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SPECIAL FOCUS

Platelet Lysate as a Serum Substitute for 2D Static
and 3D Perfusion Culture of Stromal Vascular
Fraction Cells from Human Adipose Tissue

Andreas Marc Muller, M.D.,"" Michael Davenport, B.Sc.,”” Sophie Verrier, Ph.D.,? Raoul Droeser, M.D.,’
Mauro Alini, Ph.D.,? Chiara Bocelli-Tyndall, Ph.D.," Dirk J. Schaefer, M.D.,*
lvan Martin, Ph.D.," and Arnaud Scherberich, Ph.D."

Fetal bovine serum (FBS) and fibroblast growth factor (FGF)-2 are key supplements for the culture of stromal
vascular fraction (SVF) cells from adipose tissue, both for typical monolayer (2D) expansion and for streamlined
generation of osteogenic—vasculogenic grafts in 3D perfusion culture. The present study investigates whether
factors present in human platelet lysate (PL) could substitute for FBS and FGF-2 in 2D and 3D culture models of
SVF cells from human lipoaspirates. SVF cells were grown in medium supplemented with 10% FBS + FGF-2 or
with 5% PL. In 2D cultures, PL initially supported SVF cell proliferation, but resulted in growth arrest shortly after
the first passage. Freshly isolated SVF cells cultured with both media under perfusion for 5 days within 3D ceramic
scaffolds induced bone formation after subcutaneous implantation in nude mice. However, blood vessels of donor
origin were generated only using FBS 4+ FGF-2—cultured cells. This was unexpected, because the proportion of
CD34" /CD31" endothelial lineage cells was significantly higher with PL than that of FBS + FGF-2 (33% vs. 3%,
respectively). These results support the use of PL as a substitute of FBS + FGF-2 for short-term culture of human
SVF cells, and indicate that more specific serum-free formulations are required to maintain a functionally vas-

culogenic fraction of SVF cells expanded under 3D perfusion.

Introduction

UMAN STROMAL VASCULAR FRACTION (SVF) cells derived
from adipose tissue constitute a promising source of
adult progenitor cells for autologous cell transplantation and
tissue engineering. These progenitor cells can be obtained
in abundance through minimally invasive, low morbidity-
associated harvest procedures, for example, lipoaspiration,
can extensively proliferate in 2D cultures, and can differen-
tiate into multiple cell types, not only of the mesenchymal
lineage,"* but also toward neuronal cells,® cardiomyocytes,*
or hepatocytes.” Recently, we have also demonstrated that
mesenchymal and endothelial progenitors from human adi-
pose tissue can be cocultured within 3D porous scaffolds
under perfusion flow, resulting in osteogenic and vasculo-
genic properties after ectopic implantation in nude mice.®
Culture of SVF cells, both in 2D and 3D systems, typically
involves the use of media containing fetal bovine serum (FBS),

often further supplemented with fibroblast growth factor
(FGF)-2,%° which was shown to be crucial to maintain their
proliferative and differentiation potential.”® FBS is a typical
component of standard culture media because it is a source
of proteins promoting cell adhesion and of various growth
factors stimulating cell proliferation. However, its use in the
engineering of clinically compliant grafts raises concerns. As
internalization of xenogenic FBS components in human
mesenchymal progenitor cells may occur during the culture
period,’ the transplantation of cells cultured with FBS into
immunocompetent organisms opens the risk of immune re-
actions ranging from chronic rejection of transplanted cells to
acute anaphylactic, life threatening immune responses.lo'11
Additionally, the use of FBS bears the risk of transmitting
prions as well as other known and unknown pathogens. To
overcome the risk of infection and immune-related diseases,
there have been attempts to replace FBS by autologous serum,
for example, for the culture of mesenchymal stromal cells
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(MSC) derived from bone marrow. Substantial expansion
in autologous serum was reported, particularly in the first
passages,'>'? but not to the extent required to obtain clinically
relevant cell numbers. Recently, platelet lysate (PL) has been
proposed as a potent substitute to FBS. Lysis of platelets re-
leases granules containing various growth factors such as
TGE-B, PDGF, IGF-1, EGF, and VEGEF, as well as adhesive
proteins involved in hemostasis (fibronectin and fibrinogen).
PL is generally prepared from human blood according to
standardized clinical-grade procedures and is subjected to
careful and documented screening for most major infectious
pathogens such as HIV, cytomegalovirus, or hepatitis B and C
virus. It can thus be considered as a safe and clinically com-
pliant alternative to bovine serum. Previous studies have
demonstrated successful use of PL for the expansion of MSC
from bone marrow'*1® or umbilical cord blood,*” as well as
for the expansion of endothelial cells.’® Moreover, MSC ex-
panded in the presence of PL were not tumorigenic when
assessed in nude mice."

In the present study, we investigated whether FBS and
FGF-2 could be replaced by PL for typical expansion of SVF
cells in monolayer on tissue culture plastic, and for 3D culture
within porous scaffolds under perfusion flow. Characteriza-
tion included assessment of cell growth and phenotype of the
2D expanded population, as well as in vivo tests of the oste-
ogenic and vasculogenic capacity of the 3D grafts generated in
the perfusion bioreactor system.

Materials and Methods
Preparation of PL

PL was obtained from seven different aphaeresis samples,
each lot coming from a single donor, collected at the Blood
Transfusion Center (Basel, Switzerland) according to Swiss
legislation. The bags were obtained 4-5 days after collection.
Only samples containing at least 1x10° platelets/mL were
selected. PL samples were frozen overnight at —80°C and then
thawed to allow the release of the growth factors from the
platelets. The platelet bodies were eliminated by centrifu-
gation at 900 g, the supernatant constituting the PL. To avoid
gel formation by the PL, 2IU/mL heparin (Roche, Basel,
Switzerland) was added to the PL medium. Growth factor
concentration was measured in four of the seven PL used in
this study with commercially available enzyme-linked im-
munoabsorbent assay (ELISA) for PDGF and bFGF (antibody
#DHBO00OD and #HSFB75, respectively, both from R&D Sys-
tems, Abingdon, United Kingdom) and for TGF-B1 (antibody
#559119 from Becton Dickinson, Allschwil, Switzerland) fol-
lowing the procedure recommended by the manufacturer.

Cell isolation

Subcutaneous adipose tissue in the form of lipoaspirates
was obtained from thigh and/or abdominal adipose tissue of
16 healthy donors (all females, 47 & 23 years old, body mass
index 22.2 4+ 2.7 kg/m?) during routine dermolipectomy, after
approval by the internal ethics commission and with in-
formed consent from the patients. The tissue was digested in a
final concentration of 0.075% collagenase type 2 (312U/mg;
Worthington, Lakewood, NJ) for 45 min at 37°C on an orbital
shaker. The suspension was thereafter centrifuged at 300 g for
10 min; the resulting pellet (i.e., the SVF) was washed once

MULLER ET AL.

with PBS, resuspended in a-modified Eagle’s medium (-
MEM) (Gibco Invitrogen, Basel, Switzerland), and finally fil-
tered through a 100-um strainer (BD Falcon, Allschwill,
Switzerland).

Monolayer cell culture

After isolation from the tissue of origin, nucleated SVF cells
were seeded onto Petri dishes at a density of 2.7x10°
cells/ cm?, in o-MEM supplemented either with 10% FBS and
5ng/mL FGF-2 (FBS + FGF-2), or with 5% PL. In some ex-
periments, PL was also supplemented at the concentration of
10%. Cells were cultured for the indicated period of time in a
humidified incubator at 37°C and 5% CO,. The first expansion
of SVF cells on tissue culture plastic was defined as p0. The
first passage (p1) was defined as the expansion phase right
after the first replating. The number of clonogenic cells, gen-
erally referred to as colony-forming units-fibroblast, was de-
termined by plating 5x10* SVF cells in medium containing
FBS+ FGF-2 in 10-cm-diameter Petri dishes, followed by
counting the colonies visibly stained by crystal violet after 2
weeks. The proliferation rate was determined by counting the
number of cells at the first plating (p0) and at the end of each
subsequent passage (pl, p2, and p3), using a Neubauer
chamber. The average number of cell doublings per day was
defined as the total number of doublings during the culture
period, calculated as the logarithm in base 2 of the ratio be-
tween the final and initial cell numbers, divided by the num-
ber of days in culture. The initial number of cells competent
for adhesion and subsequent proliferation was assumed to
correspond to the number of clonogenic cells, determined for
each primary culture in parallel assays as described above.

Cell culture under perfusion

A perfusion bioreactor system was used for cell seeding
and subsequent culture of freshly isolated cells from adipose
tissue in 3D scaffolds, mostly as described previously.*'*
About 3x10° SVF cells were perfused for 5 days through
8-mm-diameter, 4-mm-thick Engipore® disks of porous hy-
droxyapatite ceramic (Fin-Ceramica, Faenza, Italy; average
porosity of 83+ 3%) in medium containing either 10% FBS
and 5ng/mL FGF-2 (FBS + FGF-2), or 5% PL. The flow rate
of the perfusion through the disk was set at 3mL/min.

Construct implantation and in vivo bone
formation assessment

Constructs from independent experiments, after the 3D
perfusion culture, were implanted ectopically in recipient
nude mice (CD-1nu/nu, 1 month old; Charles River Labora-
tories, Sulzfeld, Germany) in accordance with institutional
guidelines. Eight weeks after implantation, mice were sacri-
ficed, and the constructs were harvested and fixed overnight
in 4% formalin, decalcified for 3 h with Osteodec (Bio-Optica,
Milano, Italy) under agitation at 37°C, paraffin embedded,
and sectioned (7-pum-thick sections) at different levels. Sec-
tions were then stained by hematoxylin—eosin and observed
microscopically.

Immunostaining of human blood vessels

Tissue vascularization by endothelial cells of human ori-
gin was determined by immunohistochemical staining with
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a biotin-conjugated antibody recognizing the human isoform
of CD34 (Chemicon, Hampshire, United Kingdom). After
incubation with ABC®-alkaline phosphatase complex (Dako,
Baar, Switzerland), specific staining was revealed using Fast
red from Dako. Sections were counterstained with hema-
toxylin and mounted.

Cytofluorimetric analysis

Cell suspensions were incubated for 30 min at 4°C with
fluorochrome-conjugated antibodies against the indicated
protein, or an isotype control. All the antibodies were from
Becton Dickinson, Allschwil, Switzerland except for CD105,
which was from Serotec, Diisseldorf, Germany. Cells were
washed and resuspended in PBS, and analyzed with a
FACSCalibur flow cytometer.

In vitro osteogenic differentiation

SVF cells at p1 were cultured with osteoinductive medium
for 3 weeks, with medium changes twice a week. Osteogenic
medium consisted of «-MEM supplemented with 10% FBS,
100nM dexamethasone, 10mM [B]-glycerophosphate, and
0.05mM ascorbic acid-2-phosphate. The cells cultured in o-
MEM with FBS + FGEF-2 served as controls. Cell layers were
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washed twice with PBS, fixed for 10 min with 4% formalin,
and stained with 2% alizarin red S.

Results
2D monolayer cultures

Concentrations of FGF-2, TGF-f1, and PDGF-AB were
measured in four of the PL used in this study and averaged,
respectively, 0.11+£0.05, 56.1+26.6, and 18.3 +2.1ng/mL.
After the first passage in monolayers, corresponding to about
4-5 doublings, SVF cells cultured with FBS + FGF-2 exhibited
a typical fibroblastic morphology, whereas cells cultured with
PL showed a more elongated, heterogeneous population of
cells, with formation of circular structures (Fig. 1A). Proli-
feration of SVF cells was derived during the first expansion
(p0) and at the first three passages. SVF cells cultured with
FBS + FGF-2 had an initial doubling rate of 1.0+0.2 dou-
blings/day, as compared to 0.7 + 0.2 for PL. The proliferation
rate of cells cultured with PL dramatically decreased to
0.14 £ 0.15 doublings/day after the first re-plating (p1) and
further reduced to 0.07 +0.05 at p2, and no proliferation was
observed at p3 (Fig. 1B, closed squares). At the corresponding
passages, SVF cells cultured with FBS+FGF-2 prolifer-
ated steadily, with average proliferation rates of around 0.5
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FIG.1. Comparison between SVF cells
expanded in an FBS-containing medium
supplemented with FGF-2 (FBS +
FGF-2) and a serum-free medium sup-
plemented only with PL. (A) Micro-
scopic picture showing the morphology
of SVF cells cultured on tissue culture
plastic, at p1. (B) Proliferation rate of
SVF cells on tissue culture plastic at
. different passages (from p0 to p3, as
p indicated), expressed as number of cell
x doubling per day. Open circles,
FBS + FGF-2; closed squares, PL; closed
triangles, SVF cells initially expanded
with FBS +-FGF-2 until the end of p1 and
thereafter switched to PL. (C) Colony-
forming efficiency of SVF cells at differ-
ent passages (from freshly isolated SVF
cells to p2). Results are expressed as
percentage of colony-forming cells.
Open circles, FBS + FGF-2; closed
squares, PL. (D) In vitro osteoblastic
differentiation of SVF cells at the end of
p2. SVEF cells cultured with either
FBS 4 FGF-2 or PL on plastic until p1
were further cultured for 3 weeks and
stained with alizarin red. Top row: FBS-
containing medium supplemented with
osteogenic supplements (dexamethasone,
ascorbate, and B-glycerophosphate).
Bottom row: FBS-containing medium
only. Color images available online at
www liebertonline.com/ten.
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doubling/day (Fig. 1B, open circles). When SVF cells ex-
panded with FBS + FGF-2 until p2 were switched to serum-
free medium containing PL only, the cell expansion rate
dropped immediately to a total arrest after 1-2 passages (Fig.
1B, closed triangles). Neither addition of 5 ng/mL FGF-2 to 5%
PL nor increase of the PL concentration to 10% was able to
prevent the growth arrest of SVF cells at p2.

At each passage, the clonogenic potential of SVF cells was
determined by colony formation assays. Freshly isolated SVF
cells exhibited a 6 + 3% colony-forming cell frequency, which
remained mostly constant in the range of 5-10% in the cul-
tures until p2, with no significant differences between PL and
FBS 4 FGF-2 (Fig. 1C). The clonogenic frequency remained
similar also if SVF cells were expanded with PL further sup-
plemented with 5ng/mL FGF-2 (9 +3%, n=23 independent
donors). At different passages, the differentiation potential of
expanded SVF cells was evaluated by in vitro mineralization
assay. After exposure to osteogenic supplements, SVF cells
expanded until p2 using PL or FBS+ FGF-2 deposited ex-
tensive mineralized matrix, as assessed by alizarin red stain-
ing (Fig. 1D).

At different passages in 2D cultures, the phenotype of SVF
cells was investigated by flow cytometry (Fig. 2). The mark-
ers expressed by freshly isolated SVF cells were mostly in
accordance with our previous data.® In cells expanded with
FBS 4-FGF-2, a typical enrichment in mesenchymal lineage
cells, characterized by expression of CD90 and CD105, was
already observed at p0. The mesenchymal cell popula-
tion represented approximately 100% of the cells at pl and
p2. In cells cultured with PL, despite enrichment in stromal
cells, an important fraction of cells of the endothelial lineage
(33 +£26% of CD34%/CD31" cells) remained present until
the end of p0, and was gradually lost after p1l. Double la-
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beling for CD31 and CD34 indicated that at each passage in
FBS + FGF-2 medium all cells positive for CD34 were nega-
tive for CD31, whereas in PL medium the cells positive for
CD34 were also all positive for CD31 (data not shown). A
population of cells positive for CD31 and the chemokine
receptor CXCR4 was present at p1 and p2, but only with PL.
This population was of the mesenchymal lineage, as assessed
by positivity for CD90 (data not shown).

3D Perfusion cultures

We next investigated the bone and blood vessel formation
capacity of SVF cells expanded for 5 days within porous
ceramic scaffolds in a 3D perfusion system, bypassing the
typical 2D expansion phase. Cells were cultured either with
FBS 4 FGF-2 or with PL only, and the resulting constructs
were assessed using an ectopic in vivo bone and blood vessel
formation model.® After 8 weeks of implantation, sparse
bone tissue was formed in both experimental condi-
tions (Fig. 3A-D). No bone formation was observed when
cell-free scaffolds were implanted in the same ectopic mod-
el.® In three independent experiments performed using SVF
cells from three different donors, cells cultured with
FBS + FGF-2 also produced blood vessels, as documented by
immunostaining for human CD34. In particular, we ob-
served a mix of unstained blood vessels of mouse (recipient)
origin and positively stained blood vessels of human (donor)
origin (Fig. 3E), which were connected to the vasculature of
the host, as indicated by the presence of erythrocytes in
their lumen. Unexpectedly, SVF cells grown under perfusion
for 5 days with PL failed to generate human blood vessels
in vivo, and only mouse-derived blood vessels were visible
(Fig. 3F).

SVF po FBS+FGF-2 PL
CD14 23+8% (n=6) CDi14 212 % n=8) 3x5%(re?)
CDd5 41 21 % (n=6) CD45 1x1 % (n=9) 1£1% (r=9)
CD34 42+ 28 % (n=6) Ch3 D226%m=9) | 33+26 % (n=B)
CD31 31 £19 % (n=6) CD31 3+5% =9 33+£2% % (n=8)
CD90 38 %18 % (n=6) CD% W+12%(n=B) | 69+24% (n=R)
FIG. 2. Cytofluorimetric CD146 12+6% (n=4) CD146 | 4 +20%(n=4) 1249 % (n=3)
analysis of SVF cells and of I o
SVF cells grown on tissue CXCR4 845 %(n=3) CXCR4 0 % (n=3) 4+6% (xre3)
culture plastic with the indi- CDI105 16 £12 % (n=5) CDI105 85 221 % (n=3) 65+ 35 % (n=3)
cated medium, at different
passages from p0 to p2. Re- p1 FBS+GF-2 FL p2 FBS+FGF-2 PL
sults are expressed as per- % 3
centage of cells positive for the CD14 0%1%n=4) 1+1%(n=4)
indicated markers. CD45 0 % (n=4) 5 %12 % (n=4) CD4s 0% (n=2) 416 % (n=2)
CD34 6 £10% (r=d) 212% (n=4) CD34 3+6% (r=3) 11 £10 % (n=3)
CD31 2x4% (n=4) 8x13%(n=4) CD31 0% (n=3) 21 £3%(n=3)
CDo0 96 2% (r=d) 91 +6 % (n=4) CD90 97+3% (n=3) 8348 % (n=2)
CD146 16 £10% (r=d) 6 4% (n=3) CD146 0% (n=2) 3+5%(n=3)
CXCR4 0% (n=3) 14 £29 % (n=3) CXCR4 0% (n=3) 145 % (n=2)
CD105 92 +5% (re=3) 61 £11 % (n=3) CDIOS | 76£14% =2 | 73+10 % (n=2)
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PL

FBS + FGF-2

FIG. 3. Histology of SVF cell-hydroxyapatite constructs
after 8 weeks of ectopic in vivo implantation in nude mouse.
(A-D) Bars 200 um. Fluorescence pictures (top row) and
hematoxylin—eosin staining (bottom row). (E, F) Bars 100 pm.
Immunohistochemical staining for human CD34. Color
images available online at www liebertonline.com/ten.

Discussion

The present study provides a proof-of-principle on the
efficacy of PL to substitute for FBS + FGF-2 in the culture of
human SVF cells in different systems. However, our findings
also highlight potential limits for the use of PL, related to (i) a
reduced extent of cell expansion in 2D cultures and (ii) the
lack of a cell fraction with in vivo vasculogenic capacity in 3D
perfusion cultures.

In 2D cultures on plastic, PL supported growth of SVF cells
at least until the first passage. Interestingly, the proliferation
of SVF cells cultured in the presence of PL for more than one
passage restarted when switching them to a medium sup-
plemented with FBS 4+ FGF-2, as demonstrated by the transfer
into the clonogenicity assay cultures. This capacity to further
grow even under stringent low-density conditions indicates
the preservation of some features of progenitor cells, and re-
assures the use of PL as a serum substitute, in case only a
limited extent of SVF cells is required. However, the expan-
sion of SVF cells over several passages was not feasible, and
PL induced almost a growth arrest shortly after the first
passage. This result is in apparent conflict with another report
by Mirabet et al. indicating that adipose-derived cells can be
expanded with PL?' over many passages. However, several
points make difficult the comparison of that study with ours,
including the different procedure for preparation of PL (re-
spectively using submersion into liquid nitrogen vs. the use of
a —70°C freezer) and the different density of platelets before
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lysis (respectively 4x10° platelets/mL vs. 1-2x10°). More-
over, Mirabet et al. assessed the proliferation of SVF cells in
PL-supplemented medium only after a first culture phase in
the presence of FBS, whereas we started the serum-free ex-
pansion immediately after cell isolation, to avoid any possible
contamination from FBS in view of a potential clinical ap-
proach. Concentrations of PDGF-AB and TGF-f1 in the PL
used in the present study were measured and were similar to
those described in other studies”* using PL able to support
in vitro expansion of bone marrow—derived stromal cells. It is
thus unlikely that the growth arrest observed here could be
due to improper preparation or storage of PL.

There are promising alternatives to the use of PL for the
serum-free expansion of SVF cells. Kocaoemer et al.** used
thrombin-activated platelet-rich plasma (tPRP) instead of PL,
based on the assumption that a more physiological activation
of platelets by thrombin should result in a more efficient
cocktail of growth factors, and managed to establish long-
term cultures of SVF cells using a serum-free medium sup-
plemented with tPRP. The performance of pooled human AB
serum was also tested in the same study, and the results
were similar to tPRP or FCS, in accordance with another
report showing that low doses of human serum (0.5%) can
support expansion of SVF cells similarly to 10% FBS.*
Nevertheless, supplementations with PL, tPRP, or human
serum in previous studies were always evaluated in vitro
only and could not fully and reliably document the in vivo
performance of the cells expanded with these different FCS
substitutes. Future studies should aim at investigating the
potential of human serum or tPRP in an in vivo setup like in
the present study.

In addition to several other growth factors, such as PDGF-
AB, PDGF-BB, IGF-1, TGF-B1, EGF, and VEGF, PL contains a
typical concentration of 0.1ng/mL of FGF-2,>'® corre-
sponding to a final concentration in the test culture medium
of approximately 5 pg/mL. We found a similar concentration
of FGF-2 in our preparations of PL. Because this concentra-
tion is about 1000-fold lower than that of the FBS + FGF-2
experimental condition (i.e., 5ng/mL), we tested whether
further supplementation of FGF-2 to PL could support SVF
cell expansion to a larger extent. The lack of a measurable
effect suggests that low levels of FGF-2 were likely not the
factor responsible for growth arrest of SVF cells, and leaves
open the possibility that in addition to known mitogenic
factors, PL contains also growth inhibitory factors, contrast-
ing the effect of FGF-2 on SVF cells.

SVF cells were initially highly heterogeneous in phenotype,
including mesenchymal-, monocytic-, hemopoietic-, and en-
dothelial-lineage populations. During 2D expansion in either
FBS + FGF-2 or PL, the majority of the cells were of mesen-
chymal origin, which is consistent with previous reports,***’
although PL supported the maintenance of a larger fraction of
cells double positive for CD31 and CD34 than FBS + FGF-2.
Interestingly, a population of cells positive for CXCR4 was
maintained only in the presence of PL. Expression of CXCR4
was reported to be expressed by CD34"/CD31" cells, impli-
cated in the formation of a vascular network during the de-
velopment of human adipose tissue.”® However, expression
of CXCR4 was here associated to mesenchymal cells (CD90")
and not to endothelial progenitors (CD34"/CD31"), indicat-
ing a distinct phenotype and possibly function from that
previously reported.
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SVE cells freshly isolated and cultured under perfusion within
porous ceramic scaffolds for 5 days in medium supplemented
with FBS + FGF-2 or PL were both osteogenic when subcuta-
neously implanted in nude mice. Although the reproducibility
and uniformity of in vivo bone formation in this study were not
extensively investigated, the results provide a proof-of-principle
that PL can be used for the streamlined generation of osteogenic
grafts within perfusion-based bioreactor systems. Using the
same model, we also found that blood vessels of human origin
were formed after culture with FBS + FGF-2, but not with PL.
This result was rather unexpected because, after 2D expansion,
PL maintained notably more endothelial progenitors
(CD31"/CD34™" cells) than FBS + FGF-2 (33% vs. 3%, respec-
tively). Assuming a correspondence of cell phenotypes in 2D and
3D cultures, one possible explanation could be related to the lack
of CD34" /CD31" cells in the presence of PL. In fact, it was re-
cently shown that CD34"/CD31™ cells derived from adipose
tissue express pericytic markers such as NG2 proteoglycan® and
could thus play a role in vascular stabilization by functional
interaction with endothelial cells. Along this theory, it should be
highlighted that another marker of perivascular cells, namely,
CD146", was more largely expressed in the presence of
FBS + FGF-2 than of PL (42% vs. 12% after the first passage). It is
thus possible that PL is not efficient in maintaining pericytic cells
resident in the SVF, and this would result in the lack of func-
tionality of the endothelial lineage cells present in the graft. The
consequence of lacking a functional vasculogenic cell fraction in
the presence of PL is currently unclear for the performance of
SVE-derived bone grafts. The issue should be investigated in
models addressing the kinetics of blood vessel formation within
grafts (i.e., skin-fold chamber model®), as well as using larger
constructs, where rapid and efficient vascularization is crucial to
reduce formation of a necrotic core.*!

Despite the discussed limitations, PL appears to be a
promising serum substitute for the short-term 2D expansion
of SVF cells and for their culture in 3D perfusion systems. As
concerning the potential amount of expanded cells available
using PL for therapeutic purposes, it has to be considered
that adipose biopsies of 200 mL to 1L could be obtained from
a donor for clinical application without significant related
morbidity. Based on the present study, starting from as
few as 100mL of adipose tissue, an average of 20x 100
SVF cells were isolated, which after 5 days of culture in
PL-supplemented medium would potentially result in the
generation of 2-4x10” expanded cells (i.e., 2-4x10% if 1 L was
used). This would largely exceed the need of expanded cells
for most of the clinical applications envisioned for adipose-
derived cells. These results support the establishment of a
bone tissue engineering model based on minimally invasive
harvesting adipose tissue, then extracting the SVF cells, and
perfusing them in a bioreactor for 5 days in a serum-free
medium supplemented with possibly autologous PL, to
generate osteogenic grafts for bone replacement. The system
would require only animal-free medium supplements, and
the elimination of the 2D expansion phase would represent a
step forward to the development of streamlined, automated,
and possibly more cost-effective manufacturing processes.

Acknowledgments

We are grateful to Dr. Iradj Farhadi for providing us adi-
pose tissue samples. We thank also the Blutspendezentrum

MULLER ET AL.

SRK Beider Basel (Basel, Switzerland) for the supply of
erythrocyte concentrates and Roberta Martinetti (Fin-
Ceramica Faenza S.p.a, Italy) for the generous supply of En-
gipore scaffolds. We acknowledge the European Union for
financial support (European project STEPS, FP6, contract
number NMP3-CT-2005-500465; http://www.stepsproject
.com).

Disclosure Statement

No competing financial interests exist.

References

1. Gronthos, S., Franklin, D.M., Leddy, H.A., Robey, P.G.,
Storms, R.W., and Gimble, ].M. Surface protein character-
ization of human adipose tissue-derived stromal cells. ] Cell
Physiol 189, 54, 2001.

2. Zuk, P.A., Zhu, M., Ashjian, P., de Ugarte, D.A., Huang, J.L,
Mizuno, H., Alfonso, Z.C., Fraser, ] K., Benhaim, P., and
Hedrick, M.H. Human adipose tissue is a source of multi-
potent stem cells. Mol Biol Cell 13, 4279, 2002.

3. Safford, K.M., Hicok, K.C., Safford, S.D., Halvorsen, Y.D.,
Wilkison, W.O., Gimble, J.M., and Rice, H.E. Neurogenic
differentiation of murine and human adipose-derived stro-
mal cells. Rigchaiieliciteltatteaiaiaa 294, 371, 2002.

4. Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez,
A., Garcia-Verdugo, J.M., Penicaud, L., and Casteilla, L.
Spontaneous cardiomyocyte differentiation from adipose
tissue stroma cells. Circ Res 94, 223, 2004.

5. Seo, ML]., Suh, S.Y., Bae, Y.C., and Jung, J.S. Differentiation
of human adipose stromal cells into hepatic lineage in vitro
and in vivo. RigchSelioRbtelboeeteaiiaaaa 328, 258, 2005.

6. Scherberich, A., Galli, R., Jaquiery, C., Farhadji, J., and Martin,
I. Three-dimensional perfusion culture of human adipose
tissue-derived endothelial and osteoblastic progenitors gen-
erates osteogenic constructs with intrinsic vascularization
capacity. Stem Cells 25, 1823, 2007.

7. Quarto, N., and Longaker, M.T. FGF-2 inhibits osteogenesis
in mouse adipose tissue-derived stromal cells and sustains
their proliferative and osteogenic potential state. Tissue Eng
12, 1405, 2006.

8. Zaragosi, L.E., Ailhaud, G., and Dani, C. Autocrine fibro-
blast growth factor 2 signaling is critical for self-renewal of
human multipotent adipose-derived stem cells. Stem Cells
24, 2412, 2006.

9. Gregory, C.A,, Reyes, E., Whitney, M.]., and Spees, J.L. En-
hanced engraftment of mesenchymal stem cells in a cuta-
neous wound model by culture in allogenic species-specific
serum and administration in fibrin constructs. Stem Cells 24,
2232, 2006.

10. Selvaggi, T.A., Walker, R.E., and Fleisher, T.A. Development
of antibodies to fetal calf serum with arthus-like reactions in
human immunodeficiency virus-infected patients given
syngeneic lymphocyte infusions. Blood 89, 776, 1997.

11. Sotiropoulou, P.A., Perez, S.A., Gritzapis, A.D., Baxevanis,
C.N., and Papamichail, M. Interactions between human
mesenchymal stem cells and natural killer cells. Stem Cells
24, 74, 2006.

12. Mizuno, N., Shiba, H., Ozeki, Y., Mouri, Y., Niitani, M., Inui,
T., Hayashi, H., Suzuki, K., Tanaka, S., Kawaguchi, H., and
Kurihara, H. Human autologous serum obtained using a
completely closed bag system as a substitute for foetal calf
serum in human mesenchymal stem cell cultures. Cell Biol
Int 30, 521, 2006.



SERUM-FREE CULTURE OF LIPOASPIRATE CELLS

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Stute, N., Holtz, K., Bubenheim, M., Lange, C., Blake, F., and
Zander, A.R. Autologous serum for isolation and expansion
of human mesenchymal stem cells for clinical use. Exp He-
matol 32, 1212, 2004.

Bernardo, M.E., Avanzini, M.A., Perotti, C., Cometa, A.M.,
Moretta, A., Lenta, E., Del, F.C., Novara, F., de, S.A.,
Amendola, G., Zuffardi, O., Maccario, R., and Locatelli, F.
Optimization of in vitro expansion of human multipotent
mesenchymal stromal cells for cell-therapy approaches:
further insights in the search for a fetal calf serum substitute.
LCell Physiol 211, 121, 2007.

Lange, C., Cakiroglu, E., Spiess, A.N., Cappallo-Obermann,
H., Dierlamm, J., and Zander, A.R. Accelerated and safe
expansion of human mesenchymal stromal cells in animal
serum-free medium for transplantation and regenerative
medicine. [ Cell Physiol 213, 18, 2007.

Schallmoser, K., Bartmann, C., Rohde, E., Reinisch, A., Ka-
shofer, K., Stadelmeyer, E., Drexler, C., Lanzer, G., Linkesch,
W., and Strunk, D. Human platelet lysate can replace fetal
bovine serum for clinical-scale expansion of functional
mesenchymal stromal cells. Transfusion 47, 1436, 2007.
Reinisch, A., Bartmann, C., Rohde, E., Schallmoser, K., Bjelic-
Radisic, V., Lanzer, G., Linkesch, W., and Strunk, D. Huma-
nized system to propagate cord blood-derived multipotent
mesenchymal stromal cells for clinical application. Regen
Med 2, 371, 2007.

Miyazono, K., Okabe, T., Ishibashi, S., Urabe, A., and Ta-
kaku, F. A platelet factor stimulating the proliferation of
vascular endothelial cells. Partial purification and charac-
terization. Exp Cell Res 159, 487, 1985.

Braccini, A., Wendt, D., Jaquiery, C., Jakob, M., Heberer, M.,
Kenins, L., Wodnar-Filipowicz, A., Quarto, R., and Martin, I.
Three-dimensional perfusion culture of human bone mar-
row cells and generation of osteoinductive grafts. Stem Cells
23, 1066, 2005.

Wendt, D., Marsano, A., Jakob, M., Heberer, M., and Martin,
L. Oscillating perfusion of cell suspensions through three-
dimensional scaffolds enhances cell seeding efficiency and
uniformity. Bigtechnol Bigeng 84, 205, 2003.

Mirabet, V., Solves, P., Minana, M.D., Encabo, A., Carbonell-
Uberos, F., Blanquer, A., and Roig, R. Human platelet lysate
enhances the proliferative activity of cultured human fibro-
blast-like cells from different tissues. Cell Tissue Bank 9, 1,
2008.

Doucet, C., Ernou, I., Zhang, Y., Llense, ].R., Begot, L., Holy,
X., and Lataillade, ].J. Platelet lysates promote mesenchymal
stem cell expansion: a safety substitute for animal serum in
cell-based therapy applications. [ Cell Physiol 205, 228, 2005.
El-Sharkawy, H., Kantarci, A., Deady, J., Hasturk, H., Liu,
H., Alshahat, M., and van Dyke, T.E. Platelet-rich plasma:
growth factors and pro- and anti-inflammatory properties.
J Periodontol 78, 661, 2007.

Kocaoemer, A., Kern, S., Kluter, H., and Bieback, K. Human
AB serum and thrombin-activated platelet-rich plasma are

25.

26.

27.

28.

29.

30.

31.

875

suitable alternatives to fetal calf serum for the expansion of
mesenchymal stem cells from adipose tissue. Stem Cells 25,
1270, 2007.

Parker, A.M., Shang, H., Khurgel, M., and Katz, A.J. Low
serum and serum-free culture of multipotential human adi-
pose stem cells. Cytotherapy 9, 637, 2007.

de Girolamo, L., Sartori, M.F., Albisetti, W., and Brini, A.T.
Osteogenic differentiation of human adipose-derived stem
cells: comparison of two different inductive media. ] Tissue
Eng Regen Med 1, 154, 2007.

Minana, M.D., Carbolell-Uberos, F., Mirabet, V., Marin, S.,
and Encabo, A. TFATS Series: identification of hemangio-
blasts in the adult human adipose tissue. Stem Cells 26, 2696,
2008.

Sengenes, C., Miranville, A., Maumus, M., de, B.S., Busse, R,
and Bouloumie, A. Chemotaxis and differentiation of human
adipose tissue CD34+/CD31- progenitor cells: role of
stromal derived factor-1 released by adipose tissue capillary
endothelial cells. Stem Cells 25, 2269, 2007.

Traktuev, D.O., Merfeld-Clauss, S., Li, J., Kolonin, M., Arap,
W., Pasqualini, R., Johnstone, B.H., and March, K.L. A
population of multipotent CD34-positive adipose stromal
cells share pericyte and mesenchymal surface markers, re-
side in a periendothelial location, and stabilize endothelial
networks. Circ Res 102, 77, 2008.

Rucker, M., Laschke, M.W., Junker, D., Carvalho, C.,
Schramm, A., Mulhaupt, R., Gellrich, N.C., and Menger, M.D.
Angiogenic and inflammatory response to biodegradable
scaffolds in dorsal skinfold chambers of mice. Biomaterials
27, 5027, 2006.

Scheufler, O., Schaefer, D.]., Jaquiery, C., Braccini, A., Wendt,
D.J., Gasser, J.A., Galli, R., Pierer, G., Heberer, M., and Martin,
I. Spatial and temporal patterns of bone formation in ectop-
ically pre-fabricated, autologous cell-based engineered bone

flaps in rabbits. LCell Mol Med 12, 1238, 2008.

Address reprint requests to:

Tvan Martin, Ph.D.

Tissue Engineering Group

Laboratory 405

Department of Biomedicine

Institute for Surgical Research and Hospital Management
University Hospital Basel

Hebelstrasse 20

CH-4031 Basel

Switzerland

E-mail: martini@uhbs.ch

Received: September 5, 2008
Accepted: December 17, 2008
Online Publication Date: January 30, 2009






