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Summary 

 

The intraerythrocytic stages of the Plasmodium falciparum life cycle are exclusively 

responsible for all clinical symptoms of malaria. Both children and adults that are 

infected with P. falciparum can either have symptoms of variable severity or be 

asymptomatic. However, it is mostly young children who suffer from severe 

symptoms ranging from severe anaemia to cerebral malaria, and it is mostly adults 

from endemic areas who experience comparatively mild episodes with headache 

and sometimes fever.  

The observed morbidity is largely associated with sequestration of parasitized 

erythrocytes (iRBCs) on endothelial cells of host blood capillaries. This 

cytoadherence prevents late stage iRBCs from being cleared by the spleen. Instead, 

iRBCs bind to various host cell receptors such as CD36, ICAM, or CSA leading to 

obstruction of blood vessels, impaired oxygen delivery in affected host organs and 

immunological reactions of the affected tissues. 

The key mediator of sequestration found is the P. falciparum Erythrocyte Membrane 

Protein 1 (PfEMP1). This large parasite derived protein is exported from the parasite 

and trafficked through various membranes and through the host cell cytosol until 

becoming inserted into the erythrocyte cell membrane. It is located at the interface 

between parasite and host immune system, and undergoes antigenic variation. 

PfEMP1 is encoded by approximately 60 var genes per haploid genome, and is 

expressed in a mutually exclusive manner, i.e. only one gene is expressed at any 

one time. As one of its sophisticated immune evasion strategies, the parasite can 

switch to another PfEMP1 variant and thus becomes no more recognizable by the 

host immune system. 

It is believed that protection against severe malaria is the result of the development 

of immune responses against various variants of PfEMP1. However, immunity to 

malaria is never sterile but instead only reduces parasite density and morbidity. We 

have based our work on the hypothesis that not all variants of PfEMP1 are equally 

pathogenic i.e. have the same affinity to host cell receptors. We believe that only a 

certain subset of PfEMP1 variants is able to confer solid cytoadherence, and 

consequently is responsible for severe malaria. Possessing an antibody repertoire 

against these specific variants therefore will protect from severe episodes. 
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In this work we have chosen a multiple approach to generate molecular tools and to 

test this hypothesis. Firstly, we elaborated on the generation of pan-specific non-

cross reactive PfEMP1 antibodies using both recombinantly expressed domains 

both from the molecule’s head structure (NTS domain) and synthetic peptides 

corresponding to the semi-conserved intracellular part of PfEMP1 (ATS peptides). 

By means of various molecular methods, however, we found that none of the 

generated sera recognized full length endogenous PfEMP1 exclusively. 

Secondly, we attempted expression of large fragments of PfEMP1 in E.coli to test 

the recognition of sera from different malaria cases. At the same time we wanted to 

exploit the possibility to express random fragments of PfEMP1 in a bacterial library 

to similarly test these sera on. Insuperable obstacles with large recombinant protein 

expression forced us to divert our approach towards smaller domains.  

For this we isolated var mRNA from samples from several individuals presenting 

either with asymptomatic infections or experiencing severe malaria episodes. 14 var 

DBL domains were recombinantly expressed in E. coli and used to measure 

antibody titers in sera from 100 semi-immune Papua New Guinean adults. The 

frequency of recognition (FoR) for these antigens of was assessed and compared 

between FoR of DBL domains deriving from severe cases and from asymptomatic 

samples. We found that DBL domains deriving from severe cases were significantly 

more often recognized by sera from semi immune Papua New Guinean adults than 

DBL domains derived from asymptomatic samples. This is indicative for semi-

immune adults not suffering from clinical malaria because being better protected 

against parasites expressing “severe” DBL domains of PfEMP1.  

We also tested 34 sera from children with asymptomatic infections collected during 

a longitudinal study in Tanzania. We selected sera that were collected at two time 

points 6 months apart to assess the development and dynamics of antibodies 

against those DBL domains. FoR increased significantly over time in these children 

but only for DBL domains deriving from severe cases. As these children did not 

suffer from clinical episodes between the two sampling dates, these results also 

indicate that acquisition of antibodies against “severe” DBL domains is faster and 

can confer protection. 

In summary, our findings support the notion that development of antibodies against 

PfEMP1 variants (in this case against DBL domains) is associated with protection 
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against severe disease and thus contributes as an important factor to the acquired 

clinical immunity to severe malaria. These findings raise hope in the feasibility of a 

putative protective vaccine against the major virulence factor PfEMP1. 
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Zusammenfassung 

 

Alleine der intra-erythrozytäre Lebenszyklus von Plasmodium falciparum ist für die 

klinischen Symptome von Malaria verantwortlich. Die Infektion kann sowohl bei 

Kindern, als auch bei Erwachsen symptomlos oder mit verschieden starken 

Symptomen ablaufen. Jedoch sind es meist Kinder, die an den schlimmen 

Symptomen wie schwere Anämie oder cerebraler Malaria leiden. Erwachsene aus 

endemischen Gebieten haben vergleichsweise milde Symptome wie Kopfschmerzen 

und manchmal Fieber.  

Die schweren Krankheitsfolgen sind grösstenteils mit dem Anheften von infizierten 

Erythrozyten an Endothelzellen der Wirtskapillaren verbunden. Diese Zellanheftung 

verhindert, dass die Milz die späten Blutzellstadien herausfiltriert. Infizierte rote 

Blutzellen binden Wirtsrezeptoren wie zum Beispiel CD36, ICAM oder CSA was zu 

einer Verstopfung der Blutgefässe, mangelhafter Sauerstoffzuführung und 

immunologischen Reaktionen im betroffenen Gewebe führt. 

Eine Schlüsselrolle im vermitteln von Zellkontakten hat Plasmodium falciparum 

Erythrozyten Membran Protein 1 (PfEMP1). Dieses grosse Protein, hergestellt durch 

den Parasiten, wird durch mehrere Membranen und das Zytosol des Erythrozyten 

geschleust, bis es in die Erythrozytenmembran eingebaut wird. Es ist so genau an 

der Grenze zwischen dem Parasit und dem Wirtsimmunsystem lokalisiert und macht 

Antigenvariation. PfEMP1 wird von ungefähr 60 var Genen pro haploiden Parasiten 

codiert und wird auf einer sich gegenseitig ausschliessenden Art und Weise 

exprimiert, dass heisst es wird immer nur ein Gen abgelesen. Damit der Parasit das 

Immunsystem umgehen kann, ist er in der Lage auf ein anders var Gen 

umzuschalten. Diese kann dann vom Immunsystem nicht mehr erkannt werden.  

Man glaubt, dass der Schutz vor schwerer Malaria ein Ergebnis der Entwicklung von 

Antikörpern gegen mehrere Varianten von PfEMP1 ist. Aber die Immunität gegen 

Malaria ist nie steril,  sondern reduziert nur die schwere der Erkrankung und die 

Parasitendichte. Die Grundlage unserer Arbeit ist, dass nicht alle Varianten von 

PfEMP1 gleich pathogen sind, dass heisst, nicht alle haben dieselbe Affinität zu den 

Wirtsrezeptoren. Wir glauben, dass nur eine kleine Gruppe von PfEMP1 Varianten 

die Möglichkeit hat eine stabile Zellanheftung auszulösen und dadurch schwere 
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Malaria verursacht. Der Besitz eines Antikörperrepertoires gegen diese Varianten 

würde deshalb gegen schwere Malaria schützen. 

In dieser Arbeit haben wir einen vielfältigen Ansatz verfolgt um molekulare 

Werkzeuge herzustellen und unsere Hypothese zu testen. Als Erstes haben wir 

versucht spezifische, nicht kreuzreaktive Antikörper gegen PfEMP1 zu generieren. 

Wir haben die Kopfstruktur (NTS Domäne) als rekombinantes Protein und als 

synthetische Peptide den teilweise konservierten intrazellulären Teil (ATS Domäne) 

von PfEMP1, als Antigen verwendet. Trotz der Anwendung mehrerer 

molekularbiologischer Methoden konnten wir jedoch kein Serum finden, dass das 

ganze endogene PfEMP1 erkennt. 

Als Zweites, versuchten wir grosse Fragmente von PfEMP1 in E.coli zu exprimieren 

um dann Seren von verschieden Malariafällen darauf zu testen. Zur selben Zeit 

wollten wir zufällige Fragmente von PfEMP1 in einer E.coli Bibliothek exprimieren, 

um die selben Seren darauf zu testen. Unüberwindbare Probleme mit der 

Expression von grossen, rekombinanten Proteinen zwangen uns dazu unseren 

Ansatz in die  Richtung kleinerer Domänen zu konzentrieren.  

Hierfür isolierten wir var mRNS von Proben die aus asymptomatischen und 

schweren Malariafällen stammten. Aus dieser RNS wurden 14 DBL Domänen 

rekombinant exprimiert und die Antikörpertiter von 100 Seren von Erwachsenen aus 

Papua Neu Guinea gemessen. Die Frequenz der Antigenerkennung wurde 

gemessen und zwischen DBL Domänen die aus asymptomatischen und schweren 

Malariafällen isoliert wurden, verglichen. Wir haben herausgefunden, dass DBL 

Domänen die aus schweren Malariafällen stammen signifikant öfter erkannt werden, 

als DBL Domänen, die aus asymptomatischen isoliert wurden. Das ist bezeichnend 

für teilweise immune Erwachsene, die keine klinischen Malariasymptome mehr 

zeigen, da sie gegen die DBL Domänen, die in schweren Fällen exprimiert sind, 

geschützt sind.  

Des Weiteren wurden 34 Kinderseren aus einer logitudinalen Studie aus Tansania 

getestet. Wir haben Seren getestet die an zwei Zeitpunkten gesammelt wurden, 

diese lagen sechs Monate auseinander. Damit konnten wir die Dynamik der 

Antikörperentwicklung beobachten. Die Frequenz der Antigenerkennung ist nur für 

die Gruppe der DBL Domänen die aus Schwerkranken isoliert wurden, gestiegen. 

Da diese Kinder nicht an klinischen Symptomen litten, zeigen diese Resultate, dass 
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Antikörper gegen DBL Domänen die in schweren Fällen exprimiert werden, schneller 

aufgebaut werden und möglicherweise vor schwerer Malaria schützen. 

Zusammenfassend, unsere Ergebnisse unterstützen die Empfindung, dass die 

Entwicklung von Antikörpern gegen PfEMP1 Varianten (in diesem Fall die DBL 

Domäne) die in schweren Malariafällen exprimiert sind, schützend wirken und so zu 

einem wichtigen Faktor der klinischen Immunität beitragen.  Diese Ergebnisse geben 

Hoffnung zur Annahme, dass es möglich ist ein Impfstoff gegen den wichtigsten  

Virulenzfaktor PfEMP1 herzustellen. 

 



 13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 1: Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 14 

Introduction 

 

The disease called malaria 

In the year 2002 2,2 billion people were at risk of malaria infection, resulting in over 

500 million clinical cases and more than one million deaths. Sub-Saharan Africa has 

the largest burden of malaria and it accounts for 70% of all malaria cases 

worldwide. Malaria is both a disease of the poor and causes poverty. Poor people 

cannot afford measures to prevent or treat infection and have often no instant 

access to health facilities. In addition, absence from workplace or school because of 

malaria episodes diminishes income and education, which turns the spiral of poverty 

[1, 2]. 

 

Protozoan parasites from the genus Plasmodium cause malaria. Plasmodium 

parasites are transmitted by a bite of an infectious female Anopheles mosquito. 

Malaria is a threat for almost all vertebrates including humans, monkeys, birds, 

reptiles and rodents. Among the numerous different Plasmodium species only four 

can establish a clinically relevant infection in humans: Plasmodium falciparum, 

P.vivax, P. malariae and P. ovale. P. falciparum (malaria tropica, later abbreviated 

malaria) causes the most severe clinical symptoms in humans. The reason for the 

higher virulence compared to the other species is that P. falciparum has the ability 

to adhere to the endothelium of blood vessels thus blocking microcirculation. 

Additionally, it has the highest reproduction rate, releasing up to 24 merozoites per 

cycle and it is able to invade all-age erythrocytes resulting in very high parasitaemia. 

There is no periodicity of fever as it is usually observed in infections in other 

Plasmodium species. P.vivax and P.ovale cause the comparably mild malaria 

tertiana were two fever days are followed by one fever-free day normally without 

major complications. However, P.vivax morbidity and mortality are underestimated 

with up to 80 million cases per year and an increasing trend in mortality in Venezuela 

[3, 4]. Hypnozoites in the liver can cause relapses years after the first manifestation. 

Malaria quartana is induced by P.malariae and causes a four-day fever interval were 

2 days with fever are followed by 2 day without fever. It is also a mild variant of 

malaria but can cause renal complications especially in children.  
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Human infections with P.knowlesi and P.semiovale are possible but very rare 

(personal communication). 

 

Plasmodium falciparum life cycle 

Plasmodium falciparum is a protozoan parasite from the phylum apicomplexa. These 

protists contain a unique set of organelles assembled in the apical complex. The 

apical complex contains the rhoptries, micronemes and dense granules, which are  

vesicular structures that contain enzymes and lipids secreted upon invasion. 

Another distinct and essential organelle is the apicoplast or plastid. The apicoplast is 

surrounded by 4 membranes and is thought to origin from a second endosymbiosis 

of a cyanobacterial chloroplast [as reviewed in 5]. However, in some publications an 

algae is mentioned as ancestor (for example [6]). The apicoplast has its own genome 

and is part of the lipid synthesis system. Most of the apicoplast proteins are 

encoded in the nucleus. It has no photosynthetic activity.  

The lifecycle of P. falciparum is very complex and includes sexual and asexual 

reproduction. It involves two different hosts: a vertebrate e.g. a human and a 

mosquito from the genus Anopheles. The female anopheles injects saliva during a 

blood meal to prevent blood coagulation. Sporozoites are transmitted from the 

mosquito`s saliva into the blood stream of the human. The blood and probably the 

lymphatic system [7] transports the sporozoites into the liver where they invade 

hepatocytes. There they differentiate into hepatic schizonts and multiply (Figure 1 A). 

After 5-14 days the schizont ruptures and releases thousands of merozoites into the 

blood stream, which then invade red blood cells. In the erythrocytes the asexual 

reproduction begins. After invasion the merozoite grows and develops into a small 

ring. The cell is in the G-phase and increases in size. This is the trophozoite stage. 

The transition into the S-phase with DNA duplication and membrane separation 

leads to the schizont, which is the last stage in the erythrocyte. The infected red 

blood cell (iRBC) ruptures and releases around 24 merozoites into the bloodstream. 

The cycle in the red blood cells lasts approximately 48 hours (P.falciparum). All 

clinical symptoms and severe effects are caused by the asexual cycle in the red 

blood cells. Not all merozoites will develop into schizonts. A small number will 

differentiate into male and female gametocytes (Figure 1 B). A female anopheline 

mosquito takes up these gametocytes during another blood meal. In the mosquito’s 
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midgut the female gametocytes develop into macrogametes. The male gametocytes 

exflagellate and form microgametes which fertilize the macrogametes by fusion, 

forming motile zygotes called ookinetes. The diploid ookinetes cross the midgut 

membrane, undergo meiosis and adhere onto the exterior site of the gut wall. Here 

they undergo several rounds of mitosis to form oocysts (sporogony). Each oocyst 

releases thousands of motile haploid sporozoites into the mosquito’s body cavity. 

From there sporozoites migrate into the mosquito’s salivary glands. During a next 

blood meal they are injected together with the saliva into a new host and the cycle is 

completed. 

 

 

Figure 1. Plasmodium falciparum life cycle. 

Schematic representation of the different stages of the life cycle of Plasmodium 

falciparum. In A the exo-erythrocytic cycle taking place in the hepatocytes is shown. 

In B the asexual replication in the erythrocytes and the development of gametocyes 

is shown. In C the cartoon shows the sexual reproduction in the mosquito and the 
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completion of the lifecycle by the inoculation of sporozoites into the vertebrate host 

upon a blood meal (Image modified from: Center for Disease Control and Prevention 

CDC, www.dpd.cdc.gov/dpdx ). 

 

Cytoadherence: Sequestration and rosetting make malaria severe 

The clinical symptoms of malaria are exclusively caused by the asexual replication 

of P.falciparum in red blood cells. The pre-erythrocytic stages in the liver remain 

unnoticed. The common symptom of all malaria infections is high fever induced by 

rupture of infected red blood cells as termination of every cycle of asexual 

reproduction. The pyrogenic compounds released after ruption are grouped 

together as malaria toxins. Glycosylphosphatidylinositol (GPI) and haemozoin are 

the most discussed substances to act as pyrogens. Haemozoin induces 

endogenous pyrogens like TNF-α [8] and IL-1ß [9]. GPI can directly upregulate 

surface receptors like ICAM1 and VCAM1 and induce TNF and IL1 secretion of 

macrophages [10]. Cerebral malaria, a severe form of malaria, is thought to be 

induced by extensive TNF release [11]. 

The parasite is able to remodel the surface of the red blood cell and this remodeling 

enables the parasite to adhere to host endothelia. This causes blood clumping and 

oxygen deprivation of tissues and can lead to organ failure. Briefly, the integration of 

parasite proteins, especially Erythrocyte Membrane Protein 1 (PfEMP1) into the 

erythrocyte plasma membrane mediates the interaction with a variety of host-cell 

receptors. This ability of the iRBC to bind to the vascular endothelium and to 

uninfected RBCs is called cytoadherence. Sequestration of parasites on the inner 

lining of the capillaries is essential for the parasite’s survival, as iRBC would be 

cleared from the blood circulation during spleen passage. The effect for the host, 

however, is severe because the sequestered blood cells clog the thin blood vessels. 

The host receptors which mediate binding to the iRBCs are numerous, including 

CD36, thrombospondin (TSP), VCAM-1, ICAM-1, PECAM/CD31, chondroitin sulfate 

A (CSA) and E-selectin [12-14]. The ICAM-1 receptor might play an important role in 

severe malaria as isolates from patients with cerebral malaria bind this receptor [13]. 

The presentation of ICAM-1 on endothelial cells is upregulated by TNF-α. TNF-α in 

turn is upregulated by the parasite itself as described above. However, the 

interaction between ICAM-1 with an iRBC is not strong enough to mediate binding 
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alone [15] For stable binding other receptors such as CD36 and TSP are needed 

simultaneously [16]. This is supported by experiments where binding of a parasite 

isolate to endothelial cells expressing both CD36 and ICAM-1 was only partially 

blocked by monoclonal antibodies against ICAM-1, but completely abolished with 

incubation of antibodies against both receptors [16].  

A special case of infection is the pregnancy associated malaria (PAM). Semi-

immune adult women, normally protected from severe disease, can develop a 

severe episode upon pregnancy and the fetus development can be impaired. The 

reason is the involvement of the placenta, which represents a new niche for the 

iRBC to adhere. The placenta is often heavily infected with sequestered parasites 

[17-19]. The high parasite load in the placenta is especially dangerous for the fetus, 

as it can lead to growth restriction, decreased birthweight or preterm delivery [20]. 

For the mother malaria infections during pregnancy are associated with severe 

anaemia [21]. This is perhaps induced by TNF release of the monocytes 

accumulated in the placenta. TNF is an inhibitor of erythropoiesis. Additionally 

oxidative stress by nitric oxide alters the erythrocytic membrane and leads to 

increased erythrocyte destruction [reviewed in 22].  

The host receptor involved in placental iRBC sequestration is CSA. Parasites 

extracted from an infected placentas bind to CSA but not to other receptors 

commonly used by non-placental iRBC [18]. CSA in turn is not exploited by other 

iRBCs. The PfEMP1 variant mediating binding to CSA is var2CSA [23]. Var2CSA is 

quite conserved even in isolates from geographically distinct areas. This could 

explain why antibodies against var2CSA can bind parasite isolates obtained from 

other regions than the antibodies [24].  

 Another ability of infected red blood cells is the binding to uninfected erythrocytes, 

called rosetting. It is thought that rosettes have a masking effect for the iRBC, as the 

iRBC is in the middle, and completely covered with RBCs so that no proteins 

(antibodies) or cells from the immune system can “see” or eliminate the pathogen. 

The proximity of RBCs to the bursting schizont might also be an advantage for the 

merozoites to more rapidly invade new cells. The aggregation of RBCs even 

enhances the negative effect of sequestration. Capillaries, which are already 

constricted by sequestered iRBCs, may be blocked completely by floating rosettes. 

This embolism-like obstruction of microcirculation also occurs in cerebral malaria 
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and is thought to be an underlying cause of coma [25]. It is thus not surprising that 

50% of all wild type isolates show rosetting in vitro [26] and the rosetting rate is 

much higher in isolates from cerebral malaria compared with mild cases [27, 28]. 

The host receptors involved in rosetting are the blood group antigens A and B, 

complement receptor 1 (CR1), CD36 and glucosaminoglycans (GAGs) [29]. It is 

noteworthy that all of these receptors are glycosylated, which seems to be crucial 

for interaction. Additional serum factors are necessary as bridging molecules [30]. 

Luginbühl et al. showed that albumin, factor D and anti-band3 IgG are sufficient to 

restore the rosetting phenotype as in complete serum [31]. 

Clumping of iRBCs is mediated via platelets and the involved receptor is CD36.  

However, not all CD36 binding isolates show this phenotype, thus indicating the 

involvement of other receptors. The reason for the parasites to clump is yet 

unknown but has been shown to be associated with severe disease [32].  

 

Association of host receptors with domains of PfEMP1 

The interaction of PfEMP1 with the large number of different host receptors requires 

a large number of binding domains in the parasite protein. For a number of 

receptors the binding sites are already mapped (see Figure 3). The binding to the 

host receptor ICAM1 is mediated by the DBL2β-C2 region [33]. The binding to 

ICAM-1 is associated with cerebral malaria [34].  

Another receptor which shows strong interaction with PfEMP1 is CD36. The CIDR 

domain is the interaction partner for this receptor [35, 36]. CD36 is not abundant in 

the brain. The receptor is responsible for sequestration in organs other than the 

brain. In contrary to ICAM1 expression, the receptor is not sensitive to IFNγ or TNFα 

(reviewed in [25]). 

The interaction with CSA, important for PAM, is mediated by DBL3γ [17, 37]. It 

seems that parasites expressing PfEMP1 variants binding to CSA are rare and only 

have evolutionary advantages in pregnant women. 

The DBL1α domain is exploited by CR1 for rosetting and by heparin sulfate for 

sequestration in the aorta [38, 39]. 

The binding of PfEMP1 to different host receptors is extensively reviewed in [25, 40, 

41]. 
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Figure 2. Schematic illustration of cytoadherence. 

The cartoon shows the cellular basis of impaired microcirculation in the post-

capillary venules due to sequestration of infected red blood cells and rosettes. The 

parasite induces the release of cytokines, which up-regulate receptors such as 

ICAM-1 necessary for endothelium binding (modified from [25]). 

 

Structural details of Plasmodium falciparum Erythrocyte Membrane Protein 1 

(PfEMP1) 

P. falciparum expresses the large protein PfEMP1, which is 200-350 kDa in size and 

is exported from the parasite to the erythrocyte surface. PfEMP1 is encoded by the 

var gene family and is highly divers. About 60 different var genes are present in a 

haploid parasite genome. Only one var gene is expressed at a time in a mutually 

exclusive manner (var regulation: see next section). The architecture of PfEMP1 is 

complex. It is a single-pass transmembrane protein. The extracellular part 

protruding from the erythrocyte membrane into the host’s blood plasma is very 

variable. It is built from different blocks: the N-terminal segment (NTS), the Duffy 

binding like domain (DBL), the cysteine rich inter domain region (CIDR) and the C2 
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domain (see Figure 3). The NTS domain is semi-conserved and is located at the very 

N-terminal end of PfEMP1. The DBL domain itself is classified into 5 sub classes 

indicated by a Greek letter (α-ε) [42], where DBL1-α represents the first domain after 

the NTS. The classification was done according to conserved sequence stretches 

and to conserved cysteins in the sequences (see Figure 4A). The CIDR consists of 

semi conserved stretches and is located between DBL domains and in special 

cases followed by a C2 domain. There are 3 different types of CIDR domains (α-γ) 

(see Figure 4B). The intracellular part, the acidic terminal sequence (ATS), is rather 

conserved and may function as an anchor by interaction with RBC skeleton proteins 

and additional parasite proteins such as KAHRP and PfEMP3 [43, 44].  

 

 

Figure 3. Illustration of PfEMP1 domain structure. 

(a) A small PfEMP1 protein is shown consisting of the minimal arrangement i.e. the 

NTS domain, the DBL-CIDR tandem repeat and the ATS domain. In (b) a larger 

variant is shown. Here the C2 domain and higher order DBL domains are also 

included. The host cell receptors involved in binding at the respective domains are 

indicated (Figure from [41]). 
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Figure 4A. Alignment and classification of DBL domains. 

DBL domains have been grouped according to their conserved regions (capital letter 

A-J) and their conserved cysteins (arabic numbers 1-10). Variable domains are 

indicated with dots and lines (roman numbers). Capital letters in the sequence 

indicate amino acids, small letters amino acid types: c (charged: D, E, H, K, R), + 

(positive: H, K, R), h (hydrophobic: A, C, F, I, L, M, V, W, Y), p (polar: C, D, E, H, K, 

N, Q, R, S, T), s (small: A, C, D, G, N, P, S, T, V), u (tiny: A, G, S), b (big: E, K, R, I, L, 

N, S, Y, W) (Figure from [42]) 
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Figure 4B. Alignment and classification of CIDR domains. 

CIDR domains classified according to semi conserved regions. Backslash indicates 

gaps in the sequence alignment. The amino acid code is the same as in Figure 4A 

(Figure from [42]) 

 

 

Knobs on the host cell surface 

The insertion of PfEMP1 on the RBC surface is not evenly distributed but instead 

packed into electron dens structures called knobs (Figure 5). These knobs are 

disributed over the surface of an infected RBC and visible by electron microscopy 

(see Figure 6) [45, Figure 6]. The knobs are the contact points in cell-cell interaction 

[25, 46]. Knob-less parasites are unable to adhere to endothelial cells under flow 

conditions [44]. Numerous parasite proteins are assembled in the inner face of the 

knobs including the knob associated histidine-rich protein (KAHRP) and PfEMP3 

[47]. It is thought that these proteins built up the knobs as it has been shown that 

KAHRP knock out parasites are knobless [43, 44] and anchor PfEMP1 in the RBC. It 

has been shown that the ATS domain binds to spectrin, actin and KAHRP [48]. 

KAHRP in turn also binds to spectrin [49]. 
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Figure 5. Schematic representation of a knob structure. 

The cartoon shows the structure of a knob. The thick red line represents the 

erythrocyte plasma membrane. PfEMP1 is inserted in the membrane and anchored 

probably via PfEMP3 (yellow oval) and KAHRP (in green) and attached to the 

cytoskeleton at spectrin/actin junctions. The whole knob structure may contain 

additional proteins; this is indicated with the big green circle (knob structure). 

 

 

Figure 6. Electromicrograph images showing knobs on an infected erythrocyte. 

Depicted are two erythrocytes where the backmost cell is uninfected and has a 

smooth surface, and the infected cell in front shows the knobby surface.  

(Figure adapted from http://www.scidev.net/scidev_images/black-and-white.jpg) 
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Regulation of var gene expression 

PfEMP1 is encoded by the var multigene family. This gene family consists of 

approximately 60 genes per haploid genome but with an almost unlimited repertoire. 

Almost 70% of all var genes locate close to the telomeres at the end of the 

chromosomes, the rest is found near the centromers in the middle of the 

chromosome [50]. The var genes at the telomers are normally arranged in a tail-to-

tail orientation, whereas the central vars are tandem repeats and thus show a head-

to-tail arrangement. The direction of transcription and the location on the 

chromosome can be predicted by their 5` non-coding sequence [51]. The upstream 

sequences (Ups) are arranged in four groups UpsA, UpsB, UpsC and UpsE [52]. 

UpsA and UpsE var genes are subtelomeric and transcribed towards the telomere in 

contrast to UpsB var genes, which are subtelomeric and transcribed towards the 

centromer. UpsB var genes are also present in the central region together with UpsC 

(see Figure 7). The role of the different upstream regions is not yet completely clear. 

Voss et al. found conserved sequence elements in the promoter of upsB and upsC 

var genes. The subtelomeric var promoter element (SPE) is unique for upsB var 

genes and the chromosome-central var gene promoter element (CPE) for upsC 

genes. It was also found that transcriptional regulation of var genes is dependent on 

their chromosomal location. Sub telomeric var genes are only expressed up to 18 

hours post infection whereas transcription of central var genes lasts 4-8 hours 

longer [53]. Expression of PfEMP1 from different chromosomal located var genes 

was also correlated with morbidity. There is evidence that UpsA and UpsB var-gene 

expression (sub telomeric) is associated with severe disease in children in Tanzania 

[54] but this has only been proven for UpsB in samples from Papua new guinea PNG 

[55]. 

The regulation of var-gene expression is very complex. var genes are expressed in a 

mutually exclusive manner, with only one gene being expressed by an individual 

parasite at a given time [56]. This mechanism of antigenic variation helps the 

parasite to escape from the host’s immune system. The switch from one var gene to 

another must be fast enough to evade the adaptation of the immune system but 

also as slow as possible to not exhaust the repertoire of var genes before being 

transmitted. P.falciparum does not undergo DNA rearrangement or gene conversion 

into an active expression site [57]. Transcription activation is restricted to a special 
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location in the nucleus and controlled by transcription initiation [56, 58, 59]. The 

mutual exclusive expression is not based on a negative feedback loop (e.g. PfEMP1) 

but on the non-coding information in the 5` region [60]. This means that not the 

presence of the protein itself regulates the transcription, but factors including 

untranslated DNA sequences upstream of the translational start point. This was also 

proven by Voss et al. [51] by transfection of plasmids with a 5` region of a var-gene 

followed by a drug resistance gene. Upon drug pressure the parasites expressed 

the resistance gene under the control of the var promoter. These parasites did not 

express PfEMP1 anymore; hence, the artificial promoter was filling the only 

transcription place for var genes. Proteins and transcription factors involved in this 

unique regulatory system are currently under investigation.  

 

Figure 7. Chromosomal organisation of var genes. 

The orientation of var genes at different locations within a chromosome are 

depicted. The black dot on the left is the telomere followed by the telomere 

associated repeat clusters (TARE). In green and in purple the subtelomeric var genes 

are shown and in yellow the central var genes are shown (Figure from [61]) 
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Aims of this thesis 

 

Improve recombinant protein expression of plamodial peptides in E.coli 

 

Heterologous expression of proteins is a commonly used technique to produce 

antigens for molecular biological examinations. There are more and more 

heterologous expression systems available like yeast, mammalian cells, insect cells, 

or even Dictyostelium discoideum but the most widely used system is still 

Escherichia coli. For protein expression in E.coli a large number of cell lines and 

expression vectors are readily available. The transfection and cultivation of E.coli is 

simple, fast and cheap. Problems can arise when conformation and modification of 

recombinant proteins are important, because E.coli is a prokaryote and has different 

folding and modification patterns than eukaryotes. Misfolding can also lead to 

solubility problems and to increased toxicity for the bacteria, resulting in low 

expression levels. Recombinant expression of plasmodial proteins brings along 

additional problems, as the genome of P.falciparum has an AT content of over 80% 

and that of E.coli has about 50%. The translation machinery of E.coli uses other 

triplets to code for amino acids as Plasmodium. As codons used by Plasmodium are 

rare in E.coli there are bacterial cell lines containing additional plasmids coding for 

those rare tRNAs. 

In my PhD I wanted to express differently sized fragments of PfEMP1 in E.coli. I 

tested various vector systems as well as different cell lines and cultivation media. 

The expressed proteins have been used as antigens for serological studies and as 

antigens for the induction of antibodies in mice.  
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Screen for morbidity associated antigenic regions in PfEMP1 

 

Clinical immunity against falciparum malaria is conferred by a repertoire of 

antibodies. It is believed that the major protective effect is directed against infected 

erythrocytes and thus against PfEMP1. This repertoire is acquired during childhood 

with repeated episodes of malaria. These episodes can be numerous and severe in 

young children but once the critical period of the incomplete antibody repertoire is 

overcome, the individual is mostly protected from clinical symptoms. However the 

number of infections needed to establish a protecting patchwork of antibodies 

seems to be small compared to the endlessness of possible surface antigen 

variants. That implies that it is not necessary to “see” all possible isoforms of 

PfEMP1 to build up immunological protection. There is evidence that there is a 

relative small subset of variants, which are more virulent but also more frequent than 

others and after contact with these types the individual is partially protected. 

In my PhD I was aiming to identify these variant PfEMP1 domains responsible for 

pathology and severe disease. I used two different approaches to study differential 

recognition of sera from children with an incomplete antibody repertoire and sera 

from clinically immune adults. Firstly, I aimed to clone and express large fragments 

(above 1000 amino acids) of the 3d7 parasite line in E.coli. Recognition frequencies 

of these recombinant proteins should be recorded and compared between non-

immune (incomplete) and immune (complete) sera in order to find differentially 

recognized variants. In the second approach I aimed to generate a random cDNA 

E.coli expression library. To ensure the expression of PfEMP1 fragments only, 

selected full-length var mRNA was used as starting material for cDNA synthesis. The 

rational was that with this approach not only the N-terminal part of the large PfEMP1 

protein could be tested but any individually random fragment from anywhere in the 

protein, not restricted to boarders of domains. It was planned to detect any 

differential recognition directly on comparative colony plots of this library. 

In addition to the random approach, we focused on DBL domains from different field 

isolates. DBLα domains are the most N-terminal domains in PfEMP1 and are 

present in most variants. DBLs have conserved sequence stretches intermitted by 

highly polymorphic regions and are known to bind to CR1, blood group antigen A 

and heparin. The association of the DBL variant with disease is not yet completely 
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clear. However, Kirchgatter et al. correlated DBLs containing 2 cysteins (in a certain 

position) with severe disease [62].  

We wanted to test for differences in recognition of DBL domains expressed in 

severe case malaria and in asymptomatic infections. First, we had isolated parasite 

RNA from malaria cases with different clinical manifestation. DBL domains from 

these cases were also sequenced. Sequence alignment showed no evidence of 

clustering of DBL sequences which would have revealed an association with certain 

clinical groups. As sequence differences were not obvious, we searched for 

differential recognition of recombinant DBL domains derived from severe cases or 

asymptomatic cases. We used adult sera from a cross sectional study and children 

sera from a longitudinal follow up study over 6 months with monthly intervals. We 

used samples from baseline and month 6. We wanted to test our hypothesis that 

DBL domains from severe cases are more frequently recognized in semi immune 

adults than DBL domains coming from asymptomatic patients. In the longitudinal 

study we were interested in the dynamics of recognition of DBL domains at baseline 

compared to samples from month 6. 

 

 

Development of pan specific anti-PfEMP1 antibodies  

Work on PfEMP1 is extremely hampered by the lack of specific non cross-reactive 

antibodies. Most of the available antibodies have strong cross-reactivity with human 

spectrin subunits, which can have a similar size as PfEMP1. Thus it was another aim 

of my thesis to generate pan-specific antibodies against PfEMP1 in mice, that are 

not cross-react with human proteins. We used different domains from various 

PfEMP1 molecules to strive our aims. We selected the NTS and the ATS domain of 

strain FCR3 S1.2 to be recombinantly expressed. Furthermore, we designed and 

tested synthetic peptides (with modifications) from conserved regions in the ATS 

domain as antigens.  

The lack of antibodies also delayed ongoing work in the analysis of the molecular 

interaction mechanisms in the formation of rosettes.  
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Chapter 2:  

Objectives of this thesis 

 

 

Objectives of this thesis are: 

 

1 To optimize recombinant protein expression of plasmodial proteins in E.coli.  

2 To screen for relevant antigenic regions in PfEMP1 influencing morbidity. 

3 To generate mouse polyclonal antiserum against PfEMP1. 

4 To perform localization studies on PfEMP1. 

5 To identify the cleaved fragment in rosetting and the role of PfEMP1. 

6 To assess recognition frequencies of DBL domains in different sera. 
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Chapter 3:  

 

Protein expression and characterization of different  

mouse antisera 
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Introduction 

 

Basic cell biology of Plasmodium falciparum 

Invading merozoites adhere to the erythrocyte surface and reorient themselves so 

that the apical end points to the erythrocyte membrane [63]. During invasion the 

rhoptries, the dense granules and the micronemes release their contents, which 

mediates the invagination by tight junction formation [64] and red cell cytoskeleton 

disruption by proteases [65]. The invasion event encloses the merozoite in a 

parasitophorous vacuole (PV) delineated by a parasitophorous vacuolar membrane 

(PVM) which consist of host and parasite derived material [66] and persists during 

the complete intra-erythrocytic development. The parasitophorous vacuolar 

membrane is the interface and thus important interaction site between the parasite 

and the host. Within the PV the parasite develops from the small ring stage to the 

larger trophozoite stage and the host cell is considerably modified. The parasite 

feeds on haemoglobin and deposits its waste products (haemozoin) in the food 

vacuole. Additionally, new parasite derived membraneous structures form in the 

erythrocyte cytosol in close proximity to the host cell membrane. These organelles 

are called Maurer’s clefts (as reviewed in [67]). Furthermore, the surface of the host 

cell membrane is extensively modified by insertion of parasite derived proteins and 

formation of protrusions visible by EM (electron microscopy). These protrusions are 

called knobs (see Figure 1) and it has been shown that PfEMP1 (Plasmodium 

falciparum erythrocyte protein 1) is anchored in these knobs and thus knobs are 

important for cytoadherence [44]. The protein essential for knob formation is the 

knob associated histidine-rich protein (KAHRP) [43, 44].  

As the parasite matures, the food vacuole with the haemozoin becomes visible in 

light microscopy. Visible brownish crystals consist of ferriprotoporphyrin dimers and 

are coloqually termed “malaria pigment”. After the transition from trophozoite to 

schizont the parasite takes up the complete space in the red blood cell, the 

Maurer’s clefts are pushed against the RBC membrane and grape like 

compartments become visible, which are the merozoites. The erythrocyte bursts 

and releases the merozoites.  
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For the remarkable restructuring of the host cell, the parasite has to transport 

proteins beyond its confines. This is a complex and not yet fully understood 

process, which will be discussed below. 

 

 

Figure 1. Schematic representation of an infected red blood cell. 

The cartoon shows a simplified picture of a cross section of an infected erythrocyte. 

The parasite (P) contains the nucleus (N) and the food vacuole (FV) and is 

surrounded by the parasitophorous vacuole (PV). Beyond the parasitophorous 

vacuolar membrane (PVM) the Maurer’s clefts (MC) are visible in the erythrocyte (E) 

cytosol. The protrusions on the erythrocyte surface are the knobs (K). 

 

Protein trafficking in Plasmodium falciparum 

During the asexual life cycle P. falciparum resides within a parasitophorous vacuole 

within the erythrocyte. Living in that special cell type implies advantages as well as 

disadvantages. The biggest benefit for the parasite is the protection from the host’s 

immune system. The red blood cell contains no nucleus and protein synthesis 

machinery anymore and thus is not able to present antigens of an intracellular 

parasite on the surface via MHC I. The intracellular parasite remains invisible to 

cytotoxic T-cells. However, an infected erythrocyte looses its flexibility and is more 
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rigid. This and modifications of the RBCs surface lead to clearance by the spleen 

[68]. The parasite has to trade off some of its shelter to prevent spleen passage by 

cytoadherence. The iRBC adheres to the endothelial cells of the blood vessel by 

interaction between host cell receptors and the parasite protein PfEMP1. The 

integration of PfEMP1 into the RBC membrane is a complex procedure and leads 

directly to the negative aspects of living in a denucleated cell: the parasite has to 

build up completely new protein transport machinery.  

This new transport machinery has to fulfill complex tasks. As the parasite resides in 

a parasitophorous vacuole, proteins targeted to the red cell plasma membrane must 

not only be transported through the parasites membrane but also through the PVM. 

Despite the discovery of the export signal sequences (the export element, PEXEL 

[69], or the vacuolar transportation signal VTS [70]), the mechanisms of this 

transport remain to be elucidated [71]. These signals consist of a short hydrophobic 

part in the very N terminal part followed by differently charged amino acids like 

+xφx- i.e. RxLxE. To complicate a researchers life, there are some proteins 

transported beyond the confines of the PVM without carrying one of the mentioned 

signal sequences, among those is MAHRP1 (membrane associated histidine-rich 

protein 1) [45] and PfEMP1 [71]. Parasite derived organelles which may play a role in 

protein transport are the Maurer’s clefts (MCs). These vesicle-like membranous 

structures are located under the erythrocytes membrane. Many of the exported 

proteins are located at the MC either transiently like PfEMP1 and the knob 

associated histidine-rich protein (KAHRP) [47] or terminally like MAHRP1 [45, 72] or 

the skeleton binding protein 1 (SBP1) [73]. The latter one seems to be important for 

the transport of PfEMP1 from the MC to the erythrocyte surface. In a SBP1 

knockout strain the PfEMP1 transport is arrested at the MC [74], however in another 

study the point of arrest seems to be the PVM [75]. 

The transport of PfEMP1 to the red cell surface includes different trafficking 

intermediates. It is described that PfEMP1 is transported as soluble protein from the 

ER through the PM and PVM and then gets increasingly insoluble on its way to the 

MC clefts. It is inserted in the MC membrane with the C-terminal domain facing the 

erythrocyte cytoplasm. Here it complexes with KAHRP and is then transported to 

the erythrocyte membrane [76]. 
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Since no specific and non-cross reactive antibody against PfEMP1 exists, we tried 

to generate good pan specific anti-PfEMP1 antibodies to further perform localization 

and trafficking studies on the major virulence factor PfEMP1. 

 

Mechanisms of rosetting of Plasmodium falciparum 

The spontaneous binding of uninfected red blood cells to iRBC is called rosetting. 

Rosetting is associated with severe malaria and in Africa especially with cerebral 

malaria [27, 28]. In Papua New Guinea PNG no correlation of rosetting and severe 

disease was found [77] probably due to CR 1 receptor deficiency in 79% of the 

population [78].  The reason for the severe effects of rosetting is most likely the 

blocking of blood flow in the capillaries and the resulting oxygen lack in the tissue 

i.e. in the brain. Luginbühl et al. [31] showed that factors in the serum mediate 

rosette formation. Their work showed that after mechanical rosette disruption, 

rosetting of the culture strain FCR3 S1.2 could be completely restored by the 

addition of complement factor D, albumin and anti-band 3 NAbs (naturally occurring 

Antibodies). As the effect of these proteins is additive compared to the incubation 

with only one, it seems that there are different interaction partners on the iRBC and 

the RBC. The complement factor D is a serine protease and it was investigated if 

proteolytic effects are necessary for rosetting. It was very surprising that there was a 

65kDa fragment cleaved from the iRBC surface since the only known substrate for 

factor D was factor B. However, the fragment has not yet been identified and 

remains to be elucidated from which parasite protein this peptide was cleaved off.  

 

In order to identify potential candidates cleaved by factor D we aimed to generate 

anti-PfEMP1 antibodies to further investigate if the processed protein is PfEMP1. 

 

Recombinant protein expression of plasmodial proteins 

For the generation of antibodies it is crucial to express the antigen in reasonable 

large amounts and as pure as possible. We chose E.coli as a heterologous 

expression system for the expression of different protein domains from PfEMP1. The 

difference of the two organisms Plasmodium and E.coli implies problems in protein 

expression. This typically results in lack of expression or in insoluble inclusion 

bodies [79]. In some cases hundreds of different refolding buffers had to be tested 
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to obtain a soluble protein from inclusion bodies [80]. Reasons for these expression 

problems are the high AT content of 80% in Plasmodium DNA and the resulting 

different codon usage compared to E.coli. Additionally, genes are often larger (50%) 

than their homologous in i.e. yeast [81] and possess long disordered regions [82]. 

The translational start sites of plasmodial proteins are also sometimes cryptic 

resulting in multiple truncated products in E.coli [83]. Because all these difficulties, 

the group of Mehlin et al. [83] cloned 1000 open reading frames to find a universal 

rule to predict the expressability and the solubility of proteins from P.falciparum 

expressed in E.coli. However, they concluded that there were no such general 

result, but they could align physical features of the protein with expression 

problems. Only 30% of all clones expressed a protein and only 63 were soluble. 

Increasing molecular weight, increasing pI (isoelectric point), greater protein disorder 

and lack of E.coli homology were all highly and individually correlated with 

expression problems. It was also reported that induction of an expression culture at 

post-log phase is advantageous compared to the usual induction at mid-log [79]. 

 

In this study we attempt to clone and recombinantly express protein domains of 

PfEMP1 for subsequent serological studies. We attempted to generate a random 

E.coli expression library for PfEMP1 fragments. Furthermore, we generated 

polyclonal mouse sera against different domains of PfEMP1.  
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Chapter3 

Materials and methods 

 

In vitro cultivation of Plasmodium falciparum 

Plasmodium falciparum strain 3D7 was cultivated in RPMI 1640 medium 

supplemented with 25mM HEPES, 0.5% Albumax II, 50mg/l hypoxanthine, 0.25% 

sodium bicarbonate, 10µg/ml neomycin sulphate and 0+ red blood cells at 5% 

haematocrit. Cultures were incubated at 37°C in an atmosphere of 3% oxygen, 4% 

carbon dioxide and 93% nitrogen as described previously [84]. 

Plasmodium falciparum strain FCR3 S1.2 was cultivated with 10% human AB+ 

serum instead of Albumax II. 

Parasites were synchronized by 5% sorbitol treatment as described by Lambros 

and Vanderberg [85]. 

 

Enrichment of late stage parasites using a magnetic cell sorter 

A MACS CS Column (Miltenyi Biotec) was assembled in the magnetic cell separator 

VarioMACS (Miltenyi Biotec) and flushed with 60ml of PBS according to the 

manufacturers protocol. A 22G hypodermic needle was used as flow resistor 

resulting in a flow rate of 3ml/min. 10 to 50ml resuspended late stage Plasmodium 

culture was run through the column. The column was washed with 3 culture 

volumes PBS. The flow through was discarded. The column was removed from the 

magnetic field, the flow resistor was removed from the column and the retained 

iRBCs were eluted from the steel wool by flushing with 50ml PBS. Eluted parasites 

were centrifuged at 4000g at 4°C for 10 min. The supernatant was discarded and 

the parasites stored at -20°C until use. 

 

Plasmodium falciparum protein extraction 

Saponin lysis 

10ml of a Plasmodium culture with a parasitaemia of 3-7% were harvested by 

centrifugation at 1000g for 5 minutes at room temperature. Ice-cold PBS containing 

0.05% saponin was added to the pellet and incubated on ice for 5 minutes. The 

lysed culture was centrifuged at 4000g for 10 min at 4°C and subsequently washed 
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with PBS until the supernatant was clear. The washed pellet was stored at -20°C 

until use. 

 

Triton X-100 extraction 

10ml of a Plasmodium culture with a parasitaemia of 3-7% was harvested by 

centrifugation at 1000g for 5 minutes at room temperature. 5ml ice-cold PBS 

containing 1% Triton X-100 and a protease inhibitor cocktail (Complete®, Roche) 

were added to the pellet and incubated on ice for 5 minutes. The lysed culture was 

centrifuged at 4000g for 10 min at 4°C and the pellet subsequently washed with 

PBS. The pellet was resuspended in PBS containing 2% SDS and centrifuged for 10 

minutes at 15000g. The supernatant containing the Triton X-100 insoluble and SDS 

soluble protein fraction (integral membrane proteins) was stored at -20°C until use.  

 

Genomic DNA isolation of Plasmodium falciparum 

Saponin lysed parasite pellets were resuspended in 600µl TE buffer (10mM Tris, 

1mM EDTA, pH 7,4). Parasites were disrupted by adding 18µl 20% SDS (final conc.: 

0,6%) and 6µl 20mg/ml Proteinase K (final conc.: 200µg/ml) and incubated at 60°C 

over night. The DNA was extracted twice with 2 volumes of a 1:1 mixture of aqua-

phenol:chloroform followed by an additional extraction with chloroform only. The 

aqueous phase was precipitated with 0.3M NaAcetat pH 5.2 and 2.5 volumes 100% 

ethanol at -20°C. 

 

Plasmodial RNA extraction and complete cDNA synthesis 

The pellet from synchronized parasites (minimum 5% parasites in late ring stage) 

was resuspended in 5 volumes Trizol® (Invitrogen). The RNA was extracted from the 

lysate with 0.2ml chloroform per ml Trizol® and precipitated with 3 volumes of 

isopropanol. To improve purity the pellet was again resuspended in Trizol® (0.5 

original volumes), extracted with chloroform and then precipitated. The precipitated 

DNA was digested by two subsequent incubations with RQ1 RNAse free DNAse 

(Promega) according to the manufacturers protocol in the presence of RNAse 

inhibitors. After each DNAse digest the RNA was extracted and precipitated as 

described above. As gDNA is a notorious contaminant in RNA extractions, a control 

PCR was introduced prior to cDNA synthesis. The control PCR contained 1µl from 
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the RNA preparation as template and degenerated dbl1α_fwd and dbl1α_reverse 

primers. These primers amplify most DBL domains from Plasmodium falciparum 

(personal communication M. Kaestli). A positive PCR control was also included. 

After initial denaturation (5 min 96°C) the PCR cycle was as follows: 30 seconds 

annealing at 52°C, 45 seconds elongation at 72°C and 45 seconds melting at 94°C, 

25 cycles. If PCR (visualized by gel electrophoresis) resulted negative, the extracted 

RNA was considered suitable for cDNA synthesis. 

cDNA synthesis was performed using either Sensiscript® or M-MuLV reverse 

transcriptase with random hexamer primers, in accordance with the respective 

manufacturers protocol. RNA amounts used in a cDNA synthesis reaction varied 

from below 100ng to 1µg. A control reaction without reverse transcriptase was 

always included. 

 

General RNA reverse transcription  

RNA samples either from beads hybridisation or crude were mixed with 3.5µl 0.1M 

DTT, 2µl RNAse inhibitor, 7µl 10x RT-Buffer (Sensiscript/M-MuLV), 7µl 5mM dNTPs 

and RNAse free dH2O to 70µl. The reaction mix was split in a 50µl and a 20µl 

aliquot. To the 50µl aliquot 2µl of reverse transcriptase was added, the other was left 

without enzyme as negative control. Both tubes were incubated at 37°C for 90 min. 

After the reaction the RNA:DNA duplex was melted at 93°C for 3 min and the RNA 

was digested with 1µl of RNAse A (1mg/ml) at 37°C for 20 min. The resulting single 

strand cDNA was stored at -20°C. 

 

Full length var mRNA extraction 

To extract only the full-length var mRNA transcripts from a total RNA preparation a 

hybridization technique was used as described in the following: 1pmol of a 

biotinylated oligonucleotide complementary to the ATS domain was incubated 

together with the total RNA in hot (65°C) binding buffer (0.5M LiCl, 1mM EDTA, 

10mM Tris, pH7.5). After slow cooling from 65°C to 4°C over 30 minutes, 200µg of 

streptavidine coated magnetic beads (Dynal) were washed, dissolved in 5.5M LiCl 

and added to the RNA:DNA hybrid and incubated for 30 minutes at 37°C on an 

over-head shaker. Beads were collected on the wall of the reaction tube by a 

surrounding magnet and washed 3 times with wash buffer (10mM Tris, 1mM EDTA, 
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0.15M NaCl, pH 7.5). Reverse transcription was performed directly on the RNA 

hybridized to the beads as described previously (General RNA reverse transcription, 

Material and Methods Chapter3).  

 

cDNA amplification 

To amplify minute amounts of full-length cDNA a modified SMART® (Clontech) 

system was used. To start the synthesis, a modified SMART random primer was 

used. This primer contains a random part of 6 nucleotides followed by a known 

sequence that works as primer sequence in downstream experiments. The reaction 

also contains a SMARToligo, which has 6 guanidine residues on its 3` and a known 

sequence on the 5` end. At the 5` end of the RNA the reverse transcriptase includes 

several cytosine residues to the growing strand of the cDNA. The SMARToligo pairs 

with the extended cytosine rich cDNA tail and thus serves as a second template for 

the reverse transcriptase to switch to. The resulting first strand cDNA contains 

known sequences at both the 3` and the 5` end of the cDNA (see also Figure 1 for 

details). A PCR using the primer pair SMART_PCR_fwd and SMART_PCR_reverse 

amplified the cDNA.  
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Figure 1. Schematic representation of SMART cDNA amplification.  

(Source: www.clontech.com) 

 

 

Polymerase chain reaction (PCR) 

Regular PCR 

A standard PCR reaction mix consisted of the following: 2U Taq polymerase, PCR 

Buffer BD (Solis Biodyne) containing 80mM Tris pH 9.4, 20mM (NH4)2SO4, 1.5mM 

MgCl2, primer final concentration each 10µM, final concentration of each 

deoxynucleotide 2µM, and 10ng template DNA. The reaction volume was 50µl. 

 

Long range PCR 

As template for long range PCR, high molecular weight genomic DNA was used at a 

final concentration of approximately 50ng. A special reaction buffer containing 

50mM Tris, 16mM ammonium sulfate, 2.5mM MgCl2 and 150µg/ml BSA was used to 

maintain a constant pH throughout a wide temperature range. As polymerase a 
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mixture of 2.5U regular Taq and 0.5U proofreading Pfu was used. Primer 

concentration was 10µM and the final reaction volume was 50µl. 

 

Agarose gel electrophoresis 

0.8 to 2% agarose was boiled in 0.5x TBE buffer and poured into a gel chamber. 

DNA samples were loaded in 1 x blue juice (30% glycerol, a tip of spatula 

bromphenol blue and xylene cyanol, 70% TE) and run at 100V constant current for 

1h and stained in ethidium bromide for visualization under a UV source. 

 

Restriction digests and ligation 

Restriction digests were performed in accordance with the manufacturers protocol 

using 10U of restriction enzyme in a final volume of 50µl. 

For the preparation of the ligation mix, the following calculation was applied: 

 

 (10ng vector x size of insert in kb x 10) / size of vector in kb = ng insert.  

 

The volumes of the insert and the vector were calculated according to their 

concentrations and mixed with 2µl ligation buffer and 1µl T4 ligase (Promega) to 

yield an end volume of 20µl.  The reaction was incubated at room temperature for 30 

minutes or over night at 16°C.  After ligation the mixture was chlorofom:phenol 

extracted and precipitated for maximum purity. 

 

Cloning of different expression constructs 

(see also Figure 2 for cloning strategies) 

 

Cloning of long range PCR products 

A large set of different primers was tested for long-range PCR conditions. They 

consisted of seven forward (F1-F7) and four reverse primers (R1-R4) (see appendix: 

primer sequences). The best result was achieved with primer pair F4 and R4. All 

primers contained restriction sites for SacI and NotI. PCR products were ligated into 

pHIS parallel1 for recobinant protein expression. 

(Figure 1A) 
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Random cloning of cDNA 

cDNA from either preparations of complete cDNA or of full length var mRNA was 

subcloned via TOPO cloning kit (Invitrogen) into pTrcHIS2 expression vector without 

restriction digest using the A-overhangs from the PCR reaction in accordance with 

the manufacturers protocol.  

(Figure 1A) 

 

Vector modifications of pTrcHis2  

A PCR product from the primer pair GST_fwd and MCS_reverse that contains the 

GST sequence as well as the multiple cloning site (MCS) of pGEX 4T1 was ligated 

into the pTrcHIS2 vector. A  “gene of interest” cloned into the MCS of the new 

vector pTrcHis2_GST has two purification tags: an N-terminal GST and a C-terminal 

6xHis.  

(Figure1B) 

 

Cloning of acidic terminal segment (ATS) of PfEMP1 

The ATS domain was amplified using the primer pair ATS_FCR_fwd and 

ATS_FCR_reverse, which contains the restriction sites EcoRI and NotI. Genomic 

DNA from the Plasmodium falciparum strain FCR3 S1.2 was used as template. PCR 

products were ligated into the pTrcHis2_GST vector, which was cut with the same 

enzymes as the PCR product.  

(Figure1B) 

 

Cloning of ATS N-terminal and C-terminal fragments 

The N-terminal part of the ATS was amplified from genomic DNA from the 

Plasmodium falciparum strain FCR3 S1.2 using primer pair ATS_FCR_2_fwd and 

ATS_FCR_nterm_reverse, that contain the restriction sites EcoNI and BglII. PCR 

products were cloned into the expression vector pQE-16. For the C-terminal part, 

the primer pair was ATS_FCR_cterm_fwd and ATS_FCR_2_reverse; the rest of the 

procedure was the same as for the N-terminal fragment. 

(Figure1C) 
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Cloning of NTS (N-Terminal Segment) of FCR3 S1.2 

The NTS domain was amplified using the primer pair NTS_FCR_fwd and 

NTS_FCR_reverse, which contains the restriction sites EcoRI and NotI. Genomic 

DNA from the Plasmodium falciparum strain FCR3 S1.2 was used as template and 

PCR products were ligated into the vector pTrcHis2_GST (Invitrogen). 

(Figure 1B) 

 

Preparation of electrocompetent cells and electroporation of E.coli 

An over-night culture from a single colony was diluted 1:20 in LB medium, grown to 

OD600= 0.8 harvested and washed 4 times in sterile ddH2O at 4 °C to remove 

residual salts. The bacterial pellet was aliquoted, snap frozen in liquid nitrogen and 

stored at -80°C. 

For transformation, 40µl of concentrated electrocompetent cells were mixed with 

plasmid DNA in a precooled electroporation cuvette (gap 0.2cm). Electroporation 

settings were 2500V and 5ms single-pulse. For reconstitution, the transformed 

bacteria were immediately transferred into warm LB medium without antibiotics for 

30 minutes. The suspension was spread on LB agar plates with the appropriate 

antibiotics and grown overnight at 37°C. 

 

Plasmid preparation and sequencing 

Plasmids were extracted from 2ml over-night culture with a MiniPrep kit (Qiagen). 

Plasmids were sequenced at Macrogen Inc. in South Korea. 

 

Recombinant protein expression in Escherichia coli 

Small-scale expression 

For over-night cultures, 4ml LB-medium supplemented with 100µg/ml ampicillin was 

inoculated with a single colony containing the expression plasmid and incubated at 

37°C, shaking at 220rpm. The overnight culture was diluted 1:100 in 5ml fresh LB-

medium containing antibiotics and was further incubated at 37°C. The protein 

expression was induced by the addition of 1mM IPTG when OD600 reached 0.8. 

Bacteria were harvested 4 hours later by centrifugation at 4°C, 8000g for 15min. 

Pellets were stored at -20°C until further use. 
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Medium and large-scale expression 

For medium and large-scale expression of recombinant protein, the volume of the 

expression culture was raised to 50 or 500ml. 

E. coli expression strains used were: BL21 for pGEX plasmids, M15 for pQE 

plasmids and TOP10 for pTrcHIS2 plasmids. The LB medium was supplemented 

with 100µg/ml Kanamycin for M15 cells and with 1% Glucose for TOP10 cells. 

 

E.coli cDNA library colony blots 

Transformed E.coli were spread on LB agar plates and grown over night at 37°C.  

The next day colonies were printed directly from the plate onto a round 

nitrocellulose membrane. The membrane was then duplicated and re-grown on 

fresh plates (facing colonies up). One membrane was stored at 4°C as master. The 

other was transferred to a new agar plate containing 1mM IPTG and grown for 

additional 4h at 37°C. The membrane was gassed in chlorofom vapor for 15 minutes 

before it was transferred into lysis buffer containing 100mM Tris pH7.8, 150mM 

NaCl, 5mM MgCl2, 15% BSA, 40µg/ml lysozym and 1µg/ml DNAse. Lysis was 

complete when no bacterial material was visible anymore, usually over-night. The 

membrane was developed similar to a Western blot, including blocking, primary and 

secondary antibody and stained with NBT/BCIP. Colonies that produced a 

recombinant protein left a black spot on the membrane. When the developed 

membrane was aligned with the master membrane positive clones were revealed 

and cultivated for further analysis (Sambrook and Russell, Molecular cloning, 3rd Ed, 

14.14 Protocol 2). 

 

Purification of 6xHIS tagged recombinant proteins 

Purification of NTS 

The bacterial pellet from the expression culture was thawed on ice. 5 pellet volumes 

of lysis buffer supplemented with 100µg/ml lysozyme and 1µg/ml DNAse were 

added and incubated for 30 minutes. The lysate was sonicated at 50% duty cycle 

with five, 10 seconds bursts with 10 seconds intervals in a microtip sonicator. 

Soluble proteins were separated from cellular debris by centrifugation at 10000g for 

30 minutes at 4°C. The supernatant was mixed with 0.5ml of Ni-TA-Agarose beads 

(Invitrogen) and incubated for 1h. The protein was further purified according to the 
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manufactures protocol (Qiagen, the expressionist). Eluted proteins were stored at     

-20°C. 

 

Purification of C-terminal ATS and N-terminal ATS  

For the insoluble proteins ATS C-term and ATS N-term, the pellet was lysed in 

inclusion body lysis buffer (2% Triton X-100) supplemented with 100µg/ml lysozyme 

and 10µg/ml DNAse. Sonication conditions were as indicated above. The insoluble 

proteins were harvested by centrifugation at 10`000g for 30 minutes. The 

supernatant was discarded and the pellet resuspended in inclusion body lysis 

buffer. This step was repeated 3 times. For the last resuspension of the insoluble 

pellet, PBS was used to avoid Triton X-100 in the further purification procedure. The 

washed pellet was resuspended in 8M Urea buffer and mixed with 0.5ml Ni-TA-

Agarose beads. The protein was further purified according to the manufactures 

protocol (Qiagen, the expressionist). Eluted proteins were stored at 4°C.  

 

Purification of GST tagged recombinant proteins 

The bacterial pellet was lysed as indicated in the “Purification of NTS” protocol. The 

supernatant was mixed with 0.5ml glutathione-sepharose 4B (Pharmacia) and 

incubated in an over-head shaker for 30 minutes at room temperature. The 

sepharose slurry was centrifuged, washed and eluted with 10mM reduced 

glutathione as described in the manufacturers protocol. Eluted proteins were stored 

at -20°C. 

 

SDS-PAGE and Western blot analysis 

Proteins were resuspended in Laemmli buffer, boiled for two minutes and separated 

on a 5 or 12% SDS polyacrylamide gel according to their size. Proteins were 

transferred to a nitrocellulose membrane (Hybond C, 0.45µm, GE Healthcare) in a 

semi-dry blotter. Tris-Glycine buffer containing 20% methanol was used as transfer 

medium. Membranes were blocked with TNT (Tris, NaCl, Tween-20 0.1%) 

containing 5% non-fat milk powder.  Primary and secondary antibody incubation 

was done in TNT containing 1% non-fat milk powder. Primary antibody dilutions for 

mouse anti-NTS and mouse anti-ATS1-4 were 1:200 – 1:1000 and for mouse anti-

6xHIS 1:5000. Membranes were incubated with the primary antibody for 2h on a 
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shaker at room temperature or over night at 4°C. Washing was performed with TNT 

3 times for 10 minutes. Secondary antibody dilutions used were: goat anti-mouse 

AP 1:10000 and goat anti-human HRP 1:5000. Both were incubated for 1 hour at 

room temperature. Secondary antibodies were visualized depending on the liked 

enzyme: for alkaline phosphatase alkaline Tris-buffer containing 300µg/ml BCIP and 

150µg/ml NBT was used and the color reaction was stopped with ddH2O; for 

horseradish peroxidase a enhanced chemoluminescence detection kit (GE 

Healthcare) was used and the filters exposed to Kodak XE films for 10 seconds to 

10 minutes. 

 

Immunization of mice 

Recombinant NTS 

Six NMRI female mice were immunized with purified recombinant NTS. 3 mice were 

subcutaneously immunized with 10µg recombinant protein and MPL-TDM (Sigma) 

as adjuvant and 3 mice with ImmuneEasy (Invitrogen) as adjuvant. The mice were 

boosted twice with the same antigen concentration after 3 and 5 weeks. 10 days 

after the last boost the mice were sacrificed and the sera stored at -20°C for further 

analysis. 

 

Synthetic peptides 

Four different peptides ATS1 to ATS4 (Alta-Bioscience) (see appendix for sequence 

information) all derived from conserved ATS regions of PfEMP1, were chosen for 

immunization. Two peptides were differently modified to enhance antigenicity. 

Peptide ATS1 was coupled to Keyhole limpet heamocyanin (KLH), peptide ATS2 

was synthesized as Multi-Antigenic-Peptide (MAP) in which 8 peptides are coupled 

to a branched lysine core. Peptide ATS3, being the longest peptide, was not 

modified. Peptide ATS4 was chosen for its predicted coiled-coil domain and also 

not modified to avoid interference with the self-assembling of its 3-dimensional 

structure. 

For mouse immunization a peptide solution was emulsified with TiterMax Gold® 

(Sigma) in a ratio of 1:1 containing 100µg antigen per injection. For each antigen 3 

NMRI mice were immunized once and titers were check 5 weeks later. Boosting was 
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not necessary and mice were sacrificed 6 weeks after immunization and the sera 

stored at -20°C for further analysis.  

 

Enzyme linked immuno adsorbed assay (ELISA) 

MaxiSorb (Nunc) 96 well ELISA plates were coated with 10µg/ml peptide or protein 

in PBS at 4°C over-night. Plates were washed in an ELISA-plate-washer once and 

blocked with 5% non-fat milk powder on PBS-T (PBS, 0.01% Tween-20) at room 

temperature for one hour. Plates were then washed again and incubated with mouse 

sera in serial dilutions starting at 1:100 in PBS-T with 1% non-fat milk powder at 

room temperature for 2 hours. Plates were washed twice and incubate for another 

hour with goat anti-mouse alkaline-phosphatase labeled antibodies (Sigma) at a 

dilution of 1:10000. The washed plate was developed with 1mg/ml PNP (p-

Nitrophenyl Phosphate) in alkaline buffer and measured in an ELISA reader at a 

wavelength of 405nm one to three hours later. 

 

Immuno fluorescence assay (IFA) 

Mixed-stage parasite cultures with at least 8% parasitaemia were thinly smeared on 

a microscopic glass slide. Cells were fixed in ice-cold acetone:methanol (1:1) for 5 

minutes. The slides were blocked with sterile-filtered 5% BSA in PBS for one hour at 

room temperature in a humid chamber. Cells were washed and incubated with 

mouse sera in PBS-T with 1% BSA for 2 hours. Slides were washed again and 

incubated with goat anti-mouse Cy3 labeled antibodies for one hour. IFA slides were 

washed, dried and mounted in anti-fade solution containing DAPI (1µg/ml) for 

visualization of the nuclei.  
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Figure 2. Vector maps of cloned expression constructs. 

In A vectors and enzymes are depicted for cloning of long-range PCR and amplified 

cDNA cloning. In B the modification of the TOPO pTrcHIS2 vector with the GST 

expression cassette from pGEX 4T1 is shown. The new vector pTrcHIs2_GST was 

used for cloning of ATS and NTS domains. In C the cloning of ATS N- and C- 

terminal fragments is indicated. 
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Chapter 3 

Results 

 

To dissect the immuno-protective role of different domains in PfEMP1, we 

attempted to generate a set of recombinant proteins against which we wanted to 

test sera from patients with different clinical history or age. Furthermore, we planed 

to generate specific antibodies against different domains in PfEMP1.  

We chose classical molecular biological methods to tackle our aims. We attempted 

expression of long PfEMP1 fragments from a random cDNA library, from full lengths 

ATS and from full length NTS domains. We investigated immunization with 

recombinant NTS and synthetic peptides of the ATS domain. These multiple 

approaches and corresponding results are described in the following. 

 

1. Long range PCR, cloning and expression 

To obtain large PfEMP1 PCR fragments for recombinant protein expression, a set of 

seven forward primers (F1-7) and four reverse primers (R1-4) were designed based 

on the P. falciparum 3d7 genome sequence (primer sequences listed in “Primers & 

Peptides”). The fragments reached from the NTS domain to the DBLγ domain and 

sized from 3 to 5 kb, depending on the domain structure of the var gene. Each 

forward primer was tested with each reverse primer and results are shown in Figure 

1. To assess the limits of the long-range PCR (l-rPCR), an ATS reverse primer was 

also included. It was possible to amplify a small full-length var gene with a size of 

about 7kb (see Figure 1, Lane 10). As the primer sequences were chosen on 

relatively conserved DNA stretches each primer can anneal to a subset of var genes.  

Various fragments were prepared for cloning into an expression vector, however the 

3.8 kb fragment amplified with primer pair F4/R4 had the highest yield (Figure 1, lane 

14) and was the only one, which was successfully cloned for protein expression in 

pHIS paralell1 (see Figure 2). Upon protein induction however, no recombinant 

protein expression was detectable neither in Coomassie blue stained 

polyacrylamide gels (Figure 3) nor in Western blots (data not shown). Alterations in 

temperature, induction time, different bacterial strains (M15, Bl21, Origami) or rich 

expression media did not improve protein expression conditions.  
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Figure1. Testing different primer combinations for PfEMP1 long-range PCR.  

PCR products of different primer combinations (see Table 1) were tested. 5 

microliters of a 50 µl PCR reaction were loaded on a 0.7% agarose gel in lanes 1-30. 

M1, 1kb ladder; M2, lambda HindIII ladder.  
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Lane 5` primer 3` primer Lane 5` primer 3` primer 

1 F2 R1 16 F5 R1 

2 F2 R2 17 F5 R2 

3 F2 R3 18 F5 R3 

4 F2 R4 19 F5 R4 

5 F2 ATS 20 F5 ATS 

6 F3 R1 21 F6 R1 

7 F3 R2 22 F6 R2 

8 F3 R3 23 F6 R3 

9 F3 R4 24 F6 R4 

10 F3 ATS 25 F6 ATS 

11 F4 R1 26 F7 R1 

12 F4 R2 27 F7 R2 

13 F4 R3 28 F7 R3 

14 F4 R4 29 F7 R4 

15 F4 ATS 30 F7 ATS 

 

Table 1. Different primer pair combinations applied for long-range PCR 

amplification of PfEMP1. 

The table shows all possible permutations of forward primers F2-F7 and reverse 

primers R1-R4 and reverse-ATS with its corresponding lane in figure 1. Primer F1 

did not work and was excluded. Primer pair F4/R4 in grey was used for downstream 

experiments (for sequence information see: “Primers & Peptides”). 

 

Figure 2. Control digest of cloned l-rPCR.. 

Restriction enzyme digests of plasmid preparation 

of pHIS1_F4/R4. Lane 1 undigested plasmid, lane 2 

and 3 plasmid digested with either SacI or NotI, lane 

4 plasmid digest with both enzymes. The F4/R4 

fragment is visible at 3800 bp, the backbone at 

5500 bp. M, 1kb marker. 
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Figure 3. Small-scale expression of PCR product F4/R4 in pHIS parallel1. 

Total protein extracts of induced(+) and noninduced(-) bacterial cultures harboring 

plasmid pHISparalell1_fragF4/R4 were separated on a 12,5% acrylamide gel stained 

with Coomassie blue. 

Three different expression clones were tested: clone 1 (lane 1 and 2), clone 2 (lane 3 

and 4), clone 3 (lane 5 and 6). Arrowhead is positioned at expected size of 

recombinant protein (135 kDa). M, Marker SeeAllBlue (Invitrogen). 

 

2. Random cDNA cloning and protein expression 

With the aim of testing the serological effect of different domains of PfEMP1, we 

performed a random cloning approach. Total RNA was isolated from Plasmodium 

falciparum 3d7 and FCR3 S1.2 culture strains (see Figure 4A). The total RNA was 

reverse transcribed with random primers and the resulting cDNA was cloned into 

TOPO pTrcHIS2 plasmids for random expression. Sequencing analyses of these 

clones revealed that only rRNA had been reverse transcribed and thus is present as 

inserts in TOPO pTrcHIS2. There was no clone containing a reverse transcription 

product derived from an mRNA fragment. Therefore, a different approach was 

chosen to enrich for full-length var mRNA from the crude RNA preparation (see 

materials and methods “var mRNA extraction”). The isolated mRNA was transcribed 

into cDNA. Due to its low concentration, it was not possible to clone the cDNA 

obtained after mRNA purification.  
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Therefore an amplification cDNA step was added using the modified SMART® 

method (see Figure 4B). Although the amplification was successful the cloning of the 

amplified cDNA again only showed rRNA and tRNA. Neither an annotated mRNA 

fragment nor a var transcript was ever found in the cloned fragments. 

 

Figure 4. RNA preparation and SMART cDNA amplification. 

A. RNA extractions from two different Plasmodium falciparum strains were 

separated on a non reducing agarose gel. The ribosomal RNA is visible as very 

strong bands at 1,6kb and 2,9kb. Lane 1: 3d7; lane 2+3 FCR3 S1.2. B. Agarose gel 

with two SMART cDNA amplification products from 3D7 (lane 4) and FCR3 S1.2 

(lane 5). The dominant transcript length is around 1kb as indicated by the 

arrowhead.  

 

3. Establishing the colony blot method for ATS expression from Plasmodium 

falciparum 

The colony blot system was originally designed to find expressing and serological 

relevant clones in a complex cDNA library. As the cDNA library was notoriously 

contaminated with transcripts of rRNA, an expressing clone was never found. But 

when used as tool to screen for an expressing colony after cloning a specific PCR 

product amplified from genomic DNA, this problem should not occur. We 

successfully applied the method for screening for an expression clone of the 

complete FCR3 S1.2 ATS domain (see Figure 5A). Positive clones were picked from 

the master plate and analyzed by PCR, where 80% proofed to have a correct insert. 
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As depicted in Figure 5C, Western blots of small-scale expression cultures revealed 

a week expression of full length GST-ATS-HIS at 90 kDa, however the expected size 

was 72 kDa. Unfortunately, purification of the recombinant protein over a Ni-TA-

column did not enable sufficient purity (Figure 5B). Purification using Glutathione-

Sepharose was not possible, because the expressed protein was not soluble. 

Because of the unsatisfactory purity, the wrong size and the low expression level the 

protein was not used for further immunization of mice. 
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Figure 5. Colony blot and expression of ATS in pTrcHIS2_GST. 

A. Colony blot with ATS-6xHIS expressing clones (dark black spots). The blot was 

probed with anti-6xHIS antibodies. B. Coomassie blue SDS page with purified 

recombinant ATS. C. Western blot of recombinant ATS probed with anti-6xHIS 

antibody. 
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4. Cloning and expression of the NTS of strain FCR3 S1.2 

For performing localization studies and Western blots we generated a set of 

polyclonal mouse sera. Because immunization with recombinant ATS was not 

possible due to unsatisfying yield and purity, we decided to use the NTS domain 

instead. For this, the smaller NTS domain was cloned into the same expression 

vector as the ATS domain. The expressed recombinant protein has an expected size 

of 33.6 kDa and an apparent size of 40kDa (see Figure 6). It was purified sequentially 

over a glutathione-column first and then over a Ni-TA-column. The purity of the 

recombinant protein fraction met our standards and this recombinant protein was 

used to immunize NMRI mice. 

 

 

Figure 6.  Polyacrylamide gel and Western blot of recombinant NTS. 

The recombinant protein NTS is visible at approximately 40 KDa. A. Coomassie blue 

SDS PAGE with purified recombinant NTS, an additional band is visible at 30 kDa. 

B. Western blot of recombinant NTS probed with 6xHIS antibodies. The 

recombinant protein is visible at 40 kDa.  

 

Immunization of mice and characterization of anti-NTS sera 

When immunizing mice with recombinant GST-NTS-HIS from the FCR3 S1.2, two 

slightly different immunization protocols were used in order to optimize 

immunization. Briefly, 3 mice were immunized with MPL-TDM (Sigma) adjuvant 

(MPLM1-MPLM3) and 3 mice were immunized with Immune-Easy (Qiagen) adjuvant 
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(IEM1-IEM3). The sera were tested against recombinant protein and total parasite 

protein lysates. Figure 7 shows that sera tested in Western blots recognized the 

recombinant protein GST-NTS-HIS with a band at 37 kDa. There were also multiple 

lower bands, which may represent breakdown products of the recombinant protein. 

Serum from IEM1 showed the most specific interaction, but also the weakest. In all 

other sera background bands were visible. MPLM3 showed the strongest 

interaction. 

The sera were also tested on parasite lysates to detect the full length PfEMP1 (see 

Figure 8). The pattern obtained with the sera showed two bands above 250 kDa, 

which is in the size range of endogenous PfEMP1. However, controls with pre-

immune mice sera and with other anti-PfEMP1 serum (against the ATS domain, 

kindly provided by M. Wahlgren), revealed that the recognized bands were not 

PfEMP1. As the same bands also come up in lysates of uninfected red blood cells, it 

must be cross reaction with an erythrocyte protein, most likely alpha and beta 

spectrin.  

 

 

Figure 7. Western blots for testing six mouse anti-NTS sera. 

Recombinant NTS was blotted and probed with 6 different mice sera. Lanes 1-3 

represent sera from IEM1-IEM3, and lanes 4-6 are sera from MPLM1-MPLM3. The 

apparent size of the recombinant protein is about 40kDa.  
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Figure 8. Western blots of parasite lysates probed with different anti-sera. 

Lysates from parasite lines FCR3 S1.2 (lane1), 3d7 (lane 2) and red blood cells (lane 

3) were tested with pre-immune mice sera pool (A), anti-NTS mice serum pool (B) 

and rat anti-ATS (C, provided by M. Wahlgren). All sera were used 1:200. The arrow 

indicates the band expected to be PfEMP1. 

 

Sera from NTS immunized mice tested in IFA 

To rule out that epitope modification during protein electrophoresis and transfer was 

the reason for the unclear immunoblot results of total parasite protein preparations, 

all sera were additionally tested in immunofluorescence assays (IFAs). The sera were 

incubated with fixed (either acetone/methanol or glutaraldehyde/formaldehyde) 

smears on microscopic glass slides and investigated under a fluorescence 

microscope. Only 2 sera gave reasonable signals, namely IEM2 and MPLM3. All 

other sera gave no signal or showed elevated background levels, which made it 

impossible to discriminate any labeled structures. In glutaraldehyde/formaldehyde 

fixed infected red blood cells both IEM2 and MPLM3 sera showed the same 

fluorescent pattern: a sharp rim-like or tube-like structure surrounding the nucleus 

(see Figure 9) indicating localization within the endoplasmatic reticulum (ER) [86-88]. 
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The dotted staining of the parasite and the red blood cell cytosol characteristic for 

PfEMP1 [43, 74] was never observed. 

Acetone/methanol fixed infected red blood cells showed a different picture and were 

only positive for mouse MPLM3 (see Figure 7B). With this fixation, the pattern was 

diffuse. A faint and fuzzy staining of the host cell cytosol was visible, but only with 

long exposure times. 
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Figure 9. IFA of infected red blood cells probed with anti-NTS mice sera using 

two different fixation methods. 

Sera MPLM3 and IEM2 were tested and the secondary antibody used was goat IgG 

anti-mouse-Cy3. 

A. Formaldehyde/glutaraldehyde fixed FCR3 S1.2 parasites. In red the rim like 

structure of the anti-NTS serum is visible. In blue is the DAPI stained genomic DNA. 

Left column: brightfield image and DAPI overlay; middle column: anti-NTS signal 

(Cy3); right column: overlay of left and middle column. I2 is IEM2; M3 is MPLM3. B. 

Acetone/methanol fixed parasites. Serum from mouse 3 MPL on FCR3 S1.2. In red 

anti-NTS (Cy3), in blue DAPI. From left to right: DAPI, Cy3, overlay, bright field. 

 

 

B 
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5. Cloning, expression and purification of C- and N-terminal ATS fragments 

Sera raised against synthetic peptides (see section 6) can only be tested on Western 

blots with very sophisticated Western blot protocols for small peptides. 

To circumvent establishment of a peptide Western blot protocol, we generated a 

pair of recombinant proteins covering the ATS. The ATS domain was split into two 

separate domains, ATS-N and ATS-C (see schematic representation in figure 9), to 

facilitate recombinant expression. The domains were cloned into a pQE-16 vector 

expressing the cloned gene as DHFR-fusion protein. The expected size for ATS-N 

was 50 kDa and for ATS-C 59 kDa. Both domains overlapped in the middle by 6 

amino acids. Upon recombinant expression, both domains were not soluble but 

expressed in high levels and were successfully purified over Nickel column in 8 M 

urea (see Figure 10).  Protein extracts were later used as controls to assess antibody 

levels and selectivity in Western blots of sera from ATS immunized mice. 

 

 

 

Figure 10. Coomassie blue stained SDS PAGE and Western blot of recombinant 

ATS-N and ATS-C. 

Purified recombinant ATS fragments were separated by gel electrophoresis; lane 1, 

ATS-N; lane 2, ATS-C. A. Coomassie stained 12,5% Polyacrylamide gel. B. Western 

blot from 10% Polyacrylamide gel probed with anti-6xHIS antibodies. 
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6. In silico ATS analyses to select synthetic peptide candidates 

Due to a persisting lack of specific anti-PfEMP1 antibodies, we searched for new 

possible sequences to use as antigens for raising antibodies in mice. The ATS 

domain of PfEMP1 which faces the erythrocyte cytosol is not under immunological 

pressure, hence is not as variable as the extracellular portion of PfEMP1. We aligned 

all 3d7 ATS sequences to find conserved stretches (see appendix alignment 1). We 

chose three stretches (ATS1-3) within the ATS domain which have a homology 

greater than 80%. The peptide ATS1 (SDITSSESEYEELDINDIYVP) had a length of 

21 amino acids (aa), peptide ATS2 (PKYKTLIEVVLEPS) had a length of 14 aa and 

peptide ATS3 (GIDLINDTLSSGNHIDIYDEVLKRKENELFG) 31 aa. In addition we 

selected a fourth peptide (ATS4) not because of its homology but because of its 

predicted coiled-coil structure. The peptide ATS4 (LDRHRDMCEKWKNKEDILNKLK 

EEWNKENINN) was 32 aa long (see Figure 11 for details). The peptides ATS1 and 

ATS2 were modified to enhance immunogenicity as described in materials and 

methods. 

 

Figure 11. Schematic representation of the ATS domain of PfEMP1 in the FCR3 

S1.2 strain.   

Depicted in grey is the full ATS domain of PfEMP1. Blue bars represent the 

recombinantly expressed ATS-N and ATS-C domain, which overlap by the 6 amino 

acids NSMNDI. Synthetic peptides were chosen according to 3 regions with over 

80% homology shown as red boxes (ATS1-ATS3). A fourth synthetic peptide (ATS4) 

was defined according to regions of predicted coiled-coil domain. The numbers 

indicate the amino acids starting after the transmembrane domain (numbers and 

amino acids are valid for FCR3 S1.2 ATS, AF003473).    

1           64   85   88   101                              217   223       240  270             301  331                458 
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Immunization with synthetic peptides and characterization of sera 

A new adjuvant TiterMax Gold (Sigma) was used for immunization of mice with 

synthetic peptides. For every peptide, 3 mice were immunized, resulting in sera 

ATS1M1-ATS1M3, ATS2M1-ATS2M3, ATS3M1-ATS3M3, and ATS4M1-ATS4M3, 

Specificity of all sera was tested in ELISAs (see figure 10). Sera ATS1M1-3, ATS3M1 

and ATS4M2-3 showed very high titers ranging from 1:3000 to 1:10000. All ELISA-

positive sera were additionally tested in Western blots on recombinant ATS 

fragments (see Figure 13). All ATS1 immune sera recognized the recombinant N-

terminal ATS fragment but not the C-terminal fragment. Non of the ATS2 immune 

sera gave a signal in Western blots. Only sera from mouse1 from immunization with 

ATS3 recognized the recombinant C-terminal and not the N-terminal fragment. Sera 

ATS1M1-3 and ATS3M1 have high antibody titers and are specific for their antigen. 

These sera were also tested on Western blots of total parasite lysates from lab 

strains 3d7 and E8B (see Figure 14). All sera recognized two strong bands above 

250kDa. The same bands were also recognized in Western blots of uninfected red 

blood cells. As the recognized bands seem to be of erythrocytic origin, MACS 

enriched parasites were used for the preparation of protein lysates to improve the 

parasite:erythrocyte ratio. MACS is a magnetic cell sorter which can bind 

trophozoite and schizont stage iRBCs due to magnetic iron deposits in the food 

vacuole. Younger stages and RBC do not bind. The intensity of the recognized 

bands was reduced significantly in the MACS sample (Figure 14, lane 4), 

strengthening the evidence for erythrocytic origin of the recognized bands. With the 

exception of the MACS enriched sample there were no additional bands in immuno 

blots of infected red blood cells compared to blots of uninfected red blood cells. In 

the MACS purified sample there was an additional unidentified 150kDa band. Thus 

our Western blot analyses show, that none of the immune sera raised against 4 

different domains of the ATS recognized native PfEMP1 in Western blots. The 

additional band at 150 kDa in the MACS sample is not PfEMP1 as this is expected 

to be bigger than 250kDa. In Figure 12 the Western blot of ATS1 M1 is shown, 

which is representative for all ELISA positive sera. 

Furthermore, all sera were tested in IFAs on the parasite line FCR3 S1.2 to confirm 

the results from Western blots (see Figure 15). Only a very faint signal was detected 

and in accordance with Western blot results the signals was also present in 
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uninfected erythrocytes and is thus unspecific for PfEMP1. IFAs from three different 

mice immunized with ATS1 giving the strongest signals are shown in Figure 12. M3 

is shown here as an example and all other sera tested stained the RBCs as well. 

 

Figure 12. Enzyme linked immuno fluorescence assays of mice sera on 

synthetic ATS peptides. 

A.  ELISA results for ATS1 and ATS2. Mice immunized with ATS1 (ATS1M1-M3) had 

very high titers ranging between 1:5000 and 1:10000. For ATS2 only M1 and M2 

show a (weak) response. In blue: negative control on ATS1 without primary 

antibody. B. Results from ATS3 and ATS4. ATS3 M1 and ATS4 M2-3 show high 

response with titers ranging between 1:1000 and 1:10000.  

A 

B 
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Figure 13. Western blot of different mice sera on recombinant ATS N-terminal 

and C-terminal fragments. 

The C-terminal fragment (A) and the N-terminal (B) fragment of the ATS were 

blotted. The sera tested are: Lane 1,mouse 1  anti-ATS2 (ATS2M1); lane 2, ATS3M1; 

lane 3, ATS2 M2; lane 4,  ATS4 M2; lane 5, ATS1 M1; lane 6, ATS1 M2; lane 7, ATS1 

M3; lane 8, anti-6xHIS antibody.  
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Figure 14. Western blot of parasite lysate probed with ATS1 M1 serum. 

Serum (1:200) from mouse1 immunized with ATS1 was tested against different 

lysates. Strong recognition of a protein from the erythrocyte is visible around 250 

kDa. Lane 1, erythrocyte lysate; lane 2, Pf3d7 lysate; lane 3, E8B lysate; lane 4, 

MACS purified Pf3d7 lysate. As positive control recombinant ATS-N was included 

(+). 
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Figure 15. IFA of Plasmodium falciparum 3d7 infected red blood cells probed 

with sera from ATS1-immunized mice. 

Formaldehyde fixed 3d7 cultures were stained with DAPI and probed with 3 different 

mouse sera ATS1 M1-M3. For M1 and M2 structures in the infected red blood cell 

were labelled. For serum from M3 an uninfected red cell was stained. Columns from 

left to right: DIC image, anti-ATS sera Cy3, DNA DAPI stain, overlay. 
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Chapter 3 

 

Dicussion 

 

Expression of large recombinant proteins 

Investigations on recognition frequencies of PfEMP1 are mainly based on the DBL 

domain. To obtain a broader picture of the differential recognition of PfEMP1 

variants, we tried to express large fragments of this protein from the sequenced 

strain Plasmodium falciparum 3d7. We established long range PCR and were able to 

amplify DNA up to 8kb long. The difficulties arose with cloning of the amplified 

fragments. The E.coli expression vector chosen for this experiment had a size of 

about 5 kDa. Despite the numerous long range PCR fragments we obtained, cloning 

efficiency was poor. This ineffective cloning strategy is most probably due to the 

size of the inserts, as the probability for re-ligation drops with increasing insert size. 

Nevertheless, we generated one construct with a 4 kb insert. However, the 

expression of this fragment was impossible although sequencing revealed that the 

insert was in the expected frame. Retransfection of the plasmid into a bacterial 

strain coding for rare tRNAs did not improve expression at all. The protein encoded 

on the plasmid had an expected size of almost 140kDa and we concluded that this 

size overstressed the translation machinery of E.coli [83]. This is supported by the 

fact that almost no E.coli protein visible on a SDS gel exceeds 100kDa (see Figure 3, 

Results).  

 

 

Random cloning of cDNA 

Because we could not solve the cloning and expression problems with large 

PfEMP1 fragments we decided to move to a more random approach. Bull et al. 

showed by agglutination assays that parasite isolates, which cause severe disease, 

are frequently recognized by heterologous sera whereas parasites causing mild 

symptoms present uncommon antigens and are thus less frequently recognized [89]. 

Based on these findings we wanted to narrow down the differential recognition to 

certain domains of PfEMP1. We decided to generate an E.coli expression library that 

expresses random peptides of plasmodial proteins. Two identical copies of the 
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library should be probed with either non-immune or immune sera. Differentially 

recognized clones would be analyzed subsequently. 

We isolated RNA from cultured parasites and reverse transcribed it into cDNA. The 

library constructed from this cDNA was heavily contaminated with ribosomal rRNA, 

which made it impossible to go on with the serology. We tried to improve our library 

and reduce the complexity of the sample by isolating full length varmRNA from 

crude RNA samples [55]. For this the mRNA is hybridized to an immobilized probe  

specific for the ATS domain and subsequently transcribed. But the introduction of 

this step dramatically reduced the amount of cDNA obtained. Irrespective of the 

detection of var cDNA by PCR it was not possible to clone it. It was concluded that 

the low amount was the reason for negative cloning result. The amplification of the 

mRNA prior to cDNA transcription should overcome this problem. A method 

exploiting the template switching effect of reverse transcriptase was used to 

introduce linkers to the cDNA. With the known linker sequence the cDNA could be 

PCR amplified afterwards. Amplification and cloning of the modified cDNA worked, 

however the resulting library contained again only ribosomal and transfer RNA. 

Despite the enrichment of var mRNA, the contamination of other RNAs was so 

intense that the library could not be used. A more stringent washing step introduced 

after hybridization of the var mRNA resulted in total sample loss.  

Too many drawbacks and snags let us terminate these approaches to identify new 

domains which are differentially recognized by adult and children sera. From there 

on we focused on DBL domains only and performed serological studies (see also 

Chapter 4). 

 

Expression of short fragments from different domains of PfEMP1 as antigens 

Rosetting is a major virulence factor of a malaria infection. The dissection of the 

molecular basis of rosetting is still ongoing and not yet completely understood. 

Serum factors and host proteins play an important role in rosetting as they act as 

bridging molecules [30]. Luginbühl et al. found that only three proteins can restore a 

rosetting phenotype in an otherwise protein free medium. The host proteins 

implicated in rosette formation are albumin, factor D, and anti-Band3 antibodies. It is 

further known that CR1 on the erythrocytes surface is involved in rosette formation 

[78]. The parasite proteins conferring the rosetting phenotype, however, are not yet 
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clear. The only evidence, so far, is that DBLα domains bind to CR1 and antibodies 

directed against DBLα block rosetting [90]. In in vitro rosette re-formation a 65kDa 

fragment has been shown to be cleaved off the iRBC with factor D. This was not 

observed with RBCs only or without factor D [31]. Being a protease, factor D is 

suspect of modifying the iRBC surface inducing rosette formation. However, factor 

D is a highly specific protease with the only known substrate factor B. To clarify the 

origin of the cleaved fragment and because there is a possibility that PfEMP1 is 

involved in rosetting, we planned to generate PfEMP1 antibodies. First we focused 

on the N-terminal and the C-terminal domains of PfEMP1. Therefore we 

recombinantly expressed the NTS and the ATS domain. The use of recombinant 

ATS was discontinued, as it was not possible to purify the insoluble protein 

satisfying purity. We could not identify expression conditions which led to soluble 

ATS or prevented the breakdown of the protein as visible on Western blot (see 

Figure 5B and C). Late induction times, reported to improve such problems [79], did 

not increase the yield.  

The NTS domain, in contrast, was expressed as soluble protein and purified 

subsequently via the 6xHIS- and the GST-tag. This co-purification gave pure protein 

acceptable for mice immunization. Two different adjuvants were used to increase 

the probability of a good response the antigen. On Western blots all sera were 

positive on the recombinant protein (see Figure 7). However on blots of parasite 

lysate the anti-sera did not recognize PfEMP1. The immunogenicity of the 

recombinant proteins may result from the recognition of GST, as GST was also 

present in the immunized antigen. When using the mouse sera in IFA, rim-like 

structures stained which seems to be the ER [86-88]. Most proteins destined for 

export are co-translated into the ER [91]. Even though PfEMP1 contains no classical 

PEXEL motif, it contains a modified variant within the first DBL domain [69]. In some 

organisms signal sequences are cleaved off during the translocation in the ER an it 

is possible that the NTS is cleaved off together with the signal sequence in the ER. 

Although it is unknown whether signal sequences are cleaved off in Plasmodium, 

recently it was reported that the PEXEL motif is cleaved in the ER (HH. Chang, 

Woods Hole, unpublished). Such N-terminal processing of PfEMP1 would explain 

the results obtained in IFA and Western blots. Therefore it cloud be possible that 

PfEMP1 was present in the protein lysates used for Western blots but was already 
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trafficked through the ER and did not contain the NTS domain anymore. This would 

explain why Western blots with these sera on whole protein lysates were negative. 

In IFA, the signal obtained could represent signal sequence which has already been 

cleaved off and is in the ER or the complete protein on its way to the PVM. Further 

investigation is required to clarify if the mice anti-NTS sera generated really bind to 

the endogenous NTS domain or if the IFA results are an artifact. The plan of using 

this antibody to detect the processed fragment after rosette formation was 

abandoned, as sera characterized were not completely satisfying.  

 

Protein expression in general – size matters 

Recombinant protein expression of plasmodial proteins seems to be difficult in 

general. In a large experiment where 1000 ORFs were cloned for expression, only 

337 expressed a protein at all; from those only 63 where soluble [83]. These 

numbers indicate that soluble expression of malarial proteins is a challenging task. 

In the same publication the expressability and the solubility were correlated with the 

isoelctric point, the size of the protein and the homology to E.coli. Authors 

concluded, that the smaller the protein, the more acetic the pI and the closer the 

homology to E.coli, the greater is the chance of soluble recombinant expression. 

The predicted expressability of proteins was not the criteria for the choice of the 

proteins expressed in our work. But in a retrospective analysis of all proteins 

expressed we can conclude the following: In our case the homology to E.coli could 

not be taken into account, as there is no homology of PfEMP1 to the bacterial 

proteome. The acidic pI e.g. for the ATS did not enhance solubility in our work. The 

only factor that influenced the expressebilitiy (but not the solubility) was the size. 

The large PfEMP1 fragments did not express at all and the ATS domain was better 

expressable when it was split into two smaller fragments.  

The proteins expressed in this thesis were all but one insoluble. However, the 

expression of soluble fragments is generally possible, as it has been demonstarted 

for MAHRPs and ETRAMPS in our lab [72, 92]. A real determinant for the solubility of 

plasmodial proteins expressed in E.coli remains to be elucidated. Alternatively, more 

efforts on dialysis and refolding of expressed proteins could help to increase the 

solubility.  
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Synthetic peptides as antigens in mice 

Since we were unable to generate antibodies against the NTS domain, we focused 

again on the ATS domain. The C-terminal domain of PfEMP1 qualifies for the 

generation of pan-specific antibodies, as this part is intraerythrocytic and not 

subject to antigenic variation. The recombinantly expressed ATS was impossible to 

purify and was prone to degradation. The ATS was insoluble and the GST tag 

implicated for a second purification step was thus useless. We had expected the 

ATS to be in the soluble form as it is the domain with the highest prediction of 

solubility of all PfEMP1 domains [93]. We changed our approach from recombinant 

protein expression to synthetic peptides. Synthetic peptides harbor a lot of 

advantages compared to recombinant proteins. They are pure, soluble and contain 

only the desired sequence against which antibodies should be raised, i.e. no tags 

and no multiple cloning sites. The poor antigenicity of synthetic peptides can be 

overcome by antigenicity increasing modifications such as  conjugation to large 

antigenic proteins like the Keyhole Limpet Hemocyanin (KLH) or by connecting 

several peptides to a star-like structure. We chose 3 peptides based on a 3d7 

sequence alignment of all ATS domains. In the conserved regions the consensus 

sequences reached similarities of over 90% and we selected 3 peptides from these 

areas. An additional fourth peptide was chosen from the FCR3 S1.2 ATS domain 

due to its predicted coiled-coil structure. The self-assembly of these structures is 

used to mimic a natural conformation of the otherwise linear peptide. Using Titer-

Max-Gold which is an oil-in-water emulsion, a single dose of antigen is enough to 

elicit a boosted antibody response. Subsequent boosting is therefore not necessary 

and consequently requires less antigen. 

To perform Western blots with peptides is a rather complicated procedure for 

several reasons as listed in the following. Firstly, as peptides are very small they 

often travel thru the nitrocellulose membrane. Furthermore, hydrophobic interactions 

with the membrane are weak also according to their size. This often leads to the loss 

of the antigen during washing steps. To overcome the problem of performing 

Western blots with the synthetic peptides to test the sera, we chose a different 

approach. In order to test whether the peptides would elicit antibodies that 

recognize the ATS domain we split the ATS domain into two and expressed each 

fragment  in E.coli. Both parts were insoluble and expressed in high levels. We used 
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these proteins as antigens to test the mouse sera in Western blots. The 

immunization yielded 4 different sera, which were positive in Western blots and 6 

sera that were positive in ELISA. The ELISA plates were coated with the peptide but 

not with recombinant protein. The sera which were positive in ELISA but not in 

Western blots therefore probably recognized specific conformations of the peptides 

or the ends of the peptides which are not present in recombinant proteins in 

Western blot. These sera were excluded from further analysis. The other 4 sera were 

tested on different parasite lysates. Unfortunately, all sera recognized a host protein 

also present in uninfected red blood cells, most probably it is human spectrin. This 

crossreactivity has been reported by other groups too [43]. Consequently, lysate 

conditions were modified to obtain protein fractions that are enriched for parasite 

proteins.  The best possibility to achieve this was to purify iRBC over a magnetic cell 

sorter. The elution contained almost 100% parasitized cells. This cells were Triton-

X-100 lysed, which enriches for integral membrane proteins. This reduced the 

complexity of the sample as was seen because the background recognition of 

spectrin was reduced compared to other methods (see Figure 14). Nevertheless, no 

endogenous PfEMP1 was detected. It is not clear whether the epitope on the 

endogenous protein is somehow altered by the blotting procedure or whether the 

expression level of PfEMP1 in cultured parasites is below the detection limit. 

However, others have shown perfectly stained PfEMP1 with antiserum [76, 94]. But 

these antisera were either affinity purified or preadsorbed on ghosts. Our initial 

efforts on such purification steps ended with complete loss of reactivity of our sera 

(data not shown).  

Also, none of the sera labeled PfEMP1 in IFAs in a way previously shown [43, 74]. 

We observed occasional staining of uninfected RBCs, which is consistent with the 

results from our Western blots in which uninfected RBC also gave a signal. 

 

For future work, further efforts in the development of pan-specific antiserum should 

include the generation of monoclonal antibodies to reduce cross-reactivity and the 

selection for a high affinity isotype. Additionally more efforts can be done on the 

affinity purification of the polyclonal sera. 
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Chapter 4: 

 

Recombinant expression and serology of DBL domains 

isolated from patients with severe or asymptomatic malaria 
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Introduction 

 

Switching of var genes 

One way how Plasmodium falciparum escapes the immune system is by antigenic 

variation. PfEMP1 is expressed on the surface of erythrocytes and mediates 

cytoadherence. It is encoded by the var multigene family. There are about 60 

different var genes encoded in the parasites genome, however, only one is 

expressed at a time [56, 95, see also Chater1; Introduction]. From the parasite’s 

perspective, this mutually exclusive expression is a “two edged” situation: On the 

one hand, the parasite has to maintain the expression of the same var gene through 

several cycles to not exhaust the repertoire to early. On the other hand however, it 

has to switch to a new variant as soon as the immune system starts to defend the 

currently expressed PfEMP1 [96]. A switching rate of 2,4% per generation was 

calculated for in vitro cultures [97], but rates for in vivo infections seem to differ 

substantially. Artificial infection of non-immune adults resulted in a switching rate of 

16% for the initial switching event, though switching rates of later events decreased 

and seemed to be dependent on various factors such as the var gene itself and host 

conditions [98]. It was also shown that the expression pattern of central var genes 

was more stable than the expression of subtelomerically located var genes, which 

switch faster to alternative loci [99]. But switching rates are not correlated with the 5` 

promoter group (ups) [96]. The regulation of this mutually exclusive transcription is 

not yet completely understood but involves histone modifications [100] and the 

location within the nucleus [101]. var gene regulation will however not be discussed 

in this chapter. 

 

 

Correlation of var variant and disease outcome 

var gene sequences are grouped in four different groups (A, B, C, E) based on their 

upstream sequences (ups). The regulatory differences between these groups remain 

to be elucidated. Different promoter elements have been found in upsB and upsC 

var genes. A subtelomeric var promoter element 1 (SPE 1) was locted in upsB var 

genes and the chromosome-central var gene promoter element (CPE) was only 
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found in ups C var genes [53]. This implies a differential regulation of these two 

types of var genes. What role they play in regulation and silencing is currently under 

investigation.  

Malaria pathology however, has be associated with group specific expression. An 

upregulation of upsB var genes was found in severe and mild malaria cases in Africa 

and PNG, whereas upsC was correlated with asymptomatic cases [54, 102]. Bull et 

al. [103] used the DBL domain to classify different groups of PfEMP1 variants. The 

basis of these classifications is the number of cysteine (cys) residues as well as 

positions of limited variability (PolV). The “Bull-groups” 1-3 represent the 2cysDBL 

group, which represents the upsA and small subgroup of upsB var genes, whereas 

the groups 4-6 with 4 cysteine residues cover upsB and upsC var genes [104]. 

2cysDBL/upsA was associated with the rosetting phenotype [104, 105], cerebral 

malaria in children [104] and non-cerebral severe malaria in adults [62]. It was also 

shown that it is possible to select the laboratory strain 3d7 for PfEMP1 variants 

normally expressed in severe cases [106]. 

The best understood correlation of disease and expressed var gene is that of 

var2CSA (reviewed in [22, 107]). Women who have previously acquired immunity 

against malaria can develop an episode upon pregnancy or have pregnancy 

complications as preterm delivery or stillbirth. The reason is that chondroitin sulfate 

A (CSA) is expressed in the placenta [108]. This low sulfated glucosaminocglycan 

(GAG) represents a new interaction possibility for surface molecules of the iRBC. 

After the first or second pregnancy women are protected from PAM (pregnancy 

associated malaria). The development of antibodies against special domains from 

that var gene seems to prevent binding of iRBCs to the placenta. Additionally, these 

domains seem to be not as divers as expected because sera from protected women 

bind to placental parasites from geographically distinct regions [24]. The 

phenomenon that antibody mediated protection against a very special PfEMP1 

variant is possible and even relatively long lasting, generates hope for the 

development of a vaccine. Even though it would not confer sterile immunity, it could 

prevent severe disease and pathology. 
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Rare and prevalent variants of PfEMP1  

The repertoire of var genes in one parasite is about 60, but the worldwide repertoire 

of all wild type PfEMP1 is probably endless. It is known that the antibody pool in a 

semi-immune individual is sufficient to protect from a malaria episode, as is the case 

for semi-immune adults living in endemic areas in Africa. However, such individuals 

have never seen all PfEMP1 variants because the worldwide PfEMP1 repertoir is 

endless. Nevertheless, semi immune individuals are protected from malaria. 

Obviously, there seem to be antibodies against specific PfEMP1, which contribute 

more to protection from severe disease than other anti-PfEMP1 antibodies. 

 

PfEMP1 is considered to be the main interaction partner to host cell surface 

receptors, and antibodies against PfEMP1 prevent cytoadherence and therefore 

severe malaria. Although PfEMP1 must be very diverse to trick the immune system, 

it must also contain conserved domains which confer binding to the receptors. 

Modifications in binding domains will indeed account for antigenic variation but will 

reduce the binding efficiency to their receptor. Not all variants of PfEMP1 will have 

the same binding affinity to the host endothelium, thus making some variants more 

virulent than others. 

Bull et al. [89] used agglutination assays to show that host immunity develops 

against PfEMP1. In their experiments they took serum samples from children during 

a severe malaria episode and after convalescence. They also cultivated the 

parasites causing this malaria episode. They found that patient’s convalescence 

sera agglutinated the cultured parasites whereas the acute sera did not. This 

showed that the diversity of PfEMP1 is reflected in the fact that normally only 

parasite isolates matching the sera will agglutinate, but this sera will not bind to 

parasite isolates from other patients [89]. Immunity against malaria is variant 

specific. The same authors found that parasite isolates from patients with severe 

disease are recognized frequently by different serum samples thus representing 

common antigen variants. Parasite isolates that are not widely recognized 

(expressing a rare type of PfEMP1) are generally not obtained from severe case 

patients. This supports the hypothesis of a trade-off between variability vs binding 
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efficiency. An immune adult that exhibitis a patchwork antibody repertoire against 

the common isolates (good cytoadherence= severe disease) will not develop a 

severe episode since the rare isolates (bad cytoadherence = mild/no disease) can 

proliferate.  

 

Organ specific expression of PfEMP1 

The capacity of P.falciparum to cause severe malaria is at least in part due to the 

ability to cytoadhere. As the host cell receptors are numerous and PfEMP1 is 

diverse, the site of adherence can be distributed in different tissues. Montgomery et 

al. [109], investigated the genotypes (based on the msp2 locus) sequestered in 

different organs as well as the var types expressed. They found that over 100 

different var types were expressed in a single patient and up to 10 different per 

genotype and per organ. This is conflicting with other studies where less than 2 

different var types were found per genotype [55]. They also investigated the 

correlation of genotype or var expression with specific tissues. Despite the random 

distribution of different genotypes in the body without genotypic preference in 

special organs [110], there was tissue specific expression of var types. The organ 

dependent var expression was obvious for brain and heart mirovasculatur [109]. Not 

only that the same var types were found in one organ in one patient but the same 

types were also found in the same organ in other patients from a geographically 

distinct location. These patients with fatal severe malaria, which shared some var 

types of parasites sequestered in the brain, were from different villages in Malawi. 

In the same study they found that asymptomatic children who died of other causes 

than malaria had almost no sequestered parasites in the brain, regardless of 

extremely high peripheral parasitaemias with more than 300000 parasites per micro 

liter blood. 

 

 

These findings support the feasibility of a vaccine containing PfEMP1 domains, 

because within the endlessly large repertoire of worldwide PfEMP1 variants, 

apparently not all PfEMP1 variants are equally pathogenic. By tackling the disease-

causing variants, the repertoire of PfEMP1 candidates could be narrowed down to 

key candidates of high pathogenicity. 
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In conclusion, even though PfEMP1 is very diverse it appears that only a relatively 

small subset of var types is responsible for severe disease. This has already been 

shown for PAM where also the same var type is dominant in different patients as 

described above. 

 

In this work we have further investigated in the role of certain PfEMP1 variants in 

severe and asymptomatic cases. We selected DBL domains from var genes 

expressed in severe episodes and asymptomatic infections. We recombinantely 

expressed them in E.coli and measured antibody levels against these DBL 1α 

domains in sera from semi-immune adults. We found that DBL domains from 

patients with severe malaria are more frequently recognized than DBL domains from 

patients with asymptomatic malaria. We used the same recombinant DBL domains 

and tested sera from children which were collected at two different timepoints within 

a longitudinal study in Tanzania. The children had no acute malaria episode in 

between the two timepoints.  

 



 85 

 

Chapter 4 

Materials and methods 

 

Isolation of DBL domains from patients with severe and asymptomatic malaria 

Blood samples were collected in Tanzania from children with severe malaria (8) and 

from asymptomatic children (7). Total RNA was extracted, full-length var mRNA 

isolated and reverse transcribed from each sample as described below. 

Subsequently the DBL domain was PCR amplified from the cDNA using primers 

dbl_fwd and dbl_reverse (see appendix for sequence information) and cloned into 

pGEM-T (Promega) vector for sequencing (performed by Paschal Mugasa). For each 

patient, plasmids were isolated from 50 clones and subsequently sequenced. 

 

Plasmodial RNA extraction and complete cDNA synthesis 

Blood samples from Plasmodium falciparum infected patients were resuspended in 

5 volumes Trizol® (Invitrogen). RNA was extracted from the lysate with 0.2 ml 

chloroform per ml Trizol® and precipitated with 3 volumes of isopropanol. To 

improve purity the pellet was again resuspended in Trizol® (0.5 volumes, compared 

to the first extraction step), extracted with chloroform and then precipitated. The 

precipitated DNA was digested by two subsequent incubations with RQ1 RNAse 

free DNAse (Promega) according to the manufacturer’s protocol, in the presence of 

RNAse inhibitors. After each DNAse digest, the RNA was extracted and precipitated 

as described above. cDNA synthesis was performed using sensiscript® reverse 

transcriptase with random hexamer primers, in accordance with the respective 

manufacturer’s protocol. RNA amounts used in a cDNA synthesis reaction varied 

according to the parasitaemia of the blood sample. A control reaction without 

reverse transcriptase was always included. 

 

Reverse transcription of RNA 

RNA samples either from bead hybridisation (full length var mRNA) or crude were 

mixed with 3.5µl 0.1M DTT, 2µl RNAse inhibitor, 7µl 10x RT-Buffer (sensiscript/M-

MuLV), 7µl 5mM dNTPs and RNAse free dH2O to 70µl. The reaction mix was split 

into a 50µl and a 20µl aliquot. To the 50µl aliquot 2µl of reverse transcriptase was 
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added, the other was left as negative control without enzyme. Both tubes were 

incubated at 37°C for 90 min. After the reaction the RNA:DNA duplex was melted at 

93°C for 3 min and the RNA was digested with 1µl of RNAse A (1mg/ml) at 37°C for 

20 min. The single strand cDNA was stored at -20°C. 

 

Full length var mRNA extraction 

To extract only the full-length var mRNA transcripts from a total RNA preparation, a 

hybridization technique was used as described in the following: 1 pmol of a 

biotinylated oligonucleotide complementary to the ATS domain was incubated 

together with the total RNA in hot binding buffer (0.5M LiCl, 1mM EDTA, 10mM Tris, 

pH7.5). After slow cooling from 65°C to 4°C over 30 minutes, 200 µg of streptavidine 

coated magnetic beads (dynal) were washed, dissolved in 5.5 M LiCl and added to 

the RNA:DNA hybrid and incubated for 30 minutes at 37°C on an over-head shaker. 

Beads were collected on the wall of the reaction tube by a surrounding magnet and 

washed 3 times with wash buffer (10mM Tris, 1mM EDTA, 0.15M NaCl, pH 7.5)[55]. 

Reverse transcription was performed directly on the RNA hybridized to the beads as 

described previously.  

 

Cloning of DBL domains 

The DBL domains had to be amplified from the plasmid preparations for re-cloning 

in expression vector pQE-16 (Qiagen). The primer pair dbl1_fwd and dbl1_reverse ( 

see appendix for sequence information) containing the restriction sites EcoNI and 

BglII were used. The PCR product was purified (PCR clean-up, ROCHE) and 

digested with EcoNI and BglII. The vector was digested with the same enzymes, 

purified and ligated with T4 ligase (NEB) according to the manufacturer’s protocol. 

The ligation was phenol:chlorophorm extracted, precipitated and resuspended in 

10µl dH2O. Ice cold electrocompetent M15 E. coli (Qiagen) were mixed with the 

resolved ligation and electroporated (single pulse, 2500V, 0.2cm gap, 5ms). Bacteria 

were spread on agar plates and screened for correct inserts by PCR with primer pair 

pQE_fwd and pQE_reverse (see appendix for sequence information).  
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Recombinant expression of DBL domains 

50ml bacterial culture medium terrific broth containing the antibiotics ampicilin 

(100µg/ml) and kanamycin (25µg/ml) were inoculated with 1ml over night culture of 

M15 E. coli harboring the pQE plasmid with the DBL domain. The culture was 

incubated at 37°C and induced with a final concentration of 1mM IPTG when OD600 

was 0.8. Four hours later bacteria were harvested by centrifugation at 8000g for 15 

minutes and stored at -20°C until further use. 

 

Purification of recombinant DBL domains 

The bacterial pellet was lysed in inclusion body lysis buffer (50mM Tris pH 8, 100mM 

NaCl, 5mM EDTA, 0,5% Triton-X-100, 0.1mM PMSF and 1mM DTT) supplemented 

with 100µg/ml lysozyme and 10µg/ml DNAse (adapted from [111]). The slurry was 

sonicated 5 times 10 seconds in 10 second intervals with a microtip sonicator (50% 

duty cycle, output control 5).  The insoluble proteins were separated by 

centrifugation at 10000g for 30 minutes. The supernatant was discarded and the 

pellet resuspended in inclusion body lysis buffer again. This step was repeated 3 

times. In the last resuspension step of the insoluble pellet, PBS was used instead to 

avoid Triton-X-100 in the further purification steps. The washed pellet was 

resuspended in Urea buffer (8M Urea, 300mM NaCl, 10mM Tris pH 8) and mixed 

with 0.5ml Ni-TA-Agarose beads (Qiagen). The protein was further purified 

according to the manufactures protocol (Qiagen, the expressionist). Proteins were 

eluted from the beads with low pH elution buffer (8M Urea, 300mM NaCl, 10mM 

Tris, pH 4,5). Eluted proteins were stored at 4°C. 

 

Purity and quantity assessment 

Purity and quantity of eluted proteins was checked on SDS PAGE and stained with 

Coomassie blue. Quantity was estimated from marker bands with known protein 

concentration. Fractions containing the pure protein were pooled and again 

measured in a spectrophotometer at 280nm (NanoDrop), and then stored until use 

at 4°C. 
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ELISA of DBL domains with human sera 

Maxisorb 96 well ELISA plates (Nunc) were coated over night at 4°C with 10µg/ml 

recombinant protein in PBS. Plates were washed once in an ELISA washer and 

blocked for 1 hour at room temperature with 75µl 5% non-fat milk powder in PBS 

0.01% tween 20 (PBS-T). Then, plates were washed again and incubated with serial 

dilutions of human sera starting from 1:200 in 1% non-fat milk powder in PBS-T (see 

table 2). After incubation for 2 hours at room temperature, the plates were washed 

twice in the ELISA washer and then incubated with the secondary antibody (goat 

anti-human IgG alkaline phosphatase labeled (1:5000)) in 1% non-fat milk powder in 

PBS-T for one hour at room temperature. After washing, the plate was developed 

with PNP (p-Nitrophenyl-Phophate 1mg/ml) in alkaline substrate buffer (160mM 

NaHCO3,130mM Na2CO3, 1mM MgCl2, pH 8,6) and measured in an ELISA reader at 

405nm.  

 

Table 1. ELISA plate layout. 

In the column in yellow serum dilutions are indicated. In blue the different serum 

samples 1-10 tested in the experiment are shown. Positive and negative controls 

remain the same for all experiments. As positive control goat anti-6xHIS antibodies 

were used, and the negative control was a serum pool from European adult blood 

donors with no history of traveling in malaria endemic areas. 

 

ELISA calculations 

100 sera were tested on all different DBL domains (15 in total). As all recombinant 

proteins contain the DHFR tag, all sera were additionally tested on DHFR to assess 

the background.  All OD405 values were recorded and were corrected for the DHFR 

recognition by subtraction: OD405Sera1 – OD405DHFR. The corrected values were 

plotted against the logarithmic dilution. The mean of the negative values plus 2 

Dilution Sera 

 positive 
control 

negative 
control serum1 serum2 serum3 serum4 serum5 serum6 serum7 serum8 serum9 serum10 

1:200             
1:600             

1:1800             
1:5400             
1:16200             
1:48600             
1:145800             

1:1312200             
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standard deviations gave the threshold. The endpoint titer corresponded to the 

dilution were the curve of the plotted sera meets the threshold line.  The threshold 

was calculated for each plate individually.  
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Chapter4 

 

Results 

There are approximately 60 plasmodial var genes coding for variants of PfEMP1. 

There is several evidence indicating that PfEMP1 plays a crucial role in host immune 

evasion and thus represents a key virulence factor (as reviewed in [25, 112]). 

However, it is to date unclear why this PfEMP1 repertoire is so big and what 

differences might exist in terms of virulence/pathogenicity between the different 

PfEMP1 proteins. In this work we wanted to test how recombinantly expressed DBL 

domains of PfEMP1 from parasites of severely ill patients versus DBL domains from 

parasites in asymptomatic cases are recognized by sera of semi immune adults. We 

hypothesize that semi immune adults have higher titers against DBL domains 

deriving from severe cases than against asymptomatic cases. The rationale behind it 

is that adults who are semi-immune (thus not sick) are better protected because 

they recognize the repertoire of PfEMP1-DBL domains causing severe pathology 

better than those causing asymptomatic malaria. 

 

To test our hypothesis we have chosen a sero-epidemiological approach and 

assessed antibody titers of 100 semi immune adults from asymptomatic malaria 

cases of a cross-sectional study in Papua New Guinea. Sera titers were assessed 

against 15 different recombinantly expressed DBL sequences from PfEMP1. Seven 

of those DBL domains were isolated from severe malaria patients and seven were 

from asymptomatic cases. One additional DBL domain was also expressed, but 

later excluded from analysis because it did not represent the dominant infection. 

These DBL domains were termed either “severe DBL domains” when derived from 

sequences of severely ill patients, or “asymptomatic DBL domains” when derived 

from patients with asymptomatic malaria.  

We also tested sera from 34 children deriving from a longitudinal study for their DBL 

recognition at baseline and six month later. Importantly, these children did not suffer 

from a clinical episode between the two time points. By testing which DBL domains 

were recognized by these children at two different time points, we were able to 

study the dynamics of the antibody repertoire. 
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Eight recombinant DBL domains sequences were from severe case (ISM) patients 

and 7 from age matched asymptomatic children (IAM).  We did a ClustalW alignment 

to test if clusters were identifiable. As shown in Alignment 1, there was no clustering 

of severe and asymptomatic DBLs in an amino acid sequence alignment  

 

 

Alignment 1. Alignment of 15 DBL protein sequences of Plasmodium 

falciparum erythrocyte membrane protein 1. 

Amino acid sequences from DBL sequences derived from parasites infecting severe 

ill malaria patients (ISM) and asymptomatic samples (IAM) were aligned. Numbers 

correspond to the different isolate IDs (clustalW, default settings). 

 

Expression of DBL domains 

15 DBL domains were successfully expressed as DHFR fusion proteins with a 6xHIS 

tag (Figure 1). Additionally, recombinant DHFR-6xHIS was expressed as control. All 

proteins were expressed in E. coli in high levels but were insoluble. Purification of 

recombinant proteins resulted in very pure highly concentrated recombinant 

proteins. Concentration was at best 3mg/ml in a volume of 2.5 ml from a 50ml E. 

coli culture.  
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Figure 1. Coomassie stained polyacrylamide gel of recombinant expressed 

DBL domains. 

Nine different DBL domains purified over a Nickel column were size-separated on a 

12% SDS PAGE and stained with Coomassie blue. Samples were diluted 1:100 from 

original elution. M, marker in kDa; lanes 1-9 show the first 9 expressed DBL 

domains, in detail: ISM51, ISM16, ISM3, ISM33, IAM10, IAM11, IAM17, IAM12, 

IAM18. 

 

 

Western Blot of DBL domains with a positive serum pool 

To test for contaminations not visible in Coomassie stained gels, all purified proteins 

were blotted and probed with a positive serum pool from semi immune adults from 

Papua New Guinea as shown in Figure 2. All DBL domains were recognized at least 

by one serum, thus were immunogenic. The DHFR recombinant protein was also 

weakly positive. The blot was over exposed to amplify even weak signals. 
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Figure 2. Immunoblot analysis of recombinantly expressed DBL domains. 

20 ng of 15 different recombinantly expressed DBL domains were probed in 

Western blot with serum from Papua New Guinea.  DBL domains are visible as clear 

bands at expected sizes between 35 and 40 kDa. DHFR (D) runs at an expected size 

of 25 kDa. Lane 1-15: DBL domains 1-15; D, DHFR; M marker in kDa. DBL domains 

in detail: ISM51, ISM16, ISM3, ISM33, IAM10, IAM11, IAM17, IAM12, IAM18, IAM7, 

ISM48_1 (minor), ISM48_2, ISM49, ISM51. The DBL ISM48_1 was the minor clone 

and was excluded from analysis. 

 

ELISA with adult sera show that severe DBLs are more often recognized 

To investigate frequencies of recognition of the different sera, we performed 

enzyme-linked-immunosorbent-assays (ELISAs). Briefly, recombinantly expressed 

antigens were immobilized in 96 well plates and sera binding was tested. Endpoint 

titers were measured from 100 adult sera from asymptomatic malaria cases of a 

cross-sectional study in Papua New Guinea. Data sets were assessed as shown in 

Table 3. All 100 sera recognized at least one recombinant DBL domain. There were 

two sera samples that recognized all 15 domains tested (see Table 1, SUK52, 

SUK93). There were striking differences in the recognition of different DBL domains. 

The three most frequently recognized domains were IAM11 with 72%, ISM3 with 

73% and ISM51 79%. Two of those derived from the severe DBL group and one 

from the asymptomatic group. The three least frequently recognized antigens were 

IAM12 in 15%, IAM10 in 16% and ISM 48 in 16% of all sera tested. Two of these 

DBL sequences were from the asymptomatic group and one was a severe case.  
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To obtain a cleverer picture of the recognition of different frequencies for severe and 

non-severe DBL domains, the endpoint titer table was condensed to show only 

“recognition” or “no recognition”. For each of the 100 sera from semi immune 

adults, the number of recognized antigens (severe DBL vs asymptomatic DBL 

domains) was counted. The 7 severe DBL domains were recognized 295 times by 

100 sera and the 7 asymptomatic DBL domains were recognized 213 times (see 

Graph 1A). Thus, severe DBL domains were recognized 1,4 times more often than 

asymptomatic DBL domains. Furthermore, all sera were grouped depending on their 

frequency of recognition. Groups from 0 (no DBL domain recognized) to 7 (all DBL 

domains tested recognized) were plotted in a histogram (Graph 1B). The number of 

sera recognizing asymptomatic DBL domains is high only for the “0 and 1 DBL 

recognized group”. In the case of severe DBL domains the recognition frequency 

peak is shifted towards higher numbers and peaks at 2 DBL domains recognized. 

Two or more DBL domains were recognized more often from the same sera when 

they were severe DBL domains. The results of all ELISA experiments are shown in 

the following Tables 1 and 2. 
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Table 1. ELISA endpoint titers of semi immune adult sera tested on different DBL domains 

  IAM 11 IAM 5 IAM 7 IAM 12 IAM 17 IAM 18 IAM 10   ISM 3 ISM 51 ISM 16 ISM 48 2 ISM 33 ISM 48 ISM 11 ISM 49 
SUK 4 200 600 200        400 1000      
SUK 8 1000 500        2000 2000  800  300   
SUK 11 500         300 400       
SUK 12 1000 500 500       800 2000  400   300 600 
SUK 13 200                 
SUK 14 3000                 
SUK 16 500  2000       400 600  200     
SUK 21           300       
SUK 22          200 2000       
SUK 24          2000 10000       
SUK 25                  
SUK 26            1000      
SUK 27 4000         2000 1000 500      
SUK 28 300         200 400 1000     300 
SUK 29 500 400    200    400 4000 600 300   200  
SUK 30 900 400        1000 3000  1000  800   
SUK 31 300 300        5000   700     
SUK 32          2000        
SUK 35 500         900 2000 700 500  400   
SUK 38 10000         900 1000 700 1000     
SUK 39 200         800  800 400  200   
SUK 40 500 200        400 4000  300     
SUK 41    1000 1000 1000 1000   2000  800  1000   1000 
SUK 43 1000          1000       
SUK 44 3000 500        600 1000 1000 400  200 500  
SUK 45 3000         600 1000     3000  
SUK 46 3000          300       
SUK 47 400 1000  300   300   200 1000 1000 600  400   
SUK 48 2000 600 2000 400 700 500 400   4000 10000 4000 500 400  1000 700 
SUK 49 2000 1000 2000       2000 900 2000 1000  600 300 400 
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SUK 50  600  200      1000 2000 200 200  200   
SUK 51 3000 300 200       1000 2000 200 400  200 600 300 
SUK 52 7000 5000 3000 4000 2000 3000 2000   8000 4000 5000 4000 1000 3000 4000 3000 
SUK 53 2000         10000 10000       
SUK 55 200         400 200     600  
SUK 56 1000         400 600 1000  200    
SUK 58 400         200 200 300      
SUK 59          200  300      
SUK 60 500                 
SUK 61           400 2000      
SUK 62 2000 500  400  400    2000 1000   300    
SUK 64 9000         600        
SUK 65 1000         200 200  200  200 200  
SUK 66 900 400 300       600 600  600  300   
SUK 67 1000 700 200       600 1000  1000  1000  4000 
SUK 68 1000 1000 200 400 300 200    1000 11000 600 2000  1000  300 
SUK 72          600        
SUK 73 1000         900 2000 200      
SUK 76 2000 2000  1000 1000 1000 1000   1000 2000 1000 1000 2000 500  600 
SUK 79 300 400        1000 700       
SUK 80 3000 300        2000 1000 500     300 
SUK 81 900         300 400       
SUK 83 600         300        
SUK 85  400 900 900 600 800 600   3000 13000 600  500 300 1000 500 
SUK 86 900 800 200       900 1000 800 600 200    
SUK 87   300               
SUK 88 1000  200       1000 1000 800      
SUK 89 300         300 2000       
SUK 90 900 300        1000 1000 2000     600 
SUK 93 3000 1000 1000 1000 1000 1000 1000   5000 4000 700 1000 1000 400 900 1000 
SUK 94 4000 2000 900 3000  2000 2000   4000 4000 1000 300 3000 2000 1000 900 
SUK 95            1000      
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SUK 98 4000  200       900 5000       
SUK 102                  
SUK 103 200          600       
SUK 105 1000  200       900 2000       
SUK 108 200  600   300     400       
SUK 109 300  300       2000 900    200   
SUK 110 300  400 200              
SUK 113 1000         500 4000       
SUK 115           600 3000      
SUK 116 300         300 500     300  
SUK 118 400 800   400 200 200   2000 2000  400     
SUK 119  2000 1000 900  800 200   2000 4000 3000 5000  2000 1000 2000 
SUK 120                  
SUK 122   500       1000 200       
SUK 127 900         300 2000 300 300     
SUK 128    2000 1000 2000 2000   2000 2000   3000   6000 
SUK 130                  
SUK 131 600         800 600  500     
SUK 134 700 400         500 600 500   2000 300 
SUK 135   900    1000   400 900  400     
SUK 136 1000          6000 900      
SUK 136   1000         200      
SUK 137 700          200 7000      
SUK 139 2000 700  600 200 400    2000 2000 600 1000   200 400 
SUK 142   800        400       
SUK 143 2000         1000 3000 200      
SUK 144  200 400 200 300     600 600 600     300 
SUK 147  500 200   700 3000    1000  500  300  300 
SUK 150 1000 200 200 300  400    600 500 200 300 200 300 200 200 
SUK 151 1000 2000 300 1000 600 700 2000   1000 1000 1000 1000 900 2000 300 300 
SUK 152 1000 2000   600     1000 700 300 400  1000 600  
SUK 159 500 200        300 600 3000      
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SUK 185 1000 1000        2000 1000 3000   800   
SUK 190 1000    400 700 400   600 400    500   
SUK 195 1000 500         600  800  500   
SUK 196  500  1000 2000 1000 3000   200    3000 500   
SUK 199 4000   1000 2000     9000 2000   3000 500   
SUK 210           200 400      

 
Table 1. ELISA endpoint titers of semi immune adult sera tested on different DBL domains. 

Adult sera tested on 15 different DBL domains. Left column: serum sample names. Top row: isolate names IAM (Ifakara 
Asymptomatic malaria) ISM (Ifakara Severe Malaria). Numbers in the table indicate the reciprocal endpoint titers. No number 
indicates that the serum is negative for the DBL domain tested. Colors: white, negative serum; yellow, endpoint titer 200-600; orange 
700-2000; red over 2000. 
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Table 2. ELISA endpoint titers of children sera tested on different DBL domains. 

 
   IAM11 IAM5 IAm7 IAM12 IAm17 IAM18 IAM10   ISM3 ISM51 ISM16 ISM48 2 ISM33 ISM48 ISM11 ISM49 
  BC583                                 
  BP123 3000 1000 1000 1000 1000 1000 1000   5000 4000 700 1000 1000 400 900 1000 
  BC626                                 
  BP125                                 
  BC623       1000 700 1000 700   4000       1000       
  BP146       2000 1000 2000 1000           1000       
  BC619                                 
  BP162                                 
  BC640                                 
  BP182                                 
  BC582                                 
  BP096                                 
  BC568                                 
  BP076                     200           
  BC600                                 
  BP161                                 
  BC598                                 
  BP071                     200           
  BC569                                 
  BP083 600               300               
  BC609 200                               
  BP074 900 800 200           900 1000 800 600 200       
  BC572     200                 200     300   
  BP131 900               300 400             
  BC612 200 400                             
  BP159                     300           
  BC561                                 
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  BP157                                 
  BC552 900               200               
  BP177                                 
  BC575 200                 300             
  BP091 300               300 2000             
  BC648 600                   300           
  BP145                 400               
  BC574 300               200 200             
  BP073 3000 400             2000 1000 500         300 
  BC642                                 
  BP114                                 
  BC599                                 
  BP166                                 
  BC565 200                               
  BP116                                 
  BC559       10000 5000 1000 5000           9000       
  BP107       500 600   200       600   1000       
  BC646                                 
  BP140 5000                               
  BC617                                 
  BP108                                 
  BC548                                 
  BP078                                 
  BC554 1000                               
  BP120                                 

  BC624                 200   700           
  BP127                                 

  BC578                                 
  BP085 2000 2000   1000 1000 1000 1000   900 2000 1000 1000 2000 500   600 

  BC573                                 
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  BP075 1000               900 2000 300           

  BC586                                 
  BP165     200           1000 1000 700           

  BC555                       300   800     
  BP128                                 

  BC566                                 
  BP070           800 200         400 300       

  BC645                             200   
  BP134                                 

  BC643     400                           
  BP170                   200             

 
Table 2. ELISA endpoint titers of children sera tested on different DBL domains. 

Children sera were tested on 15 different DBL domains. Left column: serum sample names of matched samples: BCXXX (baseline 
sample), BPXXX (6 months sample). Top row: isolate names IAM (Ifakara Asymptomatic Malaria) ISM (Ifakara Severe Malaria). 
Numbers in the table indicate the reciprocal endpoint titers. No number indicates that the serum is negative for the DBL domain 
tested. Colors: white, negative serum; yellow, endpoint titer 200-600; orange 700-2000; red over 2000. 
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Figure 3. Graphic representation of differential recognition of severe and 

asymptomatic DBL domains. 

 
TOP. Left: recognition frequencies for asymptomatic DBL domains. Right: 

recognition frequencies for severe DBL domains. Bottom. Frequency of recognition 

depending on their origin. The number of sera recognizing asymptomatic DBL 

domains is highest for “1 DBL recognized group” (arrowhead). For the case of 

severe DBLS the recognition frequency peak is shifted and peaks at 2 DBL domains 

recognized (arrow).  

 

The difference in recognition frequencies between DBL domains from severe cases 

and asymptomatic cases is highly significant (Score Test for Trends equivalent to 

chi-squared test for trend, p=0.002). This test only calculates with total numbers. 

Using the Wilcoxon signed-rank test, which takes pairing into account (ie each 

0  1   2   3  4   5   6   7         0   1   2   3  4   5   6   7 

295 

 

213 
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individual has a value for severe and a value for asymptomatic) leads to the same 

conclusion (Prob > |z| = 0.0002). (Figure 3). 

 

Recognition of severe DBLS does not correlate with age 

To investigate whether frequency of recognition was correlated with age, we tested 

this correlation using the Spearman’s Rank test. The age of the enrolled adults from 

which the serum samples were collected varied from 11 to 64 and the average was 

32,9 years. As shown in Figure 4, there is no evidence of correlation between total 

number of recognitions and age (p-value 0.8825) using Spearman's Rank correlation 

coefficient.  
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Figure 4. Age dependence of frequency of recognition. 

In A the results for asymptomatic DBL domains are shown and in B the frequency of 

recognition for severe DBL domains are shown. There was no correlation of age and 

frequency of recognition. 
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Borderline evidence for different recognition between the sexes 

From the 100 sera samples from semi immune adults, 48 sera were from female and 

52 sera from male adults. To test if recognition frequency of DBLs was sex 

dependant, data were further analysed to investigate if there is a correlation 

between the sex of the semi immune adult and the recognition frequency. Using the 

score test for trends, we calculated that there is some borderline evidence that the 

overall frequency of recognition was different between the sexes (p-value 0.0669). 

This indicates an inhomogenous distribution of recognition frequencies depending 

on sex. However an obvious trend is not visible (Figure 5). 

 

 

Figure 5. Testing sex dependence of recognition frequencies.  

The X-axis represents the number of times a sera recognized DBL domains (sum of 

severe and symptomatic). The non-homogenous distribution in some recognition 

groups is obvious. I.e. group 2 and 8 are represented by more males than females 

and in groups 1 and 5 it is vice versa. 
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ELISA results from children sera 

Sera samples from children from Africa (Tanzania, Ifakara) were collected in a 

logitudinal study in 1996. 34 sera samples for two time points (baseline and 6 

month) were tested. No children in this study had a malaria episode in between the 

two time points. The dynamics of antibody titers against different DBL domains was 

measured in ELISA tests  (see Table 2). In general, the frequency of positive sera 

and the endpoint titers of children sera were lower compared to those of adult sera. 

At the baseline, 25 sera did not recognize a single DBL domain, six month later only 

18 samples were completely negative. Only one serum (BP123) recognized all DBLs 

tested. The most often recognized DBL domain was IAM11 with 25%. The three 

most rarely recognized antigens were ISM48, ISM11, ISM49 (4.5% each). It was 

calculated that for the baseline samples 34 recognitions occurred out of 510 tests 

(34 sera x 15 antigens= 510), which is 6.6%. Among those positives were 15 

positive for severe DBL domains and 19 for asymptomatic DBLs.  

Six months later 78 positive tests were counted, which is 15.3%. Those 78 positive 

tests split into 45 positive for severe DBL domains and 33 for asymptomatic DBL 

domains. Not only the number of positive sera increased overall. It is noteworthy 

that the increase of recognized “asymptomatic DBL” domains is only 14 (+73.7%), 

whereas for the “severe DBL” domains it is 30 (+200%).  

Recognition frequencies were calculated similar to adult sera and represented in 

Figure 6. The 34 paired sera from baseline and 6 month later were tested on 7 

asymptomatic and 7 severe DBLs. The recognition frequencies for asymptomatic 

DBL domains did not change in this 6 months period as shown by the blue bars in 

Figure 6.  In contrast, the frequency of severe DBL recognition increased 

significantly (p<0.0001, Fisher's Exact test). This is shown by the red bars in Figure 

6. 

 
 
 
 
 
 
 
 
 
 



 110 

 
Figure 6. Follow up sera from children tested on severe and asymptomatic DBL 

domains. 

Frequencies of recognition of different DBL domains by children are shown as bar 

graphs. 4A: ELISAs on asymptomatic DBL domains tested with sera at baseline and 

6 months later. 4B: Severe DBL recognition frequencies are shown at the baseline 

and after 6 month.  The children sera recognized more severe DBLs after 6 months 

than on baseline, as can be seen by the increase of the high frequency recognition 

groups (3-7), which come up only for severe DBLs after 6 month. (40 Sera are 

shown here, the 6 additional are unpaired sera) 

(In blue sera from baseline, in red sera from 6 month later.) 
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Chapter 4 

 

Discussion 

Previously we have isolated full length var mRNA from blood samples from patients 

with severe malaria episodes and from age matched asymptomatic children. The 

DBL 1α domain of PfEMP1 was amplified from cDNA, cloned and sequenced.  

Here we have recombinantly expressed 14 dominant and 1 minor DBL domain from 

14 patients in E.coli. Seven dominant DBL domains for each group 

(severe/asymptomatic) and one minor from the severe group. We have measured 

antibody titers of 100 semi-immune adult sera from PNG against these 15 

recombinant DBL domains by ELISA. With this method we calculated recognition 

frequencies of the sera against the severe versus the asymptomatic DBL domains. 

Briefly, we found that DBL domains derived from severe isolates were more 

frequently recognized than DBLs from asymptomatic infections (see graph 1).  

Furthermore, we tested children sera from a longitudinal study at baseline and 6 

months later. We found that the general recognition frequency was dramatically 

lower compared with the adults (graph 4). Additionally we found that the antibodies 

aquired by the children during the 6 months period were stronger directed against 

the severe DBL domains than against the asymptomatic DBL domains. 

 

The choice of DBL domains 

From a previous study we had a set of cloned DBL domains isolated from severe 

and asymptomatic children from Tanzania (unpublished, Paschal Mugasa). These 

sequences were cloned from full length var mRNA as described in [55]. We have 

sequenced 50 clones per isolate. We chose the most frequently cloned DBL domain 

for expression. Difficulties occurred for very complex samples where a prominent 

clone was not obvious. This was the case for ISM49, ISM16, IAM10 and IAM18. In 

these isolates about 20 different sequence groups (98% homology) were found per 

isolate. For example the most prevalent sequence in ISM49 was found 9 times and 

the next frequent was found 8 times. Even though the prominent clone in these 

samples was not significantly more numerous than others, we always chose the 

most frequent. In other less complex samples like IAM12 the difference was more 

obvious: 19 occurrences of the most prominent sequence and 4 of the second most 
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frequent. We also included a minor clone from ISM48 with only 3 findings (compared 

to 13 for the prominent). No obvious difference in titers was found for the minor 

clone compared with the major clones (see table 3). The minor clone was excluded 

for further statistical analyses because the role of the minor clones in an infection is 

not clear. However, we isolated parasites from peripheral blood, which per se do not 

necessarily seem to reflect the whole genotypical parasite load in an infected 

individual but certainly does not reflect the phenotypical parasite load [109, 110].  

 

Difference in proteins and difference in recognition 

All DBL domains in this experiment contain conserved sequences at the N and C 

terminal end (N terminal: ARSFADIGDII and C terminal: WFEEWAEDL). These short 

conserved stretches do not seem to be good epitopes, as titers among DBLs are 

dramatically different. When comparing relationships in sequence alignments with 

recognition frequency in ELISA we found differences.  For DBL ISM3 and ISM51, 

which were the most frequently recognized antigens, alignments revealed that these 

two isolate were closely related. This was reflected in the ELISA results. However, in 

the case of ISM48 (recognized 39 times) and IAM5 (recognized 19 times), the 

alignment revealed a close relationship (see alignment 1, results, chapter4), however 

the ELISA showed differential recognition. It seems that even small differences in 

amino acid composition can be enough to change the recognition pattern.  

 

 

Cloning and protein expression in E.coli 

We cloned the DBL domains in a pQE16 plasmid. This plasmid expresses the 

cloned gene as a 5` fusion to a mouse DHFR (dihydrofolate reductase) gene. The 

recombinant protein has the domain structure NH2-DHFR-DBL-HIS-COOH and had 

a calculated mass of 36kDa. It was necessary to express the DBL domain as DHFR 

fusion protein because expression with a single HIS-tag resulted in very low 

expression levels. The DHFR fusion was originally designed for expression of small 

peptides or toxic proteins, however in our case it enhanced the expression 

dramatically. This might be due to the greater stability of the mRNA or because the 

DHFR masks toxic domains or structures of the recombinant DBL domain. Neither 

the rare E.coli tRNA codons used by Plasmodium nor the high AT content seemed 
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to be important for high expression levels, as this was not altered with the DHFR 

fusion. We reached expression levels ranging from 0.5-4mg of recombinant protein 

from a 50ml culture. Beside the expression vector we found that rich medium (i. e. 

Terrific broth) is favored compared to normal LB, as the bacteria can grow to higher 

densities. 

The recombinant protein was totally insoluble. That made it necessary to apply two 

purification steps. First, all soluble and Triton-X-100 soluble proteins were 

eliminated. This resulted in a very pure fraction of inclusion bodies, which was then 

purified further using a Nickel column. These modifications resulted in very pure 

highly concentrated (up to 2mg/ml) recombinant protein. It was stated earlier that 

successful expression of plasmodial proteins in E.coli was dependent on the 

isoelectric point (pI) and size of the protein [83]. In our case neither of those had an 

influence on protein solubility, pre-termination nor expression levels. Also late 

induction time in the early stationary phase, which favors solubility [79]  had no 

effect.  

The DHFR fusion protein was also expressed without DBL domain as a negative 

control for downstream experiments. Recombinant DHFR is mostly insoluble. About 

90% of the expressed protein is in inclusion bodies, the rest can be purified under 

native conditions. Here we purified the insoluble fraction to follow the same 

conditions as for the DBL domains. The ODs obtained in ELISA for DHFR were 

generally around 0.2 (the positive control was 2 -3). The mouse DHFR used in this 

experiment is closely related to human DHFR with only little point mutations, thus it 

was expected that the titers against DFHR are very low (see Figure  2, lane D). 

 

ELISA on recombinant proteins 

Using recombinantly expressed proteins in ELISA experiments harbors intrinsic 

questions. The use of the same protein modifications system of the heterologue 

expression environment is more than doubt full. A lot of cell surface proteins are 

glycosylated, and this is also true for Plasmodium (as reviewed in [113] and 

commented in [114]). In Plasmodium proteins can be N- or O- linked glycosylated or 

GPI (glycosylphophatidylinositol) anchored. If the native DBL domain is glycosylated 

is unknown. It is also unknown to what extend the recombinant DBL domain is 

modified. However, glycosylation of proteins accumulating in inclusion bodies is 
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very unlikely as glycosylation occurs in the endoplasmatic reticulum (ER) lumen and 

insoluble protein aggregates have never entered the ER. It is further known that 

disulfide bonds stabilize the structure of the DBL domain. In the recombinant protein 

there is no formation of disulfide bonds as this is impossible in the reducing 

environment of the E.coli cytoplasm (reviewed in [115]), however disulfide bridges 

can be introduced by dialyzing in buffers containing red/ox components. We were 

aware of the improper folding of our recombinant protein and thus we do not claim 

that the antibodies binding our antigens have necessarily a role in vivo, as the 

antibodies detect most probably only linear epitopes. However, if recognition of the 

rDBL domians would be random due to their linear structure, we would not have 

found significantly different recognition patterns between severe and asymptomatic 

DBL domains. It is possible that important domains within the DBL are unstructured 

in the native protein as predicted for many plasmodial proteins [116].   

 

Calculation of titers 

Equal coating of different proteins was measured with a commercial monoclonal 

mouse anti-6xHIS tag IgG. Maximal titers of the positive controls were very high 

ranging from OD 2-3.5. Calculated half maximal titers of the mAB were around 

1:10`000. Coating efficiencies varied merely between experiments. As each sera was 

tested on all DBLs in the same experiment the variation between experiments is 

negligible for the comparison of titers between antigens.  

The negative control, a pool from 5 European blood donors, was approximately OD 

0.2 for the lowest dilution. The threshold was calculated from the mean of the 

negative titers plus 3 standard deviations.  Titers measured for the recognition of 

rDHFR were subtracted from the titers obtained for the rDBL domains.  

 

Antibodies against a subset of PfEMP1 variants prevent disease 

In graph 1 we showed that sera from semi immune adults recognize severe DBL 

domains more frequently than asymptomatic DBLs. As it is known that these semi-

immune adults are hardly suffering from severe malaria, we can conclude that their 

repertoire against severe DBL domains seems to contribute to protection against 

severe malaria. 
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Our findings with adult sera support the general hypothesis that different PfEMP1s 

with different functions exist and thus antibodies against different PfEMP1s can 

have more or less protective effects against severe malaria. If a human has an 

antibody repertoire against a subset of var genes coding for PfEMP1 variants that 

mediate cytoadherence in deep tissue e.g. brain, heart and lung, this human might 

be protected from severe malaria. Consequently, the library of antibodies against 

PfEMP1s that do not or to a lower extend (or in not as sensible tissues as the brain) 

mediate cytoadherence can be deficient without resulting in disease. Organs from 

fatal severe malaria patients are heavily infected with late stage parasites whereas 

organs from asymptomatic subjects contain almost no late stage parasites even 

though their parasitaemia were very high in peripheral blood samples [110].  

 

Recognition of severe DBL domains does not correlate with age 

To investigate whether frequency of recognition was correlated with age, we tested 

this correlation as shown in Graph 2. There is no evidence of correlation between 

total number of recognitions and age (p-value 0.8825) using Spearman's Rank 

correlation coefficient. We included age in our analysis because it can have a 

confounding effect in statistical analysis and because the antibody repertoire 

increases with age. This is especially pronounced in children when they develop 

their immunological protection. The correlation between age and protection from 

malaria has been already described by Ross and Koch over 100 years ago [117]. 

The age correlation is extensively reviewed in [118]. Recent chemoprophylaxis trials 

found that young children (2-12 month) treated prophylactically with anti malarials 

for a year and followed up for four years were at higher risk of a severe episode than 

the placebo group [119]. The reason might be the missing contact with the 

Plasmodial antigens during the time of treatment. At the time when 

chemoprophylaxis was stopped, the placebo group had already established a 

considerable protection against severe disease. However, in our adult group this 

phenomenon was not expected to contribute to the differential recognition of 

antigens as the median age is 32 and the youngest individual was 11 years old. All 

these individual are considered to be clinically immune. 
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Borderline evidence for different recognition between the sexes 

To test if recognition frequency of DBLs was sex dependant, data were further 

analysed to investigate if there is a correlation between the sex of the semi immune 

adult and the recognition frequency. We found that there is some borderline 

evidence that the overall frequency of recognition was different between the sexes 

(p-value 0.0669). Among our 100 sera tested 52 were from men and 48 from 

women. There are reports that men are generally more susceptible to parasitic 

infections than females [120]. Although the incidence of infection is similar the 

intensity and the parasitaemias are higher in men [121]. The only confirmed major 

sex difference in malaria is PAM in which parasites show a differential recognition 

pattern to placental CSA. Sera from multigravid women bind to parasites isolated 

from placentas whereas no male sera recognize these parasites [24]. In our 

experiments we did not expect gender-dependant difference in. The DBL domains 

tested here are isolated from children and we do not have a PAM associated 

PfEMP1-variant (which would be DBLγ). The inhomogeneous distribution of 

recognition frequency maybe comes from the sample number not being high 

enough. A trend for a differential recognition among males and females is not 

obvious (see graph 3). 

 

ELISA results from children sera 

Sera samples from 34 children from Africa (Tanzania, Ifakara) were collected in a 

follow up study in 1996. 34 sera samples for two time points (baseline and 6 month) 

were tested. In general, the frequency of positive sera and the endpoint titers of 

children sera were lower compared to those of adult sera. This what we have 

expected as children have lower IgG levels. The comparison of the two time points 

showed an increase of recognition with time. The increased recognition is not 

distributed equally between asymptomatic and severe antigens. The DBL domains 

derived from severe samples show a higher increase of recognition than the 

asymptomatic. This goes together with the results from the adult sera where the 

recognition of severe antigens is also higher. It is also postulated that parasites 

responsible for severe disease are the “common” parasites. Bull et al. showed by 

serum agglutination that parasites isolated from severe cases are readily 

agglutinated by heterologous sera [89]. Parasites from asymptomatic infections are 
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less frequently recognized. Thus it is conceivable that the children acquired some 

infections (from “common” parasites) during the six months period against which 

they developed antibodies. This theory is highly contrary to the assumption that the 

“common” parasites induce severe malaria in an unprotected individual, however 

non of the kids had a episode within the study. But reality might be more 

complicated and complex because not every child falls severely sick with an 

infection of a common variant. Otherwise there would be many more severe cases. 

The results obtained from the children follow up sera fit into the picture of the 

acquisition of clinical immunity to severe malaria, but the development of the 

antibody response cannot be explained satisfactorily and remains to be elucidated. 

 

Outlook 

It is still not obvious which modifications in the DBL domain are necessary to enable 

the parasite to prevent eradication by the immune system but remain cytoadherent. 

At the same time it is not clear if antibody levels against special DBL domains are 

enough to acquire semi-immunity. The DBL domain is often used to monitor 

expression variants of PfEMP1 [102, 109] but it is only a small part (130aa) of the 

large PfEMP1 (3000 aa) protein. The critical binding domain can easily be 

somewhere else in this or even another protein. It clearly needs further work, maybe 

including the whole protein in the analysis. As sequence analysis of the linear amino 

acids did not reveal conserved domains, it must be expanded into structural 

analysis.  
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General discussion and conclusions of this thesis 
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General discussion and conclusions of this thesis 

 

The core objective of the present thesis was the investigation of conserved domains 

in PfEMP1 responsible for the pathology of severe malaria. Despite the growing 

body of knowledge the decisive point what makes some variants of PfEMP1 more 

virulent than other remains unknown. We expanded our experiments from long 

recombinant proteins over a very complex random PfEMP1 cDNA library to a more 

goal-orientated DBL-serology approach. The difficulties in recombinant expression 

of plasmodial proteins and the minute amounts of material obtained from field 

samples forced us to reconsider our approaches over and over. The final 

assessment of titers against severe and asymptomatic DBL domains however is a 

new way of investigating host parasite interaction. In previous experiments the 

influences of sera were tested on whole iRBC thus never revealed the sole role of 

PfEMP1. In our approach we used a new way to test antigens derived from different 

clinical cases on the same sera rather then different sera on the same antigen. To 

our knowledge this is the first time that the antigen was the basis of differential 

recognition. We could show that adults recognize more frequently DBL domains 

coming from severely sick patients compared to antigens coming from 

asymptomatic infections. This may indicate that even the DBL1α domain is a crucial 

epitope for the parasite to manage cytoadherence and to be the target of antibodies 

protecting from disease. Of course, questions concerning the choice of the right 

DBL domain extracted from very complex infections can be asked. Recombinant 

protein expression in heterologous systems like E.coli implicates doubts in 

conformation and modification of the peptide. But these complicacies account for 

both the severe and the asymptomatic DBL domains. With our experiments we 

show that recombinant protein expression can be useful in the assessment of titers 

against various antigens. These and other findings (like var2CSA in PAM) concerning 

protection from severe malaria by the recognition of specific domains from a 

variable antigen give hope to the possibility of the development of a disease 

preventing vaccine. Considering the pathological significance of PfEMP1, 

intervention in sequestration, cytoadherence and rosetting represent ideal targets 

for a morbidity reducing vaccine. 
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The way to such a vaccine however is still long and rough. Recombination of the 

variant antigens must be considered. We currently believe that the repertoire of var 

genes is endless and is not static. The blocking of certain domains by vaccine 

induced antibodies can easily induce the rise of new variants. More knowledge is 

needed on sequence information of the whole protein and on the mechanisms of 

antigenic variation. And PfEMP1 is not the only protein on the surface of an iRBC. 

Other proteins like the riffins or stevors may also account for cytoadherence and 

must be included in future analyses.  
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Appendix 1 

 

Sequences of recombinant DBL domains 

 

DBL domains were expressed as DHFR-DBL-6xHIS fusion proteins. The 

recombinant DHFR protein contains also the 6xHIS tag. Numbers in brackets give 

the calculated mass and the isoelectric point of the fusion protein (kDa;pl) 

 

>DHFR-6xHIS 

MRGSGIMVRPLNSIVAVSQNMGIGKNGDLPWPPLRNEFKYFQRMTTTSSVEGKQNLV

IMGRKTWFSIPEKNRPLKDRINIVLSRELKEPPRGAHFLAKSLDDALRLIEQPELASKVD

MVWIVGGSSVYQEAMNQPGHLRLFVTRIMQEFESDTFFPEIDLGKYKLLPEYPGVLSE

VQEEKGIKYKFEVYEKKGSRSHHHHHH (23;9.34) 

 

The following dbl domains replace the red sequence: 

 

>IAM5 

ARSFADIGDIVRGTDMFLGSNKEKEKIENSLQNIFKNIKKNNKKLKDLTDKQIREYWWA

LNRKEVWKALTCSVPYEAYYFTYKSDNFRTFSGYWCGHYEGAPPTNLDYVPQFLRWF

EEWAEDL (35;8.97) 

 

>IAM7 

ARSFADIGDIVRGKDLFLGHKQGKQKLEASLKTMFQNIQSTIDQLKRLSIDAVREYWWE

INRQEVWKAITCSAGEDDTYSKYLGDRTTGVSHGQCGHMDENVPTYFDYVPQFLRWF

EEWAEDL (35;6.84) 

 

>IAM10 

ARSFADIGDIIRGKDLFIGYDEKDRKEKKQLQQNLKNIFGKIHSEVTNGSNAEAAKARYK

DTTDFYQLREDWWDANRETVWEAITCGAAGGTYFRATCSDEENKSTLASNKCRCAG

KNADQVPTNFDYVPQYLRWFEEWAEDL 

(37;7.13) 
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>IAM11 

ARSFADIGDIIRGKDLYRGNSKEKDNLEKKLIEYFQKIHGGLTGDAQTHYNDKSGNFFK

LREDWWDANRQEIRNAIICDVPEDAKYLEQSDGSQSGSHQTKCRCHSGSVLTNFDYV

PQYLRWFEEWAEDL 

(36;6.87) 

 

>IAM17 

ARSFADIGDIVRGKDLFYGNPQEKKQRKELDKKLKEVFGKIHEGLKNGKAKERYKDTT

NYYQLREDWWTANRETVWKAITCAAKVGDTYFMESRTNSYKFSGDKCGHNDDNVPT

NLDYVPQYLRWFEEWAEDL 

(36;8.91) 

 

>IAM12 

ARSFADIGDIIRGKDLYLGDNRKDREQKVKLENKLKEIFAKIHENLGTQDAIGHYEDAKK

NYYKLREDWWTANRGTVWKAITCGAGKHDKYFRKTCNGGSPTKGYCRCNGDQPND

HKANIDPPTHFDYVPQFLRWFEEWAEDL 

(37;8.95) 

 

>IAM18 

ARSFADIGDIVRGKDLYIGNRKEKEKEELQKNLKSIFKKIYGELKNGKTNGEAAKVHYQE

DGQNYYKLREDWWTANRETVWEAITCNAGGGTYFRGTCGKNDTWTREDCRCDGSN

WPTYFDYVPQYLRWFEEWAEDL 

(37;8.20) 

 

>ISM49 

ARS FAD I GD I VRGRDLFLGNT YE S AQRDQLDKKLKE I F TQ I YND VTTNGKKP 

ALQKRYKKDGKDPDFFKLREDWWYANRQEIWKAITCKVENAQYFKDTCSTGGHYEK

CRCNGDQPKSGKGGDVNIVPTYFDYVPQYLRWFEEWAEDL 

(38;8.81) 
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>ISM51 

ARSFADIGDIIRGKDLYLDHEPGKQHLEERLERIFANIQKENGDINTLKPEEVREYWWAL

NRVQVWKAITCRAEEKDIYSRIAGDTTIWNDNCGHHVNQDVPTNLDYVPQYLRWFEE

WAEDL  

(35;6.19) 

 

>ISM16 

ARSFADIGDIIRGRDLF 

YGNTQEKTKRKQLDKKLKDIFGDIYKELRKNGKKGELQKRYQKDGDKDFFQLREDW

WEENRETVWKAITCDAPPDAQYFRGTCGDNEKTATQTPSQCRCNDDQVPTYFDYVP

QYLRWFEEWAEDL 

(38;8.20) 

 

>ISM48_1 

ARSFADIGDIVRGTDMFLGSNKEKEKIENSLQNIFKNIKKNNKKLKDLTDKQIREYWWA

LNRKEVWKALTCSVPYEAYYFTYKSDNFRTFSGYWCGHYEGAPPTNLDYVPQFLRWF

EEWAEDL  

(35;8.97) 

 

>ISM48_2 DEL 

ARSFADIGDIIRGKDLYLDHEPGKQHLEERLETMFQNIQYNNTELKNIPLPKVREYWWA

LNRGQVWKAITCHAGKDDAYFRNSSGGEYKFTSGYCGRNEGKVPTNLDYVPQHLRW

FEEWAEDL  

(35;7.82) 

 

ISM11 

ARSFADIGDIIRGKDLFIGNNKRDKLEKQLKEYFKNIYDNLNGAQKHYSDDDKGTKN Y 

YQLREDWWALNRQEIWKALTCESGGGRYFRETCAGGTSRTQDDCRCRTNDVPTYFD

YVPQYLRWFEEWAEDL 

(36;8.21) 
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>ISM3 

ARSFADIGDIIRGKDLYLDHEPGKQHLEERLERIFENIKKKNNNNELNNLSLDKFREYW

WALNRVQVWKAITCRAEEKDIYSKTTDNGKLLLWNYNCGHHVNKDVPTNLDYVPQFL

RWFEEWAEDL  

(36;7.81) 

 

>ISM33 

ARSFADIGDIIRGKDLFLGHEQRKKYLEARLEAMFDNIKKNNKKQLGELSTAQVREYW

WALNRGQVWKAITCGATMNDISFKNIGNGKLLLWNEKCGRGDYNLLTNLDYVPQFLR

WFEEWAEDL  

(35;9.16) 



 135 

Appendix 2 

 

Peptide sequences: 

ATS1: SDITSSESEYEELDINDIYVP 

ATS2: PKYKTLIEVVLEPS 

ATS3: GIDLINDTLSSGNHIDIYDEVLKRKENELFG 

ATS4: LDRHRDMCEKWKNKEDILNKLKEEWNKENINN 

 

Primer sequences 5 --> 3 

 

pGEX_fwd: gggctggcaagccacgtttggtggt 

pGEX-reverse_MCS: atgcggccgctcgagtcg 

 

pQE_fwd: cccgaaaagtgccacctg 

pQE_reverse: gttctgaggtattactgg 

 

pTrcHis2_reverse: gatttaatctgtatcagg 

pTrcHis2_fwd: gaggtatatattaatgtatcg 

 

dbl1α_fwd: GCGTCCTCTCTGAGGCACGAAGTTTTGCAGATATAGG 
dbl1α_reverse: catGGATCCaAAGTCTTCGGCCCATTCCTCGAACCA 

 

ats beads: 

TCHTCMGAAAGTGARTATGAAGAATTGGATATTAATGATATATATGYACCAGGRAT

WGAAGTRGTAYTWGAACC-Biotin 

 

NTS_FCR_fwd: gaattcgcgacttcaggaggtagtgg 

NTS_FCR_reverse: gcgaagcttgccacggattccttttgctg 

 

 

ATS_FCR3_fwd: gaattcaagaaaaaaccawakcatctgttg 

ATS_FCR3_reverse: nnnnnngcggccgcnngatattccatatatctgatatagg 
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SMART_PCR_primer: aagcagtggtatcaacgcagagt 

SMARToligo: ggtatcaacgcagagtacgcggg 

SMART_random: ggtatcaacgcagagtacnnnnnnnnn 

SMART_polyT: ggtatcaacgcagagtactttttttttttt 

 

F1: ggtgtgtgtatgcctccaagaag 

F2: acgagctcaaatggtgaggacaggaggtagcgg 

F3: acgagctcaaatgacatcatgtagtccggag 

F4: acgagctcatggcggctgcaggaagtggagg 

F5: acgagctcaaatggtacggtcgtcacgcg 

F6: acgagctcaaatggcgaggccaggtagcgg 

F7: acgagctcaaatggcgactggtagtgggggcg 

 

R1 
ttttccttttgcggccgcttagttagttacttctaggwggcatacatgctcc 

R2 
ttttccttttgcggccgcttagttagttactt ctg ggt ggc aca cac gca cc 
 
R3 
ttttccttttgcggccgcttagttagttactt ctt gga ggc ata cam rma cc 
 
R4 
ttttccttttgcggccgcttagttagttactt ctt gga ggc ata yak kca 
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Abbreviations 

 

ATS  Acidic terminal sequece 

BSA  Bovine Serum Albumin 

CIDR  Cysteine rich inter domains region 

CPE  chromosom central var promotor element 

CR1  Complement receptor 1 

CSA  Chondroitinsulfate A 

DBL  Duffy binding like 

DHFR  Dihydrofolate reductase 

DNA  Deoxyribonucleic  acid 

DTT  Diithiotreitol 

EDTA  ethylenediaminetetraacetic acid 

ELISA  Enzyme linked immuno fluorescence assay 

ER  Endoplasmatic reticulum 

FoR  Frequency of recognition 

GPI  Glycophosphatidylinositol 

GST  Glutathione S-transferase 

IAM  Ifakara asymptomatic Malaria 

IFA  Immuno flouresence assay 

IL  inter leukine 

IPTG  Isopropyl β-D-1-thiogalactopyranoside 

iRBC  Infected red blood cell 

ISM  Ifakara severe Malaria 

KAHRP Knob associsated histidine-rich protein 

kDa  kilo Dalton 

KLH  Keyhole Limpet Haemocyanin 

LB  Luria Bertani (lysogeny broth) 

MACS  Magnetic cell sorter 

MAHRP Membrane associated histidine-rich protein 

NTS  N-terminal segment 

PAGE  Polyacrylamide Gel electrophoresis 

PAM  Pregnancy associated malaria 
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PBS  Phosphate buffered saline 

PCR  Polymeras chain reaction 

PEXEL Plasmodium export element 

PfEMP1 Plasmodium falciparum Erythrocyte Protein 1 

PMSF  phenylmethanesulphonylfluoride 

PNG  Papua New Guinea 

RBC  Red blood cell 

RNA  ribonucleic acid 

SDS  Sodiumdodecylsulfate 

SPE1  Subtelomeric var promotor element 

STI  Swiss Tropical Institute 

TBE  Tris Borate EDTA 

TE  Tris EDTA 

TNF  Tumor necroses factor 

UV  Ultra Violet 

vs  versus 
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