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1. Introduction 

 

1.1. Protecting Groups (PGs) 

 

When a chemical reaction is to be carried out on a multifunctional compound in a selective 

way, other sites prone to chemical reaction under given conditions have to be temporarily 

blocked by a protecting (or protective) group (PG).  

 

Chemistry of PGs dates back to the end of the 19th century1 and it has been gaining in 

importance (not only for the organic synthesis) ever since. 

 

PGs must fulfill a number of requirements. The introduction, as well as the cleavage of the 

selected PG must be compatible with other functionalities of the given molecule, i.e. the 

protection and the de-protection reactions must be well-defined, they must proceed under mild 

conditions, with high selectivity and high yields, and without the generation of new 

stereogenic centers. Furthermore, PGs should be inexpensive, easily (commercially) available, 

and preferably non-toxic. Last but not least, PGs should influence the reactivity of other 

functional groups of the molecule to the smallest possible extent2. 

 

 

1.2. Photoremovable Protecting Groups (PPGs) 

 

Since harsh acidic or basic conditions are often needed for a chemical deprotection of 

molecules, a fast removal of the PG by irradiation, which can occur under mild (neutral) 

conditions, represents an appealing alternative to classical methods. Use of photoremovable 

protecting groups (PPGs) has also other no less important advantages. For instance, one 

avoids introducing new reagents and substrates which could interfere with the existing 

functionalities of the molecule. A reaction that is induced photochemically also allows control 

over spatial and temporal variables in the given system. Last but not least, photochemical 

reactions are sometimes more selective than the thermal ones3. 
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The development of the first PPGs goes back to the early 60’s of the 20th century4 and since 

then, PPGs have been a subject of interest to many chemists and biochemists. Depending on 

the application they have been developed for, PPGs can be referred to as photolabile groups, 

caging compounds5, phototriggers or photobiological switches. 

 

PPGs should meet several requirements, some of which are listed below: 

• The deprotection reaction has to be clean, fast and efficient (quantum yields Φ ≥ 0.1). 

• PPG should have high extinction coefficients ε at wavelengths above 320 nm in order 

to avoid damage of the biological material or other chromophores present in the 

system. 

• A well-defined procedure for an efficient attachment of the PPG to the functionalities 

of interest has to be available. 

• The products and by-products of photolysis should neither absorb at the wavelength of 

irradiation, nor should they react with other components of the system. 

• When intended for use in medical, biological or biochemical applications, the PPG 

should not lower the solubility of the substrate in water or buffered water solutions 

(with pH around 7) and the released PG must not be toxic. 

• No stereogenic centers should be generated upon photolysis. 

 
At present, the number of available (known and tested) PPGs is still relatively small2 and 

there are no ideal PPGs that possess all the desired properties. Nonetheless, a suitable 

candidate for a PPG should not lack more than two of these features. 

 

1.2.1. The o-Nitrobenzyl Group 

 

The o-nitrobenzyl group (o-NB) was first used by Barltrop et al. in 1966 to mask benzoic 

acid6. The irradiation of 2-nitrobenzyl ester of benzoic acid yielded 2-nitrosobenzaldehyde 

and the free acid.  
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O
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NO

H

O
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Two molecules of 2-nitrosobenzaldehyde reacted further to give the final product,  

2,2'-(E)-diazene-1,2-diyldibenzoic acid. 

 

The o-nitrosobenzaldehyde formed is highly reactive and toxic and the final azobenzene 

derivative absorbs more than the primary caged compound. These are, however, not the only 

drawbacks the o-NB group has. Another disadvantage of the o-NB group is that the rate of its 

cleavage depends on many factors such as the quality of the leaving group (LG), solvents and 

pH (in water solutions, where the cleavage happens to be slowest at pH ~ 7). In spite of all 

these facts, the o-nitrobenzyl group is still the most used PPG for synthetic7, 

photolithographic (DNA arrays)8, as well as for biochemical applications9. This is most 

probably due to the ease of protection and deprotection, high quantum yields of deprotection, 

the possibility of irradiation with light above 320 nm and, last but not least, for historical 

reasons. 

 

PPGs based on o-NB can be used e.g. for caging of carboxylic acids6, 10, 11, carbonyls12, 

alcohols13, thiols, sulfates, phosphates and nucleotides such as ATP5. 

 

 

 

 

 

 

It has been known since the early 60’s of the 20th century14 that o-nitroalkylbenzenes undergo 

a photoinduced intramolecular hydrogen transfer affording aci-nitro tautomers (A), which can 

be detected by flash photolysis (λmax ~ 420 nm). However, the subsequent thermal reaction 

steps leading to the deprotection of o-NB cages have not been well understood until recently. 

 

In 2004, Wirz et al.15 published a revised reaction mechanism of deprotection of o-NB methyl 

esters and caged ATP in water (Scheme 1). A formed from the singlet excited state of  

2-nitrobenzyl methyl ether is in equilibrium with its protonated (A+) and deprotonated form  
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(A–). A+ can add a base (e.g. OH–) to form a nitroso hydrate B’ . A and A– cyclize to yield  

3-methoxy-2,1-benzisoxazol-1(3H)-ol (B) and its deprotonated form (B–), respectively. 

 

Scheme 1 Mechanism for the thermal reactions of the primary photochemical aci-nitro 

transient (A) formed photochemically from 2-nitrobenzyl methyl ether in aqueous solutions15. 
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Several modifications of the o-NB group have been developed to improve its applicability. 

Adams and coworkers10 attached two methoxy groups to the positions 4 and 5 on the benzene 

ring to increase the extinction coefficient at λ ≥ 350 nm. Blanc and Bochet12 have prepared  

bis(o-nitrophenyl)ethanediol and used it as a PPG for aldehydes and ketones (Scheme 2). 

 

Scheme 2 Protection of aldehydes and/or ketones by bis(o-nitrophenyl)ethanediol 

 

 

 

 

Pirrung et al.16 designed another modification of o-NB with a pentadienyl chain, which traps 

the toxic nitroso species in an intramolecular hetero Diels–Alder reaction (Scheme 3). 

 

Scheme 3 o-NB protecting group modified by Pirrung and coworkers16 

 

 

1.2.2. The Phenacyl Group 

 

The p-hydroxyphenacyl group (p-HP) is at present one of the most promising alternatives to 

the o-NB group. p-HP cages can be readily prepared from commercially available  

p-hydroxyacetophenone. The derivatives are soluble and stable in aqueous solutions for a 

sufficiently long time. The photoproduct, p-hydroxyphenylacetic acid, is also water-soluble 

and non-toxic, contrary to the products formed by photolysis of o-NB compounds. The UV 

absorption of p-hydroxyphenylacetic acid is blue-shifted with respect to the starting material. 

Therefore, the photoproduct does not interfere with the absorption of the caged material and 

allows its quantitative photochemical conversion. Last but not least, the quantum yield of 

deprotection is generally high (e.g. 0.3 for carboxylates17 and up to 0.94 for phosphates18) and 

the release rates are remarkably fast9. 
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The usability of the p-methoxyphenacyl (p-MP) group as a PPG was first discovered by 

Sheehan and coworkers in 197319, who have used it to protect carboxylic acids. They reported 

on the yields of deprotection of p-MP-caged benzoic acid and several amino acids in dioxane 

and/or ethanol after several hours of irradiation. Two decades later, Givens et al. used the p-

HP as a new cage for a light-activated release of various bioactive molecules such as 

glutamate17, GABA17, cAMP, ATP20, and oligopeptides21. 

 

The mechanism of the photocleavage has not yet been positively established. Wirz et al.9, 18 

showed that the reactive state is the triplet, which forms spiro[2.5]octa-4,7-diene-1,6-dione 

upon release of the LG and the spirocyclic species is then hydrolyzed to yield the final 

product, p-hydroxyphenylacetic acid (see Scheme 4). 

 
Scheme 4 Photocleavage of the p-HP cages 
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According to this mechanism, the release of the leaving group is synchronous with the decay 

of the excited triplet state (108 – 109 s-1). However, the attempts to identify 

the spirodienedione intermediate by means of time-resolved IR failed22. 

 

Ma et al.23, 24 have recently carried out ultrafast time-resolved studies of the photophysical 

processes involved in the photochemical deprotection of p-HP-caged carboxylates and 

phosphates in H2O/MeCN solutions. Their results confirm the reactive state is the excited 

triplet and suggest that the photophysical and photochemical processes occur on well-

separated time scales. The photophysical processes (excitation, IC, ISC) take femtoseconds to 

picoseconds and are not at all affected by the existence and/or the kind of the LG (Scheme 5).  

The photochemical process – the actual deprotection – is slower by two to three orders of 

magnitude (0.4 – 2.1 ns). 

 

Scheme 5 Photophysical and photochemical processes associated with the deprotection of  

p-HP cages 

 

 

 

 

A photochemically induced enolization reaction of the p-HP chromophore was suggested to 

be a process competing with the triplet deactivation by cleavage and thus lowering the 

efficiency of the deprotection process. 
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Unfortunately, the quantum yields of e.g. GABA and glutamate deprotection were 

significantly lower (0.03 – 0.04) than those of p-HP-caged GABA (0.35) and p-HP-caged 

glutamate (0.12)17 and the photocleavage followed a different reaction mechanism. 
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to protect chlorides, phosphates and sulfates30.  
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The first step of the proposed mechanism of the DMP chloride deprotection (Scheme 6) is an 

efficient enolization of the DMP moiety. In MeOH, the reaction proceeds from the major 

photoenol product – (Z)-xylylene (Z), which is formed predominantly from the singlet excited 

ketone (τ = 33 µs). In benzene, however, both Z and E enols are formed but HCl is released 

only from the E isomer (τ = 10 ms), while the cage species cyclizes to 6-methylindan-1-one. 

This product is formed also in MeOH (from the Z isomer) but the main photoproduct in this 

solvent is 2-(methoxymethyl)-5-methylacetophenone. 

 

Scheme 6 Mechanism of deprotection of DMP chloride30 
 

 
 

The quantum yields of deprotection of DMP chloride in MeOH and benzene were reported to 
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1.2.3. The Benzoin Group 

 

The benzoin (Bz) group was first introduced as a PPG by Sheehan et al. in 197133, who used 

this group and its methoxy-substituted derivatives to cage acetic acid. All these cages cyclized 

upon fast and clean photolysis (at 366 nm) to yield the corresponding  

2-phenylbenzofurans and the free acetate with high chemical (up to 99 %) and quantum yields 

(e.g. Φ ~ 0.64 for 3’,5’-dimethoxybenzoin, 3’,5’-DMBz).  

 

The resulting benzofuran products are biologically inert but red-shifted with respect to the 

starting cages. Their higher extinction coefficients at λ > 261 nm together with their strong 

fluorescence can be considered as the main drawbacks of this group. Another problem 

(especially for biological applications) is that the Bz-group lowers the solubility of the 

protected substrate in aqueous media and also of the major by-product of the reaction,  

2-phenylbenzofuran. Irradiation of benzoin diethyl phosphate in fluorinated alcohols results in 

a formation of a different major photoproduct, alkoxy-substituted benzoin34 (Scheme 7).  

 

Scheme 7 Mechanism of photodissociation of benzoin diethyl phosphate (BzDP)34 
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Several other substituted Bz-cages have been prepared in order to optimize the quantum yields 

and the product distribution, which also strongly depend on the leaving group and the reaction 

medium34. Nevertheless, optimal results were obtained for 3’,5’-DMBz, which is together 

with the parent benzoin the most widespread benzoin caging moiety9. So far, the Bz group has 

been successfully applied to cage carboxylic acids33, phosphate esters35, amines36, carboxylic 

esters of oligopeptides37, alcohols and nucleotides38. 

 

Quenching experiments described in the original work of Sheehan and coworkers33 suggest 

that photorelease from unsubstituted benzoin and 3’-methoxybenzoin derivatives proceeds 

through the triplet excited state. A different mechanism was proposed for 3’,5’-DMBz 

derivatives. The reaction was not affected by common triplet quenchers (neither naphthalene, 

nor piperylene), indicating that the triplet is very short-lived or that the reaction proceeds from 

the excited singlet state. 

 

A study of benzoin diethyl phosphate by LFP by Rajesh and coworkers34 has shown that  

2-phenylbenzofuran is indeed formed from the triplet state within 20 ns (see Scheme 7). 

An additional transient (λmax = 570 nm) was detected in CF3CH2OH, hexafluoropropan-2-ol 

and water. It was assigned to a triplet cation that is formed adiabatically by heterolytic 

dissociation of the triplet state. The cation is than attacked by nucleophilic CF3CH2OH to 

form benzoin trifluoroethylether. 

 

There are several proposed mechanisms for photocleavage of 3’,5’-DMBz cages. 

Sheehan et al.33 suggested an intramolecular Paterno–Büchi reaction of the excited singlet to 

form a strained tricyclic intermediate, followed by ring opening and loss of the protected 

species to give 2-benzofuran. Pirrung and Shuey39 proposed heterolytic cleavage and 

formation of an ion pair directly from the singlet state, followed by ring closure and 

elimination. 

 

Nanosecond LFP studies conducted by Shi and coworkers40 on several 3’,5’-DMBz esters 

indicated the initial process is a charge transfer from the electron-rich dimethoxybenzene ring 

to the electron-deficient oxygen of the n,π
* singlet-excited carbonyl. The intramolecular 

exciplex can then return to the ground state or undergo a cyclization reaction upon elimination 

of the protected moiety to give a cation, which is further stabilized by elimination of H+ to 

form the final benzofuran (Scheme 8). 
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Scheme 8 Photoreaction of 3’,5’-DMBz esters according to Shi et al.40 

 

Pirrung and Shuey39 prepared 3’,5’- and 2’,3’-DMBz phosphate triesters (DMBz-protected 

ATP). The release was reported to be very efficient and much faster (k > 105 s-1) than that of 

nitrobenzyl-caged ATP. These authors have also developed a synthetic procedure to obtain 

an optically active benzoin. Givens et al. used the benzoin chromophore to prepare caged 

cAMP41. Free cAMP was generated with 34 % efficiency and a first-order rate constant as 

high as 3×108 s-1.  

 

Only a few practical applications have been described as the development of this phototrigger 

is fairly recent but the high efficiency and rate of substrate release make the benzoin group a 

rather promising PPG. Boudebous et al.42 investigated 3’,5’-DMBz acetate and fluoride by 

means of pump-probe spectroscopy. They identified a primary photoproduct – preoxetane 

biradical that decayed by different pathways depending on solvent polarity. In polar solvents 

such as acetonitrile or water, the biradical decayed by releasing acetate or fluoride with a 

lifetime about 2 ns. The authors therefore suggest DMBz derivatives are excellent PPGs for 

the investigation of fast processes such as protein folding (see also Chapter 1.3.). 
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the diethyl phosphate group was replaced by the nucleophilic species. The authors proposed 

the use of the highly-fluorescent coumarinyl moiety for photochemical labeling of various 

organic substrates. Already one year earlier, this species had been used by Matuszewska and 

Borchardt44 as a fluorescent tag for the enzymes α-chymotrypsin and histamine N-

methyltransferase. 

 

The coumarinyl group was rediscovered as a PPG by Furuta et al.45 in 1995. The authors 

observed a moderately efficient photocleavage of MCM–cAMP (Φ = 0.12) under 

physiological conditions (Ringer’s solution).  

 

The moderate quantum yield of the coumarinyl photorelease (Φ = 0.26 at the most) and the 

low stability of coumarinyl cages in neutral aqueous media are the two major drawbacks of 

this group. On the other hand, MCM and its derivatives exhibit very fast (k ~ 109 s-1) rates of 

deprotection46 and high extinction coefficients even in the visible region (up to ~ 435 nm47). 

The absorption of the coumarinyl cage can be further red-shifted by addition of suitable 

substituents48. Substituents can also be used to enhance the hydrophilicity and/or the quantum 

yields of the reaction49. 

 

The mechanism of photolysis of coumarinyl esters was investigated by Shade et al.46 who 

observed a correlation between the quantum yield and the quality of the leaving group. The 

efficiency of the photoreaction also increased with the amount of polar protic solvent in the 

reaction mixture, which suggested an ionic mechanism (see Scheme 9).  

 

Scheme 9 Mechanism of deprotection of coumarinyl esters in aqueous solutions46 
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Furuta and coworkers reported on a fairly high two-photon (740 nm) excitation cross section 

of coumarinyl derivatives, thus making these cages promising for 3D-resolved release of 

bioactive messengers48 (more details will follow in the Chapter 1.3.). 

 

 

1.2.5. Other Groups 

 

1-Acyl-7-nitroindolines have been used for a fast release of carboxylic acids in aqueous 

solutions50 (Scheme 10). Under given conditions, acetic acid (acetate) was released with a rate 

constant of 5 × 106 s-1 and a relatively low quantum yield of 0.06 in water. The quantum yield 

can be slightly improved by introduction of suitable substituents (a 4-methoxy-7-nitroindoline 

derivative of glutamate was photolysed with an efficiency of 0.085).  

 

Scheme 10 Photolysis of 1-acyl-7-nitroindoline in water50. 
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Another PPG based on the o-NB group was presented by Singh and coworkers52, who 

described the derivatives of (3-nitro-2-naphtyl)methanol as 

water-soluble caged compounds photocleavable with photons 

between 350 and 400 nm. On irradiation, the cages gave the 

expected nitroso-aldehyde photoproduct with high quantum 

yields (0.6 – 0.8). The PPG could be conveniently coupled to the amino residues of 

immunoglobulin (IgG) using diphosgene. (3-nitro-2-naphthyl)methanol can be used as a 

photocaging agent under physiological conditions at wavelengths, which do not cause 

significant damage to biomolecules.  

 

Fedoryak et al.53 reported on a new photolabile protecting group for carboxylic acids based on 

8-bromo-7-hydroxyquinoline, which exhibited a greater single 

photon quantum efficiency than 4,5-dimethoxy-4-nitrobenzyl ester 

or 6-bromo-7-hydroxycoumarin-4-ylmethyl. It also had a 

sufficient sensitivity to multiphoton-induced photolysis. Its 

increased solubility in physiological buffers and low fluorescence make it a suitable caging 

group for biological messengers. 

 

Lukeman and coworkers54 have developed an efficient PPG for carboxylic acids, halides and 

alcohols derived from ketoprofen. The carboxylic functionality, 

which improves the solubility in water, is cleaved upon photolysis as 

CO2 and the resulting carbanion gets stabilized by cleaving the caged 

substance (LG). The reported quantum yields of deprotection are 

very high (up to 0.7 for carboxylic acids and 0.2 for alcohols) and the resulting byproduct is 

biologically inert. 
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1.3. Applications of PPGs 

 

The idea of using light to release biologically active substances is about 30 years old and it 

dates back to the first experiments with the photocleavage of o-NB-ATP and o-NB-cAMP 

cages5, 55. The usefulness of PPGs became apparent to the neuroscience community a decade 

later, in 1986, when an NB-caged acetylcholine agonist, carbamoylcholine, was used to 

activate nicotinic acetylcholine receptors and to study their kinetics56.  

 

Animal and human cells contain ion channels that are directly activated by changes in factors 

such as transmembrane voltage, temperature, ligand binding, and mechanical forces, but none 

is known to be directly sensitive to light. A few specialized cell types such as rods and cones 

of the retina have naturally photoreceptive proteins (e.g. rhodopsin), but these receptors 

indirectly signal to ion channels through a cascade of complex biochemical processes. Hence, 

when experimenters want to rapidly elicit cellular responses mediated by ion channels (e.g. in 

nerve cells) they typically apply either an electrical or a chemical stimulus (see Fig. 1), which 

involves attaching or implanting electrodes or perfusion devices for chemical delivery57.  

 

For many reasons, remote stimulation by light is preferable to these types of invasive 

methods. A beam of light can be projected on tissue with both temporal and spatial precision 

and it may be focused on a single cell or even on a part of the cell. The light can be scanned 

across cells in a population, which is a feature that would be virtually impossible using 

electrodes58. 

 

 

1.3.1. Caged Neurotransmitters and Second Messengers 
 

Neurotransmitters are chemical substances that relay, amplify and modulate electrical 

signals between a neuron and another cell. They can be classified into three major groups:  

• amino acids (glutamic acid, GABA, aspartic acid, glycine, etc.) 

• peptides (endorphine, vasopressine, somatostatine, etc.) 

• biogenic amines (acetylcholine, adrenalin, dopamine, serotonin, histamine, etc.).  
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Neurotransmitters and hormones (also called “first messengers”) activate the receptor in the 

cell membrane by binding to its external domain. The activation brings about a change in the 

level of a “second messenger” – an intracellular molecule that triggers cell responses 

(e.g. opening of an ion channel, see Fig. 1)9.  

 

Fig. 1 The mechanism of action of neurotransmitters (here: activation of a G-protein-coupled 

receptor such as GABAB receptor, which opens nearby potassium channels)59 

 

 

 

Since it is the receptor that dictates the actual effect of the neurotransmitter, the effects of an 

individual neurotransmitter can be manifold. Some examples of neurotransmitter actions are 

given below: 

• acetylcholine – voluntary movement of the muscles, 

• dopamine – voluntary movement and motivation, “wanting”, 

• serotonin – memory, emotions, wakefulness, sleep and thermoregulation, 

• GABA – inhibition of motoneurons, 

• glycine – spinal reflexes and motor behavior, 

• neuromodulators (e.g. endorphin, oligopeptide called “substance P”) – sensory 

transmission, pain, stress. 

 

Second messengers are low-molecular-weight substances such as cyclic nucleotides (cAMP, 

cGMP), inositol triphosphate, diacylglycerol, nitric oxide or Ca2+ ions.  

 

Cyclic adenosine monophosphate (cAMP) is synthesized from ATP by adenylyl cyclase, an 

enzyme located in the cell membranes. This enzyme is activated by the hormones glucagon 
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and adrenaline. The main purpose of cAMP is the activation of protein kinases – enzymes that 

phosphorylate other proteins (see Fig. 2). cAMP is also used to regulate the permeability of 

ion channels for Ca2+ ions, or to control glycogenolysis (glycogen decomposition into 

glucose) and lipolysis. 

 

Fig. 2 Activation of protein kinase A by epinephrine (= adrenaline) through cAMP60 
 

 

 

 

Cyclic guanosine monophosphate (cGMP) is, analogously to cAMP, synthesized from GTP 

by guanylyl cyclase. Guanylyl cyclase is activated by peptide hormones or by nitric oxide. 

cGMP is responsible for ion channel conductance, glycogenolysis, cellular apoptosis 

(i.e. “cell suicide”), smooth muscle relaxation, and the response of the photoreceptors in the 

eye to light. Alike cAMP, sGMP is also involved in the regulation of protein kinases. 

 

Inositol triphosphate (also referred to as triphosphoinositol, InsP3) is released upon 

hydrolysis of phosphatidylinositol-4,5-biphosphate (phospholipid 

located in the plasma membrane of a cell) by phospholipase C. It is 

used in signal transduction in cells, for mobilization of Ca2+ ions from 

storage organelles or for regulation of cell growth. InsP3 is also 

responsible for contractions of smooth muscle cells: InsP3 activates the 

InsP3 receptor on the membrane of the sarcoplasmic reticulum, resulting in the release of Ca2+ 

ions into the sarcoplasm. The increase in Ca2+ concentration activates a receptor-operated 

channel on the sarcoplasmic reticulum, leading to a further increase in the Ca2+ concentration 

in the muscle cell and resulting in its contraction61. 
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Diacylglycerol consists of two fatty acid chains covalently bonded to a glycerol molecule 

through ester linkages at the C-1 and C-2 positions. Synthesis of diacylglycerol begins with 

glycerol-3-phosphate, which is acylated twice by acyl-coenzyme A to form phosphatidic acid. 

Phosphatidic acid is then dephosphorylated to yield diacylglycerol. Mono- and 

diacylglycerols are common food additives and are to be found in animal or vegetable oil, 

bakery products, margarines, etc. Alike InsP3, diacylglycerol is also generated by 

phospholipase C. Once formed, it stays close to the plasma membrane and activates protein 

kinase C (higher concentration of Ca2+ primarily induced by InsP3 is needed for diacylglycerol 

to activate the enzyme).  

 

Calcium is the most abundant mineral in the human body. As indicated, calcium Ca2+ plays an 

important role in many biochemical processes – it is one of the most widespread second 

messengers used in signal transduction in eukaryotes. Increase in Ca2+ concentration can 

result e.g. in a contraction of muscle tissue, release of synaptic vesicles (vesicles containing 

neurotransmitters), secretion of hormones (insulin) and enzymes, adhesion of cells to an 

extracellular matrix, etc. Ca2+ is stored in sarcoplasmatic reticula of the cells and in the 

extracellular fluid. Calcium ions can damage cells if their concentration exceeds the standard 

value (e.g. by overexcitation of neural circuits, which can occur after a brain trauma or 

a stroke). Ca2+ in excessive amounts may also cause apoptosis of the cell or its death by 

necrosis. 

 

Caging of Ca2+ ions is based on the common ion chelators used in analytical chemistry such 

as EDTA (ethylendiamine tetraacetic acid)62 or BAPTA (1,2-bis(2-aminophenoxy)ethane-

N,N,N’,N’-tetraacetic acid), which are attached e.g. to an o-NB derivative63. The mechanisms 

of action of these two classes of photolabile cages differ significantly. Lowering the ability of 

the EDTA-based cages (e.g. DM-nitrophen) to complex Ca2+ is achieved by photocleavage of 

one of the chelae. In the case of BAPTA cages (e.g. Nitr-5), the skeleton of the chelator is 

maintained, but the affinity for calcium is lowered (10 to 30 times) in consequence of a photo-

induced change in its substituent (Scheme 11). 

 

The main advantage of the nitr-5 cage over DM-nitrophen is its selectivity for calcium ions. 

On the other hand, DM-nitrophen exhibits a much grater affinity change towards Ca2+ upon 

photolysis, its photoreaction is faster and much more efficient9. 
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A decade ago, Adams et al.64 developed a new PPG for calcium, which was also based on 

BAPTA. The photoactive moiety was no longer the o-NB group, but a derivative of fura-2, 

a fluorescent Ca2+ indicator with an azide substituent in the benzofuran 3-position. They 

named the cage Azid-1. Azid-1 does not fluoresce upon irradiation, but it undergoes an 

irreversible photoreaction (Scheme 11) yielding free Ca2+ with unity quantum yield. The high 

quantum yield of calcium release together with high absorption coefficients (33 000 M-1cm-1 

at 340 nm) make it a promising candidate for two-photon applications (two-photon absorption 

cross section ~ 1.4 GM* at 700 nm, see the next subchapter for more details)65. 

 

Scheme 11 Photolysis of caged calcium ions62-64 

 

                                                 
* 1 GM (Göppert-Mayer) = 10-50 cm4 s photon-1 
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The possibility to produce a fast jump in Ca2+ concentration in the cytoplasm is taken 

advantage of in the investigation of a number of cellular phenomena such as muscle 

contraction or neurotransmitter release66. 

 

Nitric oxide stimulates a formation cGMP and its effects include blood vessel dilatation, 

neurotransmission, modulation of the hair cycle, and penile erections. Sildenafil, popularly 

known by the trade name Viagra, works primarily by stimulating the release of NO within the 

vessels of the penis, inducing an erection67. Nitric oxide is toxic to bacteria and other human 

pathogens, but many bacterial pathogens have evolved mechanisms for NO-resistance68. 

 

Caging of nitric oxide described by Makings and Tsien69 is based on the known 

decomposition of diazeniumdiolates. The photosensitive derivatives are attached to the o-NB 

group and they release NO upon photolysis within 5 ms (Scheme 12). 

 
Scheme 12 Photorelease of nitric oxide 
 

 

 

 

 

Since the mid-80’s, caged versions of numerous bioactive molecules have been synthesized 

and used on a variety of preparations. At present, neuroscientists and biochemists can choose 

out of several caging agents, which are more efficient than the NB-group, absorb at longer 

wavelengths, have biologically less-reactive byproducts and a higher efficiency of release. 

Some of the caged neurotransmitters are already commercially available. 

 

Neurotransmitters, second messengers (except for nitric oxide, calcium and other ions) and 

other bioactive molecules such as proteins and peptides possess at least some of the following 

functionalities: carboxylate, amine, phosphate, hydroxyl or thiol. Their temporary deactivation 

by one of the PPGs introduced in Chapter 1.2. is therefore straightforward (several examples 

have been shown in the aforementioned chapter).  
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1.3.2. Two Photon Excitation (2PE) 
 

The possibility of replacing UV-excitation by a simultaneous absorption of two IR-photons of 

equivalent total energy was first suggested by Göppert-Mayer in her doctoral thesis from the 

early 30’s70. However, it was not until the development of the first lasers in the early 60’s that 

her prediction was corroborated71.  

 

Two-photon excitation of photolabile compounds further improves the spatial and temporal 

resolution of the experiments investigating biological systems. By carefully focusing  

an IR-laser beam, one can selectively address volumes smaller than a femtolitre65. Another 

advantage of this technique is that IR photons penetrate deeper in the tissue and are much less 

likely to damage it than the UV photons.  

 

The probability of 2PE is proportional to I2 and to δ, where I is the light intensity and δ the 

two-photon absorption cross section in GM. Hence, photolysis occurs only in the focal point 

of the laser beam and the surrounding area remains intact as long as the laser power is kept 

under ca 10 mW (higher powers may cause photodamage due to multiphoton absorption by 

the present biomolecules).  

 

In principle, any chromophore can be excited by two long-wavelength photons and the 

subsequent “dark photochemistry” is usually the same as if it was excited by one UV photon. 

The only limitation of this technique is the photosensitivity of a molecule to 2PE. This 

photosensitivity is defined by the two-photon action cross section of the molecule δu 

(δu = δ × Φ). It was estimated that δu needed for practical applications at safe laser powers 

should be higher than 3 GM, which is a value higher than that of any known PPG (o-NB 

cages have δu values around 0.01 GM). 

 

Nonetheless, successful two-photon release of calcium from azid-1 (δu ~ 1.4 GM at 700 nm)65 

and of glutamate from its coumarinyl derivative (δu ~ 1.0 GM at 740 nm)48 have been 

reported. Brown et al.65 calculated it would take a 10 µs-long pulse of ca 7 mW power at 

700 nm (Ti:sapphire laser) to photolyze all azid-1 within the focal volume of the given laser. 

Furuta and coworkers48 applied the aforementioned caged glutamate to obtain the first  

3D-resolved maps of the glutamate sensitivity of neurons in brain slices from rat cortex and 

hippocampus. 
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1.3.3. Photoactivatable Fluorophores 

 

The active or diffusional movement of molecules in biological systems under steady-state 

conditions is conventionally measured using the FRAP (fluorescence recovery after 

photobleaching) technique. FRAP is based on the principal of observing the rate of recovery 

of fluorescence due to the movement of a fluorescent marker into an area of the membrane 

which contains this same marker but which has been rendered non-fluorescent via an intense 

photobleaching pulse of laser light. Photoactivation of fluorescence (PAF) achieved by 

photolysis of caged fluorophores attached to biomolecules and measurement of its dissipation 

is a complementary method with certain advantages over FRAP66:  

• PAF has a better signal to noise ratio since it generates positive signal against a 

negative background (the opposite of FRAP). 

• Lower levels of fluorescent labeling are required (lesser perturbation of the properties 

of the biomolecule). 

• With PAF, the light used for the photodeprotection (UV) and the light used for 

monitoring of the released fluorophore (VIS) are of different wavelengths, FRAP uses 

a one-wavelength setup, the bleaching and the monitoring light differ only in their 

relative intensities (additional bleaching by the probing light has to be taken into 

account). 

• FRAP requires much higher light intensities than PAF, which might reduce side 

effects of irradiation on the biological system (even though more energetic light is 

used for PAF). 

• Photoproducts of PAF – relatively stable fluorophores and nitrobenzaldehydes are not 

as destructive as the singlet oxygen released in the FRAP experiment. 

 

Scheme 13 Photoactivation of fluorescein72 
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Besides fluorescein, o-NB-caged rhodamines, pyranines (NPE-HPTS), coumarins (NPE-

HCC), resorufins and other fluorescent dyes have been prepared. The two-photon uncaging 

cross sections of some o-NB-caged coumarins at 740 nm were found to be fairly high 

(near 1 GM)73. 

 

Successful applications of photoactivatable fluorophores have been reported in various fields. 

They can function as photoactivatable fluorescent tracers when covalently attached to a 

macromolecule of interest. For example, Theriot et al. used resorufin coupled to G-actin to 

examine the motion of the pathogenic bacterium Listeria monocytogenes in the cytoplasm of 

infected epithelial cells. Moving bacteria generated "comet tails" of actin filaments in their 

trajectory that were marked by photoactivation of incorporated actin modified with caged 

resorufin. These marks stayed stationary relative to the substrate, rather than to the bacteria, 

and decayed within about half a minute74. Reinsch et al. used caged fluorescein modified 

tubulin and PAF to examine microtubule assembly and transport during axonal growth75. 

 

 

1.3.4. Time-resolved X-ray 
 

Co-crystallization of enzyme-substrate mixtures is virtually impossible since the two 

substances would react long before the crystals were ready for data collection. It is therefore 

desirable to find a way to protect one of the components and to trigger the reaction within the 

crystal. Mechanistic studies of enzymatic reactions may be studied e.g. by combining PPGs 

with Laue crystallography. The reaction can be initiated by a short laser pulse and then 

monitored by delayed synchrotron X-ray pulses. At present, the time resolution of such 

experiments is in the order of hundreds of picoseconds76. 

 

The time-resolved Laue crystallography has already been used for a number of studies of 

enzymatic reactions. In 1990, Schlichting and coworkers77 used a time-resolved Laue study to 

investigate the conformational changes in Ha-ras p21 protein accompanying GTP hydrolysis. 

About a decade ago, Šrajer et al.78 published nanosecond crystallographic snapshots of CO 

photodissociation from the heme of myoglobin. Cohen et al.79 synthesized caged NADP and 

NAD and used these compounds in a crystallographic study of isocitrate dehydrogenase. 
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1.3.5. Kinetics of protein folding 

 

It was until recently that kinetic studies of protein folding were limited to stopped-flow 

experiments. A decade ago, Hochstrasser and coworkers80, 81 attempted to photoinitiate the 

formation of α-helical peptide by cleaving the disulfide bridge (by a 270 nm-light), which 

constrained the peptide in a non-helical conformation. The authors intended to monitor the 

folding process by means of IR and CD spectroscopy. However, they have experienced 

problems with a subsequent recombination of the thiyl radicals. A few years later, 

Hansen et al.82 used benzoin as a linker between the N-terminus of the peptide and the internal 

amino acid side chain (Scheme 14). The authors believe to have observed the formation of the 

α-helix based on the change in circular dichroism but more informative methods such as time-

resolved IR would be required to confirm their point. 

 

Scheme 14 Photoinduced protein folding82 

 

 

 

Abbruzzetti and coworkers used laser-induced pH jumps to study the kinetics of local helix 

formation in poly-L-glutamic acid by means of photoacoustics83. pH jumps can be brought 

about by using caged protons, e.g. in a form of o-nitrobenzaldehyde, which rearranges to  

o-nitrosobenzoic acid and releases a proton upon irradiation (two-photon photolysis of  

o-nitrobenzaldehyde has been reported recently by Diaspro et al.84). In addition to pH jumps, 

laser-induced temperature jumps as well as energy-transfer methods are increasingly applied 

to study these processes9. 

 

 

1.3.6. Solid-phase Synthesis, Molecular Arrays 
 

In 1991, Fodor and coworkers85 published a revolutionary paper, in which they reported on a 

light-directed, spatially addressable parallel chemical synthesis to yield a highly diverse set of 

chemical products. They combined solid-phase chemistry, PPGs and photolithography to 

synthesize an array of 1024 (= 210) different peptides in ten steps. The authors attached 

protected building blocks to a solid support and irradiated them through a mask. Only the 
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molecules exposed to light were deprotected, the rest remained intact. The free functionalities 

were coupled with other caged molecules of a different kind and the rest washed away. Than, 

a different mask was used to deprotect another set of molecules, which became free to react. 

By repeating these irradiation and coupling steps n-times, they were able to synthesize up to 

2n different compounds (see Scheme 15). 

 

Scheme 15 Concept of light-directed spatially addressable parallel chemical synthesis85 
 

 

 

Affymetrix, Inc. utilizes the ability to produce high-density oligonucleotide arrays, the so-

called DNA chips (GenChip® probe arrays), for DNA sequencing. Vossmeyer et al.86 

extended Fodor’s technique to light-directed assembly of nanoparticles onto a solid substrate. 

A similar photolithographic technique has been also used for a synthesis of short 

(10 nucleotides) DNA-fragments87. 
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2. Problem Statement 

 
The aim of this work was to investigate the photophysical and photochemical properties of the 

derivatives of a new photoremovable protecting group for acids and phosphates, (6-hydroxy-

3-oxo-3H-xanthen-9-yl)methyl. Three derivatives of this PPG, namely diethylphosphate, 

acetate and bromide, have been synthesized by a former member of our group, Jürgen 

Wintner. The syntheses and the spectrophotometric titrations of the prototropic forms of the 

three compounds are described in his doctoral work88. The bromide derivative was 

synthesized as a test compound to verify, whether the idea works, since bromide is a good 

leaving group. 

 

The concept was based on the photochemistry of 7-hydroxycoumarin-4-yl-methyl (HCM) 

acetate described by Furuta and coworkers48. The photolysis of HCM acetate is analogous to 

that of other coumarins and it has already been shown in Scheme 9. HCM shows a high two-

photon action cross section. This cross section can be further increased by an introduction of a 

bromine atom to the 6-position. This substitution of hydrogen by bromine also results in 

lowering of the pKa of the C7 hydroxyl, which becomes deprotonated under physiological 

conditions (pH 7). The anionic form of HCMs absorbs more strongly than the neutral one (and 

at longer wavelengths), which is also favorable for the two-photon excitation. 

 

The structure of our novel PPG was derived from the structure of HCM cages by extending 

the chromophore by one more aromatic ring to form a derivative of 6-hydroxy-3H-xanthen-3-

one (Scheme 16). 

 

Scheme 16 Structural similarity between the hydroxycoumarin cages and the new caged 

compounds derived from 6-hydroxy-3H-xanthen-3-one. 

 

 

 

Extending the chromophore by one more aromatic ring had two desirable effects: a decrease 

of pKa of the hydroxyl group, which dropped from > 7 (HCM48) to about 6.2 ± 0.1 88,  
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and a substantial red shift of the first absorption band of the prevailing form at pH 7, i.e. 

anionic xanthen chromophore (λmax > 510 nm for the three synthesized derivatives, see Table 

1) and the neutral HCM chromophore (λmax = 325 nm). 

 

Table 1 Absorption maxima and molar extinction coefficients of the three derivatives of  

(6-hydroxy-3-oxo-3H-xanthen-9-yl)methyl at pH 7 (phosphate buffer, I = 0.1 M)88 

Compound λmax / nm ελmax / dm3mol-1cm-1 

 

 

 

519 25 750 

 

 

 
528 24 460 

 

 

 
522 22 720 

 

A somewhat undesirable effect of the chromophore extension is a complication of the system 

due to tautomerism that comes into play (see Scheme 17). 

 

Scheme 17 Protolytic equilibria of the (6-hydroxy-3-oxo-3H-xanthen-9-yl)methyl cage  

(LG = leaving group) 
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Scheme 17 shows all the possible prototropic forms of the (6-hydroxy-3-oxo-3H-xanthen- 

9-yl)methyl cage. The neutral and the monoanionic species can exist in two tautomeric forms, 

keto (K) and enol (E) form. The experimental dissociation constants pKa,1 and pKa,2 are 

composites of the keto and the enol forms. The ratios K/E and K–/E– are constant regardless of 

the pH, provided the equilibration is fast enough (on the measurement time scale). The 

monoanionic and the neutral forms hence behave spectrally as if they were each a single 

species.  
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3. Results and Discussion 

 

3.1. Fluorescence of 6-Hydroxy-9-methyl-3H-xanthen-3-one (1) 

 

 

 

   

 

 

 

In 1996, Klonis and Sawyer reported on the spectral properties of prototropic forms of 

fluorescein (2) in aqueous solutions89. Compared to 6-hydroxy-9-methyl-3H-xanthen-3-one 

(1), fluorescein has an additional –COOH group and the pKa values for deprotonation of the 

cationic, neutral and monoanionic forms are 2.2, 4.3, and 6.4, respectively. The fluorescence 

spectra of the neutral and the anionic form of 1 correspond to the mono- and dianionic forms 

of 2, respectively (see Fig. 3). 

 

The fluorescence spectra of 1 and 1– are very similar, both having maxima at 505 and 545 nm. 

The only difference is in the relative intensity of the two bands. The 545 nm band of 1– is 

about 1/3 of the intensity of the band at 505 nm, whereas these two bands are approximately 

of the same intensity (10:9) in a spectrum of neutral 1.  

 
Table 2 pKa values of 1 in the ground state and in the excited state 

 pKa,1 pKa,2 pKa,3 

Ground state (experimental values)88 3.44 6.31 13.6 

Excited state (estimate, see below) -0.76 4.78 –  

 

Due to the pKa
* values (i.e. pKa in the excited singlet state, see Table 2) and to a fast 

deprotonation of 1+ in the excited state, the only species fluorescing in the pH range 1.5 – 4 is 

the neutral 1. The apparent value of pKa,2
* obtained experimentally by means of a fluorometric 

titration (Fig. 3) of 1 starting with a phosphate buffer solution (I = 0.1 M) was 5.37. This 

experimental value would most probably approach the estimated one (4.78, see below) 

O OHO

CH3
(1)

O OHO

(2)

COOH



 30 
 

Wavelength (nm)

E
ps

ilo
n 

(/
M

/c
m

)

480 500 520 540 560 580 600 620

0.10

0.30

0.50

0.70

0.90

A

B

pH

C
on

ce
nt

ra
tio

n 
(M

)

3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50

0.100

0.300

0.500

0.700

0.900

A

B

Wavelength (nm)

A
bs

or
ba

nc
e

480 500 520 540 560 580 600 620

0.10

0.30

0.50

0.70

0.90

Wavelength (nm)
A

bs
or

ba
nc

e

pH
480 500 520 540 560 580 600 620

0.10

0.30

0.50

0.70

0.90

2.00

4.00

6.00

 e.g. in a 1 M acetate buffer (higher concentration of a base, phosphate or acetate, is needed to 

achieve full equilibration within the lifetime of the excited species).  

 

Fig. 3 Fluorometric Titration (SPEX)  

◄▲ 2D and 3D courses of fluorometric 

titration of 1*/1–* in a phosphate buffer 

solution (I = 0.1 M, pH 7) by 0.1 M HCl 

(normalized spectra). 

 

 

◄ Resolved emission spectra of 1*(A) and 

1–*(B). 

 

 

◄ Relative contributions to fluorescence by 

1*(A) and 1–*(B). The intercept at pH 5.37 

gives the apparent pKa
* value mentioned in 

the text. 
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Fig. 4 Fluorescence Spectra of 1 at different pH (SPEX) 
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The pKa,1
* (i.e. the pKa of deprotonation of the cationic form in the excited state) is predicted 

to be –0.76 (Förster cycle, see below). Our fluorescence experiments indicated a value 

between 1.7 and –1.1. Therefore the fluorescence spectrum of the cation begins to appear only 

under strongly acidic conditions, e.g. in concentrated H2SO4 or HCl (we have observed it in a 

27 % HCl). This emission, which is a mirror image of the cation absorption spectrum, has a 

peak at 470 – 480 nm. 

 

Estimates of pKa,1
* and pKa,2

* of 1 

 

Förster equation:  )(
3.2

pp 21
A

a
*

a νν −−=
RT

hN
KK    (eq. 1) 

For T = 293.15 K: 1
21

14
a

*
a s )(  s 10118.7pp −− −××−= ννKK  (eq. 2) 

Species λλλλmax/nm νννν/s-1    

Monoanion 481 6.2327×1014 

Neutral 465 6.4471×1014 

Cation 426 7.0374×1014 

 

pKa,1
* = pKa,1 – 7.118 s × (7.0374 – 6.4471) s–1 

pKa,1
* = 3.44 – 4.20 = –0.76  

 

pKa,2
* = pKa,2 – 7.118 s × (6.4471 – 6.2327) s–1 

pKa,2
* = 6.31 – 1.53 = 4.78 

 

 

Klonis and Martin 89, 90 give following quantum yields of fluorescence and lifetimes of the 

fluorescent species of 2 obtained by a phase modulation method using a glycogen suspension 

as a reference (Table 3). 

 

Table 3 Quantum yields and lifetimes of 2+, 2, 2– and 22– according to Klonis and Martin89, 90 

Species / conditions Fluorescence quantum yield Lifetime / ns 

Cation / 3M H2SO4 0.9 – 1.0 3.5 – 4.4 

Neutral (Quinoid) / pH 1.6 0.29 2.97 ± 0.02 

Monoanion / pH 4.5 0.36 3.37 ± 0.02 

Dianion / 0.01 M NaOH 0.93 4.06 ± 0.02 
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Alvarez-Pez and coworkers91 claim to have resolved the lifetimes of the mono- and dianionic 

forms of 2 present at pH around 7 (in 1 mM and 1 M phosphate buffer). They report 

somewhat longer lifetimes: 4.34 ns for the dianion and 3.70 ns for the monoanion. 

 

Our time-resolved experiments (Clark-MXR Ti:Sa laser CPA 2001 coupled to a noncollinear 

optical parametric amplifier (NOPA), excitation light of 490 nm, detection by streak camera) 

yielded lifetimes of (3.5 ± 0.1) ns for both neutral and anionic forms of 1, independently of 

the pH (in the interval 3 – 11). In these experiments, the band at 545 nm was much better 

resolved and its relative intensity to the band at 505 nm varied depending on the pH from 1:1 

(pH 4 and lower) to 2:5 (pH 9 and higher). At pH 5.5 and lower, an additional indistinct band 

at 580 appeared (Fig. 5). The kinetics of its decay was, however, the same as that of the other 

two bands. 

 

Fig. 5 Fluorescence Spectra of 1 (streak camera) 

 

 

 

3.2. Time-resolved Fluorescence Experiments 

 

Compound 3 was subjected to a time-resolved experiment 

similar to the one described above. The excitation wavelength 

used was 515 nm and the repetition frequency of the laser was 

lowered by about 90 % to 40 Hz. The solution of 3 in 

phosphate buffer (I = 0.1 M, pH 7.0) flowed through a 2-mm thick cuvette with a flow speed 

of 1 ml per second. The laser was focused to a spot of ca 1 mm in diameter. In this 
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arrangement, each recorded spectrum should correspond to a fresh (i.e. non-irradiated) 

solution. The goal was to observe only the fluorescence of 3 and not that of its photoproduct.  

 

When an ordinary (non-flow) cuvette was used (i.e. the photoproduct was irradiated), we have 

obtained fluorescence emission spectra similar to those of 1 but with maxima at 530 and 570 

nm. The fluorescence decayed monoexponentially, again with a similar lifetime of 

(3.55 ± 0.10) ns. 

 

Fig. 6 Emission spectra of 3 and its (photo-)product 
 

 

 

 

 

 

 

 

 

In a flow cuvette, however, even though the spectra did not change very much, we could 

clearly see kinetics of two processes (biexponential decay, see Fig. 7). The slower component 

τ = (3.54 ± 0.04) ns seemed to be that of the product, the faster component had a lifetime of 

(331 ± 30) ps. The measurement was repeated three times for time windows of 20, 5, and 2 ns. 

 

Fig. 7 Decay of fluorescence of 3 (streak camera, 20 ns time window) 

 

y = A1 e
(-x/τ1) + A2 e

(-x/τ2) + y0 ;   

y0 = 299.1 ± 0.3;   

R2 = 0.996  

A1 = 220.1 ± 1.7;  τ1 = 3540 ± 38  

A2 = 57.4 ± 2.5;  τ2 = 331 ± 30 
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We attribute the shorter lifetime to 3, the longer one to its product. It seems that even though 

we have prepared a fresh solution for the measurements, there was already a noticeable 

amount of the product (which apparently fluoresces much more strongly than 3 itself; the 

fluorescence of the product will be discussed later in more detail). Another possible reason 

could have been the laminar flow of the liquid in the cuvette causing a repeated irradiation of 

the same solution near the cell inner surface. Unfortunately, we could neither increase the 

flow speed, nor decrease the frequency of the laser any further for technical reasons.  

 

 

3.3. Quantum Yield Measurements 

 

We have determined the quantum yields of photoconversion of 3, 4 and 5 to their common 

(but still unknown) photoproduct. 

 

 

 

 

 

The actinometer used was meso-diphenylhelianthrene (MHD (6)), which undergoes a uniform 

and well-described92 self-sensitized photo-oxidation reaction in a solution of air-saturated 

toluene to form 7 (MDHPO). A singlet excited state 1MDH intersystem-crosses to triplet 
3MDH, which sensitizes oxygen that is present in the solution, thus forming singlet oxygen, 

which reacts with a molecule of MDH to form an endo-peroxide MDHPO. 

 

A 10-3 M solution of 6 in toluene totally absorbs incident radiation between 475 and 610 nm 

(1 cm path length). For this concentration, the formation of MDHPO is independent of the 

MDH concentration and the photo-oxidation can be followed photometrically at 429 nm, 

where MDHPO absorbs considerably (and MDH does not); see Fig. 8. 

 

Knowing the amount of 7 formed per time interval and the quantum yield of its formation, 

one can easily determine the number of photons that enter the sample per given time interval 

(linear regression, R2 
≥ 0.99).  

O OHO
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OPO(OEt)2

O OHO
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Once we know the number of 

photons that enter the sample per 

second and the absorbance of our 

sample, we can also determine the 

quantum yield of the formation of 

our product (indeed the light has to 

be monochromatic and both the 

actinometer and our compound have 

to absorb at the same wavelength). 

 

The wavelength of the irradiation light (Clark-MXR Ti:Sa laser CPA 2001 coupled to NOPA) 

was 538 ± 7 nm (bandwidth at half height) and the number of photons entering the sample cell 

were around 4.8 × 10-9 einsteins s-1 (the quantum flux was determined with more precision 

before and after each measurement and the average of the two measurements was used for the 

calculation of the quantum yield). 

 

Fig. 8 Self-sensitized photooxidation of 6 to 7 
 

 

 

 

 

 

 

 

 

 

The quantum yields of photoreaction of 3 - 5 listed in Table 4 were calculated from 

the measured quantum flux through the cuvette and from the decrease in absorbance at 

λ = 538 nm in time. 2D- and 3D-courses of the photoreactions of 3, 4 and 5 are shown in Fig. 

9 to Fig. 11. 
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Fig. 9 Compound 3 irradiated at λ = 538 nm in water pH = 7 (phosphate buffer, I = 0.1 M) 
 

 

 

 

 

 

 

 

 

 

Fig. 10  Compound 4 irradiated at λ = 538 nm in water pH = 7 (phosphate buffer, I = 0.1 M) 
 

 

 

 

 

 

 

 

 

 

Fig. 11 Compound 5 irradiated at λ = 538 nm in water pH = 7 (phosphate buffer, I = 0.1 M) 
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Table 4 Quantum yields of dissociation for compounds 3, 4 and 5 in phosphate buffer 

(I = 0.1 M, pH 7)  

Compound Quantum yield Φ 

 

 

 

(4.2 ± 0.2) % 

 

 

 
(2.7 ± 0.3) % 

 

 

 
(0.48 ± 0.08) % 

 

 

The quantum yields of the photoreactions of 3, 4 and 5 decrease from 3 to 5. This may be 

attributed to the difference in pKa of the conjugated acids of the leaving anions: HBr (-9.0), 

(EtO)2POOH (0.71) and AcOH (4.76). The higher the stability of the anion, the better the 

leaving group.  

 

Schade et al.46 determined quantum yields of similar (7-methoxycoumarin-4-yl)methyl-caged 

acids (MCM-esters). The quantum yield of the ester photocleavage of MCM-OPO(OEt)2 

(equivalent of 4) was reported to be 3.7 %, and that of MCM-benzoates to be around 0.5 %. 

Furuta and coworkers48 give a quantum yield of HCM-acetate of 2.5 %. 

 

Schmidt and coworkers93 have recently reported on the mechanism of photocleavage of 

several (coumarin-4-yl)methyl esters of biologically active acids (CM–A). The initial step of 

the photoreaction is a formation of a singlet ion pair 1[CM+ A–]. They authors have found out 

that the stabilization of the free ions CM+ and A– (using electron-donating substituents on the 

CM unit and/or increasing the acid strength of HA) leads to a strong enhancement of the rate 

of ion pair formation and to a diminution of the rate of recombination, which consequently 

leads to an increase of the efficiency of product formation. Recombination of the initial ion 

pair is also most likely to be the reason for relatively low quantum yields of our  

(6-hydroxy-3-oxo-3H-xanthen-9-yl)methyl cages. 

O OHO
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3.4. Laser Flash Photolysis (LFP) 

 

Several LFP experiments have been carried out with solutions of compound 3 in a phosphate 

buffer. Nevertheless, considering the lifetime of the excited species (τfl = (330 ± 30) ps), 

the quantum yield of the photoreaction (4.2 %), and the duration of the excimer laser pulse 

(60 ns, which corresponds to ca 200 lifetimes), the phenomena observed after the laser pulse 

can hardly be attributed to the compound 3 itself, but mostly to its product. Fig. 12 shows that 

most of the compound 3 is converted to its product by a single flash. 

 

Fig. 12 Absorption spectrum of 3 measured before and after one laser flash (UV-Vis 

spectrophotometer) 

 

 

 

 

 

 

 

 

The excitation wavelength used for all LFP experiments was 248 nm (KrF excimer laser, 

Compex 205, Lambda Physik).  

 

Unlike in the case of irradiation by visible light, the chromophore seems to be destroyed when 

irradiated by UV light. Further flashes result in a complete disappearance of the product. 

 

Fig. 13  Absorption difference spectrum of 3 at the end of the laser flash (phosph. buffer 

I = 0.1 M, pH 7, ICCD camera) 
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The absorption difference spectrum measured by an ICCD camera at the end of the first laser 

flash (with a fresh solution of 3 as reference and excitation wavelength of 248 nm) contains 

“negative bands” in the visible region, where the fresh solution originally absorbed 

(bleaching), see Fig. 13. There is also a new absorption band appearing in the UV region 

having a maximum at 350 nm. Its kinetics is shown in Fig. 14.  

 

Fig. 14 Monoexponential decay of the absorption band at 350 nm right after the laser flash 

(phosph. buffer I = 0.1 M, pH 7) 

 

 

Amax = 0.3485 

Ainf = 0.0057 

R2 = 0.9774 

k = (2.89 ± 0.02) ×104 s-1 

 

 

The amplitude of the signal becomes smaller with subsequent laser flashes (complete 

disappearance of the signal within 10 flashes). The decay obeys first–order kinetics. The end-

absorption at 350 nm (measured about 1 minute after the laser flash) can also be seen in 

Fig. 12. 

 

Bubbling the solution of 3 by O2 for 15 minutes results in no observable change in the 

absorption spectrum of the transient (350 nm), the kinetics of its decay, however, becomes 

almost two times faster (k = 5.41×104 s-1). Degassing of the solution, on the other hand, leads 

to a slight slowdown of the decay (k = 1.95×104 s-1). 

 

The decay of the transient seems to be, to a small extent, dependent on oxygen concentration. 

The observed constant of quenching by oxygen kq[O2] is ca 3×107 M-1s-1, which is by three 

orders of magnitude less than a diffusion-controlled energy transfer to oxygen (~ 1010 M-1s-1). 

This might imply the oxygen either reacts with the transient with certain activation barrier or 

it just catalyses the product formation in some way. Nevertheless, the rate constants differ 
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only slightly in degassed and oxygen-saturated solutions and it would be inappropriate to 

make any firm conclusions based on this small difference. 

 

The transient absorption spectrum recorded straight after the LFP (< 20 ns) of a solution of 3 

in acetate buffer (pH 4.46) also contains negative bands due to the bleaching (corresponding 

to the absorption of the neutral 3, which was used as a reference) and the band at 350 nm 

(Fig. 15). Its kinetics also obeys the first-order law but it becomes slightly slower  

(k = 2.37×104 s-1) than at pH 7. 

 

Fig. 15 Absorption difference spectrum of 3 at the end of the laser flash (acetate buffer 

I = 0.1 M, pH 4.46, ICCD camera) 

 

 

 

As at pH 7, bubbling of the solution of 3 in acetate buffer also resulted in a noticeable increase 

of the decay rate (k = 5.56×104 s-1).  

 

The observed transient is probably the cation formed by a photocleavage of the bromide 

anion. Quenching experiments with high concentrations of a base (e.g. N3
-), which should 

confirm or refute this notion, are going to be carried out in the near future. 

 

3.5. Photoproduct 

 

No matter if converted by irradiation or just left in an aqueous 

solution for several days, all three compounds (3–5) finally 

O OHO

(8)

OH
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yield the same main product with characteristic bands at 239 and 488 nm. The spectra ( 

Fig. 16) are also not dissimilar to the anionic forms of 3–5, suggesting both the photoproduct 

and/or the product of spontaneous decomposition in aqueous solutions still contain the 

original chromophore.  

 
Fig. 16  Spectra of 3, 4 and 5 in phosphate buffer (I = 0.1 M, pH 7) 10 days after irradiation 
 

The primary product of the reaction is most probably 9-(hydroxymethyl)-6-hydroxy-3H-

xanthen-3-one (8). This notion is based on the fact, that a drop in pH can be observed upon 

photolysis in non-buffered solutions (the anion of the LG is substituted in the molecule by 

OH– from water, thus leaving H+LG– acids, which depending on their strength partially or 

completely dissociate). The formation of an analogous alcohol in water or mixed H2O/CH3CN 

solutions has also been described for the coumarinyl PPG46-48, 53, 94-96 (see Scheme 9).  

 

The absorption maximum of 8 is blue–shifted with respect to the caged compounds to 

505 nm. Similarly to hydroxymethylcoumarin, this compound is also highly-fluorescent 

(which is not the case for the original caged substances 3, 4 and 5). 

 

The primary photoproduct 8 is in equilibrium with its two colorless tautomers,  

9-(hydroxymethylene)-9H-xanthene-3,6-diol and 3,6-dihydroxy-9H-xanthene-9-carbaldehyde 

(see Table 5 in the next chapter). One or more of these tautomers react further to give the final 

photoproduct, which is, as well as 8, highly fluorescent. Upon spectrophotometrical titration, 

it follows the same acid dissociation pattern as the compounds 1, 3, 4 and 588.  

 

The titration spectra obey the acid dissociation model with two pKa’s, pKa,1 being 3.04 ± 0.02 

and pKa,2 equal to 6.17 ± 0.02. At pH 7, where the monoanion prevails, one can observe 
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a distinct absorption band with λmax = 488 nm. The neutral form has its absorption maxima at 

450 and 472 nm and the cation at 433 nm.  

 

Fig. 17 2D and 3D courses of spectrophotometric titration of the final photoproduct, 

electronic spectra of the prototropic forms, species distribution in the pH interval 1.5 – 7 and 

model fit for several significant wavelengths 
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In theory, a dianion could also be formed in strongly basic solutions; nonetheless, it was not 

detected even at pH as high as 13.5. The value of pKa,3 is thus irrelevant for potential 

biochemical applications and it cannot be determined in aqueous solutions. 

 

Also the final photoproduct is blue-shifted with respect to its precursors 3, 4 and 5. This is 

very convenient since the interference with the absorption of the starting material can be 

avoided if the chosen irradiation wavelength is 525 nm or higher (the absorption maxima of 3, 

4 and 5 are between 519 and 530 nm).  
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Isolation and Identification of the Photoproduct 

 

The compounds 3, 4 and 5 were irradiated in non-buffered solutions by a conventional 

medium–pressure mercury lamp with a 430 nm filter. The drop in pH due to the formation of 

the free acids was compensated for by a adding dropwise a diluted solution of NaOH so that 

the pH values were kept between 6 and 8. After complete conversion (monitoring by means of 

UV-Vis spectroscopy), the solvent was evaporated, the final photoproduct was washed several 

times with chloroform and dried. The photoproduct was analyzed by the following 

techniques: UV – Vis (titration, see Fig. 17), NMR, IR, and MS. 

 

The UV-Vis spectrum of the photoproduct is very much alike that of 6-hydroxy-3H-xanthen-

3-one (a compound with a hydrogen atom in the 9-position), see Fig. 18, but the direct 

comparison by NMR spectroscopy proved the photoproduct is not identical to 6-hydroxy-3H-

xanthen-3-one. 

 

Fig. 18 UV-Vis spectra of 6-hydroxy-3H-xanthen-3-one (“Hderivative”) and of the 

photoproduct at pH 7 

 

 

 

 

Nuclear Magnetic Resonance 

 
1H, 13C, NOESY (H–H interactions over space), COSY (H–H interactions over 3 to 4 bonds), 

HMQC (direct C–H interactions over one bond) and HMBC (C–H interactions over 2 or more 

bonds) spectra of the photoproduct formed from 5 were recorded. The spectra are shown in 

figures 19 to 21.  
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1H NMR (600 MHz, δ, DMSO-d6, 25°C): 7.72 (d, H8), 7.31 (d, H1), 6.48 (d, H7),  

6.34 (s, H5), 6.23 (d, H2), 5.99 (s, H4) ppm; 

 
13C NMR (600 MHz, δ, DMSO-d6, 25°C): 180.9 (C3), 174.0 (C6), 168.8 (C10a), 159.1 (C9), 

154.7 (C4a), 131.6 (C1), 127.7 (C8), 123.4 (C2), 116.1 (C7), 112.2 (C8a), 105.6 (C9a),  

103.6 (C4), 102.8 (C5); 

 

NOESY interactions: H1↔H2, H7↔H8; 

 

COSY interactions: H1↔H2, H2↔H4, H5↔H7, H7↔H8; 

 

HMQC interactions: H1↔C1, H2↔C2, H3↔C3, H4↔C4, H5↔C5, H6↔C6; 

 

HMBC interactions:  

H1 ↔ C3, C4, C4a, C9, C9a  

H2 ↔ C1, C4, C9, C9a 

H4 ↔ C2, C3, C9, C9a 

H5 ↔ C6, C7, C8a, C9, C10a 

H7 ↔ C5, C8, C8a, C9 

H8 ↔ C5, C6, C9, C10a 

 

The NMR experiments together with UV-Vis spectroscopy have confirmed that the original 

chromophore is still preserved in the photoproduct. The question that remains unanswered is 

the X substituent on the carbon C9 of the final product. Considering the conditions of the 

experiment, the only conceivable substituents are the following: -H, -OH, -CH2OH (primary 

photoproduct, compound 8), -CHO, and -COO(H). 

 

Neither CH2 protons, nor a CH2 carbon (APT NMR experiment) were found in the NMR 

spectra of the final product, which rules out the -CH2OH substituent. An aldehydic proton of a 

-CHO group was not observed either. 6-Hydroxy-3H-xanthen-3-one (i.e. the compound with 

hydrogen atom in the 9-position) was added to a previously measured sample of the 

photoproduct but the direct comparison clearly showed two different substances, which 

excluded also this option. The only two possible substituents left at this point were -OH and  

-COO(H). 



 47 
 

Fig. 19 1H NMR spectrum of the photoproduct in DMSO. The peak at 1.70 ppm was 

attributed to the CH3 group of the free acetate, the one at 2.54 to DMSO and the one at 3.60 to 

residual water.  
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Fig. 20 Detail of the 1H NMR spectrum of the photoproduct in DMSO 
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Fig. 21 13C NMR spectrum of the photoproduct in DMSO. The peaks at 25.7 and 176.1 

belong to the free acetate, the heptet at 40.45 to DMSO 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the compound with an -OH substituent in the 9-position (6,9-dihydroxy-3H-xanthen-

3-one) would be transformed to its much more stable keto–tautomer (3,6-dihydroxy-9H-

xanthen-9-one, see Table 6), which has a different UV-Vis spectrum (it is colorless) and also a 

different NMR spectrum88. 

  

The only candidate left is the corresponding carboxylic acid originating by an oxidation of the 

primary photoproduct 8 or one of its tautomers. Even though no C↔H interactions with the 

carboxylic carbon were found in the HMBC spectrum, it does not necessarily mean that there 

is no carboxylic carbon since these interactions over 4 bonds may sometimes be difficult to 

observe with low sample concentrations. 

 

 

Mass Spectroscopy 

 

So far, all of the attempts to determine the mass of the photoproduct failed or gave no 

convincing results. The problem appears to be the very low tendency of the photoproduct to 
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go to the gas phase (melting points of the derivatives of 6-hydroxy-3H-xanthen-3-one are 

usually higher than 250 °C and they tend to decompose at these temperatures88). 

 

The EI (electron ionisation) experiment at 300 °C (maximum temperature) gave a few peaks 

of very low intensity (by about 3 orders of magnitude lower than the usual signal intensities). 

Small peaks appeared at 212 M/z (~ 6-hydroxy-3H-xanthen-3-one), 213 M/z, 226 M/z (~ 6-

hydroxy-9-methyl-3H-xanthen-3-one), and 228 M/z (~ 6, 9-dihydroxy-3H-xanthen-3-one). 

Since the mass spectroscopy gives only little or no information about the relative abundance 

of the individual components in the sample, and since the obtained signals were very weak, 

the major photoproduct could not be distinguished from the side-products or impurities or, 

perhaps, it was not even detected. 

 

The MALDI-TOF (Matrix-Assisted Laser Desorption/Ionization – Time Of Flight) 

experiment using 2,5-dihydroxybenzoic acid (pKa 2.97) as matrix gave rise to four peaks in 

the positive mode: 213 M/z (~ protonated 6-hydroxy-3H-xanthen-3-one), 214 M/z, 227 M/z 

(~ protonated 6-hydroxy-9-methyl -3H-xanthen-3-one), and 242 M/z (~ 9-(hydroxymethyl)-6-

hydroxy-3H-xanthen-3-one (8)). For similar reasons as in the case of EI, the MALDI-TOF 

experiment also did not give us an unequivocal answer to our problem. 

 

 

3.6. Stability Tests 

 

Solutions of 3, 4 and 5 in phosphate buffer (pH 7, I = 0.1 M) were subjected to stability tests 

in the dark. Fig. 22 to Fig. 24 show the courses of spontaneous conversions (i.e. conversions 

in the absence of light) of 3, 4 and 5 (A) to their primary products (B), the resolved spectra of 

A’s and B’s and the fit of the calculated kinetics. In all three cases, the kinetics (A → B) 

obeyed the 1st-order law. The rate constants and the lifetimes of the species 3 to 5 under given 

conditions are also given in the figures. 

 

The spectra of B’s, however, were not those of the final product. After a couple of more days, 

the absorption spectra of the samples were very much alike those shown in Fig. 16. 

(see Fig. 25).  
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Fig. 22 Absorption spectra and the course of a monoexponential non-photochemical 

conversion of 3 to its product  

k = (4.81 ± 0.33) ×10-5 s-1; τ = 5.78 hours 

  

 

 

 

 

 

 

 

 

 

Fig. 23  Absorption spectra and the course of a monoexponential non-photochemical 

conversion of 4 to its product 

k = (1.36 ± 0.07) ×10-5 s-1; τ = 20.5 hours 
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Fig. 24 Absorption spectra and the course of a monoexponential non-photochemical 

conversion of 5 to its product 

 k = (1.15 ± 0.06) ×10-5 s-1; τ = 24.2 hours 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25  Normalized absorption spectra of the products of thermal decomposition of 3, 4 and 5 

after 1 week (conversion not complete yet) 
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3.7. Calculations 

 

DFT calculations were performed using the Gaussian03 software package. The chosen 

method was a restricted B3LYP with the basis set 6–31+g(d). Before the solvent field was 

added, the molecules were optimized in the gas phase. Energies of several compounds of 

interest (i.e. model compounds and possible photoproducts and/or reaction intermediates) and 

their tautomers were calculated. The results are summarized in Tables 5 to 7. 

 

 

Table 5 Calculated energies of the primary photoproduct 8 and its tautomers. The energy 

values are given both for the neutral and the anionic forms (which prevail at pH 7). The last 

column shows the energy differences among the three tautomers under given conditions (gas 

phase/water; neutral species/anion). The colors correspond to the tautomers, which are to be 

compared. 

Compound Phase Charge Form Energy / 
(kJ.mol-1) 

Energy 
difference / 
(kJ.mol-1) 

gas 0 aldehyde -2206509.6 0 

water 0 aldehyde -2206612.9 0 

gas -1 aldehyde -2205087.4 43.0 
3,6-dihydroxy-9H-xanthene-
9-carbaldehyde 

water -1 aldehyde -2205364.8 22.1 

gas 0 keto -2206477.3 32.3 

gas 0 enol -2206490.4 19.2 

water 0 keto -2206594.9 18.0 

water 0 enol -2206602.7 10.2 

gas -1 keto -2205130.4 0 

gas -1 enol -2205055.3 75.1 

water -1 keto -2205386.9 0 

6-hydroxy-9-
(hydroxymethyl)-3H-
xanthen-3-one (8) 

water -1 enol -2205353.8 33.1 
 

O

OH

OHO O

OH

OHHO

colored "keto" form colorless "enol" form

O

O

OHHO

colorless "aldehyde"

O

OH

OHO O

O

OHHO

6,9-dihydroxy-3H-xanthen-3-one
(colored)

3,6-dihydroxy-9H-xanthen-9-one
(colorless)
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Table 6 Comparison of calculated energies of 6,9-dihydroxy-3H-xanthen-3-one and  

3,6-dihydroxy-9H-xanthen-9-one 

Compound Phase Charge Form Energy / 
(kJ.mol-1) 

Energy 
difference / 
(kJ.mol-1) 

gas 0 - -2103301.7 79.3 

water 0 - -2103421.0 58.4 

gas -1 - -2101958.6 34.0 
6,9-dihydroxy-3H-
xanthen-3-one 

water -1 - -2102209.2 46.8 

gas 0 - -2103381.0 0 

water 0 - -2103479.4 0 

gas -1 - -2101992.6 0 
3,6-dihydroxy-9H-
xanthen-9-one 

water -1 - -2102256.0 0 
 
 

Table 7 Comparison of the calculated energies of the keto end enol forms of the compounds 

1, 3 and 5. 

Compound Phase Charge Form Energy / 
(kJ.mol-1) 

Energy 
difference / 
(kJ.mol-1) 

gas 0 keto -2009024.1 0 

gas 0 enol -2009009.7 14.4 

water 0 keto -2009116.1 0 

water 0 enol -2009091.6 24.5 

gas -1 keto -2007676.5 0 

gas -1 enol -2007591.0 85.5 

water -1 keto -2007905.4 0 

6-hydroxy-9-methyl-3H-
xanthen-3-one 

water -1 enol -2007850.6 54.8 

gas 0 keto -8759507.6 0 

gas 0 enol -8759492.1 15.6 

water 0 keto -8759602.2 0 

water 0 enol -8759576.9 25.3 

gas -1 keto -8758175.6 0 

gas -1 enol -8758085.1 90.5 

water -1 keto -8758397.1 0 

9-(bromomethyl)-6-hydroxy-
3H-xanthen-3-one 

water -1 enol -8758339.4 57.7 

gas 0 keto -2607288.7 13.7 

gas 0 enol -2607302.4 0 

water 0 keto -2607409.0 0 

water 0 enol -2607404.9 4.1 

gas -1 keto -2605957.6 0 

gas -1 enol -2605897.8 59.8 

water -1 keto -2606204.3 0 

(6-hydroxy-3-oxo-3H-
xanthen-9-yl)methyl acetate 

water -1 enol -2606164.9 39.4 
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Table 5 compares the energies for the three tautomers of the primary photoproduct 8. 

According to the calculations, the colored anionic keto form would be the prevalent form in 

aqueous solutions at pH 7. Out of the neutral forms, the “aldehyde” seems to be the most 

stable. The experiment shows a substantial decrease (to about 40 % of the original intensity) 

of the absorption band in the visible region (505 nm) at pH 7. As the final photoproduct is 

formed, this band eventually shifts towards shorter wavelengths (488 nm) and gains in 

intensity again. 

 

Table 6 indicates the colorless 3,6-dihydroxy-9H-xanthen-9-one is much more stable under all 

conditions than 6,9-dihydroxy-3H-xanthen-3-one. This is in agreement with our observation. 

When dissolved in water or aqueous buffers, 3,6-dihydroxy-9H-xanthen-9-one stays colorless 

and does not tautomerize to 6,9-dihydroxy-3H-xanthen-3-one. 

 

Table 7 shows that although the “aromaticity” of the system is disturbed in the keto forms, 

these forms are still lower in energy than the enol forms in aqueous media. The equilibria are 

therefore shifted towards the keto species. This is also in accord with our observations and it 

is very convenient since the keto form is the one that absorbs in the visible region (the enol 

form absorbs only in the UV). The opposite is true in DMSO – there the colorless forms 

prevail. 



 55 
 

4. Summary 

 

A new water-soluble photoremovable protecting group for carboxylic acids and phosphates 

with high molar extinction coefficients (ελmax ~ 25 000 dm3mol-1cm-1) in the visible region 

(above 520 nm) was designed and tested. The suggested concept based on the photochemistry 

of coumarinyl PPG proved to work also for the compounds derived from 6-hydroxy-3-oxo-

3H-xanthen-9-yl)methyl. The introduction of an additional aromatic core to the coumarinyl 

unit resulted in a substantial shift of the absorption towards longer wavelengths and also 

caused a drop in pKa of the phenolic protons to about 6, which then caused the anionic form of 

the molecule to be the prevalent species at neutral pH. This is of advantage since it improves 

the solubility of these compounds in aqueous media and also because the anionic forms of the 

cages are even further red-shifted with respect to the neutral ones. 

 

The model cages released the protected bromide, acetate and/or diethylphosphate upon 

irradiation by visible light in neutral aqueous solutions (the cleavage of the free anions was 

indicated by a drop in pH and confirmed by NMR). 

 

The quantum yields of photodeprotection of the model compounds were relatively low but 

still comparable to those of coumarinyl cages. The quantum yields could probably be 

enhanced by a suitable substitution. The efficiency of the photoreaction is also likely to be 

higher in the case of cages of other phosphates and/or acyls of biochemical interest, which are 

better leaving groups than diethyl phosphate or acetate. 

 

In the dark, the model compounds were stable for several hours (up to 1 day) in aqueous 

solutions at room temperature. The stability should thus be sufficient for potential 

biochemical applications. 

 

The fluorescence lifetime of one of the model compouds, 9-(bromomethyl)-6-hydroxy-3H-

xanthen-3-one was found to be (331 ± 30) ps. 

 

The last problem that remains to be solved is an unequivocal identification of the final 

photoproduct and of the reaction intermediates. The first step of the photoreaction is most 

probably analogous to that of coumarinyl cages, i.e. the elimination of the protected species 
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(free acids) and the nucleophilic attack of the resulting cation by water, which leads to the 

formation of the primary photoproduct, 6-hydroxy-9-(hydroxymethyl)-3H-xanthen-3-one. 

This compound is in equilibrium with its enol tautomer and also with another tautomer:  

3,6-dihydroxy-9H-xanthene-9-carbaldehyde. One or more of these tautomers react further to 

give a final product, in which the original chromophore is restored again (testified by UV-Vis 

spectroscopy and NMR). The UV-Vis spectrum of the final photoproduct overlaps with the 

spectrum of 6-hydroxy-3H-xanthen-3-one but the NMR analysis revealed that the two compounds 

were not identical. Further analyses and attempts to identify the photoproduct and the reaction 

intermediates are still in progress. 
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5. Experimental 

 

5.1. Instruments 

 

UV/Vis Spectrophotometry: 

• Agilent 8453 UV-Vis spectrophotometer (routine measurements, quantum yield 

determination), 

• Perkin-Elmer Lambda 9 UV-Vis spectrophotometer (spectrophotometric titration). 

 

IR: 

• Perkin Elmer 1600 Series FTIR. 

 

NMR: 

• Bruker AVANCE400 – 400 MHz (routine 1D measurements), 

• Bruker DRX600 – 600 MHz (thorough analysis of the photoproduct, 2D spectra; 

measurements at this instrument were performed by Dr. Daniel Häussinger at the 

Institute of Organic Chemistry, University of Basel). 

 

MS: 

• Mat95 (measurements at this instrument were performed by Dr. Heinz Nadig at the 

Institute of Organic Chemistry, University of Basel). 

 

MALDI-TOF: 

• MALDI Mass Spectrometer Voyager-DE-PRO: matrix – 2,5-dihydroxybenzoic acid 

 

Ultrasonics: 

• Telsonic Ultrasonics TPC-15. 

 

pH Measurements: 

• Metrohm 654 pH-meter with Metrohm LL micro pH glass electrode (Biotrode). 
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Evaporation, Drying and Degassing: 

• rotavapor Büchi R 200 with Büchi B-490 water bath connected to Vaccuubrand 

diaphragm vacuum pump Type MZ 2, 

• oil pumps Balzers DUO 004 B, 

• high vacuum pump Balzers PDI 063. 

 

Laser Flash Photolysis: 

• excitation by Lambda-Physik Compex 205 excimer laser operating at 248 nm (KrF), 

308 nm (XeCl), and 351 nm (XeF); pulse energy ~ 100 mJ, pulse duration ~ 50 ns, 

• probing light: pulsable Xe-arc lamp oriented perpendicularly to the excitation light, 

• transient spectra captured by an ICCD camera iStar 720, Andor Tech., optical 

resolution 2 nm, time of accumulation 20 – 50 ns, 

• kinetics measurements: Hamamatsu 1P28 photomultiplier, Tektronix TDS 540 

500 MHz oscilloscope, Brandenburg photomultiplier power supply, 

• quartz cuvettes (1×1 cm wide, 4.5 cm long), light shutters, cut-off filters. 

 

Fluorimetry: 

• Spex Fluorolog 111C instrument with 150 W Xe-lamp light source, quartz cells. 

 

Time-Resolved Fluorimetry and Quantum Yield Determination: 

• light source - Clark-MXR Ti:Sa laser CPA 2001 coupled to a noncollinear optical 

parametric amplifier (NOPA), wavelengths set to 490 nm, 515 nm (time-resolved 

fluorescence), or 538 nm (quantum yield measurements); bandwidth at half height 

ca 15 nm, 

• time-resolved fluorescence spectra recorded by Hamamatsu C5680 streak camera 

preceded by a Chromex 250IS polychromator, and synchronized with the light source 

by a delay unit C1097. 

 

Irradiation and Isolation of the Photoproduct: 

• Hanau medium pressure lamp, 

• cut-off filter (530 nm), quartz beaker (500 ml), magnetic stirrer, rotavapor. 
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5.2. Chemicals 

 

Chemical Formula M /  
g . mol-1 

Quality Producer 

acetone C3H6O 58.08 c. p. 
Schweizerhall 
Chemie AG 

acetonitrile C2H3N 41.05 
HPLC 
grade 

Scharlau 

argon Ar 39.95 4.6 Linde 

dimethylformamide-d7 HCON(CH3)2 73.09 99.5 % 
Cambridge Iso. 
Lab. 

dimethyl sulfoxide-d6 SO(CD3)2 78.13 99.98 % 
Cambridge Iso. 
Lab. 

hydrochloric acid HCl 36.46 36-38% Merck 
sodium acetate anhydrous CH3COONa 82.03 u. Fluka 
sodium chloride NaCl 58.44 p. a. Merck 
sodium dihydrogenphosphate 
dihydrate 

NaH2PO4.2H2O 137.99 
p.a., 
≥99.0 % 

Fluka 

sodium hydrogenphosphate 
dihydrate 

HNa2PO4.2H2O 177.96 
p.a., 
≥99.0 % 

Fluka 

sodium hydroxide NaOH 40 p. a. Fluka 

water H2O 18.02 
bidistilled 
>99.9 % 

UniBasel 

water-d2 D2O 20.04 d. 99.9 % 
Cambridge Iso. 
Lab. 

 

Abbreviations: 

 c. p. chemically pure  d. dried 

 p. a. pro analysis   u. ultra 

 

 

5.3. Data Analysis 

 
The measured spectra were normalized (fluorescence) or corrected for dilution (UV/Vis 

spectrophotometric titration) using Origin or MS Excel and exported to SPECFIT32, 

a multivariate data analysis program for modeling and fitting chemical kinetics and a variety 

of equilibrium titration 3D data sets that are obtained from multi-wavelength 

spectrophotometric measurements. 
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6. Index of Symbols and Abbreviations 

 
δ   chemical shift 

δu   two-photon action cross section 

ε   molar absorption coefficient 

λ   wavelength 

υ   frequency 

τ   lifetime 

Φ    quantum yield  

2D   two-dimensional 

2PE   two-photon excitation 

3D   three-dimensional 

A   absorption 

AMP   adenosine monophosphate 

ATP   adenosine triphosphate 

B3LYP Becke, three-parameter, Lee-Yang-Parr exchange-correlation functional 

BAPTA  (1,2-bis(2-aminophenoxy)ethane-N,N,N´,N-́tetraacetic acid 

BCMB   3’,5’-bis(carboxymethoxy)benzoin-group  

Bz   benzoin group  

cAMP   cyclic adenosine monophosphate  

CD   circular dichroism 

cGMP   cyclic guanosin monophosphate  

COSY   correlation (NMR) spectroscopy 

d   doublet (multiplicity in NMR spectroscopy) 

DEPT   distortionless enhancement by polarization transfer 

DFT   density functional theory 

DMBz   dimethoxybenzoin group 

DMF   dimethyl formamide 

DMP   dimethylphenacyl group 

DMSO   dimethyl sulfoxide 

DNA   deoxyribonucleic acid 

E enol form or “entgegen” isomer (the substituents on a double bond 

having the highest priorities point in different directions) 
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e.g.   exempli gratia (= for example) 

EDTA   ethylendiamine tetraacetic acid 

EI   electron impact/ionisation 

et al.   et alia (= and others) 

EtOH   ethanol 

Fig(s).   figure(s) 

FRAP   fluorescence recovery after photobleaching  

GABA   γ-aminobutyric acid  

GM   1 Göppert-Mayer = 10-50 cm3 s photon-1 

GMP   guanosine monophosphate 

GTP   guanosine triphosphate 

HCM   hydroxycoumarin group 

HMBC   heteronuclear multiple bond correlation 

HMQC  heteronuclear multiple quantum coherence 

hυ   quantum of energy/photon (Planck constant × frequency) 

I   light intensity or ionic strength 

IC   internal conversion 

ICCD   intensified charge-coupled device 

IgG   immunoglobulin G 

InsP3   inositol trisphosphate  

IR   infrared spectroscopy or infrared radiation 

ISC   intersystem crossing 

k   rate constant 

K   keto form 

LFP   laser flash photolysis 

LG   leaving group 

M/z   mass per charge 

MALDI-TOF  matrix-assisted laser desorption/ionization – time of flight 

MCM   methoxycoumarin group 

MeOH   methanol 

MS   mass spectroscopy 

NMR   nuclear magnetic resonance 

NOESY  nuclear Overhauser enhancement spectroscopy 

NOPA   noncollinear optical parametric amplifier 



 62 
 

o-NB   2-nitrobenzyl group  

PAF   photoactivation of fluorescence  

PG   protecting group 

PPG   photoremovable protecting group 

pH   pH-value 

p-HP   parahydroxyphenacyl group  

pKa   pKa-value 

p-MP   paramethoxyphenacyl group 

R2    square of the Pearson product moment correlation coefficient 

s   second or singlet (multiplicity in NMR spectroscopy) 

T   temperature 

UV/Vis  ultraviolet/visible 

Z “zusammen” isomer (the substituents on a double bond having the 

highest priorities point in the same direction) 
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8. Appendix 

 

During my PhD studies at the University of Basel, I have worked on two other projects: 

1. Aqueous Oxidation of Phenylurea Herbicides by Triplet Aromatic Ketones, 

2. Inverted Region Behavior in Proton Transfer to Carbanions. 

 

The results from the two projects are summarized in the following subchapters. 
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8.1. Aqueous Oxidation of Phenylurea Herbicides by Triplet Aromatic 

Ketones 
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8.2. Inverted Region Behavior in Proton Transfer to Carbanions 
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