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CHAPTER 1

INTRODUCTION

1.1 The aim of the present work

The first main goal of this thesis is to develop and test a new way of modelling galaxies, based
on the original ideas ofSyer and Tremaine(1996). This method is new in the sense that aN -
particle system is tailored to reproduce galaxy observations, rather than superposing orbits as
done in Schwarzschild’s method. The newχ2-made-to-measure (χ2M2M) algorithm properly
accounts for observational errors, is flexible, and can be applied to various systems and geome-
tries. Theχ2M2M is implemented in a parallel code NMAGIC and various tests using known
dynamical models are carried out to illustrate its performance.

The second goal of this thesis is to apply NMAGIC to real galaxies and to investigate the
issue of dark matter in the intermediate luminosity elliptical galaxies NGC 4697 and NGC
3379. These two galaxies are particularly interesting because recent studies (Méndez et al.,
2001; Douglas et al., 2007) revealed a dearth of dark matter in these systems, which conflicts
with the prevailing cosmological paradigm.

1.2 Evolution of a collisionless system

The evolution of a stellar system, where the stars can be considered as point masses, is deter-
mined by the mutual gravitational forces of the stars. The collision rate of a star in a stellar
system with equal mass stars and a constant total mass is inversely proportional to the total
number of stars. This can be understood as follows: If the total number ofstars is doubled,
then also the number of encounters is doubled, but the strength of a single scattering event is
reduced by a factor of four, since the mass of each star is halved and thegravitational force is
proportional to the square of the mass. One can show that for galaxies, which typically have
N ≈ 1011 stars, encounters are unimportant. Hence, galaxies can be consideredas collisionless
systems (e.g. Binney and Tremaine, 1987) and the motions of the stars are governed by the
smooth gravitational potential, generated by the entire system.

The collisionless Boltzmann equation

A collisionless stellar system can be described by its phase-space distribution function (DF)
f(x,v, t), which gives the density of stars in the six-dimensional phase space ofx,v and is
positive everywhere. For example, the surface brightnessµ and the mean line-of-sight velocity
vlos are then given by integrals:

µ =

∫
fd3vdz, vlos =

1

µ

∫
vzfd3vdz, (1.1)

where the line-of-sight is assumed along the z-direction.

1



2 CHAPTER 1. INTRODUCTION

The evolution of the DF under the influence of the total gravitational potentialφ, is deter-
mined by the collisionless Boltzmann equation (CBE) (cf. Binney and Tremaine, 1987):

∂f

∂t
+ v · ∇f −∇φ · ∂f

∂v
= 0, (1.2)

which follows from the conservation of stars in phase-space. The CBE states that the phase-
space flow is incompressible. The total gravitational potentialφ(x, t) is generated by the com-
bined stellar mass and dark matter distributions and is given by

φ = φ⋆ + φDM , (1.3)

where the stellar potentialφ⋆ is related to the DF via Poisson’s equation

∆φ⋆ = 4πGρ⋆, (1.4)

with the volume density

ρ⋆ =

∫
fd3v. (1.5)

The Poisson’s equation together with the CBE are the fundamental equationsin stellar dynamics.
Once a solution of these equations has been found, all the interesting information about the
system can be extracted as illustrated in equations (1.1).

In stellar dynamics, the CBE is typically solved like an initial value problem: An initially
specified system of particles, representing the initialf(x,v, t0), is integrated in a smooth grav-
itational potential to study the evolution of the system and to possibly compare thefinal model
with observations. For example,Fux (1997) realized various models of the Galaxy by self-
consistent evolution of bar unstable models and compared them posterior withobservations of
the Milky Way.

Moment Equations

Generally, to solve the CBE poses a difficult problem. Valuable insight can be obtained by
considering velocity moments of the CBE. This results in a hierarchy of equations, beginning
with the continuity equation, followed by the higher order ones. Combining the continuity
equation and the second moment equation yields theJeans equations, which are closely related
to the Euler equations of fluid dynamics (e.g. Binney and Tremaine, 1987; Gerhard, 1994):

ρ
∂v̄l

∂t
+ ρv̄k

∂v̄l

∂xk
= −ρ ∂φ

∂xl
− ∂(ρσ2

kl)

∂xk
, (1.6)

where the symmetric tensorσ2
kl measures the random motions of the stars with respect to the

mean streaming motion. At each position in space, the principal axes ofσ2
kl define the velocity

ellipsoid. Unfortunately, the principal axes of the velocity ellipsoid are not known in general,
and hence solutions can only be obtained by making assumptions about the shape of the velocity
ellipsoid or the form of the DF.

Jeans theorem

Often one is interested in solutions of the CBE that describe stars moving in a gravitational
potential which is constant in time, such that the DF is also constant. For such asteady-state
solution (∂f

∂t = 0) of the CBE Jeans theorem states that the DF depends on the phase-space
coordinates only through the integrals of motion for the stellar orbits in the gravitational poten-
tial. On the other hand, any non-negative function of the integrals of motion isa steady-state
solution of the CBE. For a steady-state system, the Jeans theorem implies, thatthe phase-space
density is constant along individual orbits. This is the basis of many methods for constructing
equilibrium models of galaxies, such as the Schwarzschild method (Schwarzschild, 1979) or
DF-based methods.
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1.3 Dynamical modeling of elliptical galaxies

The central problem in dynamical modelling of galaxies is to find a DF which solves the CBE
and reproduces the observations, such as the surface brightness distribution and the mean line-
of-sight velocity field (cf. equation1.1), to gain some information about the distribution of mass
and the orbital structure. These are interesting because the first one maygives a hint on the
distribution of dark matter, where as the latter one is likely to have preserved some record of the
formation of the galaxy.

Unfortunately, estimating the distribution of mass is complicated by the fact that thein-
trinsic shape of an elliptical galaxy is not known at the outset and that the deprojection of its
surface brightness distribution is not unique. Consequently, differentintrinsic shapes have to be
probed. In addition, constraining the dynamical models by only the mean velocity and velocity
dispersion is insufficient to derive the mass of the system due to the mass-anisotropy degeneracy
(Binney and Mamon, 1982). Using the full LOSVD instead, allows to reconstruct the DF given
the potential is known (Dejonghe and Merritt, 1992) and to constrain the DF and the potential,
if the latter is not given (Gerhard, 1993; Merritt, 1993).

Several techniques have been developed to construct dynamical modelsof galaxies with the
attempt to recover the mass distribution (including dark matter) and the DF consistent with the
observational data.

DF-based methods assume that the integrals of motion can be expressed or approximated
in terms of analytic functions. This approach has been applied to sphericalor other inte-
grable systems (e.g. Dejonghe 1984; Bishop 1987; Dejonghe and de Zeeuw 1988; Gerhard
1991; Hunter and de Zeeuw 1992; Carollo et al. 1995; De Bruyne et al. 2000; Kronawitter et al.
2000), nearly integrable potentials where perturbation theory can be used (e.g. Saaf, 1968;
Dehnen and Gerhard, 1993; Matthias and Gerhard, 1999) and to axisymmetric models assum-
ing that the DF is a function of energyE and angular momentumLz only (e.g. Hunter and Qian,
1993; Dehnen and Gerhard, 1994; Kuijken, 1995; Magorrian, 1995; Qian et al., 1995; Merritt,
1996). However, there is no physical reason why the DF should only dependon the classical
integrals and most orbits in axisymmetric systems have an additional third integralI3, which is
not known in general (Ollongren, 1962).

Another class of models solve the Jeans equations or higher order velocitymoments of the
CBE. This approach does not require the knowledge of the integrals of motion, but since the
Jeans equations are not closed, assumptions about the shape of the velocity ellipsoid have to be
made. For example, M87 was studied byBinney and Mamon(1982) using spherical Jeans mod-
els. Binney et al.(1990) constructed axisymmetric models for NGC 4697 assumingf(E,Lz).
But the Jeans approach has the limitation that the DF associated with the velocity moments is
not guaranteed to be positive everywhere.

Schwarzschild(1979) developed an orbit based method for numerically building models of
galaxies, without explicit knowledge of the integrals of motion. It makes use of the fact that
the DF is constant along orbits and can be interpreted as a superposition ofthe DFs of the
individual orbits. A library of orbits is computed and orbits are then superposed with positive
definite weights to reproduce observed photometry and kinematics. The Schwarzschild method
has been used to model stellar systems for measurements of global mass-to-light ratios, internal
kinematics and the masses of central black holes (e.g. Gebhardt et al., 2003; Thomas et al.,
2005; Cappellari et al., 2006; Shapiro et al., 2006). However, most Schwarzschild models in the
literature to date are axisymmetric.

Syer and Tremaine(1996) invented a particle-based method for generating models of stellar
systems. This “made-to-measure” (M2M) method is allied to the Schwarzschild technique, but
rather than superposing orbits from a library, it works by varying the weights of the particles in
the system as a function of time, until the model converges to the observational data. This allows
for arbitrary geometries and is not restricted necessarily to stationary systems. So far, the only
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practical application of the M2M method was made byBissantz et al.(2004). These authors
constructed a dynamical model of the Milky Way’s barred bulge and disk byconstraining the
projected density map. One goal of this thesis is to extend the M2M algorithm to incorporate
kinematic observations and to properly account for observational errors.

1.4 N-particle simulations

Much of what is known today about the dynamical evolution of stellar systemscomes from
N-body simulations. N-body problems and their solutions divide into two types,depending on
the importance of binary collisions. In a collision dominated simulation each particlerepresents
an individual star, as for example in studies of the dynamical evolution of star clusters (e.g.
von Hoerner 1960; Aarseth 1963; Hénon 1964).

On the other hand, stellar systems such as galaxies are collisionless for time scales much
longer than a Hubble time. As discussed in section1.2, such a system is completely described
by a DF f(x,v, t) along with the smooth potentialφ(x,v, t) generated by the DF and any
external contributions. The evolution of the DF is determined by the CBE,cf. equation (1.2).
The CBE is solved by sampling phase-space using a Monte-Carlo approach in which selected
“fluid” elements are represented as particles and are integrated along the characteristic curves
of the CBE, defined by (e.g.Hernquist and Ostriker 1992; Leeuwin et al. 1993)

dx

dt
= v (1.7)

dv

dt
= a, (1.8)

wherea = −∇φ is the acceleration. The potentialφ is computed from the mass densities of
the particles. In reality, N-body simulations are never perfectly collisionlness due to the particle
noise in the estimation of the accelerations. One should therefore make the number of particles
as large as possible to reduce the effects of the shot noise.

The task of the potential solver is to estimate the accelerationsa from the discrete sample
of particles. Various techniques have been proposed in the literature andin the following I give
only an incomplete list. The simplest technique is the particle-particle method (PP) inwhich the
potential is computed by a direct summation of the pair-wise interactions (e.g. Aarseth, 1985).
Another approach is the so-called particle-mesh (PM) method which solves Poisson’s equation
on a grid (PM) (e.g. Hockney and Brownrigg, 1974), using for example a fast Fourier transform
(FFT).Sellwood(2003) developed a surface harmonic method (PM+SH) which is described in
more detail in sectionA.1. The PM+SH method is used as the potential solver in the NMAGIC
code.

Collisionless N-body simulations have been applied to many problems in astrophysics such
as galaxy evolution (e.g.Hockney and Brownrigg 1974; Debattista and Sellwood 2000), merger
simulations (e.g.Gerhard 1981; Barnes 1990; Hernquist 1992; Naab et al. 2006) and in cosmo-
logical simulations (e.g.Efstathiou and Eastwood 1981; Navarro et al. 1996).

In a “standard” N-body simulation, one specifies a set of initial conditions (f(x,v, t0)) and
follows the evolution of the particle system and any quantity of interest (e.g. mass density or
line-of-sight-velocity). The only way one can influence the final model is by changing the initial
conditions. As already mentioned in section1.2, this approach was employed byFux (1997) to
model the Milky Way. In contrast to that, the M2M method allows to tailor an initially specified
system by gently adjusting the individual adaptable particle weights during theevolution of the
particle system until it matches the observations (cf. section2.2).
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1.5 General properties of elliptical galaxies

Elliptical galaxies are usually smooth and almost structureless; devoid of photometric struc-
tures such as spiral arms, rings or bars. They are among the brightest galaxies in the universe
and reach total B-band magnitudes ofMB ≈ −24 mag, but elliptical galaxies populate the hole
range of luminosities down to very faint dwarf ellipticals (dE). They vary in shape from round to
highly flattened in appearance with isophotes, contours of constant surface brightness, remark-
ably close to being true ellipses. Accordingly, they are designated En wheren = 10(1 − a/b)
anda/b describes the apparent axis ratio (Binney and Merrifield, 1998). There are few, if any,
more flattened than E7.

Elliptical galaxies are preferentially found in clusters, and the largest of them, the cD galax-
ies, are found at the cluster centers (Dressler, 1980). The surface brightness profiles of elliptical
galaxies are well described by the empiricalSersic(1968) law

I(R) = I(Re) exp(−b[(R/Re)
1/n − 1]), (1.9)

where the constantb is chosen such that half the light is enclosed within the effective radiusRe.
For n > 1, b ≈ 1.999n − 0.327. Forn = 4, one obtains theR1/4 or de Vaucouleurs(1948)
law, which provides a fairly good description of the surface brightness profile over a large radial
range. Unless an elliptical galaxy is circular symmetric, different values forRe will be measured
along the major and the minor axes, and the quoted values are typically the geometric mean of
them.

The central regions of elliptical galaxies have attracted a lot of interest, because ellipti-
cals have long been suspected to harbor central black holes. Due to the high spatial resolution
needed, observations of the centers of ellipticals became possible only with the Hubble Space
Telescope (HST).Lauer et al.(1995); Gebhardt et al.(1996); Faber et al.(1997) analysed HST
surface brightness profiles of dozens of elliptical galaxies and discovered a bimodality in the
central profile slopes. Nearly all the galaxies in these samples have central cusps,i.e. the loga-
rithmic slope of the luminosity profile is significantly different from zero. The brightest galaxies
with Mv < −22 havecoreswith a shallower inner profile, breaking at a break radiusRb to the
steep outer profile. Faint galaxies withMV > −22.5 have largely structureless steeppower-law
profiles and are therefore called power-law galaxies. In the intermediate luminosity range, both
forms exist.

The appearance of an elliptical galaxy depends on its orientation with respect to the ob-
server. For instance, an axisymmetric galaxy observed along the symmetry axis, looks as an E0
irrespective of the intrinsic flattening. Hence, it is not possible to determine the intrinsic shape
for a single galaxy, but since ellipticals are observed along random directions, one can use
the distribution of apparent flattening to constrain an average three dimensional shape,i.e. the
probability distribution of intrinsic shapes. The distribution of apparent ellipticities of elliptical
galaxies peak between E2 and E3. There is a lack of exactly circular objects and no galaxy is
flatter than E7, possibly due to a dynamical instability. (e.g. Binggeli, 1980; Bender et al., 1988;
Franx et al., 1991; Ryden, 1992). The apparent shapes of faint ellipticals are more flattened than
those of more luminous ones. On average, the faint ellipticals are E3 and the brighter ones E1.5.
The apparent shape distribution of the fainter galaxies is consistent with oblate symmetry, but
the brighter ones are not, due to a lack of E0 galaxies. The apparent shape distribution of either
group is successfully reproduced by a triaxial intrinsic light distribution (Tremblay and Merritt,
1996). Isophote twists,i.e. the change of the position angle (PA) with radius, further indicate
that some elliptical galaxies are triaxial.

With the availability of CCD devices, accurate photometry became feasible and revealed de-
viations of the isophotes from being true ellipses. These deviations are between0−2 percent of
the isophotal radius. (e.g. Carter, 1978, 1987; Jedrzejewski et al., 1987; Peletier et al., 1990).
Usually, the deviations from an ellipse fit are quantified by means of a Fourier analysis (cf.
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Bender and Moellenhoff, 1987). A positivea4 coefficient indicates disky isophotes and a nega-
tivea4 results from boxy isophotes. Boxy ellipticals are more likely to show isophote twists. Of-
ten they tend to be brighter and are radio and X-ray loud. By contrast, disky ellipticals are fainter,
fast rotating and have less X-ray emission (cf. Bender et al., 1989; Cappellari et al., 2007). They
resemble S0 galaxies with a low disk-to-bulge ratio. Hence, they may form a sequence with
S0 galaxies (cf. Simien and Michard, 1990; Rix and White, 1990; Scorza and Bender, 1990;
Cinzano and van der Marel, 1993). Boxy ellipticals have possibly formed by galaxy mergers,
which could have destroyed any disks, and leave a triaxial remnant. The merger hypothesis
is supported by the observations of kinematically decoupled components (e.g. Bender, 1988;
Franx and Illingworth, 1988; Cappellari et al., 2007).

In contrast to spiral galaxies, ellipticals lack luminous young blue stars with most of their
light coming from red giants. They are old andα-enriched. Brighter galaxies are redder than
fainter ones (e.g. Visvanathan and Sandage, 1977; Bower et al., 1992). In general, ellipticals
are redder at their centers than in the outer parts (e.g. Peletier et al., 1990).

Among the basic structural parameters of elliptical galaxies exist various correlations. For
instance the central velocity dispersion is tightly linked with the luminosity: Brighterellipticals
have larger central velocity dispersions and roughlyL ∝ σ4. This correlation is often called
theFaber-Jacksonrelation, afterFaber and Jackson(1976). The Faber-Jackson relation can be
used to estimate galaxy distances from velocity dispersion measurements. Butit is difficult to
determine the total luminosity of a galaxy, because a significant amount of lightcomes from
the faint outer parts. Distances derived from the Faber-Jackson relation are therefore not very
accurate.

TheD − σ relation (Dressler et al., 1987), whereD measures the diameter of the isophote
within which the mean surface brightness equalsI = 20.75µB, was found to provide a tighter
correlation than the Faber-Jackson relation and is particularly used as a tool in distance estima-
tion.

The fundamental plane(FP) relation (cf. Faber et al., 1987; Djorgovski and Davis, 1987;
Dressler et al., 1987) is a generalization of the Faber-Jackson relation, which turned out to be
a projection of the FP. The FP relation relates the effective radiusRe with the mean surface
brightnessIe within oneRe and the velocity dispersionσ. It is approximately

Re ∝ σ1.2I−0.8
e , (1.10)

which implies under the assumption of homology(M/L) ∝ L0.24 (Faber et al., 1987), known
as the tilt of the FP. The luminosity dependence of the M/L is confirmed by dynamical studies
(Gerhard et al., 2001; Cappellari et al., 2006) and is primarily due to population effects, while a
varying DM fraction is less important.

1.6 Cosmological context

Observations of the temperature anisotropies in the cosmic microwave back ground imply that
the universe is flat, consists mainly of cold dark matter and dark energy, witha small amount
of ordinary mater, which formed its structure through gravitational instability starting from an
inflationary epoch (e.g. Peacock, 1999; Hu and Dodelson, 2002; Spergel et al., 2003, 2007)

Numerical N-body simulations offer a powerful tool to study the formation ofstructure in
the universe, starting from small density perturbations derived from temperature fluctuations in
the cosmic microwave background. The growth of structure is determined bythe amount and
type of dark matter. High resolutionΛCDM simulation reveal a universal DM halo density
profile, which is well approximated over a large range of masses by a functional two parameter
form

ρNFW (r) =
ρs

(r/rs)(1 + r/rs)2
, (1.11)
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wherers is a characteristic scale length andρs a corresponding density (e.g. Navarro et al.,
1996, 1997; Moore et al., 1998). A useful alternative parameter for describing the shape of the
density profile is the concentration parametercvir which is the ratio of the virial radiusrvir to rs
(e.g. Bullock et al., 2001; Wechsler et al., 2002). For a given cosmology, the halo concentration
tends to increase with decreasing halo mass. This reflects the fact that low-mass halos typically
collapse earlier, when the universe was denser. In the prevailingΛCDM cosmology, the structure
forms hierarchically bottom-up: dense low mass halos form first and merge successively to build
up the high mass objects.

In the standard picture of galaxy formation, the dark matter halos carry withethem gas,
which eventually cools and collapses within the potential wells of the surrounding halos to form
disk galaxies. This suggests that galaxies trace a similar hierarchical formation path as their
surrounding DM halos. The merger hypothesis as first proposed byToomre and Toomre(1972)
envisions that most elliptical galaxies form by major mergers of pairs of galaxies. The hierarchi-
cal formation picture is consistent with the fact that the fraction of early-type galaxies increases
with increasing density of the environment whereas the fraction of late-typegalaxies decreases
(Dressler, 1980), and that some ellipticals show arc-like shells or have kinematically decou-
pled central cores (e.g. Malin and Carter, 1983; Bender, 1988; Franx and Illingworth, 1988;
Cappellari et al., 2007). The merger scenario is supported by numerical simulations which have
been successful in explaining observed properties of ellipticals like the surface brightness pro-
files, kinematics and isophotal shape parameters (e.g. Gerhard 1981; Barnes 1990; Hernquist
1992; Naab et al. 2006). However the picture has become more complex. For example, boxy
ellipticals can form via disk-disk mergers (e.g. Naab and Burkert, 2003) or from multiple merg-
ers (Weil and Hernquist, 1996); and the most massive ellipticals should have experienced a last
elliptical-elliptical merger (Naab et al., 2006). Hence, it seems likely that ellipticals are rem-
nants of mergers of both small ellipticals and spiral galaxies.

An ongoing test ofΛCDM is measuring the concentration, mass and extent of DM halos
on different scales. There is compelling evidence for dark matter in galaxyclusters. Already
in 1933,Zwicky concluded by means of the virial theorem that most of the mass in the Coma
cluster is invisible. More recent studies using X-ray measurements (e.g. Schindler et al., 1999)
and gravitational lensing (e.g. Mellier et al., 1993; Bartelmann, 1995) confirm these results.

On galactic scales, dark matter was first found in spiral galaxies. The mostdirect method
to estimate the distribution of mass in spiral galaxies is provided by their circular-speed curves
vc(R), which allow to deduce the mass inside radiusR via

v2
c (R) ∝ M(R)

R
. (1.12)

Rotation curves can be measured optically from emission lines in HII (e.g. Burstein et al., 1982;
Rubin, 1985; Kent, 1986), or from the21-cm emission line of HI (e.g. van Albada et al., 1985;
Begemann, 1987), which allows to measure the rotation curves out to radii, containing all but a
negligible fraction of the total luminosity of a spiral galaxy.

These studies revealed that the rotation curves of spiral galaxies are flat out to the last mea-
sured data points and hence provide the most direct evidence for dark matter in these systems.

The search for dark matter in elliptical galaxies is more difficult due to the lack of a simple
mass tracer such as HI, and due to their complex orbital structure (cf. section1.8).

1.7 Measuring the kinematics of elliptical galaxies

Kinematic information about elliptical galaxies can be obtained from the integrated spectrum,
which is the sum of all the individual stellar spectra along the line-of-sight, each Doppler-shifted
in wavelength according to the velocity of the star. The random motions of the stars cause the
lines in the integrated spectrum to be broadened. Thus, the absorption linescontain information
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about the line-of-sight velocity distribution (LOSVD) of the stars. To firstorder, the line profile
can by described by a Gaussian, characterized by a mean velocity equalto the bulk motion
of the stars (rotation) and a width equal to the velocity dispersion of the stars. High-quality
CCD spectra with high signal-to-noise ratio and high spectral resolution allowto extract the full
LOSVD (e.g. Franx and Illingworth, 1988; Bender, 1990; Kuijken and Merrifield, 1993). The
LOSVD can be described by a truncated Gauss-Hermite series (van der Marel and Franx, 1993;
Gerhard, 1993):

L ∝ exp(−w2/2)

[
1 +

n∑

k=3

hkHk(w)

]
, (1.13)

wherew = (vlos − v)/σ andv andσ describe the underlying Gaussian. Herehk are the Gauss-
Hermite coefficients andHk(w) are the Hermite polynomials. The odd and even Gauss-Hermite
coefficients measure asymmetric and symmetric deviations from a Gaussian, respectively. For
example,h3 < 0 characterizes a LOSVD with a prograde wing steeper than the retrogradeone
andh4 < 0 corresponds to a flat-topped LOSVD.

The steeply decreasing surface brightness profiles of ellipticals make it difficult to measure
stellar kinematics at large radii. Hence, absorption line measurements are confined to within
approximately two effective radii.

Studies of the velocity profile shapes (Bender et al., 1994a) have revealed that the rotation
velocity often increases within the central few arcsec and then flattens out.The velocity dis-
persion profiles either remain flat or fall in the outer parts. In general, rotating galaxies have
flat-topped, asymmetric LOSVDs withh3 < 0. The degree of asymmetry correlates withv/σ,
so that disky ellipticals have more asymmetric velocity profiles than the boxy ones.

The recent development of integral-filed spectrographs, such as the SAURON instrument
(cf. Bacon et al., 2001), provide two-dimensional kinematic information out to approximately
one effective radius. However, measuring stellar kinematics at larger distances from the galaxy
center remains difficult.

Other dynamical tracers such as globular clusters and planetary nebulaeoffer an alternative
to measure the kinematics at large radii. For most galaxies within a distance of≈ 20 Mpc,
globular cluster velocities can be measured and have been used to study theouter halo of ellip-
ticals (e.g. Pierce et al., 2006), but the modest numbers that have been observed today make it
difficult to rule out constant mass-to-light ratios.

Planetary nebulae (PNe) are stars at the end of their lives. They have exhausted their nuclear
fuel and have ejected their outer envelope. The core’s intense ultraviolet radiation ionizes the
ejected envelope, which emits in bright emission lines, of which the[OIII]λ5007 line is the
most prominent one. By searching for objects emitting in this line, PNe can be detected at
distances up to100 Mpc and can be found even between galaxies in the intra cluster light (e.g.
Gerhard et al., 2007). Once the PNe are identified, their line-of-sight velocities can be obtained
from the Doppler shift of the narrow emission line.

PNe have been used to study the kinematics of elliptical galaxies at large radiiout to≈ 5Re

(e.g. Ciardullo et al., 1993; Arnaboldi et al., 1998; Douglas et al., 2002; Romanowsky et al.,
2003; Douglas et al., 2007), where the dark matter is expected to dominate. Different tech-
niques are in use to study PNe kinematics.Méndez et al.(2001) used a dispersed-undispersed
imaging technique to measure the PNe velocities in NGC 4697. The Planetary Nebulae Spectro-
graph (PN.S) utilizes counterdispersed imaging in conjunction with two spectrographic cameras
(Douglas et al., 2002) providing an efficient tool to measure the PNe kinematics up to25 Mpc.
The primary purpose of the PN.S instrument is to study the dynamics of a sample of ordinary
early-type galaxies.

The PN population in elliptical galaxies is expected to arise from the underlyinggalactic
population of old stars and hence the PNe can be used as kinematic tracers for the stellar distri-
bution. This seems to be true in general except in one case:Sambhus et al.(2006) analyzed the
correlations between the magnitudes, velocities and positions of a sample of PNe belonging to
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NGC 4697 and found kinematic evidence for more than one PN sub-population. In addition to
the main PN population, they found evidence for a population of preferablybright PNe which
appeared to be not in dynamical equilibrium in the galactic potential.

1.8 Evidence for dark matter in elliptical galaxies

Estimates of the total gravitating mass in ellipticals is in principle offered through various chan-
nels. Among them are studies of the kinematics of occasional cold gas disks,the X-ray emitting
hot gas, gravitational lensing and stellar dynamical modelling.

Constraints on the dark matter halo from extended HI rings are only availablein a few cases
(e.g. Franx et al., 1994; Oosterloo et al., 2002). For example,Oosterloo et al.(2002) find that
in NGC 3108 the HI rotation curve remains flat out to 6Re consistent with a mass-to-light ratio
M/L ∼ 18, which implies that a significant amount of dark matter is present at large radii.

A significant fraction of elliptical galaxies, especially giant ones, contain hot X-ray emit-
ting gas atmospheres. From measuring the X-ray luminosity and spectrum, the spatial den-
sity and the temperature of the hot gas can be inferred, and allows to estimate the total mass
assuming the gas is in hydrostatic equilibrium. These studies indicate that dark matter ha-
los are common in elliptical galaxies and almost follow the NFW profile (e.g. Awaki et al.,
1994; Loewenstein and White, 1999; Humphrey et al., 2006; Fukazawa et al., 2006). The dark
matter contribution insideRe is about20 percent and up to40 − 80 percent at5 − 6 Re.
Gravitational lensing studies reveal similar dark matter fractions (e.g. Griffiths et al., 1996;
Treu and Koopmans, 2004; Rusin and Kochanek, 2005).

In more ordinary ellipticals, mass estimates come from stellar dynamical studies, which
have been limited to withinR ∼< 2Re by the faintness of the galaxies’ outer surface brightness
(e.g. Kronawitter et al., 2000; Gerhard et al., 2001; Thomas et al., 2007). Two larger samples
consisting of roughly 20 apparently round, non-rotating galaxies have been analyzed in spheri-
cal approximation using spherical basis DFs (Kronawitter et al., 2000) and parameterized DFs
with constant anisotropy (Magorrian and Ballantyne, 2001). Thomas et al.(2007) analyzed 17
Coma early-type galaxies, consisting of flattened, rotating as well as non-rotating galaxies, with
axisymmetric Schwarzschild models (cf. Thomas et al., 2005). These three studies predict dark
matter fractions of∼ 10 − 50 percentage insideRe.

Cappellari et al.(2006) constructed self-consistent, axisymmetric Schwarzschild models for
a sample of 25 E/S0 galaxies with SAURON kinematics extending to∼ Re. A comparison of
their dynamicalM/L estimate with mass-to-light ratios derived from stellar population models
revealed a DM fraction of∼ 30 percentage insideRe.

In broad terms, the various methods using different dynamical traces agree with each other
and the general result is that elliptical galaxies are surrounded by darkmatter halos producing
nearly flat rotation curves, and the dark matter contributes contributes∼ 10 − 40% of the mass
within Re. The central dark matter concentrations are higher than in spiral galaxies. This
presumably reflects the earlier formation epoch (Gerhard et al., 2001; Thomas et al., 2007).

In the light of this, it is quite surprising that the derived PNe dispersion profiles in the
intermediate luminosity elliptical galaxies NGC 4697 (Méndez et al., 2001) and NGC 821, 3379
and 4494 (Romanowsky et al., 2003; Douglas et al., 2007) were found to decline significantly
with radius outsideRe.

Méndez et al.(2001) have fitted the PNe velocity dispersion profile of NGC 4697 using
a spherical, isotropicHernquist(1990) model, adopting a constant mass-to-light ratio. They
concluded that the PNe velocity dispersion profile is consistent with no DM inside 4.5Re, but
that DM can be present if the velocity distribution is anisotropic.Romanowsky et al.(2003)
analyzed the PNe velocity dispersion profiles of three intermediate luminosity ellipticals (NGC
3379, NGC 4494, NGC 821), measured with the special Planetary NebulaeSpectrograph (PN.S)
instruments, using spherically symmetric dynamical models allowing for orbital anisotropy.
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They concluded that the galaxies in their sample apparently have only diffuse halos.
Subsequently,Dekel et al.(2005) argued that the Keplerian declining PNe velocity dis-

persion profiles were compatible with their spiral merger simulations carried out within the
ΛCDM cosmology framework. They found that the merger remnants have very elongated orbits
at large radii and hence are radially anisotropic. They suggested that the well known mass-
anisotropy degeneracy (e.g. Binney and Mamon, 1982) allows for declining dispersion profiles
even when a standard DM halo is present. However,Douglas et al.(2007) pointed out that
Romanowsky et al.(2003) properly took into account orbital anisotropies in the data modelling
process. Douglas et al.(2007) reanalyzed the velocity dispersion profile of NGC 3379, the
strongest case ofRomanowsky et al.(2003), obtained from a larger PNe sample by means of a
spherical Jeans analysis. They argued that their result continues to conflict with the presence of
a standard dark matter halo as predicted by cosmological simulations.

Thus the important question remains whether these intermediate luminosity ellipticals differ
from most other galaxies in the way in which they formed, they did not acquirea dens massive
halo; or whether they are embedded in massive halos which are difficult to see in their unusual
kinematics.

1.9 Outline

The thesis is organized as follows.
In chapter2, theχ2-made-to-measure algorithm and its implementation in a parallel code

NMAGIC is presented. Various tests, employing spherical, oblate and triaxial target models, are
carried out to show its flexibility and performance. These tests illustrate the dependence of the
results fromχ2M2M on the initial model, the geometry, and the amount of available data.

Chapter3 presents the first application of NMAGIC to a real galaxy, the intermediate lu-
minosity elliptical NGC 4697, combining new surface brightness photometry, new as well as
published long-slit absorptionline kinematic data, and published PNe velocity data. The com-
bined kinematic data set extends out to∼ 4.5Re and allows to probe the galaxy’s outer halo.

NMAGIC is extended to include seeing effects, an efficient scheme to estimatethe mass-to-
light ratio is introduced, and a maximum likelihood technique to account for discrete velocity
measurements is incorporated. Dynamical axisymmetric self-consistent modelsas well models
including various dark matter halos are constructed.

A detailed dynamical study of NGC 3379, combining ground based long slit spectroscopy,
integral-field data from the SAURON instrument, and PN.S data reaching to morethan seven
effective radii is the subject of chapter4, with main focus on the galaxy’s outer halo.

The photometric and combined kinematic data are fitted with spherical and axisymmetric
models in a sequence of gravitational potentials whose circular velocity curves at large radii
vary between a near-Keplerian decline and the nearly flat shapes generated by massive halos.

The dynamical studies of NGC 4697 and NGC 3379 show that their kinematic data are
consistent with models including quite massive and moderately massive halos, respectively.
Thus NGC 4697 and NGC 3379 may well have dark matter halos consistent withthe current
ΛCDM paradigm.

Finally, chapter5 gives a short summary and an outlook.
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NMAGIC: A χ
2-MADE-TO-MEASURE

ALGORITHM FOR MODELING OBSERVATIONAL

DATA

Flavio De Lorenzi, Victor P. Debattista, Ortwin Gerhard, Niranjan Sambhus
published inMNRAS, 2007, 376, 71

We describe a made-to-measure algorithm for constructingN -particle models of stellar systems
from observational data (χ2M2M), extending earlier ideas by Syer and Tremaine. The algorithm
properly accounts for observational errors, is flexible, and can be applied to various systems and
geometries. We implement this algorithm in a parallel code NMAGIC and carry out a sequence
of tests to illustrate its power and performance: (i) We reconstruct an isotropic Hernquist model
from density moments and projected kinematics and recover the correct differential energy dis-
tribution and intrinsic kinematics. (ii) We build a self-consistent oblate three-integral maximum
rotator model and compare how the distribution function is recovered from integral field and slit
kinematic data. (iii) We create a non-rotating and a figure rotating triaxial stellarparticle model,
reproduce the projected kinematics of the figure rotating system by a non-rotating system of
the same intrinsic shape, and illustrate the signature of pattern rotation in this model. From
these tests we comment on the dependence of the results fromχ2M2M on the initial model, the
geometry, and the amount of available data.

2.1 Introduction

Understanding the structure and dynamics of galaxies requires knowledge of the total gravita-
tional potential and the distribution of stellar orbits. Due to projection effects the orbital struc-
ture is not directly given by observations. In equilibrium stellar systems, thephase-space dis-
tribution function (DF) fully determines the state of the galaxy. Dynamical modelsof observed
galaxies attempt to recover their DF and total (i.e. due to visible and dark matter) gravitational
potential consistent with the observational data. Several methods to tackle this problem exist.
Jean’s theorem (e.g. Binney and Tremaine 1987) requires that the DF depends on the phase-
space coordinates only through the integrals of motion. If these integrals can be expressed or
approximated in terms of analytic functions, one can parametrize the DF explicitly. This ap-
proach has been applied to spherical or other integrable systems (e.g.Dejonghe 1984, Dejonghe
1986; Bishop 1987; Dejonghe and de Zeeuw 1988; Gerhard 1991; Hunter and de Zeeuw 1992;
Carollo et al. 1995, Kronawitter et al. 2000); nearly integrable potentials where perturbation the-
ory can be used (e.g.Saaf 1968; Dehnen and Gerhard 1993, Matthias and Gerhard 1999) and to
axisymmetric models assuming that the DF is a function of energyE and angular momentum
Lz only ( Hunter and Qian 1993; Dehnen and Gerhard 1994; Kuijken 1995; Qian et al. 1995;

11
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Magorrian 1995; Merritt 1996). However there is no physical reason why the DF should only
depend on the classical integrals and most orbits in axisymmetric systems have an approximate
third integral of motion, which is not known in general (Ollongren, 1962).

Schwarzschild(1979) developed a technique for numerically building self-consistent mod-
els of galaxies, without explicit knowledge of the integrals of motion. In this method, a li-
brary of orbits is computed and orbits are then superposed with positive definite weights to
reproduce observed photometry and kinematics. The Schwarzschild methodhas been used
to model stellar systems for measurements of global mass-to-light ratios, internal kinematics
and the masses of central supermassive black holes (e.g. Rix et al. 1997; Cretton et al. 1999;
Romanowsky and Kochanek 2001; Cappellari et al. 2002; Verolme et al. 2002; Gebhardt et al.
2003; van de Ven et al. 2003; Valluri et al. 2004, Copin et al. 2004, Thomas et al. 2005). The
method is well-tested, and modern implementations are quite efficient. However, italso has
some draw-backs: symmetry assumptions are often made, and the potential must be chosen a
priori. Initial conditions for a representative orbit library have to be carefully chosen, which
becomes more complicated as the complexity of the potential’s phase space structure increases,
in terms of number of orbit families, resonances, chaotic and semi-chaotic regions. As a result,
most Schwarzschild models in the literature to date are axisymmetric.

Thus there is scope for exploring alternative approaches.Syer and Tremaine(1996, here-
after ST96) invented a particle-based algorithm for constructing models ofstellar systems. This
“made-to-measure” (M2M) method works by adjusting individually adaptableweights of the
particles as a function of time, until the model converges to the observationaldata. The first
practical application of the M2M method constructed a dynamical model of the Milky Way’s
barred bulge and disk (Bissantz et al., 2004) and was able to match the event timescale distribu-
tion of microlensing events towards the bulge. This chapter illustrates some of the promise that
lies in particle-based methods, in that it was relatively easy to model a rapidly rotating stellar
system. However, other important modeling aspects were not yet implemented,such as a proper
treatment of observational errors. The purpose of the present chapter is to show how this can be
done, and to describe and test our modifiedχ2M2M method designed for this purpose.

The chapter is organized as follows. In the Section2.2 we describe the M2M algorithm of
ST96. Then in Section2.3we extend the algorithm in order to include observational errors. We
also discuss how we include density and kinematic observables in the same model,and describe
the NMAGIC code, our parallel implementation of theχ2M2M method. In Section2.7 we
present the models we use to test this implementation, and the results of these testsfollow in
Section2.8. Finally, the chapter closes with the conclusions in Section2.9.

2.2 Syer & Tremaine’s Made-To-Measure Algorithm

The M2M algorithm is designed to build a particle model to match the observables of some tar-
get system. The algorithm works by varying the individually adaptable weights of the particles
moving in the global potential until the model minimizes deviations between its observables and
those of the target. An observable of a system characterized by a distribution functionf(z), is
defined as

Yj =

∫
Kj(z)f(z) d6z (2.1)

whereKj is a known kernel andz = (r,v) are phase-space coordinates. Examples of typical
observables include surface or volume densities and line-of-sight kinematics. The equivalent
observable of the particle model is given by

yj(t) =
N∑

i=1

wiKj [zi(t)] , (2.2)
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wherewi are the weights andzi are the phase-space coordinates of the particles,i = 1, · · · , N .
In the following, we use units and normalization such that

N∑

i=1

wi = 1, (2.3)

so that the equivalent masses of the particles aremi = wiM with M the total mass of the
system.

Given a set of observablesYj , j = 1, · · · , J , we want to construct a system ofN particles
i = 1, · · · , N orbiting in the potential, such that the observables of the system match those of
the target system. The heart of the algorithm is a prescription for changingparticle weights by
specifying the “force-of-change” (hereafter FOC):

dwi(t)

dt
= −εwi(t)

∑

j

Kj [zi(t)]

Zj
∆j(t). (2.4)

Here

∆j(t) =
yj(t)

Yj
− 1 (2.5)

measures the deviation between target and model observables. The constant ε is small and
positive and, to this point, theZj are arbitrary constants. The linear dependence of the FOC
for weightwi on wi itself ensures that the particle weights cannot become negative, and the
dependence on the kernelKj ensures that a mismatch in observablej only has influence of the
weight of particlei when that particle actually contributes to the observablej. The choice of∆
in terms of the ratio of the model and target observables makes the algorithm closely related to
Lucy’s (1974) method, in which one iteratively solves an integral equation for the distribution
underlying the process from observational data.

Since in typical applications the number of particles greatly exceeds the number of indepen-
dent constraints, the solutions of the set of differential equations (2.4) are under-determined,i.e.
the observables of the particle model can remain constant, even as the particle weights may still
be changing with time. To remove this ill-conditioning, ST96 maximize the function

F = µS − 1

2
χ2, (2.6)

with
χ2 =

∑

j

∆2
j (2.7)

and the entropy
S = −

∑

i

wi log(wi/ŵi) (2.8)

as a profit function. The{ŵi} are a predetermined set of weights, the so-called priors. Since

µ
∂S

∂wi
= −µ(log(wi/ŵi) + 1), (2.9)

if a particle weightwi < ŵi/e then equation (2.9) becomes positive while it is negative when
wi > ŵi/e. Therefore the entropy term pushes the particle weights to remain close to their
priors (more specifically, close tôwi/e). Equation (2.4) is now replaced by

dwi(t)

dt
= εwi(t)


µ ∂S

∂wi
(t) −

∑

j

Kj [zi(t)]

Yj
∆j(t)


 , (2.10)
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with Zj now fixed toYj by the requirement that equation (2.6) will be maximized, as discussed
in Section2.3. The constantµ governs the relative importance of the entropy term in equation
(2.10): Whenµ is large the{wi} will remain close to their priors{ŵi}. In the following, we
will generally setŵi = w0 = 1/N ; i.e., the particle distribution follows the initial model, but
this is not necessary.

To reduce temporal fluctuations, ST96 introduced temporal smoothing by substituting∆j(t)
in Equations (2.7) and (2.10) with

∆̃j(t) = α

∫
∞

0
∆j(t− τ)e−ατdτ, , (2.11)

which can be expressed in the form of the differential equation

d∆̃
dt

= α
(

∆ − ∆̃
)
. (2.12)

The smoothing time is1/α. The temporal smoothing suppresses fluctuations in the model ob-
servables and hence in the FOC correction of the particle weights – in the computation of these
quantities the effective number of particles is increased as each particle is effectively smeared
backwards in time along its orbit. The smoothing time should satisfy2ǫ < α to avoid excessive
temporal smoothing1, which slows down convergence.

2.3 χ
2-based Made-to-Measure Algorithm to Model Observational

Data

The M2M algorithm as originally formulated by ST96 is well adapted to modeling density fields
(e.g.Bissantz et al. 2004). It is not, however, well suited to mixed observables such as densities
and kinematics, where the various ratios of model to target observable cantake widely different
values, or to problems where observables can become zero, when∆ diverges. Moreover, the
χ2 defined as in equations (2.7,2.5) is not the usual one, but is given by the relative deviations
between model and data. Thus extremizingF (equation2.6) with thisχ2 does not produce the
best model given the observed data. We have therefore modified the M2Mmethod as described
in this section.

We begin by considering observational errors. We do this by replacing equation (2.5) by

∆j(t) =
yj − Yj

σ(Yj)
, (2.13)

whereσ(Yj) in the denominator is the error in the target observable. With this definition of∆j

equation (2.7) now measures the usual absoluteχ2. As a result of this, if we now maximize the
function of equation2.6with respect to thewi’s we obtain the condition

µ
∂S

∂wi
−
∑

j

Kji

σ(Yj)
∆j = 0. (2.14)

If we replace the FOC equation (2.10) by

dwi(t)

dt
= εwi(t)


µ ∂S

∂wi
−
∑

j

Kj [zi(t)]

σ(Yj)
∆j(t)


 (2.15)

then the particle weights will have converged onceF is maximized with respect to allwi, i.e.,
once the different terms in the bracket balance. For largeµ, the solutions of eqn.2.15will have
smooth weight distributions at the expense of a compromise in matchingχ2.

1This corrects the typo in equation (19) of ST96.
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In the absence of the entropy term, the solutions of eqs.2.15near convergence can be char-
acterized by an argument closely similar to that used by ST96 to study the solutions of their
eqs. (4). For smallε, the weightswi(t) change only over many orbits, so we can orbit-average
over periodstorb ≪ τ ≪ torb/ε and write the equations for the orbit-averaged< ∆j > as

d < ∆j(t) >

dt
= εAjk < ∆k(t) >, (2.16)

where the matrix A has components

Ajk = Σi
< Kji >< Kki >

σjσk
w0

i , (2.17)

and we have replacedwi(t) by the constantw0
i , because near convergence the dominant time-

dependence is in< ∆k > rather thanwi. The matrix A is symmetric by construction and
positive definite, i.e.,xt · A · x > 0 for all vectorsx; so all its eigenvalues are real and positive.
The solutions to eqs.2.16 then converge exponentially to< ∆j(t) >= 0. As for eqs. (4) of
ST96, this argument suggests that ifε is sufficiently small and we start close to the correct final
solution, then the model observables converge to their correct final values onO(ε−1) orbital
periods.

Substituting∆j in equation (2.11) leads to

∆̃j(t) =
ỹj(t) − Yj

σ(Yj)
, (2.18)

which allows us to temporally smooth model observables directly

ỹj(t) = α

∫
∞

0
yj(t− τ)e−ατdτ. (2.19)

In practice,ỹj can be computed using the equivalent differential equation, in the same manner
as before.

Since the uncertainty in any observable presumably never becomes zero,the ∆j in equa-
tion (2.13) remain well-defined even when the observables themselves take zero values. How-
ever, if the data enteringχ2 have widely different relative errors, the FOC equation may be
dominated by only a few of the∆j . This can slow down convergence of the other observables
and thus lead to noisy final models. Also, notice that the cost of deriving theFOC from minimiz-
ing χ2 is that equation (2.6) is maximized only if the observables are exactly of the form given
by equation (2.2), i.e. the kernelKij may depend on the particle’s phase-space coordinates but
must not depend on its weightwi.

We adopt the convention throughout this chapter in which the positivex-axis points in the
direction of the observer, so that a particle with velocityvx < 0 will be moving away from the
observer.

Our implementation of theχ2M2M algorithm models volume luminosity densities (equiv-
alent to luminous mass densities for constant mass-to-light ratio), and line-of-sight velocities.
As in the Schwarzschild method, dark matter, which generally has a different spatial distribu-
tion from the stars, can be included as an external potential, to be added to the potential from
the luminous particles. The form of the dark matter potential can be guided by cosmological
simulations, or also include information from gas velocities and other data.

2.4 Densities

For modeling the target distribution of stars one can use as observables thesurface density or
space density in various grids, or also some functional representations such as,e.g. , isophote
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fits, multi-Gaussian expansions, etc. In this chapter we have chosen to model a spherical har-
monics expansion of the three-dimensional density, where we expand the density in surface
harmonics computed on a 1-D radial mesh of radiirk. The expansion coefficients,Alm are
computed based on a cloud-in-cell scheme. The function

γCIC
k (r) =





r−rk−1

rk−rk−1
if r ∈ [rk−1, rk)

rk+1−r
rk+1−rk

if r ∈ [rk, rk+1]

0 otherwise,

gives the fractional contribution of the weightw of a particle at radiusr to shellk. The model
observable is then the mass on each shellk,

mk = M
∑

i

wiγ
CIC
k (ri) ≡M

∑

i

wiγ
CIC
ki . (2.20)

Comparing with equation (2.2), we recognize the kernel for this observable as

Kki = MγCIC
ki . (2.21)

Thus the FOC on a particle is computed by linear interpolation of the contributionsfrom the
adjacent shells. From equation (2.13), we obtain

∆k[m] =
mk −Mk

σ(Mk)
(2.22)

whereMk is the target mass on shellk andσ(Mk) its uncertainty.
The spherical harmonic coefficients for the particle model withl > 0 are computed via

alm,k = M
∑

i

γCIC
ki Y m

l (θi, ϕi)wi. (2.23)

Now the kernel is given by

Kji = MγCIC
ki Y m

l (θi, ϕi), j = {lm, k}, (2.24)

and depends on the spherical harmonics; the same variation also holds therefore for the FOC.
From equation (2.13), we obtain

∆j[alm] =
alm,k −Alm,k

σ(Alm,k)
, j = {lm, k}, (2.25)

with Alm,k as the target moments andσ(Alm,k) as their errors.a00,k andA00,k are of course
related to the mass on shellk via the relation

√
4πa00,k = mk, etc., but we will use the masses

on shellsmk,Mk as observables in the following.

2.5 Kinematics

Unlike for the density observables, we use kinematic observables computedin the plane of the
sky to compare with the target model. Since kinematic data can either come from restricted
spatial regions (e.g.slit spectra) or from integral fields, we do not specify any special geometry
for computing these observables.

The shape of the line-of-sight velocity distribution (LOSVD) can be expressed in a truncated
Gauss-Hermite series with coefficientshn, n = 1, · · · , nmax (van der Marel and Franx 1993;
Gerhard 1993). Since the kernel in equation (2.15) cannot depend on masses, this puts some
constraints on which observables can be used in the FOC. For kinematics, suitable observables
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are themass-weightedGauss-Hermite coefficients, which we use as follows. Particle weights
are assigned to a spatial cell,Cp, of the kinematic observable under consideration using the
selection function

δpi =

{
1 if (yi, zi) ∈ Cp

0 otherwise.

This selection function can be replaced appropriately if seeing conditions need to be taken into
account. In our present application this is not necessary. The mass-weighted kinematic moments
are computed as

bn,p ≡ mp hn,p = 2
√
πM

∑

i

δpiun(νpi)wi, (2.26)

νpi = (vx,i − Vp) /σp, (2.27)

and wheremp is the mass in cellCp, and the dimensionless Gauss-Hermite functions (Gerhard,
1993)

un(ν) =
(
2n+1πn!

)−1/2
Hn(ν) exp

(
−ν2/2

)
. (2.28)

Hn are the standard Hermite polynomials. For the mass-weighted higher order moments we
obtain the kernel

Kji = 2
√
πMδpiun(νpi), j = {n, p}. (2.29)

and as usual

∆j[mhn] =
bn,p −Bn,p

σ(Bn,p)
, j = {n, p}. (2.30)

The velocityVp and dispersionσp are not free parameters; rather we setVp andσp to the mean
line-of-sight velocity and velocity dispersion obtained from the best fitting Gaussian to the ob-
served (target) LOSVD. This impliesB1,p ≡ (mp h1,p)target = B2,p ≡ (mp h2,p)target = 0
for the first and second order mass-weighted target Gauss-Hermite coefficients. If the model
b1,p andb2,p both converge to zero, then the LOSVD of the particle model automatically has
the correct mean line-of-sight velocity and velocity dispersion. For describing the higher-order
structure of the LOSVD we include termsmhn (n = 1, · · · , 4) in the test modeling described
below.

2.6 Implementation: the NMAGIC parallel code

The routine for updating the particle weights includes three main steps: First, all the observables
used in the modeling process are computed as described above. Then we change the particle
weights in accordance with equation (2.15) by

wi,t+δt = wi,t + εwi,t


µ ∂S

∂wi
−
∑

j

Kj [zi,t]

σ(Yj)
∆̃j,t


 δt, (2.31)

with

∆̃j,t =
ỹj,t − Yj

σ(Yj)
. (2.32)

Finally, we update the temporally smoothed observables as follows:

ỹj,t+1 = ỹj,t + α(yj,t − ỹj,t)δt. (2.33)

Hereδt is the time between successiveχ2M2M steps. All the differential equations here are
ordinary differential equations of the formdyi(t)/dt = fi(t, y1, · · · , yN ), and theyi,n’s in
our case are the particle weightswi or time-smoothed observablesyi at tn. We integrate them
using a simple Euler methodyi,n+1 = yi,n + h f(tn, yi,n) with tn+1 = tn + h and time
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Figure 2.1: A high level flowchart describing NMAGIC. The mainχ2M2M algorithm is con-
tained in the dashed block, the remainder is an optional potential solver and code for moving
the particles, both of which are exchangeable. In our tests,χ2M2M is generally applied only
after a number of position/velocity updates.
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steph = δt. We could replace the Euler method by the second-order Runge-Kutta method
(cf. Press et al. 1992), which is more expensive and requires more memory. Since we are not
interested in the details of how the weights converge, but only in the final converged system, a
simple Euler method suffices for our purposes. We writeε in equation (2.31) asε = ε′ε′′ with
ε′′ = 10/maxi,j{Kji ∆̃j/σ(Yj)}. Thusε′′ times the last term in equation (2.15) is of order
unity and we choose2ε′ < α to avoid excessive temporal smoothing.

The NMAGIC (N-particleMade-to-measureAlGorithm mInimizing Chi squared) correc-
tion routine can be combined with a standardN -body code including a potential solver and time
integrator, or a fixed-potential routine and integrator when the target is to be modeled in a given
gravitational potential. This last case is most similar to the Schwarzschild method.In most of
the tests below, we use a fixed potential expanded in spherical harmonics.

However, in test E we allow the potential to vary, as we evolve from one triaxial model to
another. For advancing the particles we use a standard leap frog time integrator with fixed time-
step. The time-step value chosen leads to fluctuations of energy and angular momentum with
amplitudes5 × 10−6 and2 × 10−5 around their initial values, without systematic drift, over 80
half mass dynamical times in the fixed potential case.

For test E, which models a triaxial system, a simple spherical harmonic expansion suffices
for solving for the potential. We follow the method described bySellwood(2003): we tabulate
coefficients of a spherical harmonic expansion of the density on a 1-D radial grid but retain
the exact angular dependence up to some adoptedlmax, the maximum order of the spherical
harmonic expansion. We include terms up tolmax = 4 in this experiment. Particles are binned
on the radial grid using the scheme described bySellwood(2003). This then gives the forces
on the grid, from which we interpolate back to a particle’s position for the gravitational forces.
Test E involves a cuspy model; in order to properly resolve this we use a radial grid at radii
rξ = eγξ − 1 with γ = ln(rmax + 1)/ξmax; we useξmax = 301 for 301 shells andrmax = 40.

NMAGIC is written in Fortran 90 and parallelized with the MPI library. We distributetheN
particles as nearly evenly as possible overNp processors. Parallelizing in only the observables
would not scale well with largeNp, because of the different nature of the observables, and would
require a large memory on each processor whenN is large. In Figure2.1we present a high level
flowchart of the operational logic of NMAGIC.

In order to test the scaling withNp of NMAGIC we consideredN = 1.8×106 andNo = 816
observables (640 density and 176 kinematic) withNp varying from 1 to 120. These values of
Np andNo are adequate for the experiments presented here and are used in test C of Table
2.1. Since we are only interested in the scaling of theχ2M2M parallelization withNp, we
only execute theχ2M2M 50 times, without recomputing the potential or advancing particles. In
Figure2.2 we present these scaling results as time per step (left hand axis, plus symbols) and
steps per unit time (right hand axis, open squares) as functions ofNp. We generally find that
our implementation ofχ2M2M scales very well withNp. Defining the speedupS(Np, N) as

S(Np, N) =
T (1, N)

T (Np, N)
(2.34)

whereT (Np, N) is the time for computingN particles onNp processors, we fit a standard
Amdahl’s law (Amdahl, 1967)

S(Np, N) =
1

f + (1 − f)/Np
, (2.35)

in order to determine the fraction of sequential code,f . We obtained thatf ≃ 0.010, i.e. the
sequential part of the code accounts for only1%.
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Figure 2.2: The performance of our implementation ofχ2M2M. We used1.8 × 106 particles
without potential calculations or particle motion. On the left hand axis we label timeper step
required, with the corresponding data indicated by plus symbols, while on theright hand axis
we label steps per unit time, with the corresponding data now shown by opensquares. Note that
the scale is logarithmic on the left and linear on the right. The fraction of sequential code,f ,
from these data was computed at∼ 1%.
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2.7 Target Models and Their Observables

We will test the NMAGIC code on spherical, axisymmetric, and triaxial target models. The
spherical target is a particle model constructed from the analytic density and distribution func-
tion of an isotropic Hernquist sphere. As oblate target we take a maximally rotating three-
integral model. Finally, we construct both a stationary and a rotating triaxial target system. We
use the NMAGIC code itself to generate a dynamical equilibrium structure forthese models. It
will be seen that theχ2M2M method provides a very useful means to set up dynamical equi-
librium models of galaxies for which no analytic distribution functions are known, in order to
study the properties of such systems.

In the following subsections, we describe in turn each of these targets andtheir construction.
We determine the target observables obtained from these models, and describe how we obtain
errors for these observables. These will be needed in Section2.8 where we present the results
of buildingχ2M2M models to match these targets. The reader who is mainly interested in these
tests of NMAGIC can in a first reading directly go to that section.

2.7.1 Spherical Target

Our first target is a spherical isotropic Hernquist (Hernquist, 1990) model, which we will refer
to as target SIH. Its density and potential are given by

̺(r) =
aM

2πr(r + a)3
, ϕ(r) = − GM

r + a
, (2.36)

wherea is the scale length,M is the total mass, andG is the gravitational constant. The
projected effective (half-mass) radius equalsReff ≈ 1.8153a. We use units such thatM = a =
1. The target massMk on shellrk is given by the sum of the contributions of the adjacent shells,

Mk = 4π

∫
̺(r)γCIC

k (r)r2dr. (2.37)

The innermost (outermost) shell is an exception because only the layer immediately exterior
(interior) contributes.

We construct SIH models on a radial grid with 40 shells, quasi-logarithmically spaced in
radius with inner and outer boundaries atrmin = 5 × 10−4 andrmax = 20. The distribution
function is truncated atEmax ≡ φ(rmax). At that truncation, the mass included is

Mtrun =

∫ Emax=ϕ(rmax)

Emin=ϕ(0)

dM

dE
dE, (2.38)

with (dM/dE) the differential energy distribution (e.g. Binney and Tremaine 1987) and thus
Mtrun = 0.86. Figure2.3 compares the mass on shells (hereafter “mass profile”)MP (rk)
for a particle realization of this truncated distribution function (constructed using the method
described inDebattista and Sellwood 2000), with theMk from the Hernquist density profile
as in equation (2.37). For small radii the mass profiles match but for larger radiiMP (rk) is
significantly smaller thanMk due to the finite extent of the particle realization, consisting only
of particles withE < Emax = ϕ(rmax). UsingMk as target observables would increase the
mass of particles on the outer (near) circular orbits and would therefore increase the tangential
velocity dispersion. We will thus use theMP (rk) as targets and omit the subscriptP in the
following. We also include zero-valued higher order mass moments to enforce sphericity.

We assume Poisson errors for the radial mass:σ(Mj) =
√
MjMtrun/N where N is the

total number of particles used in the particle model. For the errors in the higherorder mass
moments, we use Monte-Carlo experiments in which we generate particle realizations of the
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Figure 2.3: The mass in shells profile computed from equation (2.36) is shown as the solid line,
whereas the dashed line illustrates the mass profile computed from a spherical Hernquist particle
model generated from a truncated DF.

density field of the target model using1.8 × 106 particles, which is the same number as in the
χ2M2M models.

Kinematics of the target can be computed from a DF. We use the isotropic DF (Hernquist
1990, Carollo et al. 1995)

f(E) ∝ 1

(1 − q2)5/2

(
3 arcsin(q) + q(1 − q2)1/2

× (1 − 2q2)(8q4 − 8q2 − 3)
)

(2.39)

with q =
√

−aE/GM , andE is the energy. We determine kinematic observables of the target
on a projected radial grid with 30 shells, quasi-logarithmically spaced in radius and bounded
by Rmin = 0 andRmax = 10 = 5.51Reff . On the shell midpoints we compute theh2 and
h4 moments of the isotropic Hernquist model from the DF of equation (2.39). We will use
integral field-like kinematic data to recover the spherical targets in Section2.8. More pre-
cisely, we multiply theh2,k and h4,k moments by the projected mass of the truncated SIH
model within each radial grid shell to obtain the mass-weighted higher order momentsMk h2,k

andMk h4,k, which we use as the target observables. While this procedure is not perfectly
self-consistent, because the moments are from the infinite extent analytic DF while the mass
is from the truncated DF, the differences are very small. The main advantage of doing this is
that it allows us to compute the uncertainties in these kinematic observables, which we assume
σ(Mkhn,k) = σ(hn)Mc

√
Mk/Mc with σ(hn) = 0.005,Mk the target mass in shellk, andMc

the mass in the central grid shell.
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Figure 2.4: The upper panel shows the mass profile computed from equation (2.40) for q = 0.6
(solid line) and from a Hernquist particle model made from a DF and squeezed along thez-axis
(dashed line). The lower panel is the same but forA20.

2.7.2 An Oblate Three-Integral Target made with NMAGIC

Our oblate target model has density

̺(m) =
aM

2πqm(m+ a)3
(2.40)

whereM and a are total mass and scale radius, andm2 = R2 + (z/q)2 with q being the
flattening. This density belongs to the family of flattenedγ models (Dehnen and Gerhard, 1994),
with γ = 1. We compute the gravitational potential from (cf. Binney and Tremaine 1987,
section 2.3)

ϕ(R, z) = −GM
2a

∫
∞

0

ψ̃(m̃)dτ

(1 + τ)
√
τ + q2

(2.41)

with

m̃ =

√
R2

τ + 1
+

z2

τ + q2
, (2.42)

ψ̃(m) = 1 − m2 + 2am

(m+ a)2
. (2.43)

by numerical integration, and tabulate it using a coarse and a fine linear grid inthe meridional
(R− z) plane. The coarse grid extends toR = z = 30a with 500× 500 grid points. To increase
the resolution at smallR andz we replace the20× 20 “innermost” grid cells at(R, z) = (0, 0)
to (1.2a, 1.2a) by a finer grid also consisting of500 × 500 grid points.

In our experiments, we view the model edge-on along thex-axis as line-of-sight. Our targets
are the mass momentsAlm,k of the three-dimensional densityρ, and – for these oblate models
– the kinematic momentsm hn, n = 1, ..., 4. We define an effective radiusReff ≈ 1.8153a
which is equal to that of the spherical Hernquist model. We setM = a = 1 andq = 0.6. The
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Figure 2.5: Kinematic major and minor axis slits for the oblate models, with the cells along each
slit indicated. The ellipse corresponds to oneReff of the equivalent Hernquist model squeezed
by 0.6 in thez direction.

target mass momentsAlm,k on shellrk are given by the sum of the contributions of the adjacent
shells and are computed through

Alm,k =

∫
Ylm(θ, φ)̺(x)γCIC

k (r)d3x. (2.44)

The innermost (outermost) shell is an exception because only the layer immediately exterior
(interior) contributes. The setup of the radial grid is identical to that used for the spherical
model and for our tests below we useMk,A20,k,A22,k, · · · ,A66,k.

Figure2.4comparesMk andA20,k computed from equation (2.40) withMP (rk) andAP,20(rk)
obtained from a spherical Hernquist particle realization built from a DF and squeezed along the
z-axis byq = 0.6. As in Figure2.3,MP (rk) andAP,20(rk) matchMk andA20,k within r ∼< 5a
but then approach zero at larger radii towardsrmax. This difference is again due to the finite
extent of the particle model. Below we therefore use the radial mass profileMP and the higher
mass momentsAP,lm as targets, and again we omit the subscriptP in the following.

We assume errors in the target mass profileσ(Mj) as for the spherical model. For the
errors in the higher order mass moments, we use Monte-Carlo experiments in which particle
realizations of the density field of the target model are generated using5× 105 particles, which
is the same number as in theχ2M2M models.

In our oblate models we attempt to recover the target system from both slit andintegral
field kinematic data. Thus as kinematic target observables we use the projected mass-weighted
Gauss-Hermite moments along the major and minor axes in Test C, and on a grid of30 ×
20 points covering positions on the sky in[−3.6, 3.6] × [−1.8, 1.8] in Test D. A schematic
representation of the slit setup is shown in Figure2.5. The slits extend out to about2Reff ≃ 3.6.

The target kinematics are determined from a4× 106 particle representation of a maximally
rotating three-integral model for the density distribution of equation (2.40) with q = 0.6. This
is constructed by first evolving an isotropic spherical Hernquist model tothe desired shape,
usingχ2M2M, and then switching the in-plane velocity vectors of all particles with positive
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Figure 2.6: Target mass andA20 profiles for the triaxial models. The solid line shows target T54
while the dashed line shows target T53.

angular momentumJz to negativeJz, leading to a DF which is still a valid solution of the
Boltzmann equation (Lynden-Bell, 1960). For each slit or integral field cellp we obtain the
mass in that cellMp and the mass-weighted Gauss-Hermite momentsMp h1,p, · · · , Mp h4,p.
We assume errors for the mass-weighted Gauss-Hermite coefficients as for the spherical model:
σ(Mphn,p) = σ(hn)Mc

√
Mp/Mc, whereMp is the mass in slit cellp, computed by Monte-

Carlo integration. In this case, we setσ(hn) = 0.005 (0.003) for the central slit (integral field
grid) cellmc to approximate realistic errors.

2.7.3 Making Triaxial Models with NMAGIC

In the tests below we also explore triaxial Hernquist target models with stellar densities

̺(s) =
Ma

2πx0z0s(s+ a)3
, (2.45)

whereM is the total mass,a the scale radius, ands =
√

(x/x0)2 + y2 + (z/z0)2. Herey
is the longest axis, and the parametersx0 andz0 are the axis ratios. As before, we use units
with M = a = 1 and we define the effective radius with reference to the spherical model,i.e.
Reff ≈ 1.815. We generate two targets with different triaxialities, characterized by the triaxiality
parameterT = (1 − x2

0)/(1 − z2
0) (Franx et al., 1991). The more triaxial target, hereafter T53,

hasx0 = 0.9 andz0 = 0.8 (T = 0.53) whereas the less triaxial target, hereafter T54, has
x0 = 0.85 andz0 = 0.7 (T = 0.54). In both cases the target is observed along its intermediate
(x-)axis.

Like our oblate target model, the triaxial models cannot be represented by aDF based on
the integrals of motion. We therefore construct them through particle realizations via a two step
process. Starting from a spherical Hernquist particle realization made from a DF as before,
we squeeze this along the x- and z-axes by factorsx0 andz0, respectively, and compute the
desired target density observablesMk and the higher order mass momentsA20,k, A22,k up to
A60,k using the same radial binning as in the spherical and oblate targets.Alm components
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Figure 2.7: Line-of-sight velocity field of the rotating triaxial particle model (RT54K) as seen
in the inertial frame. The co-rotation radius isRcor ≈ 10Reff . The FoV extends from−Reff to
Reff along each direction. Its lower edge is parallel to the major axis, the line-of-sight is parallel
to the intermediate axis. Notice the counter-rotation near the center.

with l > 6 are small and we omit them. The squeezing is rigid,i.e. without regard to the
internal motions. We repeat this 30 times, squeezing the spherical Hernquist model rigidly
along random orientations to the desired shapes. From these 30 particle representations of the
model we compute the means and oneσ variations around the mean for theAlm,k. The former
are taken as target density observables, the latter as their errors. The uncertainties on the radial
mass in shells profile are taken to beσ(Mk) =

√
MkMtrun/N as before. Figure2.6shows the

target mass andA20 profiles as functions of radius for T54 (solid line) and T53 (dashed line)as
well as their uncertainties.

After this first step, which only gives target density observables, we then useχ2M2M to
evolve a spherical Hernquist model to generate self-consistent triaxialparticle realizations of
T54 and T53. In addition we generate a slowly tumbling version of T54 with corotation radius
Rcor ≈ 10Reff , by applyingχ2M2M in the appropriately rotating frame. The final models now
have self-consistent kinematics; in order to distinguish them from the purelydensity targets
we refer to them as models T53K and T54K for the non-tumbling models and RT54K for the
tumbling model.

These final self-consistent models T54K and RT54K can now be used astargets in their own
right, and we can compute (observer frame) target kinematicsmphn,p from them. We compute
the kinematics of both T54K and RT54K on a12 × 12 grid extending from−Reff toReff . For
the uncertainties in the kinematic observables we adoptσ(mphn,p) = σ(hn)Mc

√
Mp/Mc with

σ(hn) = 0.005 the error inhn, Mp the mass in grid cellp, andMc the mass in the central grid
cell. TheMp’s were obtained directly from the particles. The velocity field of the target system
RT54K in the observer’s frame is shown in Figure2.7. This velocity field is characterized by
disk-like counter-rotation close to the mid-plane and near cylindrical rotationaway from the
plane. These kinematics for this slowly tumbling triaxial model represent a validdynamical
model, but are unlikely to be the unique dynamical solution for the model’s density distribution.
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TEST ICS TARGET ε′ ε′′ µ

A RP SIH 0.025 6.32 10−7 4.3 10−4

A2 RP SIH 0.025 1.32 10−6 4.3 102

A3 RP SIH 0.050 1.24 10−6 4.3 10−4

A4 RP SIH 0.100 6.80 10−7 4.3 10−4

B SIH-2 SIH 0.025 1.76 10−6 4.3 10−4

C ORIH O3I 0.05 3.94 10−7 0
D ORIH O3I 0.05 3.94 10−7 0
E T53K T54K 0.15 5.06 10−8 4.3 102

F T54K RT54K 0.15 3.77 10−8 4.3 102

Table 2.1: Tests of NMAGIC carried out in this chapter, with model names andparameters. For
all models, we have usedα = 2.1ε′.

2.8 Tests of NMAGIC

In this section we will use theχ2M2M algorithm to solve some modeling problems of increasing
dimensionality and complexity, starting with spherical systems and ending with rotating triaxial
models. The goal of these experiments is to investigate the convergence of the code, the quality
with which various data are modeled, and the degree to which known properties of the target
models can be recovered from their simulated data. We will see how these issues depend on the
initial model, geometry, and amount of data available.

Table2.1 lists all the experiments that we have carried out, including the target and the ini-
tial model identifications. We will refer to the finalχ2M2M models by the prefix ’F’ to the test
model name (e.g., FA for the final model of Test A). Generally, these finalmodels are obtained
in two steps. First we use only the target density observables in theχ2M2M algorithm, and
once these have converged, we add the kinematic observables. Finally, we integrate all orbits
for some time in the potential withoutχ2M2M corrections to test whether equilibrium has been
reached. Unless mentioned otherwise, we use1.8× 106 particles and set the entropy parameter
µ to a small (≪ 1) value; see the discussion in Section 5.1.1. In most experiments, the parti-
cle distribution is evolved in the fixed target potential (this is analogous to the Schwarzschild
modelling approach), but we include one test (model E) in which we also let the gravitational
potential evolve.

2.8.1 Spherical Models

Initial model and time-evolution

The aim of our first experiment, Test A, is to reproduce a spherical isotropic Hernquist (SIH)
model by a1.8× 106 particle model. We start by generating a Plummer model from its DF (e.g.
Binney and Tremaine 1987), using the method described inDebattista and Sellwood(2000).
The DF of the Plummer model is truncated atΦ(rmax), with rmax = 20, and has a scale length
b = 1 and unit total mass. We then relax these particles in the analytic Hernquist potential,
which is held fixed while the particle orbits are integrated. We refer to the resulting particle
distribution as initial model RP (relaxed Plummer).

Then withχ2M2M we first adjust the density distribution of model RP to that of the target
SIH, using as target observablesMk =

√
4πAt

00,k (equation2.37) andAt
lm,k = 0 for 1 <

l ≤ 6, 0 < m ≤ l (equation2.23) with Monte Carlo errors estimated as described in Section
2.7.1. After convergence the even kinematic moment observablesMkh2,k andMkh4,k are added
with errors given also in Section2.7.1. Finally the system is integrated for some time without
applying theχ2M2M corrections.

The second experiment B is identical to A except that instead of model RP weuse a second
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Figure 2.8: (a) Top: Time evolution ofχ2 in test A. (b) Bottom: Time evolution of a set of 100
particle weights in test A.w0 is the initial weight of the particles;w0 = 1/N . The time-interval
plotted includes a first phase of density adjustment (t ≤ 2250), a second phase of density and
kinematic adjustment (2250 < t ≤ 4500), and a final phase of free evolution during which the
weights do not change (t ≥ 4500). Time is in units where the dynamical time at the half-mass
radius is 6.0, and the dynamical time atrmax is 150.
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Figure 2.9: (a) Top: Radial mass andA20 profiles for the target model SIH and the final models
FA from Test A (solid line) and FB from Test B (dashed line). (b) Bottom: Kinematic profiles
mh2 andmh4, for the same models. – In all panels, the data points with errors correspond
to the SIH target, the solid line to the final particle model FA, and the dashed line tothe final
model FB. The error bars in the target mass distribution are not shown as they are smaller than
the symbol sizes. The absolute errors shown decrease outwards due tothe mass weighting; the
corresponding relative errors increase outwards.
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Figure 2.10: Histogram of the particle weights in the final FA model, obtained from Plummer
model initial conditions (solid line). The dashed line shows the histogram of particle weights
when spherical Hernquist ICs with scale lengtha = 1.4 were used (FB).w0 is the initial weight
of the particles;w0 = 1/N in all cases.

Hernquist model SIH-2 as initial conditions for NMAGIC. SIH-2 differs from the target model
SIH in that its radial scale lengtha = 1.4 instead ofa = 1.

Figure2.8a shows the time evolution ofχ2/No of the particle model A during and after
theχ2M2M evolution. ThroughoutNo refers to all the observables, density and kinematics,
regardless of whether they are being used in the FOC or not; thusNo is a constant. The time
evolution of a sample of 100 particle weights of the SIH particle model is presented in Figure
2.8b. From these figures one sees that the overallχ2/No decreases quickly at the beginning of
both phases (density adjustment only phase, and a density and kinematic observable adjustment
phase). However, particle weights keep evolving for significantly longertime-scales. For this
reason we integrate and adjust particle weights in both phases for relatively long times, about
15 dynamical times atrmax.

Convergence to the target observables for different initial conditions

The fit of the final particle models FA and FB to the observables is illustrated in Figure 2.9.
The top panel shows the radial mass andA20 coefficient, whereas the bottom panel shows the
kinematic targets and final model observables formh2 in the upper andmh4 in the lower
panel. As can also be seen from Fig.2.8, the final model fits the input data to within1σ. The
corresponding error bars are smaller than the crosses in the top panel of Fig. 2.9; see Fig.2.6for
an example. The same is true forA20 except when the target values are zero as in Fig.2.9. Error
bars for the mass observables are therefore not plotted in this and subsequent similar figures.

All model observables in Fig.2.9are temporally smoothed observables as in equation (2.19).
After some free evolution withχ2M2M turned off both models fit the target data within the
errors. The free evolution is necessary becauseχ2M2M pushes the model towards a perfect fit to
the observables, at the expense of continually changing particle weights.Deviations are largest
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in the outer parts where orbital time-scales are longest. Model FB, which had an initial particle
distribution closer to the target, is generally smoother and fits the data better, but differences are
within the errors. NMAGIC achieved satisfactory models even from the lessfavorable, cored
Plummer initial conditions.

Figure2.10compares the histogram of final particle weights of the FA and FB models, all
normalized by their initial weight. Model FA has a significant tail towards high weights, and a
peak at correspondingly lower particle weight such that the mean particle weight is the same as
for the more symmetric weight distribution of model FB. On average, the weightsof particles
in model FA had to change by more than those in model FB. We can quantify this by defining
aneffectiveparticle numberNeff characterizing mass fluctuations through

Neff ≡ N
w2

w2
, (2.46)

wherew andw2 are the mean and mean-square particle weights. This reduces toN for equal-
mass particles, to one when one particle dominates, and discards particles withnear-zero weights.
For the final models FA and FB the effective numbers of particles areNeff = 5.7 × 105 and
1.5 × 106, respectively, while for both modelsN = 1.8 × 106.

The origin of this difference between the two models can be seen from Figure 2.11a, which
plots the radial density profile of the target SIH (stars), the initial models RP and SIH-2, and the
temporally smoothed final models. We computed the densities using the identical radial grid as
was used for the mass targets. The density profile of the SIH target is well reproduced by the
final particle models FA and FB across more than a factor of 100 in radius. The largest relative
deviation in the densityδρ/ρ occurs at small radii and never reaches more than5%. In this
region, model RP has few particles and the large relative error is due to Poisson noise. Model
FB, which starts out closer to the target SIH fits better in this region.

Model RP is clearly significantly less dense than SIH insider ≃ 0.3a; it has a core whereas
the target profile is cuspy. Also, it has a steeper outer density profile thanthe target model.
To match model RP to SIH therefore requires NMAGIC to increase the particlemasses both in
the central regions and in the outer halo of the model. This causes the high-weight tail in the
distribution in Fig.2.10, as we verified by inspecting the positions of particles withwi > 2w0.

Figure 2.11b presents the differential energy distributions. The final particle model FA
matches the analytic differential energy distribution of the isotropic Hernquist model (equation
2.39) very well.

As a final test, Figure2.12a shows the intrinsic velocities (lower panel) and velocity disper-
sions (upper panel) of the analytic, untruncated DF and the finalχ2M2M model FA. The match
to the target kinematics is good and model FA is nearly isotropic, despite the fact that it has
evolved from an initial RP model that is moderately anisotropic. The anisotropy of the initial
model RP is shown in Figure2.12b which compares its intrinsic velocity dispersionsσr, σϕ and
σθ with the analyticσr of the SIH target model. The residual anisotropy in model FA is caused
by the relative absence of radial orbits resulting from truncating the DF.

Dependence onǫ′ and µ

In the tests described so far, we have usedǫ′ = 0.025 for the correction steps in the FOC. In gen-
eral, small values ofǫ′ result in a smooth evolution but slow convergence, whereas large values
of ǫ′ change the global model too rapidly to attain a properly phase-mixed stationary solution.
Thus generally we have foundǫ′ ∼< 0.1 to give good results. This is illustrated in Fig.2.13,
which shows that test A converges to essentially identical density distributions and differential
energy distributions for values of0.025 ≤ ǫ′ ≤ 0.1 (models FA, FA3, FA4). Only for the largest
valueǫ′ = 0.1 do we start seeing small deviations in the density profile of more than a few per-
cent from the target model. Also, the effective particle number [equation (2.46)] decreases from
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Figure 2.11: (a) Top: Radial density profiles in the spherical models. Uppermost panel: Density
profiles for the Hernquist target profile, SIH (stars), the final models FA (dashed line) and FB
(dash-dotted line), and their respective initial condition models RP and SIH-2 (dotted and dash-
triple-dotted lines). Middle panel: Relative deviation from the target density∆ρ/ρ, for the two
models FA and FB using the same line styles. (b) Bottom: Differential energy distributions.
The truncated analytic Hernquist DF used for target SIH is shown by the star symbols. The
dashed line corresponds to the finalχ2M2M model FA, and the dotted line indicates the relaxed
Plummer initial conditions RP.
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Figure 2.12: (a) Top: Internal kinematics of the final model FA. The upper panel showσr, σϕ

andσθ, the lower panel thevr, vϕ andvθ. The stars correspond to the analyticσr from the
untruncated DF. Model FA is very nearly isotropic and has negligible rotation, despite starting
from anisotropic initial conditions. (b) Bottom: Anisotropic internal kinematics of the initial
model RP. The dotted, dashed, and dash-dotted lines showσr, σϕ, andσθ of the RP particle
model. For comparison, the solid line corresponds to the analyticσr of the untruncated analytic
DF of the SIH target model.
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Figure 2.13: (a) Top: Radial density profiles for various spherical models constructed for the
Hernquist target profile, SIH. Upper panel: Density profiles for the target model (stars), the
model FA (dashed line) and several tests that differ from model FA by thevalues of the param-
etersε′ andµ (see Table 1). Middle panel: Relative deviation from the target density∆ρ/ρ, for
the same models. (b) Bottom: Differential energy distributions. Stars: targetmodel SIH. Lines:
same models as in top panel.
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Figure 2.14: Histogram of the particle weights in the final FA model, obtained from Plummer
model initial conditions (solid line). The other histograms show the particle weight distributions
for models FA2 (dashed), FA3(dash-dotted), and FA4 (dotted).w0 is the initial weight of the
particles;w0 = 1/N in all cases.

5.7 × 105 through3.3 × 105 to 1.0 × 105 for models FA, FA3, and FA4, respectively. Thus we
will generally useǫ′ < 0.1, but because the speed of convergence also depends on the number
and kind of observables used for the corrections, we have sometimes alsoincreasedǫ′ slightly.
Figure2.14shows the distributions of particle weights for these models. They develop larger
wings for larger values ofǫ′. Because particles weights are then changed by larger amounts, the
reshuffling is greater until convergence is reached.

In models FA and FB, we have also set the entropy parameterµ to a small (≪ 1) value,
which allows the NMAGIC code to concentrate on fitting the data. (Note that, because the
termKij ∆̃j/σ(Yj) in the FOC is large, evenµ = 1.0 leads to only a small contribution of the
entropy terms in the FOC). While the purpose of not settingµ to zero exactly originally was
to prevent overly large fluctuations in the particle weights, in fact, a test withµ = 0 has given
essentially identical results to the ones reported. Fig.2.13shows that also for model FA2 with
106 times larger entropy parameter than in model FA, the target density and differential energy
distribution are fitted equally well as before. Generally, the best value to use for the entropy
depends on the initial model, the data to be fitted, and the intrinsic structure of thetarget, and
it must be determined separately for each application. A more systematic investigation of the
effect of the entropy term is therefore deferred to the next chapter in which we will useχ2M2M
to model and determine mass-to-light ratio, anisotropy, etc., for a real galaxy.

2.8.2 Oblate Models

The task we set the algorithm here is a difficult one: starting from a non-rotating system, we see
whether we can recover the maximally rotating three-integral model described in Section2.7.2,
in which the weights of all counter-rotating particles should be zero. We perform two such
experiments, one using slit data as kinematic targets (Test C), the second using integral field
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Figure 2.15: The mass and massA20 profiles for the oblate models. The data points show the
target and the lines shows the converged models FC (dashed) and FD (full).

kinematic targets (Test D). As in the spherical experiments, we keep the potential fixed while
evolving the system withχ2M2M in runs C and D.

Both experiments start from an initial model which is constructed by relaxing aspherical
Hernquist particle model consisting of5 × 105 particles in the oblate potential. As in exper-
iments A and B, we then applyχ2M2M in 2 steps, first for the density alone, and when this
has converged, for both the density and kinematics. The density part of the runs is identical for
experiments C and D.

Figure2.15 plots the mass andA20 radial profiles of the target (error bars) and the final
χ2M2M models FC and FD. As in the spherical tests, the target density distributionis very well
fitted by theχ2M2M models.

The mass-weighted kinematics along the major and minor axes of model FC are shown in
Figure2.16, while Figure2.17show the as-observed kinematics of both models. The latter are
calculated by dividing the mass-weighted moments by the mass in the slit resp. gridcell, and
using the relationsv = vtarg−

√
2σtargh1 andσ = σtarg−

√
2σtargh2 (e.g., Rix et al. 1997). All

kinematic quantities for the reconstructed models are shown∆t = 500 (∼> 3 dynamical times at
rmax) after switching off theχ2M2M corrections. The fits are generally excellent except for the
higher order moments near the boundaries of the kinematic fit regions, where counter-rotating
particles with high energies still make significant contributions, because theirweights have not
yet been sufficiently reduced.

Figure2.18showing the weight distributions for both models FC and FD clearly illustrates
the stronger constraints placed on the model by the integral field data. In both models, the
NMAGIC code works at reducing the weights of the counter-rotating particles, but has clearly
gone a lot further in model FD.

Finally, in Figure2.19 we show the distribution of weights in the (E,Lz) plane for the
target model, initial relaxed model, and the two models FC and FD. The successof theχ2M2M
method in removing the counter-rotating particles amply present in the initial modelis apparent,
particularly for model FD. Of course, in applications aimed at obtaining a best-fit representation
of some galaxy kinematic data it would have been smart to start the iterations from an initial
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Figure 2.16: Mass-weighted higher order moments along the major and minor axes for the slit-
reconstructed oblate model FC. The target observables are shown as error bars, whereas the
model observables for model FC are indicated by the dashed lines, respectively. Kinematics
along the major axis are shown on the left and those along the minor axis on the right.
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Figure 2.17: Gaussian best fit velocity (top left), velocity dispersion (top right), Gauss-Hermite
momentsh3 (bottom left) andh4 (bottom right) along the major axis (left) and minor axis
(right), for the models with slit data targets (dashed line), integral field kinematic targets (full),
and the initial model (dotted). The error bars show the target kinematics.
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Figure 2.18: Distribution of particle weights in the final models FC (top) and FD (bottom).
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Figure 2.19: Particle weight distributions projected onto the (E,Lz) plane, for the maximally
rotating three-integral target (top left), the initial relaxed isotropic Hernquist model (top right),
and the two models reconstructed from density and slit kinematic targets (FC, bottom right) and
from density and integral field kinematics (bottom left).
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Figure 2.20: Mass andA20 profiles for experiment E. The dots show the target T54K and the
solid lines show FE.

model that is better adapted to the problem at hand.

2.8.3 Triaxial Models

Evolving the potential self-consistently

We illustrate NMAGIC’s capabilities with two very different triaxial model experiments. In
run E, we start with the self-consistent model T53K as initial conditions and use NMAGIC to
converge to target T54K. With this model, we test the full capabilities ofχ2M2M, which make
this technique more general than Schwarzschild’s method: in model E, we solve for the potential
as the system evolves and follow the model in its self-consistent potential throughout, akin to an
N -body experiment. For this purpose we use the spherical harmonic potential solver described
in Section2.3above and update the potential after every 25χ2M2M steps.

The resulting final model FE gives an excellent match to the density of the target model
T54K, as is apparent from comparing theMk andA20 profiles in Figure2.20. Figure2.21
shows the kinematics withinReff of the models T54K and FE. All mass-weighted kinematic
observablesmh1,..., mh4 of the final model match the target observables at better than one
σ over almost the entire FoV, except for a few isolated regions reaching twoσ. The random
location of these deviations imply that they are due only to Poisson noise in the target model,
the observables of which have not been temporally smoothed.

Rotating vs. non-rotating models

Test F is an interesting experiment in different ways. Starting from T54K,we use NMAGIC
to attempt to converge to the observables of the tumbling target model RT54K, witha triaxial
model which does not tumble but remains stationary relative to the observer.Thus this exper-
iment explores whether it is possible to identify a kinematic signature of slow figure rotation
in elliptical galaxies. Since the initial conditions possess neither rotation nor internal net stellar
streaming, if this model fails to converge it may well be because the problem admits no solution.
Because of this, test F is interesting in its own right, apart from as a validationof NMAGIC.
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Figure 2.21: The difference between kinematics in model T54K and model FE. The observables
of FE are the temporally smoothed mass-weighted moments while those of T54K arenot tem-
porally smoothed. The differences have been divided by the corresponding assumed errors. The
FoV extends from−Reff toReff along each direction.

In fact, NMAGIC was able to converge the mass-weighted kinematic moments to within
about oneσ of their target values; however, the residuals maps (Figure2.22) show spatially
correlated residuals inmh1. When we compare the global velocity field of model FF with that
of RT54K we find that the degree of cylindrical rotation around the tumbling axis (z-axis) is
higher in RT54K than it is in model FF (Figure2.23). Near the mid-plane, instead, the velocity
field of both models is very similar, including the counter-rotation seen near thecenter. We
can explore whether the residual differences are due to having assumed too large errors in the
mass-weighted moments by decreasing the errors by a factor of five. The corresponding final
model looks very similar to model FF but now with reducedχ2 > 4. Thus the difference is
likely intrinsic and can be used to recognize a tumbling galaxy. A more complete analysis of
this problem will be undertaken elsewhere (De Lorenzi et al. in progress).

2.9 Conclusions

We have presented a made-to-measure algorithm for constructing particle models of stellar sys-
tems from observational data, building on the made-to-measure method ofSyer and Tremaine
(1996, ST96). An important element of our new method is the use of the standardχ2 merit
function at the heart of the algorithm, in place of the relative error used byST96. The im-
proved algorithm, which we labelχ2M2M, allows us to assess the quality of a model for a set
of target data directly, using a statistically well-defined quantity (χ2). Moreover, this quantity is
well-defined and finite also when a target observable takes on zero values.

This property has enabled us to incorporate kinematic observables includinghigher-order
Gauss-Hermite moments into the force-of-change equation. Kinematic and density (or surface
density) observables can then be used simultaneously to correct the particle weights. The price
of changing toχ2M2M from the original formulation is that the kernels which project the par-
ticle weights and phase-space coordinates into model observables cannot themselves depend
on the particle weights. In general this is quite natural for (volume or surface) density observ-
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Figure 2.22: The difference between kinematics in target RT54K and modelFF. The observ-
ables are the mass-weighted higher order moments, and have been dividedby the corresponding
assumed errors. The kinematics of RT54K are instantaneous but those ofFF are time-averaged.
The FoV extends from−Reff toReff along each direction.

ables. For the kinematics this means that we need to use mass-weighted kinematic observables.
Nonetheless, this is not a significant limitation.

We have implemented theχ2M2M method in a fast, parallel code, NMAGIC. This code also
incorporates an optional but fast potential solver, allowing the potential tovary along with the
model density. Its implementation of theχ2M2M algorithm is highly efficient, with a sequential
fraction of only∼ 1%. This has allowed us to build various models with large numbers of
particles and based on many observables, and to run them for∼ 106 steps.

Then we have carried out a number of tests to illustrate the capabilities and performance of
NMAGIC, employing spherical, oblate and triaxial target models. The geometric flexibility by
itself is one of the main strengths of the method – no symmetry assumptions need to bemade.

In the spherical experiments NMAGIC converged to the correct isotropicmodel from anisotropic
initial conditions, demonstrating that a unique solution, if present, can be recovered. Both the
truncated distribution function and the intrinsic velocity dispersions were recovered correctly.
Two initial models with different density distributions were used in these experiments. While
both converged to the final isotropic model, that with density closer to the density of the final
model had smaller final deviations from the target observables, and a narrower distribution of
weights. In both experiments, the observables (density and integral field-like kinematics) each
converged in a few dynamical times at the outer boundarytd,o, whereas the particle weights kept
evolving for significantly longer,∼ 10td,o.

In the oblate experiments we gave the algorithm a difficult problem to solve. The target
system was a maximally rotating three-integral model in which the weights of all counter-
rotating particles were zero. Using density observables and either slit or integral field kine-
matics, NMAGIC was asked to recover this maximally rotating model starting from an isotropic
spherical system relaxed in the oblate potential. After about 100’000 correction steps, particle
weights on the counter-rotating side were reduced by a factor of∼ 50, the distribution of weights
approached that of the target, and a good fit to the kinematic constraint datawas achieved. Only
near the boundary of the kinematic data did particles on orbits further out, whose weights had
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Figure 2.23: Left: Line-of-sight velocity field of the final non-tumbling triaxial particle model
FF. Right: Difference of the line-of-sight velocity fields between the non-tumbling triaxial par-
ticle model FF and the tumbling target galaxy RT54K divided by the errors as described in the
text. We assume an error in the mean velocityσ(vj) =

√
2σ(h1)

√
mc/mjσj , where we as-

sumedσ(h1) = −
√

1/2σ(v)/σ (Rix et al., 1997). In both panels the FoV extends from−Reff

toReff along each direction.
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not yet converged, still cause some deviations from the target kinematics.These experiments
also clearly showed the advantage of integral field data over slit data for constraining the model.

Our triaxial experiments showed that it is possible to start from one triaxial model and con-
verge to another. We anticipate that this ability will be very useful in constructing models for the
triaxial elliptical galaxies with which nature confronts us. One of these triaxial experiments in-
cluded a potential update step every 25χ2M2M steps, demonstrating that including an evolving
potential is also practical.

In the final experiment, we first generated a particle model of a slowly tumblingtriaxial
system to use as a target. We then matched its volume density and line-of-sight kinematics with
a stationary model. We showed that the mass-weighted kinematic moments of the figure rotating
system was fitted to within oneσ by the non-rotating system out toReff . However the residuals
in the first order kinematic moment are correlated, which gives a clear signature of tumbling
which the non-tumbling model is not able to match, even when the assumed errors are decreased
by a significant factor. We thus conclude that, at least for this triaxial system, it is possible to
distinguish between internal stellar streaming and pattern rotation withinReff provided a full
velocity field is available. A more complete study of this problem will be presentedelsewhere.

This experiment also demonstrates the usefulness of theχ2M2M algorithm for modeling
mock (rather than real) galaxies in order to learn about their dynamics. We note that such an
experiment would not have been practical with standardN -body simulations.

Compared to the Schwarzschild method, the main advantages of theχ2M2M algorithm
as implemented in NMAGIC are that (i) stellar systems without symmetry restrictions can be
handled relatively easily, (ii) it avoids complicated procedures for sampling, binning, and storing
orbits, and (iii) the potential can be evolved self-consistently if needed. Inthe examples given, a
simple isotropic spherical model was evolved into a suitable initial model, which contained the
required wide range of orbital shapes. Everyχ2M2M model corresponds to a new set-up of a
complete orbit library in the Schwarzschild method; so in problems where the same orbit library
can be reused, Schwarzschild’s method will be faster. However, NMAGIC is highly parallel, so
suites of models with∼ 106 particles are feasible on a PC cluster.

There is clearly room for improving the current implementation of theχ2M2M algorithm,
and there is a need to study carefully the parameters that enter the algorithm, such as magnitude
and frequency of the correction steps, entropy, etc., which we will address in future work.

However, the different applications presented in this chapter show that the χ2M2M algo-
rithm is practical, reliable and can be applied to various dynamically relaxed systems. High
quality dynamical models of galaxies can be achieved which match targets to∼ 1σ for plau-
sible uncertainties in the observables, and without symmetry restrictions. We conclude that
χ2M2M holds great promise for unraveling the nature of galaxies.
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We present a dynamical study of NGC 4697, an almost edge-on, intermediate-luminosity,
E4 elliptical galaxy, combining new surface brightness photometry, new as well as published
long-slit absorption line kinematic data, and published planetary nebulae (PNe) velocity data.
The combined kinematic data set extends out to≃ 5′ ≃ 4.5Re and allows us to probe the
galaxy’s outer halo.

For the first time, we model such a dataset with the new and flexibleχ2-made-to-measure
particle code NMAGIC. We extend NMAGIC to include seeing effects, introduce an efficient
scheme to estimate the mass-to-light ratio, and incorporate a maximum likelihood technique to
account for discrete velocity measurements.

For modelling the PNe kinematics we use line-of-sight velocities and velocity dispersions
computed on two different spatial grids, and we also use the individual velocity measurements
with the likelihood method, in order to make sure that our results are not biasedby the way we
treat the PNe measurements.

We generate axisymmetric self-consistent models as well models including various dark
matter halos. These models fit all the kinematic data withχ2/N < 1, both in the case with
only luminous matter and in potentials including quite massive halos. There is a slight but not
yet statistically significant tendency that the massive halos fit the PN data better; to firm this
up would require PN velocities at even larger radii. Thus with the present kinematic data it is
not possible to determine the amount of dark matter in NGC 4697. The best fittingmodels are
slightly radially anisotropic; the anisotropy parameterβ =≃ 0.3 at the center, increasing to
β ≃ 0.5 at radii∼> 2Re.

3.1 Introduction

The presence of dark matter (DM) has long been inferred around spiral galaxies from their flat
rotation curves, and galaxies are now generally believed to be surrounded by extended dark
matter halos. Indeed, in the currentΛ-cold dark matter (ΛCDM) cosmology, galaxies form
within the potential wells of their halos. The standard picture for the formation of elliptical
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galaxies is through mergers of smaller units. Ellipticals should thus also be surrounded by dark
matter halos. Their halos are particularly interesting because ellipticals are among the oldest
galaxies and are found in the densest environments.

Unfortunately, mass measurements in elliptical galaxies have been difficult because of the
lack of a suitable ubiquitous tracer such as neutral hydrogen rotation curves in spirals. In giant
ellipticals, there is evidence for dark matter from gravitational lensing (e.g.Griffiths et al. 1996;
Treu and Koopmans 2004; Rusin and Kochanek 2005) and X-ray emission (e.g. Awaki et al.
1994; Loewenstein and White 1999 Humphrey et al. 2006). In more ordinary ellipticals, mass
estimates come from stellar dynamical studies, which have been limited by the faintness of the
galaxies’ outer surface brightness to radii less than two effective radiifrom the centre,R ∼< 2Re

(e.g. Kronawitter et al. 2000; Thomas et al. 2007). These studies suggest that the dark matter
contributes∼ 10 − 40% of the mass withinRe (Gerhard et al. 2001; Cappellari et al. 2006),
consistent with the lensing results.

The strong emission line at[OIII]λ5007 from planetary nebulae offers a promising tool to
overcome this limitation and to extend stellar kinematic studies to larger radii (Hui et al., 1995;
Tremblay et al., 1995; Arnaboldi et al., 1996, 1998). Also, in the less massive, X-ray faint el-
lipticals, PNe may be the primary tool for constraining the dynamics at large radii. Once the
PNe are identified, their line-of-sight velocities can be obtained from the Doppler shift of the
narrow emission line. Interestingly, the derived PNe dispersion profiles inthe elliptical galax-
ies NGC 4697 (Méndez et al., 2001) and NGC 821, 3379 and 4494 (Romanowsky et al., 2003;
Douglas et al., 2007) were found to decline significantly with radius outside1Re. Their spher-
ically symmetric dynamical analysis ledRomanowsky et al.(2003) to the conclusion that these
galaxies lack massive dark matter halos; however,Dekel et al.(2005) argued that the well known
mass-anisotropy degeneracy allows for declining dispersion profiles even when a standard DM
halo is present.

In the present chapter we focus on NGC 4697, a normal and almost edge-on E4 galaxy
located along the Virgo southern extension.Méndez et al.(2001) obtained a planetary neb-
ula luminosity function (PNLF) distance of10.5 ± 1 Mpc from magnitudes of531 PNe, and
Tonry et al.(2001) measured a surface brightness fluctuation (SBF) distance of11.7±0.1 Mpc.
This fairly isolated galaxy has a total B magnitudeBT = 10.14 and harbors a central super
massive black hole (SMBH) of mass1.2 × 108M⊙ (Pinkney et al., 2000). A Sersic law with
Re = 66 arcsec gives a good fit to the surface brightness profile out to about 4arcmin (see Sec-
tion 2). Based on the disky isophote shapesCarter(1987) andGoudfrooij et al.(1994) inferred
a stellar disk along the major axis. The contribution of the disk kinematics to the majoraxis
line-of-sight velocity distributions was estimated byScorza et al.(1998). X-ray observations
with ROSAT (Sansom et al., 2000) show a lack of large scale hot gas in the halo of this galaxy.
Using more recent Chandra data,Irwin et al. (2000) could resolve most of this emission into
non-uniformly distributed low mass X-ray binary (LMXB) point sources, suggesting that NGC
4697 is mostly devoid of interstellar gas and perhaps does not have substantial amounts of DM.

Dynamical axysimmetric models of NGC 4697 have been constructed byBinney et al.(1990)
andDejonghe et al.(1996), both based on photometry and absorption line kinematic data within
∼ 1Re. The data were consistent with a constant mass-to-light-ratio and none of these mod-
els showed evidence for dark matter.Méndez et al.(2001) obtained velocities for531 PNe
and derived a velocity dispersion profile out to approximately4.5Re. Assuming an isotropic
velocity distribution,Méndez et al.(2001) found that the PNe velocity dispersion profile is con-
sistent with no DM inside4.5Re, but that DM can be present if the velocity distribution is
anisotropic. This was also argued byDekel et al.(2005) to be the main cause of the finding by
Romanowsky et al.(2003), that their three intermediate luminosity galaxies lacked significant
dark matter halos (but seeDouglas et al., 2007). Contrary to these three galaxies, which are
nearly round on the sky, NGC 4697 is strongly flattened and likely to be nearly edge-on, thus
easier to model since shape degeneracies are much less severe.
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Figure 3.1: Comparison of the photometry of NGC 4697 with reprojected three-dimensional
luminosity models. The data points correspond to the observed photometry for NGC 4697 (for
the deprojection, thea4 anda6 values have been set to constants beyond≃ 3Re). The solid
line shows the edge-on deprojected model reprojected, the dashed line thei = 80◦ deprojected
model reprojected, and the dash-dotted line thei = 67◦ model. The panels show, from top to
bottom, surface brightnessµR, ellipticity ǫ and the isophotal shape parametersa4 anda6.

In the light of this, it is important enough to perform a further careful analysis of this galaxy.
In this chapter we construct dynamical models of NGC 4697 with the very flexible NMAGIC
particle code, making use of new and published slit kinematics and theMéndez et al.(2001) PN
data. The chapter is organized as follows. In Section3.2 we describe our new observational
data and all other data that are used for the dynamical models. In Section3.3 we give a brief
explanation of the NMAGIC modeling technique. We extend the method to include seeing
effects, introduce an efficient scheme to estimate the mass-to-light ratio, andshow how discrete
velocity measurements may be taken into account. In Section3.4we construct isotropic rotator
models to test and calibrate the method, preparing for the dynamical modeling ofNGC 4697
which is then performed in Section3.5. Finally, the chapter closes with our conclusions in
Section3.6.

3.2 Observational Data

In this section, we describe the observational data used in the present study, including new CCD
photometry and new long-slit absorption line kinematics. We also describe here the procedure
employed for the deprojection of the photometric data. In the following we adopt a distance
10.5 Mpc to NGC 4697 (Méndez et al., 2001).

3.2.1 Surface Photometry

The R-band data used in the present work were taken in April 2000 as part of the ESO Proposal
064.N-0030 (P.I. R.P. Saglia) at the Wide Field Imager on the ESO-MPIA2.2m telescope. Six
5 minutes, dithered exposures where taken in sub-arcsec seeing conditions. After the usual
data reduction procedures (performed using the IRAF task mscred), thedata were tabulated
as radial profiles of surface brightnessµ, ellipticity ǫ, position angle PA and Fourier shape
coefficients (Bender and Moellenhoff, 1987). The surface brightness was calibrated using the
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R band photometry ofPeletier et al.(1990). Systematic errors due to sky subtraction (µsky =
20.18 Rmag arcsec−2) are always smaller than 10%. Fig.B.1 shows the derived profiles and
TableB.1 gives them in tabular form. The isophotes of NGC 4697 do not show any appreciable
twist in PA and have a positivea4 coefficient in the galaxy’s inner parts, which is well-explained
by a near-edge-on embedded disk (Scorza and Bender, 1995). The galaxy has some dust in the
inner regions (Pinkney et al., 2003), but the R-band observations are relatively unaffected by it.
The outer isophotes are progressively slightly off-centered. A Sersicfit to the surface brightness
profile results in Sersic indexn = 3.5 and effective radiusRe = 66 arcsec. The older value of
95 arcsec fromBinney et al.(1990) was based on photometry reaching only 120 arcsec; thus we
useRe = 66 arcsec in the following. For a distance of10.5 Mpc this corresponds to3.36 kpc.

3.2.2 Deprojection

For our dynamical study, we will fit particle models to the deprojected luminosity density using
NMAGIC, cf. Section3.3. To obtain the luminosity density we need to deproject the sur-
face brightness. This inversion problem is unique only for spherical oredge-on axisymmetric
systems (Binney and Tremaine, 1987). For axisymmetric systems inclined at an anglei, the
Fourier slice theorem (Rybicki, 1987) shows that one can recover information about the density
only outside a “cone of ignorance” of opening angle90◦ − i. The deprojection of photome-
try for galaxies withi significantly less than90◦ can thus be significantly in error because of
undetermined konus densities (Gerhard and Binney, 1996; Kochanek and Rybicki, 1996).

Fortunately, NGC 4697 is seen almost edge-on and hence does not suffer from this ill-
condition. Dejonghe et al.(1996) observed a nuclear dust lane with a ring-like appearance,
elongated along the major axis of NGC 4697. Assuming that the ring is settled in theequatorial
plane, they estimated an inclination anglei = 78◦±5◦. Applying a disk-bulge decomposition to
the isophote shapes of the galaxy, and assuming a thin disk,Scorza and Bender(1995) derived
an inclinationi = 67◦. This was updated byScorza et al.(1998) to i = 70◦. Scorza and Bender
(1995) also estimated the velocity dispersionσd of the disk component from the major axis line-
of-sight velocity distributions. From their plots we estimateσd ≃ 95km s−1 at the half-mass
radius of the disk,rD ≃ 13”. Assuming that the vertical dispersion in the disk is comparable,
we can estimate the intrinsic flattening of the disk∝ σ2

d/v
2
c ≃ 0.2, using the measured rotation

velocity. A disk with intrinsic thicknessh/R ≃ 0.2 would give the same isophote distortions
for inclinationi ≃ 80◦ as a thin disk withi = 67 − 70◦, in agreement with the value found by
Dejonghe et al.(1996).

We have deprojected NGC 4697 for inclinationsi = 90◦, i = 80◦ andi = 67◦, using the
method and program ofMagorrian(1999). This algorithm uses a maximum penalized likelihood
method with a simulated annealing scheme to recover a smooth three-dimensional luminosity
density distribution which, when projected onto the sky-plane, has minimal deviations from the
observed SB. The three-dimensional luminosity density so obtained extendsbeyond the radial
range of the data, where the penalized likelihood scheme favours an outerpower-law density
profile. Figure3.1 compares the observed photometry with the three deprojected luminosity
models reprojected on the sky. In the range from0.2Re to 2Re thei = 67◦ deprojection yields
a significantly less good fit to the observeda4 anda6. Figure3.2 compares the radial run of
the isophotal shape parameters for thei = 80◦ andi = 67◦ luminosity models projected edge-
on, with the observed photometry of NGC 4697. Thei = 80◦ deprojection produces again
somewhat better results. It is also more physical because it allows for a finite thickness of the
inner disk of NGC 4697, as discussed above. Hence we will adopt it forthe dynamical study of
NGC 4697 to follow.
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Figure 3.2: Isophote parameter profiles for the NGC 4697 photometry compared with those of
the deprojected luminosity models shown in Figure3.1 but now as seen in edge-on projection.
NGC 4697 is coded as the solid line, whereas thei = 80◦ andi = 67◦ luminosity models are
presented by the dashed and the dash-dotted lines, respectively.

3.2.3 Kinematic Data

Stellar-absorption line data

Long slit absorption line kinematics within∼ Re have been reported, amongst other works,
by Binney et al.(1990) and Dejonghe et al.(1996). The Binney et al.(1990) kinematic data
(BDI data) consist of line-of-sight velocityv and velocity dispersionσ profiles along the ma-
jor axis, along slits10′′ and20′′ parallel to the major axis, along the minor axis, and along a
slit 22′′ parallel to the minor axis. They are derived using the Fourier Quotient (FQ) method
(Illingworth and Schechter, 1982). Dejonghe et al.(1996) have published furtherv andσ mea-
surements (DDVZ data) at various position angles, also measured with the FQmethod.

Along the major and minor axes we have derived additional line-of-sight velocity distri-
bution (LOSVD) kinematics from the high S/N integrated absorption line spectraobtained by
Méndez et al.(2005) with FORS2 at the VLT, a slit width of 1 arcsec and seeing1′′ − 1.′′5. We
refer to this paper for a description of the data acquisition and reduction. The LOSVDs were
measured using the Fourier Correlation Quotient (FCQ) method, as inBender et al.(1994b) and
Mehlert et al.(2000), and the K3III star HD132345 as a template. From these LOSVDs, profiles
of v, σ, h3 andh4, the Gauss-Hermite coefficients (Gerhard, 1993; van der Marel and Franx,
1993), were obtained; these are shown in Figure3.3. TablesB.1 andB.2 give the data in tabular
form. The statistical errors derived from Monte Carlo simulations are minute and much smaller
than the rms scatter observed between the two sides of the galaxy. These differences are partic-
ularly obvious along the major axis in the radial range 10-20 arcsec. As noted inMéndez et al.
(2005), in this region we detect patchy [OIII] emission that is affecting to some extent the kine-
matics. Judging from the asymmetries in the kinematics on both sides of the galaxy,we estimate
the residual systematic errors affecting the data, which amount to≈ 3 km/s inV , ≈ 3.5 km/s in
σ, ≈ 0.02 in h3 andh4.

In the following we discuss the comparison between the kinematic data derivedhere and the
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Figure 3.3: The kinematics along the major (left panel) and minor (right panel)axis of NGC
4697. The filled and starred symbols refer to the data folded along the axes.

Figure 3.4: Comparison between the different absorption line kinematics along the major (left
panel) and the minor (right panel) axis. Black: our data; red: BDI; blue:DDVZ; cyan: SB;
green: KZ; yellow: FI.
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kinematics published in the literature. Note that part of the differences seenbelow arise from the
different observational setups (along the major axis different slit widthsprobe different relative
amounts of the central disk structure present in the galaxy and related [OIII] emission regions)
and methods used. In particular, the FQ method fits Gaussian profiles to the LOSVDs, ignoring
the higher order Gauss-Hermite terms. In general the systematic effect onthe measured mean
velocity and velocity dispersion profiles is small (van der Marel et al., 1994). When applied
to our major axis data set, FQ gives systematically slightly smaller mean velocities andlarger
velocity dispersions.

In the inner 10 arcsec along the major axis we confirm the clear kinematic signature of
the central disk discussed byScorza and Bender(1995, SB) and agree well with their meanv
andσ derived also with the FCQ method and 1.8 arcsec slit width (see Figure3.4, left, cyan
points). Along the same axis we find good agreement withFried and Illingworth(1994) (FI,
yellow, derived using the FQ method and 1.1 arcsec slit width). Overall, the BDI data (Figure
3.4, red points, 2.6 arcsec slit width), agree well with our data, although at15′′ along the major
axis, the two data sets differ systematically. Theσ profiles of DDVZ (blue points, 0.7 arcsec slit
width) differ significantly in the sense that at small semi-major axis distances theDDVZ σ is
increasing with radius but ourσ is decreasing. Finally, the right panel of Figure3.4compares our
data along the minor axis with the data sets of BDI (red points) andKoprolin et al.(2000) (KZ,
green points, 2 arcsec slit width), who use the Fourier Fitting method ofvan der Marel and Franx
(1993). Both agree within their respective (larger) errorbars.

Based on the radial extent and quality of the different datasets, and taking into account the
discussion above, we have decided to use in the subsequent modeling onlyour data combined
with BDI. For our kinematic data, the errors inv andσ are∼< 0.5km s−1, which is small com-
pared to the scatter in the data. This suggests, as already discussed above, that systematic errors
dominate. For the modelling we have therefore replaced these errors with thesmallest errors in
v andσ of the BDI data along the major and minor axis, respectively (5−7km s−1). Similar ar-
guments hold forh3 andh4 and we set their errors to0.01. In addition, theh3 coefficients along
the minor axis scatter significantly around zero while the minor axis velocities areconsistent
with zero; thus we replace theseh3 values byh3 = 0.0.

Figure 3.5 gives a schematic view of the arrangement of the kinematic slits used in the
modelling process.

Planetary nebula velocities

Planetary nebulae (PNe) are dying stars that emit most of their light in a few narrow lines of
which the[OIII]λ5007 is the most prominent one. The PN population in elliptical galaxies is
expected to arise from the underlying galactic population of old stars and hence the PNe can be
used as kinematic tracers for the stellar distribution.Méndez et al.(2001) detected535 PNe in
NGC 4697 and were able to measure radial velocities for531 of these with a typical error of
40 km s−1.

Sambhus et al.(2006) analyzed the correlations between the magnitudes, velocities and po-
sitions of these531 PNe and found kinematic evidence for more than one PN sub-population
in NGC 4697. In addition to the main PN population, they found evidence for a population of
preferably bright PNe which appeared to be not in dynamical equilibrium inthe galactic po-
tential. To remove these possible kinematic contaminants, and to also ensure completeness
for R > Re (Méndez et al., 2001), we discard all PNe with magnitudes outside the range
26.2 < m(5007) ≤ 27.6. The positions and velocities of the remaining381 PNe are shown
in Figure3.6. In the following, we use a doubled sample of762 PNe for our analysis, obtained
by applying a point-symmetry reflection. Every PN with observed position coordinates(x, y)
on the sky and line-of-sight velocityvPN is reflected with respect to the center of the galaxy to
generate a new PN with coordinates(−x,−y,−vPN ). Such point-symmetric velocity fields are
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Figure 3.5: Schematic view of the slit setup used to construct the particle models.BDI slits are
shown in black and our slits are shown in red. The ellipse has a semi-major axisof lengthRe

and axis ratioq = 0.6.

expected for axisymmetric and non-rotating triaxial potentials. Moreover, this reflection will
help to further reduce any PN sub-population biases which might still be present.

We computev andσ on two slightly different spatial grids, subtracting40 km s−1 in quadra-
ture from all PN velocity dispersions to account for the measurement uncertainties (Méndez et al.,
2001). We use the spatial bins defined by the solid lines displayed in Figure3.6 to obtain data
set PND1, which is shown together with the models in Section3.5. The second data set, PND2,
is computed using the same grid but replacing the outermost ellipse by the dashed ellipse with
semi-major axisa = 280′′. This second grid is used to make sure that the dynamical models we
generate are not affected by the way we define the outermost bins.

3.3 NMAGIC models

In this section we give a brief introduction to NMAGIC and present a few extensions to the
method described inde Lorenzi et al.(2007). Syer and Tremaine(1996) invented a particle-
based method for constructing models of stellar systems. This “made-to-measure” (M2M)
method works by adjusting individual particle weights as the model evolves, until the N-particle
system reproduces a set of target constraints.de Lorenzi et al.(2007) improved the algorithm to
account for observational errors and to assess the quality of a model for a set of target data di-
rectly, using the standardχ2 statistics in the function to be maximized upon convergence of the
weights (χ2M2M). NMAGIC is a parallel implementation of the improvedχ2M2M algorithm.

3.3.1 Luminous and dark matter distribution

Luminous mass

We assume that the luminous mass distribution of NGC 4697 follows the deprojected luminosity
density. The mass density of the luminous matter is then given byρ⋆ = Υj, with mass-to-light
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Figure 3.6: The positions and velocities of the cleaned PN sample of381 PNe. The lines indicate
the different grids used for binning the PNe. Details are given in the text.

ratioΥ and luminosity densityj represented by the discrete ensemble of particles with positions
xi and luminositiesLi.

Dark halo potential

The prevailing cosmological paradigm predicts that galaxies have massive, extended dark matter
halos. Numerical cold dark matter (CDM) simulations reveal universal halodensity profiles with
steep central density cusps (e.g. Navarro et al., 1996; Moore et al., 1999). On the other hand,
observations of many dwarf and low-surface brightness galaxies find shallower inner density
cores (e.g. de Blok et al., 2003; McGaugh et al., 2007). Here our aim is not to determine the
detailed shape of the dark matter halo in NGC 4697, but rather to first see whether the PN
velocities allow or require any dark matter at all in this galaxy. To answer this question we
will investigate a one-dimensional sequence of potentials whose circular velocity curves vary at
large radii between the near-Keplerian decline expected when the mass in stars dominates, and
the nearly flat shapes generated by massive dark halos. Thus for ourdynamical studies of NGC
4697, we represent the dark matter halo by the logarithmic potential (Binney and Tremaine,
1987)

φD(R′, z′) =
v2
0

2
ln(r20 +R′2 +

z′2

q2φ
), (3.1)

which is generated by the density distribution

ρD(R′, z′) =
v2
0

4πGq2φ

(2q2φ + 1)r20 +R′2 + 2(1 − 1
2q

−2
φ )z′2

(r20 +R′2 + q−2
φ z′2)2

, (3.2)

wherev0 andr0 are constants,qφ is the flattening of the potential, andR′ andz′ are cylindrical
coordinates with respect to the halo’s equatorial plane. Whenqφ < 1/

√
2 the density becomes

negative along thez′ axis. The density given in equation3.2has a shallow inner density profile,
but since we are mainly interested in the circular velocity curve in the outer haloof NGC 4697,
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this is inconsequential: it is always possible to reduce the stellar mass-to-lightratio in exchange
for an additional centrally concentrated dark matter cusp.

The total gravitational potential

The total gravitational potential is generated by the combined luminous mass anddark matter
distributions and is given by

φ = φ⋆ + φD, (3.3)

whereφ⋆ is generated by theN -particle system assuming a constant mass-to-light ratio for
each stellar particle. We estimateφ⋆ via a spherical harmonic decomposition (Sellwood, 2003;
de Lorenzi et al., 2007). The stellar potential is allowed to change during a NMAGIC modelling
run, but the dark matter potential is constant in time and is given by equation (3.1). The particles
are integrated in the global potential using a drift-kick-drift form of the leapfrog scheme with a
fixed time step.

3.3.2 Model observables

Typical model observables are surface or volume densities and line-of-sight kinematics. An
observableyj of a particle model is computed via

yj(t) =

N∑

i=1

wiKj [zi(t)] , (3.4)

wherewi are the particle weights,zi are the phase-space coordinates of the particles,i =
1, · · · , N , andKj [zi(t)] is a kernel corresponding toyj . We use units such that the luminosity
Li of a stellar particle can be written asLi = Lwi, whereL is the total luminosity of the model
galaxy. We use temporally smoothed observables to increase the effectivenumber of particles
in the system,cf. Syer and Tremaine(1996); de Lorenzi et al.(2007).

Luminosity constraints

For modeling the luminosity distribution of NGC 4697 one can use as observables the surface
density or space density on various grids, or some functional representations of these densities.
We have chosen to model a spherical harmonics expansion of the deprojected luminosity density.
We determine the expansion coefficientsAlm for the target galaxy on a 1-D radial mesh of radii
rk. The spherical harmonic coefficients for the particle model are computed via

alm,k = L
∑

i

γCIC
ki Y m

l (θi, ϕi)wi, (3.5)

whereL is the total luminosity of the model galaxy,wi the particle weights,Y m
l the spherical

harmonic functions andγCIC
ki is a selection function, which maps the particles onto the radial

mesh using a cloud-in-cell scheme (seede Lorenzi et al., 2007).

Kinematic constraints

Since in theχ2M2M algorithm the kernel in equation (3.4) cannot depend on the particle weights
themselves, this puts some constraints on which observables can be used. For kinematics,
suitable observables are the luminosity-weighted Gauss-Hermite coefficientsor the luminosity-
weighted velocity moments. We implement them as follows.
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Spectroscopic data The shape of the line-of-sight velocity distribution (LOSVD) can be
expressed as a truncated Gauss-Hermite series and is then characterized byV , σ andhn (n > 2),
whereV andσ are free parameters. IfV andσ are equal to the parameters of the best fitting
Gaussian to the LOSVD, thenh1 = h2 = 0 (van der Marel and Franx, 1993; Rix et al., 1997).
The luminosity-weighted Gauss-Hermite coefficients are computed as

bn,p ≡ lp hn,p = 2
√
πL
∑

i

δpiun(νpi)wi, (3.6)

with
νpi = (vz,i − Vp) /σp. (3.7)

Herevz,i denotes the line-of-sight velocity of particlei, lp is the luminosity in cellCp, Vp andσp

are the best-fitting Gaussian parameters of the target LOSVD in cellCp, and the dimensionless
Gauss-Hermite functions are (Gerhard, 1993)

un(ν) =
(
2n+1πn!

)−1/2
Hn(ν) exp

(
−ν2/2

)
. (3.8)

Hn are the standard Hermite polynomials andδpi is a selection function which is one if particle
i is in cellCp and zero otherwise. The errors inh1 andh2 can be computed from those ofV and
σ via

∆h1 = − 1√
2

∆V

σ
(3.9)

and

∆h2 = − 1√
2

∆σ

σ
, (3.10)

valid to first order (van der Marel and Franx, 1993; Rix et al., 1997). Since we use the observed
Vp andσp from a Gauss-Hermite fit to the LOSVD as expansion parameters for the model line
profiles, the final fittedh1 andh2 of a model will be small, and so we can also use relations (3.9)
and (3.10) to compute the modelV andσ from Vp andσp.

Spatially binned PNe data We have computed mean PN velocities and velocity disper-
sions for the ellipse sector bins shown in Figure3.6. The ellipticity of the grid corresponds to
the mean ellipticity of the photometry. As suitable observables we take theluminosity-weighted
velocity moments in these bins, which are computed as

vn
p = L

∑

i

δpiv
n
z,iwi, (3.11)

wherevz,i is the velocity along the line-of-sight of particlei and δpi is a selection function,
which is equal to one if particlei belongs to the bin segment under consideration and zero
otherwise. In the following, we use only the momentsv1

p andv2
p.

3.3.3 Seeing effects

To account for seeing effects we apply a Monte Carlo approach (e.g. Cappellari et al., 2006)
instead of convolving the observables with the PSF. As long as the particles move along their
orbits no PSF effects need to be taken into account, only when the observables of the system are
computed, the effects of seeing may matter.

When computing an observable including PSF effects, we replace the “original” particle at
position(xi, yi) on the sky plane temporarily by a cloud ofNpp pseudo particles. The position
of a pseudo particle is obtained by randomly perturbing(xi, yi) with probability given by the
PSF. Note that neither extra storage is needed nor additional time to integrate the particles along
their orbits. Usually, only a small number of pseudo particles are needed to model PSF effects,
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Figure 3.7: Seeing convolution test, comparing the radial run ofh4 along a2′′ slit for a spherical
target model and its particle representation. The squares (circles) werecomputed for the target
from higher order Jeans equations without (with) seeing. The lines correspond to the particle
model including seeing, for which the PSF was represented usingNpp = 5. The full and dashed
lines refer to the major axis slit data at positive resp. negative radii with respect to the origin.
The heavily seeing-affected central profile is well recovered by the model.

even one is often sufficient. This procedure is implemented in the kernelKij as defined in
equation (3.4). The same kernel then enters the force-of-change equation,cf. de Lorenzi et al.
(2007).

To test how well PSF effects are modeled using only a few pseudo particleswe computed
mock observations for a spherical isotropic galaxy of massM = 1010M⊙, located at a dis-
tance10 Mpc. The intrinsic density of the galaxy is given by aHernquist(1990) profile with
scale lengtha = 55.1′′. We assumed a major axis slit of width2′′ and a Gaussian PSF with
FWHM = 4′′. We computed the LOSVD of the target galaxy along the major axis using
higher order Jeans moments (Magorrian and Binney, 1994), and compared it with the LOSVD
of a particle realization of the mock galaxy, applying the above procedure.The particle re-
alization of the Hernquist model was generated from an isotropic distributionfunction (e.g.
Debattista and Sellwood, 2000). As an example, Figure3.7shows theh4 profile along the ma-
jor axis slit. The square symbols are the target data computed using higher order Jeans equations
without seeing, the circles are computed the same way but including PSF effects. The lines are
the temporally smoothedh4 profiles of the particle model usingNpp = 5 to represent the PSF.
One sees that the heavily seeing-affected central profile is well recovered by the model.

In the dynamical modeling of NGC 4697 we include seeing only for our new kinematic data.
We represent the PSF by a single Gaussian withFWHM = 1.25′′. For the BDI data we do not
know the PSF but since the slit cells are relatively large, seeing is likely to be negligible.
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3.3.4 The merit function

By fitting the particle model to the observables, the weightswi are gradually changed such that
the merit function

F = µS − 1

2
χ2 (3.12)

is maximized, whereS is a profit function andχ2 measures the quality of the fit. The parameter
µ controls the relative contribution of the profit function toF ; incrementingµ increases the
influence of S in equation (3.12). Theχ2 statistics is computed as usual

χ2 =
∑

j

∆2
j , (3.13)

where∆j = (yj − Yj)/σ(Yj). yj is a model observable (e.g.alm,k with j = {lm, k}), Yj is the
corresponding target andσ(Yj) its error.

For the profit functionS, we use the entropy

S = −
∑

i

wi ln(wi/ŵi) (3.14)

where{ŵi} are a predetermined set of weights, the so-called priors (here equal for all particles).
The entropy term pushes the particle weights to remain close to their priors (more specifically,
close toŵi/e). This implies that models with largeµ will have smoother distribution functions
than those with smallµ. The best choice forµ depends on the observational data to be modeled,
e.g. their spatial coverage, on the phase-space structure of the galaxy under consideration, but
also on the initial conditions. For the dataset at hand, the best value ofµ will be determined in
Section3.4.1

3.3.5 Discrete PNe velocities

The likelihood of a model fit to photometric as well absorption line kinematic data is measured
by the standardχ2 statistics given in equation (3.13). To treat discrete PN velocity measure-
ments the same way, we must bin them to estimate the underlying meanv andσ fields. This
gives the corresponding model observables as discussed in section3.3.2.

As an alternative, one can measure the likelihood of a sample of discrete velocitiesvj and
positionsRj = (xj , yj) on the sky via

L =
∑

j

lnLj (3.15)

using the likelihood function for a single PN (Romanowsky and Kochanek, 2001)

Lj(vj ,Rj) =
1√
2π

∫
dL

dvz
(vz,Rj)e

−(vj−vz)2/2σ2
j dvz, (3.16)

whereσj is the error in velocity anddL/dvz is the LOSVD assuming as before that the line-of-
sight is along the z-axis.

We can then add equation (3.15) to the function F given in equation (3.12) and maximize

F+ = F + L (3.17)

with respect to the particle weightswi. Hence, we obtain an additional contribution to the
force-of-change as given inde Lorenzi et al.(2007). We will now derive this extra term. Let us
consider the selection function

δji =

{
1 if (xi, yi) ∈ Cj

0 otherwise.
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which assigns particle weights to a spatial cellCj , which contains thej-th PNe. We can then
write dL/dvz at positionj as

(
dL

dvz

)

j

=
1

lj

∑

i

δjiwiδ(vz − vz,i) (3.18)

with
lj =

∑

i

δjiwi, (3.19)

andδ(x) being the standard delta function. Hence, equation (3.16) can be expressed in terms of
the particles via

Lj =
L̂j

lj
(3.20)

with

L̂j =
1√
2π

∑

i

δjiwie
−(vj−vz,i)

2/2σ2
j . (3.21)

Finally, we find for the additional term in the FOC

dwi

dt
= εwi

∑

j

δji

(
1√
2π

e−(vj−vz,i)
2/2σ2

j

L̂j

− 1

lj

)
, (3.22)

where the sum runs over all individual PNe. For small errors, thedwi/dt from the likelihood
term is positive for particles withvj = vz,i, but reduces the weights of the other particles and
hence drives the LOSVD to peak atvj . In the implementation, we replacelj andL̂j with the
corresponding temporally smoothed quantities.

When we use this method to account for the PN velocities in NGC 4697, we adopt the grid
defined in Figure3.6by the dotted lines, including the innermost and outermost full ellipses. In
this way, we assign each of the762 PNe to a cellCj . It follows, that more than one PNe share
the same spatial bin, but this is not a problem.

3.3.6 Efficient mass-to-light estimate

It is common practice to evolve N-particle systems in internal units (IU), in whichthe gravi-
tational constant and the units of length and mass are set to unity, and to scalethe system to
physical units (PU) a posteriori to compare with galaxy observations. Similarly, the velocities
of a system with mass-to-light ratioΥ of unity may be scaled to anyΥ via vPU = γ vIU where
γ ∝

√
Υ andvPU andvIU are the velocities in physical and internal units, respectively. It fol-

lows that the kinematic observables of the model and hence alsoχ2 can be regarded as functions
of Υ. Equation (3.13) then reads

χ2 =
∑

j

∆j(Υ)2. (3.23)

In the following we will only consider the luminosity-weighted Gauss-Hermite moments as
given in equation (3.6) and neglect the PNe kinematic constraints. Taking the partial derivative
with respect toΥ of equation (3.23) leads to

1

2

∂χ2

∂Υ
=
∑

j

∆j(Υ)

σ(Bn,p)

∂bn,p

∂Υ
, j = {n, p} (3.24)

whereBn,p is the target observable andσ(Bn,p) its error. We define a force-of-change (FOC)
for the mass-to-light ratioΥ

dΥ

dt
= −ηΥ∂χ

2

∂Υ
(3.25)
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which equals
dΥ

dt
= −ηΥ

∑

j

2∆j(Υ)
∂∆j(Υ)

∂Υ
(3.26)

with
∂∆j(Υ)

∂Υ
=

√
πL

Υσpσ(Bn,p)

∑

i

δpiwi
∂un(x)

∂x

∣∣∣
x=νpi

vz,i, (3.27)

where we used∂vz,i/∂Υ = vz,i/2Υ for vz,i given in physical units, andj = {n, p}. The line-
of-sight is along the z axis. In practice, we use the temporally smoothed quantities to compute
the FOC for the mass-to-light ratio.

In principle, the proposed scheme can be understood as a gradient search along theχ2(Υ)
curve when simultaneously the particle model is fitted to the observational constraints. Hence
the same NMAGIC run allows us to estimateΥ as well. We test the scheme and illustrate its
accuracy in Section3.4.

3.3.7 Initial conditions

As initial conditions for NMAGIC, we generate a particle realization of a spherical γ-model
(Dehnen, 1993; Carollo et al., 1995) made from a distribution function (DF) using the method
of Debattista and Sellwood(2000). The model consists ofN = 5 × 105 particles and has
γ = 1.5, scale lengtha = 1 andrmax = 40. When scaled to NGC 4697 one unit of length
corresponds to2.3810 kpc, i.e., this model hasRe = 3.8 kpc.

In some cases, we have found it useful to give the initial particle system some angular mo-
mentum about an axis of symmetry. For axisymmetric stellar systems, the density is determined
through the even part inLz of the DF (Lynden-Bell, 1962). Thus the component of the angular
momentum of a particle along the symmetry axis may be reversed without affectingthe equilib-
rium of the system.Kalnajs(1977) showed, however, that a discontinuity atLz = 0 can affect
the stability of the particle model. Therefore, if desired, we switch retrograde particles with a
probability

p(Lz) = p0
L2

z

L2
z + L2

0

, (3.28)

which ensures a smooth DF.

3.4 Testing the modelling with isotropic rotator targets

In this section, we use axisymmetric, isotropic rotator models with known intrinsic properties
to determine the optimal value of the entropy “smoothing” parameterµ in equation (3.12),
and to test our procedure for determining the optimal mass-to-light ratio simultaneously with
modelling the data.

3.4.1 Entropy parameterµ

Our approach to determine suitable values forµ is similar as inGerhard et al.(1998) and
Thomas et al.(2005). We first generate a “mock” kinematic data set from an isotropic rota-
tor model whose information content (number and density of points, errors) is similar as for the
real data set to be modelled. To this data set we perform a sequence of particle model fits for
variousµ, and determine the values ofµ for which (i) a good fit is obtained, and (ii) the known
intrinsic velocity moments of the input “mock” system are well reproduced by thecorrespond-
ing moments of the final particle model. Using an isotropic rotator model for this purpose here
makes sense, because such a model is a fair representation of NGC 4697(Binney et al., 1990).



62 CHAPTER 3. NMAGIC MODELS OF NGC 4697

Figure 3.8: Comparison of the surface brightness of NGC 4697 (solid lines) with theγ-model
described in the text and seen underi = 80◦ inclination (dotted lines). Top: Surface brightness
profile along the major axis. (b) Along the minor axis.

We have chosen to describe the luminosity density of the mock galaxy by one ofthe flattened
γ-models ofDehnen and Gerhard(1994),

j(m) =
(3 − γ)L

4πq

a

mγ(m+ a)4−γ
. (3.29)

HereL and a are the total luminosity and scale radius,m2 = R′2 + (z′/q)2, andq is the
flattening. The parameters are chosen such that the surface brightnessclosely resembles that of
NGC 4697, i.e.,q = 0.7, γ = 1.5, L = 2 × 1010 L⊙,R anda = 2.5 kpc, which corresponds
to a ≈ 49′′ at a distance of10.5 Mpc. Figure3.8shows a comparison of the surface brightness
of NGC 4697 with the mock galaxy projected underi = 80◦. The major and minor axis surface
brightness profiles are well approximated by theγ-model, except for some differences at larger
radii, so we will use this model for the calibration ofµ.

We determine mock kinematic profiles from internal velocity moments, obtained from higher-
order Jeans equations (Magorrian and Binney, 1994) in the self-consistent potential generated
by the density of equation (3.29) for a mass-to-light ratioΥ = 5. Before calculating the line-of-
sight velocity profiles, the velocity moments are slit-averaged to account forthe observational
setup of the kinematic slits given in Section3.2.3. We add Gaussian random variates to the
isotropic rotator kinematics with1σ dispersion corresponding to the respective measurement
error in NGC 4697 at that position. Figure3.9 shows a comparison of our new kinematic data
for NGC 4697 with the isotropic rotator mock data, along the galaxy’s major axis.

We do not construct mock PNe data for inclusion in the entropy tests, but weneed to com-
pute the photometric observables to construct a complete observational dataset. We expand the
luminosity distribution of equation (3.29) in a spherical harmonics series (cf. Section3.3.2) on a
radial grid with 40 shells at radiirk. The radii are quasi-logarithmically spaced withrmin = 1.0′′

andrmax = 700′′. We use the luminosity on radial shellsLk =
√

4πA00,k and the higher or-
der coefficientsA20,k, A22,k, · · · , A66,k andA80,k to constrain the luminosity distribution of
the particle model. Them 6= 0 terms are set to zero to force the models to remain nearly
axisymmetric, i.e., within the limits set by theAlm errors. We assume Poisson errors for the
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Figure 3.9: Comparison ofv, σ, h3 andh4 of NGC 4697 and an isotropic rotator model with
approximately the same projected surface brightness as the galaxy. The filled circles show our
new kinematic data for NGC 4697 from Section3.2.3, the star symbols show the isotropic
rotator mock data, and the dashed red lines show the underlying smooth modelkinematics, all
along the major axis.

Lk: σ(Lk) =
√
LkL/N where N is the total number of particles used in the particle model

andL is the total luminosity of the system. To estimate the errors in the higher order luminos-
ity moments, we use Monte-Carlo experiments in which we generate particle realizations of a
spherical approximation of the density field of the target system with5 × 105 particles, which
is the same number as in theχ2M2M models for NGC 4697.

We then construct self-consistent particle models for the isotropic rotator target in a three
step process, using the mock data as constraints. (i) Density fit: we start withthe spherical
initial conditions described in Section3.3.7and evolve them using NMAGIC to generate a self-
consistent particle realization with the desired luminosity distribution (γ-particle model), fitting
only the luminosity constraints. (ii) Kinematic fit: because the target galaxy has afair amount
of rotation, it is worth starting the kinematic fit from a rotating model. Hence, following Section
3.3.7, we switch a fraction of retrograde particles in theγ-particle model to prograde orbits,
usingp0 = 0.3 andL0 ≃ Lcirc(0.03Re). This rotating system we then use as a starting point
to construct a series of self-consistent dynamical isotropic rotator models,by fitting the target
photometryandkinematics for different values ofµ. For each model, we evolve the particle
system for∼ 105 NMAGIC correction steps while fitting the complete set of constraints. During
this correction phase, the potential generated by the particles is updated after each correction
step. (iii) Free evolution: to ensure that any correlations which might have been generated
during the correction phase are phase-mixed away, we now keep the potential constant and
evolve the system freely for another5000 steps, without further correction steps. For reference,
5000 of these steps correspond to≈ 20 circular rotation periods (“dynamical times”)atRe in
spherical approximation.

The results are presented in Figure3.10. The lower panel shows the quality of the fit as
a function ofµ, both in terms of normalizedχ2 values and in terms of the merit functionF
from equation (3.12). The upper panel shows therms ∆ relative difference between the in-
ternal velocity moments of the isotropic rotator input model and those of the particle models
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Figure 3.10: Entropy tests. Top: Deviationrms ∆(µ) of the particle models from the isotropic
rotator internal velocity moments. The point for the rightmost value ofµ is at a large value of
∆ outside the diagram. Bottom:χ2 deviation per data point of the particle model fit to the pho-
tometric and kinematic target observables (open circles) and to the kinematic observables alone
(filled squares), as a function of entropy parameterµ. The triangles show the same dependence
for the merit function (−F ), cf. equation (3.12). The starred symbol indicates the value ofµ
chosen for the subsequent modelling.

reconstructed from the mock kinematics. For the particle models intrinsic velocitymoments are
computed by binning the particles in spherical polar coordinates, using a quasi-logarithmic grid
with 20 radial shells bounded byrmin = 0.01′′ andrmax = 200′′, 12 bins in azimuthal angleφ,
and 21 bins equally spaced insin θ. Therms ∆ shown in Figure3.10is obtained by averaging
over all grid points in the radial region constrained by the data (R ≤ 1.5Re). The minimum
in rms ∆ determines the value ofµ for which the model best recovers the internal moments of
the input model. This occurs atµ ≃ 103, and the value ofrms ∆ at the minimum is≃ 1.4%
. For larger (smaller)µ, therms ∆ is larger because of oversmoothing (excess fluctuations) in
the model.

χ2/N values are given in the lower panel of Fig.3.10for all (photometric and kinematic)
data points, and for the kinematic data points alone. Generally theχ2/N for the photometric
points is significantly better than for the kinematic points, because (i) theAlm come from aver-
ages over many particles, thus have little noise, and we have not added Gaussian variances, and
(ii) all particles contribute to theAlm force-of-change at all timesteps, so theAlm are weighted
strongly during the evolution. The kinematicχ2 per data point in the lower panel is of order0.5
for a large range ofµ and then increases starting fromµ ∼> 300 to 1 atµ ≃ 5 × 103, whereas
−F already increases aroundµ ∼> 100.

Some results for the isotropic rotator dynamical models obtained withµ = 102, µ = 103,
µ = 5 × 103 are presented in Figures3.11and3.12. Figure3.11shows a comparison of the
target kinematics with the kinematics of the self-consistent particle models along the major axis
slit. Note the excellent fit of the central velocity gradient and velocity dispersion dip, for allµ
values. However, the models with higherµ begin to fail matching the target data at the largest
radii. This is because the number of data points decreases with radius, whereas the number of
particles and hence entropy constraints is roughly proportional to luminosityLk, i.e. changes
much more slowly with radius. The result is that the constraints from the data become relatively
weaker at larger radii. The entropy term tries to enforce a dynamical structure related to the
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Figure 3.11: Particle model fits to the isotropic rotator mock kinematic data along themodel’s
major axis. The points with error bars show the target data and the lines represent the model
kinematics. The model data points are averages over the same slit cells as the target data (see
Fig. 3.5), and are connected by straight line segments. The modelv, σ are determined via
eqs. (3.9) and (3.10) andh3, h4 are the fitted values based on the observed scale parameters
Vp andσp. The full, dotted and dashed lines correspond to the models obtained withµ = 102,
µ = 103, andµ = 5 × 103, respectively. The red dashed line shows theµ = 100 model
kinematics20 dynamical times later, reflected with respect to the origin, and obtained from
direct fitting of the model line profiles. This proves that this model is accurately axisymmetric
and stationary; see text for details.
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initial particle model, in which all particles have equal weights. In the presentcase this works
to cause a bias against both fast rotation and anisotropy. This first becomes apparent where the
relative statistical power of the data is weakest, i.e., at large radii.

Because our goal in this chapter is to determine the range of potentials in whichwe can find
valid dynamical models for NGC 4697, we need to ensure that the answer to this question is not
biased by overly strong entropy smoothing in the galaxy’s outer regions. Thus in the modelling
in Section3.5we will conservatively chooseµ = 100 for the smoothing parameter (indicated by
the starred symbol in Fig.3.10). Similar caution is common practice in determining black hole
masses in galaxies (e.g.,Gebhardt et al., 2003). The resulting dynamical models will then be
somewhat less smooth than could be achieved, but this price is rather modest;betweenµ = 102

and its minimum value atµ = 103, the rms∆ in Fig. 3.10decreases from≃ 1.7% to ≃ 1.4%,
i.e., by≃ 15%. Certainly it would not be appropriate to rule out potentials in which the solutions
differ by this degree in smoothness.

Usingµ = 100 in the modelling leads to a slight overfitting of the slit kinematic data, es-
pecially for the higher order kinematic moments which themselves take only valuesof order
percents. It is worth pointing out that, contrary to first appearances from Fig.3.11, this implies
neither that these models are not axisymmetric, not that they are out of equilibrium. The model
kinematics shown in Fig.3.11 are obtained after20 dynamical times of free evolution in the
axisymmetric potential, so are thoroughly phase-mixed. The model data points shown are aver-
ages over the same slit cells as the target data (see Fig.3.5), and are connected by straight line
segments. The plottedv, σ are determined via eqs. (3.9) and (3.10) andh3, h4 are the fitted
values based on the observed scale parametersVp andσp. The red dashed line in Fig.3.11also
corresponds to theµ = 100 model, but has been determined as follows: (i) from the particle dis-
tribution after a total of40 dynamical times of free evolution; (ii) from a mirror-symmetric set of
slit cells, with respect to the major-axis slit shown in Fig.3.5, (iii) using the(v, σ, h3, h4) param-
eters obtained by direct fits to the model line profiles, and (iv) finally reflecting the kinematics
so obtained anti-symmetrically with respect to the origin. The excellent agreement between
this curve and the original major axis kinematics of this model in Fig.3.11shows that (i) the
µ = 100 model is a true equilibrium, (ii) it is accurately axisymmetric, and (iii) the left-right
differences in the kinematics in Fig.3.11are due to slightly different slit cell averages over the
model on both sides. That these averages can be slightly different is madepossible by low-level
(axi-symmetric) structure in the model consistent with the slight under-smoothingfor this value
of µ. What happens is that the algorithm adds a few near-circular orbits in the relevant radial
ranges. When added to the corresponding model LOSVDs and averaged over the asymmmet-
ric slit cells these orbits change the kinematic momentshn, n ≥ 3 at the≃ 0.01 level so as
to improve the agreement with the observed major axish3, h4. In the other slits the models
interpolate more smoothly between points when needed because fluctuations inthe particle dis-
tribution to follow local kinematic features are less easily arranged; see the corresponding figure
for NGC 4697 in Section3.5.

A comparison of the internal velocity moments of the input model and the particle model
in the equatorial plane is presented in Figure3.12. The figure showsσR, σφ andσz, followed
by vφ. The last panel displays the anisotropy parameterβθ = 1 − σ2

θ/σ
2
r , which is zero for the

input isotropic rotator model. Within the radial extent of the target data, the internal moments of
the input model are well reproduced; outside this region, where the modelis poorly constrained
by the input data, the particle model increasingly deviates from the target. Indeed, if we add PN
velocity data in this test, the corresponding particle model agrees with the internal moments of
the input model out to larger radii.

3.4.2 Mass-to-light ratio

We will now use such isotropic rotator models to explore how accurately we are able to recover
the input mass-to-light ratio, given the spatial coverage of the data. Further, we will test our new
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Figure 3.12: Comparison of the intrinsic velocity moments in the equatorial plane of the ax-
isymmetric isotropic rotator particle model and target model. The points represent the target
system and the lines correspond to the final particle model forµ = 100, averaged over azimuth.
The dashed vertical lines show the maximum radial extent of the minor axis (left line) and major
axis target kinematic data (right line). At larger radii the particle model is poorly constrained by
the input target data.

procedure, described in Section3.3.6, for estimating the mass-to-light ratio efficiently. As input
models we take both the self-consistent isotropic rotator model described above and a model
constructed in the same way but including a dark matter halo. The halo potentialis of the form
of equation (3.1), with r0 = 190 arcsec (9.7 kpc), v0 = 220 km s−1 and qφ = 1.0. The
mass-to-light ratio of the stars in both input models is fixed toΥ = 5.

The results for a “classical” approach, in which we fit a dynamical particlemodel to the
data for different values ofΥ, are presented in Figure3.13, which shows the quality of the fit as
function ofΥ for the self-consistent case. The input value ofΥ is recovered well. The results
with the new procedure presented in Section3.3.6are summarized in Figure3.14. The figure
shows the evolution of the mass-to-light ratio as a function of time during NMAGIC model fits.
Models for both the self-consistent input galaxy and for the target model including a dark halo
potential are shown, with both low and high initial choices ofΥ. The tests show that for the
self-consistent case the input mass-to-light ratio is recovered very well.The uncertainties are
slightly larger when a dark matter halo is included, but the maximum fractional error is less than
three percent. We conclude that the new scheme works very well and thatΥ is recovered within
a few percent (for the amount and quality of data used in the present work). The advantage
of the new method is its efficiency, only one run is needed to estimateΥ instead of order10,
but at the cost of not knowing the shape ofχ2 as a function ofΥ near the minimum, i.e., the
confidence interval.

3.5 Dynamical models of NGC 4697

After these tests we are now ready to use NMAGIC for constructing axially symmetric dynam-
ical models of NGC 4697. We investigate self-consistent models as well as models including
dark matter halos, and fit the photometry, slit kinematics and PNe data. Our aim inthis chapter
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Figure 3.13: Quality of the particle model fit to the self-consistent isotropic rotator input model,
as a function of assumed mass-to-light ratioΥ. χ2 values per data point are given for the particle
model fit to the photometric and kinematic target observables (open circles) and to the kinematic
observables alone (filled squares). The triangles correspond to the measured merit functionF .
The input mass-to-light ratio isΥ = 5. All models are built usingµ = 100.

Figure 3.14: Direct mass-to-light ratio fits with NMAGIC. The plot shows the evolution of Υ
with time during NMAGIC runs with different initialΥ, for the self-consistent isotropic rotator
target (solid lines), and the isotropic rotator in a potential including a dark halo (dotted lines).
The input mass-to-light ratioΥ = 5 in all cases. Time is given in terms of elapsed time steps
where104 steps correspond to≃ 40 circular rotation periods at1Re.
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Figure 3.15: Circular velocity curves of the potentials used in the modelling, including the self-
consistent model A (dashed line), and a sequence of dark matter halos (solid lines). The lines at
r/Re = 7 run from model A (bottom) to K (top), with models F and G represented by the same
curve;cf. Table3.1.

is not to attempt to constrain detailed halo mass profiles, but only to ascertain whether a dark
matter component is allowed, or required, by the kinematic data. Thus we investigate a simple
sequence of potentials A to K which include the contribution from the stellar component and
a halo potential as in equation (3.1), with parameters given in Table3.1. The parameters are
chosen to result in a sequence of circular speed curves ranging fromfalling according to the dis-
tribution of stars to nearly flat over the whole range of radii. This sequence is shown in Figure
3.15; all these circular velocity curves are computed in the galaxy’s equatorialplane and include
the stellar component with the respective best-fitting mass-to-light ratio as given in Table3.1.

To construct the models, we proceed as in Section3.4. First, we compute the photometric
observables. We expand the deprojected luminosity distribution of NGC 4697in a spherical
harmonics series on a grid of40 shells in radius, quasi-logarithmically spaced withrmin = 1.0′′

andrmax = 700′′. As observables we use the luminosity on radial shellsLk and the higher order
coefficientsA20,k, A22,k, · · · , A66,k andA80,k, at radiirk. Them 6= 0 terms are set to zero to
force the models to remain nearly axisymmetric, i.e., within the limits set by the specifiedAlm

errors. Because the photometry is not seeing-deconvolved, for the innermost two points (R <
3”) we only fit theA00 term. Errors for the luminosity termsAlm are estimated by Monte Carlo
simulations as in Section3.4.1. As kinematic constraints we use the luminosity weighted Gauss-
Hermite moments from the slit data, and the PNe kinematics, either represented bybinned
line-of-sight velocity and velocity dispersion points, or as discrete velocitymeasurements; see
Sections3.2.3and3.3.5.

Again we fit particle models in a three step process. (i) First, we start with the spherical par-
ticle model described in Section3.3.7and evolve it using NMAGIC to generate a self-consistent
particle realization with the luminosity distribution given by the deprojection of the photometry.
(ii) Because NGC 4697 shows significant rotation, we then switch retrograde particles similarly
as in Section3.4.1, usingp0 = 0.3 andL0 ≃ Lcirc(0.03Re). The resulting rotating parti-
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HALO r0/Re v0/km s−1 qφ χ2/N χ2
alm/Nalm χ2

sl/Nsl χ2
PN/NPN −F Υ

A 0 0 1.0 0.453 0.0323 0.900 0.968 370.2 5.78
B 5.76 80 1.0 0.415 0.0254 0.828 0.884 343.9 5.74
C 5.76 120 1.0 0.439 0.0343 0.877 0.784 358.6 5.71
D 4.32 160 1.0 0.404 0.0288 0.816 0.610 333.7 5.58
E 4.32 190 1.0 0.404 0.0244 0.826 0.520 332.8 5.49
F 4.32 210 1.0 0.386 0.0229 0.791 0.476 320.0 5.45
G 4.32 210 0.8 0.382 0.0203 0.785 0.439 315.4 5.46
H 2.88 210 0.8 0.376 0.0232 0.773 0.397 310.2 5.28
J 4.32 250 0.8 0.383 0.0242 0.786 0.377 313.7 5.34
K 2.88 250 0.8 0.377 0.0212 0.771 0.506 309.6 5.10

Table 3.1: Table of model parameters and fit results. Columns (1)-(4) give the model code and
the parametersr0, v0 andqφ used in equation (3.1) for the respective dark halo potential in this
model. The next four columns list theχ2 values per data point, for all observables [column (5)],
and for the density constraints, slit kinematic observables, and PN observables (data set PND1)
separately [columns (6)-(8)]. Column (9) gives the numerical value of the merit function in
equation3.12, and column (10) the final (r-band) mass-to-light ratio. The respectivenumber of
constraints areN = 1316,Nalm = 680,Nsl = 604,NPN = 32.

HALO r0/Re v0/km s−1 qφ χ2/N χ2
alm/Nalm χ2

sl/Nsl −L −F Υ

A 0 0 1.0 0.415 0.0331 0.845 2042.9 2382.5 5.81
B 5.76 80 1.0 0.405 0.0282 0.830 2038.2 2371.5 5.76
C 5.76 120 1.0 0.419 0.0331 0.853 2033.7 2374.2 5.72
D 4.32 160 1.0 0.406 0.0314 0.828 2028.3 2357.9 5.60
E 4.32 190 1.0 0.391 0.0271 0.801 2026.3 2344.9 5.54
F 4.32 210 1.0 0.402 0.0304 0.820 2025.6 2350.1 5.49
G 4.32 210 0.8 0.396 0.0232 0.815 2024.8 2343.9 5.48
H 2.88 210 0.8 0.373 0.0245 0.766 2026.3 2329.2 5.31
J 4.32 250 0.8 0.374 0.0203 0.773 2025.6 2329.0 5.37
K 2.88 250 0.8 0.369 0.0198 0.763 2030.8 2329.9 5.14

Table 3.2: Table of model parameters and fit results, similar to Table3.1, but with all models
computed using the likelihood scheme for the PNe as discrete kinematic tracers.Columns (8)
and (9) now give the likelihood of the PN data setL and the merit function includingL [equation
3.17]. The other columns are equivalent to those in Table3.1.
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cle model (hereafter, model RIC) is used as a starting point to construct aseries of dynamical
models by fitting the photometry and kinematics in different halo potentials, as follows. For
every dark matter halo from Table3.1, we first relax RIC for5000 time steps in the total grav-
itational potential, assuming a mass-to-light ratio of 5.74. For reference,10000 time steps in
the self-consistent potential correspond to≈ 40 circular rotation periods atRe in spherical ap-
proximation. After this relaxation phase, we evolve the particle system for∼ 105 NMAGIC
correction steps while fitting the complete set of constraints. During this correction phase, the
potential generated by the particles is updated after each correction step but the dark matter po-
tential (if present) is constant in time. (iii) Subsequently, we keep the global potential constant
and evolve the system freely for another5000 steps, without further correction steps. Models A,
D, G and K were in addition evolved for a further10000 steps with all potential terms active, to
confirm that the modest radial anisotropy required in these models does not lead to dynamical
instabilities.

To make sure that the results are not biased by the way we incorporate the PNe data, we
have constructed three models in most halo potentials. Each time the PNe data arerepresented
differently, using the binnings PND1, PND2, or the likelihood method.

The quality of the fit for different halo models can be characterized by thequantityF defined
in equation (3.12) or (3.17) and is given in Tables3.1 and3.2. In addition, the value ofχ2 per
data point is also shown, globally and for each data set separately, as are the stellar mass-to-light
ratios. For the same reasons as for the isotropic rotator test models, the density constraints are
very accurately fit. The slit kinematics are typically fit within about0.9σ per point, slightly
better than required. This is due to the relatively low value used for the entropy smoothing,
needed not to bias the range of allowed potentials by the imposed smoothing. The PNχ2 and
likelihood values show that the PN data are consistent with all models.

Figures3.16, 3.17, 3.18present results from some of these models, comparing the stars-only
model A and the three halo models D, G, and K to the data. Figure3.16shows the comparison
of models A, D, G with the photometric constraints. The model lines match the targetdata
points perfectly, in accordance with the very smallχ2

alm/Nalm values in Table3.1. Figure3.17
compares the projected absorption line kinematics of the three models with our measurements
and the BDI data. The fits are generally excellent. Along the major and minor axes one can see
how the models have found compromises to deal with asymmetries of the data on both sides of
the galaxy, and slight discrepancies between our and the BDI data, e.g., inthe region around
±10′′ along the major axis. As for the isotropic rotator, the major axis higher order moments in
Fig. 3.17are even somewhat overfitted; see the discussion in Section3.4.1.

Figure3.18compares the final A, D, G, and K models with the PNe kinematic constraints
along the major axis (left) and minor axis (right); on each axis we show mean velocity (top) and
velocity dispersion (bottom). The model curves in Fig.3.18and theχ2 per data point values in
Table3.1are computed for PN dataset PND1. There was no difference between these values and
those obtained with PN dataset PND2 in all cases where we modelled both. Thetwo additional
lines in the panels of Fig.3.18show the mean velocities and velocity dispersions for the variants
of models A, K obtained with the likelihood scheme for the PNe (see Section3.3.5), computed
by binning the particles in these models a posteriori in the same bins as for dataset PND1. While
there is little difference for model K, the likelihood variant of model A fits the observed PN data
points actually better than the original model A based on the PND1 data.

Overall, this figure illustrates that with increasing halo mass the fit to the PNe kinematic
data improves slightly. Models G and K bracket the best-fitting models to the binneddata in
Fig. 3.18. However, also model A without dark matter still has aχ2

PN/NPN just below one,
despite being systematically a little low in the minor axis dispersion plot. When we force the
self-consistent model to improve the PN data fit at the expense of the slit kinematic data fit,
the model starts to develop specific anisotropy features at the radii of the outer PN data. This
suggests that with PN data extending to somewhat larger radii,≈ 400 arcsec (R ≃ 6Re), the
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Figure 3.16: Comparison of the photometric constraints with the final models A (self-consistent,
dashed), D (dotted), and G (full line). The points correspond to the target input data. From top
to bottom: luminosity on radial shells profileLk =

√
4πA00, and normalizedA20 andA40

profiles.

model without dark halo might start to fail. However, given the present PNdata the differences
between our models are not yet large enough to rule out constant mass-to-light ratio models for
NGC 4697 (see also the likelihood values in Table3.2).

The conclusion that both models with and without dark halos are consistent with the data
currently available for NGC 4697 is also confirmed by considering the model fits to all the
data in Figures3.16-3.18. Models with massive dark halos overall fit slightly better, having
slightly lowerχ2 values in Table3.1, but these variations are all withinχ2 < 1. Certainly these
differences are not sufficient to rule out any of the models, given alsothe possibility of residual
systematic effects.

Finally, Figure3.19shows the internal kinematics of the particle models A, D, G, and K.
The upper panels giveσR, σφ andσz, followed byvφ. The last panel displays the anisotropy
parameterβθ = 1−σ2

θ/σ
2
r , which is zero for an isotropic rotator model. All quantities are given

as averages over the models’ equatorial plane. The more massive halo models become more
radially anisotropic in the outer parts in terms ofσR vs. σφ, but βθ does not increase beyond
model D becauseσR andσz increase in parallel whileσφ remains constant. Thus the additional
kinetic energy that stars at large radii must have in these models, is hidden inthe plane of
the sky. Conversely, at small radii the velocity dispersions in models G-K are slightly lower,
compensating for the larger radial velocities of halo stars along the line-of-sight to the center.
These models haveβ ≃ 0.3 at the center, which increases with radius and reachesβ ≃ 0.5 at

∼> 2Re.

3.6 Summary and Conclusions

In this chapter, we have presented new surface brightness measurements and long slit spectro-
scopic data for the E4 galaxy NGC 4697, and combined these data with existinglong slit kine-
matics and discrete PNe position and velocity measurements to construct dynamical models for
this galaxy. The combined data set runs from the center of the galaxy to about 4.5 effective radii.
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Figure 3.17: Comparison of models A, D, and G to the absorption line kinematic data along
the major axis (top left), minor axis (top right), the slits parallel to the major axis (bottom left),
and the slits parallel to the minor axis (bottom right). Full and starred data pointsshow our new
data and the BDI data, respectively. The model data points are averages over the same slit cells
as the target data (see Fig.3.5), and are connected by straight line segments. Linestyles for the
models are the same as in Fig.3.16.
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Figure 3.18: Comparison of the PNe velocity and velocity dispersion data (PND1, points) with
models A, D, G, and K. Top left:v along the positive major axis. Top right: The same for the
minor axis. Bottom left:σ along the positive major axis. Bottom right: The same but for the
minor axis. Dashed, dotted, full, and upper dashed lines show models A, D,G, and K; the two
dash-dotted lines show the variants of models A and K obtained with the likelihoodscheme for
the PNe.

Figure 3.19: Internal velocity moments in the equatorial plane for models A, D,G, K (dashed,
dotted, full, and dash-triple dotted lines, respectively). The vertical dashed lines indicate the
radial extent of the minor axis slit data, major axis slit data, and PN data, fromleft to right.



3.6. SUMMARY AND CONCLUSIONS 75

For the first time, we have modelled such a dataset with the new and flexibleχ2-made-
to-measure (χ2M2M) particle code NMAGIC. We have extended NMAGIC to include seeing
effects and have implemented an efficient method to estimate the mass-to-light ratioΥ. Tests
of this scheme using isotropic rotator input models have shown that the method recoversΥ
within a few percent both for self-consistent and dark matter dominated target galaxies. In
addition, we have implemented a likelihood scheme which allows us to treat the PNe as discrete
velocity measurements, so that no binning in velocities is needed. The modelling presented
in this chapter shows that theχ2M2M/NMAGIC particle method is now competitive with the
familiar Schwarzschild method. In fact, it has already gone further in that the gravitational
potential of the stars has been allowed to vary in the modelling, the mass-to-lightratio has been
adapted on the fly, the stability of the models has been checked, and, inde Lorenzi et al.(2007),
NMAGIC has been used to construct triaxial and rotating triaxial models.

Even though NMAGIC does not require any symmetry assumptions for the modelling, we
have in this chapter forced the method to generate axisymmetric particle models for NGC 4697.
Both self-consistent models without dark matter, and models following a sequence of circular
speed curves with increasing dark halo contributions have been investigated. The PN data have
been used both binned on two different spatial grids, as well as with the new likelihood scheme,
to make sure that the results are not biased by the way the PNe data are incorporated.

Our main astronomical result is that models both with and without dark matter are consistent
with all the data for NGC 4697. These models fit all kinematic data withχ2/N < 1, both in
potentials with only luminous matter and in potentials including sufficiently massive halos to
generate nearly flat circular rotation curves. The massive dark halo models tend to fit the data
slightly better in the sense of lowerχ2/N , for both the slit kinematics and the PN data, but these
variations are small and not yet statistically significant. To exclude models without dark matter
would require PN velocities at even larger radii than currently available, out to an estimated
≃ 6Re from the center.

Our models differ from earlier studies performed byMéndez et al.(2001) in the sense that
we generate axisymmetric models instead of spherical ones and that our models are flexible with
regard to anisotropy. The best-fitting models are slightly radially anisotropic,with β ≃ 0.3 at the
center, increasing toβ ≃ 0.5 at∼> 2Re. This is consistent with the value given byDekel et al.
(2005) obtained from merger simulations carried out within theΛCDM cosmology framework.
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Recent results from the Planetary Nebula Spectrograph (PN.S) surveyhave revealed a rapidly
falling velocity dispersion profile in the nearby elliptical galaxy NGC 3379, casting doubts on
whether this intermediate-luminosity galaxy has the kind of dark matter halo expected inΛCDM
cosmology. We present a detailed dynamical study of this galaxy, combining ground based long
slit spectroscopy, integral-field data from the SAURON instrument, and PN.Sdata reaching to
more than seven effective radii.

We construct dynamical models with the flexibleχ2-made-to-measure particle method in-
plemented in the NMAGIC code. We fit spherical and axisymmetric models to the photometric
and combined kinematic data, in a sequence of gravitational potentials whose circular velocity
curves at large radii vary between a near-Keplerian decline and the nearly flat shapes generated
by massive halos.

Assuming spherical symmetry we find that the data are consistent both with near-isotropic
systems dominated by the stellar mass, and with models in moderately massive halos with
strongly radially anisotropic outer parts (β ≃ 0.8). Formal likelihood limits would exclude
(at 1σ) the model with stars only, as well as halo models withvcirc(7Re) ∼> 250kms−1. A
sequence of more realistic axisymmetric models of different inclinations confirms the spherical
results. All valid models fitting all the data are dynamically stable over Gyrs, including the most
anisotropic ones.

Overall the kinematic data for NGC 3379 out to7Re do not give strong constraints on the
mass distribution in this galaxy. NGC 3379 may well have a dark matter halo consistent with
the currentΛCDM paradigm.

4.1 Introduction

There is strong evidence that most galaxies are surrounded by massivedark matter (DM) halos.
This is most evident in spiral galaxies, where the rotation curves of extended cold gas disks
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remain flat out to large radii. In elliptical galaxies the evidence for dark halos has built up more
slowly, and their halo properties are not so well known, because of a lack of ubiquitous tracer
similar to the HI rotation curves in spirals. Only in a few cases is it possible to measure masses
from extended HI ring velocities (e.g.Franx et al. 1994; Oosterloo et al. 2002).

However, at least for giant elliptical galaxies stellar-dynamical studies from integrated light
spectra (e.g. Kronawitter et al. 2000; Gerhard et al. 2001; Cappellari et al. 2006; Thomas et al.
2007) analyses of the X-ray emitting hot gas atmospheres (e.g.Awaki et al. 1994; Matsushita et al.
1998; Loewenstein and White 1999; Humphrey et al. 2006; Fukazawa et al. 2006), and gravi-
tational lensing data (e.g. Wilson et al. 2001; Treu and Koopmans 2004; Rusin and Kochanek
2005; Koopmans et al. 2006; Gavazzi et al. 2007) are now giving a fairly consistent picture. The
general result from these studies is that these ellipticals are surroundedby dark matter halos,
the inferred mass profiles (luminous plus dark) are nearly isothermal, i.e., thecircular velocity
curves approximately flat, and the dark matter contributes∼ 10 − 50% of the mass withinRe.
The central dark matter densities in ellipticals are higher than in spirals, presumably reflecting
their earlier formation epochs (Gerhard et al. 2001; Thomas 2006).

In light of this, the finding ofRomanowsky et al.(2003); Douglas et al.(2007), that several
intermediate luminosity ellipticals (NGC 3379, NGC 4494, NGC 821) apparently have only
diffuse dark matter halos if any, is quite surprising. Could the dark matter properties of these
ellipticals be different from those of giant ellipticals (e.g. Napolitano et al., 2005), perhaps
related to the fact that these lower-luminosity galaxies are less often found ingroups or clusters?
The result ofRomanowsky et al.(2003) is based on the outer velocity dispersion profiles of
the three galaxies, determined from individual planetary nebulae (PNe) velocities measured
with the special PN.S instrument (Douglas et al., 2002). Two of the three galaxies are nearly
round on the sky, and therefore the dynamical analysis was carried outwith spherical models.
A fourth galaxy with a fairly rapidly declining outer velocity dispersion profileis NGC 4697
(Méndez et al., 2001); however,de Lorenzi et al.(2008) have recently shown that models both
with and without massive dark halos can be constructed that fit all the data for this galaxy
essentially perfectly. Unfortunately, the diffuse gas envelopes of theseintermediate luminosity
ellipticals have very low densities, so an independent confirmation with X-raydata is difficult.

The results ofRomanowsky et al.(2003) were criticized byDekel et al.(2005). These au-
thors pointed out that the well known mass-anisotropy degeneracy in the study of velocity dis-
persion profiles does not allow one to unambiguously determine the mass profile, that the triaxial
nature of elliptical galaxies can cause low line-of-sight dispersions at some viewing angles, or
that the PNe could trace young stars generated during the merger formationinstead of the bulk
of the old stars as usually assumed.Douglas et al.(2007) argued thatRomanowsky et al.(2003)
properly took into account orbital anisotropies in the data fitting process, that the effect of tri-
axiality is very unlikely to be present in all three galaxies, that the PN number density and
dispersion profiles match the corresponding integrated light profiles reasonably well, and that
this as well as the universality of the bright end of the PN luminosity function rules out that
PNe only trace a young stellar population.Douglas et al.(2007) concluded that their results
continue to conflict with the presence of dark matter halos as predicted in cosmological merger
simulations.

The issue is important enough to merit a further careful analysis. In this paper we construct
dynamical models of NGC 3379 with the very flexible NMAGIC particle code, making use of
a variety of kinematic data, including SAURON integral field data, slit kinematics,and the PN
dispersion profile.

The NMAGIC method is flexible not only with regard to anisotropy, but also in allowing
axisymmetric or triaxial shapes with radially varying axis ratios. This is importantsince the in-
trinsic shape of NGC 3379 is still in doubt.Capaccioli et al.(1991); Statler and Smecker-Hane
(1999) have suggested that NGC 3379 is a triaxial S0 galaxy seen almost face-on. Statler(2001)
considered triaxial dynamical models and constrained the shape of this galaxy to be axisymmet-
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ric and oblate in the inner parts and triaxial in the outer parts.Shapiro et al.(2006) argue that
the most likely model is one of a moderately inclined oblate system.

The outline of the paper is as follows. In Section4.2 we describe briefly how the various
observational data for NGC 3379 are used in the modelling. In Section4.3we give a few details
of theχ2M2M NMAGIC method, and show how it performs on a mock galaxy data set similar
to that for NGC 3379. In Section4.4 we then construct various dynamical models for the real
galaxy data, both spherical and flattened, in a sequence of potentials with increasing circular
velocity at large radii. As summarized in the final Section4.5of the paper, our main conclusion
is that the combined kinematic data for NGC3379 is consistent with a variety of models with or
without massive dark matter halos.

4.2 Observational Data

We begin by describing the observational data used in this study, which areall taken from the
literature. We also describe here the procedure employed for obtaining thethree-dimensional lu-
minosity density from the surface brightness data. In the following we adopta distance9.8 Mpc
to NGC 3379 (Jensen et al., 2003), effective radiusRe = 47′′ (2.23 kpc), and an absolute B
magnitudeMB = −19.8 (Douglas et al., 2007).

4.2.1 Photometric Data

The photometric data used in the present work consists of the wide-field B-band photometry of
Capaccioli et al.(1990), combined with the HST V-band observations ofGebhardt et al.(2000)
to increase the spatial resolution within the inner10′′. The photometry has been matched up
by assuming a constant color offsetB − V = 1.03. The last eight surface brightness (SB)
points fromCapaccioli et al.(1990), outsideR ≃ 500′′, show fluctuations of an amplitude
which we judged unphysical; these points we have replaced with aSersic(1968) profile fitted
to the galaxy further in. The same Sersic fit is used to extrapolate the SB profile outside the
last measured point atR = 676′′. Similarly, we have replaced the measured ellipticities for
R > 81′′, where the observational uncertainties become large, byǫ = 0.14. Figure4.1presents
the combined photometric data, showing surface brightness and ellipticityǫ. The isophotal
shape parametersa4 anda6 are not available for these data and are thus set to zero. For the
spherical models, we have used the SB profile rescaled to a mean radiusRm ≡

√
ab = a

√
1 − ǫ.

For the axisymmetric models, we have used a constant PA of70◦; the isophotal PA measured
by Capaccioli et al.(1990) are within±3◦ of this value.

4.2.2 Deprojection

In our implementation of NMAGIC a particle model can be fitted to the surface brightness
and/or the deprojected luminosity density,cf. Section4.3. Below we use both options, so first
need to construct models for the three-dimensional luminosity density,j.

In the spherical case the surface brightness can be deprojected uniquely. For an axisymmet-
ric system the deprojection is unique only for edge-on galaxies; for systems inclined at an angle
i with respect to the line-of-sight, the SB map contains information about the luminosity density
only outside a “cone of ignorance” in Fourier space, of opening angle90◦− i, wheni = 90◦ de-
notes edge-on (Rybicki, 1987). Thus, the deprojection of a moderately inclined galaxy results in
undetermined konus densities (Gerhard and Binney, 1996; Romanowsky and Kochanek, 1997).

We deproject the surface brightness of NGC 3379, without correcting for PSF effects, using
the program ofMagorrian(1999). The program finds a smooth axisymmetric density distribu-
tion consistent with the SB distribution for the specified inclination angle, by imposing that the
solution maximizes a penalized likelihood. This ensures that the shape of the 3Dluminosity
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Figure 4.1: Combined photometry of NGC 3379 fromCapaccioli et al. (1990) and
Gebhardt et al.(2000) (black points). The two panels show the surface brightness (SB) profile
and the ellipticityǫ as a function of major axis distance. Beyond500′′ the SB points are from a
Sersic model fitted to the interior data, and outside81′′, the ellipticity has been set toǫ = 0.14.
In the ellipticity panel the error bar with size 0.02 illustrates the typical errors in the outer el-
lipticity measurements. The isophotal shape parametersa4 anda6 are not measured; they are
set to zero. The lines show three-dimensional luminosity models determined from these data
and reprojected onto the sky, for assumed inclinations ofi = 90◦ (edge-on, full lines),i = 50◦

(dashed lines), andi = 40◦ (dash-dotted lines).
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Figure 4.2: Iso-density contours of the deprojected B-band luminosity distribution of NGC 3379
for different inclinations. Solid, dashed, and dash-dotted contours refer to thei = 90◦ edge-on,
i = 50◦, andi = 40◦ deprojected models.

density is smooth, but fori 6= 90◦, there would exist other smooth, slightly different, density
distributions that also fit the SB data. We have used the program to compute luminosity densi-
ties for NGC 3379 for the inclinationsi = 90◦, i = 50◦ andi = 40◦. Figure4.1compares the
observed photometry with the three deprojections reprojected onto the sky.Figure4.2 shows
the corresponding density isocontours of the deprojected B-band luminosity distributions in the
meridional plane. Varying the inclination from90◦ to 40◦ changes the intrinsic shape of the
galaxy from E1 to E3.

4.2.3 Kinematic Data

Stellar-absorption line data

We have taken long-slit absorption line kinematics from the literature. We use data from
Statler and Smecker-Hane(1999) at four different position angles, extending out to radii of
≃ 80′′. We complement these kinematics with the spectroscopic data fromKronawitter et al.
(2000). The major axis slits fromStatler and Smecker-Hane(1999) andKronawitter et al.(2000)
are misaligned by10◦ in PA; however, the data along both major axis slits follow each other
closely. The measurements along the shifted slit ofKronawitter et al.(2000) reach100′′ from
the center. From both kinematic data sets we have the line-of-sight velocity, velocity dispersion,
and higher order Gauss-Hermite momentsh3 andh4 (Gerhard, 1993; van der Marel and Franx,
1993). Figure4.3shows the schematic arrangement of the kinematic slits used in the dynamical
modeling.

In addition to the long-slit kinematics we also use the integral-field spectroscopy obtained
with the SAURON instrument. These kinematic data were kindly provided byShapiro et al.
(2006) and consist of line-of-sight velocity, velocity dispersion and higher order Gauss-Hermite
moments up toh6. The SAURON field-of-view (FoV), shown by the (blue) rectangle in Figure
4.3, extends from−19.6′′ to 24.4′′ along its short boundary and from−34.8′′ to 35.6′′ along
the long boundary. It consists of9612 small grid cells, which serve as the basis grid to de-
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Figure 4.3: Schematic view of the positions with kinematic data as used to construct the dy-
namical models. The slits fromStatler and Smecker-Hane(1999) andKronawitter et al.(2000)
are coded in red and black, respectively. Boxes along the slits show the region of the galaxy
for which respective kinematic data points were derived; these boxes are used to determine the
luminosity-weighted Gauss-Hermite moments. The blue rectangle indicates the SAURON field-
of-view. The ellipse shown is oriented along PA=70◦, the average major axis of the photometry,
and has a semi-major axis of lengthRe and axis ratioq = 0.9.
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fine the1602 voronoi cells on which the kinematic measurements are given. This results in
a total of9612 kinematic SAURON observables, as well as1602 bin-luminosity observables.
The SAURON data are compared to dynamical models in Section4.4, and are reproduced in
some of the figures there. Each of the six panels shows the1602 voronoi bins, giving (from
left to right) v, σ, h3, h4, h5 andh6. A comparison of the SAURON data with the data of
Kronawitter et al.(2000) along their major axis is given in Figure4.4. Overall, the two data
sets agree well with each other. The same is true for the comparison of the SAURON data with
Statler and Smecker-Hane(1999), as shown byShapiro et al.(2006).

Both the SAURON data and the slit data are slightly asymmetric with respect to the center of
the galaxy. If we denote the original SAURON dataset withI(x, y|vlos, σlos, h3, h4, h5, h6), and
with I∗(x, y|vlos, σlos, h3, h4, h5, h6) = I(−x,−y, | − vlos, σlos,−h3, h4,−h5, h6) the dataset
obtained fromI by point-symmetrical reflection with respect to the origin, we can construct a
symmetrized dataset̄I ≡ 0.5(I + I∗). This symmetrized datasetĪ has aχ2 per data point with
respect toI of χ2/N = 1.01 when the original errors are used. Any point-symmetric model fit
(spherical, axisymmetric, triaxial) to the original dataI will therefore have a systematic error
floor of this magnitude. In the models below, we will actually fit the symmetrized SAURON
data to avoid any systematic effects, but keep the original errors on both sides of the galaxy
separately (see alsoShapiro et al., 2006).

In a similar fashion, we have constructed symmetrized slit data sets. To do this we average
the two points at nearly similar radius on both sides of the slit with respect to the center. Taking
into account the sign reversals ofv andh3, we take for the symmetrized data point the weighted
mean of the points on both sides, with weights proportional to the inverse square of the measure-
ment errors, and assign a new weighted error for the averaged point. If σ+ andσ− are the errors
on both sides, the weights arew+ = 1/σ2

+, w− = 1/σ2
−, and the new errorσ is given by the

maximum of2/σ2 = 1/σ2
+ + 1/σ2

− and half of the deviation between the original data points
on both sides. Again, the symmetrized data have aχ2/N = 1.0 systematic deviation from the
original data, and therefore we will fit the symmetrized data below to avoid the model being
pulled around by points with small error bars but large systematic deviations.The second panel
of Figure4.4compares the symmetrized SAURON data with the symmetrizedKronawitter et al.
(2000) data along the same slit as before. Again, the two data sets agree well with each other.

PNe data

Planetary nebulae (PNe) are dying low- to intermediate mass stars that emit mostof their light
in a few narrow lines of which the[OIII]λ5007 is the most prominent one. Because there are
hardly other emission sources in elliptical galaxies, they can be detected fairly easily, and once
identified, their line-of-sight velocity can be estimated from the Doppler shiftof the emission
line. The PN population in elliptical galaxies is expected to arise from the underlying galactic
population of old stars and hence the PNe can be used as kinematic tracers for the stellar distri-
bution. Their number relative to the luminosity of the galaxy is parametrized by theα parameter,
which is a function of colour (Hui et al., 1995).

Douglas et al.(2007) processed observations of NGC 3379 conducted with the Planetary
Nebula Spectrograph (PN.S) instrument and detected 214 spatially and spectrally unresolged PN
candidates of which 191 are assigned to NGC 3379. Using the “friendless” algorithm applied
by Merrett et al.(2003) they identified a small number of velocity outliers, probably unresolved
background galaxy contaminants, which would be uniformly spread in velocity. The algorithm
determined that2 emission objects were more thann = 5 standard deviations away from the
centroid of the velocity distribution of theirN = 15 nearest neighbours, andm = 5 more
thann = 3 standard deviationsσ (see Fig. 8 ofDouglas et al., 2007). The3σ line itself has
considerable uncertainty at large radii, due to the small number of PNe found there. Thus the
exclusion of the outermost outlier is somewhat uncertain. Because this object does have some
influence on the outermost velocity dispersion point, we will compare the modelsto the data
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Figure 4.4: Comparison of the line-of-sight velociy distribution data along thegalaxy’s major
axis (PA = 70◦). The black circles correspond to the SAURON data and the open square
symbols in red show theKronawitter et al.(2000) data. The upper panel compares the original
datasets, the lower panel is for the symmetrized data. In each panel from top to bottom are
shown:v, σ, h3, h4, h5, andh6, for the latter two there are only SAURON data.
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obtained both with and without this PN.
The radial distribution of the PNe in NGC 3379 was found to be consistent withthe stellar

density profile, and their kinematics consistent with absorption-line data in the region where the
data sets overlap. Because the kinematics of the PNe in NGC 3379 are dominated by random
motions with little azimuthal variation, the velocity dispersion can be computed in radial annuli
without losing significant dynamical structure. We will thus use the radial run of the azimuthally
averaged PN velocity dispersion in the dynamical modelling, but also comparethe models to
the individual velocities in a relative likelihood sense (cf. the tables and figures in Section4.4).

4.3 NMAGIC modelling

To investigate the amount of dark matter consistent with the kinematic data for NGC3379,
we construct a range of dynamical models for the stellar component of this galaxy. We use
the flexibleχ2-made-to-measure (χ2M2M) particle method as described and implemented in
the NMAGIC code byde Lorenzi et al.(2007, 2008). χ2M2M is a development of the M2M
algorithm ofSyer and Tremaine(1996) that is suitable for modelling observational data. The
M2M methods work by gradually adjusting individual particle weights as the model evolves,
until the N-particle system reproduces a set of target constraints. Inχ2M2M the standardχ2

statistics is used in the function to be maximized upon convergence of the weights. This allows
for a proper treatment of observational errors, and the quality of the final model can be assessed
directly from the target data.

Compared to the familiar Schwarzschild method the particle approach is relatively new
and there are as yet only a few galactic dynamics studies in which it has beenemployed.
Bissantz et al.(2004) made a first practical application of the M2M method ofSyer and Tremaine
(1996) and constructed a dynamical model of the Milky Way’s barred bulge and disk by con-
straining the projected density map. First attempts to extend the M2M method to account for
kinematic observables in addition to density constraints were made byDe Lorenzi et al.(2006);
Jourdeuil and Emsellem(2007). However, a proper treatment of observational errors was not yet
included in their implementations.de Lorenzi et al.(2007) incorporated this in theirχ2M2M al-
gorithm and demonstrated the potential of the NMAGIC code by constructing particle models
for spherical, axisymmetric, triaxial and rotating target stellar systems. Some extensions of the
method and the first detailed modelling of slit kinematic and PN data for an elliptical galaxy
(NGC 4697) are described inde Lorenzi et al.(2008).

The NMAGIC method is flexible not only with regard to the orbit structure, butalso in
allowing axisymmetric or triaxial shapes with varying axis ratios. Contrary to Schwarzschild’s
method, the final stellar density and potential need not be known beforehand. This makes it
ideal for the present study because different intrinsic shapes have been suggested for NGC 3379
(see the Introduction) and the issue of whether the kinematics require or allow dark matter may
well be connected not only with the orbital anisotropies but also with the detailed shape of the
stellar density distribution of the galaxy. Given that NGC 3379 is nearly round on the sky, we
have constrained the models in this paper to be axisymmetric but have allowed radial variations
in axis ratio. This has proved sufficient for answering our main science question.

4.3.1 Luminous and dark mass distributions

As in de Lorenzi et al.(2008), we assume that the luminous mass of NGC 3379 follows the light
and we can characterize it by a constant mass-to-light ratioΥ, so that the stellar mass density
is given byρ⋆ = Υj. The total gravitational potential is generated by the combined luminous
mass and dark matter distributions,φ = φ⋆ + φL, whereφ⋆ is generated byρ⋆ = Υj. Only the
luminosity densityj is represented by theN -particle system. Its potential is computed using
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a spherical harmonic decomposition as described inSellwood(2003); de Lorenzi et al.(2007).
The stellar potential is allowed to vary during the modeling process, but the DMhalo is rigid.

Here our aim is not to determine the detailed shape of the dark matter halo in NGC 3379,
but rather to first see whether the PN velocities allow or require any dark matter at all in this
galaxy. To answer this question we will investigate a one-dimensional sequence of potentials
whose circular velocity curves vary at large radii between the near-Keplerian decline expected
when the mass in stars dominates, and the nearly flat shapes generated by massive dark halos.
As in de Lorenzi et al.(2008) we thus represent the dark matter halo by the logarithmic potential
(Binney and Tremaine, 1987)

φL(r) =
v2
0

2
ln(r20 + r2). (4.1)

4.3.2 Model and target observables

Target observables include surface or volume densities and line-of-sight kinematics. For mod-
elling the luminosity distribution of NGC 3379, we generally use the deprojected luminosity
density of NGC 3379, expanded in spherical harmonic coefficientsAlm on a 1-D radial mesh
of radii rk. The corresponding model observables are computed from the particlesbased on a
cloud-in-cell (CIC) scheme; seede Lorenzi et al.(2007).

In some models, we do not constrain the three-dimensional luminosity density but only the
stellar surface density, leaving the former free to evolve. In the remaining cases, we constrain the
model by both the deprojected luminosity density and the projected surface density. In a similar
spirit as for the volume density, we use as target constraints for the observed SB distribution the
coefficients of a Fourier expansion in the azimuthal angle, computed on a 1-D radial mesh of
projected radiiRk. For the corresponding model observables, the particles are assignedto the
radial grid using a CIC scheme, and the Fourier coefficientsam andbm for the particle model
on shellk are computed via

am,k = L
∑

i

γCIC
ki cos(mϕi)wi (4.2)

bm,k = L
∑

i

γCIC
ki sin(mϕi)wi, m > 0 (4.3)

wherewi are the particle weights,ϕi their angular positions, andγCIC
ki is a radial selection

function. We use units for which the lightLi of a stellar particle can be written asLi = Lwi

with L the total luminosity of the galaxy.
As kinematic constraints, we use the luminosity-weighted Gauss-Hermite coefficients from

the SAURON or slit data, and luminosity-weighted velocity moments for the PN data.For the
SAURON data (Shapiro et al., 2006), the luminosity-weighted coefficients are determined from
the truncated Gauss-Hermite representation of the line-of-sight velocity distribution (LOSVD)
up to orderh6 and the luminosity in the corresponding Voronoi bin. For the slit kinematics
(Statler and Smecker-Hane 1999; Kronawitter et al. 2000), they are constructed again from the
measured Gauss-Hermite moments, up to orderh4, and the luminosity in the slit section corre-
sponding to the relevant LOSVD. The PN data (Douglas et al., 2007) are modelled either as 1-D
radial dispersion profile or as a discrete set of velocities; in the former case we use as suitable
observables the second velocity momentsv2

los, luminosity-weighted by the number of PNe per
radial bin.

The corresponding model observablesyj are construced from the particles via equations of
the form

yj(t) =
N∑

i=1

wiKj [zi(t)] , (4.4)
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wherewi are the particle weights andzi are the phase-space coordinates of the particles,i =
1, · · · , N . Here the KernelKj corresponds to the observableyj . Detailed expressions for the
kinematic model observables are given inde Lorenzi et al.(2007, 2008).

In general, we replace the observables by the corresponding temporallysmoothed quanti-
ties to increase the effective number of particles in the system,cf. Syer and Tremaine(1996);
de Lorenzi et al.(2007). For the parameters chosen, the smoothing is typically over∼ 103

correction time steps.

4.3.3 Fitting a particle model to the observations

Performing an NMAGIC fit to the observational constraints proceeds by evolving the force-of-
change (FOC) equations for the particle weights,

dwi(t)

dt
= εwi(t)


µ ∂S

∂wi
−
∑

j

Kj [zi(t)]

σ(Yj)
∆j(t)


 (4.5)

depending on the discrepancies between model (yj) and target observables (Yj), ∆j(t) = (yj −
Yj)/σ(Yj). Hereσ(Yj) in the denominator is the error in the target observable. Evolving the
particle weights to convergence in this way is equivalent to maximizing the merit function

F = µS − 1

2
χ2 (4.6)

with respect to the particle weightswi, where for the profit functionS we use the entropy, and
the standardχ2 measures the goodness of the fit. The parameterµ controls the contribution of
the entropy function toF . The entropy term pushes the particle weights to remain close to their
priors, so models with largeµ will have smoother distribution functions than those with small
µ. The best choice forµ depends on the observational data to be modeled,e.g.spatial coverage
and phase-space structure of the galaxy under consideration, but also on the initial conditions,
and will be determined for the NGC 3379 dataset in the following Section4.3.4.

Any NMAGIC model fit starts from a suitable initial model. For the models presented in this
paper, we have used as initial conditions aHernquist(1990) model particle realization generated
from a distribution function (DF) using the method described inDebattista and Sellwood(2000).
The particle realization consists of7.5×105 particles, has a scale lengtha = 1, maximum radius
rmax = 60, and a total luminosity of unity. In model units, the gravitational constant isG = 1.
When we match the model lengthscale to the effective radius of NGC 3379 at adistance of
9.8Mpc, one model unit length corresponds to50′′.

4.3.4 Isotropicγ-model

To prepare for the modeling of NGC 3379, we now construct a sphericalisotropic mock galaxy
with known intrinsic properties to determine the optimal value of the entropy “smoothing”
parameterµ in equation (4.6). Following a similar approach as inGerhard et al.(1998) and
Thomas et al.(2005) we determine for which value ofµ the fitted particle model best repro-
duces the intrinsic velocity moments of the input mock galaxy model. The “best” value of µ
depends on the observational data to be modelled and their spatial coverage, on the phase-space
structure of the galaxy, but also on the initial conditions from which the NMAGIC modelling
starts. The same value can then be used for the modelling of NGC 3379, provided the mock
galaxy is a reasonable approximation to the real galaxy.

For the luminosity density of the mock galaxy we choose a flattenedγ-model,

j(m) =
(3 − γ)L

4πq

a

mγ(m+ a)4−γ
(4.7)
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Figure 4.5: A comparison of the surface brightness profile of the isotropicγ-model (dotted line)
with that of NGC 3379 (full line), along the major axis of NGC 3379.

whereL anda are the total luminosity and scale radius,m2 = R2+(z/q)2, andq is the flattening
(Dehnen and Gerhard, 1994). We choose the parameters such that the surface brightness closely
resembles that of NGC 3379, i.e.,q = 1.0, γ = 1.0, L = 1.24 × 1010 L⊙,B anda = 0.8 kpc,
which corresponds toRe ≈ 30′′. Figure4.5 shows that the surface brightness profile of the
mock galaxy is an excellent approximation for NGC 3379.

We calculate LOSVD kinematics for the mock galaxy from internal higher-order velocity
moments, using a program ofMagorrian and Binney(1994) that solves the higher-order Jeans
equations in the model’s self-consistent potential. We set the mass-to-light ratio of the isotropic
γ-model asΥB = 5. Before calculating the LOSVD parameters, the velocity moments are
slit-averaged to account for the observational setup of the slits given in Section4.2.3. To the
final LOSVD parameters we add Gaussian random variates with1σ dispersions equal to the
respective error bars of the corresponding NGC 3379 measurements at that point. In this way
we computev, σ, h3 andh4 for the γ-model along all slits shown in Figure4.3. Figure4.6
compares the kinematics of NGC 3379 with the isotropicγ-model along the major axis.

In addition, we construct SAURON mock kinematics for each voronoi cell inthe NGC 3379
data as follows. We first compute the velocity profiles from higher order velocity moments at a
few nearby radial positions. Using the spherical symmetry, we interpolatev, σ and the higher
order moments to the mid-cell positions of the fine grid described in Section4.2.3, using a spline
interpolation scheme. Then we compute the mock data for each voronoi bin bya luminosity
weighted average over those cells of the fine grid which contribute to the voronoi cell under
consideration. Finally, we add Gaussian random variates to the kinematics with1σ dispersions
corresponding to the respective SAURON error bars in this voronoi bin. The SAURON pseudo
data are shown in the top panels of Figure4.7.

We do not construct mock PNe data and neglect them for the entropy tests,but we need to
complete the mock observational data set with the photometric constraints. In theentropy tests
here, we restrict ourselves to spherical models, so in the expansion of the luminosity density
(equation 4.7) the only non-zero term in the spherical harmonics series (cf. Section4.3.2) is
the radial light in shells,Lk =

√
4πA00,k. However, to ensure sphericity, we also need to use

the higher order coefficientsA20,k, · · · , A22,k andA66,k as constraints, set to zero. We define
these photometric observables on a grid of radiirk, quasi-logarithmically spaced in radius with
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Figure 4.6: Comparison of the LOSVD kinematics of theγ-model mock galaxy with those of
NGC 3379 along its major axis, and withγ-the particle model fit forµ = 2 × 104. The red
open squares show the NGC 3379 data fromStatler and Smecker-Hane(1999), the black circles
show theγ-model pseudo data, and the solid line the self-consistent particle model obtained
from fitting the pseudo data. The model data points are averages over the same slit cells as the
target data (see Fig.4.3), and are connected by straight line segments. The panels from top to
bottom are forv, σ, h3 andh4.

Figure 4.7: Top panel: SAURON mock kinematic data for a spherical isotropicγ-model. Bot-
tom panel: Self-consistent particle realization obtained from a model fit withµ = 2×104. From
left to right: v, σ and the higher order momentsh3-h6.
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Figure 4.8: Top: Deviation rms∆(µ) between the internal velocity moments of the finalγ-
particle model and the input model. Bottom: The circles showχ2 per data point of the model
fit to the kinematic and photometric targets as a function of entropy parameterµ. The triangles
display the same but forF , cf. equation (4.6). The starred symbol indicates the optimal value
of µ, the full dot theµ value appropriate to avoid bias against rotation and anisotropy.

inner and outer boundaries atrmin = 0.01′′ andrmax = 2500′′. We assume Poisson errors for
the radial lightσ(Lk) =

√
LkL/N where N is the total number of particles used in the particle

model andL is the total light of the system. To estimate the errors in the higher order luminosity
moments, we use Monte-Carlo experiments in which we generate particle realizations of the
density field of the target system with7.5 × 105 particles, which is the same number as in the
χ2M2M models.

We then construct self-consistent particle models for the isotropicγ-model target in a two
step process, using the mock observations as constraints for NMAGIC. First, we start with
the particle model described in section4.3.2and evolve it using NMAGIC to generate a self-
consistent particle realization with the desired luminosity distribution (γ-particle model), fitting
only the photometric constraints. Then, we use theγ-particle model as initial conditions to fit
both the kinematic and photometric target constraints for different values ofµ.

The results are presented in Figure4.8. The lower panel shows the goodness of the fit as
a function ofµ, both in terms of the normalizedχ2 per data point and in terms of the merit
function F from equation (4.6). The upper panel shows the rms∆ difference between the
internal velocity moments of the mock galaxy and the particle model realizations obtained for
different values ofµ. The intrinsic kinematics of the particle models are computed by binning
the particles in spherical polar coordinates, using a quasi-logarithmic grid with 20 radial shells
bounded byrmin = 0.01′′ andrmax = 500.0′′, 12 bins in azimuthal angleφ, and 21 bins equally
spaced insin θ. As can be seen from the top panel of Figure4.8, the minimum in the rms∆ as
a function ofµ for which the model best recovers the internal moments of the input model is at
µ ≃ 7.5 × 104. For larger (smaller)µ, the rms∆ is larger because of oversmoothing (excess
fluctuations) in the model. Especially atµ values larger than the minimum rms∆ increases
rapidly. The lower panel of the figure shows thatχ2 per data point is of order unity for a large
range ofµ but then increases forµ ∼> 3 × 104.

At first sightµ = 7.5 × 104 at the minimum of rms∆ might seem to be the best choice.
However, a more conservative value isµ = 2 × 104, such that the entropy has not yet degraded
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Figure 4.9: Internal kinematics of the isotropic target galaxy and its particle realization in the
equatorial plane. From top to bottom:σR, σφ, σz, vφ and anisotropy parameterβθ. The kine-
matic quantities of the input mock galaxy (circles) are very well fitted by the particle model
generated forµ = 2 × 104 (lines). Dotted lines show the model kinematics in different az-
imuthal bins in the equatorial plane, and the solid lines show the azimuthal average.

the fit to the data (oversmoothing). This also takes into account that theHernquist(1990) model
we have used as a starting point for this test is not very different from the target galaxy, so that
the particle weights did not need to change too much. The choice ofµ = 2 × 104 has proved
good for near-isotropic models; it is indicated by the starred symbol in Fig.4.8.

However, in our modelling of NGC 3379 we have found that for strongly anisotropic targets,
this value ofµ is too large. The reason for this is that the entropy term tries to retain a narrow
distribution of particle weights around their priors which, because our initialconditions are
near-isotropic, biases the model against anisotropic orbit distributions. To allow the models to
converge towards strongly anisotropic orbit distributions we have therefore used in Section4.4
a lower value ofµ = 2 × 103. This is indicated by the solid symbol in Fig.4.8.

The fit of the particle model to the kinematic data of the isotropicγ-model obtained with
µ = 2 × 104, and its intrinsic kinematic properties, are illustrated in Figures4.6, 4.7 and
4.9. Figure4.6compares the target kinematics and the self-consistent particle realization along
the galactic major axis. Figure4.7 shows the SAURON mock data and compares them to the
corresponding kinematics obtained from the particle model. The model fit to all kinematic data
is excellent. In fact, it is evident from Fig.4.7 that the model is smoother than the mock data
themselves, which is a consequence of orbit-smoothing and time-smoothing.

Figure4.9 shows how well the internal kinematics of the particle model forµ = 2 × 104

compare with the intrinsic kinematics of the mock galaxy target. All velocity dispersionsσR,
σφ andσz, the streaming rotationvφ, and even the anisotropy parameterβθ = 1 − σ2

θ/σ
2
r (zero

for this isotropic model) are very well reproduced by the model fit. The final particle realization
is indeed isotropic.

Mass-to-light ratio So far all model fits have been made with the mass-to-light ratio fixed
to the actual value used for the mock galaxy,Υ = 5. Now we investigate how accurately we can
recoverΥ with the dynamical models, given the spatial extent and quality of the observational
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Figure 4.10: Recovering the mass-to-light ratio of the mock galaxy. The quality of the model
fit as a function of mass-to-lightΥ is shown in terms ofχ2 per data point (circles) and merit
functionF (triangles). All models are generated from the target pseudo data forµ = 2 × 104.
The input mass-to-light ratioΥ = 5 is recovered as the minimum in the curveχ2/N(Υ), where
the model fit hasχ2/N ≃ 1.

data. To this end we fit particle models to the mock galaxy observations for different mass-to-
light ratios in the rangeΥ ∈ [3, 10], keeping the entropy parameter fixed atµ = 2 × 104. The
results are presented in Figure4.10, which shows how the quality of the model fit varies as a
function ofΥ, both in terms ofχ2 per data point and merit functionF . As expected, the best
model is obtained forΥ = 5 and hasχ2 per data point approximately unity.

4.4 Dynamical models of NGC 3379

In this section we construct dynamical models for NGC 3379 to learn about itsstellar and
dark matter distribution. We investigate spherical and axisymmetric models with andwithout
dark matter halos, and fit the photometry, SAURON integral field data, slit kinematics, and
PNe velocity data. Our aim in this paper is not to constrain the detailed halo mass profile of the
galaxy, but only to ascertain whether a dark matter halo is allowed, or required, by the kinematic
data. Thus, as inde Lorenzi et al.(2008) we investigate a simple sequence of potentials which
include the contribution from the stellar component and a halo potential as in equation (4.1).
The circular speed curves corresponding to these potentials vary at large radii from the near-
Keplerian decline expected when the mass in stars dominates, to the nearly flatshapes generated
by massive halos. They are shown in Figure4.11and their halo potential parameter are given in
Table4.1.

In the following subsections, we describe spherical models (§4.4.1) and oblate models
(§4.4.2), as well as a few models without imposed axisymmetry constraints (§4.4.3), and then
discuss the significance of the fits to the data in a separate subsection (§4.4.4). To begin with
we construct self-consistent particle models for NGC 3379 in which the distribution of stars is
spherical. This allows for an easy comparison with previous work (Romanowsky et al., 2003;
Douglas et al., 2007).
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Figure 4.11: Circular velocity curves for the potentials used in the dynamicalmodelling, in-
cluding the self-consistent stars-only model A (dashed line), and models including different
spherical dark matter halos in addition to the stellar component (solid lines, from bottom to
top: models B, C, D and E). For this figure the distribution of stars is assumed tobe spherical
with mass-to-light ratio as given by the final NMAGIC fit to the data in the respective spherical
potential.
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HALO r0/Re v0/kms
−1 χ2/N χ2

alm/Nalm χ2
sb/Nsb χ2

sau/Nsau χ2
sl/Nsl χ2

PN/NPN −F Υ

A 0 0 0.208 0.137 − 0.176 0.565 0.371 2131.3 8.23
B 3 90 0.215 0.162 − 0.184 0.548 0.323 2231.9 8.03
C 3 130 0.216 0.201 − 0.184 0.539 0.340 2320.1 7.82
D 3 200 0.219 0.271 − 0.186 0.522 0.564 2622.9 7.28

D+ 3 200 0.362 0.641 − 0.300 0.814 1.002 4409.2 7.57
E 3 260 0.237 0.484 − 0.192 0.535 1.557 3175.2 6.73

E∗ 3 260 0.241 − 0.084 0.215 0.522 0.504 2649.4 6.52

Table 4.1: Table of parameters and fit results for models of NGC 3379 with spherical potentials.
Models A-E correspond to the circular rotation curves in Fig.4.11. Model D+ is the same as
D but for a higher value of the entropy. Model E∗ is the self-flattened oblate model in halo E
of Section4.4.2. For these models columns (1)-(3) give the model code and the parametersr0
andv0 used in equation (4.1) for the respective dark halo potential. The next six columns list
theχ2 values per data point, for all observables [column (4)] and for the luminosity density and
surface brightness constraints, the SAURON kinematic observables, slit kinematic observables,
and PN observables separately [columns (5)-(9)]. Column (10) givesthe numerical value of
the merit function in equation (4.6), and column (11) the final (B-band) mass-to-light ratio.
The respective number of constraints areN = 12997 for A-E andN = 12557 for E∗, whith
Nalm = 640,Nsb = 200,Nsau = 11214,Nsl = 1135,NPN = 8.

4.4.1 Spherical models

Model fits

First we must determine the photometric and kinematic observables. Analogousto Section
4.3.4, we use the spherical harmonics expansion coefficientsAlm of the deprojected luminosity
density as target data to constrain the particle models. Specifically, we useA00, A20, A22, · · · ,
A66, but set all terms higher thanA00 to zero, adopting the same radial grid as in Section4.3.4.
Errors for the luminosity terms are estimated as in Section4.3.4. As kinematic observables, we
use the SAURON and slit kinematics, as well as the binned PN velocity dispersion profile; see
Sections4.2.3and4.3.2. The SAURON data and most slit data are symmetrized, only the slit
parallel to their minor axis ofKronawitter et al.(2000) cannot be symmetrized and for this slit
the original kinematic data points are used.

We fit the particle models to these data in the following three-step process. (i) We start from
the initial particle realization described in Section4.3.3and evolve it with NMAGIC to a self-
consistent model that reproduces the targetAlm. (ii) Starting with this density model we then
construct dynamical models, fitting the full set of photometricandkinematic target observables.
If the potential includes a dark matter halo, we first relax the density model for 1000 steps in
the total gravitational potential (cf. Section4.3.1), assuming a mass-to-light ratio of 8. This
is to make sure that the model is in approximate equilibrium before we start the fit.After this
relaxation phase, we evolve the particle system for∼ 105 NMAGIC correction steps while
fitting the complete set of constraints. During the correction phase the mass-to-light ratio Υ is
adjusted in parallel, using its own force-of-change equation as given inde Lorenzi et al.(2008).
After each correction step, the potential generated by the particles is updated but the dark matter
potential (if present) is constant in time. In the fitting process the entropy parameter has value
µ = 2 × 103; cf. the discussion below. (iii) In the final step, we keep the global potential
constant and evolve the system freely for another5000 steps, without changing the particle
weights (phase-mixing). With this the fitting process is complete. Thereafter wegenerally
evolve the model with all potential terms active for a further 10000 steps to test its stability. For
reference, 10000 correction steps in the self-consistent potential correspond to≈ 110 circular
rotation periods atRe, or 5.8 Gyr.
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Figure 4.12: Comparison of the surface brightness profiles of the spherical models with the
photometric data (points). The lines are for the spherical models A-E and theself-flattened
model E∗.

Results

In this way we obtain spherical dynamical models for NGC 3379, fitting to the density ex-
pansion and all kinematic data including the PN velocity dispersion profile. Model A is the
self-consistent model without dark matter halo, models B-E have halos of increasing circular
velocities, as shown in Figure4.11and Table4.1. The quality of fit for these models can be
judged from Table4.1, which gives the numerical values of the merit functionF and lists var-
ious values ofχ2 per data point, both those obtained globally for all the data, and those found
for each of the four data sets separately (density expansion, SAURON,slit, and PNe). The3σ
outlier point discussed in Section4.2.3is not included in the fits and in theχ2

PN in Table4.1,
but its influence will be discussed below.

Figures4.12-4.15compare the different data with the models. Fig.4.12shows the surface
brightness profiles, Fig.4.13the integral field LOSVD parameter fields, Fig.4.14the kinematics
along several slits, and Fig.4.15the PN velocity dispersion profiles. The model SB profiles fit
the observed profile very well, and agree with each other within the thickness of the lines in the
plot. The SAURON data are fitted withχ2

sau/Nsau ≃ 0.2 by all our spherical models. Notice
that the particle noise in the models is significantly smaller than the noise in the symmetrized
data. Also theχ2

sl/Nsl for the combined slit data are less than unity; the plots for models (B,D)
in Fig. 4.14show a few small systematic deviations but generally the fits are very good. In the
central 30 arcsec the slit data are dominated by the SAURON data. Notice thatthese spherical
models are not constrained to be spherically symmetric also in theirkinematicproperties; hence
they can also fit the small rotation of NGC 3379 with high accuracy.

The comparison of the models to the PN.S data is shown in Fig.4.15. If we use the outer-
most dispersion point as given inDouglas et al.(2007), models A-D with no or moderate halos
provide a good match to the data, but the most massive halo model E fits less well,being high
by ≃ 2σ with respect to the outermost dispersion point and by≃ 1.3σ with respect to the
second-outermost point. If we include the object classified as3σ “friendless” outlier (see Sec-
tion 4.2.3and Douglas et al., 2007) in the outermost bin, the corresponding outer PN dispersion
point increases significantly; see the red open circle and error bar in Fig. 4.15. Then model E
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Figure 4.13: Symmetrized SAURON kinematic data for NGC 3379 (top row) compared with
similar data extracted for the spherical models B and D and the self-flattened model E∗ (lower
three rows). Notice that the particle noise in the model panels is significantly smaller than the
noise in the corresponding data fields for all LOSVD parameters shown. In the panels forσ and
h4 a slightly colder ring-like structure with largerh4 hints at some deviations from spherical
symmetry.
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also fits the PN dispersion profile, overestimating the outermost velocity dispersion point by less
than1σ.

The intrinsic kinematics of these spherical models is shown in Figure4.16. One recognizes
the expected signature of the well-known mass-anisotropy degeneracy (Binney and Mamon,
1982): In the more massive halos, the same falling line-of-sight dispersion profile requires
larger radial anisotropy. Thus in the models with halo the radial anisotropy rises outside 1-2Re.
Particularly the more massive halo models D and E require strongly radially anisotropic orbit
distributions (β ≃ 0.9) to be consistent with the falling dispersion profile of NGC 3379. Radial
anisotropy was suggested as one of the possible causes for the measured profile byDekel et al.
(2005), based on a comparison with their merger models. However, the typical anisotropies in
these models are more moderate (β ≃ 0.5).

Despite their strong radial anisotropy, the massive halo models D and E showno sign of an
instability when evolved freely after the model fitting and phase-mixing. Rather, they evolve
very slowly, reaching after 5.8 Gyr of evolution a configuration with slightly triaxial shape
(ǫ < 0.1) in which the initial slow rotation has mostly gone away. A similar evolution is seen
for the near-isotropic model A without dark matter halo, indicating that this evolution may be
connected to these equlibria being spherically symmetric only in their mass distribution but, due
to the rotation. not in their kinematics. In any case, the PN dispersion profilesdo not change
during the evolution, i.e., the constraints on the dark matter halo remain as before.

In conclusion, the results of this section show that both near-isotropic spherical models with
low density dark matter halos, and radially anisotropic spherical models with massive halos
provide excellent fits to the available kinematic data for NGC 3379, including thePN dispersion
profile to∼ 7Re. A more quantitative discussion is deferred to Section4.4.4.

Entropy smoothing

The entropy term in the force-of-change equation (4.5) smoothes the particle models by trying
to maintain the values of the particle weights near their priors, here chosen as1/N . Because
all fits start from an isotropic system with equal weight particles, the entropy smoothing thus
biases the final models towards isotropy and slow rotation. To allow the models todevelop
strong radial anisotropy in their outer parts, it is necessary to reduce thevalue of the entropy
parameter below that appropriate for an isotropic system (see Section4.3.4). Otherwise the
constraints from the small number of PN dispersion points with their relatively large Poisson
error bars are overwhelmed by the entropy smoothing. Fig.4.15and Table4.1show that model
D+ constructed withµ = 2× 104 is indeed degraded in its ability to fit the PNe data, relative to
model D which is forµ = 2 × 103 in the same halo. On the other hand, the results from model
D0 with µ = 0 are only slightly different from those for model D. Hence our choice of using
µ = 2 × 103 throughout.

Contrary to second derivative regularisation, say, entropy smoothing does not distinguish
between local and global uniformity of the particle weights; it likes to haveall particle weights
similar to their priors. Thus ifµ is chosen such as to allow large differences in weight between
radial and circular orbits, it also allows similar differences between particles on neighbouring
orbits if this is preferred by the data. Withµ = 2×103 the models can therefore fit the data with
χ2/N < 1 as seen in Table4.1. The effect is strongest for the spherical models because these
have a larger number of independent orbits than less symmetric systems. However, Fig.4.16
shows that the intrinsic velocity moments are smooth functions of radius, and below we will see
that also the LOSVDs are smooth functions. Thus the good fits of the variousmodels to the PN
data are not achieved by large local variations of the orbital weights for orbits near the PN data
points.
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Figure 4.14: Comparison of models B (dashed lines), D (full lines) and E∗ (dash-dotted lines)
with the symmetrized slit data along the major and minor axes fromStatler and Smecker-Hane
(1999) (top and middle panel) and the unsymmetrized minor-axis parallel slit from
Kronawitter et al.(2000) (bottom panel). The model data points are averages over the same
slit cells as the target data (see Fig.4.3), and are connected by straight line segments.
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Figure 4.15: Comparison of the PNe velocity dispersion profiles of the spherical models with
the PN.S data (diamonds). The dashed line shows the self-consistent particle model A. The solid
lines represent the dynamical models including a DM halo, i.e., from bottom to topmodels B,
C, D, and E. The heavy dotted line is for the higher-entropy model D+, and the dash-dotted line
is for the self-flattened model E∗.

Figure 4.16: Intrinsic kinematics of the final spherical models A (dashed lines) and B,D,E (full
lines), and the self-flattened model E∗ (dash-dotted lines). Panels from top to bottom show
the radial, azimuthal, and vertical velocity dispersion profiles, the mean azimuthal streaming
velocity, and the meridional anisotropy profile, all computed in the equatorialplane through the
models that coincides with the sky plane. The models in the more massive dark matter halos are
more radially anisotropic, as expected.
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Figure 4.17: Edge-on surface brightness contours obtained when viewing the kinematically
deprojected oblate model E∗ perpendicular to the line-of-sight.

4.4.2 Oblate models including dark matter halos

There is some evidence that NGC 3379 may be non-spherical.Capaccioli et al.(1991) argued
that the bulge of NGC 3379 is remarkably similar to the one of NGC 3115, a well-known
S0 galaxy. Further, also the SAURON kinematic data, shown in the upper panel of Figure4.13,
show signatures of non-sphericity, particularly, a faint cold ring visible inthe velocity dispersion
andh4 panels with projected radiusR ≈ 15′′1 Thus to understand how much dark mass around
NGC 3379 is allowed by the kinematic data for this galaxy may require more general models
than spherical ones. In this section we will present oblate axisymmetric modelsin the family of
halo potentials considered already in the last section.

Face-on oblate model in a spherical potential

As a first step we attempt to construct a model for NGC 3379 in a massive dark halo, in which
the distribution of stars is flattened along the line-of-sight. This model is required to have a
small line-of-sight velocity dispersion at large radii, thus will be flattened in accordance with
the virial theorem (e.g. Binney and Tremaine, 1987). We do not know beforehand what the
required shape of this model must be, so we will use the NMAGIC method to findit for us,
keeping the potential spherically symmetric. For illustration we embed this model in halo E,
and will hence hereafter denote it as model E∗.

To construct this model we replace theAlm constraints (cf. Section4.4.1), which before
imposed a spherical shape on the particle distribution, by the Fourier moments of the surface
brightness distribution given in Figure4.1. They are computed from the photometry as in Sec-
tion 4.3.2, on a grid in projected radius quasi-logarithmically spaced betwenRmin = 0.01′′ and
Rmax = 1500′′. The higher-order moments are set to zero, enforcing axisymmetry. We then
start from spherical initial conditions and use NMAGIC to flatten the particle model through
fitting the kinematic observables, particularly the PN velocity dispersion profile. As kinematic

1As can be seen from Fig.4.13, the feature can also be reproduced in spherical models.
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HALO r0/Re v0/kms
−1 i χ2/N χ2

alm/Nalm χ2
sb/Nsb χ2

sau/Nsau χ2
sl/Nsl χ2

PN/NPN −F Υ

A90 0 0 90 0.619 0.173 0.331 0.624 0.866 0.369 4899.995 8.09
A50 0 0 50 0.773 0.291 0.437 0.781 1.031 0.426 6129.759 8.12
A40 0 0 40 0.789 0.507 0.587 0.780 1.079 0.515 6634.361 8.22

B90 3 90 90 0.631 0.243 0.40 0.635 0.852 0.344 5051.231 7.923
B50 3 90 50 0.777 0.352 0.523 0.782 1.008 0.371 6196.835 7.97
B40 3 90 40 0.782 0.570 0.670 0.770 1.047 0.438 6562.924 8.10

C90 3 130 90 0.651 0.296 0.457 0.655 0.851 0.401 5291.926 7.72
C50 3 130 50 0.741 0.429 0.611 0.742 0.933 0.396 6030.503 7.82
C40 3 130 40 0.766 0.661 0.591 0.753 0.990 0.414 6478.453 7.98

D90 3 200 90 0.611 0.367 0.462 0.603 0.847 0.887 5343.843 7.26
D50 3 200 50 0.761 0.394 0.663 0.763 0.961 0.815 6394.686 7.50
D40 3 200 40 0.745 0.618 0.639 0.738 0.906 0.654 6466.793 7.693

E90 3 260 90 0.684 0.577 0.751 0.652 1.037 2.602 6325.564 6.86
E50 3 260 50 0.765 0.530 0.854 0.749 1.026 2.401 6782.397 7.20
E40 3 260 40 0.756 0.819 0.739 0.899 0.737 1.662 6806.086 7.42

DR 3 200 50 0.715 − 0.567 0.699 0.897 0.890 5990.4 7.57
ER 3 260 50 0.710 − 1.313 0.676 0.894 6.317 6219.4 6.85

Table 4.2: Table of parameters andχ2-fit results for oblate models of NGC 3379. Columns (1)-
(3) give the model code and the parametersr0, v0 used in equation (4.1) for the respective dark
halo potential; all halo potentials are spherical (qφ = 1.0). The fourth column gives the inclina-
tion i and the next six columns list theχ2 values per data point, for all observables [column (5)],
and for the density constraints, surface brightness constraints, SAURON kinematic observables,
slit kinematic observables, and PN observables separately [columns (6)-(10)]. Column (11)
gives the numerical value of the merit function in equation (4.6), and column (12) the final (B-
band) mass-to-light ratio. The respective number of constraints areN = 13237, Nalm = 680,
Nsb = 200,Nsau = 11214,Nsl = 1135,NPN = 8.

constraints, we use the SAURON, slit, and PNe velocity dispersion data. Theentropy parameter
is kept at the same value as for the spherical models,µ = 2 × 103. During this “kinematic de-
projection”, the spherically averaged potential generated by the particlesis updated after regular
time intervals, but the non-spherical terms are ignored. The DM potential is given by equation
(4.1) and remains constant in time. After the correction phase, the model is again allowed to
freely evolve for some time.

Figures4.12, 4.14, 4.13 and 4.15 show how the final “self-flattened” particle model E∗

compares to the various data. The model fits the data as well as the best-fitting spherical models.
As anticipated, the model makes the PN dispersion profile compatible with a massive dark halo
potential by flattening the outer distribution of stars and decreasing the modelσ along the line-
of-sight. Fig.4.16shows that the line-of-sight (z) velocity dispersion measured in the equatorial
plane is half theφ-dispersion in this plane; the radial dispersion still dominates. The model’s
flattening is illustrated in Figure4.17, which shows the SB distribution in an edge-on projection
perpendicular to the line-of-sight. The axis ratio isq ≈ 0.7.

While this model provides an excellent fit to the photometric and kinematic data in a massive
dark DM halo, it is not a completely realistic model for NGC 3379. For it is only ina spherical
potential as assumed for model E∗ that a face-on distribution of stars can show rotation. More
realistic axisymmetric models must therefore be inclined to allow for the rotation seen in the
SAURON and slit data.

Self-consistent oblate models

Therefore we now consider oblate models for NGC 3379 with inclinationsi = 90◦, i = 50◦

and i = 40◦, in which the axisymmetric gravitational potential of the stellar component is
computed self-consistently from the particles. We investigate models without DMas well as
models including various DM halos as detailed in Table4.2. The gravitational potential of
the DM halo is still assumed to be spherical and is kept fixed. All models are made to fit
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Figure 4.18: Comparison of axisymmetric models with SAURON kinematic data for NGC 3379
(top panel). Following panels are for models A90, D90, D50. Model A90 has all the mass in
the stars, while the later two models include a massive halo; see Table4.2.
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the photometry, the slit and SAURON absorption line kinematic data, and the PN.S velocity
dispersion profile.

The procedure employed for constructing the models is similar to that in Section4.4.1.
Again, we need to first specify the observables. We expand the deprojected luminosity density
of NGC 3379 for each inclination in a spherical harmonics series and determine the expansion
coefficients on the same quasi-logarithmic grid in radius as before. As observables we use the
luminosity on radial shellsLk and the higher order momentsA20, A22, · · · , A66, but set the
m 6= 0 terms of the expansion to zero to force the models to remain axisymmetric. Errors
for theAlm coefficients are estimated as in Section4.3.4. We thus obtain three different sets
of luminosity density observablesAlm with corresponding errors, one for each of the three
inclinations. In addition to theAlm, we also fit the surface brightness itself, using the Fourier
moment observables on the grid of projected radiiRk as in the previous Section4.4.2. Errors for
these Fourier moments are computed similarly as theAlm errors. The kinematic constraints are
identical to those used for the spherical models: they are the luminosity weighted, symmetrized
Gauss-Hermite moments from the slit data and SAURON data (see Section4.2.3), and the PNe
kinematics represented by the binned line-of-sight velocity dispersion points.

To the combined set of observables we fit particle models in a similar three-stepprocess as
for the spherical models. (i) We start with the spherical particle model described in Section4.3.2
and use NMAGIC to generate an equilibrium model with the desired luminosity distribution, as
given by the deprojection of the photometry for the given inclination. (ii) We then use the
resulting particle model as a starting point to generate the final set of models by fitting the
photometric and kinematic constraints in the different DM halos. We use the sameentropy
parameterµ = 2 × 103 as for the spherical models. (iii) Finally, we first keep the potential
constant and let the system evolve freely without changing the particle weights, and thereafter
test the stability of the model.

The quality of the fit for the different halo models and inclinations is again characterized
by the value of the merit functionF of equation (4.6) and the values of the differentχ2 per
data point, both globally and for the individual data sets. These are givenin Table4.2and will
be discussed further in Section4.4.4. In addition to the models shown in Table4.2, we have
also constructed a similar suite of models for the unsymmetrized SAURON and slit data. These
fits were of similar quality as the models for the symmetrized data, i.e., when subtracting the
systematic error floors determined in Section4.2.3(χ2

sau/Nsau(sys) = 1.0 andχ2
sl/Nsl(sys) =

1.0) from theχ2 values of the models for the unsymmetrized data, the modelχ2 values became
very similar to those reported in in Table4.2.

Figures4.18-4.20compare some of the final axisymmetric particle models to the SAURON,
slit and PNe data. Both edge-on and inclined models again are very good matches to the
SAURON and slit data, with or without dark matter halo. The PN velocity dispersion profile is
fitted well by the models with the lower mass halo models B,C; halo D slightly overestimates
the outer PN velocity dispersion point given byDouglas et al.(2007) but is consistent with the
outer point when the “friendless” outlier point is included. Model E90 is inconsistent with the
outer dispersion point ofDouglas et al.(2007), consistent with Table4.2, but is only marginally
inconsistent with the data when the outlier is included. Based on this together withthe likeli-
hood results reported below, halo D is the most massive halo consistent with the PN data. Figure
4.21shows that for this model the dark halo contributes about 60% of the total mass within the
radius of the last PN data point at∼ 7Re ∼ 15 kpc.

Figure4.22shows the intrinsic velocity dispersions, streaming velocity, and anisotropy for
some of the models. Because of the small projected ellipticity of NGC 3379, the edge-on models
are very similar to the spherical models in the respective halo potentials and thehigher circu-
lar velocity halos require large radial anisotropy to match the PN data. The inclined flattened
models have similarly smallσz = σθ in the model equatorial plane, but somewhat largerσφ, as
expected. Also in the axisymmetric models it is the radially increasing, strong radial anisotropy
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Figure 4.19: Comparison of models A90 (dashed lines), D90 (full lines) and D40 (dash-dotted
lines) with the symmetrized slit data fromStatler and Smecker-Hane(1999) along the major
(top) and minor axes (bottom panel). The model data points are averages over the same slit cells
as the target data (see Fig.4.3), and are connected by straight line segments.
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Figure 4.20: Comparison of the radial velocity dispersion profile from the PN.S data with the
oblate particle models. The dashed line shows the stellar-mass only model A90.The other
broken lines show models B90, C90, D90, the solid line shows model D50, and the upper dotted
line shows model E90.

Figure 4.21: Enclosed DM fraction as function of radius for the final particle models B90, C90,
D90, D50.
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Figure 4.22: Intrinsic kinematics of the final models A90, B90 (dashed), C90, D90 (full) and
D50 (dash-dotted lines). Panels from top to bottom show the radial, azimuthal,andθ veloc-
ity dispersion profiles, the mean azimuthal streaming velocity, and the meridionalanisotropy
profile. The models in the most massive halos are strongly radially anisotropic, as expected.

which causes the rapidly decreasing PN velocity dispersion profile in the massive dark halo
potentials.

Finally, we comment briefly on the stability of these models. All models in halos A-C show
no signs of any change after 5.8 Gyr of evolution following the phase-mixingafter the NMAGIC
fit. The D models are almost unchanged, despite the strong radial anisotropy, developing after
5.8 Gyr a percent-level triaxiality just outside the error bars of theA22 constraints. The models
in halo E show a similar slow evolution during which they in addition develop significant pos-
itive h4 across the entire image. As in the spherical models, the PN dispersion profiles remain
unchanged during this evolution.

4.4.3 Models without axisymmetry constraint

We have constructed a small number of models for which the stellar density wasnot constrained
to remain axisymmetric, in order to see whether the larger freedom in the orbit structure of
non-axisymmetric potentials would allow the models to fit the PN kinematics also in the most
massive halo E. However, we have kept the constant value PA= 70 deg for the position angle
in the photometry, neglecting the observed small variations∆PA = ±3 deg, so these models
do not have isophote twists. We generate these models as follows, using the full power of
NMAGIC, by (i) fitting only surface brightness and kinematic data, in a similar way as for
model E∗, (ii) leaving all densityAlm terms and corresponding potential terms free to change
during the fit, in order to allow the model to freely change its orientation, and (iii)using a
spherical model, a model flattened along the line-of-sight, or the inclined modelD40 as initial
conditions.

Because we know that valid models in halo D can be found, we have first evolved a model
in halo D, starting from initial conditions D∗, a model that had previously been obtained exactly
analogously to model E∗ (see Section4.4.2). Because of the line-of-sight streaming velocities,
this system rotates out of the sky plane while NMAGIC simultaneously keeps adjusting the
orbit structure to match both the surface brightness and the projected kinematics. This model
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converges to an almost axisymmetric model with inclination≃ 43 deg, and is then completely
stable over 5.8 Gyr of evolution. It matches all the kinematic data, very similar to models D40
and D50, and is listed in Table4.2as model DR.

Also shown in the Table are the results for model ER, which was obtained analogously
starting from model E∗. This model does not fit the PN data. None of our other attempts to
obtain a valid model E has been successful, including one inspired by some old work on merger
remnants (Gerhard, 1983a,b), following which we tried to construct a model that changes from
edge-on oblate in its inner parts to face-on triaxial in its outer regions. We believe the main
reason for the failure in halo E is the observed rotation of NGC 3379, of which either the sense
(along the projected major axis) or the amplitude do not allow the low-inclination configurations
required by the low values of velocity dispersion at large radii.

4.4.4 Likelihoods and quality of the fits to the data

We now turn to discussing the question which models are acceptable fits to the data and which
models can be ruled out. To do this, it is customary to determine∆χ2 values relative to the best-
fitting models, and determine the confidence boundaries according to the number of parameters
to be determined. In our case, we essentially determine only one parameter, the halo circular
velocity at∼ 7Re, or v0, so the relevant∆χ2 = 1 (the mass-to-light ratio of the models is opti-
mized together with the weights). However, all our models match the Sauron andslit kinematic
data to within1σ per data point, i.e., better than the underlying “true” model. Clearly, we cannot
apply a∆χ2 = 1 for small variations within1σ relative to, say, the Sauron data points. Even
if the best model fitted with exactlyχ2

sau ≃ 104, this would make little sense: forNsau = 104,
∆χ2 = 1 corresponds to an average change per data point of≃ 10−4σ. Only if the∆χ2 = 1
arises because of significant mismatch of a few crucial data points would thisseem reasonable.
The crucial data points for the issue addressed in this paper, the dark matter halo in NGC 3379,
are the PN velocities or the binned PN dispersions. Thus we focus our discussion on the merit
of the models relative to these data.

Figure4.23 shows theχ2
PN and∆χ2 values for both the spherical and the axisymmetric

models from Tables4.1 and4.2. For the PN dispersion points we have 7 degrees of freedom
(8 data points minus 1 fitted parameter), so expectχ2 = 8.18 (68.3% probability) for a typical
good model. Thus we consider any model that fits the PN velocity dispersionsto better than
χ2 = 8.18 as valid as the underlying “true” model and compute∆χ2 relative toχ2

PN = 8.18.
The curves in Figure4.23are plotted for the two cases with and without the “friendless” outlier
of Douglas et al.(2007) contributing to the outermost dispersion point. The models with halos
A-D are allowed in both cases, while the models for halo E are consistent with the data only
when the outlier is included.

So far we have compared the models only to the PN velocity dispersion profile,rather than
to the LOSVDs or unbinned velocity data. Figure4.24shows the LOSVD histograms for the
PNe in the outermost three circular annuli used for computing the PN velocity dispersion pro-
file, superposed on the LOSVDs of models B and D in the same radial shells. In the plot for
the outermost bin, the PN histogram and model LOSVD are shown with and without the3σ
“friendless” outlier according toDouglas et al.(2007). Both the near-isotropic low-density halo
model B and the radially anisotropic massive halo model D are consistent with the PN velocity
distributions in the first and third annuli, and both appear inconsistent with the non-zero mean
motion of the PNe in the second annulus.

Table4.3shows the posterior likelihoods of the spherical models for the observed PN veloc-
ity data set, evaluated from the model LOSVDs in the eight radial shells used inthe fits. Also
listed are the likelihoods resulting from direct likelihood fits of the spherical models to the PN
data, using the method described inde Lorenzi et al.(2008). Figure4.25shows a plot of these
likelihoods as a function of the models’ circular velocity at7Re, the radius of the outermost PN
dispersion point. Despite the small number of potentials investigated and the issue of whether
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Figure 4.23:χ2 and∆χ2 values of the various spherical and axisymmetric models for NGC
3379 with respect to the PN velocity dispersion data. The full black lines (red dashed lines)
connect theχ2-values obtained without (including) the3σ ”friendless” outlier ofDouglas et al.
(2007). ∆χ2 is computed relative to the expected value ofχ2 = 8.18 for 7 degrees of freedom.

without outlier with outlier
HALO lnL 2∆ lnL lnL 2∆ lnL

A −605.14 2.50 −611.18 4.58
B −604.21 0.64 −609.67 1.56
C −603.89 0.0 −608.89 0.0
D −604.74 1.7 −609.23 0.68
E −607.16 6.54 −611.38 4.98

A −608.50 4.23 −613.53 5.01
B −607.01 1.25 −611.82 1.60
C −606.38 0.0 −611.02 0.0
D −606.68 0.60 −611.14 0.23
E −608.81 4.85 −613.04 4.02

Table 4.3: Likelihood values for the PN data in the spherical models. Column (1): model
code. Columns (2,3): log likelihoodlnL and difference2∆ lnL relative to the best model C,
for the PN sample not including the3σ ”friendless” outlier in the outermost shell, according
to Douglas et al.(2007). Columns (4,5): same, but for the PN sample including this outlier.
The top half of the table refers to posterior likelihoods of the models fitted to the PN velocity
dispersion profile, the lower half gives likelihoods for similar models in which the PNe were
fitted with the likelhood method ofde Lorenzi et al.(2008).
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Figure 4.24: Comparison of the PNe LOSVDs in the circular annuli corresponding to the out-
ermost three bins in the velocity dispersion profile, with the LOSVDs of the nearly isotropic,
low-density halo model B, and the radially anisotropic massive halo model D in the same cir-
cular annuli. The ordinate is in units of PN number, and the model LOSVDs have been nor-
malized to the same integral over the velocity range shown. In the middle panel for the second
annulus, the mean velocity of the PNe is non-zero at the≃ 3σ level; both models are inconsis-
tent with this velocity distribution. The velocity distributions in the other two panels are fully
consistent with both models. In the lower panel for the outermost shell, the PNhistogram is
shown with (dashed) and without (solid lines) the3σ-’”friendless”’ outlier; see Section4.2.3
andDouglas et al.(2007).
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Figure 4.25: Relative likelihoods from the data in Table4.3 as a function of the model circu-
lar velocity at7Re. Open symbols show posterior likelihoods of models fitted to the binned
dispersion profile, full symbols show likelihood values based on direct likelihood fits to the PN
velocities. Squares show likelihoods for the PN sample without the3σ ”friendless” outlier in the
outermost shell, according toDouglas et al.(2007), circles for the sample including this outlier.
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the3σ ”friendless” outlier should be included, the overall shape of the likelihoodfunctionL is
not too far from a Gaussian. Thus we can determine a confidence interval from the condition
∆ logL > 0.5, resulting in approximately165kms−1 ∼< vcirc(7Re) ∼< 250kms−1 at 1σ. This
would exclude both model A without dark matter and the most massive halo modelE. However,
we do not believe this is a very strong result, given the influence of a singleoutlier on the likeli-
hood values in Table4.3, and the asymmetries in some of the LOSVDs (see Fig.4.24). Note also
that all models are consistent with the data at the2σ level, for whichvcirc(7Re) ∼< 290kms−1

(2σ).

4.5 Summary and conclusions

In this paper, we have carried out a dynamical study of the elliptical galaxyNGC 3379. This
intermediate luminosity E1 galaxy has a rapidly declining velocity dispersion profile, which has
been taken as evidence byRomanowsky et al.(2003) andDouglas et al.(2007) that this galaxy
may lack the kind of dark matter halo that the currentΛCDM cosmology requires.

To explore this issue further, we have combined photometry, long slit spectroscopic data,
SAURON absorption line kinematics and PN velocity dispersion data, to fit dynamical mod-
els in a sequence of potentials whose circular velocity curves at large radii vary between a
near-Keplerian decline and the nearly flat shapes generated by massive halos. The combined
kinematic data set runs from the center of NGC 3379 to about7 effective radii.

For constructing the dynamical models we have used the flexibleχ2-made-to-measure par-
ticle code NMAGIC developed by (de Lorenzi et al., 2007, 2008). The NMAGIC models de-
scribed in this paper consist of7.5 × 105 particles, and for the first time incorporate integral
field kinematic data for a real galaxy.

We find that a variety of dynamical models both with and without dark matter produce viable
fits to all the data. For assumed spherical symmetry we find that the data are consistent both with
near-isotropic systems which are dominated by the stellar mass out to the last kinematic data
points, and with models in moderately massive halos whose outer parts are strongly radially
anisotropic (β ≃ 0.8). In these latter models, the stellar mass distribution dominates in the
center, and the dark matter fraction is∼ 60% of the total at7Re.

In the spherical potentials we have also used the likelihood scheme ofde Lorenzi et al.
(2008) to fit the models directly to the PN velocities. From the likelihood values obtained
in these fits as well as the posterior likelihoods of the models fit to the dispersionprofiles,
we estimate confidence limits on the halo circular velocity at7Re, resulting in approximately
165kms−1 ∼< vcirc(7Re) ∼< 250kms−1 at1σ. This would exclude both the model without dark
matter and the most massive halo model E in our sequence which hasvcirc(7Re) ≃ 275kms−1.

For illustration we have used NMAGIC to find the shape of a model flattened along the line-
of-sight in a spherical potential including this most massive halo E, which fitsall the kinematic
data with high accuracy. However, all attempts to find more realistic models with thismassive
halo have failed, suggesting that we may have found the upper limit of the range of consistent
mass distributions.

Finally, we have constructed self-consistent axisymmetric models of inclinations i = 90◦,
i = 50◦, andi = 40◦ in the same sequence of halos potentials. These models essentially confirm
the spherical results. The edge-on models are very similar to the sphericalmodels, becoming
highly anisotropic in the more massive halos. The inclined models in addition become more
flattened at large radii, which helps in decreasing the outer velocity dispersion profile. All these
models are stable over Gyrs.

In summary, the kinematic data for NGC 3379 out to7Re are consistent with a variety
of potentials and do not give strong constraints on the mass distribution in this galaxy. The
main reason for this is the well-known degeneracy between mass and radialanisotropy which is
substantial when the velocity dispersion profile falls with radius. In such cases, kinematic data
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are required even further out than the presently available data set. NGC 3379 may well have the
kind of dark matter halo consistent with the currentΛCDM paradigm.



CHAPTER 5

SUMMARY AND OUTLOOK

As indicated in the beginning, the two key aspects of this thesis have been: (i)To develop a
made-to-measure method to construct particle models from observations, and (ii) to apply the
new method to the intermediate luminosity elliptical galaxies NGC 4697 and NGC 3379 with
focus on their DM contribution at large radii. Consequently, I will structurethe discussion in
the same way and start with the results concerning the method itself, before reporting on the
astronomical results. Finally, I will give a brief outlook.

5.1 Summary

NMAGIC modelling

Syer and Tremaine(1996) proposed a made-to-measure (M2M) algorithm to construct N-particle
systems from observational data and used it to generate a triaxial model from density observ-
ables. The first practical application was made byBissantz et al.(2004), who constructed a
dynamical model of the projected face-on density distribution of the Milky Way. So far, only
density constraints have been considered and all models have been evolved in predetermined
potentials.

In chapter2, aχ2-made-to-measure (χ2M2M) algorithm was developed, extending earlier
ideas by Syer and Tremaine. An important component of the new method is the use of the
standardχ2 merit function at the heart of the algorithm, which allows to assess the quality ofa
model fit directly. In addition, kinematic observables including higher ordermoments have been
incorporated. Hence, kinematic and density (or surface density) constraints can be used to tailor
particle models. The newχ2M2M method was implemented in a fast, parallel code, NMAGIC.
This code also incorporates an optional but fast potential solver, allowing it to recompute the
potential during a model fit and, in addition, to test the stability of the final particle model.
The NMAGIC implementation of theχ2M2M algorithm is highly efficient, with a sequential
fraction of only∼ 1%.

The geometric flexibility and performance of NMAGIC was illustrated with a number of
tests using spherical, oblate and triaxial target models. In the spherical experiments, the correct
isotropic target model was recovered, independently of the adopted initialconditions. The initial
model with density closer to the density of the final model had smaller final deviations from the
target observables, and a narrower distribution of weights.

The oblate tests showed that a large phase-space gradient can be recovered if present, and
illustrated the advantage of integral field data over slit data for constrainingthe model.

The triaxial experiments demonstrated that it is possible to start from a spherical model and
converge to a triaxial target, and illustrated NMAGIC’s ability in constructing models for triaxial
elliptical galaxies with which nature confronts us. A second triaxial experiment, in which a
slowly rotating model was used as a target for a non-rotating model, revealed that the residuals
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in the first order kinematic moment are correlated. This gives a signature oftumbling which,
at least for this triaxial system, allows to distinguish between internal stellar streaming and
pattern rotation withinRe, provided a full velocity field is available. However, a more complete
study of this problem is needed to firm up this result. This experiment also demonstrates the
usefulness of theχ2M2M algorithm for modelling mock (rather than real) galaxies in order to
learn about their dynamics. Such an experiment would not have been practical with standard
N -body simulations.

In chapter3, I extended NMAGIC to account for seeing effects and proposed andimple-
mented an efficient method to estimate the mass-to-light ratioΥ. Tests of this scheme using
isotropic rotator input models have shown that the method recoversΥ within a few percent both
for self-consistent and dark matter dominated target galaxies. In addition,a likelihood scheme
was implemented, by which discrete velocity measurements can be taken into account without
binning them beforehand.

The modelling of NGC 4697 and NGC 3379, presented in chapters3 and4, respectively,
showed that theχ2M2M/NMAGIC particle method is a very promising modelling technique. In
fact, it has already gone further than the Schwarzschild method in that the gravitational potential
of the stars has been allowed to vary in the modelling, the mass-to-light ratio hasbeen adapted
on the fly and the stability of the models has been checked.

Compared to the Schwarzschild method, the main advantages of theχ2M2M algorithm
as implemented in NMAGIC are that no symmetry restrictions have to be made and that no
complicated procedure for orbit sampling is needed. Another advantage isthat the gravitational
potential can be evolved self-consistently, which further allows to test the stability of a model
after the correction phase. Everyχ2M2M model corresponds to a computation of an orbit
library in the Schwarzschild method. In problems where the same orbit librarycan be reused,
Schwarzschild’s method is more efficient.

The present implementation of NMAGIC is optimized for modeling nearly spherical sys-
tems. This is mainly due to the potential solver and the density observables (Alm), both based
on a spherical harmonics decomposition of the density distribution.

In the next two sections below, I will discuss the astronomical results from the dynamical
modelling of NGC 4697 and NGC 3379.

Astronomical results

NGC 4697

Chapter3 presented a dynamical study of the E4 galaxy NGC 4697 using surface brightness
measurements and a combined kinematic data set, which runs from the center ofthe galaxy to
about 4.5 effective radii. The kinematic data set consists of long slit spectroscopic data and
discrete PNe velocity measurements.

Even though NMAGIC does not require any symmetry assumptions for the modelling, I have
forced the method to generate axisymmetric particle models for NGC 4697. Both self-consistent
models without dark matter, and models following a sequence of circular speed curves with
increasing dark halo contributions have been investigated. The PN data have been used both
binned on two different spatial grids, as well as with the new likelihood scheme, to make sure
that the results are not biased by the way the PNe data are incorporated.

The main result is that models both with and without dark matter are consistent withall
the data. These models fit all kinematic data withχ2/N < 1, both in potentials with only
luminous matter and in potentials including sufficiently massive halos to generate nearly flat
circular rotation curves. The massive dark halo models tend to fit the data slightly better in
the sense of lowerχ2/N , for both the slit kinematics and the PN data, but these variations are
small and not yet statistically significant. To exclude models without dark matter would require
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PN velocities at even larger radii than currently available, out to an estimated≃ 6Re from the
center.

These models differ from earlier studies performed byMéndez et al.(2001) in the sense that
we generate axisymmetric models instead of spherical ones and that our models are flexible with
regard to anisotropy. The best-fitting models are slightly radially anisotropic,with β ≃ 0.3 at the
center, increasing toβ ≃ 0.5 at∼> 2Re. This is consistent with the value given byDekel et al.
(2005) obtained from merger simulations carried out within theΛCDM cosmology framework.

NGC 3379

In chapter4, the dynamical modelling of the intermediate luminosity E1 galaxy NGC 3379 was
presented. The models were constructed using photometric and kinematic observations for this
galaxy. Again, a combined kinematic data set was used, consisting of long slitspectroscopic
data with SAURON integral field absorption line kinematics and PN velocity measurements
with the PN.S instrument fromDouglas et al.(2007). The combined data set runs from the
center of NGC 3379 to about7 effective radii. This is the first time that integral field SAURON
kinematic data of a real galaxy has been incorporated in NMAGIC.

Both self-consistent models without dark matter, and models following a sequence of circu-
lar speed curves with increasing dark halo contributions have been investigated.

Several dynamical models, with and without DM, produce a viable fit to all thedata. For
assumed spherical symmetry the data is consistent with near-isotropic models dominated by
stellar mass and with radially anisotropic models in moderately massive halos with DMfractions
≃ 60 percentage at7 Re. In addition, a series of of oblate models have been constructed which
essentially confirm the spherical results.

The main conclusion is that the steeply declining PNe velocity dispersion profileis consis-
tent with a variety of DM halos. It is difficult to constrain the potential in this galaxy with the
present data. This is mainly due to the well known mass anisotropy degeneracy, which masks
the DM distribution by preferentially populating radial orbits. Hence the possibility remains
that NGC 3379 has the kind of dark matter halo that is consistent with the current ΛCDM
paradigm.

5.2 Outlook

In the first part of this outlook, I discuss some of the possible technical improvements and
extensions of the NMAGIC code. In the second part I give some examplesof possible future
applications.

5.2.1 Technical improvements

• The profit function

The present implementation of theχ2M2M algorithm uses the entropy

S = −
∑

i

wi ln(wi/ŵi), (5.1)

as a profit function. The isotropic rotator experiments of chapter3 have shown, that for
the given spatial coverage of the kinematic data, a large entropy contribution in the mod-
elling process is needed in order to obtain a smooth model. However, the largeentropy
value prevented the models to fit the rotation of the target model. Similar results were ob-
tained in chapter4, where a large entropy value prevented the model to become strongly
anisotropic. Hence, a large entropy value suppresses global phase-space gradients. It
is worth considering alternatives to the entropy as a profit function, whichreduce local
phase-space fluctuations, but allow for global phase-space gradients.
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• The dark matter halo

In the present work, we have represented the gravitational influence of the dark mat-
ter halo on the luminous component by an analytic logarithmic potential. Cosmological
simulations reveal universal DM halo density profiles described by a NFWprofile (e.g.
Navarro et al., 1996, 1997)

ρNFW (r) =
ρs

(r/rs)(1 + r/rs)2
, (5.2)

and hence, provide a physically motivated halo model. I have implemented the NFW halo
as an option in the NMAGIC code for future projects, but it has yet to be tested.

Further, the dark matter halo could react to the luminous matter via adiabatic contraction.
It may also be interesting to use live dark matter halos, represented by particle realizations
made from a DF or even generated by cosmological simulations.

• Initial conditions

The spherical initial conditions used in the present work were generateddirectly from a
DF, cf. sectionA.2, assigning to each particle the same mass. For a Hernquist particle
realization the number of particles within a radiusr much smaller than the scale lengtha
scales as(r/a)2. This implies that there is only a small number of particles which samples
the central density cusp. The resolution in the central region can be improved by using
a multi-mass scheme (e.g. Sigurdsson et al., 1995; Magorrian, 2007), where the particle
mass becomes a function of its pericenter distance.

• Integration scheme

I used a “drift-kick-drift” version of a standard leapfrog integration scheme. An unattrac-
tive feature of this scheme is that it uses the same time step for all the particles. Aparticle
on an almost radial orbit which passes close by the galaxy center, possibly harboring a
black hole, requires a very small time step to be integrated accurately near its pericenter.
This implies that all the particles are integrated with the same small time step, even if they
are on almost circular orbits at large distances from the center of the system. This can be
very time consuming because the forces have to be calculated every time step.Applying a
block-time step scheme will improve the efficiency and would allow to either increase the
number of particles or the number of iteration steps during an NMAGIC run.Magorrian
(2007) proposed a block-time step scheme in combination with a particle mesh method
using a refinement scheme which results in a gain of speed up to a factor of five.

• Particle splitting

Syer and Tremaine(1996) suggested to improve their method by incorporating a scheme
which kills particles with low weights and splits particles with high weights into sev-
eral particles with slightly perturbed orbits. It would be interesting to study if abetter
convergence and a better model fit could be achieved using this method.

• Discrete velocity measurements

The treatment of discrete line-of-sight velocity measurements can be extended to account
for proper motion measurements, as well as any arbitrary velocity direction (cf. also
Chanaḿe et al., 2007). Further, it is worthwhile to study in more detail how well the
intrinsic properties of a mock galaxy are recovered from discrete measurements alone,
and how the results change with the number of measured velocities and/or theirspatial
distribution.
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5.2.2 Future applications

• Modeling radial PNe velocities in elliptical galaxies

It would be interesting to model other intermediate luminosity ellipticals to compare the
results concerning the DM content with the findings ofRomanowsky et al.(2003), and
to test the alternative idea that the PNe population may be affected by radial anisotropy,
which masks the dark matter distribution.

• Black holes

With an increased resolution at the center, black hole mass studies with NMAGIC may
become feasible. It would be interesting to test how well one can constrain the mass of a
central black hole and how this compares with Schwarzschild’s method.

• Triaxial systems

The geometric flexibility of NMAGIC allows to model triaxial systems. A detailed study
of how well the intrinsic shape and the orientation with respect to the observer of triaxial
systems can be constrained would be interesting.

• Figure rotating stellar systems

In chapter2, the kinematics of a triaxial tumbling system inside one effective radius was
modeled with a non-rotating triaxial system having the same intrinsic shape. Theresult
was that the first order kinematic moment were correlated, which gives a signature of
figure rotation. A more complete study of the effects of different pattern speeds, intrinsic
shapes, dark matter component and initial conditions would be necessary tostrengthen
the result.

• Pseudo bulges

An application of the NMAGIC modeling technique to pseudo bulges using integral field
kinematics with a large field of view may provide a better understanding of their intrinsic
kinematics.

• Milky Way

Using the original M2M method,Bissantz et al.(2004) built a stellar-dynamical model
of the Milky Way’s barred bulge and disk, matching the projected face-on density distri-
bution. Rattenbury et al.(2007) presented a refined model, which was fitted also to the
vertical density distribution. However, no kinematic constraints have so farbeen taken
into account. Nonetheless, the dynamical model was in rough agreement withproper mo-
tion dispersion measurements of the Galactic bulge region. An extension of thelikelihood
approach to discrete proper motion measurements would be of interest for constructing
dynamical models of the MW.

• Direct comparison with Schwarzschild models

A direct comparison with Schwarzschild models could provide a broader understanding
of several aspects of both modelling techniques.





APPENDIX A

SOME TECHNICAL DETAILS

A.1 Potential solver

Modelling stellar systems with large mass concentrations at their centers, suchas elliptical
galaxies, requires the force field to be computed with high accuracy at smallradii. This can
be achieved by computing the potentialφ from a multipole expansion. In addition, using a sur-
face harmonics expansion of the potential offers the possibility to enforcea certain symmetry,
e.g.an axisymmetric potential if only the termsm = 0 are include.

The potential at position(r, θ, φ), generated byN particles with weightswj and positions
(r′j , θ

′
j , φ

′
j)

1 is given by the real part of (cf. Jackson, 1975; Binney and Tremaine, 1987)

φ(r) = −G
∞∑

l=0

l∑

m=0

(2 − δm0)
(l −m)!

(l +m)!
Pm

l (cos θ)eimφ

(
Alm

rl+1
+ rlBlm

)
(A.1)

with

Alm =
∑

r′j<r

wjP
m
l (cos θ′j)e

imφ′

jr′j
l

Blm =
∑

r′j>r

wjP
m
l (cos θ′j)e

imφ′

j .r′j
−(l+1) (A.2)

Many authors (e.g. van Albada, 1982; Villumsen, 1982; McGlynn, 1984) have performedN -
body simulations based on a multipole expansions of the potential.

The direct use of equation (A.1) leads to large two-body relaxation in the simulations, caused
by the finite truncation inl and by “shell-crossing”, the discontinuous change of the acceleration
of particles when they cross each other in radius. Different techniqueshave been applied to
reduce these effects (e.g. White, 1983; McGlynn, 1984; Sellwood, 2003).

I have implemented a parallel version of the method described inDebattista(1998) and
Sellwood(2003), and use it as the potential solver in the NMAGIC code. The coefficientsAlm

andBlm are computed at radiirk, k = 0, · · · , n with r0 = 0, while retaining the angular
dependence of the potential. Similar to the cloud-in-cell scheme (cf. Hockney and Eastwood,
1988), the point particles are replaced by “clouds” smeared along the radius:for a particle
with radiusr′j , the nearest grid pointrk is determined and the particle gets a finite radial extent
δr′j = 1

2(rk+1−rk), centered onr′j . This is schematically illustrated in FigureA.1. The particle
masswj is uniformly distributed over the radial extent of the “particle cloud”. Hence, the mass
fractions

fj,1 =
1

2
−
r′j − rk

δr′j
, and fj,2 =

1

2
+
r′j − rk

δr′j
(A.3)

1I use subscriptj to label the particles instead ofi to prevent confusion withi ≡
√
−1.
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lie interior and exterior tork, respectively. Exceptions to this rule occur at the center, since no
mass can be interior tor = 0, and atrn, because no mass can extend beyond the outer edge of
the system. Now, the contribution from each particle fragment to the interior and exterior terms

Figure A.1: Schematic view of the CIC scheme. The star denotes the particle.

on the two neighboring grid points are evaluated

αlm(k) =
∑

ν=1,2

fj,νwjP
m
l (cos θj)e

imφj
1

rk

(
r′j,ν
rk

)l

βlm(k) =
∑

ν=1,2

fj,νwjP
m
l (cos θj)e

iφj
1

r′j,ν

(
rk
r′j,ν

)l

, (A.4)

where the summation forαlm(k) (βlm(k)) is over mass fragments immediately interior (exte-
rior) to rk, cf. FigureA.1. Ther′j,ν denote the center of mass of the fragments. Hence, each
particles contributes toαlm(k), αlm(k+1), βlm(k−1) andβlm(k) with exceptions at the center
and the outer edge.αlm(k) = 0 because no mass can lie insider0.

Finally, the coefficientsAlm(k) andBlm(k) are computed by summing up the contributions
from all the shells interior and exterior tork, respectively. These are recursive sums over the
radial shells

Alm(k) = αlm(k) +Alm(k − 1)

(
rk−1

rk

)l+1

Blm(k) = βlm(k) +Blm(k + 1)

(
rk
rk+1

)l

. (A.5)

The potential at position(r, θ, φ) can now be computed via

φ(r, θ, φ) =
∞∑

l=0

l∑

m=0

(2 − δm0)
(l −m)!

(l +m)!
Pm

l (cos θ)eiφ (Alm +Blm) ,

where the coefficientsAlm andBlm at radiusr are obtained by linear interpolation. The poten-
tial is then differentiated to get the force field.
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Particles experience forces from other particles belonging to the same shell and even self-
forces. Provided that the total number of particles is large and the number of particles per bin is
small, these contributions are small. Thus, the number of radial grid points should be increased
with an increasing number of particles. I have replaced the coefficientsAlm(k) andBlm(k)
with the corresponding temporal smoothed quantitiesÃlm(k) andB̃lm(k), cf. section2.3. This
further reduces the effects of two-body relaxation and particle noise.

I have parallized the method by distributing (equal) fractions of the particles over the avail-
able nodes. Once, the partial sums (A.4) have been evaluated on each processor, the only com-
munication needed occurs, when the global values ofαlm(k) andβlm(k) are computed from
the contributions of each node,cf. sectionA.4.

A comparison of a FFT potential solver with the implementation of the method described
above is illustrated in FiguresA.2 andA.3. The left panel in FigureA.2 shows potential con-
tour lines in the xz-plane computed from a triaxial particle distribution. The triaxial particle
distribution was generated as follows. First, a spherical Hernquist particle realization was made
from DF, cf. sectionA.2 with N = 5 × 105, truncation radius20 and scale lengtha = 1. I
squeezed the spherical particle model by0.8 and0.5 along thex- and thez-axes, respectively.
The solid lines in FigureA.2 show the contour lines computed using a FFT potential solver
using a Cartesian grid with2573 cells equally spaced between−25 to 25 along each direction.
The dashed contours were obtained using the method described above. Iused a radial grid at
radii rk = eγk − 1 with γ = log(rmax + 1)/n; I usen = 201, rmax = 25 andlmax = 2. The
right panel shows the same as the left panel but now forlmax = 4. FigureA.3 showsFy along

Figure A.2: (a) Left: Potential contour plot in the xz-plane for a triaxial particle distribution. The
solid line was computed using an FFT whereas the dashed line was obtained using the spherical
harmonic code withlmax = 2, details in the text. (b) Right: Same as a but forlmax = 4.

thex-axis computed using the FFT potential solver (solid line) and using the spherical harmonic
code withlmax = 4 (dashed line). The better resolution at the center achieved with the spherical
harmonic code is evident.

A.2 Initial conditions

I have adapted the method ofDebattista and Sellwood(2000) to generate particle realizations
from distribution functions (DFs) belonging to the family of sphericalγ-models (Dehnen, 1993;
Carollo et al., 1995), which are used as initial conditions for NMAGIC. The central density
slopeγ and the scale lengtha, of the model to be generated, is estimated from the observed
surface brightness profile. The central surface brightness profile hasΣ ∝ R1−γ for γ > 1 and
is logarithmically divergent forγ = 1. Models withγ < 1 appear to have cores and can hardly
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Figure A.3:Fy as function of long-axis distance. The solid line was computed using the FFT
potential solver whereas the dashed line was obtained using the sphericalharmonics code.

be distinguished. The scale length is estimated usingRe/r1/2 ≈ 3/4 with r1/2 = a(21/(3−γ) −
1)−1. Once, the scale lengtha and central density slopeγ are given, the corresponding isotropic
DF is determined. Selecting particles randomly from a DF (e.g. Kuijken and Dubinski, 1995)
yields particle fluctuationsO(N1/2) in any range of the integrals, which can be reduced by
applying the quiet-start procedure outlined inDebattista and Sellwood(2000). For a spherical
system, the density of particles with energyE and total angular momentumL is given by

N (E,L) = 8π2Lf(E,L)τ(E,L), (A.6)

wheref is the DF andτ is the radial period (seeBinney and Tremaine, 1987). The DF is
truncated atEmax = φ(rmax) whereφ is the gravitational potential of the self-consistentγ-
model andrmax is the maximum radius of the particle realization. At that truncation, the mass
enclosed is

mtrun =

∫ Emax

Emin

dE

∫ Lc

0
dL N (E,L), (A.7)

withEmin = φ(0) andLc the angular momentum of a circular orbit at energyE. The accessible
(E,L) space is divided inton = nEnL small areas, each enclosing a fraction of massmtrun/n
as illustrated in the left panel of FigureA.4. ThenE cuts at energiesEj defined via

j
mtrun

nE
=

∫ Ej

Emin

dE

∫ Lc

0
dL N (E,L) (A.8)
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Figure A.4: (a) Left: Areas of equal mass in the(E,L) plane for a Hernquist DF. The right
hand boundary indicates the limit of circular orbits and the boundary atL = 0 indicate the
radial orbits. The upper curve shows the truncation in energy. (b) Right: Distribution of points
in (E,L) plane chosen from an isotropic Hernquist DF.

and do not depend on angular momentumL. On the other hand, the boundariesLk(E) depend
on energy and are defined by the relation

k
mcut

nL
=

∫ Lk

L=0
dL N (E,L), (A.9)

wheremcut =
∫

dL N|E . This definesn cellsCjk with E ∈ (Ej−1, Ej ] andL ∈ (Lk−1, Lk]
for a given energy (E0 = Emin andL0 = 0). Now, an orbit in each cell is selected, but rather
than using a regular grid,(E′

j , L
′

k) is chosen at random in eachCjk. First, an energy value
E′

j ∈ (Ej−1, Ej ] is selected from the distribution
∫

dL N (E,L), and then the corresponding
angular momentum valueL′

k computed via

(k − f)
mcut

nL
=

∫ L′

k

L=0
dL N (E′

j , L) (A.10)

with mcut =
∫

dL N|E=E′

j
and random fractionf ∈ (0, 1]. The right panel of FigureA.4

shows such a distribution of orbits in the(E,L) plane.
Finally, each orbit has to be populated with an equal number of particlesnEL, making a

total number of particlesN = nEnLnEL, each of massw = mtrun/N . In a spherical system,
a particle moves in a plane perpendicular to its angular momentum vector and it oscillates in
radius between the pericenter and apocenter with periodτ(E,L). The radial phase must be
uniformly distributed, but the probability density varies with radius as the inverse of the radial
velocity and peaks at the apocenter and pericenter. This difficulty in chosing a radius can be
circumvented by numerically integrating the orbit for a random fraction of theradial period
starting from its apocenter or pericenter.

The radial and azimuthal velocities are determined by(E′
j , L

′

k) and the radiusr, except for
the sign ambiguity of the radial velocity. The azimuthal phase and the orientationof the orbit
plane can be selected at random.

The left panel of FigureA.5 shows the evolution of the radial density profile of a spherical
Hernquist particle realization when integrated in the analytic potential for several dynamical
times. The solid line shows the analytic density profile, the dashed line shows the radial density
profile atT = 0, the dashed-dotted line was obtained afterT = 250 and the dotted line for
T = 500. The lines are shifted for readability. The dynamical time atr = a is tdyn = π. The
profiles were computed using radial bins containing1000 particles each. The right panel shows
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Figure A.5: (a) Left: Evolution of the radial density profile of a sphericalHernquist particle
realization made from DF when integrated in the analytic potential. The solid line shows the
analytic density profile, the dashed line shows the radial density profile of the ICs, the dashed-
dotted line was obtained afterT = 250 and the dotted line forT = 500. The lines are shifted for
readability. The dynamical time atr = a is tdyn = π. The profiles were computed using radial
bins containing1000 particles each. (b) Right: The same as the left panel but for aDehnen
(1993) sphere with a shallow inner-power indexγ = 0.5.

the same but for aDehnen(1993) sphere with a shallow inner-power indexγ = 0.5. For both
models, the radial density profile remain remarkably constant over many dynamical times.

A.3 Integration scheme

The stellar particles in galaxy simulations move according to Newton’s laws of motion, cf.
Hockney and Eastwood(1988)

dx

dt
= v

dv

dt
= F (A.11)

whereF = −∇φ is the force per unit mass acting on a particle at positionx,v in phase space.
The gravitational potentialφ is generated by the hole system. I integrate the equations of motion
using a “drift-kick-drift” version of the leapfrog scheme (cf. Magorrian, 2007)

xn+1/2 = xn + vn
δt

2
vn+1 = vn + F(xn+1/2) δt

xn+1 = xn+1/2 + vn+1
δt

2
(A.12)

whereδt is a fixed time step and the subscript indicates the time level(t = nδt). The leapfrog
scheme produces a second-order accurate solution to equations (A.11) and is symplectic, re-
versible in time and conserves linear momentum, providedF obeys Newton’s third law.

For the NMAGIC runs presented here, a constant time stepδt = 0.005, given in dimen-
sionless units, was used. As an illustration, I have integrated a particle in aHernquist(1990)
sphere with unit mass and scale lengtha = 1. The orbit of the particle is almost radial with



A.4. PARALLELIZATION 125

Figure A.6: Time evolution of the energyE of a particle moving along an almost radial orbit in
a analytic Hernquist potential. The time is given in units of the radial periodP .

pericenter distance0.11, apocenter distance1.1 and a radial periodP = 5.8. FigureA.6 shows
the evolution of the energy of the particle as it moves along its orbit and illustrates that no long
term drift in energy is present.

A.4 Parallelization

When I had finished a first scalar version of a made-to-measure code, Iperformed several test
runs on a standard desktop PC. These experiments were very time consuming. It is possible to
reduce the computation time of a scalar program by using vector machines, which can perform
operations simultaneously on linear arrays of numbers. The disadvantageof this approach is,
that vector machines are generally very expensive and consequently itis difficult to get com-
putation time contingents. A cheaper possibility to increase computation power is touse a PC
clusters as a parallel computation environment, which allow numerical models to be computed
with a high spatial resolution and a large number of particles. The disadvantage is that the code
has to be adapted for the parallel cluster environment,i.e. one has to specify the distribution
of memory onto the individual processors and the interprocess communications. I have paral-
lelized the NMAGIC code using the MPI library, a library specification for message-passing, as
described below.

The particles,i.e. their positions in phase space and their weights, are distributed equally
between the available nodes, as schematically illustrated in FigureA.7. Integrating the particles
along their trajectories does not require any inter-node communication, andis done on each
processor separately. Communication between the different processors occurs only during an
NMAGIC correction step, or when the gravitational potential is recomputed.

To compute the global value of a linear quantityQ, such as the model observablesyj or
the expansion coefficientsAlm andBlm of the gravitational potential, each node computes the
contributionQα toQ generated by its subsample of particles, and sendsQα to the master node
(proc 0), which then computesQ =

∑
αQα and distributes it to all the other nodes.

Hence, inter-node communication is only needed for the evaluation of the sumQ =
∑

αQα
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Figure A.7: Schematic representation of the parallelization scheme.

and thus theχ2M2M algorithm is well suited to be parallized. The fraction of sequential code
including communication overhead is≈ 1%, cf. section2.6.
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B.1 Photometric and kinematic data

Figure B.1: Isophotal parameters of NGC 4697 as a function of the logarithm of the semi-
major axis distance in arcsec. The radial profiles of the R-band surfacebrightness, third, fourth,
and sixth cosine Fourier coefficients (a3, a4, anda6), andx−coordinate of the centerXcen

are plotted in the left panels (from top to bottom). The surface brightness is shown along the
major (upper profile) and minor axis (lower profile). The radial profiles of the position angle
(PA), ellipticity (1 − b/a), third fourth, and sixth sine Fourier coefficients (b3, b4, andb6), and
y−coordinate of the center (Ycen) are plotted in the right panels (from top to bottom).
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TableB.1: Photometric parameters of NGC 4697
a µa

R e PA ∆xc ∆yc Err.b a3/a b3/a a4/a b4/a a6/a b6/a Err.c

[arcsec] [mag arcsec−2] [◦] [arcsec] [arcsec] [arcsec] ×100 ×100 ×100 ×100 ×100 ×100

1.013± 0.013 15.515± 0.006 0.246± 0.013 65.8± 2.0 -0.012 0.007 0.009 0.110 4.380 2.750 0.380 0.260 -0.210 0.162
1.201± 0.014 15.635± 0.008 0.247± 0.013 67.0± 2.0 0.000 0.000 0.010 0.430 4.850 2.750 -0.490 -0.180 0.160 0.123
1.359± 0.020 15.753± 0.007 0.212± 0.017 67.6± 2.9 0.019 0.019 0.014 0.620 6.790 3.580 -0.610 -0.080 -0.160 0.080
1.517± 0.029 15.847± 0.008 0.157± 0.023 68.0± 4.9 0.045 0.071 0.020 0.520 9.620 3.570 0.240 1.030 -1.090 0.151
1.739± 0.028 15.929± 0.008 0.151± 0.019 66.7± 4.3 0.069 0.129 0.020 -0.660 8.320 0.440 0.840 1.630 -0.200 0.206
2.023± 0.025 16.030± 0.006 0.188± 0.014 66.4± 2.6 0.083 0.162 0.018 -0.650 6.000 -1.680 0.440 0.100 0.160 0.154
2.365± 0.021 16.134± 0.005 0.242± 0.009 66.0± 1.5 0.095 0.190 0.015 -0.540 3.580 -2.690 0.130 -1.570 0.300 0.112
2.759± 0.017 16.233± 0.004 0.297± 0.006 65.6± 0.8 0.100 0.212 0.012 -0.320 1.540 -2.220 -0.270 -2.310 -0.070 0.114
3.235± 0.009 16.333± 0.003 0.358± 0.003 65.7± 0.3 0.109 0.221 0.007 -0.340 0.430 -0.600 -0.120 -1.430 -0.010 0.158
3.747± 0.007 16.436± 0.002 0.406± 0.001 65.8± 0.2 0.112 0.226 0.005 -0.260 -0.070 1.420 -0.070 0.100 -0.030 0.023
4.138± 0.008 16.537± 0.002 0.417± 0.002 65.8± 0.2 0.114 0.228 0.006 -0.200 -0.140 1.650 -0.060 0.140 -0.030 0.020
4.525± 0.008 16.637± 0.002 0.422± 0.001 65.8± 0.2 0.119 0.228 0.006 -0.250 -0.110 1.600 -0.030 0.130 0.080 0.023
4.932± 0.009 16.737± 0.002 0.425± 0.001 65.8± 0.2 0.126 0.228 0.006 -0.360 -0.060 1.590 -0.050 0.110 0.080 0.025
5.363± 0.009 16.837± 0.002 0.426± 0.001 65.9± 0.2 0.126 0.228 0.006 -0.290 -0.000 1.560 -0.050 0.040 0.150 0.027
5.835± 0.009 16.937± 0.002 0.428± 0.001 65.8± 0.2 0.133 0.226 0.006 -0.210 0.010 1.570 -0.030 -0.000 0.130 0.034
6.345± 0.010 17.037± 0.002 0.430± 0.001 65.9± 0.1 0.133 0.224 0.007 -0.070 0.080 1.590 -0.020 -0.010 0.070 0.034
6.881± 0.011 17.137± 0.002 0.431± 0.001 66.1± 0.1 0.138 0.217 0.007 0.120 0.130 1.620 -0.070 -0.110 -0.020 0.029
7.444± 0.011 17.237± 0.001 0.431± 0.001 66.2± 0.1 0.145 0.210 0.008 0.210 0.040 1.520 -0.190 -0.010 -0.110 0.039
8.056± 0.012 17.337± 0.001 0.430± 0.001 66.2± 0.1 0.138 0.210 0.008 0.210 0.000 1.530 -0.190 0.120 -0.070 0.039
8.706± 0.014 17.437± 0.001 0.428± 0.001 66.1± 0.2 0.138 0.198 0.010 0.160 0.160 1.720 -0.110 0.210 -0.090 0.038
9.398± 0.016 17.536± 0.001 0.427± 0.001 66.1± 0.2 0.138 0.193 0.011 0.150 0.150 1.720 0.100 0.300 -0.010 0.059
10.136± 0.016 17.635± 0.001 0.424± 0.001 66.1± 0.2 0.140 0.186 0.011 0.160 0.120 1.610 0.060 0.320 0.000 0.044
10.900± 0.015 17.736± 0.001 0.419± 0.001 66.2± 0.1 0.138 0.176 0.011 0.150 0.090 1.420 0.060 0.260 0.090 0.039
11.706± 0.015 17.837± 0.001 0.414± 0.001 66.0± 0.1 0.131 0.174 0.011 0.110 0.110 1.360 0.080 0.210 0.080 0.031
12.598± 0.017 17.937± 0.001 0.411± 0.001 66.0± 0.1 0.112 0.181 0.012 0.170 0.130 1.400 0.020 0.250 -0.040 0.052
13.531± 0.018 18.036± 0.001 0.407± 0.001 66.0± 0.1 0.117 0.176 0.013 0.110 0.080 1.360 -0.060 0.200 -0.090 0.039
14.530± 0.018 18.136± 0.001 0.405± 0.001 66.0± 0.1 0.119 0.174 0.013 0.010 0.090 1.320 -0.070 0.160 -0.100 0.028
15.595± 0.022 18.236± 0.001 0.403± 0.001 66.1± 0.1 0.121 0.178 0.016 -0.070 0.100 1.420 -0.090 0.250 -0.190 0.030
16.761± 0.027 18.335± 0.001 0.402± 0.001 66.2± 0.2 0.107 0.188 0.019 -0.130 0.160 1.430 -0.110 0.370 -0.320 0.050
18.038± 0.029 18.435± 0.001 0.405± 0.001 66.2± 0.2 0.105 0.193 0.021 -0.130 0.140 1.500 -0.110 0.470 -0.260 0.039
19.477± 0.034 18.537± 0.001 0.413± 0.001 66.4± 0.2 0.088 0.193 0.024 -0.050 0.140 1.660 -0.020 0.490 -0.120 0.034
20.955± 0.049 18.637± 0.001 0.419± 0.002 66.1± 0.2 0.157 0.181 0.035 -0.100 -0.140 1.890 -0.300 0.670 -0.350 0.130
22.554± 0.074 18.735± 0.001 0.425± 0.003 65.8± 0.3 0.248 0.162 0.053 -0.230 -0.350 2.070 -0.520 0.790 -0.540 0.270
24.352± 0.078 18.835± 0.001 0.433± 0.003 65.8± 0.3 0.228 0.186 0.055 -0.150 -0.220 2.020 -0.340 0.540 -0.380 0.254
26.452± 0.056 18.936± 0.001 0.446± 0.002 65.9± 0.2 0.093 0.264 0.040 0.070 -0.000 2.070 0.020 0.400 -0.050 0.070
28.543± 0.057 19.036± 0.001 0.453± 0.001 66.0± 0.2 0.150 0.274 0.040 0.030 -0.040 1.940 0.080 0.510 -0.090 0.077
30.687± 0.060 19.135± 0.001 0.458± 0.001 65.9± 0.2 0.147 0.290 0.042 0.020 -0.050 1.870 -0.040 0.650 -0.150 0.059
32.840± 0.060 19.236± 0.001 0.459± 0.001 65.9± 0.2 0.124 0.302 0.042 -0.010 -0.070 1.720 -0.140 0.760 -0.120 0.044
35.061± 0.062 19.336± 0.001 0.459± 0.001 65.9± 0.2 0.088 0.312 0.044 -0.020 -0.040 1.550 -0.210 0.880 -0.090 0.045
37.385± 0.059 19.435± 0.001 0.458± 0.001 66.1± 0.1 0.102 0.314 0.042 0.030 -0.060 1.280 -0.100 0.810 -0.140 0.066
39.678± 0.060 19.536± 0.001 0.455± 0.001 66.1± 0.1 0.078 0.326 0.042 -0.080 0.010 1.290 -0.080 0.830 0.020 0.050
42.182± 0.066 19.635± 0.001 0.453± 0.001 66.3± 0.1 0.074 0.343 0.046 0.070 -0.060 1.190 -0.070 0.860 0.020 0.071
44.663± 0.072 19.734± 0.001 0.448± 0.001 66.3± 0.2 0.028 0.359 0.051 0.140 -0.040 1.250 -0.070 0.940 -0.000 0.062
47.108± 0.073 19.834± 0.001 0.442± 0.001 66.3± 0.1 0.010 0.402 0.052 0.020 -0.100 1.190 -0.100 0.950 -0.120 0.074
49.534± 0.078 19.934± 0.001 0.436± 0.001 66.3± 0.2 -0.088 0.409 0.055 -0.030 0.010 1.210 -0.240 1.000 -0.110 0.045
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a µa
R e PA ∆xc ∆yc Err.b a3/a b3/a a4/a b4/a a6/a b6/a Err.c

[arcsec] [mag arcsec−2] [◦] [arcsec] [arcsec] [arcsec] ×100 ×100 ×100 ×100 ×100 ×100

51.950± 0.083 20.036± 0.001 0.428± 0.001 66.4± 0.2 -0.119 0.402 0.059 ... ... ... ... ... ... 0.045
54.308± 0.087 20.135± 0.001 0.417± 0.001 66.2± 0.2 -0.098 0.459 0.062 -0.040 -0.040 1.060 -0.160 1.090 0.030 0.062
56.753± 0.092 20.235± 0.001 0.409± 0.001 66.5± 0.2 -0.167 0.424 0.065 -0.020 -0.110 0.790 -0.290 1.130 -0.020 0.065
59.253± 0.092 20.336± 0.001 0.399± 0.001 66.6± 0.2 -0.198 0.452 0.065 ... ... ... ... ... ... 0.065
62.028± 0.092 20.436± 0.001 0.393± 0.001 66.6± 0.2 -0.298 0.502 0.065 -0.010 0.000 0.700 -0.240 1.150 -0.130 0.059
64.741± 0.082 20.536± 0.001 0.385± 0.001 66.6± 0.1 -0.345 0.505 0.058 -0.050 0.040 0.570 -0.160 0.960 -0.100 0.068
67.520± 0.078 20.635± 0.001 0.379± 0.001 66.5± 0.1 -0.205 0.476 0.055 -0.090 0.050 0.440 -0.190 0.990 0.010 0.048
70.445± 0.085 20.734± 0.001 0.372± 0.001 66.5± 0.1 -0.219 0.438 0.060 -0.140 0.030 0.360 -0.110 0.920 -0.090 0.064
73.422± 0.090 20.834± 0.001 0.364± 0.001 66.3± 0.1 -0.279 0.567 0.064 -0.140 -0.110 0.140 -0.170 0.850 -0.040 0.078
76.678± 0.085 20.936± 0.001 0.360± 0.001 66.4± 0.1 -0.140 0.583 0.060 ... ... ... ... ... ... 0.078
80.086± 0.093 21.037± 0.001 0.354± 0.001 66.3± 0.1 -0.050 0.497 0.066 ... ... ... ... ... ... 0.078
83.687± 0.109 21.138± 0.001 0.351± 0.001 66.4± 0.2 -0.228 0.436 0.077 -0.010 -0.080 0.010 -0.350 0.750 -0.060 0.094
87.231± 0.101 21.239± 0.001 0.344± 0.001 66.7± 0.1 -0.502 0.738 0.071 ... ... ... ... ... ... 0.094
90.680± 0.120 21.339± 0.001 0.336± 0.001 66.6± 0.2 -0.398 0.769 0.085 ... ... ... ... ... ... 0.094
94.336± 0.135 21.439± 0.001 0.329± 0.001 66.4± 0.2 -0.445 0.992 0.096 ... ... ... ... ... ... 0.094
98.111± 0.165 21.538± 0.001 0.321± 0.002 66.3± 0.2 -0.457 1.004 0.117 ... ... ... ... ... ... 0.094
101.661± 0.232 21.637± 0.001 0.311± 0.002 66.6± 0.3 -0.509 1.214 0.164 0.140 -0.240 -0.560 -0.110 0.640 0.340 0.200
105.981± 0.288 21.737± 0.001 0.309± 0.003 66.6± 0.4 -0.347 1.197 0.203 0.020 -0.200 -0.440 -0.260 0.540 0.340 0.210
111.325± 0.162 21.841± 0.001 0.312± 0.001 66.4± 0.2 -0.319 1.230 0.115 ... ... ... ... ... ... 0.210
116.502± 0.166 21.944± 0.001 0.313± 0.001 66.3± 0.2 -0.664 1.511 0.117 0.270 -0.430 0.000 -0.450 0.740 -0.040 0.092
121.793± 0.201 22.043± 0.001 0.313± 0.002 66.1± 0.2 -0.652 1.433 0.142 ... ... ... ... ... ... 0.092
127.455± 0.218 22.138± 0.001 0.313± 0.002 65.8± 0.2 -1.119 1.668 0.154 0.370 -0.440 0.260 -0.410 0.710 0.070 0.099
133.917± 0.324 22.234± 0.001 0.318± 0.002 65.7± 0.3 -1.509 2.154 0.229 0.420 -0.440 0.370 -0.480 0.970 0.290 0.170
139.843± 0.460 22.331± 0.001 0.314± 0.003 65.7± 0.4 -1.775 1.725 0.325 0.430 -0.340 0.400 -0.400 0.620 0.720 0.265
147.198± 0.536 22.430± 0.001 0.320± 0.003 64.8± 0.5 -2.335 1.937 0.379 ... ... ... ... ... ... 0.265
155.523± 0.400 22.533± 0.001 0.326± 0.002 64.8± 0.3 -2.535 2.537 0.283 ... ... ... ... ... ... 0.265
163.016± 0.359 22.633± 0.001 0.329± 0.002 64.2± 0.3 -2.982 2.651 0.254 ... ... ... ... ... ... 0.265
170.075± 0.429 22.728± 0.001 0.329± 0.002 64.1± 0.3 -3.165 2.720 0.304 ... ... ... ... ... ... 0.265
177.623± 0.365 22.827± 0.001 0.328± 0.002 63.2± 0.2 -3.611 2.977 0.258 0.160 -0.570 0.320 -0.470 0.440 -0.080 0.163
185.102± 0.334 22.934± 0.001 0.325± 0.002 62.8± 0.2 -4.251 3.075 0.237 ... ... ... ... ... ... 0.163
190.987± 0.358 23.036± 0.001 0.320± 0.002 63.0± 0.2 -4.284 2.625 0.253 0.040 -0.670 -0.350 -0.140 0.320 -0.070 0.153
196.718± 0.432 23.132± 0.001 0.312± 0.002 62.8± 0.3 -4.146 2.013 0.305 0.070 -0.470 -0.350 0.330 0.260 0.220 0.200
202.089± 0.559 23.227± 0.001 0.303± 0.003 62.5± 0.4 -3.715 1.787 0.395 ... ... ... ... ... ... 0.200
207.354± 0.675 23.323± 0.001 0.294± 0.003 62.2± 0.5 -3.703 1.692 0.478 ... ... ... ... ... ... 0.200
212.802± 0.787 23.421± 0.001 0.290± 0.004 62.1± 0.5 -4.401 1.973 0.556 ... ... ... ... ... ... 0.200
217.940± 0.851 23.521± 0.001 0.277± 0.004 62.0± 0.6 -5.084 2.106 0.602 ... ... ... ... ... ... 0.200
222.191± 0.996 23.613± 0.001 0.266± 0.005 61.8± 0.7 -5.386 1.642 0.704 ... ... ... ... ... ... 0.200
226.618± 1.524 23.707± 0.001 0.258± 0.007 62.0± 1.1 -5.745 1.259 1.078 ... ... ... ... ... ... 0.200
233.406± 0.749 23.815± 0.001 0.260± 0.003 61.2± 0.5 -5.653 1.309 0.529 ... ... ... ... ... ... 0.200
238.734± 0.519 23.925± 0.001 0.247± 0.002 60.9± 0.4 -7.590 1.397 0.367 ... ... ... ... ... ... 0.200
243.821± 0.590 24.020± 0.001 0.246± 0.003 60.2± 0.4 -7.878 1.488 0.417 ... ... ... ... ... ... 0.200
247.975± 0.827 24.104± 0.001 0.240± 0.004 59.6± 0.6 -7.811 1.447 0.585 ... ... ... ... ... ... 0.200
253.321± 0.972 24.189± 0.001 0.245± 0.004 59.4± 0.6 -7.540 1.035 0.687 ... ... ... ... ... ... 0.200
a Statistical errors not including systematics due to photometric calibration and sky subtraction .
b Error on the center coordinates from the residual rms of the ellipse fit to the isophotes: Err=rms(fit)/

√
N with N ≤ 128 the number of fitted points of the isophotes.

c Error of Fourier coefficients defined as Err=

√
PN/2

i=10
(a2

i +b2i )
N/2−10 × 100

a .
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Table B.1: The kinematics of NGC 4697 along the major axis (P.A.=66◦). Positive radii are to
the north-east.

R V dV σ dσ h3 dh3 h4 dh4

(”) (km/s) (km/s) (km/s) (km/s)
0.38 -13.2 0.4 180.0 0.4 -0.004 0.002 0.007 0.002
0.97 -39.5 0.2 175.3 0.4 0.027 0.002 0.014 0.002
1.57 -51.8 0.2 174.4 0.4 0.041 0.002 0.017 0.002
2.27 -70.1 0.3 169.4 0.4 0.049 0.002 0.029 0.002
3.16 -83.1 0.3 163.4 0.4 0.08 0.002 0.037 0.002
4.26 -89.9 0.3 160.6 0.4 0.095 0.002 0.034 0.002
5.55 -93.8 0.4 157.9 0.5 0.105 0.003 0.037 0.003
7.14 -97.3 0.4 162.3 0.5 0.12 0.002 0.036 0.002
9.22 -94.2 0.4 163.3 0.6 0.096 0.002 0.019 0.003

12.00 -96.6 0.4 166.3 0.5 0.093 0.002 0.010 0.002
15.67 -95.5 0.4 170.5 0.6 0.080 0.002 0.004 0.003
20.63 -114.1 0.6 160.3 0.8 0.150 0.003 0.022 0.004
27.62 -109.1 0.6 157.8 0.8 0.140 0.003 -0.016 0.004
38.07 -115.1 0.7 151.9 1.0 0.122 0.004 -0.003 0.005
58.05 -108.6 1.0 143.2 1.4 0.122 0.006 -0.029 0.007
92.52 -111.5 2.9 140.9 3.7 -0.017 0.020 -0.082 0.015
-0.22 7.0 0.4 179.6 0.4 -0.024 0.002 0.015 0.002
-0.81 31.3 0.3 177.0 0.4 -0.042 0.002 0.026 0.001
-1.41 51.9 0.3 173.3 0.4 -0.061 0.002 0.029 0.001
-2.11 70.1 0.3 169.0 0.5 -0.072 0.002 0.045 0.002
-3.00 85.6 0.3 163.4 0.5 -0.100 0.002 0.052 0.002
-4.00 92.8 0.3 161.8 0.3 -0.112 0.001 0.034 0.002
-5.19 93.6 0.3 162.7 0.3 -0.112 0.001 0.041 0.002
-6.69 98.0 0.3 160.3 0.3 -0.135 0.001 0.043 0.002
-8.57 96.0 0.3 159.1 0.3 -0.114 0.001 0.034 0.002

-11.05 98.3 0.3 165.8 0.3 -0.131 0.001 0.030 0.002
-14.32 93.2 0.3 172.2 0.3 -0.126 0.001 -0.014 0.002
-18.79 103.9 0.3 172.1 0.3 -0.145 0.001 -0.011 0.002
-24.99 112.6 0.4 168.1 0.3 -0.170 0.002 0.005 0.002

-34 120.1 0.5 160.0 0.5 -0.168 0.002 -0.026 0.003
-48.87 113.7 0.7 152.5 0.6 -0.132 0.004 -0.018 0.004
-76.65 115.2 1.9 153.1 2.1 -0.087 0.012 -0.004 0.010
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Table B.2: The kinematics of NGC 4697 along the minor axis (P.A.=156◦). Positive radii are to
the south-east.

R V dV σ dσ h3 dh3 h4 dh4

(”) (km/s) (km/s) (km/s) (km/s)
0.09 -1.3 0.2 186.3 0.2 -0.014 0.001 0.011 0.001
0.49 1.6 0.3 183.7 0.3 -0.001 0.001 0.006 0.001
1.00 2.3 0.1 179.8 0.1 -0.013 0.005 0.009 0.001
1.58 0.3 0.3 176.4 0.3 -0.007 0.001 0.005 0.001
2.27 1.6 0.3 177.9 0.3 0.001 0.001 0.037 0.001
3.25 -1.3 0.2 180.4 0.2 -0.001 0.001 0.030 0.001
4.73 4.1 0.3 184.3 0.3 -0.006 0.001 0.034 0.001
6.98 1.9 0.3 178.1 0.3 -0.019 0.001 0.015 0.001

10.66 -4.2 0.5 177.6 0.5 -0.022 0.002 0.023 0.002
17.37 5.2 0.7 175.9 0.7 -0.007 0.003 0.005 0.002
31.77 -4.6 1.4 173.2 1.4 -0.005 0.006 -0.012 0.005
-0.31 0.6 0.2 185.0 0.2 0.020 0.001 0.004 0.001
-0.80 1.0 0.1 181.9 0.1 0.018 0.005 0.006 0.001
-1.40 -1.4 0.2 176.5 0.2 0.018 0.001 0.021 0.001
-2.18 -0.8 0.3 178.9 0.3 0.013 0.001 0.027 0.001
-3.36 -1.9 0.3 176.7 0.3 -0.004 0.001 0.023 0.001
-5.13 -0.8 0.3 175.0 0.3 0.020 0.001 0.018 0.001
-7.95 1.0 0.4 175.2 0.5 0.020 0.002 0.050 0.002

-12.74 0.6 0.6 173.2 0.7 0.015 0.003 0.037 0.003
-22.55 1.9 0.9 169.7 1.0 0.017 0.004 -0.001 0.003
-49.42 4.4 2.1 158.1 2.3 0.001 0.010 -0.011 0.007





APPENDIX C

ABBREVIATIONS

Abbreviation Meaning
CCD Charge Coupled Device
CBE Collisionless Boltzmann Equation
CDM Cold Dark Matter
CIC Cloud in cell
CMB Cosmic Microwave Background
DF Distribution Function
DM Dark Matter
F77 FORTRAN 77
F90 FORTRAN 90
FCQ Fourier Correlation Quotient
FFT Fast Fourier Transform
FP Fundamental Plane
FQ Fourier Quotient
FWHM Full Width at Half Maximum
LOS Line-of-Sight
LOSVD Line-of-Sight Velocity Profile
MPI Message Passing Interface
M2M Made-to-Measure
NGC New General Catalogue
NMAGIC N-particle Made-to-measure AlGorithm mInimizing Chi squared
PN Planetary nebula
PN.S Planetary Nebula Spectrograph
PSF Point Spread Function
SB Surface Brightness
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