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SUMMARY 

Despite improvements in technology, treatments and understanding of how bacterial meningitis 

develops, the disease remains a potentially life-threatening emergency capable of causing significant 

morbidity and mortality. N. meningitidis, S. pneumoniae and H. influenzae type b, which are 

commensally normal human nasopharyngeal flora, are the most important and common causes of 

bacterial meningitis. N. meningitidis (especially, serogroup A) is well known for its association with 

epidemics in the meningitis belt of sub-Saharan Africa. This nearly always starts during the dry 

season and stops during the onset of the rains and occurs every 8-12 years in the “meningitis belt” 

with attack rates sometimes exceeding 1% during these epidemics. H. influenzae type b and S. 

pneumoniae are mostly endemic affecting certain risk groups. N. meningitidis serogroup W135, 

traditionally known to cause isolated cases, has raised general concern in recent years due to 

outbreaks in Burkina Faso since 2002 attributed to it. 

Following a major meningococcal meningitis epidemic in Northern Ghana in 1996/7 the Navrongo 

Health Research Centre in collaboration with the Swiss Tropical Institute in 1998 initiated a long- 

term colonization and disease study in the Kassena Nankana District (KND), with the aim of 

contributing to the understanding of the epidemiology, pathogenesis, improved intervention and 

early detection of bacterial meningitis epidemics in the “meningitis belt”. As part of this long term 

study, this thesis focuses on meningococcal colonization and invasive disease surveillance 

(pneumococcal and meningococcal), burden of pneumococcal meningitis and the relationship 

between environmental factors and the risk of meningococcal and pneumococcal meningitis. 

From 1998 to 2005 clonal waves of nasopharyngeal colonization with pathogenic and non-

pathogenic meningococcal genoclouds were observed in the KND through the longitudinal 

meningococcal colonization study of residents of 37 randomly selected compounds. These 

meningococci were not only less diverse and unstable in composition with rare non-groupable 

strains, but they were also mostly made up of predominantly hyperinvasive strains (up 71%) with 

constant microevolution. In 1998 serogroup A meningococci ST5 caused an outbreak of 

meningococcal meningitis in the KND with persistent carriage up to 1999, disappearing in 2001. In 

2000 serogroup X ST571 meningococci emerged with high carriage rates and few cases. Carriage of 

this serotype persisted until 2001 when it was replaced by serogroup A ST7 which only disappeared 

at the latter part of 2005 after causing outbreaks between 2002 and 2004. 
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Although N. meningitidis serogroup W135 has been the cause of epidemics in neighbouring Burkina 

Faso since 2002, only sporadic cases (4) were reported in Ghana from 2003 to 2004. The disease 

isolates were very similar to the Burkinabe epidemic strains by Pulse Field Gel Electrophoresis 

analysis. Colonization surveys over a one-year period in one of the patient home communities 

(which has semi-closed features) showed an initial high carriage rate of 17.5% and persistence of 

carriage with rapid microevolution. 

Between 2000 and 2004 there was an outbreak of pneumococcal meningitis (PCM) caused by a S. 

pneumoniae serotype 1 clonal complex in the KND with features (seasonality, clonality and broad 

age spectrum of the patients) characteristic of meningococcal meningitis (MCM). This hypervirulent 

serotype is repeatedly being isolated in various parts of sub-Saharan Africa. 

A two-year survival analysis comparing 67 PCM cases recorded at the War Memorial Hospital 

(WMH), Navrongo, Ghana, identifiable on a demographic surveillance system, with equal numbers 

of MCM and community controls, showed profound excess mortality of the PCM compared with 

both MCM and community controls. A case-control study of sequelae (using a structured disability 

questionnaire, neuropsychological and audiometric examinations of both cases and controls), 

matching for age, sex and geographical location, including 46 traceable survivors of PCM (cases), 

46 community controls (CC) and 34 survivors of MCM, showed that hearing and speech impairment 

as well as psychiatric disorders are much more frequent and severe in PCM than MCM. 

Epidemics of MCM and PCM are closely related to climate. A time series analysis of weekly 

meteorological data (humidity, rain fall, dust, wind speed, temperature and sunshine) from the local 

weather station and the corresponding reported epidemiological data (confirmed meningococcal and 

pneumococcal cases) from 1998 - 2004 from the WMH microbiology database was carried out using 

negative binomial regression and Bayesian methods.  The aim of these micro epidemiological 

analyses was to describe as well as provide an early warning system for the short-term prediction of 

likely meningococcal and pneumococcal meningitis outbreaks in the KND.  

 

The environmental factors that influence the incidence of PCM and MCM were found to be similar 

but not always the same. The duration of a preceding absence of rainfall appears to be the best 

predictor of both PCM and MCM outbreaks. Outbreaks of MCM are best predicted by concurrent 

decrease in rainfall with increase in weekly mean maximum temperature. Those of PCM are 

influenced by concurrent decrease in rainfall. 
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The natural variations in the predominance of different pharyngeal meningococcal serotypes and 

serogroups over time might contribute to meningococcal meningitis epidemics in the African 

meningitis belt. The future epidemiological trend of meningococcal and pneumococcal meningitis 

will be influenced by changes in the use of antibiotics, immune status, aging of the global population 

and technology. The introduction of carbohydrate-conjugate or common protein vaccines to routine 

immunization schedules, together with maternal immunization and enhanced disease (and/or 

colonization) surveillance, could make pneumococcal and meningococcal diseases of less public 

health importance. 
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ZUSAMMENFASSUNG  
 
Trotz deutlicher Fortschritte in der Diagnosetechnik, verbesserten Behandlungsmethoden und einem 

erweiterten Verständnis der Pathogenese der bakteriellen Meningitis, bleibt diese eine 

lebensbedrohliche Krankheit mit signifikanter Morbidität und hoher Letalität. Neisseria 

meningitidis, Streptococcus pneumoniae und Haemophilus influenzae type b, natürliche 

Kommensalen des menschlichen Nasen-Rachenraumes, stellen die häufigsten Erreger der 

bakteriellen Meningitis dar. N. meningitidis (insbesondere die Serogruppe A) ist bekannt für 

Epidemien im südlich der Sahara gelegenen Meningitis-Gürtels Afrikas. Diese treten in dieser 

Region typischerweise alle 8-12 Jahre auf, beginnen mit Anfang der Trockenperioden und enden mit 

Eintreten der Regenzeit. Sie können Inzidenzraten von über 1% der Population erreichen. Meningitis 

verursacht durch H. influenzae type b und S. pneumoniae tritt meistens endemisch auf und ist mit 

bestimmten Risikogruppen assoziiert. N. meningitidis Serogruppe W135 ist gemeinhin bekannt als 

Verursacher vereinzelter Meningitis-Fälle. Jedoch erregen seit dem Jahre 2002 W135 Meningitis 

Ausbrüche in Burkina Faso allgemeine Besorgnis.  

 

Nach einer grossen Meningokokken Epidemie in den Jahren 1996/7 in Ghana hat das Navrongo 

Health Research Center in Kollaboration mit dem Schweizerischen Tropeninstitut 1998 eine 

Langzeit Kolonisations- und Fallstudie im Kassena Nankana Distrikt (KND) initiiert. Diese zielt 

darauf, zum Verständnis der Epidemiologie bakterieller Meningits-Epidemien beizutragen, 

insbesondere hinsichtlich verbesserter Früherkennung und rechtzeitiger Interventionen. Als Teil 

dieser Langzeitstudie fokussierte sich die vorliegende Arbeit auf die Analyse der Zusammenhänge 

zwischen Meningokokken-Kolonisation und invasiven Erkrankung. Ferner wurde die allgemeinen 

Belastung der Bevölkerung durch Pneumokokken Meningits einschliesslich der Spätfolgen 

untersucht und die Zusammenhängen zwischen Umweltfaktoren und dem Risiko für Meningitis-

Ausbrüche analysiert. 

 

Im Rahmen der Meningokokken Kolonisations-Studie, an der Bewohner von 37 zufällig 

ausgewählten Haushalten teilnahmen, wurden zwischen 1998 und 2005 im KND klonale Wellen der 

Kolonisation mit pathogenen und nicht-pathogenen Meningokokken beobachtet. Die Population der 

Meningokokken Trägerisolate zeigte eine begrenzte Diversität. Insgesamt drei hyperinvasiven Klone 
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dominierten. Alle Labor-bestätigten Meningitis Fälle wurden durch diese verursacht. Nicht-

serogruppierbare Stämme wurden nur vereinzelt gefunden. 

Obwohl seit 2002 Meningokokken der Serogruppe W135 im benachbarten Burkina Faso Meningitis-

Epidemien verursacht haben, wurden zwischen 2003 und 2004 in Ghana nur vereinzelte Fälle 

gemeldet. Die Fallisolate aus Ghana und Burkina Faso waren nahe verwandt und mittels Pulsed-

Field Gel Electrophorese Analytik nicht unterscheidbar. Bei einer Kolonisationsstudien über einen 

Zeitraum von einem Jahr im Heimatdorf eines Patienten wurde eine anfänglich sehr hohe Trägerrate 

von 17,5% und eine fortdauernde Kolonisation mit rascher Mikroevolution beobachtet. 

 

Zwischen 2000 und 2004 kam es im KND zu einem Pneumokokken Meningitis (PKM) Ausbruch, 

verursacht durch einen „klonalen Komplex“ von Serotyp 1 Pneumokokken. Dieser Ausbruch wies 

Eigenschaften auf (Saisonalität, Klonalität und ein breites Altersspektrum der Patienten), die 

charakteristisch für Meningokokken Meningitis (MKM) Epidemien sind.  

 

Bei einer über zwei Jahre hin durchgeführten Überlebensanalyse wurden Daten von 67 PKM 

Patienten mit denen von MKM Patienten und von gesunden Kontrollen verglichen. Dabei wiesen die 

PKM Patienten eine deutlich höhere Mortalität auf. Eine Fallstudie über Folgerscheinungen, die 46 

überlebende PKM Patienten und 34 MKM Patienten einschloss, zeigte, dass Hör- und 

Sprachbeeinträchtigungen sowie psychische Störungen in Folge der Erkrankung bei PKM Patienten 

häufiger und schwerwigender auftreten. 

 

MKM und PKM Ausbrüche sind eng mit klimatischen Faktoren assoziiert. Wöchentliche 

meteorologische Daten (Feuchtigkeit, Regenmenge, Staub, Windgeschwindigkeit, Temperatur, 

Sonnenscheindauer) der lokalen Wetterstation wurden unter Verwendung von Bayesian Methoden 

und negativer binomialer Regression mit korresespondierenden epidemiologischen Daten (Anzahl 

der bestätigten MKM und PKM Fälle) von 1998 bis 2004 korreliert. Das Ziel dieser 

mikroepidemiologischen Studie war, mögliche Zusammenhänge zwischen Klimafaktoren und MKM 

und PKM Epidemien zu erfassen.  

 

Es stellte sich heraus, dass die Umweltfaktoren welche das Risiko für PCM und MCM erhöhen, 

zwar ähnlich sind, aber nicht immer strikt übereinstimmen. Die Dauer der vorausgehenden 

Trockenperiode scheint der Beste Indikator sowohl für PKM als auch für MKM Ausbrüche zu sein. 
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MKM Ausbrüche können am besten durch gleichzeitig abfallende Niederschlagsmengen und 

ansteigende Maximaltemperaturen vorhergesagt werden. Das Risiko für PCM is mit dem Rückgang 

der Niederschlagsmenge assoziiert. 

 

Der weitere epidemiologische Trend der Meningokokken und Pneumokokken Meningitis wird durch 

Änderungen im Antibiotika-Gebrauch, Entwicklung neuer Impfstoffe, Mobilität der Bewohner des 

Meningitis Gürtels und dem Status der Gesundheitssysteme beeinflusst werden. Insbesondere durch 

die Einführung von Kapsel-Polysaccharid Konjugat-Impfstoffen wird sich vermutlich die Bedeutung 

dieser Erkrankungen als gravierendes öffentliches Gesundheitsproblem reduzieren lassen.
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INTRODUCTION 
 

Bacterial meningitis is the inflammation of the meninges (the thin lining that surrounds the brain and 

the spinal cord) and subarachnoid space caused by bacteria. Bacterial meningitis was universally 

considered to be a fatal disease from the time it was first described by Vieusseux in 1806 up to the 

early 20th century when sulphonamides and penicillins made this disease curable. Despite this 

achievement mortality and morbidity from bacterial meningitis still remain very high (Schuchat et al., 

1997), with up to 50% of survivors developing long term neurological and neuropsychological 

sequelae (Smith et al., 1988; Grimwood et al., 2000; Hodgson et al., 2001b; van de Beek et al., 2002; 

van de Beek and de Gans, 2004a; Schmidt et al., 2006). Bacterial meningitis is now among the top 10 

infectious causes of death worldwide (Grimwood et al., 2000). Over 90% of all acute bacterial 

meningitis worldwide, outside the neonatal period, is caused by Streptococcus pneumoniae (the 

pneumococcus), Hemophilus influenzae and Neisseria meningitidis, the meningococcus (Hart and 

Cuevas, 2003). While H. influenuae is associated mostly with childhood meningitis, S. pneumoniae 

mostly cause invasive disease in infants, the elderly and immunocompromised, N. meningitidis is 

characterized by epidemics (Mar et al., 1979; Moore, 1992). These three bacteria are all normal 

nasopharyngeal inhabitants causing disease occasionally. They are all transmitted from person to 

person via aerosolization or by contact with respiratory secretions of infected persons.  

 

1.1 Epidemiology of meningococcal meningitis 

 
Bacterial meningitis occurs globally. Excluding epidemics, the World Health Organisation (WHO) 

estimates that at least 1.2 million cases of bacterial meningitis occur each year out of which 135,000 

are fatal. Approximately 500,000 of these cases, 60,000 disabilities and 50,000 of the deaths are due to 

the N. meningitidis. Of these, 250,000 cases, 27,000 deaths (Tikhomirov et al., 1997), 16,000 (6.4%) 

disabilities of which 10,000 (4%) are due to impaired hearing (Hodgson et al., 2001b), are from 

Africa. Although effective non-toxic and affordable antibiotics are available worldwide, 

meningococcal disease is still associated with a very high mortality and persistent neurological defects 

particularly among infants and young children (Tikhomirov et al., 1997). 

 

  



Chapter 1. Introduction 

 3 

The highest disease rates of meningococcal meningitis are found in children 10-19 years (Hodgson et 

al., 2001b). During epidemics, older children, teenagers and young adults are also affected. The 

incubation period is 2-10 days, often 3 days. Most of the infections are sub clinical with many infected 

people becoming carriers without symptoms. In the interepidemic period the carriage rate of 

meningococcal meningitis is approximately 10% (Cartwright et al., 1987; Stephens, 1999) and the 

attack rate about 40 cases per 100,000 per year (Hart and Cuevas, 2003) but the attack rate may exceed 

1% in some areas during epidemics (WHO, 1998). Carrier rates of meningococci can be as high as 

80% in situations of overcrowding such as during the Hajj (al-Gahtani et al., 1995). 

 

The highest burden of meningitis occurs in Sub-Saharan Africa - in the “Meningitis Belt” (figure 1.1) 

which extends from Senegal to Ethiopia and includes all or part of the 15 countries that lie within the 

belt. Epidemics of meningococcal meningitis in this region are characterised by periodicity, 

geographical restriction, massive size and marked seasonality. These epidemics recur approximately 

every 8-12 years, although recently with higher frequency, peaking during the dry season (Moore, 

1992).  

 

1.2 Epidemiology of pneumococcal and H. influenzae type b meningitis 

 
Although disease occurs in only a small proportion of individuals colonized by pneumococci, the 

annual burden of disease currently attributed to pneumococcal disease is 700,000 to 1 million deaths 

(http://www.who.int).  

 

There are at least 90 serotypes of S. pneumoniae based on the polysaccharide structure of the 

pneumococcal capsule (Henrichsen, 1995). However, only a relatively small number of serotypes 

cause the vast majority of pneumococcal disease, while the number of serotypes that colonize people 

in a given community is far greater than the “invasive” ones (Butler, 2004). The distribution of 

invasive serotypes depends on the age (Scott et al., 1996), immunity (Fry et al., 2003), site of infection 

(Hausdorff et al., 2000a) and geographic location (Brandileone et al., 2003; Eskola et al., 1992; 

Hausdorff et al., 2000b; Hausdorff, 2002). Some serotypes are epidemic prone (1, 2, 3 and 5) because 

they are rarely isolated from the naopharynges of carriers (Feikin and Klugman, 2002). These 

serotypes which were responsible for outbreaks of pneumococcal meningitis in the early 1920s in the 

USA when there was an almost 100% mortality rate of this disease are now rare there (Swartz, 2004).  
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Serotypes 1 and 5 account for a large proportion of invasive isolates in most developing countries: 

33% in the Gambia (Adegbola et al., 2006); 54% in Mali (Campbell et al., 2004); 38% in Uruguay 

(Hortal et al., 2000).  

 

The incidence of invasive pneumococcal disease in children in the developing world (O'Dempsey et 

al., 1996; Usen et al., 1998) is far higher than that in the industrialized countries, and approaches the 

levels seen in the North American Indians (Cortese et al., 1992), Alaska natives (Davidson et al., 

1993) and Australian aboriginals (Torzillo et al., 1995). This has been attributed to a variety of factors 

such as: i) genetic (the propensity of sickle cell disease patients to pneumococcal disease (Wong et al., 

1992)); ii). the presence of antecedent viral infection (Dowell et al., 2003; Kim et al., 1996); iii) age 

(Scott et al., 1996; Dowell et al., 2003); iv) immunity (Nuorti et al., 2000b); v) socio-economic status 

(Chen et al., 1998); vi) alcohol and tobacco use (Pastor et al., 1998; Nuorti et al., 2000a); vii) humidity 

and crowding of susceptible hosts (Dowell et al., 2003; Talbot et al., 2005); viii) HIV/AIDS children 

are 20 to 40 times more likely to get pneumococcal disease than children without HIV/AIDS (Mao et 

al., 1996).  

 

S. pneumoniae has a very high case-fatality rate: about 20% for community-acquired meningitis in 

developed countries (Schuchat et al., 1997) and up to 40-75% in children who get it in the developing 

world (Baraff et al., 1993; Goetghebuer et al., 2000; Montefiore et al., 1978). Pneumococcal 

meningitis is also prevalent in the rainforest belt of West Africa (Montefiore et al., 1978). Community 

acquired pneumonia, bacterial meningitis, acute otitis media and acute bacterial sinusitis are the most 

commonly identified pneumococcal infections (Butler, 2004). 

 

Meningococcal meningitis has overshadowed H. influenzae meningitis in Africa, due to the large 

outbreaks in the meningitis belt. The incidence of H. influenzae (Hib) meningitis in The Gambia is as 

high as it was in the USA before the introduction of the Hib vaccine, but it has a 10-fold more 

devastating outcome and the peak prevalence is at the age of five months (Bijlmer et al., 1990).  

 

Pneumococcal disease outbreaks caused by a single strain of pneumococcus occur sporadically in 

temperate countries, with occasional reports of outbreaks of pneumoniae, meningitis and conjunctivitis 

in settings like nursing homes and residential care facilities (CDC, 2001; Nuorti et al., 1998),  military 

units (Gray et al., 1999) and prisons (Hoge et al., 1994). 
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Pneumococcal colonization rate is highest in children <1 year, ranging between 42% and 97% and 

declining with age to about 4% (Gray et al., 1980; Regev-Yochay et al., 2004b; Hill et al., 2006). 

Colonized siblings are the strongest risk factors for pneumococcal carriage in infants in both high-

income (Gray et al., 1980; Leino et al., 2001) and low-income countries (Coles et al., 2002). The main 

source of pneumococcal transmission seems to be children at their peak age (2-5 years) of 

pneumococcal carriage (Givon-Lavi et al., 2002; Leino et al., 2001).  Overall, pneumococcal carriage 

is markedly greater in low-income countries than in high-income countries (Feikin et al., 2003; Lloyd-

Evans et al., 1996; Montgomery et al., 1990). 

 

1.3 Pathogenesis and pathophysiology 

 
There is the need to understand the mechanisms that promote the conversion of carriage to disease in 

order to adopt appropriate interventions even though carriage is often, but not always, an antecedent  

event in invasive disease transmission in airborne, an intervention that blocks transmission of the 

above mentioned pathogens will greatly reduce the incidence of disease. 

 

The initiation of infection with meningeal pathogens usually begins with host acquisition of a new 

organism by nasopharyngeal colonization (Stephens, 1991). The surface characteristics of the 

pathogens enhance mucosal colonization for example; N. meningitidis possesses fimbriae (pilli) which 

enable adherence of this organism to the nasopharynx (Tunkel and Scheld, 1993). The meningococcus 

is transported across the nasopharyngeal epithelial cells into the blood stream with a phagocytic 

vacuole via a specific cell surface receptor (Stephens, 1991).  

 

Fimbriae also play an initial role in the adherence of Hib (Tunkel and Scheld, 1993). Invasion of the 

bloodstream by Hib occurs via the breakdown in tight junctions between epithelial cells (contrary to N. 

meningitidis) leading to an invasion by an intracellular mechanism (Stephens, 1991). Surface 

encapsulation is also an important virulence factor for nasopharyngeal colonization and systemic 

invasion as demonstrated by Hib (Tunkel and Scheld, 1993). The presence of surface capsule, by 

inhibiting neutrophil phagocytosis and resisting classic complement–mediated bactericidal activity 

may enhance the survival and replication of the organisms in the blood stream (Tunkel et al., 1990; 

Tunkel and Scheld, 1993). The process, by which the pneumococci traverse the nasopharyngeal 
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mucosa to other sites including the meninges, is multifactorial and can be grouped as immunological 

and non-immunological.  

 

The non-immunological process consist of abnormalities of the integrity of the epithelial surface of the 

nasopharynx which appear acutely following viral infection and more gradually in tobacco smokers as 

well as people exposed to airborne pollutants like those produced by indoor fire for cooking and 

heating.  

 

The immunological process is characterised by the infection of the mucosal epithelium by S. 

pneumoniae, which is facilitated by secretory IgA through secretion of IgA protease. This protease 

cleaves the proline-rich hinge region of IgA rendering it non-functional and allowing the 

pneumococcus to attach to the epithelium (Aronin and Quagliarello, 2001). S. pneumoniae enters the 

intravascular space after the mucosal attachment and invasion. Complements and cytokines are also 

involved in the process of invasion (Aronin and Quagliarello, 2001) leading to meningeal 

inflammation, brain oedema and permanent neurological damage. The cell wall component stimulate 

leucocyte recruitment into the subarachnoid space, induce cytokine and platelet activating factor 

production, enhance cerebral endothelial permeability, alter cerebral blood flow and cause direct 

neurological damage.  

 

The clinical manifestation depends on the organs or tissue affected: asymptomatic (carrier) if the 

bacteria remain in the nasopharynx or oropharynx, bacteraemia/septicaemia (meningococcemia if the 

organism is N. meningitidis,) if the bacteria multiply in the bloodstream, arthritis (if in the joints are 

affected), endocarditis (if in the endocardium) and meningitis if they invade the coverings of the brain, 

subarachnoid space and spinal cord.  

 

1.4  Epidemics of meningococcal meningitis 

 
Meningococcal meningitis (cerebrospinal meningitis, CSM) is a contagious bacterial disease. The first 

clear account of an outbreak of CSM was given by Viesseux in 1806 following a typical epidemic in 

Geneva, Switzerland (Greenwood, 1999). Epidemic meningitis, as it is also known, is a very serious 

medical emergency with socioeconomic implications and can disrupt both public health and the 

community.  
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The meningococcus, which was first described in 1884 (Marchiafava and Celli, 1884) and first 

cultured from patients with CSM by Weichselbaum in Vienna (1887), is a gram negative diploccocus 

with thirteen serogroups based on the antigenicity of its capsular polysaccharides (Moore, 1992). 

These serogroups are A, B, C, D, H, I, K, L, W135, X, Y, Z, Z` with A, B and C responsible for 90% 

of invasive meningococcal disease. While serogroup A and C have occurred in epidemics, serogroup 

B is often sporadic though it may sometime cause some outbreaks (Peltola, 1983), Y and W135 were 

traditionally known to occasionally cause disease but since 2000, outbreaks and even epidemics of 

W135 are been recorded yearly (Kwara et al., 1998; Taha et al., 2000; Taha et al., 2002b; Decosas and 

Koama, 2002).  

 

The bulk of disease over the past 100 years was caused by serogroup A (Greenwood, 2006). It was 

responsible for two pandemics in Asia throughout the 1960s, 70s and 80s spreading from China in the 

early 1980s to Nepal and India. In 1987, it was responsible for an outbreak involving 2000 pilgrims to 

the Hajj in Mecca, Saudi Arabia (Wilder-Smith and Memish, 2003).  

 

The largest recorded epidemic of meningococcal disease in history occurred in Africa in 1996 where 

250,000 cases including 25,000 deaths were reported to the WHO. Between that crisis and 2002, 

223,000 meningococcal meningitis cases were reported, mainly from Burkina Faso, Chad, Ethiopia, 

and Niger (WHO, 2003b).  

 

In 2002, countries further south of the meningitis belt in the Great Lakes region, such as Tanzania, 

Rwanda, Burundi and the Democratic Republic of Congo reported over 2200 cases of meningococcal 

disease, including 200 deaths; small villages and refugee camps were most affected (WHO, 2003b). 

There are also reports (from Côte d`Ivoire, Togo, Central African Republic and Cameroon) of smaller 

epidemics expanding to “new” districts southward in the Sahelian region (Savory et al., 2006). These 

epidemics indicate the southwards expansion of the meningitis belt probably due to reduction in 

rainfall and absolute humidity in these “new” epidemic districts (Molesworth et al., 2002) as a result 

of deforestation (Monnier, 1980) and desertification (Soro et al., 1988) in these areas. 
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                               Figure 1.The Meningitis Belt  (Source: Moore, 1992) 

 

1.5 Factors favouring epidemics of meningococcal meningitis 

 
 It is difficult to predict epidemics of meningococcal meningitis and this usually leads to the late 

initiation of control measures, like immunization, with a resultant poor outcome (Greenwood, 1987). 

Factors that facilitate epidemics include dilution of herd immunity with birth of new cohorts and 

migration. Extreme environmental conditions in the sub-Saharan meningitis belt during the dry 

season-low humidity, high temperature and the harmattan (dusty wind blowing from the Sahara), 

respiratory co-infections and the introduction of a new meningococcal clone into a susceptible 

population are thought to contribute to these epidemics (Moore, 1992). Cooking in kitchens with 

firewood stoves and sharing a bedroom with a case are risk factors for meningococcal meningitis 

(Hodgson et al., 2001a). Interactions between these factors may explain the periodicity and seasonal 

patterns of epidemics as well as the unusual age distribution among individuals who contract the 

disease during an epidemic. Peak incidence occurs generally in periods of low absolute humidity such 

as winter in temperate zones and the dry season in Africa. 
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1.6 Changing epidemiology of acute bacterial meningitis 

 

During the past 10-15 years acute bacterial meningitis has undergone a dramatic change in 

epidemiology. The most significant epidemiological change is the marked decline in the incidence of 

bacterial meningitis due to Hib in North America, Western Europe and countries where the conjugate 

Hib vaccines have been introduced into routine childhood immunisation programmes (Schuchat et al., 

1997). This has made S. pneumoniae and N. meningitidis the most common causes of acute bacterial 

meningitis in these countries with adults rather than infants and children being most affected. 

However, due to the high cost of the Hib vaccine, most developing countries still experience a very 

high case mortality and morbidity annually from acute bacterial meningitis due to Hib.  

 

The emergence of antimicrobial resistance among causative pathogens of bacterial meningitis is 

another epidemiological change being witnessed, the most important of which is the resistance to 

penicillin and other β-lactam antibiotics (Hansman, 1978; Van Esso et al., 1987; Appelbaum, 1987b; 

Whitney et al., 2000). This has serious implications for the management of acute bacterial meningitis. 

Factors that contribute to this resistance include selective pressure, transfer of resistant genes in 

diverse micro organisms and mutations in common genes (Kaye et al., 2000; Kaye and Kaye, 2000). 

In both S. pneumoniae and N. meningitidis, humans are the only reservoir, and asymptomatic 

colonization is frequent. However, the natural history of colonization differs in these two bacterial 

species. The average colonization duration of S. pneumoniae is approximately 2 to 3 months 

(Raymond et al., 2000), whereas duration is approximately 10 months for N. meningitidis (Cartwright, 

1995). Asymptomatic carriage of S. pneumoniae peaks during the first 2 years of life and then 

gradually declines (Butler, 2004; Hill et al., 2006). By contrast, carriage of N. meningitidis peaks in 

young adults (Cartwright, 1995), which implies a difference in antibiotic exposure and therefore in the 

selection pressure borne by these bacteria, as young children are treated more frequently than young 

adults. 

 

The mechanism of S. pneumoniae resistance to penicillin and other β-lactams involves alterations in 

one or more penicillin-binding proteins (PBP) so as to reduce their affinity for penicillin and related 

antibiotics. These alterations are usually present in the transpeptidase penicillin-binding domain. In 

order to achieve high-level resistance among PBP variants multiple mutations take place (Charpentier 
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and Tuomanen, 2000). The genes that encode for the mutant PBP are called “mosaics” because they 

contain native pneumococcal DNA mixed with fragments of foreign DNA most likely from a 

commensal with more penicillin resistance. The worldwide spread of penicillin resistance among S. 

pneumoniae appears to be due to dissemination of several clones carrying altered PBP genes (Spratt, 

1994). There are reports of spread of penicillin resistance among meningococci which increased from 

9.6% of strains in 1997 to 34.6% of strains in 2000 in Ontario, Canada (CCDR, 2001). 

 

High-level chloramphenicol resistance in meningococci isolates has also appeared (Galimand et al., 

1998; Shultz et al., 2003). This has very serious consequences since chloramphenicol in oil (for 

intramuscular use) is the main drug of choice in resource-limited countries (especially in the 

meningitis belt) in the control of meningococcal meningitis epidemics. 

 

There is changing time pattern of epidemics of meningococcal meningitis in the meningitis belt (the 

epidemics are now shorter and more frequent) while the predominant cause of epidemics is still N. 

meningitidis serogroup A. In Sudan, in the 1930s, there was an outbreak of meningococcal meningitis 

caused by serogroup B there has since then not been any epidemic of this in meningitis belt 

(Greenwood, 1999). While meningococcal meningitis epidemics between 1940 and 1960 were caused 

predominantly by serogorup A (Lapeyssonnie, 1963), in the 1970s there were epidemics caused by 

serogroup C in Nigeria and Niger (Whittle et al., 1975; Broome et al., 1983).   

 

In the 1990s meningococcal epidemics were caused predominantly by serogroup A in the African 

meningitis belt (Achtman, 1995; Morelli et al., 1997; Gagneux et al., 2000) after a serogroup A 

subgroup III (ST5) outbreak in Mecca during the annual Haj pilgrimage in 1987 (Moore et al., 1988). 

This serogroup A subgroup III (ST5) was replaced by another serogroup A subgroup ST7 (Nicolas et 

al., 2001). There were reports of serogroup X outbreaks in the late 1990s (Gagneux et al., 2000; 

Gagneux et al., 2002a; Gagneux et al., 2002b). Since 2002 W135 has emerged as a major cause of 

epidemics in Burkina Faso (Decosas and Koama, 2002) though it has been in circulation for a long 

time in West Africa without causing epidemics (Denis et al., 1982; Kwara et al., 1998). This natural 

changing pattern is due to natural variations in pre-dominance of different serotypes that take place 

over time as evidenced by changes in the serotype of nasopharyngeal isolates in the KND over time 

(Gagneux et al., 2002b). During a serogroup X meningococcal meningitis outbreak there was also a 

high carriage of this serogroup (Gagneux et al., 2002b).  
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The introduction of conjugate vaccines in the routine immunization programmes in various countries 

has resulted in the changing patterns of vaccine related pathogens. The widespread use of 7-valent 

pneumococcal conjugate vaccine in the USA has led to a replacement of the vaccine-related serotypes 

with non-vaccine related serotypes in the nasopharynx (Ghaffar et al., 2004). There is also an increase 

in invasive pneumococcal disease due to non-vaccine related serotypes (Eskola et al., 2001; Kaplan et 

al., 2004; Byington et al., 2005). S. pneumoiae since the introduction of this vaccine has become the 

major cause of bacterial meningitis in the USA and bacterial meningitis is now a disease 

predominantly of adults rather than infants (Short and Tunkel, 2000). 

 

The introduction of meningococcal serogroup C conjugate vaccine in the United Kingdom in 1999 has 

resulted in a sharp decline in morbidity and mortality of meningitis due to serogroup C in the target 

group as well as a significant reduction in the carriage of this serogroup with no significant changes in 

carriage of meningococci expressing other disease-associated serogroups and no capsular switching 

(Ramsay et al., 2001; Maiden and Stuart, 2002; Palmer, 2002).  

 

1.7  Clinical features and diagnosis 

 
Sudden onset of intense headache, fever, nausea, vomiting, photophobia, irritability, neck stiffness and 

backache are characteristics of acute bacterial meningitis. Neurological signs include lethargy, 

delirium, coma and/or convulsions. Kernig’s and Brudzinski`s sign may be positive. Infants may have 

the illness without neck stiffness and a sudden onset. In infants there may be a bulging fontanel. Up to 

20% of children with bacterial meningitis have convulsions but in general 26-30% of cases have 

convulsions (Hart and Cuevas, 2003). Generally, only about 44% of patients present with the classic 

triad of fever, neck stiffness and altered mental status (Glasgow coma scale <14) although almost all 

patients present with at least two of the signs and symptoms of headache, fever, neck stiffness and 

altered mental status (van de Beek et al., 2004).  

 

Most often, respiratory tract infection precedes symptoms of meningitis. While most pneumococcal 

meningitis patients have underlying conditions like pneumonia, otitis, immunocompromised state (van 

de Beek et al., 2004; Kastenbauer and Pfister, 2003; Weisfelt et al., 2006), meningococcal meningitis 

patients most frequently have rashes (van de Beek et al., 2004; Attia et al., 1999). The VIII (6-10%), 

III (4%), IV (3%), and VII (2%) nerves (van de Beek et al., 2004) are the main cranial nerves affected 
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during bacterial meningitis though cranial nerve palsy is relatively rare. In about 15-23% focal 

cerebral deficits like aphasia, hemiparesis and monoparesis are present while ocular manifestation like 

papiloedema is about 4% (Durand et al., 1993; van de Beek et al., 2004).  

 

Even with early diagnosis and adequate treatment the case fatality in pneumococcal meningitis is in 

the range of 19% - 37% (van de Beek et al., 2004; van de Beek et al., 2006; Weisfelt et al., 2006; 

Kastenbauer and Pfister, 2003). Meningococcal meningitis has lower case fatality and morbidity rates 

in the range of 5% to 10% respectively (WHO, 1999; Woods et al., 2000; Hodgson et al., 2001b; van 

de Beek et al., 2004; van de Beek et al., 2006). The most important risk factors for poor outcome in 

patients with bacterial meningitis are impaired consciousness, infection with S. pneumoniae, systemic 

compromise and low cerebrospinal fluid (CSF) white-cell count (van de Beek et al., 2004).  

 

Meningococcemia is a rare but more severe (often fatal) form of meningococcal disease and is 

characterised by rapid circulatory collapse (septic shock) and hemorrhagic rash (coagulopathy). If 

untreated, it will lead to hypotension, inadequate tissue perfusion and oxygenation causing necrosis 

and gangrene. There can be large areas of necrosis and loss of skin that may require grafting (to speed 

up the healing time, protect underlying structures by reducing the chances of infection) or cause 

scarring. Sometimes limbs and digits are amputated as a result of gangrenous necrotic areas.  

 

Lumbar puncture is a critical procedure in the diagnosis of bacterial meningitis and therefore 

mandatory in any patient in whom bacterial meningitis is suspected, although the procedure can be 

hazardous. It involves withdrawing CSF by the insertion of a hollow needle with a stylet into the 

lumbar subarachnoid space (see appendix). Depending on the presence of significant concentration of 

white blood cells, red blood cells, bacteria and/protein the CSF appearance may be cloudy, 

xanthochromic or hemorrhagic. The CSF shows pleocytosis (100 to 10000 white cells per cubic 

milliliter) with predominantly neutrophilia (though about 10% of patients have lymphocytosis or 

monocytosis), elevated protein levels (>50mg per deciliter) and decreased glucose level of <40% 

compared to serum glucose (Spanos et al., 1989; Durand et al., 1993; van de Beek et al., 2004) 

 

Laboratory diagnosis of bacterial meningitis rests on CSF examination after lumber puncture.  Gram 

staining is a simple, rapid, accurate and inexpensive method for detecting bacteria and inflammatory 

cells in the CSF from patients with suspected bacterial meningitis. Latex agglutination test, which  
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detects antigens, has a sensitivity of 50% to 100% depending on the meningeal pathogen, is simple to 

perform, does not require special equipment and gives rapid results (Gray and Fedorko, 1992). Multi 

Locus Sequence Typing, Pulse Field Gel Electrophoresis and Polymerase Chain Reaction penicillin-

binding protein finger printing, ribotyping and restriction fragment end labelling are genetic typing 

methods used for strain characterisation in epidemiological studies. Isolation of the organism from the 

CSF by culture methods is the definitive diagnosis. These are expensive and also require skilled 

personnel. 

1.8 Management, control and prevention 

 

Bacterial meningitis should always be viewed as a medical emergency since it is potentially fatal and 

treatment must be initiated as quickly as possible. Sero-therapy was successfully used in the treatment 

of meningococcal disease (Peltola, 1983) until the discovery of sulphonamides which greatly 

improved the patient recovery rate. Sulphonamides were stopped in the 1970`s as a result of the 

emergence of sulphonamide resistant serogroup A meningococci (Greenwood, 1999). A range of 

drugs available currently includes penicillin G, ampicillin, chloramphenicol and ceftriaxone. Oily 

chloramphenicol is the drug of choice in areas with limited health facilities and during epidemics since 

it is less expensive and given intramuscularly as a single dose injection (WHO, 1998). 

 

Chemoprophylaxis can be considered in endemic situations for people in close contact with patients. 

This is however, not effective during epidemics in view of the cost. Rifampicin (Blakebrough and 

Gilles, 1980), ciprofloxacin and ceftriaxone (Cuevas et al., 1995) have been shown to be effective at 

eradicating carriage. However, the use of rifampicin is not recommended since this is a key drug in the 

control of tuberculosis.   

 

Enhanced epidemiological surveillance and prompt case management with oily chloramphenicol and 

mass immunization are used to control meningococcal meningitis epidemics in the African Meningitis 

Belt. Routine immunization is not possible with the current available vaccines as the polysaccharide 

vaccines provide protection for only three to five years and are not immunogenic in children under 2 

years of age. It has been shown in Niger that a single-dose of ceftriaxone is a good alternative to oily 

chloramphenicol in the control of meningococcal epidemics (Nathan et al., 2005). This drug can be 

used in pregnant women and infants.  
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Meningococcal polysaccharide vaccines have been available for many years and proven to be 

protective in adults (Gotschlich et al., 1969). These vaccines are however, poorly immunogenic in 

young children and hypo-responsive after repeated doses in children as well as adults (Granoff et al., 

1998; Richmond et al., 2000; Artenstein and Brandt, 1975). Polysaccharide vaccines are available 

against serogroup A, C, Y and W135 meningococci and mass immunisations of at least 80% of the 

entire population can arrest an epidemic (Greenwood, 1999).  

 

Capsular polysaccharide–conjugate vaccines have been shown to induce salivary antibody, reduce 

nasopharyngeal colonization and are immunogenic in infants (Borrow et al., 1999; Dagan et al., 1996). 

Meningococcal serogroup C polysaccharide-conjugate vaccine is now in use in the United Kingdom, 

Spain and other developed countries. Hib conjugate vaccine is also available. 

 

There are three arms of pneumococcal vaccines being explored. These are polysaccharide vaccines, 

polysaccharide-protein conjugate vaccines and common protein vaccines. While the former two are in 

use successfully (in the developed countries), the latter is still at the trial stage. 

 

There is a 23-valent polysaccharide pneumococcal vaccine that contains the 23 most common 

serotypes responsible for 90% of serious pneumococcal disease in the developed countries. This 

vaccine is not available in most developing countries, especially in the African meningitis belt, where 

the burden of pneumococcal disease is highest. This vaccine has been shown to have no effect on HIV 

patients in Uganda (French et al., 2000).  

 

By conjugating polysaccharide vaccine antigens to a protein carrier the antigen is converted from a T 

cell-independent one to a T cell-dependent one. Polysaccharide-protein conjugate vaccines include the 

9-valent vaccine which contains the serotypes 1, 4, 5, 6B, 9V, 14, 18C, 19F, 23F, a 7-valent vaccine 

containing the above serotypes excluding 1 and 5, and an 11-valent containing serotype 3 and 7F in 

addition to all the 9 serotypes in the 9-valent.  

 

In contrast to pure carbohydrate vaccines, conjugate vaccines confer immunity in children less than 2 

years, reduce rate of colonization of vaccine serotypes, including antibiotic-resistant strains and confer 

herd immunity (Whitney et al., 2003; Talbot et al., 2004; McEllistrem et al., 2005; Poehling et al., 
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2006). These characteristics are very promising for public health use of these vaccines in developing 

countries.  

 

Conjugate vaccines are very expensive, have limited protection due to serotype specificity and not 

available in developing countries due to the high cost of the vaccine. The other problem with these 

vaccines is the effect on carriage (Huang et al., 2005) since they may cause an ecological imbalance in 

the ecological niche of vaccine serotypes in the nasopharynx leading to serotype replacement (Eskola 

et al., 2001; Poehling et al., 2006) with a substantial increase in non vaccine serotypes like 11, 15, and 

19A. These strains have been shown to also carry antibiotic resistance (Kyaw et al., 2006; Huang et 

al., 2005) a situation very unfortunate and disturbing. Through genetic transformation, pneumococci 

have the capability of capsule switching with original strains like 6B, 9V and 23F having the 

propensity for global spread for reasons not well understood (Crook and Spratt, 1998). This indicates 

that, new strains can emerge that can both escape the influence of the vaccine and spread worldwide 

should these three strains acquire genes of non-vaccine capsules.  

 

There is also the possibility of different bacteria like Staphylococcus aureus replacing (Regev-Yochay 

et al., 2004a; Regev-Yochay et al., 2006) S. pneumoniae since the latter will no longer be there to 

inhibit growth of the former through the production of hydrogen peroxide by its catalase (Regev-

Yochay et al., 2006).  

 

Common protein vaccines (which are not serotype specific) are being developed from conserved 

protein epitopes. Currently, there are 3 candidate vaccines namely: pneumococcal surface protein A, 

pneumococcal surface adhesion A and pneumolysoid (a mutant pneumolysin-like molecule). 

Pneumococcal surface protein A has been shown to protect animal models against S. pneumoniae 

infection after either oral or parenteral administration (Yamamoto et al., 1997; Briles et al., 1996).  

 

Common protein vaccines are less expensive to manufacture than the current polyvalent vaccines 

(which use the capsular polysaccharide as the immunizing antigen) since they can be produced in large 

amounts using inexpensive recombinant technology. They are therefore ideal candidate pneumococcal 

vaccines for use in developing countries with high burden of disease and limited resources.  
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The challenge to be faced by common protein vaccines is antigenic polymorphism of the candidates 

and species replacement in the nasopharynx.  

 

For mass immunization WHO proposes a weekly incidence of 15 cases per 100 000 inhabitants, 

averaged over 2 consecutive weeks, as a threshold to confirm the onset of a meningococcal meningitis 

epidemic for areas of population 30 000 to 100 000 in the African meningitis belt, and 5 per 100 000 

per week was proposed to initiate vaccination when an epidemic is underway nearby (WHO, 2000). 

This has been criticized for its failure, under field conditions, to detect many epidemics earlier (Moore, 

1992; Kaninda et al., 2000; Lewis et al., 2001) and can be effective (Woods et al., 2000) only under a 

very good surveillance system. This is lacking in many areas of the meningitis belt making epidemics 

often far ahead of logistical support including vaccines. 

 

1.9 Bacterial meningitis in Ghana  

 

The first recorded outbreak of CSM in Ghana was at Cape Coast in 1900 among East African 

labourers who were brought to the Gold Coast to support the British campaign against the Ashanti 

(Waddy, 1957). This outbreak died out rapidly without causing an epidemic in the local population. 

The next epidemic of CSM in the Gold Coast started in 1906 from the north west and spread through 

the northern territory during the following dry season claiming 8000 lives by 1908 (Horn, 1908). Since 

then there have been epidemics every 8-12 years. Epidemics occurred in 1919/21, 1939, 1944/45, 

1948/50 (Waddy, 1957), 1960/61, 1972/73 (Belcher et al., 1977) and 1984. In 1996/97 Ghana 

experienced the biggest epidemic which recorded 18703 cases and 1356 deaths (Woods et al., 2000). 

The Kassena Nankana District (KND) recorded 1396 cases with 69 deaths (Enos, 1997). It was caused 

by serogroup A ST7 meningococci which had caused an epidemic in Mecca in 1987 and subsequently 

spread through the meningitis belt (Gagneux et al., 2000).  

 

S. pneumoniae is the commonest cause of meningitis in Accra on the coast of Ghana (Haddock, 1971).  

S. pneumoniae was also found to cause over 50% of bacterial meningitis in Kumasi (a tropical 

rainforest zone with a long rainy season and a short dry season) and its surroundings with a mortality 

rate of 36.4% (Mackie et al., 1992). In the above study pneumococcal meningitis was found to be most 

prevalent during the dry hot season.  
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1.10 Rationale and research frame work 

 
Following the 1996/97 epidemic of meningitis in Ghana (Tikhomirov et al., 1997; Woods et al., 2000), 

the Navrongo Health Research Centre (NHRC) [Ministry of Health, Ghana] and the Swiss Tropical  

Institute (STI), Basel, Switzerland, established a scientific research partnership to address problems 

relating to epidemic meningococcal disease. The goal of the collaboration is to contribute to the 

understanding of the epidemiology and pathogenesis of meningococcal meningitis and its control in 

the meningitis belt.  

 

This collaboration has led to the determination of the causative agents of bacterial meningitis in the 

KND (Gagneux et al., 2000; Gagneux et al., 2002a; Gagneux et al., 2002b) and the analysis of the 

genetic population structure and microevolution of the meningococcal strains dominating in the KND. 

The findings of the molecular epidemiological and clinical research works during the first phase of the 

collaboration can be found in the PhD thesis of Sebastian Gagneux (Gagneux, 2001) and Abraham 

Hodgson (Hodgson, 2002). 

 

The NHRC/STI research collaboration made use of a demographic surveillance system (at the NHRC) 

and geographic location of all the compounds in the KND to give a detailed description of the 

epidemiological features of the 1996/97 epidemic in the district. The risk factors (Hodgson et al., 

2001a), survival and sequelae (Hodgson et al., 2001b) of meningococcal meningitis were also 

researched into under the above collaboration. Following the above meningococcal meningitis 

epidemic in the KND and outbreaks in neighbouring Burkina Faso as well as threats of epidemics of 

serogroup W135 epidemics made it important to continue the long term meningococcal colonisation 

survey and analysis necessary for the long term understanding of mechanisms underlying epidemics of 

meningococcal meningitis in the African meningitis belt. 

 

Detailed analysis of CSF samples from suspected meningitis cases from the KND and Bolgatanga 

regional hospital (Upper East regional hospital) showed that there was an increase in pneumococcal 

meningitis cases associated with high mortality in the region. There is relatively little information on 

the burden of pneumococcal meningitis in the African meningitis belt. The answer may contribute to 

the study of the pathogenesis of pneumococcal meningitis. It is also of practical importance 

particularly in the development of pneumococcal vaccine and policy change in the management and 
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prevention of pneumococcal meningitis as well as rehabilitation of survivors of pneumococcal 

meningitis.  

 

Epidemics of meningococcal meningitis have been shown to have a strong association with 

environmental conditions (Lapeyssonnie, 1963; Besancenot et al., 1997; Belcher et al., 1977; 

Greenwood, 1987) though the underlying mechanisms of this association are not well understood 

(Greenwood et al., 1983). The current recommendation by WHO (Varaine et al., 1997; WHO, 2000) 

for the declaration of an epidemic is less specific (Kaninda et al., 2000; Lewis et al., 2001) in that 

before this figure is arrived at many people would have died in the communities since people in 

developing countries, especially rural areas, mostly seek traditional treatment or self medicate as a 

result various healthcare seeking behaviours or geographical and financial barriers to healthcare.  

 

There is the need to use an alternative method that can predict an impending epidemic based on prior 

knowledge of the disease situation in the district from the previous year(s). It is important to consider 

the use of local environmental factors of the district like humidity, temperature, dust, length of 

sunshine, wind speed and rainfall (which are recorded by the local weather stations) together with the 

epidemiological data of the district (recorded at the health facilities) in the prediction of these 

epidemics. 
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GOAL AND OBJECTIVES 
 
 
 

2.1 Goal 

 
To contribute to the understanding of the epidemiology and pathogenesis of meningococcal 

and pneumococcal meningitis and assess the burden of pneumococcal meningitis in Northern 

Ghana. 

 

2.2 Objectives 

 
1. To investigate the dynamics of carriage and disease of N. meningitidis in the Kassena 

Nankana District of Northern Ghana by analysing the persistence of epidemic strains and the 

acquisition of new clones. 

 

2. To describe the epidemiological features and assess the survival and sequelae of 

pneumococcal meningitis in Northern Ghana. 

 

3. To describe the influence of climatic factors on the incidence of meningococcal and 

pneumococcal meningitis in Northern Ghana with the goal to develop a simple early warning 

system for the prediction of outbreaks.  

 

4. To develop recommendations for the prevention and control of meningococcal and 

pneumococcal meningitis in Northern Ghana. 
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METHODS 

 

 

3.1 Study area. 

 
The Kasena Nankana District (KND), one of the most deprived districts in Ghana, has a population 

of 140000, an area of 1675km2 and lies within the guinea savannah woodland of northern Ghana 

between latitude 10o30´ and 11o00` north of the equator and between longitude 1o00`and 1o30` west 

of the Greenwich meridian. The district lies within the meningitis belt of sub-Saharan Africa with a 

sub-Sahelian climate of a short rainy season from May to October (average annual rainfall 850-

950mm) and a long dry season from November to April, much of which is dusty due to the 

harmattan winds blowing from the Sahara. The soil type of the KND is mainly sand, clay, gravel and 

loamy soil. In most places a combination of sandy loam covers a very large acreage. The land cover 

is generally grassland with thin vegetation during the rainy season and a very dry land with poor 

vegetation during the dry season. 

 

The general population is rural except for those living in Navrongo, the district capital. People live in 

compounds with an average population of 10 and a range of 1 to 143. These compounds in most 

parts of the district are widely dispersed with farmlands around them.  

 

The district has 1 hospital (the War Memorial Hospital) located in Navrongo, the district capital and 

4 health sub districts each of which has a health centre. The KND has a state owned meteorological 

station in Navrongo where daily weather conditions are recorded. The district has a demographic 

surveillance system in which births, deaths, in and out migrations and other demographic 

characteristics and residence status are updated every ninety days (Binka et al., 1999).  

The district has a weather station where daily climatic conditions are recorded. 
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3.2 Study design 

 

Detailed description of the methods can be found in the respective chapters. Analysis of the 

meningococcal colonization and disease in the KND from 1998 to 2005 was carried out to decribe 

the observed pattern of carriage and disease of meningococci (chapter 4). Analysis of serogroup 

W135 carriage (following 4 reported cases) was also carried out and a decription of the observed 

carriage pattern as well as clinical picture are in chapter 5. All cases recorded from 1998 to 2003 

were analyzed. The results have been used to describe the epidemiological features of pneumococcal 

meningitis in chapter 6. A case-control study design, with the facilitation of the NDSS, was used to 

determine the survival and sequelae of pneumococcal meningitis cases recorded from 1998 to 2004 

(chapter 7). Statistical methods include fitting Bayesian autoregressive term order 1 using Markov 

Chain Monte Carlo simulation in WinBugs version 1.4. Negative binomial regression (in both 

STATA and WinBugs) was used for the time series analysis of the climate and epidemiological data 

(chapter 8).  
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4.1  Abstract 

 

Background The Kassena-Nankana District (KND) of northern Ghana lies in the African 

meningitis belt where epidemics of meningococcal meningitis have been re-occurring every 8-12 

years for the last 100 years. The dynamics of meningococcal colonisation and disease are 

incompletely understood.  

 

Methodology/Principal Findings Between February 1998 and November 2005, pharyngeal 

carriage of N. meningitidis in the KND was studied by twice yearly colonisation surveys. 

Meningococcal disease was monitored throughout the 8-year study period, and patient isolates were 

compared to the colonisation isolates. The overall meningococcal colonisation rate of the study 

population was 6.1%. Compared to industrialised countries, the colonising meningococcal 

population was genetically less diverse, less constant in genotype composition over time, and a 

smaller proportion of the isolates was non-serogroupable. All culture-confirmed patient isolates and 

the majority of carriage isolates were associated with three sequential waves of colonisation with 

encapsulated (A ST5, X ST751, A ST7) meningococci. We observed a broad age range in the 

healthy carriers, resembling that of meningitis patients during large disease epidemics. 

 

Conclusions  The observed lack of a temporally stable and genetically diverse resident pharyngeal 

flora of meningococci might contribute to the susceptibility to meningococcal disease epidemics in 

the African meningitis belt. Because capsular conjugate vaccines are known to impact 

meningococcal carriage, effects on herd immunity and potential serogroup replacement should be 

monitored following the introduction of such vaccines. 

 

4.2 Introduction  

 

The highest burden of meningococcal meningitis occurs in the ‘meningitis belt’ of sub-Saharan 

Africa; a region stretching from Senegal to Ethiopia with an estimated population of 300 million 

(Lapeyssonnie, 1963; Greenwood, 1999). Within individual areas of the meningitis belt, major 

disease epidemics occur in irregular cycles every 8–12 years, with attack rates ranging from 100 to 

1000 per 100,000 population. Epidemics start in the early dry season, stop abruptly at the onset of  
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the rains, but may break out again in the following dry season. Low humidity and high temperatures 

may favour the occurrence of meningococcal disease by damaging mucosal surfaces and the immune  

defence. In any one country, epidemics only last for two to three years (Greenwood, 1999). The 

periodicity of these epidemics is not well understood, nor is it possible to predict them accurately. 

The current approach for control of meningococcal disease epidemics is based on early detection of 

the disease by the epidemic threshold of 10-15 cases per 100,000 inhabitants per week (WHO, 2000) 

followed by mass immunisations with polysaccharide vaccines (WHO, 1998). However, in settings 

with limited resources, effective surveillance and timely interventions are difficult to implement. 

Therefore vaccination campaigns are often delayed (Greenwood, 1999).  

 

N. meningitidis can be classified into thirteen serogroups based on the chemical composition of its 

polysaccharide capsule (Yazdankhah and Caugant, 2004). Serogroup A accounts for most epidemics 

in the African meningitis belt, but C and W135 epidemics have also been reported (Greenwood, 

1999; 2005). Meningococci that cause epidemics are genetically closely related; specific genotypes 

plus their epidemiologically associated genetic descendants constitute specific genoclouds (Zhu et 

al., 2001). The two most recent meningococcal disease pandemics originated in Asia and were 

caused by serogroup A meningococci belonging to two related genoclouds (Zhu et al., 2001). These 

two genoclouds have been assigned the sequence types 5 (ST5) and ST7, respectively, based on 

Multi-Locus Sequence Typing (MLST) (Zhu et al., 2001; Maiden et al., 1998). Serogroup W135 

meningococci used to be a rare cause of invasive disease. However, two recent W135 meningitis 

outbreaks in Mecca were followed by major epidemics in Burkina Faso (Taha et al., 2000; WHO, 

2005). 

 

N. meningitidis is a commensal of the human nasopharyngeal mucosa. It is transmitted by aerosol 

droplets or through contact with respiratory secretions. Because meningococcal transmission is 

independent of disease, characterisation of the carrier state is crucial for understanding the 

epidemiology of meningococcal disease. Multiple colonisation studies have been performed in 

industrialized countries, but little is known about the meningococcal colonisation dynamics in 

Africa. Here, we report the findings of the first long-term colonisation study carried out in the 

African meningitis belt. Our results demonstrate a notable absence of a temporally stable and 

genetically diverse meningococcal flora in the pharynx of healthy individuals, which may result in 

increased susceptibility for epidemic meningococcal disease. 
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4.3 Materials and Methods 

 
Study area 

 

The study was conducted in the Kassena-Nankana District (KND) of the Upper-East Region of 

Ghana. It lies within the guinea Savannah woodland and has two major seasons; a short wet season 

from June to October and a long dry season for the rest of the year. The district-population is about 

140,000, most of them rural, except for the 20,000 inhabitants of Navrongo town. People live in 

compounds with an average of 10 inhabitants. Between 1997 and 2002, yearly vaccination 

campaigns with meningococcal serogroup A/C polysaccharide vaccine targeted the whole district 

population. Between 2003 and 2005, smaller campaigns were carried out. In 2003, 80% of the study 

participants reported to have been vaccinated within the previous three years. Ethical clearance for 

this study was obtained from the responsible institutional review boards. 

 

Colonization isolates 
 

Thirty-seven residential compounds were randomly selected from a complete listing of the district 

population using the Navrongo Demographic Surveillance System (NDSS)(Binka et al., 1999). 

Throat swabs were taken twice per year from all inhabitants of the 37 compounds who agreed to 

participate. A total of 16 surveys have been performed since March 1998. One of the compounds 

was replaced in April 2002 after being deserted by its inhabitants. A throat swab was taken from all 

consenting compound members present at the time of the visit and directly inoculated on Thayer-

Martin agar plates (Gagneux et al., 2000). Two colonies with neisserial morphology were sub-

cultured from each positive plate. N. meningitidis and N. lactamica colonies were identified by 

standard bacteriological methods as previously described (Gagneux et al., 2000).  

 

Disease isolates 
 
Suspected meningitis patients presenting at the War Memorial Hospital, Navrongo, or one of the four 

Health Centres of the KND were recruited throughout the study period. A suspected meningitis 

patient was defined by sudden onset of fever and stiff neck, or fever and stiff neck and altered mental 

status, in accordance with WHO-guidelines (WHO, 1998). A lumbar puncture was performed before 

treatment, and the cerebrospinal fluid specimen was analyzed as described previously (Gagneux et 

al., 2000).  
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Characterisation of bacterial isolates 
 
Meningococci were serogrouped with serogroup-specific antisera (Difco) according to the 

manufacturer’s instruction. In a subset of isolates, serological typing was confirmed by PCR (Taha, 

2000; Bennett et al., 2004). All isolates were analysed by pulsed-field gel electrophoresis (PFGE) 

after digestion of genomic DNA with NheI (Morelli et al., 1997). MLST was performed as described 

(Maiden et al., 1998). 

 

4.4 Results 

 

Clonal waves of meningococcal colonisation and disease 

We monitored the dynamics of pharyngeal carriage of N. meningitidis and bacterial meningitis in the 

KND of northern Ghana from February 1998 to November 2005. Three major waves of clonal 

colonisation and disease with encapsulated meningococci were observed. A meningitis epidemic in 

the dry season of 1996/97 (Hodgson A. et al., 2002) was followed by a smaller outbreak with 50 

laboratory-confirmed serogroup A meningitis cases in the following dry season. Thirty-six isolates 

were culture confirmed and identified as subgroup III, ST5 bacteria (Gagneux et al., 2000), that 

spread throughout the meningitis belt after an epidemic in Mecca in 1987 (Nicolas et al., 2001). 

Carriage of the serogroup A ST5 meningococci decreased steadily from 2.7% (8/301) in April 1998 

to 0.3% (1/308) in November 1999 (Fig. 4.1a). Thereafter, none of the clinical or colonization 

isolates from the KND belonged to the serogroup A ST5 genocloud. In 2000, no serogroup A 

meningococci were isolated from either patients or carriers. However, a new wave of serogroup A 

meningococcal colonisation and disease started in 2001.  All serogroup A carrier and disease strains 

isolated since then belonged to a new genocloud of serogroup A meningococci associated with ST7 

that was observed for the first time in Africa in 1995 (Zhu et al., 2001). Although colonisation was 

still low in April 2001 (i.e. was <0.3%), seven serogroup A ST7 meningitis cases were identified 

between February and March 2001. In the following three years, serogroup A ST7 colonisation rates 

of 1.2% to 4.3% were observed. In spite of yearly serogroup A/C polysaccharide mass-

immunisations, this low level of colonisation was associated with repeated serogroup A ST7 

meningitis outbreaks in the KND (Fig. 4.1a). Seventy laboratory-confirmed cases were identified 

between January and May 2002, and 56 between January and May 2003, and 114 between 
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December 2003 and April 2004. Thereafter, the serogroup A ST7 colonisation rate dropped below 

1% and only two serogroup A ST7 meningitis cases were recorded in February 2005.  Between the 

two waves of serogroup A colonisation and disease, we documented a wave of colonisation with a 

serogroup X ST751 genocloud (Fig.4.1b) (Gagneux et al., 2002a; Gagneux et al., 2002b). The 

extensive spread of this low-virulent serogroup was associated with a total of 15 meningitis cases 

between 1998 and 2003. Serogroup X carriage and disease peaked in the dry seasons of 1999/2000 

and 2000/01 with colonisation rates of 17.3 and 15.1%, respectively. Since November 2003, 23 NG 

ST192 carriage isolates with closely related PFGE-patterns were collected (Fig 4.1b). With 3.8% 

(12/313) their colonisation rate peaked in November 2004. NG ST192 strains isolates have been 

previously reported from the Gambia and Niger. 

  (http://pubmlst.org/perl/mlstdbnet/mlstdbnet.pl?page=st-query&file=pub-m_isolates.xml).  

 

Overall, 311 meningococcal meningitis cases were confirmed by culture and/or Latex agglutination 

during the study period. We obtained a bacterial isolate in 197/311 (63%) of cases. Latex 

agglutination confirmed the serogroup A capsule for all 114 CSF samples that were negative in 

culture. All recovered disease isolates belonged to the three dominating genoclouds of encapsulated 

meningococci (36 serogroup A ST5, 148 serogroup A ST7 and 15 serogroup X strains).  With 

respect to colonization, meningococcal growth was observed in 6.1% (304/4999) of pharyngeal swab 

samples. All serogroup A (n=55) and serogroup X (n=161) carriage isolates belonged to the three 

genoclouds causing the major sequential colonisation waves. In addition, 16 NG isolates shared ST 

and PFGE-patterns with the serogroup A ST5 (2 isolates), serogroup A ST7 (2 isolates) or serogroup 

X (12 isolates) isolates, respectively (Fig. 4.1a). These colonisation isolates thus represented 

unencapsulated variants of the respective genoclouds. There was no evidence for an accumulation of 

the non-encapsulated variants towards the end of the colonisation waves (Fig. 4.1). In some cases, 

encapsulated and NG variants of the same genocloud were found simultaneously in the same 

compound.  

 

 

Low background of meningococci unrelated to the clonal waves  

Only 16.4% (50/304) of the colonisation isolates were unrelated to the dominating serogroup A, X 

and NG ST192 genoclouds (Fig. 4.1c). Although neighbouring Burkina Faso was hit by repeated 

W135 ST11 epidemics in the dry seasons of 2002-2004, in the KND, carriers of the epidemic strain  
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were only found in April 2004 (3/350; 0.9%) and November 2004 (2/313; 0.6%), and not a single 

W135 meningitis case was recorded between 1998 and 2005 (Forgor et al., 2005). Single carriers of 

W135 ST11 meningococci were also identified in April (1/300) and in November 1998 (1/299) 

(Gagneux et al., 2002b), two years prior to a first documented W135 meningitis outbreak in Mecca 

(Taha et al., 2000). While serogroup Y meningococci (21 isolates) and serogroup Y ST168 related 

NG strains (7 isolates) were isolated in 10 out of the 16 individual surveys, carriage of serogroup B 

and serogroup 29E meningococci was anecdotal (Table 4.1). Carriage of serogroup Y meningococci 

was strongly associated with one particular compound, where during eight of the 16 surveys, 67% 

(14/21) of the serogroup Y strains were isolated. Altogether, only eight NG isolates had PFGE-

patterns and STs unrelated to the dominating serogroup A, X, Y and NG ST192 genoclouds (Table 

4.1). While the N. lactamica carriage rate remained relatively constant (4.7%– 9.3%) for six years, it 

declined after April 2004 to 0.3% in April 2005 (Fig. 4.1d). We observed no significant correlation 

between the A/C meningococcal polysaccharide vaccine immunisation status and meningococcal 

carriage of all serogroups (RR=1.11; p=0.81), of serogroup A (RR=0.9; p=0.92), or of N. lactamica 

(in the >2year old RR=0.7, p=0.3). 

 

Age distribution of carriers and patients 

Colonization with meningococci in the KND exhibited a broad age range (Fig. 4.2a). It peaked in 

teenagers and young adults (median age 17.9 years; range 5 months to 84 years). In contrast, the 

carriage rate of N. lactamica was highest in the <5 age group (Fig. 4.2b). During the 1996/97 

epidemic the age pattern of clinically diagnosed meningitis patients (median age 17.8 years; range 3 

months- 80 years) resembled that of meningococcal carriers (Fig. 4.2c), the incidence rates of males 

(n=628, IR=0.95%) and females (n=713, IR=0.98%) were comparable (RR=0.97, p=0.59). In 

contrast, during the post-epidemic A meningococcal disease outbreaks between 1998 and 2005, the 

incidence of meningitis was highest in children <10 years of age and decreased steadily with age 

(Fig. 4.2c). The median age of A ST5 cases in 1998 and of A ST7 cases in 2001-2005 was 

comparable (8.0 years; range 4 months- 64 years versus 10.0 years; range 2 months - 75 years, 

respectively). However, between 2001 and 2005 the incidence rate of males (n=159, IR=0.049) was 

significantly higher (RR=2.0, p<0.0001) than of females (n=89, IR=0.024). The case fatality rate of 

A meningococcal meningitis was much higher during the post-epidemic outbreak in 1998 (20%; 

10/50) than during the epidemic in 1996/97 (4.7%; 65/1396) or during the outbreaks in 2001-2005 

(4.8%; 11/238). 
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Table 4.1: Carriage rates in % during 16 carriage surveys in the Kassena Nankana District 

 Carriage in % 

Survey No.  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

 Apr.'98 Nov. '98 Apr.'99 Nov.'99 Apr.'00 Nov.' 00 Apr.'01 Nov.'01 Apr.'02 Nov.'02 Apr.'03 Nov.' 03 Apr.'04 Nov.'04 Apr.'05 Nov.‘05 
 

N. lactamica 9.3 8.7 8.2 9.7 8.4 6.0 8.4 6.5 4.7 5.6 5.4 6.4 3.7 1.9 0.3 0.6 
 

N. meningitidis 4.7 3.0 5.1 4.2 19.8 13.6 17.1 2.0 2.7 2.8 2.9 3.4 8.0 5.8 3.1 0.6 
 

serogroup A 2.7 1.0 0.7 0.3     1.2 1.9 2.2 1.4 4.3 0.6 0.9  

serogroup X   3.4 1.9 17.4 11.0 15.8 1.3 0.6 0.6  1.0     

serogroup Y 1.3 0.7 0.7 0.6 1.3    0.9 0.3 0.3 0.3 0.3    

serogroup W135 0.3 0.3           0.9 0.6   

serogroup 29E        0.3     0.3    

serogroup B           0.3  0.3    

non groupable 0.3 1.0 0.3 1.3 1.0 2.7 1.3 0.3     0.7 2.0 4.2 2.2 0.6 

                 
PFGE pattern of 

NG strains A A, X, NT NT X, NT X, Y, NT X(7), Y X, Y(3) X    
192, 
X,  

192(5), 
A(2) 

192(12), 
Y, NT 

192(5), 
NT(2) NT(2) 

                 

Total no. of 

people swabbed 300 299 292 308 298 301 310 306 339 319 312 297 350 313 321 334 

Given are percentages of all N. lactamica and N. meningitidis carriers at each survey. Furthermore, for N. meningitidis the carriage rates of the 
different serogroups are cited. For NG strains the PFGE patterns are given, if more than one NG strain was isolated, the number of carriers are added 
in brackets;  
A, X, Y is the typical pattern of the respective serogroups, NT= Non-typable, PFGE-pattern is not known. 192 is the NG ST192-pattern. 
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Figure 4.1 A & B.  Waves of colonization and disease in the KND from April 1998 until November 
2005. Carriage rates recorded during 16 colonization surveys (April and November each year) and 
monthly numbers of confirmed meningitis cases of N. meningitidis 

    A) genoclouds of serogroup A ST5 and ST7 meningococci 
  B) genoclouds of serogoup X ST851 and NG ST192 meningococci 

A 

B 
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Figure 4.1 C & D. Waves of colonization and disease in the KND from April 1998 until November 
2005. C) carriage rates of other serogroups and meningococci non related to the A, X, or NG ST192 
genoclouds  D) carriage rates of N. lactamica 
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Figure 4.2 Carriage of 

meningococci and age 

spectrum of incidence rates of 

meningococcal meningitis 

 
A) Carriage of meningococci 
(all serogroups and NG, 
cumulation of all surveys) in the 
different age groups of the male 
(dark grey bars) and female 
(light grey bars) population. 
 
B) Carriage of N. lactamica in 
the different age groups 
(cumulation of all surveys) of 
the male (dark grey bars) and 
the female population (light 
grey bars). 
 
C) Age spectrum of incidence 
rates of meningococcal 
meningitis in the male (circles) 
and female (triangle) population 
of the KND in the epidemic of 
1996/97 (light grey) versus the 
interepidemic period 2001 to 
2005. Denominator is the 
district population 1995-99. On 
the primary Y-axis the epidemic 
incidence rates and on the 
secondary Y-axis the 
interepidemic incidence rates 
are indicated 
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4.5  Discussion 

 

 This first longitudinal study of meningococcal colonisation in the meningitis belt of sub-Saharan 

Africa revealed features which are in many aspects remarkably different from findings of 

colonisation studies conducted in Europe and North America (Caugant et al., 1988; Maiden, 2004; 

Jolley et al., 2000; Yazdankhah and Caugant, 2004; Claus et al., 2005). The carried population of 

meningococci in the KND was i) less genetically diverse, ii) less constant in the genotype 

composition, iii) it included fewer NG strains and iv) virulent encapsulated strains were dominant. 

Indeed, the A ST5, A ST7 and X ST751 meningococci responsible for all 197 culture-reconfirmed 

meningitis cases represented 71% (216/304) of the colonisation isolates.  

  

In industrialised countries, approximately 10% of individuals from the general population are 

carrying meningococci at any one time (Cartwright et al., 1987). In children younger than 4 years, 

carriage rates are <3%. They increase to 20–40% in teenagers and young adults (Blackwell et al., 

1990; Cartwright et al., 1987; Caugant et al., 1988; Caugant et al., 1994) and decrease again to 

<10% in older age-groups. In contrast, invasive meningococcal disease is most common in young 

children and in teenagers. Current endemic rates of meningococcal disease in most industrialized 

countries range from <1 – 5 cases per 100,000 population. The ratio of cases to asymptomatic 

carriers is usually smaller than 1:100. In industrialised settings, meningococcal strains collected 

from patients and carriers differ genetically and serologically (Caugant et al., 1988). Typically, the 

carried populations of meningococci are highly diverse, with a low representation of the invasive 

serogroups A, B, C, Y and W135 (Maiden, 2004; Jolley et al., 2000; Yazdankhah and Caugant, 

2004; Claus et al., 2005). The diverse spectrum of carried strains is relatively constant over time, 

and up to 50% are serologically non-groupable (Yazdankhah and Caugant, 2004; Cartwright et al., 

1987). Encapsulation is thought to reduce adherence to pharyngeal epithelial cells, and loss of 

expression of capsular polysaccharide may be an adaptation to long-term carriage (Cartwright, 

1995). Furthermore, colonisation with NG strains may be beneficial to the host by eliciting cross-

reactive immune responses to non-capsular meningococcal surface antigens (Cartwright, 1995). 

 

The observed lack of a stable and genetically diverse resident pharyngeal flora of meningococci in 

the KND may explain why incoming new clones may spread so successfully in populations of the 

African Meningitis Belt. This leads to clonal waves of colonisation typically lasting for about four 
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years and – in the case of hypervirulent lineages – disease outbreaks or epidemics. We found that 

the case to carrier ratio was generally much higher for serogroup A than for serogroup X 

meningococci, reflecting the marked difference in virulence between these two serogroups. Only 

in the dry season of 2001 at the beginning of the A ST7 colonisation and disease wave did we find 

patient isolates that were unrepresented during the corresponding colonisation survey. The highest 

A ST7 colonisation rate (4.3% in April 2004) was associated with the largest meningococcal 

meningitis outbreak observed during the entire study period. These data give no strong indication 

for a change in the case to carrier ratio in the course of the serogroup A ST7 outbreak. 

 

However, new contact of the population with genoclouds that have epidemic potential does not 

always lead to high colonisation rates. For example, we recovered isolates resembling those 

responsible for the 2002-2004 epidemics in Burkina Faso from a few carriers in KND in 2004, but 

we did not observe any wave of W135 colonisation. Importantly, fluctuations of the pharyngeal 

microflora of the population are not confined to the meningococci. For example, the N. lactamica 

colonisation rate also changed in the course of the study. In addition, an outbreak of pneumococcal 

meningitis occurred during the study period with features (seasonality, clonality and a broad age 

spectrum) characteristic of meningococcal epidemics (chapter 6). Increasing herd immunity may 

be responsible for the disappearance of dominating genoclouds. However, changes in herd 

immunity do, not fully explain the complete disappearance of the A ST5 genocloud two years after 

the 1996/97 epidemic nor the emergence of the closely related A ST7 genocloud after only a short 

time interval. 

 

 The age distribution of healthy carriers in the KND with peak carriage rates in teenagers and 

young adults was similar to many European colonisation studies (Caugant et al., 1994; Cartwright 

et al., 1987; Yazdankhah and Caugant, 2004). The incidence of meningitis during the disease 

outbreaks in the years 1998-2005 was highest in children <10 years, comparable to endemic 

disease in industrialised countries. It is thought, that immune responses elicited by colonisation 

with meningococci and other antigenically cross-reactive microorganisms are responsible for the 

decreased disease susceptibility in the older age groups. This may imply that natural serum 

antibody-mediated immunity against invasive disease is developing much more efficiently than 

secretory IgA-mediated protection against colonisation. 
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However, during the epidemic in 1996/97, the age-distribution of meningitis patients resembled 

that of meningococcal colonisation, consistent with reports of most large meningococcal epidemics 

(Greenwood et al., 1979; Moore, 1992; Lapeyssonnie, 1963). During the epidemic the disease 

susceptibility of the whole population was increased. The fact that also in children <10 years the 

epidemic incidence of meningitis was exceeding endemic attack rates dramatically, argues against 

the ‘2 hit’ hypothesis, associating susceptibility to disease with blocking serum IgA elicited by 

colonisation of the gut with cross-reactive microorganisms (Griffiss, 1982). 

 

The factors that initiate epidemics in the meningitis belt are incompletely understood. Contact of a 

population with a hyperinvasive new genocloud that is antigenically distinct enough to escape 

natural immunity may lead to an epidemic. Loss of natural immunity in exposed individuals over 

time and new birth cohorts may make a population increasingly susceptible. However, epidemics 

are not always associated with the appearance of a new clone (Greenwood, 1999). This suggests a 

role of environmental triggers, such as co-pathogens or social factors. In spite of intense annual 

A/C polysaccharide vaccination campaigns carried out in the KND since 1998, outbreaks with 

incidence rates of up to 80 per 100,000 occurred between 2002 and 2004. It is not clear, whether 

herd immunity elicited by the serogroup A ST5 epidemic, lack of environmental triggers or the 

vaccination campaigns have prevented a large A ST7 epidemic. 

 

Meningococcal vaccines protect individuals from disease by eliciting bactericidal serum antibodies 

(Borrow et al., 2001). Recent studies following the introduction of conjugate C vaccines in the 

United Kingdom have demonstrated that capsule conjugate vaccines also affect carriage and 

transmission by inducing mucosal immune responses (Maiden and Stuart, 2002; Ennes et al., 

1992). Herd immunity may play a key role in the control of meningococcal infection using 

meningococcal conjugate vaccines (Ramsay et al., 2003). Serogroup replacement and the 

emergence of escape variants (Maiden and Spratt, 1999) are potential disadvantageous effects 

associated with developing herd immunity. Therefore, meningococcal carriage studies such as 

those described here should be performed before and after the introduction of new conjugate 

vaccines in the African Meningitis Belt, in order to assess protective and potential disadvantageous 

effects of these interventions. 

 

 

 



Chapter 4: Clonal Waves of N. meningitidis 

 39 

 

4.6 ACKNOWLEDGEMENTS 

 

The Stanley Thomas Johnson Foundation, the Meningitis Research Foundation and the Meningitis 

Vaccine Project funded the study. The sponsors of the study had no role in study design, data 

collection, data analysis, data interpretation, or writing or the report. We acknowledge the use of 

the meningococcal MLST database, which is located at Imperial College London and is funded by 

the Wellcome Trust. We are grateful for support and contributions of E. Arnold, F. Binka, S. Droz, 

I. Ehrhard, B. Genton and M. Tanner. In the Navrongo Health Research Center, we thankfully 

appreciate the assistance of A. Bugri, S. Abudulai and A. Wahab in the laboratory, all nurses and 

health workers in the War Memorial Hospital, Navrongo and the Health Centers of the KND, C. 

Tindana with all fieldworkers and drivers for excellent work in the field, and T. Tei and M. Bugase 

for logistic support. We acknowledge the use of the NDSS database and we thank all study 

participants for their trust and contribution. 



Chapter 5. Emergence of W135 meningococcal meningitis 
 

 40 

 
 

CHAPTER 5 
 
 
 
 

 

EMERGENCE OF W135 MENINGOCOCCAL MENINGITIS IN GHANA 



Chapter 5. Emergence of W135 meningococcal meningitis 
 

 41 

 
 
 

CHAPTER 5 

 

 
 

Emergence of W135 meningococcal meningitis in Ghana 

 

Abudulai Adams Forgor
1
, Julia Leimkugel

2
, Abraham Hodgson

1
, Akalifa Bugri

1
, Jean-Pierre 

Dangy
2
, Sébastien Gagneux

2*
, Tom Smith

2
 and Gerd Pluschke

2
 

 

1Navrongo Health Research Centre, Ministry of Health, Navrongo, Ghana 

2Swiss Tropical Institute, Basel, Switzerland 
*present address: Division of Infectious Diseases and Geographic Medicine, Stanford University 

Medical Centre, Stanford, USA 

 

 

 

 

 

 

 

 

 

 

This article has been published in 

Tropical Medicine and International Health volume 10 no 12 pp 1229–1234 December 2005 



Chapter 5. Emergence of W135 meningococcal meningitis 
 

 42 

 

5.1 Summary 

Neisseria meningitidis serogroup W135, well known for a long time as a cause of isolated cases of 

meningococcal meningitis, has recently increasingly been associated with disease outbreaks of 

considerable magnitude. Burkina Faso was hit by W135 epidemics in the dry seasons of 2002-2004, 

but only four W135 meningitis cases were recorded between February 2003 and March 2004 in 

adjoining Ghana. This reconfirms previous findings that bottlenecks exist in the spreading of new 

epidemic N. meningitidis clones within the meningitis belt of sub-Saharan Africa. Of the four 

Ghanaian W135 meningitis patients one died and three survived, of which one had profound 

neurosensory hearing loss and speech impairment. All four disease isolates were sensitive to 

penicillin G, chloramphenicol, ciprofloxacin and cefotaxime and had the multi-locus sequence type 

(ST) 11, which is the major ST of the ET-37 clonal complex. Pulsed-field gel electrophoresis 

(PFGE) profiles of the Ghanaian disease isolates and recent epidemic isolates from Burkina Faso 

were largely identical. We conducted meningococcal colonisation surveys in the home communities 

of three of the patients and in the Kassena Nankana District located at the border to Burkina Faso. 

W135 carriage rates ranged between 0 and 17.5%. When three consecutive surveys were conducted 

in the patient community with the highest carrier rate, persistence of W135 colonisation over a 

period of one year was observed. Differences in PFGE profiles of carrier isolates taken at different 

times in the same patient community were indicative of rapid microevolution of the W135 bacteria, 

emphasising the need for innovative fine typing methods to reveal the relationship between W135 

isolates. 

        

5.2  Introduction 

 
Epidemic meningococcal disease has occurred in the meningitis belt of sub-Saharan Africa for 

approximately 100 years (Greenwood, 1999). Historically the epidemics have been primarily caused 

by Neisseria meningitidis serogroup A. Serogroup W135 meningococci identified in 1968 (Evans et 

al., 1968) and first described in Africa in 1982 (Denis et al., 1982) were initially considered to be a 

rare cause of invasive disease. However, two W135 meningitis outbreaks coinciding with pilgrimage 

seasons for Hajj in 2000 and 2001 (Taha et al., 2000; Lingappa et al., 2003) were followed by a first 

large scale epidemic in Burkina Faso in 2002 (Taha et al., 2002b; Decosas and Koama, 2002). Since 
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then, each year Burkina Faso has been hit by mixed meningitis epidemics caused by W135 and A 

meningococci. In Saudi Arabia W135 meningococci were responsible for 13% of all meningococcal  

disease between 1995 and 1999 and have been present to a notable degree at least since 1990 

(Lingappa et al., 2003). From 2002 onwards vaccination with the quadrivalent meningococcal 

polysaccharide vaccine (A/C/Y/W135) therefore became a visa requirement to participate in the Hajj 

(Wilder-Smith et al., 2003a). Already before the outbreaks in 2000 the danger of W135 meningitis 

epidemics in Africa was recognized (Kwara et al., 1998). 

 

The Hajj outbreaks probably led to the expansion of a particular W135 clone within the 

electrophoretic type-37 (ET-37) complex (Mayer et al., 2002; Popovic et al., 2000). A high 

acquisition rate of W135 meningococci (15-17%) in pilgrims has been reported (Wilder-Smith et al., 

2003b). Throughout the world these carriers have transmitted Hajj-related W135 bacteria after 

returning home (Aguilera et al., 2002; Hahne et al., 2002; Wilder-Smith et al., 2003b). Related 

W135 strains also belonging to the ET-37 complex have been circulating worldwide since at least 

1970 (Mayer et al., 2002) and currently both the Hajj-related epidemic strain and Hajj-unrelated 

local W135 strains seem to be responsible for sporadic W135 cases worldwide (Hahne et al., 2002; 

Taha et al., 2004). Genetic drift of the Hajj-related strain (Hahne et al., 2002) complicates the 

analysis of the relationship between W135 isolates by standard typing techniques, such as pulsed-

field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) considerably. 

 

In spite of its border with Burkina Faso, no outbreak of W135 meningococcal meningitis has so far 

occurred in Ghana. Here, we describe properties of four W135 strains isolated between February 

2003 and March 2004 from the cerebrospinal fluid (CSF) of Ghanaian meningitis patients and 

provide evidence for spreading and rapid microevolution of the causative W135 meningococci. 

 

5.3 Materials and Methods 

 

Disease isolates 

 

In the respective hospitals, CSF samples were taken for diagnostic purpose, latex agglutination was 

performed and the causative agents were isolated by culture using standard microbiological 

techniques. Bacterial isolates of all four Ghanaian W135 cases were transferred for further analysis 

to the Navrongo Health Research Centre, where serological grouping was reconfirmed by PCR.  
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Reference isolates of W135 meningococci were obtained from M. Achtman, Berlin (isolated in 

Mecca, 2000, strains Z9230 and Z9232), and D. Caugant, Oslo (isolated during the outbreaks in 

Burkina Faso of 2001 (BF01/01, BF24/01), 2002 (BF06/02, BF67/02) and 2003 (BF01/03)). 

 

Carrier isolates 
 
In three of the affected communities and two control communities throat swabs have been taken and 

analysed for colonisation with N. meningitidis and N. lactamica. Community K1 is a small village 

located in a rural setting directly on the main truck road between the south and the north of Ghana 

(Fig. 5.1). Nearly the whole population of the village participated in the study. In December 2003 a 

control community located 2 km away from K1 was included. Communities B1 and B2 are located 

in Bolgatanga, the Upper East Region’s capital. Here throat swabs were taken from the affected and 

the closest neighbouring compounds (including the majority of the about 30 inhabitants per 

compound).  

 

After obtaining informed consent, throat swabs were taken and directly plated onto Thayer Martin 

Agar. The plates were incubated at 37ºC within eight hours after sampling for 24-48 hours. Two 

colonies with neisserial morphology were sub-cultured from each plate. N. meningitidis and N. 

lactamica colonies were identified as previously described (Gagneux et al., 2002b) by standard 

bacteriological methods. Ethical clearance was obtained from the responsible institutional and 

national ethical approval committees. 

 

Characterisation of bacterial isolates 
 
Meningococcal isolates were serogrouped with serogroup-specific antisera (Difco). Results were 

reconfirmed by PCR (Taha, 2000; Bennett et al., 2004; Orvelid et al., 1999). All W135 isolates were 

analysed by pulsed field gel electrophoresis (PFGE) after digestion with NheI as previously 

described (Morelli et al., 1997). All disease isolates were tested for resistance to penicillin G, 

chloramphenicol, cefotaxime, and ciprofloxacin with E-test strips (Isenberg Henry D.(ed.), 1998) 

using the NCCLS breakpoints. Selected strains were analysed by multi-locus sequence typing 

(MLST). DNA extraction (Vela Coral et al., 2001), PCR (Maiden et al., 1998) and sequencing of 

PCR products with an ABI Prism 310 Genetic Analysis System were performed according to 

standard protocols on the MLST homepage (http://pubmlst.org/neisseria/). Allelic profiles were 

analysed using applications available on the MLST homepage.  
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5.4 Results 

 

Characterization of W135 disease isolates from Ghana 

Between February 2003 and March 2004, four cases of W135 meningococcal meningitis were 

reported by the regional hospitals in Tamale, Bolgatanga and the Korle Bu Teaching hospital 

(Accra), respectively. Patients came from the centre, the south or the north of the country (Fig 5.1) 

and were between 3 and 17 years of age (Table 5.1). One patient died, and of the three survivors one 

had profound sequelae. 

All four disease isolates were sensitive to penicillin G, chloramphenicol, ciprofloxacin and 

cefotaxime. PFGE profiles of all four Ghanaian disease isolates were compared with disease isolates 

from the Hajj outbreak in Mecca 2000 and from Burkina Faso between 2001 and 2003. The 

Burkinian strains isolated in 2001 and 2002 showed identical profiles (shown for strain BF67/02, 

Fig. 5.2, lane 5, profile C), whereas the 2003 isolate appeared to be very closely related (Fig. 5.2, 

lane 6, BF01/03, profile D). Profiles of the Ghanaian disease isolates were largely identical (Fig. 5.2, 

lanes 7-10, profile D) and indistinguishable from that of the 2003 strain from Burkina Faso (Fig. 5.2, 

lane 6). The reference disease isolates from the Hajj outbreak in 2000 had a distinct, but related 

PFGE profile (shown for strain N11421, Fig. 5.2, lane 4, profile B; both strains had an identical 

profile). All four Ghanaian disease isolates had the multi-locus sequence type (ST) 11, which is the 

major ST of the ET-37 clonal complex.  
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Figure 5.1 Map of Ghana showing the location of home communities of W135 meningitis patients 

The sample time points were as follows: Community K1: I) April 2003, II) December 2003 
(including control community), III) April 2004. Community B1: December 2003, Community B2: 
March 2004.  The home community of patient A1 could not be identified and has not been sampled. 
 

Table 5.1  W135 cases reported to the Ghanaian disease control authorities in 2003 and 2004 

 
Patient 

ID 

Time of  
disease 
onset 

 
Village/city 

 
Region 

  
Age 
(years) 

 
Sex 

 
Outcome 

 
Sequelae 

 
K1 

 
A1 

 
B1 

 
B2 

 
February 2003 

 
April 2003 

 
August 2003 

 
March 2004 

 
Kpalkpalgbeni 

 
Accra 

 
Bolgatanga 

 
Bolgatanga 

 
Brong Ahafo 

 
Greater Accra 

 
Upper East 

 
Upper West 

 
3 
 

4 
 

17 
 

3 

 
male 

 
male 

 
female 

 
male 

 
survived 

 
died 

 
survived 

 
survived 

 
*multiple 

 
unknown 

 
none 

 

+multiple 

*Profound sensorineural hearing loss, speech impairment, transient ataxia, hyperactive left patellar 
and achillis reflexes 
+Arthritis of the knee joints and occasional episodes of brief startling attacks during the first week 
after discharge but stopped thereafter 
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Figure 5.2 PFGE profile of W135 carrier and disease isolates (lane: strain No.; origin) Indicated on 
the gel are the different band profiles of the W135 strains (A-G). 1: MW marker, 2, 3: N1621, 
N1622, KND 1998, carriage; 4: N1421 (Z9230), Mecca 2000, reference strains; 5: N1627 
(BF67/02), Burkina Faso 2002, case; 6: N1628 (BF01/03), Burkina Faso 2003, case; 7: N1681 
Ghana 2003, patient K1; 8: N1682, Ghana, 2003, patient A1 9: N1683, Ghana 2003, patient B1; 10: 
N1846, Ghana 2004, patient B2; 11, 12: N1485, N1487, community K1, April 03, carriage; 13, 14, 

15: N1633, N1640, N1636, community K1, Dec 03, carriage; 16, 17: N1848, N1857, community 
B2, March 04, carriage; 18, 19, 20: N1951, N1953, N1959, community K1, April 03, carriage; 21, 

22: N1888, N1903, KND, April 04, carriage; 23: MW marker 
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Table 5.2: Carriage of different serogroups of N. meningitidis and of N. lactamica in home communities of three W135 meningococcal 
meningitis patients and in a neighbouring control community.  

Colonization rate % (n) 
Time of survey 

Community 
(patient ID) 

Volunteers 
swabbed (n) N. lactamica N. meningitidis W135 A X Y NG 

April 2003 Home (K1) 103 7.8 (8) 24.3 (25) 17.5 (18) 2 (2) 0 1 (1) 3 (3) 

December 2003 Home (K1) 100 3 (3) 15 (15) 13 (13) 0 0 1(1) 1(1) 

April 2004 Home (K1) 96 5.2 (5) 8.3  (8) 3.1 (3) 1 (1) 0 1 (1) 3 (3) 

December 2003 Control (K1) 100 1 (1) 9 (9) 0 2 (2) 2 (2) 2 (2) 3 (3) 

December 2003 Home (B1) 110 8.2 (9) 3.6 (4) 0 0 0 1 (1) 3 (3) 

April 2004 Home (B2) 100 4 (4) 7 (7) 2 (2) 0 2 (2) 0 2 (2) 

* Non-groupable (NG) strains were negative both in serological tests and in serogroup A and W135 specific PCR analysis 

 

Table 5.3: Age distribution of colonization with Neisseria lactamica and W135 and non-W135 Neisseria meningitidis in the patient home 
community K1 (cumulated data from all three surveys) 

Frequency of colonization  
 
Age group (years) <1 1–4 5–9 10–14 15–19 20–39 >40 

Neisseria meningitidis serogroup W135 1/6 (16.7%) 5/78 (6.4%) 7/44 (15.9%) 7/37 (18.9%) 6/24 (25.0%) 8/93 (8.1%) 0/17 (0%) 

Non-W135 N. meningitidis 0/6 (0%) 1/78 (1.3%) 0/44 (0%) 4/37 (10.8%) 3/24 (12.5%) 5/93 (5.3%) 1/17 (5.9%) 

Neisseria lactamica 2/6 (33.3%) 9/78 (11.5%) 1/44 (2.3%) 1/37 (2.7%) 0/24 (0%) 0/93 (0%) 1/17 (5.9%) 
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W135 colonization in patient communities and clonal diversity of bacteria 

Three consecutive N. meningitidis colonisation surveys were performed in community K1, the first 

six weeks after the emergence of the case, in February 2003. In April 2003, 17.5% of 103 inhabitants 

(about 90% of the total population of the village) were colonized with W135 meningococci. 

Thereafter, the W135 colonisation rate declined to 13% in December 2003 and to 3 % in April 2004. 

In addition, a few carriers of other meningococci were found. N. lactamica colonisation rates were 

between 3 and 8%. N. meningitidis A, X and Y, but no W135 carriers were found in a neighbouring 

control community included in the December 2003 survey (Table 5.2).  

 

Cummulated data from all three surveys conducted in community K1 were used to analyse the age 

distribution of colonisation with W135 meningococci in comparison to other serogroups found and 

to N. lactamica (Table 5.3). Logistic regression, including random effects to allow for repeated 

assessment of the same individuals, indicated that the ratio of carriage prevalence of N. meningitidis 

to that of N. lactamica increased with age (Chi-square=7.6, 1 degree of freedom, p=0.006), however 

there was no significant age trend in the ratio of W135 to other N. meningitidis (Chi-square 0.8, 1 

d.f. p=0.4). 

 

All isolates from the 18 W135 carriers in community K1 in April 2003, revealed identical PFGE 

profiles (shown for strains N1485 and N1487, Fig. 5.2, lanes 11 and 12, profile D), indistinguishable 

from those of the Ghanaian disease isolates (Fig. 5.2 lanes 7-10). However, some genetic 

diversification became apparent in the December 2003 colonisation survey. While the isolates of 

nine (of thirteen) W135- carriers revealed the original band profile (data not shown), the isolates 

from the other four exhibited three new variant profiles (Fig. 5.2, lanes 13-15, profile E, F, G). Two 

of the three variant PFGE profiles, but not the original profile, were found again in the last 

colonization survey in April 2004 (Fig. 5.2, lanes 18-20, profile E and G). 

 

In community B1 and B2 only one colonization survey was performed, three months and three 

weeks, respectively, after the emergence of the case. While no W135 meningococci were found in  

community  B1  in community  B2 W135 isolates of two carriers were obtained with the same PFGE 

profile as the Ghanaian disease isolates (Fig.5.2, lane 16, profile D, Table 5.2).  In addition, from 
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one of them a variant strain was isolated with a PFGE profile (Fig. 5.2, lane 17, profile F) identical 

to a variant profile found in colonisation isolates from community K1.  

 

W135 colonization in a long-term colonization survey in northern Ghana 

Within the framework of a longitudinal N. meningitidis colonization and disease study in the 

Kassena Nankana District (KND) of northern Ghana (Gagneux et al., 2000; Gagneux et al., 2002b), 

no W135 meningococcal meningitis case was recorded between 1998 and 2004. During these seven 

years of twice yearly colonization surveys only single carriers of W135 meningococci have been 

identified in 1998 (1/300 in April and 1/299 in November 1998) (Gagneux et al., 2000). However, in 

April 2004 a W135 colonization rate of 0.9% (3/350) was found with isolates showing the same 

PFGE profile (Fig. 5.2, lanes 21 and 22, profile D) as the Ghanaian disease isolates (Fig. 5.2, lanes 

7-10). Profiles of the two 1998 carrier isolates (Fig. 5.2, lanes 2 and 3, profile A), were identical 

among each other but distinct from all other profiles observed in this study.  

 

5.5 Discussion 

 

In spite of the consecutive W135 epidemics in Burkina Faso in 2002 - 2004, no major outbreak of 

W135 disease has been observed so far in Ghana, demonstrating that bottlenecks exist for the 

spreading of epidemic strains within the meningitis belt, as already described for serogroup A 

meningococci (Achtman, 1995). The four isolated Ghanaian cases described in this paper have 

probably only been reported because of intensive national surveillance and awareness. W135 strains 

belonging to the ET-37 complex have been present in Ghana before the Mecca outbreak (Gagneux et 

al., 2000) and sporadic W135 cases may have easily remained undetected before the year 2000.  

 

PFGE analysis demonstrate that the four Ghanaian W135 meningitis isolates were closely related to 

recent disease isolates from Burkina Faso, indicating, that these meningitis cases were caused by 

epidemic-related strains and not by local strains of the ET-37 complex. At least in the north of 

Ghana colonisation with the Burkina Faso epidemic-related strain is detectable. While visitors from 

Burkina Faso are frequently met in the border communities B1 and B2, it is not possible to guess the 

origin of the disease causing W135 strain of patient A1 living close to Accra. In the case of 

community K1, located in the middle of Ghana, contact with nomads may have been the source of 
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the W135 bacteria, as a part of a neighbouring community frequently moves to Burkina Faso and 

back.  

 

W135 carriage rates of healthy contacts in the three home communities of W135 meningitis patients 

were very different. W135 carriers were found in the home communities (K1 and B2) of the index 

cases aged 3 years but not in B1, the home community of the 17-year-old patient. Age of the patients 

may play a role, as suggested by findings of a study carried out during an serogroup C outbreak in 

Brazil, where contact carriage rates were highest in households, where the index case was an infant 

(Cartwright, 1995). Carriage rates of outbreak strains tend to be higher in closed or partially-closed 

communities than in an open communities (Cartwright, 1995). The rural community K1 has the 

features of a semi-closed community, where inhabitants lived very closely together and shared all 

living activities, while the urban communities B1 and B2 were much more open and loose. This may 

explain, why the highest (18%) carriage rate was observed in community K1. The age distribution of 

W135 colonisation, was not unusual, as the pattern observed in community K1 was characteristic for 

meningococci in general (Cartwright, 1995). 

 

Changes of the PFGE profile of colonisation isolates with time demonstrate that microevolution of 

W135 may be rapid. N. meningitidis is a naturally transformable species and there is evidence that 

microevolution is driven more frequently by recombination than by mutation. The observed genetic 

drift can make it very difficult to distinguish between epidemic-related and local W135 strains 

belonging to the same ET-37 complex and to prove epidemic spread of a particular clone. While 

available techniques are suitable to analyse the global population structure of other meningococcal 

serogroups (Lingappa et al., 2003), new approaches are required for studying the molecular 

epidemiology of  N. meningitidis W135. 

 

An affordable vaccine against W135 meningococci (e.g., a trivalent groups A, C, and W135 

polysaccharide vaccine) is now available and has been successfully used to contain outbreaks of 

W135 meningitis in Burkina Faso (Ahmad, 2004). As Burkina Faso epidemic-related W135 

meningococci now seem to spread into Ghana, intense surveillance efforts at national and regional 

levels for timely detection of a potential W135 epidemic is an important issue in future years.  
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6.1 Abstract 

Background The Kassena-Nankana District (KND) of northern Ghana lies in the African 

meningitis belt where epidemics of bacterial meningitis have been re-occurring every 8-12 years. 

These epidemics are generally caused by Neisseria meningitidis, an organism considered uniquely 

capable of causing meningitis epidemics. 

Methods   We recruited all suspected meningitis cases in the KND between 1998 and 2003. 

Cerebrospinal fluid samples were collected and analysed by standard microbiological techniques. 

Bacterial isolates were subjected to serotyping, multi-locus sequence typing (MLST) and antibiotic 

resistance testing. 

Results   A continual increase in the incidence of pneumococcal meningitis was observed from 2000 

to 2003. This outbreak exhibited strong seasonality, a broad host age spectrum, and clonal 

dominance, all of which are characteristic of meningococcal meningitis epidemics in the African 

meningitis belt. The case fatality rate for pneumococcal meningitis was 44.4%, the majority of 

pneumococcal isolates were antibiotic sensitive and expressed the serotype 1 capsule. MLST 

revealed that these isolates belonged to a clonal complex dominated by sequence type (ST) 217 and 

its two single-locus variants ST303 and ST612.  

Conclusions The ST217 clonal complex of S. pneumoniae represents a hypervirulent lineage with a 

high propensity to cause meningitis. In addition, our results suggest that this lineage might have 

epidemic potential. Serotype 1 is not included in the currently licensed paediatric heptavalent 

pneumococcal vaccine. Mass vaccination targeting hypervirulent serotypes with a less complex 

conjugate vaccine should therefore be considered.  

6.2 Introduction 

 

 
Neisseria meningitidis, Streptococcus pneumoniae and Haemophilus influenzae type b (Hib) are the 

most common causes of acute bacterial meningitis (Hart and Cuevas, 2003). Meningitis caused by N. 

meningitidis has been considered unique with respect to its epidemic occurrence. A region of sub-

Saharan Africa extending from Ethiopia to Senegal, designated the ‘meningitis belt’, has been 

particularly vulnerable to meningococcal disease epidemics. In addition to sporadic disease, which 
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occurs mainly during the annual dry season, epidemics have occurred in the meningitis belt every 8-

12 years over the past 100 years (Greenwood, 1999; Achtman, 1995). 

 

Information about the epidemiology of pneumococcal meningitis in the African meningitis belt is 

fragmentary, but some studies have found S. pneumoniae to be the most important causative agent of 

bacterial meningitis in certain areas (Mar et al., 1979). The incidence in these areas is 10-20 cases 

per 100,000 and year, which is about ten times higher than in Western Europe and the United States 

(Greenwood, 1987; Hausdorff et al., 2000b). Cases of S. pneumoniae meningitis occur throughout 

the year, and most studies report the youngest (<2) and the oldest (> 60) age groups to be at greatest 

risk (Mar et al., 1979; Greenwood, 1987). For unknown reasons, the case fatality rate for 

pneumococcal meningitis (about 50%) is five to ten times higher than for meningococcal meningitis.  

 

Although there are about 90 pneumococcal serotypes known, only a limited number account for 

most of the invasive infections. The serotype distribution varies with time, location and age group 

(Hausdorff et al., 2000b). Clonal dominance and global spread has been described for a small 

number of highly successful, (often multi-) drug resistant pneumococcal clones (Klugman, 2002). 

Serotype 1 is one of the most common serotypes causing invasive disease worldwide, particularly in 

Africa (Greenwood et al., 1980; Hausdorff et al., 2000b; Brueggemann and Spratt, 2003). It has a 

high attack rate but is rarely isolated from healthy carriers or mild occult bacteraemia. Outbreaks of 

invasive serotype 1 pneumococcal disease have occurred in several communities (Dagan et al., 2000; 

Gratten et al., 1993; Hausdorff et al., 2000b; Mar et al., 1979; Porat et al., 2001; Henriques et al., 

2001; Tugwell et al., 1976). 

The present study was conducted between 1998 and 2003 in the Kassena-Nankana District (KND) in 

northern Ghana. Following a large meningococcal meningitis epidemic in the dry season of 1997, all  

suspected meningitis patients were recruited prospectively. Cerebrospinal fluid (CSF) samples were 

taken and analysed by standard microbiological techniques. Between 2000 and 2003, a continuous 

increase in incidence of pneumococcal meningitis was observed. We demonstrate that the 

epidemiological and bacteriological features of this outbreak closely resemble the ones usually 

associated with meningococcal disease epidemics. The implications of these observations for the 

control of bacterial meningitis in the African meningitis belt are discussed. 
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6.3 Methods 

 
Study area 

The KND has a population of 140,000 and lies within the Guinea Savannah woodland area of 

northern Ghana. Two major seasons exist, a short wet season from May to October and a long dry 

season for the rest of the year. The general population is rural except for those living in the town of 

Navrongo, which has a population of 20,000. People live in compounds with an average of 10 

inhabitants. 

 

Patients 

CSF samples were collected from January 1998 to December 2003 from suspected meningitis 

patients reporting to the War Memorial Hospital, Navrongo, or to one of four Health Centres in the 

KND. In line with the standard diagnostic procedures in Ghana, samples were analysed at the 

laboratory of the War Memorial Hospital for confirmation of the clinical diagnosis. Additional 

samples were obtained from the Regional Hospital of the Upper East Region in Bolgatanga, and 

from health facilities in the Bongo and Builsa Districts. In 1998 and 1999, only samples collected 

during the dry season were analysed. Thereafter, samples obtained from the few suspected 

meningitis cases presenting during the wet season were also included. Ethical clearance for the study 

was obtained from the responsible institutional review boards and the Ghanaian Ministry of Health. 

Clinical and demographic information was recorded from all patients. Personal data were linked 

with the database of the Navrongo Demographic Surveillance System (NDSS). The denominators 

used for calculation of incidence rates represent the average annual district population between 1995 

and 1999 (Nyarko et al., 2002). 

 

Analysis of CSF 

 

CSF samples were analysed by direct Gram staining. Boiled CSF-supernatants were tested 

serologically for capsular polysaccharide antigens of N. meningitidis (serogroups A, B, C and 

W135), S. pneumoniae and Hib (Slidex meningite-Kit, Bio Merieux, Pasteurex-Kit, BIO RAD 

#61718). CSF specimens were inoculated on blood-, chocolate-, and Thayer Martin Agar and 

incubated in candle jars for 24 hours at 37˚C. S. pneumoniae colonies were identified based on 

colony morphology, Gram staining behaviour and resistance to Optochin (Taxo P discs, BD 
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#231046). All pneumococcal isolates were serotyped with the Quellung Reaction using antisera from 

the Statens Serum Institute, Copenhagen.  

 

Antibiotic resistance testing 

 

All isolates from the KND were tested for resistance to penicillin G, chloramphenicol (the two 

antibiotics commonly used for standard therapy of bacterial meningitis in Ghana), cefotaxime, and 

ciprofloxacin using E-test strips (Isenberg Henry D.(ed.), 1998). Breakpoints of the NCCLS protocol 

have been applied. For ciprofloxacin 4µg/ml has been taken as breakpoint for resistance 

(Brueggemann et al., 2002). The ATCC 49619 strain was included as control.  

 

Multi-Locus Sequence Typing (MLST) 

Bacteria were grown overnight in Todd Hewitt medium. DNA extraction (Vela Coral et al., 2001), 

MLST (Enright and Spratt, 1998) and direct sequencing of PCR products with an ABI Prism 310 

Genetic Analysis System was performed according to standard protocols. Allelic profiles were 

analysed using applications available on the MLST homepage (http://spneumoniae.mlst.net). For the 

analysis of the relationships between closely related isolates the eBurst software 

(http://eburst.mlst.net/) was used with the most stringent group definition (6/7 alleles identical). All 

allelic profiles obtained were compared to the complete listing of STs available in the database. 

 

6.4 Results 

 

Meningitis cases 

Between 1998 and 2003, a total of 140 meningococcal, 117 pneumococcal and 14 Hib meningitis 

cases were confirmed by culture and/or Latex agglutination assay in the KND. The number of 

pneumococcal cases remained low during the first two years of the study, but increased continuously      

during the following years (Figure 6.1). Two subsequent outbreaks of serogroup A meningococci 

were reported during the study period. After the large meningococcal meningitis epidemic in Ghana 

1997, 50 confirmed serogroup A cases occurred in 1998 (Gagneux et al., 2000). After two years of 

absence, from 2001 onwards serogroup A meningococcal cases re-emerged causing yearly outbreaks 

until 2004 (Chapter 4). The number of Hib meningitis cases remained low throughout the study 

period and included mainly children below 7 years of age (Figure 6.1).  
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Figure 6.1  Number of laboratory-confirmed (cultivation and/or latex agglutination) meningitis 
cases in the Kassena-Nankana District of northern Ghana between 1998 and 2003.  

■ N. meningitidis, ▲ S. pneumoniae,  ● H. influenzae type b  
 

The vast majority of meningococcal and of pneumococcal meningitis cases occurred during the dry 

season (Figure 6.2). The pneumococcal meningitis cases peaked one to two months earlier than the 

meningococcal cases. During the rest of the year only sporadic meningitis cases, mostly caused by S. 

pneumoniae, were observed.  

 

The populations of both meningococcal and pneumococcal meningitis patients exhibited a broad age 

range (Figure 6.3). Infants less then one year had the highest incidence for both pneumococcal and 

meningococcal meningitis (43 cases/100,000 per year). For pneumococcal meningitis, the incidence 

in all other age groups was 15 - 26/100,000. For meningococcal meningitis the incidence was 

comparable for children of all age groups, and decreased steadily for the older age groups. As a 

result, the incidence of pneumococcal meningitis in the >60 year age group was significantly higher 

than for meningococcal meningitis (2.6/100’000 versus 23.4/100’000). The overall case fatality rate  

was 44.4% (51/117) and 4.3% (6/140) for pneumococcal and meningococcal meningitis, 

respectively. 
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Figure 6.2  Seasonal patterns of rainfall and number of pneumococcal and meningococcal 
meningitis in the KND.  

Laboratory-confirmed meningococcal (■) and pneumococcal (▲) meningitis cases, total monthly 
rainfall (data from the Meteorological Station of the KND).  
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Figure 6.3  Incidence (laboratory confirmed cases by latex agglutination or culture) of 
meningococcal (grey bars) and pneumococcal (black bars) meningitis in the KND.   
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The geographic location of the homes of 74 pneumococcal and 102 meningococcal meningitis 

patients was mapped using the NDSS, but neither pneumococcal nor meningococcal cases were 

geographically clustered (data not shown). Furthermore no significant family clustering was 

observed.  

 

Characterization of pneumococcal isolates 

 

Between 1998 and 2003, 76 pneumococcal disease isolates were obtained from meningitis patients 

in the KND. Fifty-eight of these (76.3%) belonged to serotype 1, which represented the dominating 

serotype throughout the study (Table 6.1). The 18 non-serotype 1 isolates from the KND belonged to 

nine other serotypes. Only a third (2/6) of the paediatric disease isolates (<5 year old) were serotype 

1, the remaining belonged to serotype 3 and 14. In contrast, in older children (5-14 years), young 

adults (15-29 years) and grown-ups (30-59 years) the serotype 1 ratio was >80 % (24/29, 11/12 and 

11/14, respectively). In patients >60 years the percentage of serotype 1 isolates was 56 % (5/9). 

 

Drug sensitivity testing showed that all but two of the 58 serotype 1 strains from the KND were 

completely susceptible to penicillin G, cefotaxime, chloramphenicol and ciprofloxacin. Minimal                     

inhibitory concentrations (MIC) determined for the two strains (both isolated in 2002) showing 

antibiotic resistances were: strain P1036: penicillin G 0.5 µg/ml (intermediate), cefotaxim 2µg/ml 

(resistant), chloramphenicol: 5 µg/ml (intermediate); strain P1037: penicillin G 0.5 µg/ml 

(intermediate), cefotaxim 1 µg/ml (intermediate), chloramphenicol 8 µg/ml (resistant).  

 

All isolates from the KND and 15 isolates from neighbouring districts were analysed by MLST. The 

results showed that all serotype 1 isolates were clonally related (Table 6.2). Ten distinct STs were 

identified; but all shared at least six of seven alleles with one other ST. ST217 and its two single 

locus variants ST612 and ST303 dominated. In addition, single locus variants of the three 

dominating STs were sporadically found. All isolates obtained in 1998 and 2000 had ST217. ST303 

isolates dominated from 2001 onwards (6/15 in 2001, 9/18 in 2002 and 14/20 in 2003).  

 

An eBurst analysis was done including the STs of the Ghanaian stains and all strains available in the 

MLST database (Figure 6.4). Three of the 10 STs found in the Ghanaian isolates (ST217, ST303 and 
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ST612) have been previously described in altogether 34 serotype 1 lineage B isolates (Brueggemann 

and Spratt, 2003). 16 of these isolates came from Africa, the others from Israel, Europe or the United  

States. In addition, Brueggemann et al. (Brueggemann and Spratt, 2003) defined three lineage B 

associated STs (ST613, ST614 and ST 618) represented by four African and one European isolate. 

The eBurst diagram (Fig.6.5) demonstrates, that all Ghanaian serotype 1 strains found in this study 

and all the lineage B isolates described by Brueggemann et al. are part of a single clonal complex in 

which all isolates share 100% genetic identity at six or seven MLST housekeeping loci with at least 

one other member of the group. 
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Table 6.1:  Age distribution of Serotype 1 and Non-serotype 1 isolates from the KND from 2000 to 2003 

Age group (years) <1 1-4 5-14 15-29 30-59 >60 n.s.* Total age range median 

No. of isolates serotyped 2 4 29 12 14 9 6 76 4/12 to  85 y 14y 

 Serotype 1 isolates 0 2 24 11 11 5 5 58  19/12  to 72 y 15y 

Non-serotype 1 isolates 2 2 5 1 3 4 1 18 4/12 to  85 y 13y 

Serotypes of 
non-serotype 1 strains 

14+ 3+ 3+, 7F, 8, 12F 8 6A, 8, 10F 8, 12F,14, 38 2    

*Age not specified            + two isolates 
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Table 6.2: Serotype distribution and STs of S. pneumoniae strains isolated in northern Ghana  
between 1998 and 2003. 

Allelic Profile 
Serotype ST 

No. of 
isolates 

Year of 
isolation aroE gdh gki recP spi xpt ddl 

Origin 

(District) 

KND (13), Bongo (1), 
Builsa (1) 

KND (7), Bolgatanga (1) 

KND (29), Bolgatanga (7) 

1 

 

217 

612 

303 

1322 

1316 

1325 

1331 

1327 

1328 

1323 

15 

8 

36 

1 

1 

2 

2 

1 

1 

1 

1998-2003 

2001-2003 

2001-2003 

2001 

2002 

2002 

2002 

2003 

2003 

2003 

10 

10 

10 

10 

2 

10 

13 

10 

10 

10 

18 

18 

5 

5 

18 

8 

8 

18 

18 

5 

4 

4 

4 

4 

4 

4 

4 

4 

4 

4 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

7 

7 

7 

7 

7 

7 

7 

13 

7 

7 

19 

19 

19 

19 

19 

19 

19 

19 

21 

21 

9 

31 

9 

31 

9 

9 

9 

31 

31 

9 

KND 

 

2 74 1 1998 2 13 4 1 6 6 14 KND 

3 458 7 2001 2 32 9 47 6 21 17 KND (3), Bolgatanga (4) 

4 1321 1 2002 8 8 47 18 46 122 31 Bolgatanga 

6A 1320 1 2002 7 13 8 6 6 8 8 KND 

7F 1326 1 2002 10 16 4 1 6 21 9 KND 

 

8 

 

1317 

1318 

1335 

1319 

1 

1 

1 

1 

2003 

2000 

2003 

2003 

7 

7 

7 

7 

5 

9 

9 

9 

15 

15 

4 

15 

11 

11 

60 

11 

83 

83 

83 

83 

58 

58 

28 

25 

70 

70 

70 

70 

KND 

 

10F 909 1 2003 2 42 2 1 6 19 20 KND 

     12F 
989 

1330 

1 

1 

2003 

2003 

12 

12 

5 

5 

89 
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21 

21 

21 
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38 1329 1 2003 12 5 4 10 42 49 9 KND 

     a Values in parentheses indicate the no. of isolates found in each district (given only for those isolates  
     found in >1 district). 
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Of the non-serotype 1 isolates, only the serotype 14 strains exhibited allelic profiles closely related to 

those of the serotype 1 complex (Table 6.2). One of the serotype 14 strains (ST1324) was a single 

locus variant of ST1323 (shown in Figure 6.4), two (ST1314 and ST1315) were double locus variants 

of ST1323 and the remaining isolate (ST1313) shared five alleles with ST1314 and four alleles with 

ST1323.  

 

 

Figure 6.4    e-Burst diagram of the ST217 clonal complex 

All Ghanaian serotype 1 and one Ghanaian serotype 14 isolate found in this study and all serotype 1 
lineage B isolates described by Brueggemann et al. are included (Brueggemann and Spratt, 2003). 
Lines connect all single locus variants with each other. ● STs found in northern Ghana (n= number of 
isolates found in this study); ● serotype 1 lineage B associated STs not found in northern Ghana 
(Brueggemann and Spratt, 2003) (country of origin of the isolates). The original diagram has been 
edited for the number of isolates, the origin of non Ghanaian isolates and multiple SLV connections). 
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6.5 Discussion 

 
N. meningitidis is regarded as uniquely capable of causing bacterial meningitis epidemics. Our 

observation of a meningitis outbreak caused by S. pneumoniae in the KND of northern Ghana is 

therefore intriguing. The outbreak exhibited epidemiological features characteristic of African 

meningococcal epidemics (Greenwood, 1999), including strong seasonality, a broad host age range 

and clonal dominance. The increase in pneumococcal meningitis was accompanied by two successive 

outbreaks of meningococcal meningitis. In the KND the burden of disease for pneumococcal 

meningitis has met criteria for the alert status of the WHO definition of epidemic meningococcal 

outbreaks (threshold of 5 cases per 100,000 per week) and in the neighbouring Bolgatanga District 

even criteria for the epidemic status with a threshold of 10 cases were fulfilled in March 2001. Cases 

of both meningococcal and pneumococcal meningitis were concentrated in the dry season, suggesting 

that similar factors might have triggered both types of outbreak. Such factors may include damaged 

mucosal defences due to the extreme environmental conditions and/or co-infections of the 

nasopharynx (Greenwood, 1999). Care was taken to avoid a bias associated with the well-known 

seasonality of meningococcal meningitis in the study area. Standardized guidelines for lumbar 

puncture were applied to avoid that lumbar punctures were less likely to be performed during the wet 

season.  

 

Interestingly, the pneumococcal meningitis cases peaked one to two months earlier than 

meningococcal meningitis. This may reflect either the very high invasive capacity of the causative 

clonal complex of serotype 1 pneumococci or indicate that the factors which trigger pneumococcal and 

meningococcal meningitis are not entirely the same. In this context, differences in climatic conditions 

during the early dry season (including the Harmattan period with cold nights and extremely dusty air) 

and the late dry season (intensive heat), may be relevant. The broad age range in both meningococcal 

and pneumococcal meningitis cases shows that age related differences in the capacity of natural and 

adaptive immune effector functions are less important for susceptibility to invasive disease than in 

other epidemiological situations. Lack of spatial clustering suggests that colonization with the serotype 

1 pneumococci is not focal. 

 

Clonally related bacteria from a common epidemiological source often show limited genotypic 

variation (Feil, 2004). Groups of frequent genotypes plus their epidemiologically associated 
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descendents have been designated clonal complexes (Feil, 2004) or genoclouds (Zhu et al., 2001) on 

the basis of a threshold level of MLST allelic identity. The pneumococcal outbreak in the KND was 

caused by a clonal complex of serotype 1 pneumococci. The three most frequently found STs (ST217 

and its two single-locus variants ST303 and ST612) have been described before (Brueggemann and 

Spratt, 2003), indicating that these genetic variants evolved prior to the outbreak in the KND. 

However, some of the infrequently isolated locus variants, such as ST1316, ST1322, ST1327 and 

ST1328 may have emerged locally. It is interesting to note, that ST1331 and ST1325, which were 

found each twice in the Ghanaian isolates link a ST618 isolate from The Netherlands to the clonal 

complex.  

 

Serotype 1 pneumococci are a common cause of invasive disease in many parts of the world, but are 

only rarely found among healthy carriers (Brueggemann and Spratt, 2003; Hausdorff et al., 2000b; 

Sandgren et al., 2004). Studies comparing the prevalence of S. pneumoniae subgroups from invasive 

disease and from carriage showed that individual serotypes may differ more than a 100 fold in their 

potential to cause invasive disease (Brueggemann et al., 2003; Sandgren et al., 2004). Individual clonal 

complexes belonging to the same serotype have different abilities to cause invasive disease (Sandgren 

et al., 2004), suggesting that complex-specific virulence determinants might be important as well. It is 

not clear whether the virulence of the three major subgroups of serotype 1 pneumococci with distinct 

geographic distribution (Brueggemann and Spratt, 2003; Gonzalez et al., 2004) is primarily 

determined by the capsular serotype and therefore uniform, or whether lineage-specific genetic 

differences modulate the potential to cause particular types of invasive disease. Our results suggest 

that the ST217 associated clonal complex might have a particular propensity to cause meningitis. 

However, further studies are needed in order to verify whether this observation reflects a true bacterial 

phenotype or merely the influence of host and/or environmental factors. 

 

We do not know whether the ST217 clonal complex has recently been imported into northern Ghana 

or whether it has been present for a longer time without causing more than sporadic disease. Clonal 

dissemination of S. pneumoniae is usually associated with antibiotic resistance (Klugman, 2002), but 

we observed no significant resistance in the Ghanaian isolates. Other factors must therefore have led to 

the increased incidence of pneumococcal meningitis in the KND. Vaccination against S. pneumoniae 

is uncommon in Ghana. However, the massive immunization campaigns with a meningococcal A+C 

carbohydrate vaccine that have been repeatedly carried out throughout the study period might have 

played a role. S. pneumoniae and N. meningitidis both colonize the human nasopharynx, and effective 
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interventions against one of these bacteria are likely to promote competing micro-organisms. 

Vaccinations with conjugate vaccines have been shown to reduce nasopharyngeal carriage of the 

vaccine type bacteria and to lead to replacement by bacteria not included on the vaccine (Bogaert et 

al., 2004b; Lipsitch, 1999). Even though polysaccharide vaccines, such as the unconjugated N. 

meningitidis A + C vaccine used in the KND, are generally thought to have no effect on the prevalence 

of nasopharyngeal carriage (Greenwood, 1999), repeated immunization against N. meningitis might 

still modify the bacterial flora of the nasopharynx (Fernandez et al., 2003). Thus, it is conceivable that 

the increase in pneumococcal meningitis in the KND, as well as the recently observed outbreaks of 

non-A, non-C meningococcal meningitis (Gagneux et al., 2002b; Djibo et al., 2003; Chonghaile, 2002) 

may have been promoted by mass vaccination against N. meningitis. It will be important to investigate 

more closely the interactions between these bacteria, especially in the context of vaccination (Bogaert 

et al., 2004a). 

 

Serotype 1 is not included in the currently licensed paediatric heptavalent pneumococcal vaccine. This 

vaccine contains polysaccharides from the seven serotypes (4, 6B, 9V, 14, 18C 19F and 23F) that 

cause over 85% of severe pneumococcal infections in infants and young children in the USA and 

Canada (Bogaert et al., 2004b; Hausdorff et al., 2000b). The vaccine covers 70% of paediatric disease 

isolates from Europe, but only 67% and 43% of those from Africa and Asia, respectively (Hausdorff et 

al., 2000b). In the KND serotypes 3, 7F, 8, 12 and 14 accounted for the non- serotype 1 cases in 

patients below 15 years of age. The ‘pedriatric’ serotypes (e.g. 6, 14, 9, 1, 5) (O'Dempsey et al., 1996) 

were rarely found. Here, the heptavalent conjugate vaccine would have covered 5.7% (2/35) of all 

cases and 22% of the non-serotype 1 cases in this age group. A nonavalent conjugate vaccine 

including serotype 1 is currently being developed, but such a complex conjugate vaccine may be too 

expensive for mass immunization in the African meningitis belt. However, mass vaccination targeting 

hypervirulent serotypes with a less complex conjugate vaccine should be considered, since increasing 

trends in pneumococcal meningitis have also been observed in other districts of Ghana (data not 

shown). Predominance of serotype 1 and a broad age spectrum also seem to be features of the current 

pneumococcal meningitis situation in Burkina Faso (Robbins et al., 2005; Parent, I et al., 2005). In 

view of the high case fatality rate of S. pneumoniae meningitis, there is also an urgent need for 

improved treatment options suitable for countries with limited resources. 
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7.1 Abstract 

 

Background Little information is available about the burden of pneumococcal meningitis (PCM) in 

sub-Saharan Africa, despite its importance as a leading cause of high mortality and morbidity. We 

carried out a case control study to assess the survival and sequelae of PCM. 

 

Methods  We compared two-year survival of 67 PCM cases hospitalized in Navrongo, Ghana with 

equal numbers of meningococcal meningitis (MCM) cases and with community controls, all 

identified in a demographic surveillance system.   We also carried out a case-control study of 

sequelae in 46 traceable survivors of PCM (cases), 46 community controls (CC) and 34 survivors of 

MCM, matching for age, sex and geographical location using a structured disability questionnaire, 

and neurological, neuropsychological and audiometric examinations. 

 

Results PCM cases had much higher mortality than either MCM cases or CC (relative hazard 

compared to MCM=7.0; 95%CI: 2.4-20.3) but this excess was entirely during hospitalization and the 

first few weeks after discharge. Moderate-profound hearing impairment was found by audiometry in 

23.9% of PCM survivors compared with 5.9% of MCM survivors ( 2
1χ  =6.2; p=0.01; 95% CI: 1.0, 

64.0) and 2.2% of CC ( 2
1χ =15.5; p<0.001). 8.7% of PCM survivors had profound speech 

impairment. More PCM than MCM survivors had psychiatric symptoms (hearing voices: OR=5.0 

2
1χ =5.8; p=0.02; reported self-inflicted injury: 2

1χ =8.3; p=0.004; shutting self up alone: 2
1χ =4.2; 

p=0.04; panic: OR=4.5; 2
1χ =4.8; p=0.03).   

 

Conclusions Hearing and speech impairment as well as psychiatric disorders, are much more 

frequent and severe in PCM than in MCM.   There is the need for thorough surveillance of PCM in 

countries at high risk and an accelerated immunization schedule with pneumococcal vaccine 

containing the appropriate serotypes beginning either maternally or in the perinatal period. 
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7.2 Introduction 

 

 
Despite improvements in diagnosis and treatment, morbidity and mortality from PCM remains 

unacceptably high (Schuchat et al., 1997; Arditi et al., 1998; Fiore et al., 2000; Buckingham et al., 

2001; Kellner et al., 2002), with case-fatality rates of about 20% in industrialised countries 

(Schuchat et al., 1997) and up to 50% (chapter 6; Yaro et al., 2006) in Africa, about 5–10 times 

higher than for MCM. Bacterial meningitis accounts for approximately 60-90% of acquired hearing 

impairment in children (Dodge et al., 1984; Richardson et al., 1998; Kulahi et al., 1997). 

 

Most of the studies published on PCM were carried out in developed countries with just a few in 

developing countries. There is little information on the long-term disability of PCM in the African 

meningitis belt and none on direct comparism between PCM and MCM. Due to its epidemic nature 

most studies are related to MCM with a few finding S. pneumoniae as the most important causative 

agent (Mackie et al., 1992; Haddock, 1971; Campbell et al., 2004; Yaro et al., 2006; chapter 6). 

 

From 2000-2005 we observed a continual increase in PCM incidence in northern Ghana, with high 

mortality and predominance of hypervirulent serotype 1 (unfortunately absent from the currently 

licensed paediatric heptavalent pneumococcal vaccine (chapter 6). We now report on long-term 

effects of PCM in the meningitis belt of sub-Saharan Africa based on follow-up of these cases. 

 

7.3 Materials and methods 

 

 

Study area 

 
The Kassena Nankana District (KND), one of the deprived districts in Ghana, has a population of 

140000, an area of 1675km2 and lies within the guinea savannah woodland of northern Ghana with 

Burkina Faso as its northern neighbor. The district lies in the sub-Saharan African meningitis belt. 

The district has 1 hospital (the WMH) located in Navrongo, the district capital and 4 health sub 

districts each of which has a health centre. The district is endowed with a demographic surveillance 

system, the Navrongo Demographic Surveillance System (NDSS), in which births, deaths, in and out 
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migrations and other demographic parameters of the entire district are recorded in a database and 

updated every 90 days (Binka et al., 1999). 

 

Diagnosis 

 

Between January 1998 and December 2004 cerebrospinal fluid (CSF) samples were collected by 

lumbar puncture from all suspected meningitis cases presenting at any health facility.  Direct Gram 

staining, and serological testing for capsular polysaccharide antigens of Neisseria meningitidis 

(serogroups A, B, C and W135), Streptococcus pneumoniae, and Haemophilus influenzae type b 

(Slidex Meningite Kit, bioMérieux; Pastorex Kit Bio Rad) were carried out at the WMH 

microbiology laboratory.  CSF was also cultured by standard microbiological methods and further 

aliquots frozen at -80oC and sent to the Swiss Tropical Institute, Basel, Switzerland for confirmation 

and molecular analysis. 

 

Survival study 

 

Survival was analyzed of all possible laboratory confirmed meningitis cases, including in-patient 

deaths, from 1998 to 2004 that could be linked to the NDSS database. For each PCM case a CC 

matched for age (±10%), sex and location of the home on admission date, was selected from the 

NDSS dataset.  Where possible, for each PCM case, a further control, matched by age (±10%), sex 

and proximity, with a history of MCM prior to the case’s admission date was also selected. Where 

these criteria gave more than one eligible control, the sibling of the case was preferentially included; 

in the absence of a sibling the control was selected at random. Dates of birth, deaths and migrations 

of both cases and controls were obtained from the NDSS. 

 

Disability study 

 

The disability study included all survivors of PCM who could be traced. For each survivor two 

groups of controls matched by age (±10%) and sex were identified in the NDSS database and 

ordered according to their proximity (by geographical information system) to the case. The first 

group comprised community members who never had meningitis or meningism up to admission date 

of the case. The second group of controls comprised survivors of MCM occurring over the same 

period as the cases. For each case, the community control and MCM control alive at the end of 2005 
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and living nearest to the home (or in the home) of the case, and matched by age (±10%) and sex, 

were included in the study.  

 

An appointment was made with each study participant and their relatives after they gave informed 

consent.   Participants were assured of data confidentiality.  Participants and their relatives were 

interviewed by trained field workers blinded to case/control status, using a standard questionnaire 

previously administered in Kassena-Nankana to survivors of meningococcal meningitis (Hodgson et 

al., 2001b) and adapted from that of a national disability survey (Ngom et al., 1999). Those ≥6 years 

old were asked about general conditions of health, exercise of daily living skills (feeding, dressing, 

cleansing, use of latrines, understanding simple instructions, expression of needs, speaking, hearing, 

movement in home and community) (table 7.3). Subjects over 6 years were also asked about 

symptoms of depression, anxiety, addiction and psychosis (table 7.4).  

 

For neuro-psychological status assessment, subjects above 6 years were asked about their orientation 

in time, place and sense of self. To assess memory, they were asked to recall the composition of the 

previous day’s breakfast, to repeat the names of items mentioned to them, to reverse the order of the 

names of four animals mentioned to them and to recall these animals after 15 minutes.  To assess 

general knowledge they were asked the names of chiefs of the locality of subjects, the head of state 

and the biggest town.  Those above 10 years old were asked the name of the first head of state of 

Ghana, to explain a local proverb and to carry out simple arithmetic operations (Berkow, 1992).   

 

In order to evaluate these responses, in the absence of the subjects relatives were also asked about 

the subject’s disabilities, psychiatric history (table 7.5) and changes in general health status. 

Sensitive issues were explored only after the establishment of a good relationship.  

 

A physician, blinded to the case/control status of subjects, carried out neurological examinations and 

tested for cranial nerve palsies, motor defects and cerebellar disorders. A portable screening 

audiometer (Micromate, Denmark) was used for audiometry after otoscopy of cases and controls 

≥5years.   Those under 5 years were tested by behavioural observational audiometry using thresholds 

of 500 Hz, 1000 Hz and 2000 Hz. Hearing loss was classified as described by Dodge (Dodge et al., 

1984). 
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Ethical approval 

The study was conducted after obtaining informed consent from the chiefs, elders, subjects and 

parents /guardians of subjects. Ethical clearance for the conduct of this study was also obtained from 

the Navrongo Health Research Centre Institutional Review Board and the local health authorities. 

 

Data analysis 

Data were double entered using visual FoxPro and verified for consistency. Using Stata software 

version 9.0 (Stata Corp., College Station, TX, USA), Kaplan-Meier estimates of the survival curves 

for cases and controls were constructed separately for the period up to the end of May 2006. 

Migration out of the district was treated as a censoring event.  

 

Disability was analyzed using conditional logistic regression, with data stratified as defined in the 

original matching. Twelve survivors of PCM were dropped in the matched comparison with 

survivors of MCM.  

7.4 Results 

 

 
From 1998 to 2004 we recorded 145 PCM cases, exhibiting a broad age spectrum with the highest 

reported incidence and mortality rates in the <1 year age group (figure 7.1).   This contrasts with the 

European pattern where there is an initial decrease with age in PCM incidence and then an increase 

with age in older age groups (Appelbaum, 1987a) (figures 7.1 and 7.2). Recorded incidence of MCM 

peaked in the 1-4 year age group declining to a minimum in the 60+ age group (Figure 7.2) 

resembling the age pattern seen in Europe (van de Beek and de Gans, 2004b).  

 

Tracing 

 

Of the PCM admissions analyzed in the WMH laboratory, 77/145 (53.1%) were discharged alive, 

and 68(46.9%) died in hospital. Sixty-seven of those discharged alive could be traced in the NDSS 

database (table 7.1). No patients were admitted more than once for meningitis. Two subjects denied 

ever having meningitis and were omitted from the analysis, while one survivor could not be 

interviewed. The low number of identified cases in the NDSS could be due to incorrect addresses or 

names in the admission records. 



Chapter 7. Survival and sequelae of Pneumococcal meningitis 
 

 77 

0

10

20

30

40

50

60

70

80

<1 1-4 5-14 15-29 30-59 60+

Age group (years)

In
c
id

e
n
c
e

 p
e
r1

0
0

,0
0

0
 p

e
rs

o
n -

y
e
a

rs
 a

t 
ri
s
k
 

Pneum ococcal m eningitis

Meningococcal m eningitis

0

5

10

15

20

25

30

35

40

<1 1-4 5-14 15-29 30-59 60+

Age (years)

in
c
id

e
n

c
e

 p
e

r 
1

0
0

,0
0

0
 p

e
rs

o
n

-y
e

a
rs

 a
t 

ri
s
k

C linical cases

Deaths

 
Figure 7.1  Reported incidence and mortality rates of pneumococcal meningitis in the Kassena 
Nankana District 1998 – 2004 
 
 

Figure 7.2  Reported incidence rates of meningococcal and pneumococcal meningitis in the Kassena 
Nankana District 1998 – 2004. 

 
Survival study 

21/67 (31.3%) of the PCM cases, 6/67 (9.0%) of the matched CC, and 8/67 (11.9%) of the MCM 

controls died before the end of the study (May 2006).  Most died within the first month of admission 

(figure 7.3). Nineteen (90.5%) deaths of the PCM group occurred within the first month after 

admission with only 2 (9.52%) occurring more than one month after admission. 
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Table 7.1: Results of tracing 

                                                                                                                                                 No. of patients(n) % of patients 

Found alive (history of pneumococcal meningitis) 46 31.7 
Found alive (denied a history of meningitis) 2 1.4 
Dead 68 46.9 
Absent 22 15.2 
Could not be traced 1 0.7 
Died after discharge of other causes 6 4.1 
Total admissions 145  

 

All 8 deaths in the MCM group occurred within the month of admission and no death occurred more 

than one month after admission. Deaths in the community controls were spread along the period of 

study with 2 (33.33%) deaths occurring within the first month after admission of the case. The 

difference in survival between the three groups over the whole period were highly significant (log-

rank test (LR) 2
2χ =17.9, p<0.0001) there was however, no significant difference in survival after the 

first month of admission (LR 2
2χ =0.18, p=0.67). The relative risk of death (hazard ratio) of PCM 

compared with MCM was 7.0 (Cox Regression; p<0.0001, 95%CI: 2.4, 20.3). 

 

Disability 

Seventy-seven (53.1%) of PCM patients admitted to the hospital were discharged alive. Of these 

46(59.7%) were available and participated in the disability study.  An equal number of community 

controls were also included, as were all the MCM cases available (Table 7.2). The mean age of the 

study participants was 17.6 years (SD 15.1; range 1-73 years) with 13(10.3%) subjects in the 1-4 age 

group, 60(47.6%) in the 5-14 age group, 32(25.4%) in the 15-29 age group, 16(12.7%) in the 30-59 

age group and 5(4.0%) in the 60+ age group.    

 

Levels of disability in the performance of daily skills are shown in table 7. 3.   18 (39.1%) survivors 

of PCM reported difficulty in hearing normal speech, compared to 11 (32.4%) of survivors of MCM 

and 9 (19.6%) of community controls (table 7.3). 

 

PCM survivors also had difficulties in expressing their needs and understanding simple instructions 

more often than the other groups.   PCM patients and controls differed in the relatives’ perception of 

changes in the general condition of health in the two years before interview (figure 7.4) (OR=4.5, 
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95%CI: 1.5, 18.3, χ2 = 0.003 p=0.004), and a higher proportion of PCM survivors were considered 

to have deteriorated than of MCM survivors (though this difference was not statistically significant) 

(Table 7.5). 

 

 
Figure 7.3  Kaplan-Meier survival curves comparing the survival of pneumococcal meningitis cases 

with meningococcal meningitis cases and community controls in the Kassena Nankana District. 

 
 

Table 7.2  Distribution of study subjects 

 PCM MCM CC 

Numbers attending 46 34 46 

Age (years) 18.6 

(SD 15.9; range 2-70) 

15.1 

(SD 13.0; range 3-60 ) 

18.3 

 (SD 15.8; range 1-73) 

Number female 19(41.3%) 12(35.3%) 19(41.3%) 
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The main differences in health reported by relatives in the unstructured narrative were that PCM 

survivors were reported to suffer from difficulties in communication.   The neuro-psychological 

status assessment indicated poor performance in all three groups, with fewer than 70% of each group 

answering more than 50% of the questions correctly.  

Figure 7.4 Disability of study subjects. 

 

The differences between groups in disability recorded by audiometry (tables 7.6 and 7.7 and in 

figure 7.4) were much greater than those recorded by interview. Overall, moderate-profound hearing 

impairment was found in 11 (23.9%) of PCM survivors compared with 1 (2.2%) CC ( 2
1χ =15.5; 

p<0.001), and 2 (5.9%) of MCM survivors (OR =8.0; 2
1χ  =6.2; p=0.01; 95% CI: 1.0, 64.0) (Tables 

7.6 & 7.7). This compares with only 1.6% of MCM survivors in our previous (much larger) study 

(Hodgson et al., 2001b). Four PCM survivors had chronic otitis media [left (3) and right (1)] (table 

7.8). Two of them had suppuration and one only a tympanic membrane perforation. One CC and 1 

survivor of MCM had non-suppurative chronic otitis media, each with tympanic membrane 

perforations. Swabs of the pus were taken to the laboratory for culture and sensitivity but there was 

no bacterial growth and these individuals were referred to an Ear Nose & Throat specialist for 

management.  
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There was no significant difference in the three groups with regards tests of the other cranial nerves. 

Nor was there any significant difference in the muscle bulk, tone and reflexes of the survivors of 

PCM, MCM and CC (figure 7.4).   

More PCM than MCM survivors had psychiatric symptoms (hearing voices: OR=5.0 2
1χ =5.8; 

p=0.02; reported self-inflicted injury: 2
1χ =8.3; p=0.004; shutting self up alone: 2

1χ =4.2; p=0.04; 

panic: OR=4.5; 2
1χ  =4.8; p=0.03) (tables 7.4 and 7.5).  PCM  survivors also have relatively poor 

social skills (tables 7.4 and 7.5), 17.4% having the tendency to cause self-harm and two behaving 

strangely.   

Other disabilities identified are summarized in table 7.8.  Gait ataxia was found in 3 survivors of 

PCM, 1 community control, and one MCM survivor.  All subjects found to have any form of 

disability were referred to the appropriate specialist(s) for further management and rehabilitation. 

7.5 Discussion 

 

Despite the small study size we could show substantial differences in both survival and sequelae 

between PCM and both MCM and CC groups.  The profound excess mortality of about 38% 

(compared to 6.3% due to MCM reported earlier (Hodgson et al., 2001b)), mostly in the acute phase 

of PCM is slightly lower than other reports in the African meningitis belt (Bijlmer et al., 1990; 

Campbell et al., 2004; Goetghebuer et al., 2000) but far higher than the 5-20% reported in 

industrialised countries (Baird et al., 1976; Kornelisse et al., 1995; Arditi et al., 1998; Fiore et al., 

2000; Buckingham et al., 2001; Schuchat et al., 1997).  

 

Possible reasons for the high mortality (hazard ratio approximately 7) are the young age of the PCM 

cases, hypervirulence of S. pneumoniae serotype 1 (chapter 6), late presentation, and initial diagnosis 

of cerebral malaria (especially in children) leading to delay in starting appropriate antibiotics. 

Bedside diagnostic test kits for malaria parasites and for bacteria in CSF could prevent the latter.  

 

The lack of significant differences in survival between PCM cases and CC after the acute phase of 

PCM (χ2=0.15 p=0.7), confirms that the PCM indeed accounts for the high mortality.  PCM 
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survivors more frequently reported changes in health status, especially hearing impairment, speech 

impairment and psychosocial changes, than did either CC or MCM (table 7.5 and figure 7.4). 

 

The lack of difference between PCM cases and CC (χ2=0.15 p=0.7) in the survival rates after the 

acute phase of PCM, confirms that the high mortality was indeed due to the PCM.   

Approximately one out of every four survivors of PCM (24%) has moderate-profound hearing loss, 

while our earlier study of MCM survivors found a rate of only 1.6% (Hodgson et al., 2001b) 

comparable to the 2.2% profound hearing loss in the MCM controls in the present study (tables 7.3 

& 7.4).  This confirms earlier studies that found Sensorineural Hearing Loss (SNHL) to be most 

often associated with S. pneumoniae meningitis (Dodge et al., 1984; Baraff et al., 1993; Daoud et al., 

1995; Pikis et al., 1996; Pikis et al., 1996; Richardson et al., 1997; Goetghebuer et al., 2000). Not all 

hearing loss is detected on admission and hearing evaluation is recommended as part of routine 

follow-up after bacterial meningitis (Fortnum, 1992; Fortnum and Hull, 1992; Fortnum and Davis, 

1993; Woolley et al., 1999). 

The high virulence of S. pneumoniae serotype 1 (chapter 6) or late presentation are possible 

explanations for the high incidence of SNHL. SNHL arises at an early stage of pathogenesis (Nadol, 

Jr., 1978; Kaplan et al., 1986) and early reporting, early diagnosis and prompt appropriate treatment 

reduce its incidence in survivors (Richardson et al., 1997).  

Late identification and lack of rehabilitation of those with impaired hearing could also account for 

the approximately 9% of PCM survivors with profound speech impairment.  Early identification and 

rehabilitation of hearing loss in children is essential for language acquisition and for educational and 

social development (Yoshinaga-Itano et al., 1998; Yoshinaga-Itano and Apuzzo, 1998a; Yoshinaga-

Itano and Apuzzo, 1998b).  

Though our assessments were rudimentary, the incidence of cognitive disability in PCM survivors 

that we recorded [14(30.4%)] is far higher than in other reports (Grimwood et al., 1995; Grimwood 

et al., 2000). This could well be a further consequence of hearing and speech impairment coupled 

with late detection and absence of rehabilitation.  The incidence is much higher than in survivors of 

MCM or CC (OR=6, 2
1χ =3.96, p=0.0465, 95%CI: 0.7, 49.8).  
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It is advisable that every child, following bacterial meningitis, should undergo a complete and 

repeated audiological assessment to detect any lesser impairments and/or unilateral hearing losses 

since that may damage the development of speech and language.   This assessment should begin as 

soon as possibly because early identification of hearing impairment is needed to ensure that any 

cochlear implantation is carried out before ossification of the cochlear occurs (Dodds et al., 1997; 

Marx and Baer, 2001). 

The high level of mild hearing impairment in both groups of controls is also of concern since this 

very likely increases the risk of motor traffic accidents and limits academic performance.  The many 

possible causes of this impairment, including congenital factors, other infections, and drug side-

effects, require further investigation.   Screening of hearing in newborns before they leave the 

hospital or maternity home, of infants during postnatal clinics, and of school children (at least 

annually) is thus necessary even when there is no meningitis epidemic. In the absence of early 

screening the average age of detection of significant hearing loss is approximately 14 months 

(Erenberg et al., 1999). Those found to be impaired need early referral to the appropriate specialist 

for further management. 

Consistent with earlier reports (Baraff et al., 1993; Daoud et al., 1995) survivors of PCM were more 

likely to suffer psychiatric disorders than survivors of MCM and we found indications of psychiatric 

disorders than were reported in the earlier study of MCM survivors (Hodgson et al., 2001b).  This 

may result from the need to adjust to a sudden drastic change in the health status and the 

accompanying stigma.   

The gait ataxia may have resulted from peripheral vestibular dysfunction or neurological damage 

from central nervous system involvement of the disease since most survivors with hearing 

impairment have vestibular areflexia (Rasmussen et al., 1991). 

In view of the high morbidity associated with PCM there is the need for a multi diciplinary and 

multisectorial approach in the management and rehabilitation of survivors of PCM. The 

identification of long-term sequelae in survivors of pneumococcal meningitis before and after 

discharge from hospital will enable the institution of programmes for long term follow-up and 

rehabilitation of survivors.   As part of such programs, the survivors and their relatives should 

receive serious counselling on the condition and changes in the health during and before discharge 

from the hospital, and the need to make adjustments for their poorer social skills. 
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At the same time there is the need for thorough surveillance of pneumococcal diseases, with 

isolation of invasive serotypes by cultures (blood, CSF, ear swabs etc) and agglutination tests. This 

will be very helpful for future vaccine development and introduction in view of the diversity of 

pneumococci.  Considering the high incidence, mortality and morbidity rates of PCM in the <1 age 

group and the lack of effect of the 23- valent polysaccharride vaccine on children <2 years and the 

absence of the hypervirulent serotype1 (found in the district) in the currently licensed heptavalent 

pneumococcal conjugate vaccine, it is urgent to carry out prenatal maternal vaccination with the 

pneumococcal polysaccharide vaccine while efforts are being made for conjugate vaccines (with the 

appropriate serotypes) for perinatal immunization. Protection of the child by transfer of maternal 

antibodies at birth and by breast-feeding may be possible with antenatal maternal vaccination with 

pneumococcal vaccine (Deubzer et al., 2004). This approach is currently used successfully in the 

control of neonatal tetanus and there is good reason for it to prevent neonatal invasive pneumococcal 

disease.   
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Table 7.3 Disability (self reported) 

 
 

 
Controls  

 
Survivors of pneumococcal 

meningitis 
 

 
Community controls 

 

 
Survivors of  

pneumococcal meningitis 
 

Survivors of  
meningococcal  meningitis 

 
 

 
 

 
                        Disability 

 
 

 
Cases: 

 
Survivors of 

pneumococcal 

meningitis 
n (%) 

 
Community 

controls 
n (%) 

Survivors of 
meningococcal 

meningitis                 
n (%) 

 
ORa 

(95%CI) 
 

 

χχχχ2 
 

 
p-value 

 
ORa 

(95%CI) 
 

 

χχχχ2 

 
p-value 

Difficulty in moving any part of the body 9(19.6) 11(23.9) 8(23.5) 0.7(0.2, 2.3) 0.3 0.6 0.8(0.2, 3.0) 0.1 0.7 
Difficulty in seeing 11(23.9) 11(23.9) 7(20.6) 1.0(0.3, 3.5) 0.0 1.0 1.2(0.4, 3.5) 0.1 0.8 
Difficulty in hearing normal  speech 18(39.1) 9(19.6) 11(32.4) 2.8(1.0, 7.8) 4.4 0.04 1.6(0.6, 4.1) 0.9 0.3 
Episodes of fits in the last year 2(4.4) 6(13.0) 2(5.9) 0.3(0.1, 1.7) 2.1 0.15 0.0(0.0, ∞) 2.8 0.1 
Inability to move inside the home 2(4.4) 1(2.2) 2(5.9) 2.0(0.2, 22.1) 0.3 0.6 1.0(0.1, 7.1) 0.0 1.0 
Difficulty in speaking like a person of same age 9(19.6) 6(13.0) 2(5.9) 1.8(0.5, 6.0) 0.8 0.4 3.5(0.7, 16.8) 2.9 0.09 
Inability to move around village 2(4.4) 1(2.2) 2(5.9) 2(0.2, 22.1) 0.3 0.6 1.0(0.1, 7.1) 0.0 1.0 
Inability to use latrine unaided 8(17.4) 11(23.9) 8(23.5) 0.5(0.1, 2.0) 1.1 0.3 1.3(0.3,6.0) 0.1 0.7 
Loss of feeling in hand or foot 7(15.2) 6(13.0) 5(14.7) 1.2(0.4, 3.9) 0.1 0.8 1.3(0.3, 6.0) 0.1 0.7 
Inability to feed unaided 4(8.7) 3(6.5) 1(2.9) 1.3(0.3, 6.0) 0.1 0.7 4.0(0.4, 35.8) 1.9 0.2 
Inability to dress unaided 3(6.5) 3(6.5) 2(5.9) ∞   2.0(0.2, 22.1) 0.3 0.6 
Inability to keep self clean 6(13.0) 7(15.2) 6(17.7) 0.5(0.0, 5.5) 0.3 0.6 1.0(0.2, 5.0) 0.0 1.0 
Inability to express needs 3(6.5) 1(2.2) 0 3.0(0.3, 28.8) 1.1 0.3 ∞(0.0, ∞) 4.2 0.04 
Inability to understand simple instructions 4(8.7) 1(2.2) 0 4.0(0.4, 35.8) 1.9 0.17 ∞(0.0, ∞) 5.6 0.02 
Other difficulties 3(6.5) 3(6.5) 2(5.9) 7(0.2, 2.3) 0.3 0.6 0.8(0.2, 3.0) 0.1 0.7 

Total number of community controls =46, survivors of pneumococcal meningitis=46; survivors of meningococcal meningitis=34 
a Odds ratio   
∞∞∞∞ Odds ratio could not be determined because of zero denominator  

χχχχ2
 Likelihood ratio chi squared (degrees of freedom=2) 
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Table 7.4 Self-reported psychiatric symptoms 

 
 

 
 

Controls  

Survivors of pneumococcal 
meningitis 

 
Community controls 

 

 
Survivors of pneumococcal 

meningitis 
 

Survivors of 

meningococcal     meningitis 

 
 

 
 

Symptoms 

 
 

 
Cases: 

Survivors of 

pneumococcal 
meningitis 

n(%) 
 

Community 
controls 

n (%) 

Survivors of 

meningococcal 
meningitis                 

n(%) 

 

ORa 
(95%CI) 

 

 

  χχχχ2 
(df) 

 

p-
value 

 

 

ORa 

(95%CI) 
 

 

χχχχ2 
(df) 

 

 p-
value 

Aches and pains 2(4.4) 3(6.5) 0(0.0) 0.7(0.1, 4.0) 0.2 0.7 ∞ 2.8 0.10 
Tiredness or having little energy 1(2.2) 1(2.2) 1(2.9) 1(0.1, 16.0) 0 1.0 104(0.1, 16.0) 0 1.0 
Difficulty in sleeping 1(2.2) 2(4.4) 0(0.0) 0.5(0, 5.5) 0.5 0.8 ∞(0) 3.0 0.4 
Tendency to worry a lot 9(19.6) 12(26.1) 4(11.8) 0.7(0.2, 1.9) 0.6 0.4 2.0(0.5, 8.0) 1.0 0.3 
Auditory hallucinations 15(32.6) 15(32.6) 5(14.7) 1.0(0.4, 2.4) 0 1.0 5.0(0.4, 1.6) 5.8 0.02 
Visual hallucination 13(28.3) 14(30.4) 6(17.7) 1.1(0.5, 2.6) 0.1 0.8 1.4(0.2, 8.3) 0.1 4.0 
Episodes of great fear or panic 20(43.5) 18(39.1) 8(23.5) 1.2(0.5, 2.9) 0.2 0.7 4.5(1.0, 20.8) 4.8 0.03 
Persecutory delusions 18(39.1) 19(41.3) 11(32.4) 0.9(0.4, 2.2) 0 1.8 2.7(0.7, 10.0) 2.4 0.12 

Addiction 
Drinking alcohol 6(14.0) 6(14.3) 5.0(17.2) 1.0(0.2, 5.0) 0 1 0.3(0.0, 2.2) 1.9 0.17 
Total number of community controls =46, survivors of pneumococcal meningitis=46; survivors of meningococcal meningitis=34 
 a Odds ratio  ∞∞∞∞ Odds ratio could not be determined because of zero denominator  
χχχχ2 Likelihood ratio chi squared (degrees of freedom=2) 
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Table 7.5 Psychiatric symptoms reported by relatives 

 
 

 
 

Controls  

 
Survivors of pneumococcal 

meningitis 
 

Community controls 
 

Survivors of pneumococcal 
meningitis 

 
Survivors of 

meningococcal     meningitis 

 
 

 

Symptoms 

 

 

 
 

 
Case: 

Survivors of 
pneumococcal 

meningitis 

n(%) 
 

Community 
controls 

n (%) 

Survivors of 
meningococcal 

meningitis                 

n(%) 

 
ORa 

(95%CI) 

 

 

χχχχ2 
(df) 

 
p-

value 

 
ORa 

(95%CI) 
 

 

χχχχ2 

  (df) 

 
p-value 

Changes in health status 20(44.4) 6(13.0) 12(35.6) 5.7(1.7, 19.3) 10.8 0.001 1.6(0.6, 4.1) 0.9 0.3 
Other difficulties 9(19.6) 1(2.2) 1(2.9) 9.0(1.1, 71.0) 7.4 0.007 7.0(0.9, 56.9) 5.1 0.02 
Depressive and anxiety symptoms 
Shuts himself up alone 9(19.6) 4(8.7) 1(2.9) 2.3(0.7, 7.3) 2.0 0.16 ∞ 4.2 0.04 
Difficulty in sleeping 1(2.2) 2(4.4) 1(2.9) 0.5(0, 5.5) 0.3 0.6 1.0(0.06,16.0) 0 1.0 
Tendency to cry 12(26.1) 15(32.6) 7(20.6) 0.7(0.2, 1.9) 0.6 0.4 2.0(0.6, 6.6) 1.4 0.2 
Suicidal tendencies 7(15.2) 7(15.2) 5(14.7) 1.0(0.3, 3.1) 0 1.0 1.5(0.3, 9.0) 0.2 0.7 
Tend to worry a lot 10(21.7) 12(26.1) 5(14.7) 0.8(0.3, 2.2) 0.3 0.6 1.5(0.4, 5.3) 0.4 0.5 
Easily annoyed or irritable 16(34.8) 18(39.1) 12(35.3) 0.8(0.3, 2.0) 0.2 0.7 1.1(0.4, 3.2) 0.1 0.8 
Psychotic symptoms 
Auditory hallucinations 13(28.3) 14(30.4) 6(17.7) 0.9 (0.3, 2.4) 0.1 0.8 2.7(0.7, 10.1) 2.4 0.1 
Visual hallucination 10(21.7) 10(21.7) 7(20.6) 1.0(0.4, 2.7) 0 1.0 1.7(0.1, 37,7) 0.5 0.8 
Persecutory delusions 16(34.8) 18(39.1) 10(29.4) 0.8(0.4, 1.9) 0.2 0.7 1.4(0.5, 8.0) 1.0 0.3 
Hurt self 8(17.4) 5(10.9) 1(2.9) 1.6(0.5, 4.9) 0.7 0.4 ∞ 8.3 0.004 
Strange behaviour 2(4.4) 0 0 ∞ 2.8 0.1 * 0 1.0 
Refusal of food 11(23.9) 5(10.9) 6(17.7) 2.2(0.8, 6.3) 2.3 0.1 2.7(0.7, 10.1) 2.4 0.1 
Unprovoked fighting 9(19.6) 7(15.2) 4(11.8) 1.7(0.4, 7.0) 0.5 0.5 2.0(0.5, 8.0) 1.0 0.3 
Addiction 

Drinking alcohol 6(13.0) 5(10.9) 5(14.7) 1.3(0.3, 6.0) 0.1 0.7 0.3(0.0, 2.2) 1.9 0.2 

Total number of community controls =46, survivors of pneumococcal meningitis=46; survivors of meningococcal meningitis=34 
a Odds ratio     
∞∞∞∞ Odds ratio could not be determined because of zero denominator  

χχχχ2
 Likelihood ratio chi squared (degrees of freedom=2) 

* No matched cases   
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 Table 7.6 Hearing assessment.  a. Left ear 

 
 

 
Controls  

 
Survivors of pneumococcal 

meningitis 
 

 
Community controls 

 

 
Survivors of  

pneumococcal meningitis 
 

Survivors of  
meningococcal      meningitis 

 
 

 
 

 
                        Hearing class 

 
 

 
Cases: 

 
Survivors of 

pneumococcal 

meningitis 
n (%) 

 
Community  

controls 
n (%) 

Survivors of 
meningococcal 

meningitis                
 n (%) 

 
ORa 

(95%CI) 
 

 

χχχχ2 

 

 
p- 

value 
 

 
ORa 

(95%CI) 
 

 

χχχχ2 
 

 
p- 

value 
 

500hz 

Normal hearing(<30dB) 29(63.0) 28(60.9) 21(61.8) reference reference 
Mild hearing loss(30-55dB) 6(13.0) 17(37.0) 11(32.4) 0.3(0.1, 1.1) 0.1(0.0,0.9) 
Moderate hearing loss(55-70dB) 3(6.5) 1(2.2) 1(2.9) ∞ 2.8(0.1, 66.2) 
Severe/profound hearing 
loss(≥70dB) 

8(17.4) 0(0.0) 1(2.9) ∞ 

        
 

19.2 
 

 
 
<0.01 
 6.5(0.6, 66.1) 

 
 

13.4 
 

 
 

<0.01 
 

1000hz 

Normal hearing(<30dB) 31(67.4) 37(80.4) 22(64.7) reference reference 

Mild hearing loss(30-55dB) 7(15.2) 8(17.4) 11(32.4) 1.3(0.3, 4.7) 0.2(0.1, 1.1) 
Moderate hearing loss(55-70dB) 1(2.2) 1(2.2) 0(0.0) ∞ ∞ 
Severe/profound hearing 
loss(≥70dB) 

7(15.2) 0(0.0) 1(2.9) ∞  

 
 
 

11.2 
 

 
 

0.01 
 

5.3(0.6, 44.5) 

     
      

 
9.4 

 

 
 

0.02 
 

2000hz 

Normal hearing(<30dB) 32(69.6) 37(80.4) 26(76.5) reference reference 
Mild hearing loss(30-55dB) 4(8.7) 9(19.6) 6(17.6) 0.4(0.1, 1.7) ∞ 
Moderate hearing loss(55-70dB) 3(6.5) 0(0.0) 1(2.9) ∞  1.0(0.1, 16.0) 

Severe/profound hearing 
loss(≥70dB) 

7(15.2) 0(0.0) 1(2.9) ∞  

 
 
15.5 
 

 
<0.01 
 

6.0(0.7, 49.8) 

 
 

10.9 
 

 
 

0.01 
 

Total number of community controls =46, survivors of pneumococcal meningitis=46; survivors of meningococcal meningitis=34 
 χχχχ2

 Likelihood ratio chi squared (degrees of freedom=3) 
∞∞∞∞ Odds ratio could not be determined because of zero denominator. 
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Table 7.7 Hearing assessment.  b. Right ear 

 
 

 
Controls  

 
Survivors of pneumococcal 

meningitis 
 

 
Community controls 

 

 
Survivors of  

pneumococcal meningitis 
 

Survivors of  
meningococcal      meningitis 

 
 

 
 

 
                        Hearing class 

 
 

 
Cases: 

 
Survivors of 

pneumococcal 

meningitis 
n (%) 

 

 
Community  

controls 
n (%) 

Survivors of 
meningococcal 

meningitis                
 n (%) 

 
ORa 

(95%CI) 
 

 
 

χχχχ2 
 

 
p- 

value 
 

 
ORa 

(95%CI) 
 

 
 

χχχχ2 
 

 
p- 

value 
 

500hz 

Normal hearing(<30dB) 29(63.0) 25(54.4) 21(61.8) reference reference 
Mild hearing loss(30-55dB) 9(19.6) 19(41.3) 9(26.5) 0.3(0.1, 1.1) 0.1(0.0, 1.0) 
Moderate hearing loss(55-70dB) 2(4.4) 1(2.2) 3(8.8) 2(0.2, 22.1) 0.2(0.0, 2.0) 
Severe/profound hearing 
loss(≥70dB) 

6(13.0) 1(2.2) 1(2.5) 3.4(0.4, 30.9) 

        
 

8.5 
 

 
 

0.04 
 5.1(0.6, 43.6) 

 
 

10.5 
 
 

 
 

0.01 

Total 46 46 34  
1000hz 

Normal hearing(<30dB) 31(67.4) 35(76.1) 27(79.4) reference reference 

Mild hearing loss(30-55dB) 9(19.6) 10(21.7) 4(11.8) 1.0(0.4, 2.9) 1(0.1, 7.1) 
Moderate hearing loss(55-70dB) 1(2.2) 1(2.2) 2(5.9) 1.0(0.1, 16.0) 0.8(0.1, 9.7) 
Severe/profound hearing 
loss(≥70dB) 

5(10.9) 0(0.0) 1(2.9) ∞ 

 
 

6.9 

 
 

0.03 
 4.8(0.5, 42.3) 

     
    

3.0 
 

 
 

0.4 

Total 46 46 34  
2000hz 

Normal hearing(<30dB) 28(68.3) 34(81.0) 24(80.0) reference reference 
Mild hearing loss(30-55dB) 6(14.6) 7(16.7) 3(10.0) 1.4(0.37, 5.5) 1(0.1, 7.1) 
Moderate hearing loss(55-70dB) 3(7.3) 1(2.4) 2(6.7) 3.3(0.3, 32.9) 0.7(0.1, 9.1) 
Severe/profound hearing 
loss(≥70dB) 

4(9.8) 0(0.0) 1(3.3) ∞ 

 
 
6.9 

 
  

0.07 
 3.8(0.4, 35.2) 

 
 

2.0 

 
 

0.6 

Total 41 42 30  

 

 χχχχ2
 Likelihood ratio chi squared (degrees of freedom=3)  ∞∞∞∞ Odds ratio could not be determined because of zero denominator 
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Table 7.8  Other identified disabilities 

 
 

Differences between 
PCM and CC 

 

 
 

Differences between 
PCM and MCM 

 
 

 
 

 
            Identifiable disability 

 
 

Survivors of 
pneumococcal 

meningitis 
(PCM) 
n (%) 

 
 

Community  
    controls 

         (CC) 
n (%) 

 
Survivors  

of 
meningococcal 

menngitis 
(MCM)                
n (%)  

ORa (95%CI) 
 

 

χχχχ2 
 

 

p-
value 

 

ORa 
(95%CI) 

 

 

χχχχ2 

 

p-
value 

Squint 1(2.2) 1(2.2) 2(5.9) 1.0(0.06, 16.0) 0 1.0 0.5(0.05, 5.5) 0.3 0.56 
Unstable gait 3(6.5) 1(2.2) 3(8.8) 3.0(0.3, 28.9) 1.1 0.3 0.7(0.1, 4.0) 0.2 0.65 
Chronic otitis media 4(8.7) 1(2.2) 2(5.9) 4.0(0.4, 35.8) 1.9 0.17 2.0(0.4, 10.9) 0.7 0.4 
Inability to identify smell of alcohol 16(34.7) 21(45.7) 14(41.2) 0.4(0.1, 1.4) 2.0 0.2 0.5(0.2, 1.3) 2.0 0.2 
Facial palsy 1(2.2) 2(4.4) 1(2.9) 0.5(0.18, 22.06) 0.3 0.6 1.0(0.0, ∞) 1.4 0.2 

Total number of community controls =46, survivors of pneumococcal meningitis=46; survivors of meningococcal meningitis=34 
 χχχχ2

 Likelihood ratio chi squared (degrees of freedom=3) 
∞∞∞∞ Odds ratio could not be determined because of zero denominator. 
a Odds ratio 
CI Confidence interval 
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8.1 Abstract 

 

Background Epidemics of both meningococcal (MCM) and pneumococcal meningitis (PCM) occur 

in the African meningitis belt.  It is not well understood how climate affects the timing of these 

epidemics and whether both diseases are triggered by the same factors.   

 

Methods Surveillance of MCM and PCM was carried out between January 1998 and December 

2004 in the Kassena Nankana District (KND) of northern Ghana by collecting and analyzing CSF 

samples of all suspected meningitis cases reporting to health facilities in the district. Weekly means 

of meteorological data were obtained from the local meteorological station. Measurements of 

relative humidity taken at 06.00 hours (highest humidity of the day) and at 15.00 hours (lowest 

humidity of the day), maximum and minimum air temperature, number of days of dust haze, length 

of sunshine in a week, total rainfall in a week and wind speed were provided by the station. We 

assessed the relationship between climatic variables and reported MCM and PCM cases using 

negative binomial regression adjusting for temporal correlations using autoregressive term (AR) 

order 1 model. 

 

Results The results of our models show that concurrent weekly increase in maximum temperature 

(IRR=1.18; 95%CI: 1.11, 1.24) and concurrent weekly decrease in total rainfall (IRR=0.97; 95%CI: 

0.95, 0.99) significantly influenced the risk of MCM. A concurrent weekly decrease in rainfall 

(IRR=0.98; 95%CI: 0.96, 0.998)] significantly influenced the risk of PCM.  

 

Conclusion Climatic factors that trigger MCM and PCM outbreaks are similar, not always the same 

and often result in different timing of outbreaks of the two diseases, with PCM outbreaks preceding 

those of MCM. While the risk of MCM is significantly associated with concurrently weekly increase 

in maximum temperature and concurrent decrease in rainfall, the risk of PCM is significantly 

associated with concurrent decrease in rainfall. The duration of preceding absence of rainfall appear 

to be the best predictor of both PCM and MCM outbreaks. 
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8.2 Introduction 

 

Bacterial meningitis epidemics occur world-wide, but are particularly devastating in the African 

Meningitis Belt stretching from Senegal to Ethiopia (Belcher et al., 1977; Greenwood, 1999; Horn, 

1908; Waddy, 1957). These epidemics are frequently not recognised until they are well underway.  

Despite the availability of effective vaccines, control measures are often instituted too late to be very 

effective. It is currently recommended to trigger a response when the attack rate reaches 15 cases per 

100,000 (WHO, 2000; Varaine et al., 1997) but this requires an excellent surveillance system.  The 

need for reporting from the district to regional to national level and to WHO, and the time required 

to prepare a vaccination programme, introduce further delays.  

 

Most of the epidemics in the African Meningitis Belt are caused by Neisseria meningitidis.  These 

epidemics show a very strong seasonality (Lapeyssonnie, 1963; Belcher et al., 1977; Greenwood et 

al., 1983; Greenwood et al., 1984; Greenwood et al., 1987; Besancenot et al., 1997) and so there is a 

clear potential for climate-based early warning systems.  However, in recent studies in northern 

Ghana, we have also observed outbreaks of pneumococcal meningitis, indicating that the 

epidemiology of bacterial meningitis in the Meningitis Belt may be changing (chapter 6). 

 

Outbreaks of meningococcal meningitis start in the dry season when it is dry and dusty and stop 

during or shortly after the onset of the rains. Though this seasonality is well recorgnised, the 

underlying mechanism is not well understood (Greenwood et al., 1983).  Recent analyses of remote 

sensed climate data (Molesworth et al., 2003; Thomson et al., 2006)  and climate models 

(Molesworth et al., 2002; Sultan et al., 2005) have provided algorithms for locating epidemic-prone 

areas, but it remains uncertain how environmental data can best be used to predict the timing of 

outbreaks. Nor is it clear whether pneumococcal outbreaks result from the same complex of 

environmental factors.  

 

Between January 1998 and December 2004 in the Kassena Nankana District of northern Ghana 

(KND) CSF samples were collected from all suspected meningitis cases reporting to local health 

facilities, and bacteria speciated by latex agglutination tests and bacteriological techniques.  Using 

locally recorded meteorological data we have now analysed separately how the incidence of 
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laboratory confirmed meningococcal and pneumococcal meningitis depends on recent 

environmental conditions.      

8.3 Methods 

 
Study area. 

 
The Kassena Nankana District (KND), one of the most deprived districts in Ghana, has a population 

of 140,000, an area of 1675km2 and lies within the guinea savannah woodland of northern Ghana 

between latitude 10o30´ and 11o00` N and between longitude 1o00`and 1o30` W. The district lies 

within the meningitis belt of sub-Saharan Africa with a sub-Sahelian climate of a short rainy season 

from May to October (average annual rainfall 850-950mm) and a long dry season from November to 

April during which temperatures increase to daily maxima in March-April of about 40°C.  During 

January-April the atmosphere fills with dust blown from the Sahara by the harmattan winds.   The 

main soil type is a sandy loam.  

 

The district has one hospital (the War Memorial Hospital) located in Navrongo, the district capital 

and four health sub districts each of which has a health centre. There is a state owned meteorological 

station in Navrongo where daily weather conditions are recorded.  

 

Epidemiological data 

Surveillance of meningococcal and pneumococcal meningitis was carried out between January 1998 

and December 2004 in the KND by collecting and analyzing CSF samples of all suspected 

meningitis cases reporting to any of the above health facilities in the district. The CSF samples are 

sent together with demographic data of the patients to the War Memorial Hospital microbiology 

laboratory.  Here, the CSF samples are analysed by direct staining with Gram stain, serological 

testing for Neisseria meningitidis (A, B.C and W135) (Nm), Streptococcus pneumoniae (SP) and 

Hemophilus influenzae b with slidex meningite kit, biomerieux; Pastorex kit Bio rad. Part of the CSF 

is cultured by standard microbiological methods at the same laboratory and the rest frozen at -80oC 

and sent to the Swiss Tropical Institute, Basel, Switzerland for confirmation and further molecular 

analysis. 

A case is said to be confirmed when the CSF of a suspected case has positive antigen detection for 

N. meningitidis or S. pneumoniae or positive culture of CSF.  The demographic characteristics and 
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residence status of cases are confirmed using a demographic surveillance system in which the entire 

resident population is registered. 

 

Meteorological data 

Weekly means of meteorological data were obtained from the meteorological station at Navrongo. 

Measurements of relative humidity (%) taken at 06.00 hours (highest humidity of the day) and at 

15.00 hours (lowest humidity of the day), mean maximum and minimum air temperature (oC), 

number of days of dust haze in the week, length of sunshine (hours) in a week, total rainfall (mm) in 

a week and wind speed (knots) were provided by the station. 

 

Statistical analysis 

 

Weekly and monthly aggregates of MCM and PCM cases (from the WMH microbiology laboratory 

dataset) and the corresponding meteorological data (of similar time intervals) were double entered 

using visual FoxPro. Due to zero-inflation and over dispersion of the data, negative binomial 

regression was used for data analysis in Stata software version 9.0 (Stata Corp., College Station, TX, 

USA). The district population as at 21st November 2001 was used in the calculation of the incidence 

rates. 

 

For each environmental variable, and for both MCM and PCM, negative binomial regression models 

were used to determine the lag period in the environmental variable that best predicted the incidence 

of meningitis as determined using the Akaike`s information criterion (AIC). Models were adjusted 

for age, sex and year. 

 

To identify which of the environmental factors is more important we fixed negative binomial models 

simultaneously including multiple environmental factors. In order to allow for serial correlation in 

the responses we included autoregressive term of order 1. Markov Chain Monte Carlo simulation 

(MCMC) was applied (one chain) to estimate model parameters. After an initial burn-in of 10000 the 

number of iterations thereafter depended on convergence, which was assessed using ergodic 

averages of the parameter estimate. After convergence a final sample was collected to obtain 

medians of the posterior distribution of the parameters. To obtain incidence rate ratios (IRR) per unit 

change in incidence for each covariate, model estimates were exponentiated. For comparison of 

model fit, the Deviance Information Criterion (DIC) was used where small values of DIC indicate 
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superior model fit. The final models include a combination of climatic factors for the short-term 

prediction of epidemics of MCM and PCM.  

8.4 Results 

 

Epidemiological data 

 
During the period under review (1998-2004) 474 cases of bacterial meningitis were confirmed by 

the laboratory, of which 145 were SP and 329 Nm. Of the total number of cases 189 were females  

and 285 males. Of all the meningococcal cases, 127 were females and 202 males while for the SP 62 

were females and 83 males. The highest number of cases was recorded in the 5-14 age group with 

SP being 45 and Nm 147 while the 60+ age group recorded the lowest number of cases with SP 

being 11, Nm 4. There were 9 SP cases and 11 Nm cases recorded in the age group <1; 13 SP and 70  

Nm cases recorded in the 1-4 age group; 27 SP and Nm 72 in the 15-29 age group while the 30-59 

age group recorded 32 and 33 for SP and Nm respectively.   

 

The environmental factors we considered all showed strong seasonality, and were highly correlated 

with each other (figure 8.1-8.3 and 8.5-8.8).  The pattern of rainfall is a main determinant of the 

maximum daily temperature, which is lowest in the wet season, from May to December. 
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Figure 8.1  Relationship between rainfall and humidity in the KND, 1998 - 2004 
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Figure 8.2  Relationship between rainfall and maximum temperature in the KND, 1998 – 2004. 

 

Dust levels peak during the harmattan period from January to April with an inverse relationship 

between dust and minimum humidity.  The peak of humidity corresponds with the minimum of dust,  

and the minimum humidity corresponding to the middle of the harmattan.  Minimum temperatures 

are relatively low (figure 8.3) at the start of the harmattan, but increase during the period when the 

night sky is obscured by dust, reaching a maximum at the end of the harmattan. 



Chapter 8. Influence of climatic factors on the incidence of bacterial meningitis 
 

 99 

0

5

10

15

20

25

30

35

40

45

Ja
n-

98

Apr
-9

8

Ju
l-9

8

O
ct
-9

8

Ja
n-

99

Apr
-9

9

Ju
l-9

9

O
ct
-9

9

Ja
n-

00

Apr
-0

0

Ju
l-0

0

O
ct
-0

0

Ja
n-

01

Apr
-0

1

Ju
l-0

1

O
ct
-0

1

Ja
n-

02

Apr
-0

2

Ju
l-0

2

O
ct
-0

2

Ja
n-

03

Apr
-0

3

Ju
l-0

3

O
ct
-0

3

Ja
n-

04

Apr
-0

4

Ju
l-0

4

O
ct
-0

4

D
ec

-0
4

Month

N
o

. 
o
f 

re
p

o
rt

e
d
 m

e
n

in
g
o

c
o

c
c
a

l 
m

e
n

in
g

it
is

 c
a

s
e
s

0

10

20

30

40

50

60

70

80

M
e

a
n
 r

e
la

ti
v
e

 h
u

m
id

it
y
 a

t 
1

5
0

0
h
rs

(%
);

 

m
e

a
n

 m
in

im
u

m
 t

e
m

p
e

ra
tu

re
 (o
C

)

Meningococcal meningitis cases Mean minimum temperature Mean Relative humidity at 1500hrs
 

Figure 8.3  Relationship between minimum temperature, relative humidity (recorded at 15.00hrs) 
and number of reported meningococcal meningitis cases in the KND, 1998 – 2004. 
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Figure 8.3  Reported pneumococcal and meningococcal meningitis cases in the KND 1998 – 2004. 
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There was considerable heterogeneity over time in the incidence of both MCM and PCM (Figure 

8.4). In some years there were hardly any cases of MCM, while in others there were substantial 

outbreaks. PCM also showed considerable inter-annual variation in incidence (figure 8.4). We have 

previously shown that the inter-annual variation in MCM is associated with changes in patterns of 

colonization (chapter 4), however, the seasonal patterns of the outbreaks are related to the seasonal 

changes of environmental factors. In general, outbreaks of PCM started earlier than those of MCM, 

and were biphasic with the first peak preceding meningococcal outbreaks and the second coinciding 

with the meningococcal outbreak (figure 8.4).    

 

The dust and MCM incidence are strongly correlated but in a typical year the dust rises to a 

maximum and plateaus for about two months before the MCM outbreak begins, so that the MCM 

peaks at the same time as the minimum daily temperature (Figure 8.5 and 8.6). The dusty conditions 

last for 3-4 months, while the MCM outbreaks are rather shorter than this.  Because of the lag time 

between the peak in dustiness and that in MCM incidence, the peak in MCM cases occurs as the dust 

level starts to go down and the humidity starts to increase.   The MCM outbreaks thus often continue 

 after the end of the dusty period and any model for the relationship between dust and MCM must 

consider the lag period between maximum dust levels and the epidemics. Correspondingly, low 

humidity is associated with MCM risk, but again with a lag period between the curve of humidity 

and that of incidence of disease. 
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Figure 8.5 Relationship between dust, relatinve humidity (recorded at 15.00hrs) and reported 
meningococcal meningitis cases in KND, 1998 - 2004 
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Figure 8.6  Relationship between reported pneumococcal and meningococcal meningitis cases and 
dust in the KND, 1998 – 2004 

 
 
Both PCM and MCM have a strong correlation with maximum temperature with peaks of their 

outbreaks coinciding with the peak of maximum temperature (figure 8.7) 

 

The patterns of lag periods for the two different bacterial infections are very different (Tables 8.1 

and 8.2).  MCM incidence is more closely related to humidity and sunshine at least 10 weeks 

previously (we did not explore lags longer than 10 weeks) than to the values taken by these variables 

closer in time to the incidence.  There is no such lag in the relationships between humidity, sunshine, 

and rainfall and the time of onset of PCM disease. The best fitting lag in the relationship between 

MCM and dust was 9 weeks, while only a 4-week lag fitted best for PCM (tables 8.1 and 8.2). There  

appears to be a temperature effect with a long lag for PCM, but concurrent temperatures fit best for 

MCM. 

 

 



Chapter 8. Influence of climatic factors on the incidence of bacterial meningitis 
 

 102 

-5

0

5

10

15

20

25

30

35

40

45

Ja
n -9

8

A
pr

-9
8

Ju
l-9

8

O
ct

-9
8

Ja
n -9

9

A
pr -9

9

Ju
l-9

9

O
ct

-9
9

Ja
n -0

0

A
pr -0

0

Ju
l-0

0

O
ct

-0
0

Ja
n -0

1

A
pr -0

1

Ju
l-0

1

O
ct

-0
1

Ja
n -0

2

A
pr -0

2

Ju
l-0

2

O
ct

-0
2

Ja
n -0

3

A
pr -0

3

Ju
l-0

3

O
ct

-0
3

Ja
n -0

4

A
pr -0

4

Ju
l-0

4

O
ct

-0
4

D
ec

-0
4

Month

N
o

. 
o
f 

 r
e

p
o
rt

e
d

 c
a
s
e

s

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

M
e

a
n

 m
a
x
im

u
m

 t
e
m

p
e
ra

tu
re

 (o
C

)

pneum ococcal m eningitis m eningococcal m eingitis Maxim um tem perature  

Figure 8.7 Relationship between reported pneumococcal and meningococcal meningitis cases and 
maximum temperature in the KND, 1998 – 2004. 

 
 

Since these environmental variables are highly correlated with each other, we fitted further multiple 

regression models in which the terms corresponding to the best fitting lags were simultaneously 

included in order to exclude those effects that arise because of confounding (tables 8.1 & 8.2).  The 

incidence of PCM and MCM was influenced by different climatic factors. 

 
The significant risk factors for MCM, after adjusting for other factors appear to be the absence of 

rainfall and the concurrent weekly maximum temperature (table 1). The significant risk factors for 

PCM, after adjusting for other factors appear to be the dust levels 4 weeks previously the maximum 

temperature 9 weeks previously, and the concurrent decrease in maximum weekly humidity (table 

2).  This is consistent with the onset of outbreaks being early in the harmattan season.   
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Figure 8.8  Relationship between wind speed, relative humidity and reported pneumococcal 
meningitis cases in the KND, 1998 – 2004 
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Figure 8.9  Causal web indicating relationships of Environmental factors with pathogenesis of 
meningitis 
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Table 8.1  Results of modelled maximum likelihood and Bayesian estimates of the effects of 
climatic covariates on reported incidence of meningococcal meningitis in the Kassena Nankana 
District obtained by fitting bivariate and multivariate negative binomial models. 

 

Explanatory variables 
Bivariate  

independent 

model estimates 

(95% CI) 

Multivariate 

independent 

model estimates 

(95% CI) 

Multivariate 

Bayesian temporal 

posterior medians 

(95% BCI) 

Climatic variables 

Rainfall (mm) 0.93(0.91, 0.96) � 0.98(0.96, 0.995) � 0.97♦(0.95, 0.99) 
Maximum temperature (oC) 1.61 (1.42, 1.81) � 1.12(1.02, 1.22) � 1.18♦(1.11, 1.24) 

Minimum temperature (oC) 1.24 (1.07, 1.44) � 1.24(1.14, 1.33) �  
Relative humidity1 (%) at 06:00 0.94 (0.93, 0.95) � 0.96(0.94, 0.98) �  
Relative humidity2 (%) at 15:00 0.91(0.89, 0.93) � 0.99(0.95, 1.02) 0.96(0.93, 1.00) 

Sunshine (hours)    1.14 (1.00, 1.30)� 1.0(0.93, 1.08) 1.07(0.95, 1.17) 
Dust (days) 1.48 (1.36, 1.62) � 1.15(1.04, 1.27) � 1.13(0.97, 1.31) 
♣Wind speed (knots) 0.93(0.82, 1.07)   

  Age group 

0 - <1 1.00 
1 - 4 1.53(0.73, 3.22) 1.68(0.79, 3.04) 

5 - 14 1.50(0.74, 3.07) 1.61(0.79, 3.04) 
15 - 29 0.82(0.39, 1.70) 0.88(0.41, 1.71) 
30 - 59 0.35(0.16, 0.76) 0.36(0.16, 0.74) 

60+ 

 
 
 

0.63(0.58, 0.69) 

0.17(0.05, 0.58) 0.16(0.03, 0.44) 
 
Sex 

      Female 1.60(1.26, 2.04) 0.58(0.43, 0.77) 0.59(0.46, 0.76) 
Over dispersion  16.08(5.02, 40.18) 
Temporal correlation 0.97(0.90, 0.998) 
Temporal variance  0.44(0.22, 0.79) 
DIC 

  

1046.13 

The estimates of covariate effects are expressed in terms of incidence rate ratios (IRR) 

Bayesian credible intervals (BCI) 

�♦: CI, BCIs do not overlap unity, corresponding to statistical significance. 

♣: Not included in temporal model because wind speed effect was not statistically significant up to 

lag 10 weeks in the bivariate non temporal analysis. 

♣: Not included in temporal model because wind speed effect was not statistically significant up to 

lag 10 weeks in the bivariate non temporal analysis. 

# Not included in the multivariate analysis to avoid confounding (selection done using AIC) 
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Table 8.2  Results of modelled maximum likelihood and Bayesian estimates of the effects of 
climatic covariates on reported incidence of pneumococcal meningitis in the Kassena Nankana 
District obtained by fitting bivariate and multivariate negative binomial models. 

 

Explanatory variables 
 

Bivariate  

independent 

model estimates 

(95% CI) 

 

Multivariate 

independent 

model estimates 

(95% CI) 

 

Multivariate 

Bayesian 

temporal 

posterior medians 

(95% BCI) 

Climatic variables 

Rainfall (mm)   0.96(0.94; 0.98) � 0.99(0.98, 0.998)� 0.98♦ (0.96, 0.997) 
Maximum temperature1 (oC) 1.21(1.12, 1.30) � 1.10(1.02, 1.18) � 1.09(0.98, 1.19) 
♣Minimum temperature (oC) 0.91(0.83, 1.00)   
Relative humidity2 (%) 0.97(0.96, 0.98) � 0.98(0.96, 1.00) 0.99 (0.97, 1.01) 
Relative humidity3 (%) 0.96(0.95, 0.97) � 1.0(0.97, 1.03) 1.0(0.96, 1.04) 
Sunshine (hours) 1.22(1.06, 1.41) � 1.06(1.0, 1.12) � 1.03(0.89, 1.15) 
Dust (days) 1.20(1.12, 1.29) � 0.96(0.87, 1.06) 1.02 (0.91, 1.15) 
Wind speed (knots) 1.31(1.14, 1.50) � 1.40(1.13, 1.74) � 0.87(0.64, 1.16) 
Age group 

0 - <1 1.00 
1 - 4 0.43(0.17, 1.05) 0.47(0.17, 1.08) 

5 - 14 0.54(0.25, 1.17) 0.60(0.27, 1.28) 
15 - 29 0.36(0.16, 0.82) 0.41(0.17, 0.89) 
30 - 59 0.34(0.15, 0.76) 0.39(0.17, 0.86) 

60+ 

 
 
 

0.88(0.76, 1.00) 

0.45(0.18, 1.15) 0.51(0.18, 1.18) 
      Sex 

 Male 1.38 (0.98, 1.96 1.42(0.98, 2.06) 1.44(0.99, 2.04) 
Over dispersion  8.09(0.73, 29.6) 
Temporal correlation 0.94(0.94, 0.999) 
Temporal variance       0.14(0.03, 0.36) 
DIC 

  

916.094 
The estimates of covariate effects are expressed in terms of incidence rate ratios (IRR) 

Bayesian credible intervals (BCI) 

�♦: CI, BCIs do not overlap unity, corresponding to statistical significance. 

♣: Not included in temporal model because minimum temperature effect was not statistically 

significant up to lag 10 weeks in the bivariate non temporal analysis. 
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8.5 Discussion  

 
The KND lies in a zone of very high risk for meningococcal meningitis epidemics (Molesworth et 

al., 2003) with the two factors most clearly associated with bacterial meningitis in our study being 

high temperatures and airborne dust.  Both these risk factors reach extreme levels in the dry season 

in northern Ghana, but affect the risks of MCM and PCM in different ways. MCM risks are highest 

at the hottest time of the year, when dust exposure has already been accumulating for several weeks, 

while PCM risk peaks earlier in the dusty period, and seems to relate to high temperatures several 

weeks earlier. The early dry season, when most of the PCM cases occur, includes the harmattan 

period, has very cold nights and very dusty air while the late dry season when the MCM peaks, is 

marked by intense heat.  

 

We analysed the recorded dates of onset of outbreaks.  Colonization prevalence does not show 

strong seasonality (chapter 4), so the date of onset relates to the processes of pathology rather than 

those of transmission and this appears to be dependent on other factors that follow after the 

infection. 

 

The effect of dust could presumably be due to both the quantity and physico-chemical characteristics 

of the dust particles (Goudie and Middleton, 2001) which cause irritation and microtrauma of the 

respiratory mucosa thereby making it possible for the bacteria to transverse the nasal mucosa.  Dust 

from the Sahara has been found in the northern Caribbean to contain viable microorganisms (Griffin 

et al., 2001; Griffin et al., 2003; Kellogg et al., 2004). Considering the poor sanitation and free range 

rearing of animals there is the possibility of pulverized fecal matter being inhaled together with dust. 

The interaction between the different bacteria in the nasopharynx could then facilitate the 

meningococci or pneumococci to traverse the nasal mucosa and to cause invasive disease. 

 

High temperatures increase pharyngeal dryness and irritation (Backman and Haghighat, 1999). The 

peak of the incidence of meningitis in Nigeria has been found to significantly correlate with highest 

mean temperature, and inversely correlated with absolute humidity (Greenwood et al., 1984; 

Greenwood, 1999; Moore, 1992) a finding consistent with ours.  Conversely, rainfall leads to high 

humidity and is hence negatively correlated with both MCM and PCM. 

 



Chapter 8. Influence of climatic factors on the incidence of bacterial meningitis 
 

 107 

The effect of wind speed is presumably secondary to that of dust, since high winds during the 

harmattan winds cause dessication of the nasopharyngeal mucosa and also increase the penetration 

of dust, thus causing mucosal damage that facilitates the entry of the meningococci and 

pneumococci to cause invasive diseases.     

 

The extreme temperatures appear to dominate the risk factors for MCM in KND.  The term in 

rainfall appears in the model because the epidemics are clearly terminated by the onset of the rains.   

Periods of very low humidity seems to be important in triggering the PCM outbreaks, and in other 

settings, humidity appears to play a role independent of that of the other variables as a risk factor for 

MCM.  Anomalies in dust and rainfall have been shown to be important predictors of the location of 

meningitis epidemics in Africa (Thomson et al., 2006; Lewis et al., 2001) but this analysis did not 

analyse the seasonality and timing of the epidemics within the dry season.  Low humidity causes 

reduction in the perception of dryness of the nasal mucosa (Norbäch et al., 2000). This prevents the 

release of vasoactive amines and leukotrienes leading to severe dessication and microtrauma of the 

nasal mucosa (Burgess and Whitelaw, 1988). Humidity thus, has a direct effect on dessication of the 

nasal mucosa, leading to damage that could enable pneumococci or meningococci to traverse the 

nasopharyngeal mucosal membrane resulting into bacterial spread into mucosal tissue, lymphatics 

and finally potentially into the blood stream.  It seems likely that low humidity plays an important 

role in the pathogenesis of bacterial meningitis also in Europe, where extremes of dust exposure and 

high temperatures are less frequent but periods with cold and dry air are common in winter. 

Furthermore, during winter rooms are heated up and this lowers the humidity further. This could 

explain why bacterial meningitis cases are frequent in winter in Europe than in other seasons. 

 

Increase in the wind speed increases the rate at which the nasal mucosal dries up making it liable to 

cracking (microtrauma). This may make it possible for potentially virulent pneumococci or 

meningococci to traverse the nasal mucosa.  

 

The environmental factors that we measured are not the only important risk factors for bacterial 

meningitis.  Socioeconomic and cultural practices were not taken into consideration, nor were 

effects of health systems, migration or immunization considered.  The year to year variations in 

MCM incidence reflect spreading of distinct meningococcal clones (chapter 4), rather than inter-

annual environmental variation. The same may hold true for PCM (chapter 6). 

 



Chapter 8. Influence of climatic factors on the incidence of bacterial meningitis 
 

 108 

There may be distinct patterns of risk factors within a geographical area.  We assumed the climatic 

variables from the weather station to be representative for the entire district.  Land cover and soil 

types of different areas of the district vary, as do potential other risk factors.   An earlier study in 

Navrongo demonstrated effects of indoor smoke from cooking and heating fires (Hodgson et al., 

2001a) on MCM risk.  During the dry harmattan season the low minimum temperatures make people 

cluster around wood fires in their rooms or just outside the homes. This may lead to smoke-induced 

damage of mucosa and thus allowing meningococci and pneumococci to traverse the nasopharyngeal 

mucosa.  Coinfections, especially viral respiratory infections (RTI) such as caused by Respiratory 

Syncytial Virus (RSV) or influenza virus may also be important risk factors (Cartwright, 1995; 

Plotkowski et al., 1986) but we have not analyzed this in the KND. Seasonality of pneumococcal 

disease in the USA is related to that of RSV (Kim et al., 1996). In the KND the hospital records 

show an increase in RTI cases during the harmattan season (data not shown).  

 

There are also seasonal variations of behaviour in the KND, with a peak of migration and social 

activities in the dry season which could facilitate the spread of bacteria, however our longitudinal 

carriage surveys have found that there is little seasonal variation in carriage of N. meningitidis 

(chapter 4). Since man is the only host of N. meningitis there is an ever-present reservoir of carriers 

enabling the infection to be maintained during inter-epidemic periods leading, during the dry season, 

to epidemic disease.  

 

A small field study on dust exposure and meningitis incidence, monitoring respirable dust exposure 

in Navrongo, could further elucidate whether cumulative exposure to dust is responsible for the risks 

and could also collect data that could be used to calibrate remote sensed data, as well as the local 

meteorological station readings.  Dust exposure levels at the micro level could complete the picture 

and could be important for respiratory infections other than meningitis also.    

 

Our study involves micro epidemiological analyses, analyzing the time series of individual cases 

within a single area.  This can usefully complement work using remote sensing for predicting space-

time patterns of epidemics. Our analyses suggest that a simple algorithm based on environmental 

factor(s) for short-term prediction of epidemics may be possible. Levels of dust, maximum 

temperature, humidity and rainfall can be used to predict the timing of epidemics, with epidemics  

of PCM at the start of the dry season representing a warning of likely MCM later.   In contrast to 

remote-sensing based prediction, which best identifies the places and years most at risk (Molesworth 
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et al., 2003), local environmental data are likely to be more suitable to predict the timing of the 

epidemics and hence trigger vaccination campaigns.  Currently, vaccination programs are available 

only for the control of MCM and there is a need for programs to control PCM as well as other 

pneumococcal disease.   

 

The study demonstrates the importance of integrating environmental data into epidemic forecasting. 

Intersectoral collaboration (health sector and meteorological services) is needed for the surveillance 

of meningitis and other diseases with seasonal patterns. 
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CHAPTER 9 

 

 

DISCUSSION, RECOMMENDATIONS AND CONCLUSIONS 
 

 
The results of the individual studies have been discussed in detail in each of the respective chapters. 

This section is devoted to the discussion of the main findings as well as their implications and 

suggestions for further research work. 

 

9.1 Discussion of main findings and recommendations  

 
The results of the 8-year carriage survey demonstrate a notable absence of a temporarily stable and 

genetically diverse meningococcal flora in the pharynx of healthy individuals. This may result in 

increased susceptibility for epidemic meningococcal disease in the African meningitis belt. 

Polysaccharide-protein conjugate vaccines are known to impact meningococcal carriage, effect herd 

immunity (Palmer, 2002; Maiden and Stuart, 2002; Trotter et al., 2005) and potentiate serogroup 

replacement. This needs to be monitored using long-term carriage surveys of this type following the 

introduction of such vaccines. In view of the limited resources in countries of the African meningitis 

belt the introduction of conjugate vaccines might require targeting the age groups in which carriage 

is most prevalent for a meaningful herd immunity and cost effectiveness of the vaccine (Trotter et 

al., 2005) in which case such long term colonization surveys would be very useful. 

 

The observed rapid microevolution of the W135 bacteria in the W135 carriage survey (chapter 5) 

requires constant surveillance and the need for improved methods of identification of epidemic-

prone strains.  

 

The striking seasonality of the peaks of pneumococcal meningitis cases suggests that the mucosal 

defense mechanism might have been damaged by the extreme weather conditions making it possible 

for the hypervirulent S. pneumoniae serotype 1 to traverse the mucosa. The peaks of the 

pneumococcal cases, preceding the meningococcal meningitis cases with a lag of about 2 months, 

coincide with the early period of the dry season when there is some considerable amount of 

humidity. This may be the reason why the incidence of pneumococcal meningitis is throughout the 

year while that of meningococcal meningitis is only during the dry season. The incidence of 

meningococcal meningitis is generally during the period when the humidity is lowest. The peak 
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onset of the pneumococcal meningitis cases coincides with the early dry season when the harmattan 

is present with cold nights, strong winds and dusty air. The late dry season is characterized by 

intense heat. 

 

The significantly high excess mortality in the group of pneumococcal cases (chapter 7) could be due 

to the presence of the hypervirulent S. pneumoniae serotype 1 (Chapter 6) which might not be 

present in the nasopharynx since it is rarely isolated from the nasopharynges of asymptomatically 

colonized people (Feikin and Klugman, 2002). The excess mortality could also be due to some 

genetic factors of patients making them more susceptible to pneumococcal meningitis with this 

unfavorable outcome (Lin and Albertson, 2004; Cariou et al., 2002). This could also be due to the 

racial affinity of the S. pneumoniae serotype 1 (Gratten et al., 1993; Gratten et al., 1996; Rudolph et 

al., 2000; Fraser et al., 2001). 

 

Most of the deaths occurred during the first 48 hours of admission, the period when intensive care is 

most needed. This calls for the establishment of functional and efficient intensive care units in all the 

hospitals since this can reduce the mortality rate.  

 

This study has shown that hearing impairment is a major sequel of pneumococcal meningitis and 

that it is much more a problem and more common in survivors of pneumococcal meningitis than 

survivors of meningococcal meningitis. Speech impairment during the case-control study has been 

shown to also be a major sequel in survivors of pneumococcal meningitis than meningococcal 

meningitis. This is disturbing since hearing impairment in infants and young children is of great 

importance due to the critical time period during which language acquisition and speech 

development are accomplished (Yoshinaga-Itano et al., 1998; Yoshinaga-Itano and Apuzzo, 1998a). 

In infants and children bilateral hearing impairment is associated with delays in language 

development and academic achievement (Davis et al., 1986) even if only mild to moderate hearing 

loss is involved (Geers et al., 1989). 

 

The early detection of survivors of bacterial meningitis with hearing and speech impairment is very 

important for their rehabilitation. They should therefore have hearing assessment before discharge 

from the hospital and also undergo a hearing evaluation as part of their routine follow-up. This will 

allow for the early detection of any hearing impairment and those with impairment to be provided 

with simple hearing aids or prepared for cochlear implant where possible. A delay in the detection 
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will lead to osteoneogenesis and ossification of the affected cochlea making implantation ineffective 

or not feasible (Dodds et al., 1997). There should be arrangements with teachers of survivors of 

bacterial meningitis with unilateral hearing impairment so that they can have sitting arrangements in 

the classroom such that they are not disadvantaged. Those with bilateral impairment should have 

arrangements for special education at schools for the hearing impaired.  

 

An appropriate management strategy through a multidisciplinary healthcare approach is needed to 

provide optimal care to survivors of meningitis. There is the need for effective communication 

between healthcare professionals, parents/guardians or relatives, teachers and patients for the 

provision of education. It is also necessary to ensure that there is frequent detailed assessment and 

intervention of ongoing problems in order not to miss important deficits. The patients and their 

families/guardians would require a great deal of ongoing support which can come from the 

healthcare team, friends, family members as well as non-governmental/voluntary organizations. 

There is the need for an understandable approach to be able to detect fine effects like emotional and 

psychological consequences of meningitis while very obvious effects may be easily observable and 

treated. Community based rehabilitation of survivors should be encouraged in all communities. 

 

The effects of environmental factors on the incidence of pneumococcal and meningococcal 

meningitis are similar but not always the same. The weather early in the dry season (cold nights and 

early mornings) results in the heating of rooms using firewood (or sitting around bound fire in the 

morning) together with respiratory tract infections seem to acutely damage the integrity of the nasal 

mucosa making it more advantageous to pneumococci and facilitating the spread of infection.  Since 

outbreaks of pneumococcal meningitis precede those of meningococcal meningitis, the detection of 

increased numbers of the former should be a warning sign that the latter might occur and measures 

to curb it should be put in place. 

 

9.2 Suggestions for further research 

 
It is very important to continue the longitudinal carriage surveys and their extension to cover the 

middle belt (transitional zone between the forest and the savannah woodland), the coastal and the 

forest area of Ghana. This will contribute to the understanding of the dynamics of carriage of 

meningococci and pneumococci not only in the meningitis belt but also outside the belt and thus 

help in the understanding of the pathogenesis of bacterial meningitis as a whole. It will be important 
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to carry out immunological surveys to assess the antibody levels of the residents. This will 

complement the findings of the carriage surveys as well as help in modeling future early warning 

systems. Immunological studies would also give an insight of the extent to which the current 

polysaccharide A+C vaccine in use confers protection against meningococcal meningitis. 

 
Since individual clonal complexes that belong to the same serotype have different virulence there is 

the need for further studies into the clonal complex-specific virulence of the S. pneumoniae serotype 

1 for future vaccine development. It is not known whether this hypervirulent serotype is responsible 

for pneumonia in the district and also whether the healthy population carries it. Further studies on 

the carriage of S. pneumoniae and causes of pneumonia as well as immunological studies on 

pneumococcal meningitis and pneumoniae are necessary to address this issue for purposes of 

management of pneumococcal disease and future vaccine introduction. Since the risk factors for 

meningococcal meningitis in the district are known there is the need to identify the risk factors of 

pneumococcal meningitis in view of the fact that the factors that influence the incidence of 

meningococcal and pneumococcal meningitis are not always the same (chapter 8). There is the need 

to find out how the various serotypes of pneumococcal meningitis and serogroups of meningococcal 

meningitis influence the course and outcome of acute bacterial meningitis in the district. 

 

Mucosal immunity is crucial for pneumococcal colonization (Stenfors and Raisanen, 1993) while 

low serum retinol concentrations are associated with impaired mucosal immunity and alterations in 

tissue integrity (Sirisinha et al., 1980; Chandra, 1988; Biesalski and Stofft, 1992; Semba et al., 

1996). Meningococcal disease in sub-Saharan Africa is characterized by vitamin A deficiency 

(Semba et al., 1996) while its supplementation delays pneumococcal colonization in neonates (Coles 

et al., 2002). It will be a good idea to carryout more studies on the impact of vitamin A 

supplementation (or adjuvant therapy) on the incidence (or outcome) of pneumococcal and 

meningococcal colonization (or meningitis).  

 

The socio-cultural practices that influence the incidence of pneumococcal and meningococcal 

meningitis in the district are not known. It is also not known whether socio-cultural practices have 

the same influence on the incidence of pneumococcal and meningococcal meningitis. The level of 

stigmatization experienced by survivors of bacterial meningitis is not known. There is therefore, the 

need for cultural epidemiological studies of bacterial meningitis. The economic burden of bacterial 



     Chapter 9. Discussion, recommendations and conclusions 

 115 

meningitis in the district needs to be studied. This will help speed up the introduction of conjugate 

vaccines. 

 

The high level of mild hearing impairment in both cases and controls (chapter 7) calls for the need to 

carry out a community survey of hearing assessment to find out other causes of hearing impairment 

in the district. 

 

The high case fatality of pneumococcal meningitis despite the absence of penicillin resistance calls 

for further investigations for antecedent causes or contributory factors like comorbidity associated 

with the pneumococcal meningitis. The study of genetic polymorphism in pneumococcal meningitis 

may provide an insight in the complexity of pneumococcal meningitis. This may not only lead to 

different treatment and vaccination strategies but also contribute to further decline of mortality and 

morbidity rates among patients with pneumococcal meningitis. 

 
Carrying out a small field project on dust exposure and meningitis incidence, in particular, 

monitoring respirable dust exposure in Navrongo, could be used to calibrate remote sensed data, as 

well as the local meteorological station readings.  Dust exposure levels at the micro level could 

complete the picture and could be important for respiratory infections other than meningitis also.  

 

9.3 Control of pneumococcal meningitis in Africa 

 
Man has evolved to commensally live with S. pneumoniae over many thousands of years with 

probably all humans having nasopharyngeal colonization of it early in life. In most cases this 

colonization, as explained earlier, does not lead to disease due to the commensal relationship 

between the bacteria and the host mediated by the human immune system and nonspecific barriers to 

infection in the respiratory tract of human beings (Johnston, Jr., 1991) all under the influence of the 

climate. It is assumed, that the disruption of this equilibrium may occur when there is confrontation 

with a new, possibly more pathogenic, serotype of pneumococcus, other external factors like viral 

infection or host factors like malnutrition or immune deficiency and sometimes changes in the 

climate. The control of pneumococcal meningitis and pneumococcal disease in general, is geared 

towards the maintenance of the equilibrium between the pathogen and man, interruption of 

transmission of pathogen or boosting the host immunity. These are achieved by the identification 

and prevention of risk factors, effective treatment of established disease and vaccination.  
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 Prevention of risk factors 

Indoor air pollution, malnutrition, overcrowding, smoking, HIV/AIDS (Burman et al., 1985; Janoff 

et al., 1993; Nuorti et al., 2000a; Kyaw et al., 2003) are preventable risk factors for pneumococcal 

disease. There is the need to change cultural practices that encourage burning of firewood in rooms 

(especially where neonates and infants are) with the aim of providing heat during the harmattan 

season. As a long term, electric heaters and cookers should be encouraged (this has cost 

implications) while for the immediate and short term well burned charcoal (without wood) can be 

used for heating rooms and cooking. Cooking with firewood outside homes or in well ventilated 

large kitchens should be encouraged. The use of charcoal involves felling of trees, which has 

implication on the depletion of the forest with further widening of the meningitis belt. It is therefore 

important to agitate for a sustainable charcoal use where a number of trees are nurtured for each tree 

that will be burnt for charcoal or firewood. Generally, improvements in housing and indoor air 

quality represent difficult but long term targets. Large standard windows should be encouraged.  

 

There is the need to introduce a sustainable school health programme where all school children are 

screened for ear, nasal and paranasal infections and those with these infections are treated 

appropriately. Pneumonia should be identified early and treated appropriately in the health facilities.  

 

Early identification and prophylactic administration of penicillin to sickle cell (John et al., 1984; 

Hirst and Owusu-Ofori, 2002) disease and asplenic patients can help prevent pneumococcal 

infections in these at risk groups. Appropriate treatment of patients with basal skull fracture and CSF 

nasal leakage can prevent pneumococcal meningitis. 

 

Treatment of pneumococcal meningitis 

Early diagnosis and administration of appropriate antimicrobial therapy are very essential for 

optimum outcome of pneumococcal meningitis. Attention to fluid administration and strategies for 

reducing intracranial inflammation are good adjuncts.  

 

With most pneumococcal disease occurring in the developing world, treatment is generally limited 

to simple and cheap antibiotics. Penicillin has been the mainstay in the treatment of pneumococcal 

diseases since its introduction over 50 years ago. However, over the past decade with the detection 

of penicillin-resistant strains of pneumococcus found in all parts of the world (Appelbaum, 1987b; 
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Whitney et al., 2000) third generation cephalosporins are now the drugs of choice for the treatment 

of pneumococcal diseases although there are also reports of resistant strains. Though penicillin is 

still being used currently in the treatment of pneumonia with oral route (amoxicillin) at the primary 

health care level and intravenous at the district and higher levels with success there is still high 

mortality associated with its use (in recommended doses) in the treatment of pneumococcal 

meningitis (chapters 6 & 7) even when the causative bacteria are sensitive in vitro. This shows that 

there are other contributory factors involved in the high mortality and morbidity of pneumococcal 

meningitis.  

 

Chloramphenicol is another drug used in the treatment of pneumococcal meningitis in combination 

with penicillin. The long-acting oily form of chloramphenicol (given as a single dose intramuscular) 

appears to be more effective than the aqueous form (given intravenous 6 hourly). These drugs do not 

affect carriage and therefore do not disrupt transmission.  

 

Due to the penicillin resistance third generation cephaloporins, ceftriaxone/cefotaxime are the 

antibiotics recommended for the treatment of pneumococcal meningitis (WHO, 2003b). 

Ciprofloxacin is also effective in the treatment of pneumococcal meningitis. This has effect on 

carriage but has a lower concentration in the CSF. It is recommended to give it two days to 

discharge of the patient. Rifampicin, which has a good concentration in the CSF after administration 

and also acts on carriage, is not recommended for fear of its abuse with subsequent development of 

resistance an event that has implication in the treatment of tuberculosis and leprosy.  

 

The use of dexamethasone (a steroid) as an adjunct therapy has been shown to be beneficial in 

pneumococcal meningitis if used in early treatment (McIntyre et al., 1997; de Gans and van de Beek, 

2002; van de Beek and de Gans, 2004b).  

 

The administration of dexamethasone may lead to the masking of clinical signs and symptoms. 

About 1-2% of children with bacterial meningitis on treatment with dexamethasone have been 

reported to have gastrointestinal bleeding (de Gans and van de Beek, 2002). It has been shown to 

have neurotoxic effects - aggravation of hippocampus neuronal apoptosis and learning deficits (Nau 

et al., 2002; Leib et al., 2003). Generally, there can still be severe morbidity even with the rapid 

sterilization and administration of potent antibiotics because of the inflammatory reaction within the 
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central nervous system coupled with its effects on cerebral blood flow as well as direct action of 

bacterial toxins on the nervous system (van der Flier et al., 2003). 

 

Pneumococcal vaccines 

Considering the increasing sophistication of life-saving technology, with increasing life expectancy, 

pneumococcal disease including pneumococcal meningitis, is becoming more common and more 

expensive to society. The increasing pneumococcal resistance to essential antibiotics and the ease 

with which resistant strains are assuming global spread underlie the importance of an urgent need for 

control through vaccination. 

 

There is a 23-valent polysaccharide pneumococcal vaccine, which contains the 23 most common 

serotypes responsible for 90% of the most serous pneumococcal disease in the developed countries. 

This vaccine has been shown to have no effect on HIV patients in Uganda (French et al., 2000) and 

cannot be used to protect them from pneumococcal diseases. 

 

Prenatal immunization of mothers with either the polysaccharide or the conjugate vaccine (such as 

the 7-valent, 9-valent and 11-valent) will protect neonates and infants from pneumococcal disease 

(Obaro et al., 2004) before the latter start routine immunization with conjugate vaccines. One 

problem with the use of the 23-valent pneumococcal vaccine in this way will be the failure of 

immunosuppressed pregnant mothers to produce antibodies (French et al., 2000).  

 

With a reduction in pneumococcal colonization in children vaccinated with conjugate vaccine family 

members are less likely to be infected by the pneumococcus. In the same way unvaccinated children 

are less likely to bring home the infection if majority of their playmates have been vaccinated 

because of their reduced risk of pneumococcal colonization. The introduction of conjugate vaccines 

should be preceded and monitored by colonization studies, which would be used to monitor the 

pharyngeal microfloral ecology or interspecies interference.  

 

Conjugate vaccines are very expensive and not available in developing countries. With the adverse 

effect on carriage (Huang et al., 2005) causing ecological imbalance in the ecological niche of 

vaccine serotypes in the nasopharynx and subsequent serotype replacement (Eskola et al., 2001; 

Poehling et al., 2006) there is the need to monitor carriage when conjugate vaccines are in use. This 

will allow early detection of serotypes like 11, 15, and 19A which carry antibiotic resistance (Kyaw 
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et al., 2006; Huang et al., 2005) and 6B, 9V and 23F which have the propensity for global spread 

(Crook and Spratt, 1998).  

 

There is also the possibility of different bacteria like Staphylococcus aureus replacing S. 

pneumoniae since the latter will no longer be there to inhibit growth of the former through the 

production of hydrogen peroxide by its catalase (Regev-Yochay et al., 2006). Should this happen 

with Methicillin-resistant S. aureus (Regev-Yochay et al., 2005) then the situation will just be like 

replacing one form of meningitis with another (pneumococcal meningitis with staphylococcal 

meningitis). The hope for a lasting suppression of pneumococcal disease still looks distant. 

Nonetheless conjugate vaccines can be of significant public health use in the developing countries 

especially in the African meningitis belt.  

 

There are two potential problems associated with the pneumococcal conjugate vaccines: the limited 

protection due to serotype specificity and the high cost of the vaccine. A strategy to overcome these 

problems is the use of common protein vaccines. These proteins are common to all serotypes of 

pneumococcus and appear to be immunogenic and protective in animal models. They are less 

expensive to manufacture than the current polyvalent vaccines (which use the capsular 

polysaccharide as the immunizing antigen) since they can be produced in large amounts using 

inexpensive recombinant technology. They are therefore ideal candidate pneumococcal vaccines for 

use in developing countries with high burden of disease and limited resources.  

 

Common protein vaccines (which are not serotype specific) are being developed from conserved 

protein epitopes. This type of vaccines might be the ultimate for the elimination of pneumococcal 

disease including pneumococcal meningitis as a public health problem. The challenge to be faced by  

common protein vaccines is antigenic polymorphism of the candidates and species replacement in 

the nasopharynx.  

 

To ensure an effective and sustained control of pneumococcal meningitis in the African meningitis 

belt, there is the need to put in place a good and effective surveillance system to be able to identify 

cases and report disease occurrence. It is also important to carry out antibiotic sensitivity test for all 

cases to be able to identify emergence of resistant strains as early as possible. This requires equipped 

laboratories and trained laboratory personnel and logistics for the early detection and confirmation 
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of diagnosis of S. pneumoniae not only at the regional levels but also at the district and sub district 

levels.  

 

9.4 Control of meningococcal meningitis in the African meningitis belt 

Currently, the main strategies for the control of meningococcal meningitis epidemics are epidemic 

preparedness and epidemic response (WHO, 2003a). 

Epidemic preparedness involves enhancing surveillance and laboratory capacity for early detection 

of epidemics and confirmation of diagnosis. It also involves the establishment of national and 

regional stocks of vaccine and logistics, development and update of national plans for epidemic 

response. There is the need for country-specific control programme with Standard Operating 

Procedures based on the inter-country control programme. 

Epidemic response involves enhanced epidemiological surveillance, prompt case management with 

short-course, long acting oily chloramphenicol given intramuscular and mass vaccination with a 

vaccine containing the appropriate serogroup. Cases should be notified as soon as possible and a line 

list including zero reporting kept in place. Oily chloramphenicol is produced exclusively for the 

control of meningococcal meningitis during epidemics in the African meningitis belt. It is 

contraindicated in pregnancy and children less than one year. Reports of resistant meningococcal 

strains to chloramphenicol, coupled with the outmoded methods of production and low demand 

makes its future in the control of meningococcal epidemics bleak, despite its high efficacy.  

It has been shown in Niger that a single-dose of ceftriaxone is a good alternative to chloramphenicol 

in the control of meningococcal epidemics (Nathan et al., 2005). This drug can be used in pregnant 

women and infants. The problem is the high cost of ceftriaxone and its misuse during inter epidemic 

periods since it is a broad-spectrum antibiotic. This could deplete stocks meant for epidemics and 

during epidemics there would be shortage of the drug. Inadequate and intensive use can also lead to 

the emergence of ceftriaxone resistance. Despite these concerns, ceftriaxone is been recommended 

for treatment during meningococcal epidemics (WHO, 2003a).  

For mass immunization WHO proposes the use of epidemic thresholds for early detection of 

epidemics as well as improved control methods (WHO, 2000). This conditionality is only achievable 
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when there is an efficient surveillance system in place. This is lacking in many areas of the 

meningitis belt making epidemics often far ahead of logistical support including vaccines. 

 A typical epidemic starts in the dry season and abates with the onset of the rains. However, the lack 

of an early warning system in the prediction of meningococcal epidemics makes vaccination almost 

always start shortly before the onset of the rains, which abate meningococcal epidemics even 

without the vaccine. Vaccination during epidemics arrests only about half of the cases (Woods et al., 

2000) before the onset of the rains. 

Since these meningococcal meningitis epidemics have strong relationship with climatic conditions, it 

would be worthwhile for local public health practitioners to use local epidemiological and 

meteorological data to model a simple algorithm (with support from models of remote sensing) for 

the prediction of these epidemics in their localities. Surveillance should continue (even when the 

epidemic abates) during inter epidemic periods.  

Currently available meningococcal meningitis vaccines for epidemic control in the meningitis belt 

are polysaccharide vaccines A or A+C or A+C+W135 depending on the serogroup causing the 

epidemic. These polysaccharide vaccines have no effect on carriage and do not induce immune 

memory and are not effective in children under two years (Reingold et al., 1985; MacLennan et al., 

1999; Zhang et al., 2000; Maiden and Stuart, 2002; Jódar et al., 2002). This is quite disturbing since 

this is a group with very high incidence and mortality rates of meningococcal meningitis. 

 The recent epidemics in Burkina Faso due to serogroup W135 have raised concern about the use of 

the monovalent or bivalent vaccine (Taha et al., 2002a; Decosas and Koama, 2002; Traore et al., 

2006; Mueller et al., 2006). 

Polysaccharide-protein conjugate vaccines are immunogenic in infants and induce immunological 

memory, confer herd immunity and reduce carriage of the vaccine type serogroup (Zhang et al., 

2000; Maiden and Stuart, 2002; Trotter et al., 2004). The polysaccharide-protein conjugate vaccines 

could be of prophylactic use through the Expanded Programme on Immunization with catch up 

campaigns to maintain immunity high enough to be able to stop transmission in the community.  

There is concern about serogroup replacement with the use of conjugate vaccines. Carriage studies 

are necessary for the evaluation of the impact of conjugate vaccines on carriage and nasopharyngeal 

micro flora in general. A phase II trial of a heptavalent conjugate vaccine was successfully carried 
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out in 2005 in Ghana. This vaccine contains diphtheria, purtusis, tetanus, hepatitis B, Hib, 

meningococcal serogroups A and C antigens and was given in 3 doses according to the Ghanaian 

Expanded Programme on Immunization. It could be good for use in immunization programmes of 

endemic regions like the meningitis belt. 

9.5 Control of meningococcal and pneumococcal meningitis in Northern Ghana 

 
Genarally, the principles for the control of meningococcal and pneumococcal meningitis in Ghana 

are not different from those of other countries in the meningitis belt. The measures for the 

prevention of the risk factors in Africa are the same. Northern Ghana, which lies within the 

meningitis belt with a population of about 3.3million (Ghana Statistical Service, 2000), is made up 

of three regions (Northern, Upper East and Upper West) and 34 districts. It has 22 hospitals, 3 

regional hospitals (where bacterial culture and sensitivity tests can be done) and a Public Health 

Reference Laboratory at the northern regional capital, Tamale.  

 

The control of meningococcal and pneumococcal meningitis as a public health problem in Northern 

Ghana requires that the Public Health Division of the Ministry of Health draws up a broad policy 

framework (adapted from the inter-country programme on meningitis) within which all the health 

adminstrative levels (regional, metropolitan, municipal, district and subdistrict) have to operate. This 

policy needs to look at epidemic preparedness and response with emphasis on surveillance, case 

management, laboratory support and diagnosis, immunizations and maintenance of cold chain and 

rehabilitaion of survivors of meningococcal and pneumococcal meningitis. 

 

As a reportable disease in Ghana, the national Disease Surveillance Unit of the Public Health 

Division has to proactively ensure that all surveillance returns from the districts are in on time so as 

to ensure their timely onward submission to WHO. The unit should have good collaboration with the 

International Coordinating Group for epidemic meningococcal disease and ensure that syringes, 

needles, incineration boxes, drugs (oily chloramphenicol), vaccines, rapid diagnostic kits 

(agglutination test kits) and laboratory reagents are always in stock and updated in case there is an 

impending epidemic. The Disease Control and Surveillance Unit should ensure that the Public 

Health Reference Laboratory at Tamale is fully equipped to be able to conduct detailed 

bacteriological and molecular tests. Districts and regions in northern Ghana should be alerted by the 

Surveillance Unit of outbreaks in neighbouring districts or countries. This Unit should develop a  
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National Standard Operating Procedures for the implementation of bacterial meningitis surveillance 

(NSOPIBMS) and a national plan of action as well as train regional trainers on the NSOPIBMS who 

would inturn train the district trainers. The Unit should support and supervise the other levels to 

enable them carry out their respective roles.  

 

The Ministry of Health should establish an epidemic preparedness and response committee (as 

described by Hodgson, 2002) with prototype branches at all levels – regions, 

metropolitan/Municipals/ districts and subdistrict and strengthen them. This committee at the 

national level should be made up of the Director of Public Health of the Ministry of Health/Ghana 

Health Service, the head of disease Surveillance Unit, Head of Disease Control Unit, the Chief 

Medical Officer of the Ministry of Health, the Director of Health Research Unit of the Ministry of 

Health, the Public Relations Officer of the Ministry of Health, Head of the EPI, the Director of the 

National Disaster Management Organization (NADMO), a data manager, the  Head of the National 

Public Health Reference laboratory, a representative from the security services, a representative 

from Ghana Red Cross. 

 

The Regional Director of Health Services and members of the Regional Health Management Team 

(RHMT), the head of the Public Health Reference Laboratory (in Tamale), the Medical 

Director/Superintendent of the regional Hospital, the head of the regional hospital laboratory, the 

Regional Coordinating Director, the Regional Director of NADMO, a representative each of the 

private health practitioners, chemical sellers association, Ghana Red Cross, Regional Security 

Committee, Regional House of Chiefs and medical Research Institute or Centre should make up the 

epidemic preparedness and response committees at the regional level.  

 

At the district level, the epidemic preparedness and response committee should comprise the Distrct 

Director of Health Services and members of the Distrct Health Management Team (DHMT), the 

Medical Superintendent of the district hospital, the District Coordinating Director, a representative 

from the health and social subcommittee of the district assembly, the District Director of NADMO, a 

representative from the District Security Committee, a representative of the private health 

practitioners, a representative from the chemical sellers association, a representative from the Private  
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Transport Union in the district, a representative of the Ghana Red Cross, a representative of the 

media, a representative of health oriented NGOs working in the distrct and other co-opted members 

as the committee will deem necessary.  

 

At the subdistrict level, the epidemic preparedness and response committee should be made up of 

members of the subdistrict management health team, the local assemblyman, a representative of 

community based rehabilitation organisation, a representative of community health volunteers, an 

elder from the community and representatives of NGOs engaged in health activities. These 

committees would have to meet regulary (especially during the epidemic season) to review records 

of cases and prepare for any impending or respond to any epidemic. 

 

The DHMTs with support from the RHMTs and the Disease Control/Surveillance Unit should 

organise and train all categories of health personnel in the district on the NSOPIBMS. There should 

be an additional and special training of surveillance officers, laboratory staff and data managers. 

Medical assistants in all the three regions should be taught how and when to perform lumbar 

puncture while the hospitals are equiped to do latex agglutination test. The DHMTs and district 

hospitals in their annual budgetting should make provision for meningitis control as part of their 

epidemic preparedness. 

 

Arrangements should be made for the transportation of CSF samples to the district hospitals from 

the Health Centres in subdistricts and from the district hospitals to the regional hospitals within the 

region. Disease Control/Surveillance Officers can transport the CSF samples using motorbikes and 

where possible the medical assistants should dispatch the CSF samples anytime their vehicle or 

motorbike is going to the hospital or the DHMT. The regional disease control officer should be 

responsible for transporting CSF samples from the regional hospital to the Public Health Reference 

Laboratory, Tamale for culture and sensitivity. All CSF samples should have culture and antibiotic 

sensitivity tests done at this laboratory. 

 

There should be a reliable communication system through which results can be communicated as 

soon as possible to the officer who referred the sample to enable the timely submission of weekly 

surveillance reports. This should provide the causal organism and assist the prescriber in the case 

management and any possible mass vaccination if necessary. The Public Health Reference 

Laboratory should store some of the CSF  samples for molecular analysis later. There should be 
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regular monitoring and evaluation of the laboratories as well as the NSOPIBMS system at all the 

various levels . This could be done at refresher workshops organised on NSOPIBMS or regular visits 

to the hospitals, RHMTs, DHMTs and subdistrict. This will enable weaknesses or difficulties to be 

detected and assistance offered where necessary. These visits should not be limited to epidemic 

periods but also during the interepidemic periods.  

 

The DHMTs should also collaborate with the meteorological services department from which 

enviromental data can be obtained. Simple analysis using epidemiological and environmental data 

(past and current data) should be carried out at the various DHMTs so that district based early 

warning systems (EWS) can be developed and be incoporated in the surveillance system.  

 

Districts and subdistricts should receive training on the calculation, interpretation and use of 

thresholds (for meningococcal meningitis) based on WHO guidelines (WHO, 2000) and simple 

models of an early warning system based on environmental factors of the district (subdistrict) and 

epidemiological data on meningococcal and pneumococcal  meningitis. Surveillance has to be 

intensified and enhanced throughout the year with subdistricts submitting timely, weekly reports 

including zero reporting to the DHMTs which will inturn summarize these into district reports and 

submit to the RHMT from where the regional reports would be submitted to the national level. There 

should be some epidemiological analysis at each level with dissemination of results to the lower 

level.  With information from remote sensors (Molesworth et al., 2003) on the district at risk  in a 

particular year combined with the local early warning model and enhanced sustained surveillance it 

may be possible to detect epidemics far in advance and be able to put them under control. 

 

When the alert threshold is reached (for meningococcal meningitis)  there is the need to inform the 

higher authorities, investigate and confirm the causal organism, treat cases appropriately, strengthen 

surveillance while preparations are made for mass immunization when the epidemic threshold is 

reached (which can be forecasted through climate-based early warning system). Neighbouring 

districts should be informed about the alert threshold and there should be an efficient communication 

link so to ensure that the they are notified of the epidemic threshold. When the epidemic threshold is 

reached mass immunization together with the issuance of immunization cards, distribution of drugs 

and logistics to the various Health Centres and hospitals and treatment with oily chloramphenicol 

according to epidemic protocol should be carried out. The public health authorities should be 

informed. The Unit Committee members should be involved in the planning mobilization of the 
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population to participate in vaccination campaigns. The health workers should continue with the 

health education on the disease, its causes, risks, and prevention. 

 

The meningococcal polysaccharride vaccine A+C can be used in the three northern regions since the 

1996/7, 1998 outbreaks (Woods et al., 2000; Gagneux et al., 2000), the 2002  and 2004 outbreaks 

were caused by this serogoup though it will be better to use the quadrivalent A+C+Y+W135 in view 

of threats of serogroup W135 epidemics in Burkina Faso (WHO, 2002).  

 

For outbreaks of pneumococcal meningitis the same reporting system and procedures should be used 

though the treatment has to be with cefriaxone according to the standard treatment guidelines of the 

Ministry of Health, Ghana (MOH(GNDP), 2004). For vaccination against pneumococcal meningitis 

it will be advisable to conduct an extended enhanced surveillance on pneumococcal meningitis at 

sentinel sites in the three northern regions of Ghana. The introduction of any pneumococcal vaccine 

should contain the apropriate pneumococcal serotypes in the region.  

 

The communities should be involved in the control of meningitis right from the planning of the 

control programme. This will ensure their cooperation and assistance in organization and ensuring 

the success of the immunization programme as well as reporting of suspected cases.  

 

In the long term, to make pneumococcal and meningococcal meningitis diseases of less public 

importance in northern Ghana, there is the need to introduce polysaccharide-protein conjugate 

vaccines (like the heptavalent conjugate vaccine tested in the KND in 2005 which contained seven 

antigens including N. meningitidis serogroups A and C) into the EPI schedule (as well as maternal 

immunization) which should be preceded by carriage serveys and enhanced surveillance (including 

pharmacovigilance) at sentinel sites in the three northern regions. The carriage surveys should be 

continued after the introduction of the vaccines to monitor the dynamics of carriage by non-vaccine 

serotypes or serogroups and other pharyngeal microflora. Better still, common protein vaccines 

should be introduced (with concomitant carriage surveys) in the EPI programme when these 

vaccines become available in future.  

 

Since the year 2000 pentavalent conjugate vaccine containing the Hib antigen was introduced into 

the EPI programme in Ghana. Hib meningitis is now relatively less a public health problem 
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compared to pneumococcal and meningococcal meningitis. There is the need to however, still keep 

surveillance on Hib.  

 

 

9.6 Conclusions 

 

 
The clonal waves of nasopharyngeal colonization and disease in the KND observed during the 

longitudinal study represent natural variations in the predominance of meningococcal serogroups 

(serotypes) that take place over time independent of vaccination. Potential serogroup replacement 

should therefore be monitored through meningococcal carriage studies such as those described here 

before and after the introduction of polysaccharide-protein conjugate vaccines in the African 

Meningitis Belt since these vaccines impact on carriage. 

 

The observed rapid natural microevolution of W135 meningococci during the W135 colonization 

survey calls for new approaches for studying the molecular epidemiology of N. meningitidis W135 

since the available techniques are not suitable for the analysis of the population structure to 

distinguish between endogenous and epidemic strains. 

 

The S. pneumoniae ST217 clonal complex represents a hypervirulent lineage with a high propensity 

to behave epidemiologically like N. meningitidis. There is, therefore, the need for a sustained 

enhanced surveillance at all levels of healthcare delivery together with longitudinal pneumococcal 

carriage surveys to monitor the serotype distribution of S. pneumoniae in the African meningitis belt. 

This will ensure that vaccines covering the appropriate hypervirulent serotypes in the meningitis belt 

are introduced for mass immunization.  

 

The high mortality and morbidity associated with pneumococcal meningitis compared to 

meningococcal meningitis calls for more political will and sustained commitment with allocation of 

more resources to curb the unacceptable situation. 

 

Hearing and speech impairment are a much more common problem in pneumococcal meningitis 

than in meningococcal meningitis. In view of the high burden of pneumococcal meningitis in early 

infancy coupled with the global growing threat of multi-drug resistance, there is the need for an 
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accelerated immunization schedule beginning in the perinatal period or maternal immunization with 

pneumococcal and meningococcal vaccines containing the appropriate serotypes/serogroups. 

 

Environmental factors that influence the incidence of meningococcal and pneumococcal meningitis 

are similar, not always the same and often result in different timing of outbreaks of the two diseases. 

The duration of preceding absence of rainfall appear to be the best predictor of both pneumococcal 

and meningococcal meningitis outbreaks. While concurrent reduction in rainfall significantly predict 

outbreaks of pneumococcal meningitis, meningococcal meningitis outbreaks are best predicted by 

concurrent increase in weekly mean maximum temperature and concurrent reduction in rainfall in 

the Kassena Nankana District. There is the need for prototype district level climate-based early 

warning systems (micro-epidemiological models) for the prediction of epidemics of meningococcal 

and pneumococcal meningitis in countries of the African Meningitis Belt. 

 
The introduction of conjugate or common protein vaccines in future in the EPI with enhanced 

surveillance, carriage surveys and community participation has the potential to substantially reduce 

pneumococcal and meningococcal meningitis as a public health problem.  
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APPENDIX.  Procedure for performing lumbar puncture. 
 

All patients with suspected meningitis reporting to any of the health facilities in the Kasena Nankana 

District between 1998 and 2004 were recruited into the pneumococcal meningitis severe case study. 

Subjects had lumbar punctures (LP) done and cerebrospinal fluid samples collected were analyzed 

by standard microbiological methods. 

The only way to confirm bacterial meningitis is by examination of cerebrospinal fluid (CSF) via LP 

since clinical signs are non specific and unreliable and blood cultures may be negative in 15-55% of 

cases (Shattuck and Chonmaitree, 1992; Visser and Hall, 1980; Wiswell et al., 1995). LP involves 

withdrawing cerebrospinal fluid by the insertion of a hollow needle with a stylet into the lumbar 

subarachnoid space (Hickey, 1997). Approximately 500ml of CSF are produced (through filtration 

from the choroids plexuses of the brain) and reabsorbed each day (Weldon, 1988), with 120-150ml 

present at one time.  

 

To perform an LP on a patient with bacterial meningitis the following are needed: material for sterile 

technique (only gloves and mask are necessary), spinal Needle, 20 and 22-gauge, three-way 

stopcock, sterile drapes, 1% lidocaine without epinephrine in a 5-cc syringe with a 22 and 25-gauge 

needles, material for skin sterilization, adhesive dressing and sponges10 X 10 cm. 

A detailed discussion with the patient and/or the caregivers about the risks/benefits of the LP 

procedure is done by the physician and informed consent obtained before the procedure is carried 

out. The patient is placed in the lateral decubitus position lying on the edge of the bed and facing 

away from the operator in a knee-chest position with the neck flexed and head on a pillow, so that 

the entire cranio-spinal axis is parallel to the bed. Sitting position is the second choice. The patient 

must be calm and cooperative.  

The spinal cord typically ends at the L1 level in adults (slightly lower in children). The iliac crests 

are located and an imaginary line drawn joining them. A second imaginary line along the spinous 

processes is drawn form the base of scull to the sacrum. The L4 spinous process palpated, and the 

spot marked with a fingernail.  
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Figure A.1 Position of a patient for lumbar puncture.  

(Source: Carlos Eduardo Reis CE (http://www.medstudents.com.br/proced/lumbpunc.htm)) 
 

The skin is prepared using chlorhexidine 70% or betadine solution by starting at the puncture site 

and working outward in concentric circles. Wearing sterile gloves the patient is draped. Aseptic 

techniques must be used throughout the procedure. To avoid irritative arachnoiditis all traces of 

iodine with alcohol are removed prior to performing the LP. The skin between the spinous processes 

(L4-L5) is anaesthetized using the 1% lidocaine in the 5 mL syringe with the 25-gauge needle. The 

disposable 22-gauge LP needle is inserted at the point of the finger mark in the midline with the 

needle parallel to the floor and the point directed toward the patient's umbilicus advancing slowly 

until a "pop'' (piercing a membrane of the dura) is heard. The stylet is then withdrawn in every 2- to 

3-mm from the needle to check for CSF return. If the needle meets the bone or if blood returns 

(hitting the venous plexus anterior to the spinal canal), it is withdrawn to the skin and redirected. If 

CSF return cannot be obtained, one disk space down is tried. To alleviate anxiety of the patient and 

discomfort the procedure is discontinued after three failed attempts and some else tries at a later 

time.  

When cerebrospinal fluid begins to flow from the needle the first few drops are discarded. Accurate 

placement of the needle results in a flow of the CSF, which normally is clear and colorless. To avoid 

trapping a nerve root against the needle and injury, the CSF is never aspirated. 3.5 cc of CSF is 

allowed to flow into each of the three sterile nunc tubes which are then labeled accordingly and sent 

to the laboratory as soon as possible for glucose, protein, Gram stain, cell count and differential, 

culture and sensitivity and the rest frozen at -70 oC for further molecular analysis. The needle is 

withdrawn without replacing the stylet. The puncture site is dressed with sterile guaze and the 

patient made to lie in bed for a few hours. 
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Contraindications for LP include patients with infections near the puncture site as contamination 

from an infection could cause meningitis, patients with increased intracranial pressure (as cerebral or 

cerebellar herniation could occur in these patients), patients that have degenerative vertebral joint 

disease (it may be difficult to locate and pass a needle through the interspinal space), uncontrolled 

bleeding diathesis (patients on anticoagulants), lack of patient cooperation. 

Complications following LP include, post–spinal tap headache, introduction of bacteria into the CSF 

leading to aggravation of the meningitis, back or leg pain/paresthesia, accidental puncture of the 

spinal cord, accidental puncture of the aorta or vena cava, causing serious hemorrhage, herniation of 

the brain (in a patient with increased pressure, the sudden decrease of pressure through the LP, could 

cause herniation of the brain - compression of the brain stem), nerve root trauma (eg, previous 

surgery in the area, scar tissue), cranial, cervical, and lumbar subdural (more common) hematomas 

(eg, patients on anticoagulation therapy), also possible but very rare are discitis, system/portal 

venous gas (following a traumatic tap), clinical deterioration in the presence of dural arteriovenous 

fistula, symptomatic pneumocephalus in a patient with normal pressure hydrocephalus, cranial nerve 

palsies (4th and 6th).  
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