Pérez-Garci, Enrique and Gassmann, Martin and Bettler, Bernhard and Larkum, Matthew E.. (2006) The GABAB1b isoform mediates long-lasting inhibition of dendritic Ca2+ spikes in layer 5 somatosensory pyramidal neurons. Neuron, Vol. 50, H. 4. pp. 603-616.
Full text not available from this repository.
Official URL: http://edoc.unibas.ch/dok/A5262228
Downloads: Statistics Overview
Abstract
The apical tuft of layer 5 pyramidal neurons is innervated by a large number of inhibitory inputs with unknown functions. Here, we studied the functional consequences and underlying molecular mechanisms of apical inhibition on dendritic spike activity. Extracellular stimulation of layer 1, during blockade of glutamatergic transmission, inhibited the dendritic Ca2+ spike for up to 400 ms. Activation of metabotropic GABAB receptors was responsible for a gradual and long-lasting inhibitory effect, whereas GABAA receptors mediated a short-lasting (approximately 150 ms) inhibition. Our results suggest that the mechanism underlying the GABAB inhibition of Ca2+ spikes involves direct blockade of dendritic Ca2+ channels. By using knockout mice for the two predominant GABAB1 isoforms, GABAB1a and GABAB1b, we showed that postsynaptic inhibition of Ca2+ spikes is mediated by GABAB1b, whereas presynaptic inhibition of GABA release is mediated by GABAB1a. We conclude that the molecular subtypes of GABAB receptors play strategically different physiological roles in neocortical neurons.
Faculties and Departments: | 03 Faculty of Medicine > Departement Biomedizin > Division of Physiology > Molecular Neurobiology Synaptic Plasticity (Bettler) |
---|---|
UniBasel Contributors: | Bettler, Bernhard |
Item Type: | Article, refereed |
Article Subtype: | Research Article |
Publisher: | Cell Press |
ISSN: | 0896-6273 |
Note: | Publication type according to Uni Basel Research Database: Journal article |
Related URLs: | |
Identification Number: |
|
Last Modified: | 22 Mar 2012 14:23 |
Deposited On: | 22 Mar 2012 13:36 |
Repository Staff Only: item control page