mM NaCl, 5 mM KCl, 1.25 mM CaCl2, 1.2 mM MgSO4, 

1.4 mM Na2HPO4, 0.25 mM NaH2PO4, pH 7.4) at a flow rate of 5 µL/min. After implantation, 

the perfusion was stopped, and the inlet and outlet arms were heat-sealed using plastic 

connectors. After surgery the rats were housed individually in plastic cages and allowed to 

recover for 24 h with free access to food and water, in a room with a 12 h−12 h dark–light 

cycle. 

Experimental procedure: Some 24h after surgery, the conscious rat was connected to the 

microdialysis system allowing free movement. The probe was perfused with aCSF containing 

1 mM of the phosphodiesterase inhibitor IBMX (Fluka, Buchs, Switzerland), at a flow rate of 

2 µL/min. After a 1h waiting period, samples were collected every 20 min over 400 min (total 

of 20 fractions), and then immediately frozen in dry-ice and stored at − 80°C pending 

analysis. 
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We employed an experimental paradigm with two cAMP-increasing stimuli, consisting of 

local application (through the microdialysis probe) of 30 µM of the water-soluble forskolin 

analogue 7-deacetyl-7-(O-N-methylpiperazino)-γ-butyryl-forskolin dihydrochloride (7β-

forskolin) (Calbiochem, VWR International, Luzern, Switzerland) over 10 min. The first 

(control) stimulus (S1), which was the same for all rats, was given at 80 min after the start of 

the baseline period. Subsequently, the perfusion was changed back to aCSF containing IBMX. 

The second stimulus (S2) was applied at 240 min (eight fractions later). S2 was either the 

same as S1 (control rats), or it served to measure effects of drugs on cAMP formation (treated 

rats). R(–)-baclofen and CGP56999 (10 or 30 µM) were applied locally through the 

microdialysis probe for 20 min before and for 10 min during S2. At 60 min before S2 (i.e. at 

180 min), animals received either vehicle or GS39783 applied orally. After S2, the perfusion 

fluid was changed back to aCSF containing IBMX and seven more samples were collected. 

Animals were killed at the end of the experiment. 

Quantification of cAMP levels: The amount of cAMP formed was quantified by 

radioimmunoassay (RIA) in a scintillation proximity assay (SPA) format in 96-well microtitre 

plates. A 10-µL sample was diluted with 25 µL aCSF containing IBMX and acetylated with 

4 µL acetic acid anhydride and triethylamine (1 : 3) prepared shortly before use. Then, 87 µL 

immunoreagent solution was added to each sample. This solution contained 17 µL rabbit anti-

succinyl cAMP serum (anti-cAMP (rabbit); Calbiochem) diluted 1 : 3000, 35 µL donkey anti-

rabbit IgG secondary antibodies coated at the surface of SPA beads, diluted according to the 

instructions for use (SPA PVT antibody-binding beads, anti-rabbit; Amersham Biosciences, 

Little Chalfont, UK), and 35 µL adenosine 3',5'-cyclic phosphoric acid 2'-O-succinyl-3-

[
125

I]iodotyrosine methyl ester as a tracer (approximately 185Bq; Amersham Biosciences). 

The plates were incubated at 20–25 °C for 15–20 h and then counted on a Wallac 1450 
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microbeta Trilux scintillation counter (Wallac Oy, Turku, Finland). Quantification of the 

cAMP formed was performed with the aid of an appropriate RIA cAMP standard curve. 

Data analysis: The results were analysed with Prism 3.03 software (GraphPad Software Inc., 

San Diego, CA, USA). To account for possible drifts in baseline, linear regression of the 

baseline fractions was calculated using fractions 1–4, 11, 12, 19 and 20. Baseline values 

acquired in this fashion were deducted from all 20 fractions. The cAMP levels (in fmol) in 

fractions 5–10 and 13–18 were used to calculate the area under the curves for stimulations S1 

and S2. S2 was divided by S1 to calculate the S2/S1 ratio. Using two cAMP-raising stimuli 

and calculating S2/S1 ratios enabled each animal to be its own control and thus compensated 

for interanimal variability, therefore increasing the accuracy of the method. The data obtained 

were expressed as mean ± SEM values and statistical analysis was performed using unpaired 

two-tailed t-test or one-way ANOVA followed by Dunnett's test. 

Recovery of cAMP in vitro: To determine the recovery of cAMP by microdialysis in vitro, the 

efficiencies of five microdialysis probes were tested at room temperature in a 0.5% 

methylcellulose bath containing 10 µM cAMP with constant aCSF perfusion at a flow rate of 

2 µL/min for 2 h. Dialysate fractions were collected every 20 min and cAMP concentrations 

were quantified as described above. Under these experimental conditions, the mean ± SEM in 

vitro dialysis recovery of cAMP was 12.0 ± 2.1%. However, in vivo values were not corrected 

for the in vitro recovery of cAMP. 

R(–)-baclofen probe recovery in vivo: In order to assess the R(–)-baclofen concentration that 

reached the extracellular striatal space, the in vivo retrodialysis recovery of R(–)-baclofen was 

determined for each experiment in which R(–)-baclofen (and no other drug) was applied, by 

measuring its concentration in aliquots of fraction 12. To this end, a GABAB radioligand 

binding assay using rat cortical membranes (described in detail in Urwyler et al. 2003) was 
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modified into a radioreceptor assay format. The assay mixture had a final volume of 100 µL. 

It contained 25 µL of the unknown sample or R(–)-baclofen standard, 1 nM[
3
H]-CGP62349 

(3.15TBq/mmol; American Radiolabeled Chemicals, St Louis, MO, USA) in 20 mM Tris-HCl 

buffer (pH 7.4, containing 118 mM NaCl, 4.7 mM KCl, 1.8 mM CaCl2, 1.2 mM KH2PO4, 

1.2 mM MgSO4, 5 mM D-glucose), rat cortical membranes (approximately 15 µg protein) and 

1.5 mg wheat germ agglutinin-coated SPA beads (Amersham Biosciences). The samples were 

incubated for 90 min at room temperature, before being counted in a Wallac 1450 Microbeta 

liquid scintillation counter. R(–)-baclofen concentrations in unknown samples were 

determined from the inhibition of radioligand binding with the R(–)-baclofen standard curve. 

The in vivo retrodialysis recovery of R(–)-baclofen was calculated on the basis of the 

difference between the concentrations in the perfusate and fraction 12. 

 

5.4.4.  Results 

Effects of R(–)-baclofen on cAMP formation. To assess the activation of the GABAB 

receptors in vivo, we established a concentration–response curve for the inhibition of 7β-

forskolin-stimulated cAMP formation by the agonist R(–)-baclofen. Baseline cAMP levels 

amounted to 27.2 ± 1.8 fmol (n = 94) in the first fraction collected (the first 20 min). 7β-

Forskolin (30 µM) applied through the microdialysis probe in the striatum induced peaks 

corresponding to an approximately 3-fold increase in cAMP levels. Control animals, which 

received two challenges of 30 µM 7β-forskolin through the probe and vehicle applied orally, 

elicited the same response for both S1 and S2, i.e. the S2/S1 ratio was 1 ± 0.05 (n = 10). 

Traces of cAMP efflux are shown in Fig. 1. Pre-infusion of R(–)-baclofen (1 µM to 2 mM) for 

20 min and oral application of vehicle did not induce a change in the basal extracellular levels 

of cAMP in the striatum. However, co-application of R(–)-baclofen through the probe with 
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Fig. 1 Traces of extracellular cAMP efflux in rat striatum in vivo. Control rats (solid line), mean ± 

SEM S2/S1 ratio: 1 ± 0.05 (n = 10 animals). Effect of 500 µM R(–)-baclofen (dotted line), S2/S1 ratio: 

0.61 ± 0.03 (n = 6 animals). 7β-Forskolin was perfused through the microdialysis probe twice for 

10 min (S1 and S2, black bar) and R(–)-baclofen for 20 min before and 10 min during S2 (grey bar). 

The vehicle [used for oral (p.o.) application of GS39783 in other experiments] was administered at 

180 min (arrow). To account for differences in basal values among animals, cAMP extracellular levels 

were expressed as a percentage of baseline (for the purpose of this graph only). 

 

 

30 µM 7β-forskolin inhibited the 7β-forskolin-induced cAMP increase in a concentration- 

dependent manner (Figs 1 and 2). The maximal inhibition was about 40% and the EC50 was 

7.3 µM (Fig. 2). This effect was antagonized by co-perfusion of 30 µM CGP56999 (Fig. 2, 

inset). The concentrations of R(–)-baclofen recovered in fraction 12 were 23.4 ± 1.8% 

(n = 27) of the applied concentrations, indicating that approximately 80% of the drug perfused 

entered the surrounding striatal tissue. 
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Fig. 2 Concentration–response curve showing effects of R(–)-baclofen on extracellular cAMP levels in 

rat striatum in vivo. R(–)-baclofen was perfused through the microdialysis probe for 20 min before and 

10 min during S2. Data are mean ± SEM S2/S1 ratios obtained from 4–6 animals per treated group and 

10 animals in the control group. *p < 0.05, **p < 0.01 versus control group (horizontal line) (one-way 

ANOVA followed by Dunnett's test). Inset shows effect of the GABAB antagonist CGP56999 on R(–)-

baclofen-induced inhibition of cAMP formation in rat striatum (checkered bar). CGP56999 (30 µM) 

was co-infused with R(–)-baclofen (200 µM) for 30 min before and during S2. Black bar, control; 

striped bar, 200 µMR(–)-baclofen alone. Values are mean ± SEM S2/S1 ratios obtained from five 

animals per treated group. **p < 0.01 (unpaired two-tailed t-test). 

 

Effect of GS39783. GS39783 applied orally at 100 mg/kg, without local R(–)-baclofen 

perfusion, failed to inhibit the 7β-forskolin-induced increase in cAMP levels (Fig. 3). 

However, when given at 10, 30 and 100 mg/kg together with a threshold concentration of R(–

)-baclofen (1 µM) applied locally through the probe, GS39783 inhibited the extracellular 

cAMP levels in a dose-dependent fashion (significantly by 23% at the highest dose tested) 

(Fig. 4a). This effect was successfully antagonized by co-perfusion of CGP56999 (10 µM) 

(Fig 4a). When applied simultaneously with a maximally active concentration of R(–)-

baclofen (500 µM), GS39783 was unable to further augment the maximal inhibition produced 

by R(–)-baclofen (Fig. 4b). 
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Fig. 3 Lack of effect of GS39783 (100 mg/kg p.o.) alone on 7β-forskolin-induced cAMP formation. 

Values are mean ± SEM of S2/S1 ratios in controls (n = 10) and animals treated with 

GS39783 100 mg/kg p.o. (n = 6). There was no significant difference between the groups (unpaired 

two-tailed t-test). 

 

5.4.5. Discussion 

Benzodiazepines, positive allosteric modulators of ionotropic GABAA receptors, have proven 

to be efficacious drugs in over 30 years of clinical use. On the other hand, positive allosteric 

modulators of metabotropic GABAB receptors have been discovered only recently (Urwyler et 

al. 2001 and 2003). For the reasons outlined in the introduction, such compounds might be of 

great therapeutic benefit in clinical indications such as pain, drug dependence and anxiety 

(Marshall 2000 and 2005; Vacher and Bettler 2003). In the present study we showed for the 

first time the enhancement of GABAB receptor function in vivo by a GABAB positive 

allosteric modulator (GS39783) at a biochemical level. The efflux of cAMP into the 

extracellular fluid in striatal tissue was monitored using microdialysis in freely moving rats 

(Hashimoto and Kuriyama 1997). GABAB receptors are well known to inhibit cAMP 

formation via coupling to Gi proteins. Therefore, the cAMP levels in the  
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Fig. 4 (a) Effects of GS39783 (10, 30 and 100 mg/kg p.o.) combined with 1 µMR(–)-baclofen and 

antagonization with 10 µM CGP56999 (both applied through the microdialysis probe). Values are 

mean ±SEM S2/S1 ratios obtained from 5–7 animals per treatment. *p < 0.05 versus 1 µM R(–)-

baclofen (one-way ANOVA followed by Dunnett's test); +p < 0.05 versus 1 µMR(–)-

baclofen + 100 mg/kg GS39783 (unpaired two-tailed t-test). (b) Effects of GS39783 (100 mg/kg p.o.) 

combined with 500 µMR(–)-baclofen. The groups not receiving GS39783 were injected with vehicle. 

Values are mean ± SEM S2/S1 ratios obtained from five animals per treated group and 10 animals in 

the control group. **p < 0.01 versus control group (one-way ANOVA followed by Dunnett's test); ns, 

not significant. 
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extracellular striatal space should represent events of signal transduction that are close to the 

mechanism of receptor activation. Our experimental paradigm included two cAMP-increasing 

stimuli (Fig. 1), which enabled each animal to serve as its own control, thus taking into 

account interanimal variability. The finding that the S2/S1 ratio was exactly 1 in control 

animals showed that the cAMP-producing capacity of the striatal tissue was not diminished 

after the first stimulus. 

The selective GABAB receptor agonist R(–)-baclofen significantly suppressed cAMP 

formation induced by the water-soluble forskolin analogue 7β-forskolin in a concentration-

dependent manner (Fig. 2). The EC50 obtained for R(–)-baclofen was 7.3 µM, a nominal value 

corresponding to concentrations in the perfusate. However, in the light of the finding that 

about 80% of R(–)-baclofen applied through the probe penetrated into the tissue (in vivo 

retrodialysis recovery), this value is in agreement with numerous in vitro studies showing that 

baclofen activates GABAB receptors in the low micromolar range. Taking into account that 

Hashimoto and Kuriyama (1997) have used racemic baclofen, the concentration–response 

curve obtained with the active enantiomer of the drug (Fig. 2) is also in reasonable agreement 

with their findings. Moreover, in our experiments R(–)-baclofen maximally inhibited cAMP 

formation by 40% (Fig. 2), which is also in line with the approximately 50% maximal effect 

reported by Hashimoto and Kuriyama (1997). The effect of R(–)-baclofen, at a concentration 

that significantly inhibited cAMP formation, was entirely antagonized in the presence of the 

potent and selective GABAB antagonist CGP56999 (Fig. 2, inset), further confirming that the 

inhibition of cAMP production is GABAB receptor mediated. 

To demonstrate modulation of GABAB receptors by GS39783, a threshold concentration of 

R(–)-baclofen (1 µM) was chosen, to give a sufficiently large window for detection of the 

effects of the orally co-applied modulator. Under these conditions, GS39783 significantly 

inhibited cAMP formation in a dose-dependent fashion (Fig. 4a). This effect was completely 
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antagonized by CGP56999 co-applied locally with R(–)-baclofen (Fig. 4a). Together with the 

finding that GS39783 did not inhibit cAMP formation on its own (Fig. 3) this is in line with in 

vitro data showing that the compound is not active in the absence of an agonist or when the 

agonist site is blocked by a competitive antagonist (Urwyler et al. 2003), and indicates an 

allosteric mechanism of action of the drug. 

The positive allosteric modulator GS39783 has been shown previously to enhance not only 

the affinity of agonists in vitro, but also their maximal efficacy (Urwyler et al. 2003). To 

examine whether GS39783 augments the maximal inhibition of cAMP formation by R(–)-

baclofen in vivo, we tested GS39783 in combination with a maximally active concentration of 

R(–)-baclofen (500 µM). However, under these conditions, GS39783 failed to further inhibit 

cAMP formation (Fig. 4b). The most likely interpretation is that production of cAMP in the 

striatum is under the control of GABAB receptors only in a limited number of cells, but in 

these the maximal inhibition is close to complete and therefore not amenable to further 

enhancement by a modulator. We have recently described a similar situation in a recombinant 

cell line (Urwyler, Gjoni et al. 2005). 

Without R(–)-baclofen, GS39783 failed to inhibit cAMP formation at the highest oral dose 

used (Fig. 3). This finding strongly suggests that striatal GABAB receptors are not activated 

by endogenous GABA to any measurable extent. The fact that antagonism of R(–)-baclofen, 

alone or in combination with GS39783, by CGP56999 brought the S2/S1 ratio to the control 

level but not higher (Figs 2 and 4) confirms that cAMP production is not detectably inhibited 

by endogenous GABA in the rat striatum under control conditions. It seems unlikely that 

GABAB receptors exist without any activation by endogenous GABA; we therefore conclude 

that in our paradigm activation by endogenous GABA occurred at a low intermittent level that 

was not experimentally detectable. Earlier in vivo microdialysis studies also failed to detect 

activation by endogenous GABA of GABAB receptors controlling striatal acetylcholine 
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release (Anderson et al. 1993; DeBoer and Westerink 1994). On the other hand, physiological 

(endogenous) activation of GABAB receptors has been demonstrated in other brain regions, 

for example in the hippocampus (Moor et al. 1998) or in the substantia nigra, where they 

control the firing rate of nigrostriatal dopaminergic neurones (Erhardt et al. 1999). A 

measurable activation of striatal GABAB receptors by endogenous GABA would have had 

confounding effects in our experiments, for example not allowing us to conclude whether 

GS39783 has any agonistic effect on its own or not. Therefore, its lack made it possible to 

demonstrate and characterize more clearly the in vivo efficacy of GS39783 in conjunction 

with the exogenously applied agonist R(–)-baclofen. 

In conclusion, this is the first time that the enhancement of GABAB receptor function (and to 

our knowledge of a GPCR in general) by an allosteric drug has been shown in vivo at the 

signal transduction level, using a biochemical marker (cAMP formation) that is tightly linked 

to receptor activation. The data obtained strongly suggest that GS39783 acts on GABAB 

receptors in vivo via the same mechanism that has previously been demonstrated in vitro, i.e. 

as a positive allosteric modulator. This study therefore indicates that this appealing 

therapeutic principle, fairly novel for GPCRs, translates from the in vitro situation into that of 

a living organism. 

 

 

Acknowledgements 

The authors would like to thank Drs. K. Kaupmann and P. Waldmeier for their helpful 

comments on the manuscript. 



 

118 
 

 

 

 

 

6. Outlook 

Allosteric modulators of GPCRs represent a novel type of ligands with great therapeutic 

potential and increasing possibilities for medicinal chemistry, especially in cases where the 

development of orthosteric ligands with sufficient selectivity is elusive (see Chapter 4, 

Section 4.1.). The field of GPCR allosteric modulation has rapidly expanded, which resulted 

in a growing number of reviews published on the subject in the past decade and an increasing 

number of newly characterized positive and negative allosteric modulators (see Chapter 4, 

Section 4.1.). The discovery of allosteric modulators has been made possible by the 

development of new HTS technologies e.g. functional assays in recombinant cell lines. Their 

further pharmacological characterization is challenged by the appropriate choice of counter-

screening assays, which is absolutely critical. 

There are still not many allosteric modulators on the market as therapeutic agents. However, 

there is an example of an allosteric agent that has been discovered in 1937 and has been in use 

in man for more than 50 years. It is the non-nutritive artificial sweetener cyclamate, 

frequently used as an additive in food industry. Cyclamate is an allosteric agonist that binds to 

the 7TM domain of the T1R3 receptor unit of heterodimeric sweet and umami taste receptors 

(Bertorelli and Czarnowski-Hill 1990; Xu et al. 2004). 

There are other examples of allosteric modulators that have entered clinical trials as 

treatments for several disorders. One such substance is the allosteric enhancer of the 

adenosine A1 receptors, which belongs to GPCR family 1 (or A), T62 (see Chapter 2 for the 

chemical name) which is potentially useful in the treatment of neuropathic pain (Pan et al. 

2001). It has so far been tested in healthy volunteers to facilitate dose finding and was planned 

to enter Phase II clinical trials in the first half of 2007 (source www.kingpharm.com). 
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Further, according to the corticosteroid receptor hypothesis of depression, an altered function 

of the hypothalamic-pituitary-adrenocortical (HPA) system results in an overactivity of 

central corticotropin-releasing factor (CRF) circuits among depressive patients, which can 

monitored by increased levels of cortisol and corticotropin in their sera. Since the 

corticotropin-releasing factor type I receptor (CRF1), a member of  GPCR family 2 (or B), 

has been identified as responsible for conveying the signal into cellular circuitries underlying 

depression (Holsboer 2000), many pharmaceutical companies were prompted to develop 

molecules to inhibit the activity of CRF1. One such compound was the negative allosteric 

modulator of CRF1 R-121919 (see Chapter 2 for the chemical name), an orally active brain-

penetrating non-peptide substance, that selectively binds to the CRF1 with high affinity 

(Grigoriadis et al. 2000). R-121919 went into clinical studies for treating stress and 

depression and has reached Phase II (Holsboer 2003). Although it was found to alleviate 

depressive symptoms without eliciting undesired endocrine effects, the clinical trials were 

discontinued due to potential liver toxicity. 

Regarding GPCR family 3 (or C), the positive allosteric modulator of the CaSR cinacalcet 

(see Chapter 2 for the chemical name), is the only allosteric drug currently on the market. Its 

calcimimetic actions are utilized in alleviating primary and secondary hyperparathyroidism, a 

common and life-threatening complication of chronic kidney disease that can lead to 

cardiovascular calcification. The plasma concentration of ionized calcium (Ca
2+

) is a primary 

regulator of bone homeostasis mainly through its action on parathyroid hormone (PTH), 

which acts on kidney, by increasing renal Ca
2+

 reabsorbtion, and on bone to increase plasma 

Ca
2+

 levels. Elevated concentrations of plasma Ca
2+

, in turn, depress the secretion of PTH. 

This regulation is mediated via the CaSR in the parathyroid gland, which is downregulated in 

chronic renal failure. The positive allosteric modulator of CaSR cinacalcet can counteract the 

downregulation of CaSR by making the receptor more sensitive to the plasma Ca
2+

 

concentrations, thus meeting the needs of patients with renal failure. Negative allosteric 
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modulators of CaSR such as NPS2143 and Calhex231 (see Chapter 2 for chemical names), in 

contrast, act as calcilytics and were found to stimulate PTH secretion (Nemeth et al. 2001; 

Petrel et al. 2003). However, since PTH in osteoporotic patients has anabolic activity on bone, 

effects of NPS2143 were tested in ovariectomized rats (an animal model of osteoporosis). 

When co-administered with 17-β-estradiol, as prevention of bone resorption due to a 

prolonged increase of PTH in the serum, NPS2143 induced a net bone gain. Other orally 

active calcilytic agents were also found to increase serum PTH levels in rats, offering a new 

potential treatment for osteoporosis (Arey et al. 2005).  

Another example demonstrating a small gap between the clinical use of allosteric modulators 

and preclinical research concerning GPCR family 3 are positive allosteric modulators of  

group II mGluRs (mGluR type 2 and 3). The selective orthosteric agonist of group II mGluRs 

LY354740 (see Chapter 2 for the chemical name), a structural analogue of glutamate, was in 

clinical trials for anxiety. Although its anxiolyic effects have been shown in many paradigms 

in human patients (Pilc 2003; Grillon et al. 2003), it had a limited oral availability (Johnson et 

al. 2002). This was circumvented by using a prodrug approach, which resulted in the peptidyl 

prodrug LY544344 (see Chapter 2 for the chemical name), that also displayed an anxiolytic 

profile in humans (Kellner et al. 2005). An alternative option for circumventing the problem 

of poor bioavailability of the mGluR2/3 agonist LY354740 was the development of selective 

positive allosteric modulators. A great number of compounds have been developed (Ritzen et 

al. 2005), some of which have been shown effective in animal models for anxiety and 

schizophrenia, indicating that clinical efficacy of positive mGluR2 modulators may be a 

reality in the future. 

Considering the continuous extensive use of functional assays in GPCR screening 

technologies in drug discovery programs of pharmaceutical companies, there is little doubt 

that even more allosteric ligands will be discovered and characterized in the following years.  

Subtype-selective allosteric ligands will continue being useful tools in in vivo investigations 
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of the (patho)physiological roles of GPCRs. However, the next challenge for medicinal 

chemistry will be designing new allosteric ligands with improved properties such as high 

affinity and bioavailability. 

Experiments conducted in this study investigated different aspects of prototypal positive 

allosteric modulators of the GABAB receptor. Even though CGP7930 and GS39783 have 

proven to be useful as tools for investigating GABAB receptor function both in vitro and in 

vivo (see Chapter 4, Section 4.3.), their wider use was restricted to some extent due to their 

relatively low potencies (in the µM range) and limited pharmacokinetic properties. 

Improvement of properties of these prototype allosteric ligands, i.e. higher potency and 

bioavailability, are crucial for the development of a new generation of therapeutic agents 

targeting the GABAB receptor. 

 

 

 

 

 

 

 



 

122 
 

 

 

 

 

7. References 

 
 

Addolorato G., Caputo F., Capristo E., Domenicali M., Bernardi M. and Janiri L. (2002a) Baclofen 

efficacy in reducing alcohol craving and intake: a preliminary double-blind randomized controlled 

study. Alcohol Alcohol 37, 504-508. 

Addolorato G., Caputo F., Capristo E., Janiri L., Bernardi M., Agabio R., Colombo G., Gessa G. L. 

and Gasbarrini G. (2002b) Rapid suppression of alcohol withdrawal syndrome by baclofen. The 

American Journal of Medicine 112, 226-229. 

Ameisen O. (2005) Complete and prolonged suppression of symptoms and consequences of alcohol-

dependence using high-dose baclofen: a self-case report of a physician. Alcohol Alcohol. 40, 147-150. 

Anderson J. J., Kuo S., Chase T. N. and Engber T. M. (1993) GABAA  and GABAB receptors 

differentially regulate striatal acetylcholine release in vivo. Neurosci Lett. 160, 126-130. 

Arey B. J., Seethala R., Ma Z., Fura A., Morin J., Swartz J., Vyas V., Yang W., Dickson J. K. and 

Feyen J. H. M. (2005) A Novel Calcium-Sensing Receptor Antagonist Transiently Stimulates 

Parathyroid Hormone Secretion in Vivo. Endocrinology 146, 2015-2022. 

Asano T. and Ogasawara N. (1986) Uncoupling of γ-aminobutyric acid B receptors from GTP-binding 

proteins by N-ethylmaleimide: effect of N-ethylmaleimide on purified GTP-binding proteins. Mol. 

Pharmacol. 29, 244-249. 

Bartoletti M., Gubellini C., Ricci F. and Gaiardi M. (2004) The GABAB agonist baclofen blocks the 

expression of sensitisation to the locomotor stimulant effect of amphetamine. Behav Pharmacol 15, 

397-401. 

Benzing T., Yaffe M. B., Arnould T., Sellin L., Schermer B., Schilling B., Schreiber R., Kunzelmann 

K., Leparc G. G., Kim E. and Walz G. (2000) 14-3-3 Interacts with Regulator of G Protein Signaling 

Proteins and Modulates Their Activity. J. Biol. Chem. 275, 28167-28172. 

Bernard P., Guedin D. and Hibert M. (2001) Molecular Modeling of the GABA/GABAB Receptor 

Complex. J. Med. Chem. 44, 27-35. 

Bertorelli A. M. and Czarnowski-Hill J. (1990) Review of Present and Future Use of Nonnutritive 

Sweeteners. The Diabetes Educator 16, 415-420. 

Bessis A. S., Bertrand H. O., Galvez T., De Colle C., Pin J. P. and Acher F. (2000) Three-dimensional 

model of the extracellular domain of the type 4a metabotropic glutamate receptor: new insights into 

the activation process. Protein Sci 9, 2200-2209. 

Bessis A. S., Rondard P., Gaven F., Brabet I., Triballeau N., Prezeau L., Acher F. and Pin J. P. (2002) 

Closure of the Venus flytrap module of mGlu8 receptor and the activation process: Insights from 

mutations converting antagonists into agonists. Proc. Natl. Acad. Sci. USA 99, 11097-11102. 



 

123 
 

 

 

 

Bettler B., Kaupmann K., Mosbacher J. and Gassmann M. (2004) Molecular structure and 

physiological functions of GABA(B) receptors. Physiol Rev 84, 835-867. 

Beuten J., Ma J. Z., Payne T. J., Dupont R. T., Crews K. M., Somes G., Williams N. J., Elston R. C. 

and Li M. D. (2005) Single- and Multilocus Allelic Variants within the GABAB Receptor Subunit 2 

(GABAB2) Gene Are Significantly Associated with Nicotine Dependence. Am J Hum Genet 76, 859-

864. 

Bhattacharya S. and Linden J. (1996) Effects of long-term treatment with the allosteric enhancer, 

PD81,723, on Chinese hamster ovary cells expressing recombinant human A1 adenosine receptors. 

Mol. Pharmacol. 50, 104-111. 

Binet V., Brajon C., Le Corre L., Acher F., Pin J. P. and Prezeau L. (2004) The Heptahelical Domain 

of GABAB2 Is Activated Directly by CGP7930, a Positive Allosteric Modulator of the GABAB 

Receptor. J. Biol. Chem. 279, 29085-29091. 

Birdsall N. J., Browning C., Hern J. and Lazareno S. (2004) Allosteric regulation of binding and 

function at GPCRs. Med Chem Res 13, 52-62. 

Bischoff S., Leonhard S., Reymann N., Schuler V., Shigemoto R., Kaupmann K. and Bettler B. (1999) 

Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. J. Comp. Neurol. 

412, 1-16. 

Bohr C., Hasselbach K. A. and Krogh A. (1904) Ueber einen in biologischer Beziehung wichtigen 

Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt. Skand Arch 

Physiol 16, 402-412. 

Bolser D. C., Blythin D. J., Chapman R. W., Egan R. W., Hey J. A., Rizzo C., Kuo S. C. and Kreutner 

W. (1995) The pharmacology of SCH 50911: a novel, orally-active GABA-beta receptor antagonist. J. 

Pharmacol. Exp. Ther. 274, 1393-1398. 

Bonanno G., Carita F., Cavazzani P., Munari C. and Raiteri M. (1999) Selective block of rat and 

human neocortex GABAB receptors regulating somatostatin release by a GABAB antagonist endowed 

with cognition enhancing activity. Neuropharmacology 38, 1789-1795. 

Bonanno G., Fassio A., Sala R., Schmid G. and Raiteri M. (1998) GABAB receptors as potential 

targets for drugs able to prevent excessive excitatory amino acid transmission in the spinal cord. Eur. 

J. Pharmacol. 362, 143-148. 

Bowery N. (1993) GABAB Receptor Pharmacology. Annu. Rev. Pharmacol. Toxicol. 33, 109-147. 

Bowery N., Bettler B., Froestl W., Gallagher J. P., Marshall F., Raiteri M., Bonner T. I. and Enna S. J. 

(2002) International Union of Pharmacology. XXXIII. Mammalian γ-aminobutyric acidB receptors: 

Structure and function. Pharmacol. Rev. 54, 247-264. 

Bowery N.G., ed (2006) Allosteric Receptor Modulation in Drug Targeting. Taylor & Francis Group, 

LLC, New York. 

Bowery N. G. (2006) GABAB receptor: a site of therapeutic benefit. Current Opinion in 

Pharmacology 6, 37-43. 

Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J. and Turnbull M. (1980) 

(-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA 

receptor. Nature 283, 92-94. 



 

124 
 

 

 

 

Bowery N. G., Hudson A. L. and Price G. W. (1987) GABAA and GABAB receptor site distribution in 

the rat central nervous system. Neuroscience 20, 365-383. 

Brebner K., Ahn S. and Phillips A. G. (2005) Attenuation of d-amphetamine self-administration by 

baclofen in the rat: behavioral and neurochemical correlates. Psychopharmacology (Berl) 177, 409-

417. 

Brebner K., Froestl W., Andrews M., Phelan R. and Roberts D. C. (1999) The GABA(B) agonist CGP 

44532 decreases cocaine self-administration in rats: demonstration using a progressive ratio and a 

discrete trials procedure. Neuropharmacology 38, 1797-1804. 

Brebner K., Froestl W. and Roberts D. C. (2002) The GABA(B) antagonist CGP56433A attenuates the 

effect of baclofen on cocaine but not heroin self-administration in the rat. Psychopharmacology (Berl) 

160, 49-55. 

Brebner K., Phelan R. and Roberts D. C. (2000) Effect of baclofen on cocaine self-administration in 

rats reinforced under fixed-ratio 1 and progressive-ratio schedules. Psychopharmacology (Berl) 148, 

314-321. 

Breslow M. F., Fankhauser M. P., Potter R. L., Meredith K. E., Misiaszek J. and Hope D. G., Jr. 

(1989) Role of γ-aminobutyric acid in antipanic drug efficacy. Am J Psychiatry 146, 353-356. 

Brink C. B., Harvey B. H., Bodenstein J., Venter D. P. and Oliver D. W. (2004) Recent advances in 

drug action and therapeutics: Relevance of novel concepts in G-protein-coupled receptor and signal 

transduction pharmacology. British Journal of Clinical Pharmacology 57, 373-387. 

Bruns R. F. and Fergus J. H. (1990) Allosteric enhancement of adenosine A1 receptor binding and 

function by 2-amino-3-benzoylthiophenes. Mol. Pharmacol. 38, 939-949. 

Bucknam W. (2007) Suppression of symptoms of alcohol dependence and craving using high-dose 

baclofen. Alcohol Alcohol 42, 158-160. 

Campbell U. C., Lac S. T. and Carroll M. E. (1999) Effects of baclofen on maintenance and 

reinstatement of intravenous cocaine self-administration in rats. Psychopharmacology 143, 209-214. 

Campbell V., Berrow N. and Dolphin A. C. (1993) GABAB receptor modulation of Ca
2+

 currents in rat 

sensory neurones by the G protein G(0): antisense oligonucleotide studies. J Physiol 470, 1-11. 

Carai M. A. M., Colombo G., Froestl W. and Gessa G. L. (2004) In vivo effectiveness of CGP7930, a 

positive allosteric modulator of the GABAB receptor. Eur. J. Pharmacol. 504, 213-216. 

Charles K. J., Evans M. L., Robbins M. J., Calver A. R., Leslie R. A. and Pangalos M. N. (2001) 

Comparative immunohistochemical localisation of GABAB1a, GABAB1b and GABAB2 subunits in rat 

brain, spinal cord and dorsal root ganglion. Neuroscience 106, 447-467. 

Chen Y., Phillips K., Minton G. and Sher E. (2005) GABAB receptor modulators potentiate baclofen-

induced depression of dopamine neuron activity in the rat ventral tegmental area. Br. J. Pharmacol. 

144, 926-932. 

Cheng Y. C. and Prusoff W. H. (1973) Relationship between the inhibition constant (KI) and the 

concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. 

Pharmacol. 22, 3099-3108. 

Chidiac P., Nouet S. and Bouvier M. (1996) Agonist-induced modulation of inverse agonist efficacy at 

the β2-adrenergic receptor. Mol. Pharmacol. 50, 662-669. 



 

125 
 

 

 

 

Christopoulos A. (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug 

discovery. Nat Rev Drug Discov 1, 198-210. 

Christopoulos A. and Kenakin T. (2002) G Protein-Coupled Receptor Allosterism and Complexing. 

Pharmacol. Rev. 54, 323-374. 

Christopoulos A., May L. T., Avlani V. A. and Sexton P. M. (2004) G-protein-coupled receptor 

allosterism: the promise and the problem(s). Biochem. Soc. Trans. 32, 873-877. 

Chu D. C. M., Albin R. L., Young A. B. and Penney J. B. (1990) Distribution and kinetics of GABAB 

binding sites in rat central nervous system: A quantitative autoradiographic study. Neuroscience 34, 

341-357. 

Clark R. B. and Rich T. C. (2003) Probing the Roles of Protein Kinases in G-Protein-Coupled 

Receptor Desensitization. Mol. Pharmacol. 64, 1015-1017. 

Colombo G., Addolorato G., Agabio R., Carai M. A. M., Pibiri F., Serra S., Vacca G. and Gessa G. L. 

(2004) Role of GABAB receptor in alcohol dependence: Reducing effect of baclofen on alcohol intake 

and alcohol motivational properties in rats and amelioration of alcohol withdrawal syndrome and 

alcohol craving in human alcoholics. Neurotox. Res. 6, 403-414. 

Colombo G., Serra S., Brunetti G., Atzori G., Pani M. and Vacca G. (2002) The GABA(B) receptor 

agonists baclofen and CGP 44532 prevent acquisition of alcohol drinking behaviour in alcohol-

preferring rats. Alcohol Alcohol 37, 499-503. 

Conigrave A. D. and Franks A. H. (2003) Allosteric activation of plasma membrane receptors-

physiological implications and structural origins. Progress in Biophysics and Molecular Biology 81, 

219-240. 

Conigrave A. D., Quinn S. J. and Brown E. M. (2000) L-Amino acid sensing by the extracellular Ca2+-

sensing receptor. Proceedings of the National Academy of Sciences 97, 4814-4819. 

Conn P. J. and Pin J. P. (1997) Pharmacology and functions of metabotropic glutamate receptors. 

Annu. Rev. Pharmacol. Toxicol. 37, 205-237. 

Costa T. and Herz A. (1989) Antagonists with Negative Intrinsic Activity at δ-Opioid Receptors 

Coupled to GTP-Binding Proteins. Proceedings of the National Academy of Sciences 86, 7321-7325. 

Costantino G., Macchiarulo A., Entrena Guadix A. and Pellicciari R. (2001) QSAR and Molecular 

Modeling Studies of Baclofen Analogues as GABAB Agonists. Insights into the Role of the Aromatic 

Moiety in GABAB Binding and Activation. J. Med. Chem. 44, 1827-1832. 

Cotecchia S., Fanelli F. and Costa T. (2003) Constitutively Active G Protein-Coupled Receptor 

Mutants: Implications on Receptor Function and Drug Action. ASSAY and Drug Development 

Technologies 1, 311-316. 

Cousins M. S., Roberts D. C. S. and De Wit H. (2002) GABAB receptor agonists for the treatment of 

drug addiction: a review of recent findings. Drug and Alcohol Dependence 65, 209-220. 

Couve A., Filippov A. K., Connolly C. N., Bettler B., Brown D. A. and Moss S. J. (1998) Intracellular 

retention of recombinant GABAB receptors. J. Biol. Chem. 273, 26361-26367. 

Couve A., Kittler J. T., Uren J. M., Calver A. R., Pangalos M. N., Walsh F. S. and Moss S. J. (2001) 

Association of GABAB Receptors and Members of the 14-3-3 Family of Signaling Proteins. Mol. Cell. 

Neurosci. 17, 317-328. 



 

126 
 

 

 

 

Couve A., Thomas P., Calver A., Hirst W. D., Pangalos M. N., Walsh F. S., Smart T. G. and Moss S. 

J. (2002) Cyclic AMP-dependent protein kinase phosphorylation facilitates GABAB receptor-effector 

coupling. Nat. Neurosci. 5, 415-424. 

Cryan J. F. and Kaupmann K. (2005) Don't worry 'B' happy!: a role for GABA(B) receptors in anxiety 

and depression. Trends Pharmacol Sci 26, 36-43. 

Cryan J. F., Kelly P. H., Chaperon F., Gentsch C., Mombereau C., Lingenhoehl K., Froestl W., Bettler 

B., Kaupmann K. and Spooren W. (2004) Behavioral Characterization of the Novel GABAB Receptor-

Positive Modulator GS39783 (N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): 

Anxiolytic-Like Activity without Side Effects Associated with Baclofen or Benzodiazepines. J. 

Pharmacol. Exp. Ther. 310, 952-963. 

Cunningham M. D. and Enna S. J. (1996) Evidence for pharmacologically distinct GABAB receptors 

associated with cAMP production in rat brain. Brain Res. 720, 220-224. 

De Lean A., Stadel J. M. and Lefkowitz R. J. (1980) A ternary complex model explains the agonist-

specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J. Biol. Chem. 

255, 7108-7117. 

De Vries L., Zheng B., Fischer T., Elenko E. and Farquhar M. G. (2000) The Regulator of G Protein 

Signaling Family. Annu. Rev. Pharmacol. Toxicol. 40, 235-271. 

DeBoer P. and Westerink B. H. C. (1994) GABAergic Modulation of Striatal Cholinergic 

Interneurons: An In Vivo Microdialysis Study. J. Neurochem. 62, 70-75. 

Di Ciano P. and Everitt B. J. (2003) The GABAB Receptor Agonist Baclofen Attenuates Cocaine- and 

Heroin-Seeking Behavior by Rats. Neuropsychopharmacology 28, 510-518. 

Dupuis D. S., Relkovic D., Lhuillier L., Mosbacher J. and Kaupmann K. (2006) Point Mutations in the 

Transmembrane Region of GABAB2 Facilitate Activation by the Positive Modulator N,N'-

Dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the Absence of the 

GABAB1 Subunit. Mol. Pharmacol. 70, 2027-2036. 

Duthey B., Caudron S., Perroy J., Bettler B., Fagni L., Pin J. P. and Prezeau L. (2002) A Single 

Subunit (GB2) Is Required for G-protein Activation by the Heterodimeric GABAB Receptor. J. Biol. 

Chem. 277, 3236-3241. 

Emson P. C. (2007) GABAB receptors: structure and function, in Progress in Brain Research 

Gaba and the Basal Ganglia - From Molecules to Systems, (James M. T., ed), pp. 43-57. Elsevier. 

Erhardt S., Nissbrandt H. and Engberg G. (1999) Activation of nigral dopamine neurons by the 

selective GABAB-receptor antagonist SCH 50911. Journal of Neural Transmission 106, 383-394. 

Fairfax B. P., Pitcher J. A., Scott M. G. H., Calver A. R., Pangalos M. N., Moss S. J. and Couve A. 

(2004) Phosphorylation and Chronic Agonist Treatment Atypically Modulate GABAB Receptor Cell 

Surface Stability. J. Biol. Chem. 279, 12565-12573. 

Ferguson S. S. G. (2001) Evolving Concepts in G Protein-Coupled Receptor Endocytosis: The Role in 

Receptor Desensitization and Signaling. Pharmacol. Rev. 53, 1-24. 

Fritschy J. M., Meskenaite V., Weinmann O., Honer M., Benke D. and Mohler H. (1999) GABAB-

receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution 

and extrasynaptic localization. Eur. J. Neurosci. 11, 761-768. 



 

127 
 

 

 

 

Froestl W., Gallagher M., Jenkins H., Madrid A., Melcher T., Teichman S., Mondadori C. G. and 

Pearlman R. (2004) SGS742: the first GABAB receptor antagonist in clinical trials. Biochem. 

Pharmacol. 68, 1479-1487. 

Froestl W. and Mickel S. J. (1997) Chemistry of GABAB modulators., in The GABAB Receptors, (Enna 

S. J. and Bowery N. G., eds), pp. 271-296. Humana Press Inc., Totowa, NJ. 

Froestl W., Mickel S. J., Hall R. G., von Sprecher G., Strub D., Baumann P. A., Brugger F., Gentsch 

C., Jaekel J., Olpe H. R., Rihs G., Vassout A., Waldmeier P. C. and Bittiger H. (1995) Phosphinic 

Acid Analogs of GABA. 1. New Potent and Selective GABAB Agonists. J. Med. Chem. 38, 3297-

3312. 

Fromm G. H. (1994) Baclofen as an adjuvant analgesic. Pain. Symptom Management 9, 500-509. 

Gainetdinov R. R., Premont R. T., Bohn L. M., Lefkowitz R. J. and Caron M. G. (2004) 

Desensitization of G-protein coupled receptors and neuronal functions. Annual Review of 

Neuroscience 27, 107-144. 

Galvez T., Parmentier M. L., Joly C., Malitschek B., Kaupmann K., Kuhn R., Bittiger H., Froestl W., 

Bettler B. and Pin J. P. (1999) Mutagenesis and Modeling of the GABAB Receptor Extracellular 

Domain Support a Venus Flytrap Mechanism for Ligand Binding. J. Biol. Chem. 274, 13362-13369. 

Galvez T., Prezeau L., Milioti G., Franek M., Joly C., Froestl W., Bettler B., Bertrand H. O., Blahos J. 

and Pin J. P. (2000a) Mapping the Agonist-binding Site of GABAB Type 1 Subunit Sheds Light on the 

Activation Process of GABAB Receptors. J. Biol. Chem. 275, 41166-41174. 

Galvez T., Urwyler S., Prézeau L., Mosbacher J., Joly C., Malitschek B., Heid J., Brabet I., Froestl W., 

Bettler B., Kaupmann K. and Pin J. P. (2000b) Ca2+ requirement for high-affinity γ-aminobutyric acid 

(GABA) binding at GABAB receptors: Involvement of serine 269 of the GABABR1 subunit. Mol. 

Pharmacol. 57, 419-426. 

Gao Z. G. and Jacobson K. A. (2006) Allosterism in membrane receptors. Drug Discovery Today 11, 

191-202. 

Gao Z. G., Kim S. G., Soltysiak K. A., Melman N., IJzerman A. P. and Jacobson K. A. (2002) 

Selective allosteric enhancement of agonist binding and function at human A3 adenosine receptors by 

a series of imidazoquinoline derivatives. Mol. Pharmacol. 62, 81-89. 

Ghavami A., Hunt R. A., Olsen M. A., Zhang J., Smith D. L., Kalgaonkar S., Rahman Z. and Young 

K. H. (2004) Differential effects of regulator of G protein signaling (RGS) proteins on serotonin 5-

HT1A, 5-HT2A, and dopamine D2 receptor-mediated signaling and adenylyl cyclase activity. Cellular 

Signalling 16, 711-721. 

Gjoni T., Desrayaud S., Imobersteg S. and Urwyler S. (2006) The positive allosteric modulator 

GS39783 enhances GABAB receptor-mediated inhibition of cyclic AMP formation in rat striatum in 

vivo. J. Neurochem. 96, 1416-1422. 

Gonzales-Maeso J., Wise A., Green A. and Koenig J. A. (2003) Agonist-induced desensitization and 

endocytosis of heterodimeric GABAB receptors in CHO-K1 cells. Eur. J. Pharmacol. 481, 15-23. 

Goudet C., Gaven F., Kniazeff J., Vol C., Liu J., Cohen-Gonsaud M., Acher F., Prezeau L. and Pin J. 

P. (2004) Heptahelical domain of metabotropic glutamate receptor 5 behaves like rhodopsin-like 

receptors. Proceedings of the National Academy of Sciences 101, 378-383. 



 

128 
 

 

 

 

Grampp T., Sauter K., Markovic B. and Benke D. (2007) GABAB receptors are constitutively 

internalized via the clathrin-dependent pathway and targeted to lysosomes for degradation. J. Biol. 

Chem. M702626200. 

Greasley P. J. and Clapham J. C. (2006) Inverse agonism or neutral antagonism at G-protein coupled 

receptors: A medicinal chemistry challenge worth pursuing? Eur. J. Pharmacol. 553, 1-9. 

Greif G. J., Sodickson D. L., Bean B. P., Neer E. J. and Mende U. (2000) Altered Regulation of 

Potassium and Calcium Channels by GABAB and Adenosine Receptors in Hippocampal Neurons 

From Mice Lacking Gαo. J Neurophysiol 83, 1010-1018. 

Grigoriadis D. E., Chen C., Wilcoxen K., Chen T., Lorang M. T., Bozigian H., Liu X. J., Ling N., 

McCarty J. R. and DeSouze E. B. (2000) In vitro characterization of R121919: a novel non-peptide 

corticotropin-releasing factor 1 receptor antagonist for the potential treatment of depression and 

anxiety-related disorders. 

Grillon C., Cordova J., Levine L. R. and Morgan I. I. I. (2003) Anxiolytic effects of a novel group II 

metabotropic glutamate receptor agonist (LY354740) in the fear-potentiated startle paradigm in 

humans. Psychopharmacology 168, 446-454. 

Grünewald S., Schupp B., Ikeda S. R., Kuner R., Steigerwald F., Kornau H. C. and Köhr G. (2003) 

Importance of the γ-Aminobutyric AcidB Receptor C-Termini for G-Protein Coupling. Mol. 

Pharmacol. 61, 1070-1080. 

Hall D. A. (2000) Modeling the functional effects of allosteric modulators at pharmacological 

receptors: An extension of the two-state model of receptor activation. Mol. Pharmacol. 58, 1412-1423. 

Hammerland L. G., Garrett J. E., Hung B. C., Levinthal C. and Nemeth E. F. (1998) Allosteric 

Activation of the Ca2+ Receptor Expressed in Xenopus laevis Oocytes by NPS 467or NPS 568. Mol. 

Pharmacol. 53, 1083-1088. 

Harrison C. and Traynor J. R. (2003) The [35S]GTPγS binding assay: approaches and applications in 

pharmacology. Life Sci. 74, 489-508. 

Hashimoto T. and Kuriyama K. (1997) In Vivo Evidence that GABAB Receptors Are Negatively 

Coupled to Adenylate Cyclase in Rat Striatum. J. Neurochem. 69, 365-370. 

Havlickova M., Prezeau L., Duthey B., Bettler B., Pin J. P. and Blahos J. (2002) The intracellular 

loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric γ-aminobutyrate B 

receptor. Mol. Pharmacol. 62, 343-350. 

Heese K., Otten U., Mathivet P., Raiteri M., Marescaux C. and Bernasconi R. (2000) GABAB receptor 

antagonists elevate both mRNA and protein levels of the neurotrophins nerve growth factor (NGF) and 

brain-derived neurotrophic factor (BDNF) but not neurotrophin-3 (NT-3) in brain and spinal cord of 

rats. Neuropharmacology 39, 449-462. 

Heinemann U., Konnerth A., Pumain R. and Wadman W. J. (1986) Extracellular calcium and 

potassium concentration changes in chronic epileptic brain tissue. Adv Neurol 44, 641-661. 

Helm K. A., Haberman R. P., Dean S. L., Hoyt E. C., Melcher T., Lund P. K. and Gallagher M. (2005) 

GABAB receptor antagonist SGS742 improves spatial memory and reduces protein binding to the 

cAMP response element (CRE) in the hippocampus. Neuropharmacology 48, 956-964. 

Hilf G., Gierschik P. and Jakobs K. H. (1989) Muscarinic acetylcholine receptor-stimulated binding of 

guanosine 5'-O-(3-thiotriphosphate) to guanine-nucleotide-binding proteins in cardiac membranes. 

European Journal of Biochemistry 186, 725-731. 



 

129 
 

 

 

 

Hill D. R., Bowery N. and Hudson A. L. (1984) Inhibition of GABAB receptor binding by guanyl 

nucleotides. J. Neurochem. 42, 652-657. 

Hirst W. D., Babbs A. J., Green A., Minton J. A. L., Shaw T. E., Wise A., Rice S. Q., Pangalos M. N. 

and Price G. W. (2003) Pharmacological characterisation of a cell line expressing GABAB1b and 

GABAB2 receptor subunits. Biochem. Pharmacol. 65, 1103-1113. 

Holsboer F. (2000) The Corticosteroid Receptor Hypothesis of Depression. 

Neuropsychopharmacology 23, 477-501. 

Holsboer F. (2003) Corticotropin-releasing hormone modulators and depression. Curr Opin Invest 

Drugs 4, 46-50. 

Hopkins A. L. and Groom C. R. (2002) The druggable genome. Nat Rev Drug Discov 1, 727-730. 

Hosford D. A., Clark S., Cao Z., Wilson W. A., Jr., Lin F. H., Morrisett R. A. and Huin A. (1992) The 

role of GABAB receptor activation in absence seizures of lethargic (lh/lh) mice. Science 257, 398-401. 

Hosli L., Hosli E., Redle S., Rojas J. and Schramek H. (1990) Action of baclofen, GABA and 

antagonists on the membrane potential of cultured astrocytes of rat spinal cord. Neuroscience Letters 

117, 307-312. 

Ipponi A., Lamberti C., Medica A., Bartolini A. and Malmberg-Aiello P. (1999) Tiagabine 

antinociception in rodents depends on GABAB receptor activation: parallel antinociception testing and 

medial thalamus GABA microdialysis. Eur. J. Pharmacol. 368, 205-211. 

Jacobson L. H. and Cryan J. F. (2005) Differential sensitivity to the motor and hypothermic effects of 

the GABAB receptor agonist baclofen in various mouse strains. Psychopharmacology 179, 688-699. 

Jasmin L., Rabkin S. D., Granato A., Boudah A. and Ohara P. T. (2003) Analgesia and hyperalgesia 

from GABA-mediated modulation of the cerebral cortex. Nature 424, 316-320. 

Jensen A. A. and Spalding T. A. (2004) Allosteric modulation of G-protein coupled receptors. 

European Journal of Pharmaceutical Sciences 21, 407-420. 

Johnson J. T., Mattiuz E. L., Chay S. H., Herman J. L., Wheeler W. J., Kassahun K., Swanson S. P. 

and Phillips D. L. (2002) The Disposition, Metabolism, and Pharmacokinetics of a Selective 

Metabotropic Glutamate Receptor Agonist in Rats and Dogs. Drug Metab Dispos 30, 27-33. 

Johnston G. A. R. (1996) GABAC receptors: relatively simple transmitter-gated ion channels? Trends 

Pharmacol. Sci. 17, 319-323. 

Jones K. A., Borowsky B., Tamm J. A., Craig D. A., Durkin M. M., Dai M., Yao W. J., Johnson M., 

Gunwaldsen C., Huang L. Y., Tang C., Shen Q. R., Salon J. A., Morse K., Laz T., Smith K. E., 

Nagarathnam D., Noble S. A., Branchek T. A. and Gerald C. (1998) GABAB receptors function as a 

heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674-679. 

Kanaide M., Uezono Y., Matsumoto M., Hojo M., Ando Y., Sudo Y., Sumikawa K. and Taniyama K. 

(2006) Desensitization of GABAB receptor signaling by formation of protein complexes of GABAB2 

subunit with GRK4 or GRK5. J Cell Physiol 210, 237-245. 

Kaplan G. B., McRoberts R. L. I. and Smokler J. H. (2004) Baclofen as Adjunctive Treatment for a 

Patient With Cocaine Dependence and Schizoaffective Disorder. J Clin Psychopharmacol 24, 574-

575. 



 

130 
 

 

 

 

Karbon E. W. and Enna S. J. (1985) Characterization of the relationship between γ- aminobutyric acid 

B agonists and transmitter-coupled cyclic nucleotide-generating systems in rat brain. Mol. Pharmacol. 

27, 53-59. 

Kaupmann K., Huggel K., Heid J., Flor P. J., Bischoff S., Mickel S. J., McMaster G., Angst C., 

Bittiger H., Froestl W. and Bettler B. (1997) Expression cloning of GABAB receptors uncovers 

similarity to metabotropic glutamate receptors. Nature 386, 239-246. 

Kaupmann K., Malitschek B., Schuler V., Heid J., Froestl W., Beck P., Mosbacher J., Bischoff S., 

Kulik A., Shigemoto R., Karschin A. and Bettler B. (1998a) GABAB-receptor subtypes assemble into 

functional heteromeric complexes. Nature 396, 683-687. 

Kaupmann K., Schuler V., Mosbacher J., Bischoff S., Bittiger H., Heid J., Froestl W., Leonhard S., 

Pfaff T., Karschin A. and Bettler B. (1998b) Human γ-aminobutyric acid type B receptors are 

differentially expressed and regulate inwardly rectifying K+ channels . Proc. Natl. Acad. Sci. USA 95, 

14991-14996. 

Kellner M., Muhtz C., Stark K., Yassouridis A., Arlt J. and Wiedemann K. (2005) Effects of a 

metabotropic glutamate2/3 receptor agonist (LY544344/LY354740) on panic anxiety induced by 

cholecystokinin tetrapeptide in healthy humans: preliminary results. Psychopharmacology 179, 310-

315. 

Kenakin T. (2003) Ligand-selective receptor conformations revisited: the promise and the problem. 

Trends Pharmacol. Sci. 24, 346-354. 

Kenakin T. (2004) Efficacy as a Vector: the Relative Prevalence and Paucity of Inverse Agonism. 

Mol. Pharmacol. 65, 2-11. 

Kerr D. I. B. and Ong J. (2003) Potentiation of metabotropic GABAB receptors by -amino acids and 

dipeptides in rat neocortex. Eur. J. Pharmacol. 468, 103-108. 

Kerr D. I. B., Ong J., Johnston G. A. R., Abbenante J. and Prager R. H. (1988) 2-Hydroxy-saclofen: an 

improved antagonist at central and peripheral GABAB receptors. Neuroscience Letters 92, 92-96. 

Kerr D. I. B., Ong J., Puspawati N. M. and Prager R. H. (2002) Arylalkylamines are a novel class of 

positive allosteric modulators at GABAB receptors in rat neocortex. Eur. J. Pharmacol. 451, 69-77. 

Klaasse E. C., Van den Hout G., Roerink S. F., De Grip W. J., IJzerman A. P. and Beukers M. W. 

(2005) Allosteric modulators affect the internalization of human adenosine A1 receptors. Eur. J. 

Pharmacol. 522, 1-8. 

Kniazeff J., Saintot P. P., Goudet C., Liu J., Charnet A., Guillon G. and Pin J. P. (2004) Locking the 

Dimeric GABAB G-Protein-Coupled Receptor in Its Active State. J. Neurosci. 24, 370-377. 

Knight A. R. and Bowery N. (1996) The Pharmacology of Adenylyl Cyclase Modulation by GABAB 

Receptors in Rat Brain Slices. Neuropharmacology 35, 703-712. 

Knoflach F., Mutel V., Kew J. N. C., Malherbe P., Vieira E., Wichmann J. and Kemp J. A. (2001) 

Positive allosteric modulators of metabotropic glutamate 1 receptor: Characterization, mechanism of 

action, and binding site. Proc. Natl. Acad. Sci. USA 98, 13402-13407. 

Kubo Y., Miyashita T. and Murata Y. (1998) Structural Basis for a Ca
2+

-Sensing Function of the 

Metabotropic Glutamate Receptors. Science 279, 1722-1725. 

Kuner R., Köhr G., Grünewald S., Eisenhardt G., Bach A. and Kornau H. C. (1999) Role of heteromer 

formation in GABAB receptor function. Science 283, 74-77. 



 

131 
 

 

 

 

Laffray S., Tan K., Dulluc J., Bouali-Benazzouz R., Calver A. R., Nagy F. and Landry M. (2007) 

Dissociation and trafficking of rat GABAB receptor heterodimer upon chronic capsaicin stimulation. 

Eur. J. Neurosci. 25, 1402-1416. 

Langmead C. J. and Christopoulos A. (2006) Allosteric agonists of 7TM receptors: expanding the 

pharmacological toolbox. Trends Pharmacol. Sci. 27, 475-481. 

Laurenza A., Khandelwal Y., De Souza N. J., Rupp R. H., Metzger H. and Seamon K. B. (1987) 

Stimulation of adenylate cyclase by water-soluble analogues of forskolin. Mol. Pharmacol. 32, 133-

139. 

Lazareno S., Dolezal V., Popham A. and Birdsall N. J. M. (2004) Thiochrome Enhances Acetylcholine 

Affinity at Muscarinic M4 Receptors: Receptor Subtype Selectivity via Cooperativity Rather than 

Affinity. Mol. Pharmacol. 65, 257-266. 

Lazareno S., Gharagozloo P., Kuonen D., Popham A. and Birdsall N. J. (1998) Subtype-Selective 

Positive Cooperative Interactions between Brucine Analogues and Acetylcholine at Muscarinic 

Receptors: Radioligand Binding Studies. Mol. Pharmacol. 53, 573-589. 

Lazarewicz J. W. (1996) Calcium transients in brain ischemia: role in neuronal injury. Acta Neurobiol 

Exp 56, 299-311. 

Leff P. (1995) The two-state model of receptor activation. Trends Pharmacol. Sci. 16, 89-97. 

Lefkowitz R. J., Cotecchia S., Samama P. and Costa T. (1993) Constitutive activity of receptors 

coupled to guanine nucleotide regulatory proteins. Trends Pharmacol. Sci. 14, 303-307. 

Lehmann A., Antonsson M., Bremner-Danielsen M., Flärdh M., Hansson-Brändén L. and Kärrberg L. 

(1999) Activation of the GABAB receptor inhibits transient lower esophageal sphincter relaxations in 

dogs. Gastroenterology 117, 1147-1154. 

Lehmann A., Mattsson J. P., Edlund A., Johansson T. and Ekstrand A. J. (2003) Effects of Repeated 

Administration of Baclofen to Rats on GABAB Receptor Binding Sites and Subunit Expression in the 

Brain. Neurochemical Research 28, 387-393. 

Lhuillier L., Mombereau C., Cryan J. F. and Kaupmann K. (2006) GABAB Receptor-Positive 

Modulation Decreases Selective Molecular and Behavioral Effects of Cocaine. 

Neuropsychopharmacology. 

Li X., Bantel C., Conklin D., Childers S. R. and Eisenach J. C. (2004) Repeated Dosing with Oral 

Allosteric Modulator of Adenosine A1 Receptor Produces Tolerance in Rats with Neuropathic Pain. 

Anesthesiology 100, 956-961. 

Liang F., Hatanaka Y., Saito H., Yamamori T. and Hashikawa T. (2000) Differential expression of γ-

aminobutyric acid type B receptor-1a and -1b mRNA variants in GABA and non-GABAergic neurons 

of the rat brain. J. Comp. Neurol. 416, 475-495. 

Liang J. H., Chen F., Krstew E., Cowen M. S., Carroll F. Y., Crawford D., Beart P. M. and Lawrence 

A. J. (2006) The GABAB receptor allosteric modulator CGP7930, like baclofen, reduces operant self-

administration of ethanol in alcohol-preferring rats. Neuropharmacology 50, 632-639. 

Lidums I., Lehmann A., Checklin H., Dent J. and Holloway R. H. (2000) Control of transient lower 

esophageal sphincter relaxations and reflux by the GABAB agonist baclofen in normal subjects. 

Gastroenterology 118, 7-13. 



 

132 
 

 

 

 

Ling W. and Shoptaw S. (1998) Baclofen as a Cocaine Anti-Craving Medication: A Preliminary 

Clinical Study. Neuropsychopharmacology 18, 403-404. 

Liu J. G. and Prather P. L. (2001) Chronic Exposure to µ-Opioid Agonists Produces Constitutive 

Activation of µ-Opioid Receptors in Direct Proportion to the Efficacy of the Agonist Used for 

Pretreatment. Mol. Pharmacol. 60, 53-62. 

Liu J. G. and Prather P. L. (2002) Chronic Agonist Treatment Converts Antagonists into Inverse 

Agonists at δ-Opioid Receptors. J. Pharmacol. Exp. Ther. 302, 1070-1079. 

Liu Z., Vergnes M., Depaulis A. and Marescaux C. (1992) Involvement of intrathalamic GABAB 

neurotransmission in the control of absence seizures in the rat. Neuroscience 48, 87-93. 

Lloyd K. G., Thuret F. and Pilc A. (1985) Upregulation of gamma-aminobutyric acid (GABA) B 

binding sites in rat frontal cortex: a common action of repeated administration of different classes of 

antidepressants and electroshock. J. Pharmacol. Exp. Ther. 235, 191-199. 

Lobina C., Colombo G., Gessa G. L. and Carai M. A. M. (2005) Different sensitivity to the motor 

incoordinating effects of γ-hydroxybutyric acid (GHB) and baclofen in GHB-sensitive and GHB-

resistant rats. Brain Res. 1033, 109-112. 

Loubser P. G. and Akman N. M. (1996) Effects of intrathecal baclofen on chronic spinal cord injury 

pain. J Pain Symptom Manage 12, 241-247. 

Lüscher C., Jan L. Y., Stoffel M., Malenka R. C. and Nicoll R. A. (1997) G protein-coupled inwardly 

rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in 

hippocampal neurons. Neuron 19, 687-695. 

Maj M., Bruno V., Dragic Z., Yamamoto R., Battaglia G., Inderbitzin W., Stoehr N., Stein T., 

Gasparini F., Vranesic I., Kuhn R., Nicoletti F. and Flor P. J. (2003) (-)-PHCCC, a positive allosteric 

modulator of mGluR4: characterization, mechanism of action, and neuroprotection. 

Neuropharmacology 45, 895-906. 

Malan T. P., Mata H. P. and Porreca P. (2002) Spinal GABAA and GABAB Receptor Pharmacology in 

Rat Model of Neuropathic Pain. Anesthesiology 96, 1161-1167. 

Malcangio M., Libri V., Teoh H., Constanti A. and Bowery N. (1995) Chronic (-)baclofen or 

CGP36742 alters GABAB receptor sensitivity in rat brain and spinal cord . Neuroreport 6, 399-403. 

Malcangio M., Malmberg-Aiello P., Giotti A., Ghelardini C. and Bartolini A. (1992) Desensitization 

of GABAB receptors and antagonism by CGP35348, prevent bicuculline- and picrotoxin-induced 

antinociception. Neuropharmacology 31, 783-791. 

Malitschek B., Schweizer C., Keir M., Heid J., Froestl W., Mosbacher J., Kuhn R., Henley J., Joly C., 

Pin J. P., Kaupmann K. and Bettler B. (1999) The N-terminal domain of γ-aminobutyric acidB 

receptors is sufficient to specify agonist and antagonist binding. Mol. Pharmacol. 56, 448-454. 

Manning J. P., Richards D. A. and Bowery N. G. (2003) Pharmacology of absence epilepsy. Trends 

Pharmacol. Sci. 24, 542-549. 

Marescaux C., Vergnes M. and Bernasconi R. (1992) GABAB receptor antagonists: potential new anti-

absence drugs. J Neural Transm Suppl 35, 179-188. 

Margeta-Mitrovic M., Jan Y. N. and Jan L. Y. (2001) Function of GB1 and GB2 subunits in G protein 

coupling of GABAB receptors. Proc. Natl. Acad. Sci. USA 98, 14649-14654. 



 

133 
 

 

 

 

Margeta-Mitrovic M., Jan Y. N. and Jan L. Y. (2000) A trafficking checkpoint controls GABAB 

receptor heterodimerization. Neuron 27, 97-106. 

Marshall F. H. (2005) Is the GABAB Heterodimer a Good Drug Target? J. Mol. Neurosci. 26, 169-

176. 

Marshall F. H. (2000) Molecular insight develops our understanding of the GABAB receptor. Curr. 

Opin. Drug Discovery and Developm. 3, 597-604. 

Martin S. C., Russek S. J. and Farb D. H. (1999) Molecular Identification of the Human GABABR2: 

Cell Surface Expression and Coupling to Adenylyl Cyclase in the Absence of GABABR1. Mol. Cell. 

Neurosci. 13, 180-191. 

Mathiesen J. M., Svendsen N., Brauner-Osborne H., Thomsen C. and Ramirez M. T. (2003) Positive 

allosteric modulation of the human metabotropic glutamate receptor 4 (hmGluR4) by SIB-1893 and 

MPEP. Br. J. Pharmacol. 138, 1026-1030. 

Maudsley S., Martin B. and Luttrell L. M. (2005) The Origins of Diversity and Specificity in G 

Protein-Coupled Receptor Signaling. J. Pharmacol. Exp. Ther. 314, 485-494. 

May L. T., Avlani V. A., Sexton P. M. and Christopoulos A. (2004) Allosteric Modulation of G 

Protein-Coupled Receptors. Current Pharmaceutical Design 10, 2003-2013. 

May L. T., Leach K., Sexton P. M. and Christopoulos A. (2007) Allosteric Modulation of G Protein-

Coupled Receptors. Annu. Rev. Pharmacol. Toxicol. 47, 1-51. 

May L. T., Lin Y., Sexton P. M. and Christopoulos A. (2005) Regulation of M2 Muscarinic 

Acetylcholine Receptor Expression and Signaling by Prolonged Exposure to Allosteric Modulators. J. 

Pharmacol. Exp. Ther. 312, 382-390. 

Menon-Johansson A. S., Berrow N. and Dolphin A. C. (1993) Go transduces GABAB-receptor 

modulation of N-type calcium channels in cultured dorsal root ganglion neurons. Pflügers Archiv 

European Journal of Physiology 425, 335-343. 

Milligan G. (2003) Constitutive Activity and Inverse Agonists of G Protein-Coupled Receptors: a 

Current Perspective. Mol. Pharmacol. 64, 1271-1276. 

Milligan G. and Bond R. A. (1997) Inverse agonism and the regulation of receptor number. Trends 

Pharmacol. Sci. 18, 468-474. 

Mitsukawa K., Yamamoto R., Ofner S., Nozulak J., Pescott O., Lukic S., Stoehr N., Mombereau C., 

Kuhn R., McAllister K. H., Van der Putten H., Cryan J. F. and Flor P. J. (2005) A selective 

metabotropic glutamate receptor 7 agonist: Activation of receptor signaling via an allosteric site 

modulates stress parameters in vivo. Proceedings of the National Academy of Sciences 102, 18712-

18717. 

Mombereau C., Kaupmann K., Fröstl W., Sansig G., Van der Putten H. and Cryan J. F. (2004) Genetic 

and Pharmacological Evidence of a Role for GABAB Receptors in the Modulation of Anxiety- and 

Antidepressant-Like Behavior. Neuropsychopharmacology 29, 1050-1062. 

Mombereau C., Kaupmann K., Gassmann M., Bettler B., Van der Putten H. and Cryan J. F. (2005) 

Altered anxiety and depression-related behaviour in mice lacking GABAB(2) receptor subunits. 

Neuroreport 16, 307-310. 



 

134 
 

 

 

 

Mombereau C., Lhuillier L., Kaupmann K. and Cryan J. F. (2007) GABAB Receptor-Positive 

Modulation-Induced Blockade of the Rewarding Properties of Nicotine Is Associated with a Reduction 

in Nucleus Accumbens ∆FosB Accumulation. J. Pharmacol. Exp. Ther. 321, 172-177. 

Monod J., Wyman J. and Changeux J. P. (1965) On the nature of allosteric transitions: A plausible 

model. J Mol Biol 12, 88-118. 

Moor E., DeBoer P. and Westerink B. H. C. (1998) GABA receptors and benzodiazepine binding sites 

modulate hippocampal acetylcholine release in vivo. Eur. J. Pharmacol. 359, 119-126. 

Morishita R., Kato K. and Asano T. (1990) GABAB receptors couple to G proteins Go, G
*
o and Gi1 but 

not to Gi2. FEBS Lett. 271, 231-235. 

Mukherjee R. S., McBride E. W., Beinborn M., Dunlap K. and Kopin A. S. (2006) Point Mutations in 

Either Subunit of the GABAB Receptor Confer Constitutive Activity to the Heterodimer. Mol. 

Pharmacol. 70, 1406-1413. 

Mutneja M., Berton F., Suen K. F., Lüscher C. and Slesinger P. A. (2005) Endogenous RGS proteins 

enhance acute desensitization of GABAB receptor-activated GIRK currents in HEK-293T cells. 

Pflügers Archiv European Journal of Physiology 450, 61-73. 

Nakagawa Y., Sasaki A. and Takashima T. (1999) The GABAB receptor antagonist CGP36742 

improves learned helplessness in rats. Eur. J. Pharmacol. 381, 1-7. 

Negus S. S. (2006) Some implications of receptor theory for in vivo assessment of agonists, 

antagonists and inverse agonists. Biochem. Pharmacol. 71, 1663-1670. 

Nemeth E. F., DelMar E. G., Heaton W. L., Miller M. A., Lambert L. D., Conklin R. L., Gowen M., 

Gleason J. G., Bhatnagar P. K. and Fox J. (2001) Calcilytic Compounds: Potent and Selective Ca2+ 

Receptor Antagonists That Stimulate Secretion of Parathyroid Hormone. J. Pharmacol. Exp. Ther. 

299, 323-331. 

Nemeth E. F., Steffey M. E., Hammerland L. G., Hung B. C., Van Wagenen B. C., DelMar E. G. and 

Balandrin M. F. (1998) Calcimimetics with potent and selective activity on the parathyroid calcium 

receptor. Proceedings of the National Academy of Sciences 95, 4040-4045. 

Ng G. Y., Clark J., Coulombe N., Ethier N., Hebert T. E., Sullivan R., Kargman S., Chateauneuf A., 

Tsukamoto N., McDonald T., Whiting P., Mezey E., Johnson M. P., Liu Q. Y., Kolakowski L. F., Jr., 

Evans J. F., Bonner T. I. and O'Neill G. P. (1999) Identification of a GABAB receptor subunit, gb2, 

required for functional GABAB receptor activity. J. Biol. Chem. 274, 7607-7610. 

Noeske T., Gutcaits A., Parsons C. G. and Weil T. (2006) Allosteric Modulation of Family 3 GPCRs. 

QSAR Comb Sci 25, 134-146. 

O'Hara P. J., Sheppard P. O., Thogersen H., Venezia D., Haldeman B. A., McGrane V., Houamed K. 

M., Thomsen C., Gilbert T. L. and Mulvihill E. R. (1993) The ligand-binding domain in metabotropic 

glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41-52. 

Oka M., Wada M., Wu Q., Yamamoto A. and Fujita T. (2006) Functional expression of metabotropic 

GABAB receptors in primary cultures of astrocytes from rat cerebral cortex. Biochemical and 

Biophysical Research Communications 341, 874-881. 

Olianas M. C., Ambu R., Garau L. and Onali P. (2005) Allosteric modulation of GABAB receptor 

function in human frontal cortex. Neurochem. Int. 46, 149-158. 



 

135 
 

 

 

 

Olianas M. C. and Onali P. (1999) GABAB receptor-mediated stimulation of adenylyl cyclase activity 

in membranes of rat olfactory bulb. Br. J. Pharmacol. 126, 657-664. 

Olpe H. R., Karlsson G., Pozza M. F., Brugger F., Steinmann M., Van Riezen H., Fagg G., Hall R. G., 

Froestl W. and Bittiger H. (1990) CGP 35348: a centrally active blocker of GABAB receptors. Eur. J. 

Pharmacol. 187, 27-38. 

Onali P., Mascia F. M. and Olianas M. C. (2003) Positive regulation of GABAB receptors dually 

coupled to cyclic AMP by the allosteric agent CGP7930. Eur. J. Pharmacol. 471, 77-84. 

Onali P. and Olianas M. C. (2001) bg-mediated enhancement of corticotropin-releasing hormone-

stimulated adenylyl cyclase activity by activation of g-aminobutyric acidB receptors in membranes of 

rat frontal cortex. Biochem. Pharmacol. 62, 183-190. 

Ong J. and Kerr D. I. B. (2005) Clinical Potential of GABAB Receptor Modulators. CNS Drug Rev 11, 

317-334. 

Orru A., Lai P., Lobina C., Maccioni P., Piras P., Scanu L., Froestl W., Gessa G. L., Carai M. A. M. 

and Colombo G. (2005) Reducing effect of the positive allosteric modulators of the GABAB receptor, 

CGP7930 and GS39783, on alcohol intake in alcohol-preferring rats. Eur. J. Pharmacol. 525, 105-

111. 

Pagano A., Rovelli G., Mosbacher J., Lohmann T., Duthey B., Stauffer D., Ristig D., Schuler V., 

Meigel I., Lampert C., Stein T., Prézeau L., Blahos J., Pin J. P., Froestl W., Kuhn R., Heid J., 

Kaupmann K. and Bettler B. (2001) C-terminal interaction is essential for surface trafficking but not 

for heteromeric assembly of GABAB receptors. J. Neurosci. 21, 1189-1202. 

Pan H.-L., Xu Z., Leung E. and Eisenach J. C. (2001) Allosteric Adenosine Modulation to Reduce 

Allodynia. Anesthesiology 95, 416-420. 

Parmentier M. L., Prézeau L., Bockaert J. and Pin J. P. (2002) A model for the functioning of family 3 

GPCRs. Trends Pharmacol. Sci. 23, 268-274. 

Paterson N. E., Froestl W. and Markou A. (2004b) The GABAB receptor agonists baclofen and 

CGP44532 decreased nicotine self-administration in the rat. Psychopharmacology 172, 179-186. 

Paterson N. E., Froestl W. and Markou A. (2004a) Repeated Administration of the GABAB Receptor 

Agonist CGP44532 Decreased Nicotine Self-Administration, and Acute Administration Decreased 

Cue-Induced Reinstatement of Nicotine-Seeking in Rats. Neuropsychopharmacology 30, 119-128. 

Paxinos G. and Watson C. (1986) The Rat Brain in Stereotaxic Coordinates. Academic Press, North 

Ryde, Australia. 

Perez D. M. and Karnik S. S. (2005) Multiple Signaling States of G-Protein-Coupled Receptors. 

Pharmacol. Rev. 57, 147-161. 

Perroy J., Adam L., Qanbar R., Chenier S. and Bouvier M. (2003) Phosphorylation-independent 

desensitization of GABAB receptor by GRK4. The EMBO Journal 22, 3816-3824. 

Petrel C., Kessler A., Maslah F., Dauban P., Dodd R. H., Rognan D. and Ruat M. (2003) Modeling 

and Mutagenesis of the Binding Site of Calhex 231, a Novel Negative Allosteric Modulator of the 

Extracellular Ca
2+

-sensing Receptor. J. Biol. Chem. 278, 49487-49494. 

Pilc A. (2003) LY-354740 (Eli Lilly). IDrugs: the investigational drugs journal 6, 66-71. 



 

136 
 

 

 

 

Pin J.-P., Galvez T. and Prezeau L. (2003) Evolution, structure, and activation mechanism of family 

3/C G-protein-coupled receptors. Pharmacology & Therapeutics 98, 325-354. 

Pin J.-P., Parmentier M. L. and Prezeau L. (2001) Positive allosteric modulators for γ-aminobutyric 

AcidB receptors open new routes for the development of drugs targeting family 3 G-protein-coupled 

receptors. Mol. Pharmacol. 60, 881-884. 

Pontier S. M., Lahaie N., Ginham R., St-Gelais F., Bonin H., Bell D. J., Flynn H., Trudeau L.-E., 

McIlhinney J., White J. H. and Bouvier M. (2006) Coordinated action of NSF and PKC regulates 

GABAB receptor signaling efficacy. The EMBO Journal 25, 2698-2709. 

Popov S. G., Krishna U. M., Falck J. R. and Wilkie T. M. (2000) Ca2+/Calmodulin Reverses 

Phosphatidylinositol 3,4,5-Trisphosphate-dependent Inhibition of Regulators of G Protein-signaling 

GTPase-activating Protein Activity. J. Biol. Chem. 275, 18962-18968. 

Prosser H. M., Gill C. H., Hirst W. D., Grau E., Robbins M., Calver A., Soffin E. M., Farmer C. E., 

Lanneau C., Gray J., Schenck E., Warmerdam B. S., Clapham C., Reavill C., Rogers D. C., Stean T., 

Upton N., Humphreys K., Randall A., Geppert M., Davies C. H. and Pangalos M. N. (2001) 

Epileptogenesis and enhanced prepulse inhibition in GABAB1-deficient mice. Mol. Cell. Neurosci. 17, 

1059-1070. 

Pumain R., Kurcewicz I. and Louvel J. (1983) Fast extracellular calcium transients: involvement in 

epileptic processes. Science 222, 177-179. 

Rees S., Morrow D. and Kenakin T. (2002) GPCR Drug Discovery Through the Exploitation of 

Allosteric Drug Binding Sites. Receptors and Channels 8, 261-268. 

Ritzen A., Mathiesen J. M. and Thomsen C. (2005) Molecular Pharmacology and Therapeutic 

Prospects of Metabotropic Glutamate Receptor Allosteric Modulators. Basic & Clinical 

Pharmacology & Toxicology 97, 202-213. 

Robbins M., Calver A., Filippov A. K., Hirst W. D., Russell R. B., Wood M., Nasir S., Couve A., 

Brown D. A., Moss S. J. and Pangalos M. N. (2001) GABAB2 is essential for G-protein coupling of the 

GABAB receptor heterodimer. J. Neurosci. 21, 8043-8052. 

Robbins T. W. and Everitt B. J. (1999) Drug addiction: bad habits add up. Nature 398, 567-570. 

Roberts D. C. S. and Andrews M. M. (1997) Baclofen suppression of cocaine self-administration: 

demonstration using a discrete trials procedure. Psychopharmacology 131, 271-277. 

Roberts D. C. S., Andrews M. M. and Vickers G. J. (1996) Baclofen attenuates the reinforcing effects 

of cocaine in rats. Neuropsychopharmacology 15, 417-423. 

Sadee W., Wang D. and Bilsky E. J. (2005) Basal opioid receptor activity, neutral antagonists, and 

therapeutic opportunities. Life Sci. 76, 1427-1437. 

Sallese M., Salvatore L., D'Urbano E., Sala G., Storto M., Launey T., Nicoletti F., Knopfel T. and De 

Blasi A. (2000) The G-protein-coupled receptor kinase GRK4 mediates homologous desensitization of 

metabotropic glutamate receptor 1. The FASEB Journal 14, 2569-2580. 

Saunders R., Nahorski S. R. and Challiss R. A. J. (1998) A modulatory effect of extracellular Ca2+ on 

type 1α metabotropic glutamate receptor-mediated signalling. Neuropharmacology 37, 273-276. 

Schaffhauser H., Rowe B. A., Morales S., Chavez-Noriega L. E., Yin R., Jachec C., Rao S. P., Bain 

G., Pinkerton A. B., Vernier J. M., Bristow L. J., Varney M. A. and Daggett L. P. (2003) 



 

137 
 

 

 

 

Pharmacological Characterization and Identification of Amino Acids Involved in the Positive 

Modulation of Metabotropic Glutamate Receptor Subtype 2. Mol. Pharmacol. 64, 798-810. 

Schuler V., Lüscher C., Blanchet C., Klix N., Sansig G., Klebs K., Schmutz M., Heid J., Gentry C., 

Urban L., Fox A., Spooren W., Jaton A. L., Vigouret J.-M., Pozza M., Kelly P. H., Mosbacher J., 

Froestl W., Käslin E., Korn R., Bischoff S., Kaupmann K., Van der Putten H. and Bettler B. (2001) 

Epilepsy, Hyperalgesia, Impaired Memory, and Loss of Pre- and Postsynaptic GABAB Responses in 

Mice Lacking GABAB(1). Neuron 31, 47-58. 

Schwartz T. and Holst B. (2006) Ago-Allosteric Modulation and Other Types of Allostery in Dimeric 

7TM Receptors. Journal of Receptors and Signal Transduction 26, 107-128. 

Seifert R. and Wenzel-Seifert K. (2002) Constitutive activity of G-protein-coupled receptors: cause of 

disease and common property of wild-type receptors. Naunyn-Schmiedeberg's Arch Pharmacol 366, 

381-416. 

Shoaib M., Swanner L. S., Beyer C. E., Godlberg S. R. and Schinlder C. W. (1998) The GABAB 

agonist baclofen modifies cocaine self-administration in rats. Behav Pharmacol 9, 195-206. 

Shoptaw S., Yang X. and Rotheram-Fuller E. J. (2003) Randomized placebo controlled trial of 

baclofen for cocaine dependence: preliminary effects for individuals with chronic patterns of cocaine 

use. J Clin Psychiatry 64, 1440-1448. 

Slattery D. A., Desrayaud S. and Cryan J. F. (2005a) GABAB Receptor Antagonist-Mediated 

Antidepressant-Like Behavior Is Serotonin-Dependent. J. Pharmacol. Exp. Ther. 312, 290-296. 

Slattery D. A., Markou A., Froestl W. and Cryan J. F. (2005b) The GABAB Receptor-Positive 

Modulator GS39783 and the GABAB Receptor Agonist Baclofen Attenuate the Reward-Facilitating 

Effects of Cocaine: Intracranial Self-Stimulation Studies in the Rat. Neuropsychopharmacology 30, 

2065-2072. 

Smith M. A., Yancey D. L., Morgan D., Liu Y., Froestl W. and Roberts D. C. S. (2004) Effects of 

positive allosteric modulators on GABAB receptor on cocaine self-administration in rats. 

Psychopharmacology 173, 105-111. 

Soudijn W., van Wijngaarden I. and IJzerman A. P. (2004) Allosteric modulation of G protein-coupled 

receptors: perspectives and recent developments. Drug Discovery Today 9, 752-758. 

Soudijn W., van Wijngaarden I. and IJzerman A. P. (2002) Allosteric modulation of G protein-coupled 

receptors. Curr Opin Drug Discov Devel 5, 749-755. 

Strange P. G. (2002) Mechanisms of inverse agonism at G-protein-coupled receptors. Trends 

Pharmacol. Sci. 23, 89-95. 

Suzuki G., Tsukamoto N., Fushiki H., Kawagishi A., Nakamura M., Kurihara H., Mitsuya M., Ohkubo 

M. and Ohta H. (2007) In vitro pharmacological characterization of novel isoxazolopyridone 

derivatives as allosteric metabotropic glutamate receptor 7 (mGluR7) antagonists. J. Pharmacol. Exp. 

Ther. jpet. 

Takahashi T., Kajikawa Y. and Tsujimoto T. (1998) G-protein-coupled modulation of presynaptic 

calcium currents and transmitter release by a GABAB receptor. J. Neurosci. 18, 3138-3146. 

Takeda S., Kadowaki S., Haga T., Takaesu H. and Mitaku S. (2002) Identification of G protein-

coupled receptor genes from the human genome sequence. FEBS Lett. 520, 97-101. 

Tang W. J. and Gilman A. G. (1992) Adenylyl cyclases. Cell 70, 869-872. 



 

138 
 

 

 

 

Taniyama K., Niwa M., Kataoka Y. and Yamashita K. (1992) Activation of protein kinase C 

suppresses the γ-aminobutyric acidB receptor-mediated inhibition of the vesicular release of 

noradrenaline and acetylcholine. J. Neurochem. 58, 1239-1245. 

Teoh H., Malcangio M. and Bowery N. G. (1996) GABA, glutamate and substance P-like 

immunoreactivity release: effects of novel GABAB antagonists. Br J Pharmacol 118, 1153-1160. 

Thuault S. J., Brown J. T., Sheardown S. A., Jourdain S., Fairfax B., Spencer J. P., Restituito S., 

Nation J. H. L., Topps S., Medhurst A. D., Randall A. D., Couve A., Moss S. J., Collingridge G. L., 

Pangalos M. N., Davies C. H. and Calver A. R. (2004) The GABAB2 subunit is critical for the 

trafficking and function of native GABAB receptors. Biochem. Pharmacol. 68, 1655-1666. 

Tsao P., Cao T. and von Zastrow M. (2001) Role of endocytosis in mediating downregulation of G-

protein-coupled receptors. Trends Pharmacol. Sci. 22, 91-96. 

Urban J. D., Clarke W. P., von Zastrow M., Nichols D. E., Kobilka B., Weinstein H., Javitch J. A., 

Roth B. L., Christopoulos A., Sexton P. M., Miller K. J., Spedding M. and Mailman R. B. (2007) 

Functional Selectivity and Classical Concepts of Quantitative Pharmacology. J. Pharmacol. Exp. Ther. 

320, 1-13. 

Urwyler S., Gjoni T., Kaupmann K., Pozza M. and Mosbacher J. (2004) Selected amino acids, 

dipeptides and arylalkylamine derivatives do not act as allosteric modulators at GABAB receptors. 

Eur. J. Pharmacol. 483, 147-153. 

Urwyler S., Gjoni T., Koljatic J. and Dupuis D. S. (2005) Mechanisms of allosteric modulation at 

GABAB receptors by CGP7930 and GS39783: effects on affinities and efficacies of orthosteric ligands 

with distinct intrinsic properties. Neuropharmacology 48, 343-353. 

Urwyler S., Mosbacher J., Lingenhoehl K., Heid J., Hofstetter K., Froestl W., Bettler B. and 

Kaupmann K. (2001) Positive allosteric modulation of native and recombinant γ- aminobutyric acidB 

receptors by 2,6-Di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) and its aldehyde 

analog CGP13501. Mol. Pharmacol. 60, 963-971. 

Urwyler S., Pozza M., Lingenhoehl K., Mosbacher J., Lampert C., Froestl W., Koller M. and 

Kaupmann K. (2003) GS39783 (N,N'-Dicyclopentyl-2-methylsulfanyl-5-nitro- pyrimidine-4,6-

diamine) and Structurally Related Compounds: Novel Allosteric Enhancers of γ- Aminobutyric AcidB 

Receptor Function. J. Pharmacol. Exp. Ther. 307, 322-330. 

Vacher C.-M. and Bettler B. (2003) GABAB Receptors as Potential Therapeutic Targets. Current Drug 

Targets - CNS & Neurological Disorders 2, 248-259. 

Waldmeier P. C., Wicki P., Feldtrauer J.-J., Mickel S. J., Bittiger H. and Baumann P. A. (1994) 

GABA and glutamate release affected by GABAB receptor antagonists with similar potency: no 

evidence for pharmacologically different presynaptic receptors. Br. J. Pharmacol. 113, 1515-1521. 

Wang D., Raehal K. M., Bilsky E. J. and Sadee W. (2001) Inverse agonists and neutral antagonists at 

µ-opioid receptor (MOR): possible role of basal receptor signaling in narcotic dependence. J. 

Neurochem. 77, 1590-1600. 

Wang D., Sadée W. and Quillan J. M. (1999) Calmodulin Binding to G Protein-coupling Domain of 

Opioid Receptors. J. Biol. Chem. 274, 22081-22088. 

Wang D., Sun X. and Sadee W. (2007) Different Effects of Opioid Antagonists on µ-, δ-, and κ-Opioid 

Receptors with and without Agonist Pretreatment. J. Pharmacol. Exp. Ther. 321, 544-552. 



 

139 
 

 

 

 

Wang D., Surratt C. K. and Sadee W. (2000) Calmodulin Regulation of Basal and Agonist-Stimulated 

G Protein Coupling by the µ-Opioid Receptor (OP3) in Morphine-Pretreated Cell. J. Neurochem. 75, 

763-771. 

Wang D. C., Bose P., Parmer R. and Thompson F. J. (2002) Chronic intrathecal baclofen treatment 

and withdrawal: I. Changes in ankle torque and hind limb posture in normal rats. J Neurotrauma 19, 

875-86. 

Wang X. and Gruenstein E. I. (1997) Mechanism of synchronized Ca2+ oscillations in cortical neurons. 

Brain Res. 767, 239-249. 

Wang Z., Bilsky E. J., Porreca F. and Sadee W. (1994) Constitutive µ-opioid receptor activation as a 

regulatory mechanism underlying narcotic tolerance and dependence. Life Sci. 54, L339-L350. 

Welsby P. J., Kellett E., Wilkinson G. and Milligan G. (2002) Enhanced Detection of Receptor 

Constitutive Activity in the Presence of Regulators of G Protein Signaling: Applications to the 

Detection and Analysis of Inverse Agonists and Low-Efficacy Partial Agonists. Mol. Pharmacol. 61, 

1211-1221. 

White J. H., Wise A., Main M. J., Green A., Fraser N. J., Disney G. H., Barnes A. A., Emson P., Foord 

S. M. and Marshall F. H. (1998) Heterodimerization is required for the formation of a functional 

GABAB receptor. Nature 396, 679-682. 

Wise A., Green A., Main M. J., Wilson R., Fraser N. and Marshall F. H. (1999) Calcium sensing 

properties of the GABAB receptor. Neuropharmacology 38, 1647-1656. 

Wojcik W. J. and Neff N. H. (1984) g-Aminobutyric Acid B Receptors are Negatively Coupled to 

Adenylate Cyclase in Brain, and in the Cerebellum These Receptors May Be Associated with Granule 

Cells. Mol. Pharmacol. 25, 24-28. 

Xi Z. X. and Stein E. A. (1999) Baclofen Inhibits Heroin Self-Administration Behavior and 

Mesolimbic Dopamine Release. J. Pharmacol. Exp. Ther. 290, 1369-1374. 

Xu H., Staszewski L., Tang H., Adler E., Zoller M. and Li X. (2004) Different functional roles of T1R 

subunits in the heteromeric taste receptors. Proceedings of the National Academy of Sciences 101, 

14258-14263. 

Yoshimura M., Yoshida S. and Taniyama K. (1995) Desensitization by cyclic AMP-dependent protein 

kinase of GABA receptor expressed in Xenopus oocytes. Life Sci. 57, 2397-2401. 

Zhang Q., Lehmann A., Rigda R., Dent J. and Holloway R. H. (2002) Control of transient lower 

oesophageal sphincter relaxations and reflux by the GABAB agonist baclofen in patients with gastro-

oesophageal reflux disease. Gut 50, 19-24. 

 

 

 

 

 

 

 

 

 


