Grogan, Shawn Patrick and Barbero, Andrea and Diaz-Romero, Jose and Cleton-Jansen, Anne-Marie and Soeder, Stephan and Whiteside, Robert and Hogendoorn, Pancras C. W. and Farhadi, Jian and Aigner, Thomas and Martin, Ivan and Mainil-Varlet, Pierre. (2007) Identification of markers to characterize and sort human articular chondrocytes with enhanced in vitro chondrogenic capacity. Arthritis and rheumatism, 56 (2). pp. 586-595.
|
PDF
- Accepted Version
962Kb |
Official URL: http://edoc.unibas.ch/dok/A5248995
Downloads: Statistics Overview
Abstract
Objective. To identify markers associated with the chondrogenic capacity of expanded human articular chondrocytes and to use these markers for sorting of more highly chondrogenic subpopulations. Methods. The chondrogenic capacity of chondrocyte populations derived from different donors (n = 21) or different clonal strains from the same cartilage biopsy specimen (n = 21) was defined based on the glycosaminoglycan (GAG) content of tissues generated using a pellet culture model. Selected cell populations were analyzed by microarray and flow cytometry. In some experiments, cells were sorted using antibodies against molecules found to be associated with differential chondrogenic capacity and again assessed in pellet cultures. Results. Significance Analysis of Microarrays indicated that chondrocytes with low chondrogenic capacity expressed higher levels of insulin-like growth factor I and of catabolic genes (e.g., matrix metalloproteinase 2, aggrecanase 2), while chondrocytes with high chondrogenic capacity expressed higher levels of genes involved in cell-cell or cell-matrix interactions (e.g., CD49c, CD49f). Flow cytometry analysis showed that CD44, CD151, and CD49c were expressed at significantly higher levels in chondrocytes with higher chondrogenic capacity. Flow cytometry analysis of clonal chondrocyte strains indicated that CD44 and CD151 could also identify more chondrogenic clones. Chondrocytes sorted for brighter CD49c or CD44 signal expression produced tissues with higher levels of GAG per DNA (up to 1.4-fold) and type 11 collagen messenger RNA (up to 3.4-fold) than did unsorted cells. Conclusion. We identified markers that allow characterization of the capacity of monolayer-expanded chondrocytes to form in vitro cartilaginous tissue and enable enrichment for subpopulations with higher chondrogenic capacity. These markers might be used as a means to predict and possibly improve the outcome of cell-based cartilage repair techniques.
Faculties and Departments: | 03 Faculty of Medicine > Departement Biomedizin > Department of Biomedicine, University Hospital Basel > Tissue Engineering (Martin) |
---|---|
UniBasel Contributors: | Martin, Ivan |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Wiley-Liss |
ISSN: | 0004-3591 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Language: | English |
Related URLs: | |
Identification Number: |
|
edoc DOI: | |
Last Modified: | 23 Nov 2017 05:49 |
Deposited On: | 22 Mar 2012 13:36 |
Repository Staff Only: item control page