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CHAPTER 1

INTRODUCTION

1.1 The aim of the present work

The first main goal of this thesis is to develop and test a new way of modelllagigs, based

on the original ideas oByer and Tremain€l996. This method is new in the sense thava
particle system is tailored to reproduce galaxy observations, rather tipgnp®sing orbits as
done in Schwarzschild’s method. The ng#*made-to-measure¢M2M) algorithm properly
accounts for observational errors, is flexible, and can be applieditiugasystems and geome-
tries. Thex?M2M is implemented in a parallel code NMAGIC and various tests using known
dynamical models are carried out to illustrate its performance.

The second goal of this thesis is to apply NMAGIC to real galaxies and tstigeate the
issue of dark matter in the intermediate luminosity elliptical galaxies NGC 4697 ard NG
3379. These two galaxies are particularly interesting because recdigssfdéndez et aJ.
20032, Douglas et a].2007) revealed a dearth of dark matter in these systems, which conflicts
with the prevailing cosmological paradigm.

1.2 Evolution of a collisionless system

The evolution of a stellar system, where the stars can be considered asnpsBses, is deter-
mined by the mutual gravitational forces of the stars. The collision rate ofranstastellar
system with equal mass stars and a constant total mass is inversely proglaidghe total
number of stars. This can be understood as follows: If the total numbstiare is doubled,
then also the number of encounters is doubled, but the strength of a siafiering event is
reduced by a factor of four, since the mass of each star is halved agdatitational force is
proportional to the square of the mass. One can show that for galaxies) typically have

N =~ 10! stars, encounters are unimportant. Hence, galaxies can be considew@tisionless
systems €.g. Binney and Tremainel987 and the motions of the stars are governed by the
smooth gravitational potential, generated by the entire system.

The collisionless Boltzmann equation

A collisionless stellar system can be described by its phase-space distribuiction (DF)
f(x,v,t), which gives the density of stars in the six-dimensional phase spagevoéind is
positive everywhere. For example, the surface brightpessd the mean line-of-sight velocity
Vj0s are then given by integrals:

1
©= / fd3vdz, os = / v, fd3vdz, (1.1)

where the line-of-sight is assumed along the z-direction.
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The evolution of the DF under the influence of the total gravitational poteptied deter-
mined by the collisionless Boltzmann equation (CB&) Binney and Tremainel987):

of of _
ot ov
which follows from the conservation of stars in phase-space. The @&Essthat the phase-

space flow is incompressible. The total gravitational poteniial ¢) is generated by the com-
bined stellar mass and dark matter distributions and is given by

+v-Vf-V¢- 0, 1.2)

¢ = ¢« + dpDM, (1.3)
where the stellar potential, is related to the DF via Poisson’s equation

A¢y = 4G py, (1.4)
with the volume density

Py = / fdv. (1.5)

The Poisson’s equation together with the CBE are the fundamental equatiekar dynamics.
Once a solution of these equations has been found, all the interestinthatfon about the
system can be extracted as illustrated in equatibris. (

In stellar dynamics, the CBE is typically solved like an initial value problem: An initially
specified system of particles, representing the injt{al, v, ¢y), is integrated in a smooth grav-
itational potential to study the evolution of the system and to possibly compafiaahenodel
with observations. For exampl€&ux (1997 realized various models of the Galaxy by self-
consistent evolution of bar unstable models and compared them posteriabsghvations of
the Milky Way.

Moment Equations

Generally, to solve the CBE poses a difficult problem. Valuable insight eaabttained by
considering velocity moments of the CBE. This results in a hierarchy of easati®ginning
with the continuity equation, followed by the higher order ones. Combining dméirity
equation and the second moment equation yieldse¢laas equationsvhich are closely related
to the Euler equations of fluid dynamiasg. Binney and Tremainel987 Gerhard 1994:

o7, _ Oy o 0¢ 8(,00’,%)
Pot T P%0 = Pom, T oz,

where the symmetric tensef?, measures the random motions of the stars with respect to the
mean streaming motion. At each position in space, the principal axe% défine the velocity
ellipsoid. Unfortunately, the principal axes of the velocity ellipsoid are mawvkn in general,

and hence solutions can only be obtained by making assumptions aboudpleso$ithe velocity
ellipsoid or the form of the DF.

(1.6)

Jeans theorem

Often one is interested in solutions of the CBE that describe stars moving iavaagional
potential which is constant in time, such that the DF is also constant. For sstelady-state
solution 3—{ = 0) of the CBE Jeans theorem states that the DF depends on the phase-spac
coordinates only through the integrals of motion for the stellar orbits in thetgtianal poten-

tial. On the other hand, any non-negative function of the integrals of motiarsisady-state
solution of the CBE. For a steady-state system, the Jeans theorem impli¢sethhase-space
density is constant along individual orbits. This is the basis of many methodeifstructing
equilibrium models of galaxies, such as the Schwarzschild metBokwarzschild1979 or
DF-based methods.
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1.3 Dynamical modeling of elliptical galaxies

The central problem in dynamical modelling of galaxies is to find a DF whichesalve CBE
and reproduces the observations, such as the surface brightrteibsitiii;m and the mean line-
of-sight velocity field ¢f. equationl.l), to gain some information about the distribution of mass
and the orbital structure. These are interesting because the first ongiveaya hint on the
distribution of dark matter, where as the latter one is likely to have preseovee ecord of the
formation of the galaxy.

Unfortunately, estimating the distribution of mass is complicated by the fact thahthe
trinsic shape of an elliptical galaxy is not known at the outset and that {®jeetion of its
surface brightness distribution is not unique. Consequently, diffemgirisic shapes have to be
probed. In addition, constraining the dynamical models by only the meanityedmad velocity
dispersion is insufficient to derive the mass of the system due to the miassrapy degeneracy
(Binney and Mamon1982. Using the full LOSVD instead, allows to reconstruct the DF given
the potential is knownejonghe and Merriftl 992 and to constrain the DF and the potential,
if the latter is not givenGerhard 1993 Merritt, 1993.

Several techniques have been developed to construct dynamical mabgelaxies with the
attempt to recover the mass distribution (including dark matter) and the DF taorisigth the
observational data.

DF-based methods assume that the integrals of motion can be expresgguloxiraated
in terms of analytic functions. This approach has been applied to spheriagher inte-
grable systemse(g. Dejonghe 1984 Bishop 1987 Dejonghe and de Zeeuw 198&erhard
1991 Hunter and de Zeeuw 1992arollo et al. 1995De Bruyne et al. 200Kronawitter et al.
2000, nearly integrable potentials where perturbation theory can be esgd Gaaf 1968
Dehnen and Gerhayd993 Matthias and Gerhard 999 and to axisymmetric models assum-
ing that the DF is a function of enerdyand angular momentuih, only (e.g. Hunter and Qian
1993 Dehnen and Gerhard994 Kuijken, 1995 Magorrian 1995 Qian et al, 1995 Merritt,
1996. However, there is no physical reason why the DF should only deperitle classical
integrals and most orbits in axisymmetric systems have an additional third infegwetich is
not known in general@llongren 1962).

Another class of models solve the Jeans equations or higher order vetamitgnts of the
CBE. This approach does not require the knowledge of the integrals tdmmdut since the
Jeans equations are not closed, assumptions about the shape of tlitg edipsoid have to be
made. For example, M87 was studiedBipney and Mamor(1982 using spherical Jeans mod-
els. Binney et al.(1990 constructed axisymmetric models for NGC 4697 assunfifg, L. ).
But the Jeans approach has the limitation that the DF associated with the velooigmntsas
not guaranteed to be positive everywhere.

Schwarzschild1979 developed an orbit based method for numerically building models of
galaxies, without explicit knowledge of the integrals of motion. It makes disheofact that
the DF is constant along orbits and can be interpreted as a superpositiba DFs of the
individual orbits. A library of orbits is computed and orbits are then sumsegd with positive
definite weights to reproduce observed photometry and kinematics. The&schild method
has been used to model stellar systems for measurements of global masstatihg, internal
kinematics and the masses of central black hoteg. ( Gebhardt et a].2003 Thomas et aJ.
2005 Cappellari et a].2006 Shapiro et al.2006. However, most Schwarzschild models in the
literature to date are axisymmetric.

Syer and Tremaingl996 invented a particle-based method for generating models of stellar
systems. This “made-to-measure” (M2M) method is allied to the Schwarzscbiiditpie, but
rather than superposing orbits from a library, it works by varying thige of the particles in
the system as a function of time, until the model converges to the observatxaaT his allows
for arbitrary geometries and is not restricted necessarily to stationagnsysSo far, the only
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practical application of the M2M method was madeRigsantz et al(2004. These authors
constructed a dynamical model of the Milky Way’s barred bulge and diskomgtraining the
projected density map. One goal of this thesis is to extend the M2M algorithm dgiorate

kinematic observations and to properly account for observationakerro

1.4 N-particle simulations

Much of what is known today about the dynamical evolution of stellar systamges from
N-body simulations. N-body problems and their solutions divide into two tygesending on
the importance of binary collisions. In a collision dominated simulation each pagijoiesents
an individual star, as for example in studies of the dynamical evolution ofchiaters €.9.

von Hoerner 1960Aarseth 1963Hénon 196

On the other hand, stellar systems such as galaxies are collisionless for éilee mwich
longer than a Hubble time. As discussed in secfidh such a system is completely described
by a DF f(x,v,t) along with the smooth potential(x, v,¢) generated by the DF and any
external contributions. The evolution of the DF is determined by the @BEquation {.2).
The CBE is solved by sampling phase-space using a Monte-Carlo apgroatich selected
“fluid” elements are represented as particles and are integrated alongataeteristic curves
of the CBE, defined byg.g.Hernquist and Ostriker 1992eeuwin et al. 1998

dx

— = 1.7

TV 1.7)

dv

—_— = 1-8

FHEE (1.8)
wherea = —V¢ is the acceleration. The potentialis computed from the mass densities of

the particles. In reality, N-body simulations are never perfectly collisiosldes to the particle
noise in the estimation of the accelerations. One should therefore make themafrphrticles
as large as possible to reduce the effects of the shot noise.

The task of the potential solver is to estimate the acceleratidnsm the discrete sample
of particles. Various techniques have been proposed in the literatutie #relfollowing | give
only an incomplete list. The simplest technique is the particle-particle method (RRjdh the
potential is computed by a direct summation of the pair-wise interactegs fAarseth 1985.
Another approach is the so-called particle-mesh (PM) method which sobiesoR’s equation
on agrid (PM) €.g. Hockney and Brownriggl974), using for example a fast Fourier transform
(FFT). Sellwood(2003 developed a surface harmonic method (PM+SH) which is described in
more detail in sectiodA.1. The PM+SH method is used as the potential solver in the NMAGIC
code.

Collisionless N-body simulations have been applied to many problems in assioplsyich
as galaxy evolutiong.g.Hockney and Brownrigg 1974ebattista and Sellwood 20))0nerger
simulations €.g.Gerhard 198;1Barnes 1990Hernquist 1992Naab et al. 2006and in cosmo-
logical simulations €.g. Efstathiou and Eastwood 1984avarro et al. 1996

In a “standard” N-body simulation, one specifies a set of initial conditigitg,(v, ¢y)) and
follows the evolution of the particle system and any quantity of interegt (nass density or
line-of-sight-velocity). The only way one can influence the final modeyisianging the initial
conditions. As already mentioned in sectib2, this approach was employed Byx (1997 to
model the Milky Way. In contrast to that, the M2M method allows to tailor an initiallyc#jesl
system by gently adjusting the individual adaptable particle weights durirgvtiiation of the
particle system until it matches the observatiafsgection2.2).
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1.5 General properties of elliptical galaxies

Elliptical galaxies are usually smooth and almost structureless; devoid ¢drpktric struc-
tures such as spiral arms, rings or bars. They are among the brigatesieg in the universe
and reach total B-band magnitudesidf; ~ —24 mag, but elliptical galaxies populate the hole
range of luminosities down to very faint dwarf ellipticals (dE). They varyhagge from round to
highly flattened in appearance with isophotes, contours of constaatsusfightness, remark-
ably close to being true ellipses. Accordingly, they are designatedtteren = 10(1 — a/b)
anda/b describes the apparent axis ratigir(ney and Merrifield1998. There are few, if any,
more flattened thanE

Elliptical galaxies are preferentially found in clusters, and the largestenf tthe cD galax-
ies, are found at the cluster centdiséssley 1980. The surface brightness profiles of elliptical
galaxies are well described by the empiriSairsic(1968 law

I(R) = I(R.) exp(—b[(R/Re)"/™ — 1)), (1.9)

where the constaritis chosen such that half the light is enclosed within the effective raglius
Forn > 1, b ~ 1.999n — 0.327. Forn = 4, one obtains th&k'/* or de Vaucouleur$1948
law, which provides a fairly good description of the surface brightnesfi@over a large radial
range. Unless an elliptical galaxy is circular symmetric, different valueR favill be measured
along the major and the minor axes, and the quoted values are typically thetgeonsan of
them.

The central regions of elliptical galaxies have attracted a lot of interesguse ellipti-
cals have long been suspected to harbor central black holes. Due tighhsphatial resolution
needed, observations of the centers of ellipticals became possible only wittutible Space
Telescope (HST)Lauer et al(1999; Gebhardt et al(1996; Faber et al(1997) analysed HST
surface brightness profiles of dozens of elliptical galaxies and dised\ae bimodality in the
central profile slopes. Nearly all the galaxies in these samples havelerrspa,i.e. the loga-
rithmic slope of the luminosity profile is significantly different from zero. Thightest galaxies
with M,, < —22 havecoreswith a shallower inner profile, breaking at a break radiygo the
steep outer profile. Faint galaxies witlhy: > —22.5 have largely structureless stegpwer-law
profiles and are therefore called power-law galaxies. In the intermedratadsity range, both
forms exist.

The appearance of an elliptical galaxy depends on its orientation withategpéhe ob-
server. For instance, an axisymmetric galaxy observed along the symmistripaks as an &
irrespective of the intrinsic flattening. Hence, it is not possible to determa@ttinsic shape
for a single galaxy, but since ellipticals are observed along randomtidinec one can use
the distribution of apparent flattening to constrain an average three dimahstwapei.e. the
probability distribution of intrinsic shapes. The distribution of apparent ellig of elliptical
galaxies peak betweer2Eand B3. There is a lack of exactly circular objects and no galaxy is
flatter than &, possibly due to a dynamical instabilite.¢. Binggeli, 198Q Bender et a].1988
Franx et al.1991;, Ryden 1992. The apparent shapes of faint ellipticals are more flattened than
those of more luminous ones. On average, the faint ellipticals aeaé the brighter onesiB.
The apparent shape distribution of the fainter galaxies is consistent wiateadymmetry, but
the brighter ones are not, due to a lack ofdgalaxies. The apparent shape distribution of either
group is successfully reproduced by a triaxial intrinsic light distributitneinblay and Merritt
1996. Isophote twistsi.e. the change of the position angle (PA) with radius, further indicate
that some elliptical galaxies are triaxial.

With the availability of CCD devices, accurate photometry became feasibleaedled de-
viations of the isophotes from being true ellipses. These deviations aredagiw 2 percent of
the isophotal radius.e(g. Carter 1978 1987 Jedrzejewski et 411987 Peletier et al.1990).
Usually, the deviations from an ellipse fit are quantified by means of a Foameysis ¢f.
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Bender and Moellenhaoffl987). A positivea, coefficient indicates disky isophotes and a nega-
tive a4 results from boxy isophotes. Boxy ellipticals are more likely to show isophastswOf-

ten they tend to be brighter and are radio and X-ray loud. By contrasy, eligiticals are fainter,

fast rotating and have less X-ray emissiohh Bender et a].1989 Cappellari et al.2007). They
resemble 8 galaxies with a low disk-to-bulge ratio. Hence, they may form a sequence with
S0 galaxies ¢f. Simien and Michard199Q Rix and White 1990 Scorza and Bendef99Q
Cinzano and van der Marel993. Boxy ellipticals have possibly formed by galaxy mergers,
which could have destroyed any disks, and leave a triaxial remnant. Ttgemgpothesis

is supported by the observations of kinematically decoupled comporegtsEender 1988
Franx and lllingworth 1988 Cappellari et a].2007).

In contrast to spiral galaxies, ellipticals lack luminous young blue stars with afdkeir
light coming from red giants. They are old anéenriched. Brighter galaxies are redder than
fainter ones€.g. Visvanathan and Sandage977 Bower et al, 1992). In general, ellipticals
are redder at their centers than in the outer parts Peletier et al.1990.

Among the basic structural parameters of elliptical galaxies exist variauslaons. For
instance the central velocity dispersion is tightly linked with the luminosity: Brighitgaticals
have larger central velocity dispersions and roughly o*. This correlation is often called
the Faber-Jacksomelation, aftef~aber and Jacksdd976. The Faber-Jackson relation can be
used to estimate galaxy distances from velocity dispersion measuremenisisBlifficult to
determine the total luminosity of a galaxy, because a significant amount ofclighés from
the faint outer parts. Distances derived from the Faber-Jacksdioretae therefore not very
accurate.

The D — o relation Qressler et a).1987, whereD measures the diameter of the isophote
within which the mean surface brightness equais 20.75u 5, was found to provide a tighter
correlation than the Faber-Jackson relation and is particularly used akiia diistance estima-
tion.

The fundamental plan€FP) relation ¢f. Faber et al.1987 Djorgovski and Davis1987,
Dressler et a).1987) is a generalization of the Faber-Jackson relation, which turned out to be
a projection of the FP. The FP relation relates the effective raBljusiith the mean surface
brightnesd, within one R, and the velocity dispersion. It is approximately

R o< o210, (1.10)

which implies under the assumption of homolagy/ /L) oc L%?* (Faber et a].1987), known
as the tilt of the FP. The luminosity dependence of the M/L is confirmed by dymasticdies
(Gerhard et a).200% Cappellari et al.2006 and is primarily due to population effects, while a
varying DM fraction is less important.

1.6 Cosmological context

Observations of the temperature anisotropies in the cosmic microwave agidgmply that
the universe is flat, consists mainly of cold dark matter and dark energyavathall amount
of ordinary mater, which formed its structure through gravitational instabilégtiag from an
inflationary epoché.g. Peacock1999 Hu and Dodelso2002 Spergel et a].2003 2007)

Numerical N-body simulations offer a powerful tool to study the formatiostaicture in
the universe, starting from small density perturbations derived fromeeatyre fluctuations in
the cosmic microwave background. The growth of structure is determinéaebgmount and
type of dark matter. High resolutiohACDM simulation reveal a universal DM halo density
profile, which is well approximated over a large range of masses by &daattwo parameter
form

_ ps
pnEw (1) = AR (1.11)
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wherer, is a characteristic scale length apgda corresponding densityg.g. Navarro et al.
1996 1997 Moore et al, 1998. A useful alternative parameter for describing the shape of the
density profile is the concentration parametgr which is the ratio of the virial radius,;, to r
(e.g. Bullock et al, 2001, Wechsler et a).2002. For a given cosmology, the halo concentration
tends to increase with decreasing halo mass. This reflects the fact thatdes/halos typically
collapse earlier, when the universe was denser. In the prevaidigM cosmology, the structure
forms hierarchically bottom-up: dense low mass halos form first and meocgessively to build
up the high mass objects.

In the standard picture of galaxy formation, the dark matter halos carry wWitima gas,
which eventually cools and collapses within the potential wells of the surimogimélos to form
disk galaxies. This suggests that galaxies trace a similar hierarchicaltionnpath as their
surrounding DM halos. The merger hypothesis as first propos@ddayre and Toomrél972
envisions that most elliptical galaxies form by major mergers of pairs of geaXhe hierarchi-
cal formation picture is consistent with the fact that the fraction of earlg-ggdaxies increases
with increasing density of the environment whereas the fraction of lategglzies decreases
(Dressler 1980, and that some ellipticals show arc-like shells or have kinematically decou-
pled central corese(g. Malin and Carter1983 Bender 1988 Franx and Illingworth 1988
Cappellari et al.2007). The merger scenario is supported by numerical simulations which have
been successful in explaining observed properties of ellipticals like tfi@cgubrightness pro-
files, kinematics and isophotal shape parameteigs Gerhard 1981Barnes 1990Hernquist
1992 Naab et al. 2006 However the picture has become more complex. For example, boxy
ellipticals can form via disk-disk mergers.§. Naab and Burker2003 or from multiple merg-
ers (Weil and Hernquist1996; and the most massive ellipticals should have experienced a last
elliptical-elliptical merger Naab et al.2006§. Hence, it seems likely that ellipticals are rem-
nants of mergers of both small ellipticals and spiral galaxies.

An ongoing test ofACDM is measuring the concentration, mass and extent of DM halos
on different scales. There is compelling evidence for dark matter in galasyers. Already
in 1933,Zwicky concluded by means of the virial theorem that most of the mass in the Coma
cluster is invisible. More recent studies using X-ray measuremergs $chindler et aJ.1999
and gravitational lensinge(g. Mellier et al, 1993 Bartelmann1995 confirm these results.

On galactic scales, dark matter was first found in spiral galaxies. Theditest method
to estimate the distribution of mass in spiral galaxies is provided by their cirsptad curves
v.(R), which allow to deduce the mass inside radiusia

v2(R) o¢ ———=. (1.12)

Rotation curves can be measured optically from emission lines iret)I Burstein et al.1982
Rubin 1985 Kent, 1986, or from the21-cm emission line of HI€.g. van Albada et a).1985
Begemann1987), which allows to measure the rotation curves out to radii, containing all but a
negligible fraction of the total luminosity of a spiral galaxy.

These studies revealed that the rotation curves of spiral galaxiestavatfta the last mea-
sured data points and hence provide the most direct evidence for ddek mahese systems.

The search for dark matter in elliptical galaxies is more difficult due to the lhaksomple
mass tracer such as HI, and due to their complex orbital struatfirgetionl.8).

1.7 Measuring the kinematics of elliptical galaxies

Kinematic information about elliptical galaxies can be obtained from the intehsmtectrum,
which is the sum of all the individual stellar spectra along the line-of-sigtat) ®oppler-shifted
in wavelength according to the velocity of the star. The random motions otdhe cause the
lines in the integrated spectrum to be broadened. Thus, the absorptiocdimtas information
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about the line-of-sight velocity distribution (LOSVD) of the stars. To finster, the line profile
can by described by a Gaussian, characterized by a mean velocitytedbtal bulk motion
of the stars (rotation) and a width equal to the velocity dispersion of the stlgh-quality
CCD spectra with high signal-to-noise ratio and high spectral resolution &dlextract the full
LOSVD (e.g. Franx and Illingworth 1988 Bender 199Q Kuijken and Merrifield 1993. The
LOSVD can be described by a truncated Gauss-Hermite sedagler Marel and Frant993
Gerhargd 1993:

& o exp(—w?/2)

n
1+ thk(w)] , (1.13)
k=3
wherew = (v;,s — v) /o andv ando describe the underlying Gaussian. Hgjeare the Gauss-
Hermite coefficients anél; (w) are the Hermite polynomials. The odd and even Gauss-Hermite
coefficients measure asymmetric and symmetric deviations from a Gaussijpectreely. For
example s < 0 characterizes a LOSVD with a prograde wing steeper than the retrognade
andhy < 0 corresponds to a flat-topped LOSVD.

The steeply decreasing surface brightness profiles of ellipticals maké&dutlifo measure
stellar kinematics at large radii. Hence, absorption line measurements digedoto within
approximately two effective radii.

Studies of the velocity profile shapeBgnder et al.19943 have revealed that the rotation
velocity often increases within the central few arcsec and then flattensTbetvelocity dis-
persion profiles either remain flat or fall in the outer parts. In genertdfing galaxies have
flat-topped, asymmetric LOSVDs withy < 0. The degree of asymmetry correlates witfw,
so that disky ellipticals have more asymmetric velocity profiles than the boxy ones

The recent development of integral-filed spectrographs, such asbB@N instrument
(cf. Bacon et al.2001), provide two-dimensional kinematic information out to approximately
one effective radius. However, measuring stellar kinematics at largandes from the galaxy
center remains difficult.

Other dynamical tracers such as globular clusters and planetary neffielagn alternative
to measure the kinematics at large radii. For most galaxies within a distarree26fMpc,
globular cluster velocities can be measured and have been used to stodyethkalo of ellip-
ticals .g. Pierce et al.2006, but the modest numbers that have been observed today make it
difficult to rule out constant mass-to-light ratios.

Planetary nebulae (PNe) are stars at the end of their lives. They klazested their nuclear
fuel and have ejected their outer envelope. The core’s intense ultriaradiation ionizes the
ejected envelope, which emits in bright emission lines, of which[@&I]\5007 line is the
most prominent one. By searching for objects emitting in this line, PNe can teetelé at
distances up t@00 Mpc and can be found even between galaxies in the intra cluster &gt (
Gerhard et a).2007). Once the PNe are identified, their line-of-sight velocities can be obtained
from the Doppler shift of the narrow emission line.

PNe have been used to study the kinematics of elliptical galaxies at largeuathi~ 5R,

(e.g. Ciardullo et al, 1993 Arnaboldi et al, 1998 Douglas et aJ.2002 Romanowsky et al.
2003 Douglas et al.2007, where the dark matter is expected to dominate. Different tech-
niques are in use to study PNe kinematibdendez et al(2001) used a dispersed-undispersed
imaging technique to measure the PNe velocities in NGC 4697. The Planetariali&pectro-
graph (PN.S) utilizes counterdispersed imaging in conjunction with two sggapbic cameras
(Douglas et al.2002 providing an efficient tool to measure the PNe kinematics ujithipc.

The primary purpose of the PN.S instrument is to study the dynamics of a sahyidireary
early-type galaxies.

The PN population in elliptical galaxies is expected to arise from the underatagtic
population of old stars and hence the PNe can be used as kinematic tcadbesdtellar distri-
bution. This seems to be true in general except in one &ambhus et a(2006 analyzed the
correlations between the magnitudes, velocities and positions of a sample dfehdthging to
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NGC 4697 and found kinematic evidence for more than one PN sub-popul&ti@ddition to
the main PN population, they found evidence for a population of prefetaimjnt PNe which
appeared to be not in dynamical equilibrium in the galactic potential.

1.8 Evidence for dark matter in elliptical galaxies

Estimates of the total gravitating mass in ellipticals is in principle offered througbusachan-
nels. Among them are studies of the kinematics of occasional cold gasttliské&ray emitting
hot gas, gravitational lensing and stellar dynamical modelling.

Constraints on the dark matter halo from extended HI rings are only avaitebliew cases
(e.g. Franx et al. 1994 Oosterloo et a).2002. For exampleQosterloo et al(2002 find that
in NGC 3108 the HI rotation curve remains flat out t&6 consistent with a mass-to-light ratio
M/ L ~ 18, which implies that a significant amount of dark matter is present at largje rad

A significant fraction of elliptical galaxies, especially giant ones, containXiray emit-
ting gas atmospheres. From measuring the X-ray luminosity and spectrunpatia slen-
sity and the temperature of the hot gas can be inferred, and allows to estimateahmass
assuming the gas is in hydrostatic equilibrium. These studies indicate that des¢ e
los are common in elliptical galaxies and almost follow the NFW proglg.( Awaki et al,
1994 Loewenstein and Whitel 999 Humphrey et al.2006 Fukazawa et al2006. The dark
matter contribution inside?. is about20 percent and up td0 — 80 percent at; — 6 R..
Gravitational lensing studies reveal similar dark matter fractieng. ( Griffiths et al, 1996
Treu and Koopman2004 Rusin and Kochanei005.

In more ordinary ellipticals, mass estimates come from stellar dynamical studiégs) w
have been limited to withilR < 2R, by the faintness of the galaxies’ outer surface brightness
(e.g. Kronawitter et al.200Q Gerhard et aJ.200% Thomas et a).2007). Two larger samples
consisting of roughly 20 apparently round, non-rotating galaxies heea hnalyzed in spheri-
cal approximation using spherical basis DRsgnhawitter et al. 2000 and parameterized DFs
with constant anisotropyMagorrian and Ballantyne€001). Thomas et al(2007) analyzed 17
Coma early-type galaxies, consisting of flattened, rotating as well asatating galaxies, with
axisymmetric Schwarzschild modets.( Thomas et a.2009. These three studies predict dark
matter fractions ofv 10 — 50 percentage insid&,.

Cappellari et al(2006 constructed self-consistent, axisymmetric Schwarzschild models for
a sample of 25 E/SO galaxies with SAURON kinematics extending #®.. A comparison of
their dynamicall// L estimate with mass-to-light ratios derived from stellar population models
revealed a DM fraction of- 30 percentage insid&..

In broad terms, the various methods using different dynamical tracee agth each other
and the general result is that elliptical galaxies are surrounded bynuitier halos producing
nearly flat rotation curves, and the dark matter contributes contributés— 40% of the mass
within R.. The central dark matter concentrations are higher than in spiral galaXieis
presumably reflects the earlier formation epoGei(hard et a).200L Thomas et a).2007).

In the light of this, it is quite surprising that the derived PNe dispersiofiilesoin the
intermediate luminosity elliptical galaxies NGC 469&ndez et a)2001) and NGC 821, 3379
and 4494 Romanowsky et al2003 Douglas et al.2007) were found to decline significantly
with radius outsideR,.

Méndez et al(200]) have fitted the PNe velocity dispersion profile of NGC 4697 using
a spherical, isotropi¢iernquist(1990 model, adopting a constant mass-to-light ratio. They
concluded that the PNe velocity dispersion profile is consistent with no DMenrs5 R,., but
that DM can be present if the velocity distribution is anisotrogRnmanowsky et al(2003
analyzed the PNe velocity dispersion profiles of three intermediate luminositiicalgp(NGC
3379, NGC 4494, NGC 821), measured with the special Planetary Nebpdmtrograph (PN.S)
instruments, using spherically symmetric dynamical models allowing for orbitabtapy.
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They concluded that the galaxies in their sample apparently have onlyedifales.

SubsequentlyDekel et al. (2005 argued that the Keplerian declining PNe velocity dis-
persion profiles were compatible with their spiral merger simulations carriedvitiin the
ACDM cosmology framework. They found that the merger remnants hayeel@ngated orbits
at large radii and hence are radially anisotropic. They suggested thateth known mass-
anisotropy degeneracg.g. Binney and Mamon1982 allows for declining dispersion profiles
even when a standard DM halo is present. HoweReniglas et al(2007) pointed out that
Romanowsky et al2003 properly took into account orbital anisotropies in the data modelling
process. Douglas et al (2007 reanalyzed the velocity dispersion profile of NGC 3379, the
strongest case ddomanowsky et a2003, obtained from a larger PNe sample by means of a
spherical Jeans analysis. They argued that their result continuesftictowith the presence of
a standard dark matter halo as predicted by cosmological simulations.

Thus the important question remains whether these intermediate luminosity ellipiffeals d
from most other galaxies in the way in which they formed, they did not acquilens massive
halo; or whether they are embedded in massive halos which are difficdetm$heir unusual
kinematics.

1.9 Outline

The thesis is organized as follows.

In chapter2, the y2-made-to-measure algorithm and its implementation in a parallel code
NMAGIC is presented. Various tests, employing spherical, oblate and triarget models, are
carried out to show its flexibility and performance. These tests illustrate frendence of the
results fromy?M2M on the initial model, the geometry, and the amount of available data.

Chapter3 presents the first application of NMAGIC to a real galaxy, the intermediate lu-
minosity elliptical NGC 4697, combining new surface brightness photometvy,asewell as
published long-slit absorptionline kinematic data, and published PNe velatiéy dhe com-
bined kinematic data set extends outtal.5 R, and allows to probe the galaxy’s outer halo.

NMAGIC is extended to include seeing effects, an efficient scheme to estineateass-to-
light ratio is introduced, and a maximum likelihood technigue to account forateswelocity
measurements is incorporated. Dynamical axisymmetric self-consistent nasde&dl models
including various dark matter halos are constructed.

A detailed dynamical study of NGC 3379, combining ground based long sldtsyscopy,
integral-field data from the SAURON instrument, and PN.S data reaching to timemmeseven
effective radii is the subject of chaptérwith main focus on the galaxy’s outer halo.

The photometric and combined kinematic data are fitted with spherical and axiggfiommme
models in a sequence of gravitational potentials whose circular velocitgswavlarge radii
vary between a near-Keplerian decline and the nearly flat shapesatghby massive halos.

The dynamical studies of NGC 4697 and NGC 3379 show that their kinematcade
consistent with models including quite massive and moderately massive hedpgctively.
Thus NGC 4697 and NGC 3379 may well have dark matter halos consistentheitturrent
ACDM paradigm.

Finally, chapte gives a short summary and an outlook.



CHAPTER 2

NMAGIC: A y*-MADE-TO-MEASURE
ALGORITHM FOR MODELING OBSERVATIONAL
DATA

Flavio De Lorenzi, Victor P. Debattista, Ortwin Gerhard, Niranjan Sambhus
published ilMNRAS 2007, 376, 71

We describe a made-to-measure algorithm for construétirgarticle models of stellar systems
from observational data£M2M), extending earlier ideas by Syer and Tremaine. The algorithm
properly accounts for observational errors, is flexible, and campkea to various systems and
geometries. We implement this algorithm in a parallel code NMAGIC and catrg sequence
of tests to illustrate its power and performance: (i) We reconstruct an jsotrzrnquist model
from density moments and projected kinematics and recover the correcediifil energy dis-
tribution and intrinsic kinematics. (ii) We build a self-consistent oblate thregiatenaximum
rotator model and compare how the distribution function is recovered frtagrial field and slit
kinematic data. (iii) We create a non-rotating and a figure rotating triaxial sgeliéicle model,
reproduce the projected kinematics of the figure rotating system by aatatmg system of
the same intrinsic shape, and illustrate the signature of pattern rotation in thig. nkvden
these tests we comment on the dependence of the results#idi2M on the initial model, the
geometry, and the amount of available data.

2.1 Introduction

Understanding the structure and dynamics of galaxies requires knawgdhge total gravita-
tional potential and the distribution of stellar orbits. Due to projection effee®thital struc-
ture is not directly given by observations. In equilibrium stellar systemspliase-space dis-
tribution function (DF) fully determines the state of the galaxy. Dynamical manfedbserved
galaxies attempt to recover their DF and totad.(due to visible and dark matter) gravitational
potential consistent with the observational data. Several methods to taiskfgdblem exist.
Jean’s theoreme(g. Binney and Tremaine 198 fequires that the DF depends on the phase-
space coordinates only through the integrals of motion. If these integralsecaxpressed or
approximated in terms of analytic functions, one can parametrize the DF expli€hig ap-
proach has been applied to spherical or other integrable systegnB¢jonghe 1984Dejonghe
1986 Bishop 1987 Dejonghe and de Zeeuw 1988erhard 1991Hunter and de Zeeuw 1992
Carollo et al. 1995Kronawitter et al. 200 nearly integrable potentials where perturbation the-
ory can be used(g. Saaf 1968Dehnen and Gerhard 199@atthias and Gerhard 199and to
axisymmetric models assuming that the DF is a function of enérgyd angular momentum
L. only ( Hunter and Qian 1993ehnen and Gerhard 199Kuijken 1995 Qian et al. 1995

11
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Magorrian 1995 Merritt 1996. However there is no physical reason why the DF should only
depend on the classical integrals and most orbits in axisymmetric systemshhappraximate
third integral of motion, which is not known in generé&l{ongren 1962.

Schwarzschild1979 developed a technique for numerically building self-consistent mod-
els of galaxies, without explicit knowledge of the integrals of motion. In this pubtha li-
brary of orbits is computed and orbits are then superposed with positiirételeveights to
reproduce observed photometry and kinematics. The Schwarzschild medlsodeen used
to model stellar systems for measurements of global mass-to-light ratios,ainkémematics
and the masses of central supermassive black helgs Rix et al. 1997 Cretton et al. 1999
Romanowsky and Kochanek 200Cappellari et al. 2002Verolme et al. 2002Gebhardt et al.
2003 van de Ven et al. 20Q3valluri et al. 2004 Copin et al. 2004Thomas et al. 2005 The
method is well-tested, and modern implementations are quite efficient. Howewaspihas
some draw-backs: symmetry assumptions are often made, and the potentibenchesen a
priori. Initial conditions for a representative orbit library have to bestidly chosen, which
becomes more complicated as the complexity of the potential’s phase spaterstintreases,
in terms of number of orbit families, resonances, chaotic and semi-chagiingse As a result,
most Schwarzschild models in the literature to date are axisymmetric.

Thus there is scope for exploring alternative approaclss®r and Tremain€l996 here-
after ST96) invented a particle-based algorithm for constructing modsteltdr systems. This
“made-to-measure” (M2M) method works by adjusting individually adaptaldights of the
particles as a function of time, until the model converges to the observatiateal The first
practical application of the M2M method constructed a dynamical model of tlie/ May’s
barred bulge and disB{ssantz et a].2004) and was able to match the event timescale distribu-
tion of microlensing events towards the bulge. This chapter illustrates some pifdmise that
lies in particle-based methods, in that it was relatively easy to model a rapigiing stellar
system. However, other important modeling aspects were not yet implemsatécas a proper
treatment of observational errors. The purpose of the presentechgpo show how this can be
done, and to describe and test our modifig12M method designed for this purpose.

The chapter is organized as follows. In the Secfdhwe describe the M2M algorithm of
ST96. Then in SectioB.3we extend the algorithm in order to include observational errors. We
also discuss how we include density and kinematic observables in the same amoldddscribe
the NMAGIC code, our parallel implementation of t§ M2M method. In Sectior2.7 we
present the models we use to test this implementation, and the results of the$ellsts
Section2.8. Finally, the chapter closes with the conclusions in Se@ién

2.2 Syer & Tremaine’s Made-To-Measure Algorithm

The M2M algorithm is designed to build a particle model to match the observatdesne tar-
get system. The algorithm works by varying the individually adaptable w®igftthe particles
moving in the global potential until the model minimizes deviations between its @idesvand
those of the target. An observable of a system characterized by a dismilfunction f(z), is
defined as

Y; = /Kj(z)f(z) d®z (2.1)
whereK; is a known kernel and = (r, v) are phase-space coordinates. Examples of typical

observables include surface or volume densities and line-of-sight kiresn& he equivalent
observable of the particle model is given by

N
yi(t) =D wik; [zi(1)], (2.2)
=1
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wherew; are the weights angl; are the phase-space coordinates of the partictesl, - -- , V.
In the following, we use units and normalization such that

N
Swi=1, 23)
i=1

so that the equivalent masses of the particlesnaye= w; M with M the total mass of the
system.

Given a set of observablé§, j = 1,---,J, we want to construct a system &f particles
i =1,---, N orbiting in the potential, such that the observables of the system match those of
the target system. The heart of the algorithm is a prescription for chapgitigle weights by
specifying the “force-of-change” (hereafter FOC):

du(};t(t) = —5wi(t) ZJ: 7Kj [sz(t)]AJ (t) (24)
A at) = 4t (2.5)
J - ij :

measures the deviation between target and model observables. Thanteris small and
positive and, to this point, the; are arbitrary constants. The linear dependence of the FOC
for weight w; on w; itself ensures that the particle weights cannot become negative, and the
dependence on the kernkl; ensures that a mismatch in observaptnly has influence of the
weight of particle; when that particle actually contributes to the observgblEhe choice ofA
in terms of the ratio of the model and target observables makes the algoritefyalelated to
Lucy’s (1974 method, in which one iteratively solves an integral equation for the distritbutio
underlying the process from observational data.

Since in typical applications the number of particles greatly exceeds the noiribdepen-
dent constraints, the solutions of the set of differential equat@ds4re under-determinede.
the observables of the particle model can remain constant, even as thie pegtghts may still
be changing with time. To remove this ill-conditioning, ST96 maximize the function

1
F=psS — §><2, (2.6)
with
=) A (2.7)
J
and the entropy
S=- Z wj log(w; /w;) (2.8)
as a profit function. Théw;} are a predetermined set of weights, the so-called priors. Since
oS
= —p(log(w;/w;) + 1), 2.
o p(log(w;/w;) +1) (2.9)

if a particle weightw; < w;/e then equationZ.9) becomes positive while it is negative when
w; > w;/e. Therefore the entropy term pushes the particle weights to remain closeirto the
priors (more specifically, close t0;/¢). Equation 2.4) is now replaced by

du;t(t) = ew;(t) ,uaajl (t) — Z MA],@) : (2.10)

J
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with Z; now fixed toY; by the requirement that equatiok §) will be maximized, as discussed
in Section2.3. The constant: governs the relative importance of the entropy term in equation
(2.10: Wheny is large the{w;} will remain close to their priorgw;}. In the following, we
will generally setw; = wy = 1/Nj; i.e., the particle distribution follows the initial model, but
this is not necessary.

To reduce temporal fluctuations, ST96 introduced temporal smoothingoisyitstingA ; (¢)
in Equations 2.7) and .10 with

Aj(t) = a/ Aj(lf —71)e *Tdr,, (2.112)
0
which can be expressed in the form of the differential equation

dA ~
&_a@—g. (2.12)
The smoothing time id /. The temporal smoothing suppresses fluctuations in the model ob-
servables and hence in the FOC correction of the particle weights — in theutatiop of these
guantities the effective number of particles is increased as each partifledsvely smeared
backwards in time along its orbit. The smoothing time should sa2isky « to avoid excessive
temporal smoothing which slows down convergence.

2.3 y%-based Made-to-Measure Algorithm to Model Observational
Data

The M2M algorithm as originally formulated by ST96 is well adapted to modelimgitiefields
(e.g.Bissantz et al. 2004 It is not, however, well suited to mixed observables such as densities
and kinematics, where the various ratios of model to target observabtale@widely different
values, or to problems where observables can become zero, Avtieerges. Moreover, the
x? defined as in equation®.(,2.5) is not the usual one, but is given by the relative deviations
between model and data. Thus extremizingequation2.6) with this x? does not produce the
best model given the observed data. We have therefore modified theriviibd as described
in this section.

We begin by considering observational errors. We do this by replacguaten @.5) by

A(t) = y;(—y;? (2.13)

whereo (Y;) in the denominator is the error in the target observable. With this definitidy of
equation 2.7) now measures the usual absolyte As a result of this, if we now maximize the
function of equatior2.6with respect to thev;’s we obtain the condition

ds Kji .
”aTui_Zo—(Yj)Aj = 0. (2.14)

If we replace the FOC equatio.00 by

then the particle weights will have converged ori¢és maximized with respect to all;, i.e.,
once the different terms in the bracket balance. For larghe solutions of eqr2.15will have
smooth weight distributions at the expense of a compromise in matgfing

1This corrects the typo in equation (19) of ST96.
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In the absence of the entropy term, the solutions of 2d&near convergence can be char-
acterized by an argument closely similar to that used by ST96 to study the selofigheir
eqgs. (4). For smalt, the weightsw;(t) change only over many orbits, so we can orbit-average
over periodg,, < 7 < toh/€ and write the equations for the orbit-averaged; > as

d< Aj(t) >
dt

where the matrix A has components

= edjp < Dy(t) >, (2.16)

‘< Kji >< Ky >w0

Ajie =5 i (2.17)

00}

and we have replaced;(t) by the constant?, because near convergence the dominant time-
dependence is iRz A, > rather thamw,;. The matrix A is symmetric by construction and
positive definite, i.e.z! - A -2 > 0 for all vectorsz; so all its eigenvalues are real and positive.
The solutions to eq2.16then converge exponentially to A;(t) >= 0. As for egs. (4) of
ST96, this argument suggests that i§ sufficiently small and we start close to the correct final
solution, then the model observables converge to their correct finasaliO(s~1) orbital
periods.

Substitutingd; in equation 2.11) leads to

Aj(t) = W (2.18)

which allows us to temporally smooth model observables directly
yi(t) = a/ yi(t —7)e *Tdr. (2.19)
0

In practice,y; can be computed using the equivalent differential equation, in the sameemann
as before.

Since the uncertainty in any observable presumably never becomedieefy, in equa-
tion (2.13 remain well-defined even when the observables themselves take zees.vElow-
ever, if the data entering? have widely different relative errors, the FOC equation may be
dominated by only a few of tha;. This can slow down convergence of the other observables
and thus lead to noisy final models. Also, notice that the cost of deriving®&from minimiz-
ing x? is that equationZ.6) is maximized only if the observables are exactly of the form given
by equation 2.2), i.e. the kerneli;; may depend on the particle’s phase-space coordinates but
must not depend on its weight;.

We adopt the convention throughout this chapter in which the positiaeis points in the
direction of the observer, so that a particle with veloeity< 0 will be moving away from the
observer.

Our implementation of thg?M2M algorithm models volume luminosity densities (equiv-

alent to luminous mass densities for constant mass-to-light ratio), and ksigtafvelocities.
As in the Schwarzschild method, dark matter, which generally has a diffspatial distribu-
tion from the stars, can be included as an external potential, to be addeslgotdntial from
the luminous particles. The form of the dark matter potential can be guideddmatogical
simulations, or also include information from gas velocities and other data.

2.4 Densities

For modeling the target distribution of stars one can use as observablesrtaee density or
space density in various grids, or also some functional representatiohss.e.g. , isophote



16 CHAPTER 2. NMAGIC: Ax?-MADE-TO-MEASURE ALGORITHM

fits, multi-Gaussian expansions, etc. In this chapter we have chosen to angppleerical har-
monics expansion of the three-dimensional density, where we expandetiséydin surface
harmonics computed on a 1-D radial mesh of ragii The expansion coefficients};,,, are
computed based on a cloud-in-cell scheme. The function

T—Tk—-1 H
cre m |f r e [T‘k;_l,rk-)
1 T —-r
v (r) = T::lil_rk if r € [re, eyl
0 otherwise,

gives the fractional contribution of the weightof a particle at radius to shellk. The model
observable is then the mass on each ghell

mp =M Z wZ’yCIC =M Z wZ'yCIC. (2.20)

Comparing with equatior2(2), we recognize the kernel for this observable as
Ky = MASIC. (2.21)

Thus the FOC on a patrticle is computed by linear interpolation of the contributiomsthe
adjacent shells. From equatiaa 13, we obtain

my — M.

RACRTITY

(2.22)
where), is the target mass on shéllando (M) its uncertainty.
The spherical harmonic coefficients for the particle model withO are computed via

QU —M27 OV (05, 00w (2.23)

Now the kernel is given by
KJZ - M’Y ICYm(Hiagpi)a j = {lm7 k}? (224)

and depends on the spherical harmonics; the same variation also hokfeithéor the FOC.
From equationZ.13, we obtain

(2.25)

with A;,,, ,, as the target moments andA4;,,, i) as their errorsag ;, and Agg , are of course
related to the mass on shélvia the relationv/4magg 1, = my, etc., but we will use the masses
on shellsmy, M, as observables in the following.

2.5 Kinematics

Unlike for the density observables, we use kinematic observables comiputeziplane of the
sky to compare with the target model. Since kinematic data can either come fstmotesl

spatial regionsd.g.slit spectra) or from integral fields, we do not specify any speciafrgetoy

for computing these observables.

The shape of the line-of-sight velocity distribution (LOSVD) can be esged in a truncated
Gauss-Hermite series with coefficierits, n = 1,--- , nyq. (van der Marel and Franx 1993
Gerhard 1998 Since the kernel in equatio.(l5 cannot depend on masses, this puts some
constraints on which observables can be used in the FOC. For kinematiab)es observables
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are themass-weighteauss-Hermite coefficients, which we use as follows. Particle weights
are assigned to a spatial cell,, of the kinematic observable under consideration using the

selection function
6 — 1 if (yz-,z,»)ecp
P11 0 otherwise.
This selection function can be replaced appropriately if seeing conditees to be taken into

account. In our present application this is not necessary. The magkteagkinematic moments
are computed as

brp = Mp hnp = 2V/TM > Spitin (Vi )i, (2.26)

Vpi = (Vi — Vp) [op, (2.27)

and wheren,, is the mass in cell,,, and the dimensionless Gauss-Hermite functi@erfard
1993

up(v) = (2”+17rn!)_1/2 H,(v)exp (—v°/2). (2.28)
H,, are the standard Hermite polynomials. For the mass-weighted higher ordemisone
obtain the kernel

Kji = QﬁMépiun(Vpi)a .] = {nap}' (229)
and as usual ) B
Ailmhy,) = 2P 5= fn pl. (2.30)
.][ ] U(Bn,p) { }

The velocityV,, and dispersiow, are not free parameters; rather we Bgtindo,, to the mean
line-of-sight velocity and velocity dispersion obtained from the best fittiag$3ian to the ob-
served (target) LOSVD. This implieB; , = (m, h1p)target = B2y = (myp hap)target = 0

for the first and second order mass-weighted target Gauss-Hermifiieogs. If the model

b1, andb, ), both converge to zero, then the LOSVD of the particle model automatically has
the correct mean line-of-sight velocity and velocity dispersion. Forri@sg the higher-order
structure of the LOSVD we include termsh,, (n = 1,--- ,4) in the test modeling described
below.

2.6 Implementation: the NMAGIC parallel code

The routine for updating the particle weights includes three main steps: Hiteg abservables
used in the modeling process are computed as described above. Théange the particle
weights in accordance with equatidh15 by

85 K; Z;t|~
Wi st = Wiy + Wiy (uaw - (j([yﬁ Aj,t) ot, (2.31)
2 . J

J

with _ v

A Yit — ¥y
A= . 2.32
M e (232

Finally, we update the temporally smoothed observables as follows:
Yjt+1 = Ujt + (Yj — Yje)ot. (2.33)

Hereét is the time between successiyéM2M steps. All the differential equations here are
ordinary differential equations of the foray;(¢)/dt = fi(t,y1, - ,yn), and they;,,’s in
our case are the particle weights or time-smoothed observablgsat¢,,. We integrate them
using a simple Euler method ,,+1 = yin + b f(tn,yin) With t,41 = ¢, + h and time
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Figure 2.1: A high level flowchart describing NMAGIC. The maifiM2M algorithm is con-
tained in the dashed block, the remainder is an optional potential solveradedf@ar moving
the particles, both of which are exchangeable. In our te$t§l2M is generally applied only
after a number of position/velocity updates.
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steph = ot. We could replace the Euler method by the second-order Runge-Kutta anetho
(cf. Press et al. 1992which is more expensive and requires more memory. Since we are not
interested in the details of how the weights converge, but only in the finakoged system, a
simple Euler method suffices for our purposes. We write equation 2.31) ase = £’¢” with

e’ = 10/ max; j{K;; Ej/a(Yj)}. Thuse” times the last term in equatio.Q5 is of order
unity and we choosg:’ < « to avoid excessive temporal smoothing.

The NMAGIC (N-particle Made-to-measur@lGorithm m nimizing Chi squared) correc-
tion routine can be combined with a standafebody code including a potential solver and time
integrator, or a fixed-potential routine and integrator when the target is todaleled in a given
gravitational potential. This last case is most similar to the Schwarzschild mdimaubst of
the tests below, we use a fixed potential expanded in spherical harmonics.

However, in test E we allow the potential to vary, as we evolve from oneidtiaxodel to
another. For advancing the particles we use a standard leap frog timetotegith fixed time-
step. The time-step value chosen leads to fluctuations of energy and ramguheentum with
amplitudess x 10~% and2 x 10~° around their initial values, without systematic drift, over 80
half mass dynamical times in the fixed potential case.

For test E, which models a triaxial system, a simple spherical harmonic eapansfices
for solving for the potential. We follow the method described3gfiwood(2003: we tabulate
coefficients of a spherical harmonic expansion of the density on a Hdialrgrid but retain
the exact angular dependence up to some addpigd the maximum order of the spherical
harmonic expansion. We include terms ug,{@« = 4 in this experiment. Particles are binned
on the radial grid using the scheme describedkilwood(2003. This then gives the forces
on the grid, from which we interpolate back to a particle’s position for theigtéonal forces.
Test E involves a cuspy model; in order to properly resolve this we usdial grid at radii
re = €6 — 1 With v = In(rmax + 1)/Emax; We USEmayx = 301 for 301 shells and,., = 40.

NMAGIC is written in Fortran 90 and parallelized with the MPI library. We distribiieN
particles as nearly evenly as possible ogrprocessors. Parallelizing in only the observables
would not scale well with largéV,,, because of the different nature of the observables, and would
require a large memory on each processor whNea large. In Figure.1we present a high level
flowchart of the operational logic of NMAGIC.

In order to test the scaling witN,, of NMAGIC we consideredV = 1.8 x10° andN, = 816
observables (640 density and 176 kinematic) Wihvarying from 1 to 120. These values of
N, and N, are adequate for the experiments presented here and are used in te&atleo
2.1 Since we are only interested in the scaling of #2M parallelization withV,,, we
only execute thg>?M2M 50 times, without recomputing the potential or advancing particles. In
Figure2.2 we present these scaling results as time per step (left hand axis, pluslsyarb
steps per unit time (right hand axis, open squares) as functiong.ofVe generally find that
our implementation of?M2M scales very well withV,,. Defining the speeduf§(N,,, N) as

T(1,N)

7T(Np, N) (2.34)

S(NINN) =

whereT'(N,, N) is the time for computingV particles onN, processors, we fit a standard
Amdabhl’s law Amdahl 1967

1
[+ 0= f)/Ny’

S(N,,N) = (2.35)

in order to determine the fraction of sequential cofleWe obtained thaf ~ 0.010, i.e. the
sequential part of the code accounts for oHl.
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Figure 2.2: The performance of our implementationydM2M. We used1.8 x 10° particles
without potential calculations or particle motion. On the left hand axis we labelggnetep
required, with the corresponding data indicated by plus symbols, while omngtiiehand axis
we label steps per unit time, with the corresponding data now shown bysop@nes. Note that
the scale is logarithmic on the left and linear on the right. The fraction of sti@leode,f,

from these data was computed-atl %.
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2.7 Target Models and Their Observables

We will test the NMAGIC code on spherical, axisymmetric, and triaxial targedaet® The
spherical target is a particle model constructed from the analytic densitgliamibution func-
tion of an isotropic Hernquist sphere. As oblate target we take a maximallngtidree-
integral model. Finally, we construct both a stationary and a rotating triaxgettaystem. We
use the NMAGIC code itself to generate a dynamical equilibrium structurénése models. It
will be seen that the2M2M method provides a very useful means to set up dynamical equi-
librium models of galaxies for which no analytic distribution functions are kmaw order to
study the properties of such systems.

In the following subsections, we describe in turn each of these targete@ndonstruction.
We determine the target observables obtained from these models, antelbsgy we obtain
errors for these observables. These will be needed in Sezfomhere we present the results
of building x?M2M models to match these targets. The reader who is mainly interested in these
tests of NMAGIC can in a first reading directly go to that section.

2.7.1 Spherical Target

Ouir first target is a spherical isotropic Hernquide(nquist 1990 model, which we will refer
to as target SIH. Its density and potential are given by

alM GM

= omeray $0= (2.36)

Q(T) _T+a’

wherea is the scale length)M is the total mass, and' is the gravitational constant. The
projected effective (half-mass) radius equilg ~ 1.8153a. We use units such thdtl = a =
1. The target masa/;. on shellr; is given by the sum of the contributions of the adjacent shells,

M, = 47r/g(r)’y,?lc(r)r2dr. (2.37)

The innermost (outermost) shell is an exception because only the layer intehedigterior
(interior) contributes.

We construct SIH models on a radial grid with 40 shells, quasi-logarithmicpdged in
radius with inner and outer boundariesrat, = 5 x 10~* andry.x = 20. The distribution
function is truncated alb',,,x = ¢(rmax)- At that truncation, the mass included is

Emax:S@("'max)
My = M g (2.38)
dE
Emin:@(o)

with (dM/dFE) the differential energy distributiore(g. Binney and Tremaine 198and thus
Miun = 0.86. Figure 2.3 compares the mass on shells (hereafter “mass profiiés)ry.)
for a particle realization of this truncated distribution function (construcsdguthe method
described inDebattista and Sellwood 20Q0with the M, from the Hernquist density profile
as in equation2.37). For small radii the mass profiles match but for larger radjs(ry) is
significantly smaller thai/;, due to the finite extent of the particle realization, consisting only
of particles withE' < En.x = ¢(rmax). UsSing M, as target observables would increase the
mass of particles on the outer (near) circular orbits and would therefamaise the tangential
velocity dispersion. We will thus use the/p(ry) as targets and omit the subscriptin the
following. We also include zero-valued higher order mass moments to ergphericity.

We assume Poisson errors for the radial masst/;) = \/M; M /N where N is the
total number of particles used in the particle model. For the errors in the higler mass
moments, we use Monte-Carlo experiments in which we generate particle tieakzaf the
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Figure 2.3: The mass in shells profile computed from equaBd6)is shown as the solid line,
whereas the dashed line illustrates the mass profile computed from a spHeritguist particle
model generated from a truncated DF.

density field of the target model usingd x 10° particles, which is the same number as in the
x>M2M models.

Kinematics of the target can be computed from a DF. We use the isotropitiBAduist
199Q Carollo et al. 199%

1
N

x (1—2¢%)(8¢* — 8¢° — 3)) (2.39)

(3aresin(q) + q(1 — )?

with ¢ = /—aE/GM, andE is the energy. We determine kinematic observables of the target
on a projected radial grid with 30 shells, quasi-logarithmically spaced ingaid bounded
by Rmin = 0 and Ryax = 10 = 5.51Reg. On the shell midpoints we compute the and

hs moments of the isotropic Hernquist model from the DF of equatbB89. We will use
integral field-like kinematic data to recover the spherical targets in Se2tn More pre-
cisely, we multiply theh, ;, and hy ;, moments by the projected mass of the truncated SIH
model within each radial grid shell to obtain the mass-weighted higher ord@emts)/;, h; ;.

and My, hy 1, which we use as the target observables. While this procedure is rfetiber
self-consistent, because the moments are from the infinite extent analytichilé-tihe mass

is from the truncated DF, the differences are very small. The main adwaofadping this is
that it allows us to compute the uncertainties in these kinematic observableh, wéassume
o(Myhp ) = o(hy)Mey/ My, /M. with o(hy,) = 0.005, M, the target mass in shéll and/,

the mass in the central grid shell.
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Figure 2.4: The upper panel shows the mass profile computed from ey(@d6) for ¢ = 0.6
(solid line) and from a Hernquist particle model made from a DF and sgdesdnng the:-axis
(dashed line). The lower panel is the same but4gy.

2.7.2 An Oblate Three-Integral Target made with NMAGIC
Our oblate target model has density

alM

- 2rgm(m + a)3 (2.40)

o(m)

where M anda are total mass and scale radius, and = R? + (z/q)? with ¢ being the
flattening. This density belongs to the family of flattenadodels Dehnen and Gerhari994),
with v = 1. We compute the gravitational potential fromf.( Binney and Tremaine 1987
section 2.3)

GM [ P(m)dr

o(R.2) = — (2.41)
(&%) 2a Jo (147)\/T+¢>
with
R2 52
7 — L 2.42
m \/7‘ +1 + T+ q?’ ( )
~ m? + 2am
=] - —— . 2.43
By =1 - T2 2.4

by numerical integration, and tabulate it using a coarse and a fine linear ghid meridional
(R — z) plane. The coarse grid extendsRRo= z = 30a with 500 x 500 grid points. To increase
the resolution at smalR andz we replace th€0 x 20 “innermost” grid cells at R, z) = (0, 0)
to (1.2a, 1.2a) by a finer grid also consisting 600 x 500 grid points.

In our experiments, we view the model edge-on alongetiagis as line-of-sight. Our targets
are the mass moment,,, ;. of the three-dimensional density and — for these oblate models
— the kinematic moments: h,, n = 1,...,4. We define an effective radiuB.s ~ 1.8153a
which is equal to that of the spherical Hernquist model. Weldet ¢ = 1 andq = 0.6. The
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Figure 2.5: Kinematic major and minor axis slits for the oblate models, with the cellg abuh
slit indicated. The ellipse corresponds to dig; of the equivalent Hernquist model squeezed
by 0.6 in the z direction.

target mass moments;,,, ;. on shellr;, are given by the sum of the contributions of the adjacent
shells and are computed through

A, = / Vi (0, ¢)o(x)v5 '€ (r)d*a. (2.44)

The innermost (outermost) shell is an exception because only the layer intehedigterior
(interior) contributes. The setup of the radial grid is identical to that usedhie spherical
model and for our tests below we Usf,, A, A22 1, -+ A6 ki

Figure2.4compares\/;, and Ay ;, computed from equatior2(40 with M p(r,) andApao ()
obtained from a spherical Hernquist particle realization built from a DFsgueezed along the
z-axis byq = 0.6. As in Figure2.3, Mp(r;,) andApag(ry) matchMy, and Ay, withinr < 5a
but then approach zero at larger radii towargs,. This difference is again due to the finite
extent of the particle model. Below we therefore use the radial mass ptéfiland the higher
mass momentd p;,,, as targets, and again we omit the subscHpi the following.

We assume errors in the target mass prafild/;) as for the spherical model. For the
errors in the higher order mass moments, we use Monte-Carlo experimenkscim particle
realizations of the density field of the target model are generated Bising)® particles, which
is the same number as in ty¢M2M models.

In our oblate models we attempt to recover the target system from both slintautal
field kinematic data. Thus as kinematic target observables we use the piojesde-weighted
Gauss-Hermite moments along the major and minor axes in Test C, and on a gfidxof
20 points covering positions on the sky jr-3.6,3.6] x [—1.8,1.8] in Test D. A schematic
representation of the slit setup is shown in Fig2ie The slits extend out to aboR.¢ ~ 3.6.

The target kinematics are determined frorh:a 10° particle representation of a maximally
rotating three-integral model for the density distribution of equatibad with ¢ = 0.6. This
is constructed by first evolving an isotropic spherical Hernquist modéheodesired shape,
using x2M2M, and then switching the in-plane velocity vectors of all particles with pasiti



2.7. TARGET MODELS AND THEIR OBSERVABLES 25

N
X
O\
T
1

—2x107°

Figure 2.6: Target mass ant profiles for the triaxial models. The solid line shows target T54
while the dashed line shows target T53.

angular momentuny, to negativeJ,, leading to a DF which is still a valid solution of the
Boltzmann equationL{ynden-Bel| 1960. For each slit or integral field cel we obtain the
mass in that celll/,, and the mass-weighted Gauss-Hermite momeusy, ,,--- , My ha p.
We assume errors for the mass-weighted Gauss-Hermite coefficientstas $pherical model:
o(Mphnp) = o(hn)Mey/My/M,., whereM,, is the mass in slit celp, computed by Monte-
Carlo integration. In this case, we sgth,) = 0.005 (0.003) for the central slit (integral field
grid) cellm, to approximate realistic errors.

2.7.3 Making Triaxial Models with NMAGIC

In the tests below we also explore triaxial Hernquist target models with stelferities

B Ma
- 2mwozos(s + a)d’

o(s) (2.45)

where M is the total massg the scale radius, and = +/(x/z¢)2 + y2 + (2/20)2. Herey

is the longest axis, and the parametegsand z; are the axis ratios. As before, we use units
with M = a = 1 and we define the effective radius with reference to the spherical niaglel,
R.g =~ 1.815. We generate two targets with different triaxialities, characterized by thestiitst
parametel’ = (1 — z3)/(1 — 23) (Franx et al, 1991). The more triaxial target, hereafter T53,
haszy = 0.9 andzy = 0.8 (T" = 0.53) whereas the less triaxial target, hereafter T54, has
xo = 0.85 andzp = 0.7 (" = 0.54). In both cases the target is observed along its intermediate
(z-)axis.

Like our oblate target model, the triaxial models cannot be representedBylased on
the integrals of motion. We therefore construct them through particle reéatigavia a two step
process. Starting from a spherical Hernquist particle realization made dr DF as before,
we squeeze this along the x- and z-axes by factgrand zg, respectively, and compute the
desired target density observablek and the higher order mass moments, ., Az . Up to
Agp i, Using the same radial binning as in the spherical and oblate targgts.components



26 CHAPTER 2. NMAGIC: Ax?-MADE-TO-MEASURE ALGORITHM

0.04

4

—0.02 0 0.02

-0.04

Figure 2.7: Line-of-sight velocity field of the rotating triaxial particle mod@T54K) as seen
in the inertial frame. The co-rotation radiusls,, ~ 10R.s. The FoV extends from- R g to
R.g along each direction. Its lower edge is parallel to the major axis, the lingbfis parallel
to the intermediate axis. Notice the counter-rotation near the center.

with [ > 6 are small and we omit them. The squeezing is rigiel, without regard to the
internal motions. We repeat this 30 times, squeezing the spherical Hernwpael rigidly
along random orientations to the desired shapes. From these 30 pagigseartations of the
model we compute the means and eneariations around the mean for tig,, .. The former
are taken as target density observables, the latter as their errorsndémtainties on the radial
mass in shells profile are taken tode\ly,) = \/ My Mi.un/N as before. Figur@.6 shows the
target mass and, profiles as functions of radius for T54 (solid line) and T53 (dashed &se)
well as their uncertainties.

After this first step, which only gives target density observables, we tise xy>’M2M to
evolve a spherical Hernquist model to generate self-consistent trigaxititle realizations of
T54 and T53. In addition we generate a slowly tumbling version of T54 withtation radius
Reor = 10 R, by applyingxy?M2M in the appropriately rotating frame. The final models now
have self-consistent kinematics; in order to distinguish them from the pdesigity targets
we refer to them as models T53K and T54K for the non-tumbling models andiR1d& the
tumbling model.

These final self-consistent models T54K and RT54K can now be ugadyess in their own
right, and we can compute (observer frame) target kinematjgs, ,, from them. We compute
the kinematics of both T54K and RT54K onla x 12 grid extending from- R.g t0 Reg. FOr
the uncertainties in the kinematic observables we ad6pt,h,, ,) = o (hy,) Mo/ M, /M. with
o(hy) = 0.005 the error inh,,, M, the mass in grid celp, and M. the mass in the central grid
cell. TheM,’s were obtained directly from the particles. The velocity field of the targstesn
RT54K in the observer’s frame is shown in Figutd. This velocity field is characterized by
disk-like counter-rotation close to the mid-plane and near cylindrical rotatiesy from the
plane. These kinematics for this slowly tumbling triaxial model represent a gghdmical
model, but are unlikely to be the unique dynamical solution for the model'stgtetistribution.
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TeEST ICs TARGET & g’ L
A RP SIH 0.025 6321077 4.310°1%
A2 RP SIH 0.025 1321076 4.310?
A3 RP SIH 0.050 124106 4.310°*
A4 RP SIH 0.100 6.8010°7 4.310°*

SIH-2 SIH 0.025 176106 4.310°*¢
ORIH 03l 0.05 3.9410°7 0
ORIH 03l 0.05 3.9410°" 0
T53K  T54K  0.15 5.06107% 4.3102
T54K RT54K  0.15 3.77107% 4.3 102

TmGO O™

Table 2.1: Tests of NMAGIC carried out in this chapter, with model namegparameters. For
all models, we have used= 2.1¢'.

2.8 Tests of NMAGIC

In this section we will use thg?M2M algorithm to solve some modeling problems of increasing
dimensionality and complexity, starting with spherical systems and ending witingtaaxial
models. The goal of these experiments is to investigate the convergeneecoid, the quality
with which various data are modeled, and the degree to which known piexpef the target
models can be recovered from their simulated data. We will see how thess tdspend on the
initial model, geometry, and amount of data available.

Table2.1lists all the experiments that we have carried out, including the target and the ini-
tial model identifications. We will refer to the fingfM2M models by the prefix 'F’ to the test
model name (e.g., FA for the final model of Test A). Generally, these ffnoalels are obtained
in two steps. First we use only the target density observables igthi2M algorithm, and
once these have converged, we add the kinematic observables. Firallytegrate all orbits
for some time in the potential withowM2M corrections to test whether equilibrium has been
reached. Unless mentioned otherwise, welu8e< 10° particles and set the entropy parameter
1 to a small & 1) value; see the discussion in Section 5.1.1. In most experiments, the parti-
cle distribution is evolved in the fixed target potential (this is analogous to thev&ezschild
modelling approach), but we include one test (model E) in which we alsodejrtvitational
potential evolve.

2.8.1 Spherical Models
Initial model and time-evolution

The aim of our first experiment, Test A, is to reproduce a sphericabigiatHernquist (SIH)
model by al.8 x 10° particle model. We start by generating a Plummer model from itseDd: (
Binney and Tremaine 1987using the method described Debattista and Sellwoo(2000.
The DF of the Plummer model is truncateddt ..« ), with r,.x = 20, and has a scale length
b = 1 and unit total mass. We then relax these particles in the analytic Hernquisttipbte
which is held fixed while the particle orbits are integrated. We refer to thdtirggyparticle
distribution as initial model RP (relaxed Plummer).

Then withy2M2M we first adjust the density distribution of model RP to that of the target
SIH, using as target observablé$, = \/EAgo’k (equation2.37) and Afm’k =0forl <
1 <6,0 < m <[ (equation2.23 with Monte Carlo errors estimated as described in Section
2.7.1 After convergence the even kinematic moment observaldlgs, ;, and M, h, ;. are added
with errors given also in Sectic& 7.1 Finally the system is integrated for some time without
applying thexy>?M2M corrections.

The second experiment B is identical to A except that instead of model RBeva second
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Figure 2.8: (a) Top: Time evolution of? in test A. (b) Bottom: Time evolution of a set of 100
particle weights in test Awy is the initial weight of the particlesy, = 1/N. The time-interval
plotted includes a first phase of density adjustment (2250), a second phase of density and
kinematic adjustmen@50 < ¢ < 4500), and a final phase of free evolution during which the
weights do not change ¢ 4500). Time is in units where the dynamical time at the half-mass
radius is 6.0, and the dynamical timergf, is 150.
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Figure 2.9: (a) Top: Radial mass add, profiles for the target model SIH and the final models
FA from Test A (solid line) and FB from Test B (dashed line). (b) Bottonmdnatic profiles

m hy andm hy, for the same models. — In all panels, the data points with errors correspond
to the SIH target, the solid line to the final particle model FA, and the dashed lite tinal
model FB. The error bars in the target mass distribution are not showeaaith smaller than

the symbol sizes. The absolute errors shown decrease outwardsttieentass weighting; the
corresponding relative errors increase outwards.
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Figure 2.10: Histogram of the particle weights in the final FA model, obtairmd fPlummer
model initial conditions (solid line). The dashed line shows the histogramrtitjgaweights
when spherical Hernquist ICs with scale length- 1.4 were used (FB)wy is the initial weight
of the particleswy = 1/N in all cases.

Hernquist model SIH-2 as initial conditions for NMAGIC. SIH-2 differsin the target model
SIH in that its radial scale length= 1.4 instead ofa = 1.

Figure 2.8a shows the time evolution of? /N, of the particle model A during and after
the x>M2M evolution. ThroughoutV, refers to all the observables, density and kinematics,
regardless of whether they are being used in the FOC or not;Xpus a constant. The time
evolution of a sample of 100 particle weights of the SIH particle model is predem Figure
2.8b. From these figures one sees that the ovarallV, decreases quickly at the beginning of
both phases (density adjustment only phase, and a density and kinematizabibes adjustment
phase). However, particle weights keep evolving for significantly lotigez-scales. For this
reason we integrate and adjust particle weights in both phases for rigldting times, about
15 dynamical times at,,,x.

Convergence to the target observables for different initial condions

The fit of the final particle models FA and FB to the observables is illustratedguré-2.9.
The top panel shows the radial mass ahg coefficient, whereas the bottom panel shows the
kinematic targets and final model observablessfoh, in the upper andn hy in the lower
panel. As can also be seen from F2g8, the final model fits the input data to withirr. The
corresponding error bars are smaller than the crosses in the top p&igel29; see Fig2.6for
an example. The same is true fds, except when the target values are zero as inZERy.Error
bars for the mass observables are therefore not plotted in this andjgebssimilar figures.
Allmodel observables in Fig.9are temporally smoothed observables as in equaidrd)
After some free evolution withy?M2M turned off both models fit the target data within the
errors. The free evolution is necessary becaid$é2M pushes the model towards a perfect fit to
the observables, at the expense of continually changing particle welgngtions are largest
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in the outer parts where orbital time-scales are longest. Model FB, whitharaitial particle
distribution closer to the target, is generally smoother and fits the data bettdiffétences are
within the errors. NMAGIC achieved satisfactory models even from thefaagsable, cored
Plummer initial conditions.

Figure2.10compares the histogram of final particle weights of the FA and FB models, all
normalized by their initial weight. Model FA has a significant tail towards higlgits, and a
peak at correspondingly lower particle weight such that the mean partidins the same as
for the more symmetric weight distribution of model FB. On average, the wedgtgarticles
in model FA had to change by more than those in model FB. We can quantifyytlisfiming
an effectiveparticle numbefV ¢ characterizing mass fluctuations through

=2
w
New = N=,

w

(2.46)

wherew andw? are the mean and mean-square particle weights. This redudé$aoequal-
mass particles, to one when one particle dominates, and discards particlesavittero weights.
For the final models FA and FB the effective numbers of particlesNage= 5.7 x 10° and
1.5 x 109, respectively, while for both model§ = 1.8 x 10°.

The origin of this difference between the two models can be seen fromefidlLia, which
plots the radial density profile of the target SIH (stars), the initial models RFS#1#-2, and the
temporally smoothed final models. We computed the densities using the idendieqlgréd as
was used for the mass targets. The density profile of the SIH target isepetiduced by the
final particle models FA and FB across more than a factor of 100 in radheslaFgest relative
deviation in the densityp/p occurs at small radii and never reaches more tf&n In this
region, model RP has few particles and the large relative error is duadsdhmoise. Model
FB, which starts out closer to the target SIH fits better in this region.

Model RP is clearly significantly less dense than SIH ingide 0.3q; it has a core whereas
the target profile is cuspy. Also, it has a steeper outer density profilettigatarget model.
To match model RP to SIH therefore requires NMAGIC to increase the pantizéses both in
the central regions and in the outer halo of the model. This causes the kightuail in the
distribution in Fig.2.1Q as we verified by inspecting the positions of particles with> 2w.

Figure 2.11b presents the differential energy distributions. The final particle model F
matches the analytic differential energy distribution of the isotropic Herhquislel (equation
2.39 very well.

As a final test, Figur@.12a shows the intrinsic velocities (lower panel) and velocity disper-
sions (upper panel) of the analytic, untruncated DF and the{if{d2M model FA. The match
to the target kinematics is good and model FA is nearly isotropic, despite thth&ddt has
evolved from an initial RP model that is moderately anisotropic. The anigotsbfhe initial
model RP is shown in Figur2 12 which compares its intrinsic velocity dispersians o, and
og With the analytico, of the SIH target model. The residual anisotropy in model FA is caused
by the relative absence of radial orbits resulting from truncating the DF.

Dependence o’ and p

In the tests described so far, we have used 0.025 for the correction steps in the FOC. In gen-
eral, small values of result in a smooth evolution but slow convergence, whereas large values
of ¢ change the global model too rapidly to attain a properly phase-mixed statisolation.

Thus generally we have found < 0.1 to give good results. This is illustrated in Fig.13
which shows that test A converges to essentially identical density distrilsutiod differential
energy distributions for values 6f025 < ¢ < 0.1 (models FA, FA3, FA4). Only for the largest
valuee’ = 0.1 do we start seeing small deviations in the density profile of more than a few per
cent from the target model. Also, the effective particle number [equaZid®){ decreases from
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Figure 2.11: (a) Top: Radial density profiles in the spherical modelsetppst panel: Density
profiles for the Hernquist target profile, SIH (stars), the final modal¢dashed line) and FB
(dash-dotted line), and their respective initial condition models RP an®2tatted and dash-
triple-dotted lines). Middle panel: Relative deviation from the target dedsifp, for the two
models FA and FB using the same line styles. (b) Bottom: Differential energybdisons.
The truncated analytic Hernquist DF used for target SIH is shown bytértesgmbols. The

dashed line corresponds to the figdM2M model FA, and the dotted line indicates the relaxed
Plummer initial conditions RP.
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Figure 2.12: (a) Top: Internal kinematics of the final model FA. The uppeel show,., o,
andoy, the lower panel the,, v, andwvg. The stars correspond to the analygic from the
untruncated DF. Model FA is very nearly isotropic and has negligible rotatiespite starting
from anisotropic initial conditions. (b) Bottom: Anisotropic internal kinematitshe initial
model RP. The dotted, dashed, and dash-dotted lines show,, andoy of the RP particle
model. For comparison, the solid line corresponds to the analytid the untruncated analytic
DF of the SIH target model.
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Figure 2.13: (a) Top: Radial density profiles for various sphericaletsodonstructed for the
Hernquist target profile, SIH. Upper panel: Density profiles for thgetamodel (stars), the
model FA (dashed line) and several tests that differ from model FA byahges of the param-
eterss’ andy (see Table 1). Middle panel: Relative deviation from the target defgity, for
the same models. (b) Bottom: Differential energy distributions. Stars: targdel SIH. Lines:
same models as in top panel.
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Figure 2.14: Histogram of the particle weights in the final FA model, obtairmd fPlummer
model initial conditions (solid line). The other histograms show the particle wdigtributions
for models FA2 (dashed), FA3(dash-dotted), and FA4 (dotted)is the initial weight of the
particles;wy = 1/N in all cases.

5.7 x 10° through3.3 x 10° to 1.0 x 10° for models FA, FA3, and FA4, respectively. Thus we
will generally uses’ < 0.1, but because the speed of convergence also depends on the number
and kind of observables used for the corrections, we have sometimesa@isased’ slightly.
Figure2.14 shows the distributions of particle weights for these models. They develogr larg
wings for larger values of . Because particles weights are then changed by larger amounts, the
reshuffling is greater until convergence is reached.

In models FA and FB, we have also set the entropy parametera small & 1) value,
which allows the NMAGIC code to concentrate on fitting the data. (Note thagusecthe
term K;; A; /o (Y;) in the FOC is large, evep = 1.0 leads to only a small contribution of the
entropy terms in the FOC). While the purpose of not setting zero exactly originally was
to prevent overly large fluctuations in the particle weights, in fact, a testjwithO has given
essentially identical results to the ones reported. Ei3shows that also for model FA2 with
106 times larger entropy parameter than in model FA, the target density ancediidrenergy
distribution are fitted equally well as before. Generally, the best valuegdarghe entropy
depends on the initial model, the data to be fitted, and the intrinsic structure w@irtjed, and
it must be determined separately for each application. A more systematic iatestigf the
effect of the entropy term is therefore deferred to the next chaptehichwve will usexy?M2M
to model and determine mass-to-light ratio, anisotropy, etc., for a realygalax

2.8.2 Oblate Models

The task we set the algorithm here is a difficult one: starting from a ntating system, we see
whether we can recover the maximally rotating three-integral model deddrnit&ection2.7.2
in which the weights of all counter-rotating particles should be zero. Wmpertwo such
experiments, one using slit data as kinematic targets (Test C), the sedongdrisgral field
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Figure 2.15: The mass and masg, profiles for the oblate models. The data points show the
target and the lines shows the converged models FC (dashed) andllz.D (fu

kinematic targets (Test D). As in the spherical experiments, we keep thetipbfexed while
evolving the system witly?M2M in runs C and D.

Both experiments start from an initial model which is constructed by relaxisygharical
Hernquist particle model consisting fx 10° particles in the oblate potential. As in exper-
iments A and B, we then apply?M2M in 2 steps, first for the density alone, and when this
has converged, for both the density and kinematics. The density pasg oirtk is identical for
experiments C and D.

Figure 2.15 plots the mass ands radial profiles of the target (error bars) and the final
x>*M2M models FC and FD. As in the spherical tests, the target density distritistieny well
fitted by thex?M2M models.

The mass-weighted kinematics along the major and minor axes of model FCoare ish
Figure2.16 while Figure2.17show the as-observed kinematics of both models. The latter are
calculated by dividing the mass-weighted moments by the mass in the slit respetjridnd
using the relations = vt — V20 targht ANAT = Otarg —V/20targhs (€.9., Rix et al. 1997. Al
kinematic quantities for the reconstructed models are shivve 500 (= 3 dynamical times at
rmax) after switching off they?M2M corrections. The fits are generally excellent except for the
higher order moments near the boundaries of the kinematic fit regionse whenter-rotating
particles with high energies still make significant contributions, becausevik@hts have not
yet been sufficiently reduced.

Figure2.18showing the weight distributions for both models FC and FD clearly illustrates
the stronger constraints placed on the model by the integral field data. thnnmdels, the
NMAGIC code works at reducing the weights of the counter-rotating pastibut has clearly
gone a lot further in model FD.

Finally, in Figure2.19 we show the distribution of weights in thé’(L,) plane for the
target model, initial relaxed model, and the two models FC and FD. The suxfdbgs>2M2M
method in removing the counter-rotating particles amply present in the initial risoaeparent,
particularly for model FD. Of course, in applications aimed at obtaining aftieéspresentation
of some galaxy kinematic data it would have been smart to start the iterationsafranitial



2.8. TESTS OF NMAGIC 37

major axis

E 3 ::, mh , -3
5x107* | mh, + ’ ] 10
O}W{}x {O
4 f ! ]
-5x10 " : - 1 _
: L T 4 -107°
=L : 1 ]
—10 - - 4
WO?}}H}}1H‘}vi‘[:v}‘}H}HH;HH}HH}HHMH[
g S i mh, 4 1073
sx1o7t B S My t
4k 1 ]
—5x10 " - : _
i T 4 —107°
_3 L NS 1
—10 - — 4
(T O SO P AN R RN AR RN BN
=1 0 1 -1 0 1
Y/ Rese Y/ Res
minor axis
WO*B““
f i mhs 4 107°
5x10° % E mh, T ’ ]
o =r
el E |
210 r T i%oﬁ
,3: 1 |
—10 = -+ 4
WO?})Hl}HH}HH}HH;HH}HH}HHMH[
E ::, mh , =3
5x107* | mh, + N ] 10
OW‘_\QLWO
,4: 1 ]
-5x10 " : - 1 _
[ ip ijO3
=L ul 1
—10 - —{ 4
R B SN P SUEE N R RN B U RN BN
=1 0 1 =1 0 1
2/Rest 2/ Rt

Figure 2.16: Mass-weighted higher order moments along the major and mesfanthe slit-
reconstructed oblate model FC. The target observables are showroabas, whereas the
model observables for model FC are indicated by the dashed linesctigspe Kinematics
along the major axis are shown on the left and those along the minor axis dghhe r
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Figure 2.17: Gaussian best fit velocity (top left), velocity dispersion (igity, Gauss-Hermite
momentshs (bottom left) andh, (bottom right) along the major axis (left) and minor axis
(right), for the models with slit data targets (dashed line), integral field kitiertsagets (full),
and the initial model (dotted). The error bars show the target kinematics.
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Figure 2.18: Distribution of particle weights in the final models FC (top) andit¢m).
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Figure 2.19: Particle weight distributions projected onto thel(,) plane, for the maximally
rotating three-integral target (top left), the initial relaxed isotropic Heistquodel (top right),
and the two models reconstructed from density and slit kinematic targets ¢E@ybright) and
from density and integral field kinematics (bottom left).
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Figure 2.20: Mass ands profiles for experiment E. The dots show the target T54K and the
solid lines show FE.

model that is better adapted to the problem at hand.

2.8.3 Triaxial Models
Evolving the potential self-consistently

We illustrate NMAGIC'’s capabilities with two very different triaxial model expgents. In

run E, we start with the self-consistent model T53K as initial conditions aed\NMAGIC to

converge to target T54K. With this model, we test the full capabilitieg’®i2M, which make
this technique more general than Schwarzschild’s method: in model E Jvesfspthe potential
as the system evolves and follow the model in its self-consistent potentiabtioat, akin to an
N-body experiment. For this purpose we use the spherical harmonic pbsaiier described
in Section2.3above and update the potential after every2M2M steps.

The resulting final model FE gives an excellent match to the density of thet tamgdel
T54K, as is apparent from comparing thé,. and Ay profiles in Figure2.20 Figure2.21
shows the kinematics withi®.g¢ of the models T54K and FE. All mass-weighted kinematic
observablesn hq,..., m hy Of the final model match the target observables at better than one
o over almost the entire FoV, except for a few isolated regions reachingrtwithe random
location of these deviations imply that they are due only to Poisson noise in ¢et taodel,
the observables of which have not been temporally smoothed.

Rotating vs. non-rotating models

Test F is an interesting experiment in different ways. Starting from ThKuse NMAGIC
to attempt to converge to the observables of the tumbling target model RT54Ka withxial

model which does not tumble but remains stationary relative to the obsditves. this exper-
iment explores whether it is possible to identify a kinematic signature of slowefigniation
in elliptical galaxies. Since the initial conditions possess neither rotation non&iteet stellar
streaming, if this model fails to converge it may well be because the probleritsaab solution.
Because of this, test F is interesting in its own right, apart from as a validaftiiMAGIC.
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Figure 2.21: The difference between kinematics in model T54K and modéitieEobservables
of FE are the temporally smoothed mass-weighted moments while those of T54iitaem-
porally smoothed. The differences have been divided by the comdsmpassumed errors. The
FoV extends from- R g to R.g along each direction.

In fact, NMAGIC was able to converge the mass-weighted kinematic moments tim with
about ones of their target values; however, the residuals maps (Figu28 show spatially
correlated residuals imh;. When we compare the global velocity field of model FF with that
of RT54K we find that the degree of cylindrical rotation around the tumblixig @-axis) is
higher in RT54K than it is in model FF (Figu&23. Near the mid-plane, instead, the velocity
field of both models is very similar, including the counter-rotation seen neacehter. We
can explore whether the residual differences are due to having assamtarge errors in the
mass-weighted moments by decreasing the errors by a factor of five. ofifesponding final
model looks very similar to model FF but now with reducgd > 4. Thus the difference is
likely intrinsic and can be used to recognize a tumbling galaxy. A more complatgsénof
this problem will be undertaken elsewhere (De Lorenzi et al. in preres

2.9 Conclusions

We have presented a made-to-measure algorithm for constructing partibégsnod stellar sys-
tems from observational data, building on the made-to-measure mett&yeoand Tremaine
(1996 ST96). An important element of our new method is the use of the standanderit
function at the heart of the algorithm, in place of the relative error use8T86. The im-
proved algorithm, which we label?M2M, allows us to assess the quality of a model for a set
of target data directly, using a statistically well-defined quantif)(Moreover, this quantity is
well-defined and finite also when a target observable takes on zersvalue

This property has enabled us to incorporate kinematic observables inchidimer-order
Gauss-Hermite moments into the force-of-change equation. Kinematic asityd@n surface
density) observables can then be used simultaneously to correct théepadights. The price
of changing toy?M2M from the original formulation is that the kernels which project the par-
ticle weights and phase-space coordinates into model observabled taemselves depend
on the particle weights. In general this is quite natural for (volume or seyfdensity observ-
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Figure 2.22: The difference between kinematics in target RT54K and nidelélfhe observ-
ables are the mass-weighted higher order moments, and have been Hivtteccorresponding
assumed errors. The kinematics of RT54K are instantaneous but theEeaod time-averaged.
The FoV extends from- R t0 R along each direction.

ables. For the kinematics this means that we need to use mass-weighted kin&seti@bles.
Nonetheless, this is not a significant limitation.

We have implemented th¢M2M method in a fast, parallel code, NMAGIC. This code also
incorporates an optional but fast potential solver, allowing the potentia@rnpalong with the
model density. Its implementation of th M2M algorithm is highly efficient, with a sequential
fraction of only~ 1%. This has allowed us to build various models with large numbers of
particles and based on many observables, and to run them fof steps.

Then we have carried out a number of tests to illustrate the capabilities dodpance of
NMAGIC, employing spherical, oblate and triaxial target models. The geafiExibility by
itself is one of the main strengths of the method — no symmetry assumptions neeth&al®e

In the spherical experiments NMAGIC converged to the correct isotrapatel from anisotropic
initial conditions, demonstrating that a unique solution, if present, can logeezd. Both the
truncated distribution function and the intrinsic velocity dispersions werevezed correctly.
Two initial models with different density distributions were used in these @xpats. While
both converged to the final isotropic model, that with density closer to thdatderighe final
model had smaller final deviations from the target observables, and@uveardistribution of
weights. In both experiments, the observables (density and integralikielkinematics) each
converged in a few dynamical times at the outer boundasywhereas the particle weights kept
evolving for significantly longer, 10t ,.

In the oblate experiments we gave the algorithm a difficult problem to solve. target
system was a maximally rotating three-integral model in which the weights of aliten
rotating particles were zero. Using density observables and either slitegranh field kine-
matics, NMAGIC was asked to recover this maximally rotating model starting froiscdropic
spherical system relaxed in the oblate potential. After about 100'00@ai@n steps, particle
weights on the counter-rotating side were reduced by a facteri, the distribution of weights
approached that of the target, and a good fit to the kinematic constrainwasgchieved. Only
near the boundary of the kinematic data did particles on orbits further oosemheights had
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Figure 2.23: Left: Line-of-sight velocity field of the final non-tumbling tii@xparticle model
FF. Right: Difference of the line-of-sight velocity fields between the tunbling triaxial par-
ticle model FF and the tumbling target galaxy RT54K divided by the erroressrithed in the
text. We assume an error in the mean veloeity;) = v/20(h1)/m./mjo;, where we as-
sumedo(h1) = —/1/20(v)/o (Rix et al, 1997). In both panels the FoV extends fromRg

t0 Regr along each direction.
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not yet converged, still cause some deviations from the target kinematiese experiments
also clearly showed the advantage of integral field data over slit datarfistraining the model.

Our triaxial experiments showed that it is possible to start from one triaxidetramd con-
verge to another. We anticipate that this ability will be very useful in consitrgienodels for the
triaxial elliptical galaxies with which nature confronts us. One of these tliaxigeriments in-
cluded a potential update step every,212M steps, demonstrating that including an evolving
potential is also practical.

In the final experiment, we first generated a particle model of a slowly tumidiagjal
system to use as a target. We then matched its volume density and line-oftsgghtkics with
a stationary model. We showed that the mass-weighted kinematic moments of thedigting
system was fitted to within one by the non-rotating system out .. However the residuals
in the first order kinematic moment are correlated, which gives a cleartaignaf tumbling
which the non-tumbling model is not able to match, even when the assumesla@aealecreased
by a significant factor. We thus conclude that, at least for this triaxidegsysit is possible to
distinguish between internal stellar streaming and pattern rotation withinprovided a full
velocity field is available. A more complete study of this problem will be presegismivhere.

This experiment also demonstrates the usefulness oftM2M algorithm for modeling
mock (rather than real) galaxies in order to learn about their dynamics. otgetimat such an
experiment would not have been practical with standértody simulations.

Compared to the Schwarzschild method, the main advantages o?M2M algorithm
as implemented in NMAGIC are that (i) stellar systems without symmetry restrictaombe
handled relatively easily, (ii) it avoids complicated procedures for samginging, and storing
orbits, and (i) the potential can be evolved self-consistently if needetthelexamples given, a
simple isotropic spherical model was evolved into a suitable initial model, whictaiceed the
required wide range of orbital shapes. EvgAM2M model corresponds to a new set-up of a
complete orbit library in the Schwarzschild method; so in problems where e eebit library
can be reused, Schwarzschild’s method will be faster. However, NI@ZAShighly parallel, so
suites of models with- 10° particles are feasible on a PC cluster.

There is clearly room for improving the current implementation of tA®2M algorithm,
and there is a need to study carefully the parameters that enter the algotithnassmagnitude
and frequency of the correction steps, entropy, etc., which we willesddn future work.

However, the different applications presented in this chapter show that’t2M algo-
rithm is practical, reliable and can be applied to various dynamically relaxg@érag. High
quality dynamical models of galaxies can be achieved which match targetsitofor plau-
sible uncertainties in the observables, and without symmetry restrictions. okiddude that
x2M2M holds great promise for unraveling the nature of galaxies.






CHAPTER 3

DARK MATTER CONTENT AND INTERNAL
DYNAMICS OF NGC 4697: NMAGIC
PARTICLE MODELS FROM SLIT DATA AND
PLANETARY NEBULAE VELOCITIES
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Maurilio Panella, Roberto H. Ehdez
submitted taINRAS 2007

We present a dynamical study of NGC 4697, an almost edge-on, intemexuaiainosity,
E4 elliptical galaxy, combining new surface brightness photometry, neweisa® published
long-slit absorption line kinematic data, and published planetary nebulag) (Ri\bcity data.
The combined kinematic data set extends outtd’ ~ 4.5R. and allows us to probe the
galaxy’s outer halo.

For the first time, we model such a dataset with the new and flexibi@made-to-measure
particle code NMAGIC. We extend NMAGIC to include seeing effects, intcedan efficient
scheme to estimate the mass-to-light ratio, and incorporate a maximum likelihoodjteeio
account for discrete velocity measurements.

For modelling the PNe kinematics we use line-of-sight velocities and velocitgidigms
computed on two different spatial grids, and we also use the individuatityelmeasurements
with the likelihood method, in order to make sure that our results are not bigsthe way we
treat the PNe measurements.

We generate axisymmetric self-consistent models as well models includingiyatark
matter halos. These models fit all the kinematic data wﬁhN < 1, both in the case with
only luminous matter and in potentials including quite massive halos. There is alslighot
yet statistically significant tendency that the massive halos fit the PN data; betfem this
up would require PN velocities at even larger radii. Thus with the preseatriatic data it is
not possible to determine the amount of dark matter in NGC 4697. The best fittidgls are
slightly radially anisotropic; the anisotropy parameter=~ 0.3 at the center, increasing to
0~ 0.5 atradii 2 2R..

3.1 Introduction
The presence of dark matter (DM) has long been inferred around gplexies from their flat
rotation curves, and galaxies are now generally believed to be susdundextended dark

matter halos. Indeed, in the currefitcold dark matter {CDM) cosmology, galaxies form
within the potential wells of their halos. The standard picture for the formatiaailiptical
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galaxies is through mergers of smaller units. Ellipticals should thus also isded by dark
matter halos. Their halos are particularly interesting because ellipticals amgatimm oldest
galaxies and are found in the densest environments.

Unfortunately, mass measurements in elliptical galaxies have been difficalti®e of the
lack of a suitable ubiquitous tracer such as neutral hydrogen rotativasur spirals. In giant
ellipticals, there is evidence for dark matter from gravitational lenséng Griffiths et al. 1996
Treu and Koopmans 2004&Rusin and Kochanek 20D%&nd X-ray emissiond.g. Awaki et al.
1994 Loewenstein and White 1999 Humphrey et al. 2006 more ordinary ellipticals, mass
estimates come from stellar dynamical studies, which have been limited by theetsmththe
galaxies’ outer surface brightness to radii less than two effectivefradiithe centreR < 2R,
(e.g. Kronawitter et al. 2000Thomas et al. 2097 These studies suggest that the dark matter
contributes~ 10 — 40% of the mass withinR. (Gerhard et al. 20Q1Cappellari et al. 2006
consistent with the lensing results.

The strong emission line &II1]\5007 from planetary nebulae offers a promising tool to
overcome this limitation and to extend stellar kinematic studies to larger tduiiief al, 1995
Tremblay et al. 1995 Arnaboldi et al, 1996 1998. Also, in the less massive, X-ray faint el-
lipticals, PNe may be the primary tool for constraining the dynamics at large @dce the
PNe are identified, their line-of-sight velocities can be obtained from thgpl@o shift of the
narrow emission line. Interestingly, the derived PNe dispersion profildsiwlliptical galax-
ies NGC 4697 Méndez et a).200]) and NGC 821, 3379 and 449R¢manowsky et al2003
Douglas et a].2007) were found to decline significantly with radius outsid@.. Their spher-
ically symmetric dynamical analysis l&®bmanowsky et a2003 to the conclusion that these
galaxies lack massive dark matter halos; howdvekel et al(2005 argued that the well known
mass-anisotropy degeneracy allows for declining dispersion profi@swkien a standard DM
halo is present.

In the present chapter we focus on NGC 4697, a normal and almostoedgd galaxy
located along the Virgo southern extensiokléndez et al(2001) obtained a planetary neb-
ula luminosity function (PNLF) distance db.5 + 1 Mpc from magnitudes 0631 PNe, and
Tonry et al.(2001) measured a surface brightness fluctuation (SBF) distance o= 0.1 Mpc.
This fairly isolated galaxy has a total B magnituff¢ = 10.14 and harbors a central super
massive black hole (SMBH) of mads2 x 103M,, (Pinkney et al.2000. A Sersic law with
R. = 66 arcsec gives a good fit to the surface brightness profile out to alayatdin (see Sec-
tion 2). Based on the disky isophote sha@ester(1987 andGoudfrooij et al.(1994) inferred
a stellar disk along the major axis. The contribution of the disk kinematics to the indpor
line-of-sight velocity distributions was estimated Bgorza et al(1998. X-ray observations
with ROSAT Sansom et 12000 show a lack of large scale hot gas in the halo of this galaxy.
Using more recent Chandra datewin et al. (2000 could resolve most of this emission into
non-uniformly distributed low mass X-ray binary (LMXB) point sourcasygesting that NGC
4697 is mostly devoid of interstellar gas and perhaps does not haversiddsienounts of DM.

Dynamical axysimmetric models of NGC 4697 have been constructBihimgy et al (1990
andDejonghe et al(1996, both based on photometry and absorption line kinematic data within
~ 1R.. The data were consistent with a constant mass-to-light-ratio and nonesef thod-
els showed evidence for dark matteviendez et al(2001) obtained velocities fo531 PNe
and derived a velocity dispersion profile out to approximatefyz.. Assuming an isotropic
velocity distributionMéndez et al(2001) found that the PNe velocity dispersion profile is con-
sistent with no DM insidel.5R,, but that DM can be present if the velocity distribution is
anisotropic. This was also argued bgkel et al.(2005 to be the main cause of the finding by
Romanowsky et al(2003, that their three intermediate luminosity galaxies lacked significant
dark matter halos (but sd2ouglas et al.2007). Contrary to these three galaxies, which are
nearly round on the sky, NGC 4697 is strongly flattened and likely to bdynedge-on, thus
easier to model since shape degeneracies are much less severe.
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Figure 3.1: Comparison of the photometry of NGC 4697 with reprojected threensional
luminosity models. The data points correspond to the observed photometrfordg97 (for
the deprojection, the, andag values have been set to constants beyen8R.). The solid
line shows the edge-on deprojected model reprojected, the dashed line th@& deprojected
model reprojected, and the dash-dotted lineithe 67° model. The panels show, from top to
bottom, surface brightnessz, ellipticity e and the isophotal shape parametersndag.

In the light of this, it is important enough to perform a further carefulygsia of this galaxy.
In this chapter we construct dynamical models of NGC 4697 with the verijplle Rk MAGIC
particle code, making use of new and published slit kinematics and émelez et al(2001) PN
data. The chapter is organized as follows. In Sec8dhwe describe our new observational
data and all other data that are used for the dynamical models. In S8c3iare give a brief
explanation of the NMAGIC modeling technique. We extend the method to incleeiag
effects, introduce an efficient scheme to estimate the mass-to-light ratishanchow discrete
velocity measurements may be taken into account. In Se8tbwe construct isotropic rotator
models to test and calibrate the method, preparing for the dynamical modeltG©f4697
which is then performed in Sectiah5. Finally, the chapter closes with our conclusions in
Section3.6.

3.2 Observational Data

In this section, we describe the observational data used in the presintistluding new CCD
photometry and new long-slit absorption line kinematics. We also descrikedleprocedure
employed for the deprojection of the photometric data. In the following we ta@lajistance
10.5 Mpc to NGC 4697 Méndez et a).2007).

3.2.1 Surface Photometry

The R-band data used in the present work were taken in April 2000rasfiihe ESO Proposal
064.N-0030 (P.I. R.P. Saglia) at the Wide Field Imager on the ESO-MPI4 telescope. Six

5 minutes, dithered exposures where taken in sub-arcsec seeing amndififter the usual
data reduction procedures (performed using the IRAF task mscredjiathewere tabulated
as radial profiles of surface brightnegs ellipticity ¢, position angle PA and Fourier shape
coefficients Bender and Moellenhqffl987. The surface brightness was calibrated using the
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R band photometry dPeletier et al(1990. Systematic errors due to sky subtractipn;( =
20.18 Rmag arcsec?) are always smaller than 10%. Fig.1 shows the derived profiles and
TableB.1 gives them in tabular form. The isophotes of NGC 4697 do not show gmgaiable
twist in PA and have a positive, coefficient in the galaxy’s inner parts, which is well-explained
by a near-edge-on embedded diSk¢rza and Bendet995. The galaxy has some dust in the
inner regionsRinkney et al.2003, but the R-band observations are relatively unaffected by it.
The outer isophotes are progressively slightly off-centered. A Skrsicthe surface brightness
profile results in Sersic index = 3.5 and effective radiugl, = 66 arcsec. The older value of

95 arcsec fronBinney et al (1990 was based on photometry reaching only 120 arcsec; thus we
useR,. = 66 arcsec in the following. For a distanceldf.5 Mpc this corresponds t8.36 kpc.

3.2.2 Deprojection

For our dynamical study, we will fit particle models to the deprojected luminosibgitly using
NMAGIC, cf. Section3.3. To obtain the luminosity density we need to deproject the sur-
face brightness. This inversion problem is unique only for sphericalge-on axisymmetric
systems Binney and Tremainel987. For axisymmetric systems inclined at an angl¢he
Fourier slice theoremRybicki, 1987 shows that one can recover information about the density
only outside a “cone of ignorance” of opening an§® — i. The deprojection of photome-
try for galaxies withi significantly less tha®0° can thus be significantly in error because of
undetermined konus densitigsdrhard and Binneyi 996 Kochanek and Rybickil996.

Fortunately, NGC 4697 is seen almost edge-on and hence does ret fsaffh this ill-
condition. Dejonghe et al(1996 observed a nuclear dust lane with a ring-like appearance,
elongated along the major axis of NGC 4697. Assuming that the ring is settledequladorial
plane, they estimated an inclination angjle 78°+5°. Applying a disk-bulge decomposition to
the isophote shapes of the galaxy, and assuming a thinSitsikza and Bend€i995 derived
an inclinationi = 67°. This was updated bg$corza et al(1998 to: = 70°. Scorza and Bender
(1995 also estimated the velocity dispersionof the disk component from the major axis line-
of-sight velocity distributions. From their plots we estimate~ 95km s~! at the half-mass
radius of the diskyp ~ 13”. Assuming that the vertical dispersion in the disk is comparable,
we can estimate the intrinsic flattening of the diskr? /v2 ~ 0.2, using the measured rotation
velocity. A disk with intrinsic thicknesé /R ~ 0.2 would give the same isophote distortions
for inclinationi ~ 80° as a thin disk with. = 67 — 70°, in agreement with the value found by
Dejonghe et al(1996).

We have deprojected NGC 4697 for inclinatians: 90°, i« = 80° andi = 67°, using the
method and program dflagorrian(1999. This algorithm uses a maximum penalized likelihood
method with a simulated annealing scheme to recover a smooth three-dimensioinaisity
density distribution which, when projected onto the sky-plane, has miniméaltd&vws from the
observed SB. The three-dimensional luminosity density so obtained exiegdsd the radial
range of the data, where the penalized likelihood scheme favours anpowter-law density
profile. Figure3.1 compares the observed photometry with the three deprojected luminosity
models reprojected on the sky. In the range fi@@R, to 2R, thei = 67° deprojection yields
a significantly less good fit to the observedandag. Figure3.2 compares the radial run of
the isophotal shape parameters for ithe 80° andi = 67° luminosity models projected edge-
on, with the observed photometry of NGC 4697. The- 80° deprojection produces again
somewhat better results. It is also more physical because it allows fdateatfickness of the
inner disk of NGC 4697, as discussed above. Hence we will adopttinéodynamical study of
NGC 4697 to follow.
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Figure 3.2: Isophote parameter profiles for the NGC 4697 photometry cenhpath those of
the deprojected luminosity models shown in Fig8r&but now as seen in edge-on projection.
NGC 4697 is coded as the solid line, whereasitee 80° andi = 67° luminosity models are
presented by the dashed and the dash-dotted lines, respectively.

3.2.3 Kinematic Data
Stellar-absorption line data

Long slit absorption line kinematics within R, have been reported, amongst other works,
by Binney et al.(1990 and Dejonghe et al(1996. The Binney et al.(1990 kinematic data
(BDI data) consist of line-of-sight velocity and velocity dispersioa profiles along the ma-
jor axis, along slitsl0” and20” parallel to the major axis, along the minor axis, and along a
slit 22" parallel to the minor axis. They are derived using the Fourier Quotien} (R&hod
(Ningworth and Schechted 982). Dejonghe et al(1996 have published further ande mea-
surements (DDVZ data) at various position angles, also measured with threeB@d.

Along the major and minor axes we have derived additional line-of-sightirgldistri-
bution (LOSVD) kinematics from the high S/N integrated absorption line spetti@ned by
Méndez et al(2005 with FORS2 at the VLT, a slit width of 1 arcsec and se€ifig- 1.”5. We
refer to this paper for a description of the data acquisition and reductiba.LDSVDs were
measured using the Fourier Correlation Quotient (FCQ) method Berider et al(1994h and
Mehlert et al (2000, and the K3lll star HD132345 as a template. From these LOSVDs, wofile
of v, o, hg and hy4, the Gauss-Hermite coefficient&érhard 1993 van der Marel and Franx
1993, were obtained; these are shown in FigBr& TablesB.1 andB.2 give the data in tabular
form. The statistical errors derived from Monte Carlo simulations are mimderaich smaller
than the rms scatter observed between the two sides of the galaxy. THesendis are partic-
ularly obvious along the major axis in the radial range 10-20 arcsec. t&slmoMéndez et al.
(2009, in this region we detect patchy [Olll] emission that is affecting to somenéxite kine-
matics. Judging from the asymmetries in the kinematics on both sides of the gedegstimate
the residual systematic errors affecting the data, which amouatt&m/s inV, ~ 3.5 km/s in
o,~ 0.02in hs andhy.

In the following we discuss the comparison between the kinematic data deevednd the
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Figure 3.3: The kinematics along the major (left panel) and minor (right paned)of NGC
4697. The filled and starred symbols refer to the data folded along the axes
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Figure 3.4: Comparison between the different absorption line kinematicg glenmajor (left
panel) and the minor (right panel) axis. Black: our data; red: BDI; bbBVZ; cyan: SB;
green: KZ; yellow: FI.
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kinematics published in the literature. Note that part of the differencedsew arise from the
different observational setups (along the major axis different slit wigtbbe different relative
amounts of the central disk structure present in the galaxy and relatdpd@Ission regions)
and methods used. In particular, the FQ method fits Gaussian profiles to $¥R<ignoring
the higher order Gauss-Hermite terms. In general the systematic efféfoe omeasured mean
velocity and velocity dispersion profiles is smalaf der Marel et al.1994. When applied
to our major axis data set, FQ gives systematically slightly smaller mean velocitidarged
velocity dispersions.

In the inner 10 arcsec along the major axis we confirm the clear kinematictignaf
the central disk discussed I8corza and Bend€i995 SB) and agree well with their mean
ando derived also with the FCQ method and 1.8 arcsec slit width (see FRydréeft, cyan
points). Along the same axis we find good agreement wiikd and Illingworth(1994 (Fl,
yellow, derived using the FQ method and 1.1 arcsec slit width). Overall, BedBta (Figure
3.4, red points, 2.6 arcsec slit width), agree well with our data, although”aalong the major
axis, the two data sets differ systematically. Bherofiles of DDVZ (blue points, 0.7 arcsec slit
width) differ significantly in the sense that at small semi-major axis distanceBINW o is
increasing with radius but ouris decreasing. Finally, the right panel of Fig®.dcompares our
data along the minor axis with the data sets of BDI (red points)kamtolin et al.(2000 (KZ,
green points, 2 arcsec slit width), who use the Fourier Fitting methedrofler Marel and Franx
(1993. Both agree within their respective (larger) errorbars.

Based on the radial extent and quality of the different datasets, and) takinaccount the
discussion above, we have decided to use in the subsequent modelirmuonligta combined
with BDI. For our kinematic data, the errorsinando are < 0.5km s~*!, which is small com-
pared to the scatter in the data. This suggests, as already discussegthabsystematic errors
dominate. For the modelling we have therefore replaced these errors wigm#ikest errors in
v ando of the BDI data along the major and minor axis, respectively {km s—1). Similar ar-
guments hold fohs andh, and we set their errors t01. In addition, thehs coefficients along
the minor axis scatter significantly around zero while the minor axis velocitiesamsstent
with zero; thus we replace thesg values byhs = 0.0.

Figure 3.5 gives a schematic view of the arrangement of the kinematic slits used in the
modelling process.

Planetary nebula velocities

Planetary nebulae (PNe) are dying stars that emit most of their light in adewwvn lines of
which the[OIII]A5007 is the most prominent one. The PN population in elliptical galaxies is
expected to arise from the underlying galactic population of old stars arabtiee PNe can be
used as kinematic tracers for the stellar distributistendez et al(2001) detected35 PNe in
NGC 4697 and were able to measure radial velocitie$3drof these with a typical error of
40 km s~ L.

Sambhus et a[2006 analyzed the correlations between the magnitudes, velocities and po-
sitions of thesé&31 PNe and found kinematic evidence for more than one PN sub-population
in NGC 4697. In addition to the main PN population, they found evidence fapalgation of
preferably bright PNe which appeared to be not in dynamical equilibriuthergalactic po-
tential. To remove these possible kinematic contaminants, and to also ensurieteoegs
for R > R. (Méndez et a).200]), we discard all PNe with magnitudes outside the range
26.2 < m(5007) < 27.6. The positions and velocities of the remaini3gl PNe are shown
in Figure3.6. In the following, we use a doubled sample7R PNe for our analysis, obtained
by applying a point-symmetry reflection. Every PN with observed positiomdioates(z, y)
on the sky and line-of-sight velocityp v is reflected with respect to the center of the galaxy to
generate a new PN with coordinatesr, —y, —vpy). Such point-symmetric velocity fields are
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Figure 3.5: Schematic view of the slit setup used to construct the particle m8ddIslits are
shown in black and our slits are shown in red. The ellipse has a semi-majarfdgigyth R,
and axis ratigy = 0.6.

expected for axisymmetric and non-rotating triaxial potentials. Moreovisrréfiection will
help to further reduce any PN sub-population biases which might still lzepte

We computer ando on two slightly different spatial grids, subtractisg km s~ in quadra-
ture from all PN velocity dispersions to account for the measurementtantees Méndez et a.
200)). We use the spatial bins defined by the solid lines displayed in F@j6r® obtain data
set PND1, which is shown together with the models in Se®iénThe second data set, PND2,
is computed using the same grid but replacing the outermost ellipse by theldalbse with
semi-major axis = 280”. This second grid is used to make sure that the dynamical models we
generate are not affected by the way we define the outermost bins.

3.3 NMAGIC models

In this section we give a brief introduction to NMAGIC and present a feterssions to the
method described ide Lorenzi et al(2007). Syer and Tremain€l996 invented a particle-
based method for constructing models of stellar systems. This “made-to+eeési2M)
method works by adjusting individual particle weights as the model evolmisthe N-particle
system reproduces a set of target constraged.orenzi et al(2007) improved the algorithm to
account for observational errors and to assess the quality of a naydeket of target data di-
rectly, using the standargf statistics in the function to be maximized upon convergence of the
weights (2>M2M). NMAGIC is a parallel implementation of the improvedM2M algorithm.

3.3.1 Luminous and dark matter distribution
Luminous mass

We assume that the luminous mass distribution of NGC 4697 follows the deprbjestmosity
density. The mass density of the luminous matter is then given by T j, with mass-to-light
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Figure 3.6: The positions and velocities of the cleaned PN sampkid?Ne. The lines indicate
the different grids used for binning the PNe. Details are given in the text.

ratio Y and luminosity density represented by the discrete ensemble of particles with positions
x; and luminositied;.

Dark halo potential

The prevailing cosmological paradigm predicts that galaxies have massieaded dark matter
halos. Numerical cold dark matter (CDM) simulations reveal universaldeigity profiles with
steep central density cuspsd@. Navarro et al.1996 Moore et al, 1999. On the other hand,
observations of many dwarf and low-surface brightness galaxies faltbsfer inner density
cores €.g. de Blok et al, 2003 McGaugh et a].2007). Here our aim is not to determine the
detailed shape of the dark matter halo in NGC 4697, but rather to first sethevithe PN
velocities allow or require any dark matter at all in this galaxy. To answer téstipn we
will investigate a one-dimensional sequence of potentials whose circuidanityecurves vary at
large radii between the near-Keplerian decline expected when the mdassinleminates, and
the nearly flat shapes generated by massive dark halos. Thus fdymamical studies of NGC
4697, we represent the dark matter halo by the logarithmic poteiah€y and Tremaine
1987

ép(R,2) = v In(rg§ + R + 2—/2) (3.1)
D 3 - 2 0 q(Qb ) .

which is generated by the density distribution

v (203 +1)rg + R? +2(1 - 5q,7)2"

D R,)Z, = —
po(R,2) 4rGq (rg + R? 4 q,%2")?

, (3.2)

wherev, andr, are constantsy, is the flattening of the potential, arfél andz’ are cylindrical
coordinates with respect to the halo’s equatorial plane. When 1/1/2 the density becomes
negative along the’ axis. The density given in equati@?2 has a shallow inner density profile,
but since we are mainly interested in the circular velocity curve in the outeldh&dGC 4697,
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this is inconsequential: it is always possible to reduce the stellar mass-todighin exchange
for an additional centrally concentrated dark matter cusp.

The total gravitational potential

The total gravitational potential is generated by the combined luminous mastadachatter
distributions and is given by

¢ = ¢« + ¢, (3.3)

where ¢, is generated by théV-particle system assuming a constant mass-to-light ratio for
each stellar particle. We estimate via a spherical harmonic decompositid®e{lwood 2003

de Lorenzi et al.2007). The stellar potential is allowed to change during a NMAGIC modelling
run, but the dark matter potential is constant in time and is given by equatiynThe particles
are integrated in the global potential using a drift-kick-drift form of theofeag scheme with a
fixed time step.

3.3.2 Model observables

Typical model observables are surface or volume densities and lisigfufkinematics. An
observabley; of a particle model is computed via

N

yi(t) =Y wiK; [z(b)], (3.4)

i=1

wherew; are the particle weights;; are the phase-space coordinates of the partiéles,
1,---,N,andK;[z(t)] is a kernel corresponding tg. We use units such that the luminosity
L; of a stellar particle can be written & = Lw;, whereL is the total luminosity of the model
galaxy. We use temporally smoothed observables to increase the effaatkeer of particles
in the systemef. Syer and Tremain€l996; de Lorenzi et al(2007).

Luminosity constraints

For modeling the luminosity distribution of NGC 4697 one can use as obsesvidlglesurface
density or space density on various grids, or some functional repiaties of these densities.
We have chosen to model a spherical harmonics expansion of the d#pddjeminosity density.
We determine the expansion coefficiedts, for the target galaxy on a 1-D radial mesh of radii
ri. The spherical harmonic coefficients for the particle model are compided v

Ak = L Z Ve Y™ (03, i) wi, (3.5)

(2

whereL is the total luminosity of the model galaxy; the particle weightsy;” the spherical
harmonic functions and,?ifc is a selection function, which maps the particles onto the radial
mesh using a cloud-in-cell scheme (skeelorenzi et al.2007).

Kinematic constraints

Since in they>?M2M algorithm the kernel in equatiol(4) cannot depend on the particle weights
themselves, this puts some constraints on which observables can be uselindmatics,
suitable observables are the luminosity-weighted Gauss-Hermite coeffiorghtsluminosity-
weighted velocity moments. We implement them as follows.
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Spectroscopic data The shape of the line-of-sight velocity distribution (LOSVD) can be
expressed as a truncated Gauss-Hermite series and is then chambielize andh,, (n > 2),
whereV ando are free parameters. f ando are equal to the parameters of the best fitting
Gaussian to the LOSVD, thén = hy = 0 (van der Marel and Fran®993 Rix et al, 1997).
The luminosity-weighted Gauss-Hermite coefficients are computed as

bop = lphyp =2/7L Z Spitin (Vpi ) Wi, (3.6)

with
Vpi = (V2 — V) [0p. (3.7)

Herev, ; denotes the line-of-sight velocity of partiald,, is the luminosity in celC,, V}, ando,
are the best-fitting Gaussian parameters of the target LOSVD i€ ,gedind the dimensionless
Gauss-Hermite functions ar&érhargd 1993

up(v) = (2”+17rn!)_1/2 H,(v)exp (—v°/2). (3.8)

H, are the standard Hermite polynomials apgis a selection function which is one if particle
iisin cellC, and zero otherwise. The errorsfin andhy can be computed from those Bfand

o via
1 AV

Ah) = ——— 3.9

1= (3.9)
and 1A
ag

Ahg = ———, 3.10

2=~ 5 (3.10)

valid to first order yan der Marel and Fran®993 Rix et al, 1997). Since we use the observed
V, ando, from a Gauss-Hermite fit to the LOSVD as expansion parameters for thel immle
profiles, the final fittedh; andh, of a model will be small, and so we can also use relatiBrs) (
and @.10 to compute the modél" ando from V,, ando,.

Spatially binned PNe data We have computed mean PN velocities and velocity disper-
sions for the ellipse sector bins shown in Fig@t6. The ellipticity of the grid corresponds to
the mean ellipticity of the photometry. As suitable observables we taKarttiaosity-weighted
velocity moments in these bins, which are computed as

vp =LY Sl awi, (3.11)
7

wherew, ; is the velocity along the line-of-sight of particieandé,; is a selection function,
which is equal to one if particlé belongs to the bin segment under consideration and zero
otherwise. In the following, we use only the momenfsandu?.

3.3.3 Seeing effects

To account for seeing effects we apply a Monte Carlo approach (Cappellari et al.2006
instead of convolving the observables with the PSF. As long as the particles atang their
orbits no PSF effects need to be taken into account, only when the obesrefithe system are
computed, the effects of seeing may matter.

When computing an observable including PSF effects, we replace thénalfigarticle at
position(x;, y;) on the sky plane temporarily by a cloud &%, pseudo particles. The position
of a pseudo particle is obtained by randomly perturkiingy;) with probability given by the
PSF. Note that neither extra storage is needed nor additional time to integrataticles along
their orbits. Usually, only a small number of pseudo particles are neededdel lASF effects,
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Figure 3.7: Seeing convolution test, comparing the radial run @long a2” slit for a spherical
target model and its particle representation. The squares (circlescamiguted for the target
from higher order Jeans equations without (with) seeing. The linesesqmond to the particle
model including seeing, for which the PSF was represented W§ipg= 5. The full and dashed
lines refer to the major axis slit data at positive resp. negative radii witiecego the origin.
The heavily seeing-affected central profile is well recovered by thesinod

even one is often sufficient. This procedure is implemented in the kéfpehs defined in
equation 8.4). The same kernel then enters the force-of-change equafiote Lorenzi et al.
(2007).

To test how well PSF effects are modeled using only a few pseudo pastieleemputed
mock observations for a spherical isotropic galaxy of méss= 109/, located at a dis-
tancel0 Mpc. The intrinsic density of the galaxy is given byHernquist(1990 profile with
scale lengthu = 55.1”. We assumed a major axis slit of wid#f and a Gaussian PSF with
FWHM = 4”. We computed the LOSVD of the target galaxy along the major axis using
higher order Jeans momentddgorrian and Binneyl994), and compared it with the LOSVD
of a particle realization of the mock galaxy, applying the above procedline. particle re-
alization of the Hernquist model was generated from an isotropic distribioction €.9.
Debattista and Sellwog@000. As an example, Figurg.7 shows theh, profile along the ma-
jor axis slit. The square symbols are the target data computed using higkedeans equations
without seeing, the circles are computed the same way but including PSEeff&e lines are
the temporally smoothetl, profiles of the particle model usiny,, = 5 to represent the PSF.
One sees that the heavily seeing-affected central profile is well resmbty the model.

In the dynamical modeling of NGC 4697 we include seeing only for our neerkatic data.
We represent the PSF by a single Gaussian With H M = 1.25”. For the BDI data we do not
know the PSF but since the slit cells are relatively large, seeing is likely tedleible.
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3.3.4 The merit function

By fitting the particle model to the observables, the weightare gradually changed such that
the merit function

F=puS — %XQ (3.12)

is maximized, wher is a profit function ancy? measures the quality of the fit. The parameter
1 controls the relative contribution of the profit function & incrementingu increases the
influence of S in equatior8(12). They? statistics is computed as usual

=D A% (3.13)
J

whereA; = (y; —Y;)/o(Y;). y; is a model observable(@. a;,, 1, with j = {Im, k}), Y; is the
corresponding target andY;) its error.
For the profit functionS, we use the entropy

S = —Zwi ln(wi/u?i) (3.14)

where{w; } are a predetermined set of weights, the so-called priors (here eqadlifarticles).
The entropy term pushes the particle weights to remain close to their priore gpecifically,
close tow;/e). This implies that models with large will have smoother distribution functions
than those with smajl. The best choice fgr depends on the observational data to be modeled,
e.g. their spatial coverage, on the phase-space structure of the galagy contsideration, but
also on the initial conditions. For the dataset at hand, the best vajusvidf be determined in
Section3.4.1

3.3.5 Discrete PNe velocities

The likelihood of a model fit to photometric as well absorption line kinematic data ésuned
by the standarg/? statistics given in equatior8(13. To treat discrete PN velocity measure-
ments the same way, we must bin them to estimate the underlying maado fields. This
gives the corresponding model observables as discussed in s&&ian

As an alternative, one can measure the likelihood of a sample of discretitieslo; and
positionsR; = (x;,y;) on the sky via

L=) InL; (3.15)
J
using the likelihood function for a single PIR@manowsky and KochangR001)

1 dL —(v;—1.)2 /202
L;(vj, Ry) = \/ﬂ/dvz(vz,Rj)@ (el o, (3.16)

whereo; is the error in velocity and L /dv, is the LOSVD assuming as before that the line-of-
sight is along the z-axis.
We can then add equatio8.(5) to the function F given in equatio8 (2 and maximize

Ft=r+r (3.17)

with respect to the particle weights;. Hence, we obtain an additional contribution to the
force-of-change as given ke Lorenzi et al(2007). We will now derive this extra term. Let us
consider the selection function

5 — 1 if (Ii,yi)ECj
771 0 otherwise.
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which assigns particle weights to a spatial ¢gll which contains thg-th PNe. We can then
write dL /dv, at position; as

< " > Z 8iwid (v, — v.;) (3.18)

with
lj = Z(Sjiwi, (319)

andj(z) being the standard delta function. Hence, equatBobg] can be expressed in terms of
the particles via

Lj= % (3.20)
J
with
U'—’U 0'2»
L= rZ%wz vsa)?/205, (3.21)
Finally, we find for the additional term in the FOC
duw; TR CRR R
——ew; ) 6y - S 3.22

where the sum runs over all individual PNe. For small errorsdthg/d¢ from the likelihood
term is positive for particles with; = v, ;, but reduces the weights of the other particles and
hence drives the LOSVD to peakat In the implementation, we repla¢pand2j with the
corresponding temporally smoothed quantities.

When we use this method to account for the PN velocities in NGC 4697, we taogrid
defined in Figure3.6 by the dotted lines, including the innermost and outermost full ellipses. In
this way, we assign each of tli62 PNe to a cell;. It follows, that more than one PNe share
the same spatial bin, but this is not a problem.

3.3.6 Efficient mass-to-light estimate

It is common practice to evolve N-particle systems in internal units (IU), in wthehgravi-
tational constant and the units of length and mass are set to unity, and tdrecalestem to
physical units (PU) a posteriori to compare with galaxy observations. Siyithe velocities

of a system with mass-to-light ratib of unity may be scaled to any via vpy = ~ vy where

~ o /T andupy andury are the velocities in physical and internal units, respectively. It fol-
lows that the kinematic observables of the model and hencealsan be regarded as functions
of T. Equation 8.13 then reads

X2 =D AT (3.23)
J

In the following we will only consider the luminosity-weighted Gauss-Hermite mdseas
given in equationg.6) and neglect the PNe kinematic constraints. Taking the partial derivative
with respect toX’ of equation 8.23 leads to

10y AS(T) Bbny .
20T ~ &= o(By,) 0T i={np}

(3.24)

whereB,, , is the target observable andB,, ,) its error. We define a force-of-change (FOC)
for the mass-to-light rati@

T 2
dar _ X

a~ "ar (3.25)
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which equals

dr e OA(T)
7= zj: 2A;(7) o (3.26)
with
OA;(T) O (:
oY Tapo' ZZ: Ot Ox x:upivz’“ (3.27)

where we usedv, ;/0Y = v, ;/27Y for v, ; given in physical units, anjl= {n, p}. The line-
of-sight is along the z axis. In practice, we use the temporally smootheditiggto compute
the FOC for the mass-to-light ratio.

In principle, the proposed scheme can be understood as a gradiesit atemg thex?(T)
curve when simultaneously the particle model is fitted to the observationdraions. Hence
the same NMAGIC run allows us to estimafeas well. We test the scheme and illustrate its
accuracy in SectioB.4.

3.3.7 Initial conditions

As initial conditions for NMAGIC, we generate a particle realization of a sighé~-model
(Dehnen 1993 Carollo et al, 1995 made from a distribution function (DF) using the method
of Debattista and Sellwoo®000. The model consists aV = 5 x 10° particles and has
~ = 1.5, scale lengthu = 1 andry,,x = 40. When scaled to NGC 4697 one unit of length
corresponds t@.3810 kpc, i.e., this model ha&. = 3.8 kpc.

In some cases, we have found it useful to give the initial particle systeme sogular mo-
mentum about an axis of symmetry. For axisymmetric stellar systems, the dengitgrisshed
through the even part ih, of the DF Lynden-Bell 1962. Thus the component of the angular
momentum of a particle along the symmetry axis may be reversed without affdatieguilib-
rium of the systemKalnajs(1977) showed, however, that a discontinuity/at = 0 can affect
the stability of the particle model. Therefore, if desired, we switch retragpedticles with a
probability

L2
L2 L2’

p(L.) = (3.28)

which ensures a smooth DF.

3.4 Testing the modelling with isotropic rotator targets

In this section, we use axisymmetric, isotropic rotator models with known intrimsjgepties
to determine the optimal value of the entropy “smoothing” parameter equation 8.12),
and to test our procedure for determining the optimal mass-to-light ratio sireoltaty with
modelling the data.

3.4.1 Entropy parameter u

Our approach to determine suitable values jfiors similar as inGerhard et al(1998 and
Thomas et al(2005. We first generate a “mock” kinematic data set from an isotropic rota-
tor model whose information content (number and density of points, gisssnilar as for the
real data set to be modelled. To this data set we perform a sequenceidepaodel fits for
variousy, and determine the values pffor which (i) a good fit is obtained, and (ii) the known
intrinsic velocity moments of the input “mock” system are well reproduced by thespond-

ing moments of the final particle model. Using an isotropic rotator model for thjzoge here
makes sense, because such a model is a fair representation of NG(B4G8Y et al, 1990).
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Figure 3.8: Comparison of the surface brightness of NGC 4697 (solid mi#s the v-model
described in the text and seen undet 80° inclination (dotted lines). Top: Surface brightness
profile along the major axis. (b) Along the minor axis.

We have chosen to describe the luminosity density of the mock galaxy by dhe @attened
~v-models ofDehnen and Gerhai(d 994,

(B3-—L a
drqg  mY(m +a)*=7’

j(m) = (3.29)

Here L and a are the total luminosity and scale radius? = R + (z//q)?, andq is the
flattening. The parameters are chosen such that the surface brigtitreedg resembles that of
NGC 4697, i.e.g = 0.7,y = 1.5, L = 2 x 10! L p anda = 2.5 kpc, which corresponds
toa ~ 49" at a distance of(0.5 Mpc. Figure3.8 shows a comparison of the surface brightness
of NGC 4697 with the mock galaxy projected undet 80°. The major and minor axis surface
brightness profiles are well approximated by thmodel, except for some differences at larger
radii, so we will use this model for the calibration of

We determine mock kinematic profiles from internal velocity moments, obtaingdigher-
order Jeans equationslégorrian and Binneyl1994) in the self-consistent potential generated
by the density of equatior8(29 for a mass-to-light rati@ = 5. Before calculating the line-of-
sight velocity profiles, the velocity moments are slit-averaged to accouttidéonbservational
setup of the kinematic slits given in Secti@2.3 We add Gaussian random variates to the
isotropic rotator kinematics withho dispersion corresponding to the respective measurement
error in NGC 4697 at that position. Figug shows a comparison of our new kinematic data
for NGC 4697 with the isotropic rotator mock data, along the galaxy’s major axis

We do not construct mock PNe data for inclusion in the entropy tests, boeegto com-
pute the photometric observables to construct a complete observationsétlatée expand the
luminosity distribution of equatior3(29 in a spherical harmonics series.(Section3.3.2 on a
radial grid with 40 shells at radii,. The radii are quasi-logarithmically spaced with, = 1.0”
andry., = 700”. We use the luminosity on radial shells = \/EAOM and the higher or-
der coefficientsdag i, A2y - -+, Assr and Agp i, to constrain the luminosity distribution of
the particle model. Then # 0 terms are set to zero to force the models to remain nearly
axisymmetric, i.e., within the limits set by thé;,,, errors. We assume Poisson errors for the
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Figure 3.9: Comparison af, o, hg andhy of NGC 4697 and an isotropic rotator model with
approximately the same projected surface brightness as the galaxy. Tdheifitles show our
new kinematic data for NGC 4697 from SectiBr2.3 the star symbols show the isotropic
rotator mock data, and the dashed red lines show the underlying smooth kireatahtics, all
along the major axis.

Ly: o(Lx) = \/LrL/N where N is the total number of particles used in the particle model
and L is the total luminosity of the system. To estimate the errors in the higher order luminos
ity moments, we use Monte-Carlo experiments in which we generate particleateaiz of a
spherical approximation of the density field of the target system with10° particles, which

is the same number as in t§¢M2M models for NGC 4697.

We then construct self-consistent particle models for the isotropic rotatgettm a three
step process, using the mock data as constraints. (i) Density fit: we starthwitpherical
initial conditions described in Sectidh3.7and evolve them using NMAGIC to generate a self-
consistent particle realization with the desired luminosity distributiopdrticle model), fitting
only the luminosity constraints. (ii) Kinematic fit: because the target galaxy feis amount
of rotation, it is worth starting the kinematic fit from a rotating model. Hence,\iolig Section
3.3.7, we switch a fraction of retrograde particles in thearticle model to prograde orbits,
usingpy = 0.3 and Ly ~ L.i.(0.03R.). This rotating system we then use as a starting point
to construct a series of self-consistent dynamical isotropic rotator mdgefgting the target
photometryandkinematics for different values gf. For each model, we evolve the particle
system for 10> NMAGIC correction steps while fitting the complete set of constraints. During
this correction phase, the potential generated by the particles is updteeadh correction
step. (iii) Free evolution: to ensure that any correlations which might haea lgenerated
during the correction phase are phase-mixed away, we now keep th&iglot®nstant and
evolve the system freely for anoth&00 steps, without further correction steps. For reference,
5000 of these steps correspond#020 circular rotation periods (“dynamical times”)&t. in
spherical approximation.

The results are presented in Figl#dQ The lower panel shows the quality of the fit as
a function ofy, both in terms of normalizeg? values and in terms of the merit functian
from equation 8.12. The upper panel shows thens A relative difference between the in-
ternal velocity moments of the isotropic rotator input model and those of thielpamodels
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Figure 3.10: Entropy tests. Top: Deviatioms A(x) of the particle models from the isotropic
rotator internal velocity moments. The point for the rightmost valug & at a large value of

A outside the diagram. Bottony? deviation per data point of the particle model fit to the pho-
tometric and kinematic target observables (open circles) and to the kinemsgicvables alone
(filled squares), as a function of entropy parameterhe triangles show the same dependence
for the merit function ¢ F), cf. equation 8.12. The starred symbol indicates the value.of
chosen for the subsequent modelling.

reconstructed from the mock kinematics. For the particle models intrinsic velooityents are
computed by binning the particles in spherical polar coordinates, usingsipgarithmic grid
with 20 radial shells bounded by,;, = 0.01” andr,.,x = 200", 12 bins in azimuthal anglé,

and 21 bins equally spaceddim 6. Therms A shown in Figure3.10is obtained by averaging
over all grid points in the radial region constrained by the d&a<{ 1.5R.). The minimum

in rms A determines the value @f for which the model best recovers the internal moments of
the input model. This occurs at~ 102, and the value ofms A at the minimum is~ 1.4%

. For larger (smaller), therms A is larger because of oversmoothing (excess fluctuations) in
the model.

x%/N values are given in the lower panel of FRj10for all (photometric and kinematic)
data points, and for the kinematic data points alone. Generallyip& for the photometric
points is significantly better than for the kinematic points, because (Mthecome from aver-
ages over many particles, thus have little noise, and we have not addssi@avariances, and
(ii) all particles contribute to thel;,, force-of-change at all timesteps, so thg, are weighted
strongly during the evolution. The kinematié per data point in the lower panel is of ordes
for a large range of. and then increases starting frgm> 300 to 1 at iz ~ 5 x 10%, whereas
—F already increases aroupd> 100.

Some results for the isotropic rotator dynamical models obtainedwith10?, = 103,

u =5 x 10% are presented in Figuréslland3.12 Figure3.11shows a comparison of the
target kinematics with the kinematics of the self-consistent particle models alenggjor axis
slit. Note the excellent fit of the central velocity gradient and velocity dspardip, for allx
values. However, the models with highebegin to fail matching the target data at the largest
radii. This is because the number of data points decreases with radiugastie number of
particles and hence entropy constraints is roughly proportional to luminbgity.e. changes
much more slowly with radius. The result is that the constraints from the detertzerelatively
weaker at larger radii. The entropy term tries to enforce a dynamicaltsteurelated to the
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Figure 3.11: Particle model fits to the isotropic rotator mock kinematic data alorgdbel’s

major axis. The points with error bars show the target data and the linessegprthe model
kinematics. The model data points are averages over the same slit cells ag¢heldda (see

Fig. 3.5, and are connected by straight line segments. The magdelare determined via

egs. 8.9 and B.10 andhgs, hy are the fitted values based on the observed scale parameters
V,, ando,. The full, dotted and dashed lines correspond to the models obtaineg witt0?,

u = 103, andp = 5 x 102, respectively. The red dashed line shows the= 100 model
kinematics20 dynamical times later, reflected with respect to the origin, and obtained from
direct fitting of the model line profiles. This proves that this model is acclyratésymmetric

and stationary; see text for details.
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initial particle model, in which all particles have equal weights. In the pressse this works
to cause a bias against both fast rotation and anisotropy. This firsniescapparent where the
relative statistical power of the data is weakest, i.e., at large radii.

Because our goal in this chapter is to determine the range of potentials in whican find
valid dynamical models for NGC 4697, we need to ensure that the answés tutstion is not
biased by overly strong entropy smoothing in the galaxy’s outer regidmss ih the modelling
in Section3.5we will conservatively choose = 100 for the smoothing parameter (indicated by
the starred symbol in Fig®.10. Similar caution is common practice in determining black hole
masses in galaxies (e.@sebhardt et al.2003. The resulting dynamical models will then be
somewhat less smooth than could be achieved, but this price is rather nimtestery, = 102
and its minimum value gt = 103, the rmsA in Fig. 3.10decreases frony 1.7% to ~ 1.4%,
i.e., by~ 15%. Certainly it would not be appropriate to rule out potentials in which the solsition
differ by this degree in smoothness.

Using 1 = 100 in the modelling leads to a slight overfitting of the slit kinematic data, es-
pecially for the higher order kinematic moments which themselves take only valueder
percents. It is worth pointing out that, contrary to first appearanoes Fig.3.11, this implies
neither that these models are not axisymmetric, not that they are out of eiguiliblhe model
kinematics shown in Fig3.11 are obtained afte20 dynamical times of free evolution in the
axisymmetric potential, so are thoroughly phase-mixed. The model data podnts are aver-
ages over the same slit cells as the target data (se@.B)gand are connected by straight line
segments. The plotted o are determined via eqs3.9) and @.10 andhg, h4 are the fitted
values based on the observed scale parame}esado,. The red dashed line in Fig.11also
corresponds to the = 100 model, but has been determined as follows: (i) from the particle dis-
tribution after a total oftl0 dynamical times of free evolution; (ii) from a mirror-symmetric set of
slit cells, with respect to the major-axis slit shown in Bdb, (iii) using the(v, o, hs, h4) param-
eters obtained by direct fits to the model line profiles, and (iv) finally réfigche kinematics
so obtained anti-symmetrically with respect to the origin. The excellent agradméveen
this curve and the original major axis kinematics of this model in Bifjl shows that (i) the
1 = 100 model is a true equilibrium, (ii) it is accurately axisymmetric, and (iii) the left-right
differences in the kinematics in Fig.11are due to slightly different slit cell averages over the
model on both sides. That these averages can be slightly different ispossible by low-level
(axi-symmetric) structure in the model consistent with the slight under-smodthitigis value
of u. What happens is that the algorithm adds a few near-circular orbits irelineant radial
ranges. When added to the corresponding model LOSVDs and adevagethe asymmmet-
ric slit cells these orbits change the kinematic momentsn > 3 at the~ 0.01 level so as
to improve the agreement with the observed major axish,. In the other slits the models
interpolate more smoothly between points when needed because fluctuatiompanticle dis-
tribution to follow local kinematic features are less easily arranged; seettesponding figure
for NGC 4697 in Sectio3.5.

A comparison of the internal velocity moments of the input model and the partiatielmo
in the equatorial plane is presented in Fig8ré2 The figure showsr, o4 ando, followed
by vs. The last panel displays the anisotropy paramgjer 1 — 03/03, which is zero for the
input isotropic rotator model. Within the radial extent of the target data, thenaitenoments of
the input model are well reproduced; outside this region, where the risopebdrly constrained
by the input data, the particle model increasingly deviates from the targietedi) if we add PN
velocity data in this test, the corresponding particle model agrees with theahteoments of
the input model out to larger radii.

3.4.2 Mass-to-light ratio

We will now use such isotropic rotator models to explore how accurately evalde to recover
the input mass-to-light ratio, given the spatial coverage of the data.dfwth will test our new



3.5. DYNAMICAL MODELS OF NGC 4697 67

o — ! — 3
E | El
> oo £
og\ | e ! | | \\:\\\\:‘ E
P ! iE
WSO;W?
b&'\OO? :Ooo:oooOOoOi
50 3~
0 E e ‘ T EIRN
E e i [ RN — €
150 | I I 4 x
£ | 1
e ?Wi
50 F roo 4
150 E —t————++1 S : :} .
£ o S SHeXe} 1
<100 F G
> 50 B L :
0 E, | | | “:HH:\ E
o —— -+ I —— ]
0.5 F I | E
E | El
qu O;Wé
; | | ]
70'5;‘ L ‘ e E
10 100
r (arcsec)

Figure 3.12: Comparison of the intrinsic velocity moments in the equatorial plathe ax-
isymmetric isotropic rotator particle model and target model. The points reprdsetarget
system and the lines correspond to the final particle model fer100, averaged over azimuth.
The dashed vertical lines show the maximum radial extent of the minor axiri{fand major
axis target kinematic data (right line). At larger radii the particle model islp@onstrained by
the input target data.

procedure, described in Secti8r8.6 for estimating the mass-to-light ratio efficiently. As input
models we take both the self-consistent isotropic rotator model descrilosd abnd a model
constructed in the same way but including a dark matter halo. The halo potemtiahe form

of equation 8.1), with o = 190 arcsec ¢.7kpc), vo = 220 km s~ ! andg, = 1.0. The
mass-to-light ratio of the stars in both input models is fixe@'te- 5.

The results for a “classical” approach, in which we fit a dynamical particdelel to the
data for different values df, are presented in Figu13 which shows the quality of the fit as
function of Y for the self-consistent case. The input valuélois recovered well. The results
with the new procedure presented in Sect®oB.6are summarized in Figurg 14 The figure
shows the evolution of the mass-to-light ratio as a function of time during NMNCA@bdel fits.
Models for both the self-consistent input galaxy and for the target modkeldimg a dark halo
potential are shown, with both low and high initial choicesYof The tests show that for the
self-consistent case the input mass-to-light ratio is recovered very Wedl.uncertainties are
slightly larger when a dark matter halo is included, but the maximum fractioralisriess than
three percent. We conclude that the new scheme works very well anti teaecovered within
a few percent (for the amount and quality of data used in the presek).wdhe advantage
of the new method is its efficiency, only one run is needed to estiffidtestead of ordei0,
but at the cost of not knowing the shape)dfas a function off’ near the minimum, i.e., the
confidence interval.

3.5 Dynamical models of NGC 4697

After these tests we are now ready to use NMAGIC for constructing axiathngetric dynam-
ical models of NGC 4697. We investigate self-consistent models as well aslsriadluding
dark matter halos, and fit the photometry, slit kinematics and PNe data. Our #im ghapter
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Figure 3.13: Quality of the particle model fit to the self-consistent isotropédaoinput model,
as a function of assumed mass-to-light rafioy? values per data point are given for the particle
model fit to the photometric and kinematic target observables (open cirolé$) ¢he kinematic
observables alone (filled squares). The triangles correspond to tiseiredanerit functiort'.
The input mass-to-light ratio i¥ = 5. All models are built using: = 100.
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Figure 3.14: Direct mass-to-light ratio fits with NMAGIC. The plot shows theleion of T
with time during NMAGIC runs with different initial(’, for the self-consistent isotropic rotator
target (solid lines), and the isotropic rotator in a potential including a dddk(datted lines).
The input mass-to-light ratid@ = 5 in all cases. Time is given in terms of elapsed time steps
where10? steps correspond te 40 circular rotation periods atR..
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Figure 3.15: Circular velocity curves of the potentials used in the modelling dimguhe self-
consistent model A (dashed line), and a sequence of dark matter haliddi(es). The lines at
r/R. = 7 run from model A (bottom) to K (top), with models F and G represented by time sa
curve;cf. Table3.1

is not to attempt to constrain detailed halo mass profiles, but only to ascertathevta dark
matter component is allowed, or required, by the kinematic data. Thus weigatesa simple
sequence of potentials A to K which include the contribution from the stellar oot and
a halo potential as in equatioB.(), with parameters given in TabR1 The parameters are
chosen to result in a sequence of circular speed curves ranginddiorg according to the dis-
tribution of stars to nearly flat over the whole range of radii. This seqrienshown in Figure
3.15 all these circular velocity curves are computed in the galaxy’s equapdaia¢ and include
the stellar component with the respective best-fitting mass-to-light ratio @s giviable3.1

To construct the models, we proceed as in Secidn First, we compute the photometric
observables. We expand the deprojected luminosity distribution of NGC 6@ &pherical
harmonics series on a grid & shells in radius, quasi-logarithmically spaced wigh, = 1.0”
andr,,.x = 700”. As observables we use the luminosity on radial shiglland the higher order
coefficientsAyg 1, Aok, - -+, Ags . and Agg i, at radiir,. Them # 0 terms are set to zero to
force the models to remain nearly axisymmetric, i.e., within the limits set by the spedified
errors. Because the photometry is not seeing-deconvolved, for themiest two pointsig <
37) we only fit the Ao term. Errors for the luminosity term4;,,, are estimated by Monte Carlo
simulations as in Sectiadh4.1 As kinematic constraints we use the luminosity weighted Gauss-
Hermite moments from the slit data, and the PNe kinematics, either representegdniey
line-of-sight velocity and velocity dispersion points, or as discrete velooggsurements; see
Sections3.2.3and3.3.5

Again we fit particle models in a three step process. (i) First, we start withptierisal par-
ticle model described in Sectidh3.7and evolve it using NMAGIC to generate a self-consistent
particle realization with the luminosity distribution given by the deprojection of tigmetry.
(i) Because NGC 4697 shows significant rotation, we then switch retdegrarticles similarly
as in Sectior8.4.1, usingpy = 0.3 and Ly ~ Lc;(0.03R.). The resulting rotating parti-
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HALO  ro/Re wo/kms™ gy X*/N  XZ/Nam x%/Na Xpy/Nen —F 7T

A 0 0 1.0 0.453 0.0323 0.900 0.968 370.2  5.78
B 5.76 80 1.0 0.415 0.0254 0.828 0.884 3439 5.74
C 5.76 120 1.0 0.439 0.0343 0.877 0.784 358.6  5.71
D 4.32 160 1.0 0.404 0.0288 0.816 0.610 333.7 5.58
E 4.32 190 1.0 0.404 0.0244 0.826 0.520 332.8 5.49
F 4.32 210 1.0 0.386 0.0229 0.791 0.476 320.0 5.45
G 4.32 210 0.8 0.382 0.0203 0.785 0.439 3154  5.46
H 2.88 210 0.8 0.376 0.0232 0.773 0.397 310.2  5.28
J 4.32 250 0.8 0.383 0.0242 0.786 0.377 313.7 5.34
K 2.88 250 0.8 0.377 0.0212 0.771 0.506 309.6 5.10

Table 3.1: Table of model parameters and fit results. Columns (1)-(d)}lg&vmodel code and
the parametersy, vy andg, used in equation3(1) for the respective dark halo potential in this
model. The next four columns list the values per data point, for all observables [column (5)],
and for the density constraints, slit kinematic observables, and PN alxbes\ydata set PND1)
separately [columns (6)-(8)]. Column (9) gives the numerical value ®fntlerit function in
equation3.12, and column (10) the final (r-band) mass-to-light ratio. The respentiveber of
constraints ar&V = 1316, Ny, = 680, Ny = 604, Npy = 32.

HALO 79/R. wo/km s™1 6 x%/N Xilm/Nalm X?l/st —L —F T
A 0 0 1.0 0.415 0.0331 0.845 20429 2382.5 5.81
B 5.76 80 1.0 0.405 0.0282 0.830 2038.2 2371.5 5.76
C 5.76 120 1.0 0.419 0.0331 0.853  2033.7 2374.2 5.72
D 4.32 160 1.0 0.406 0.0314 0.828  2028.3 2357.9 5.60
E 4.32 190 1.0 0.391 0.0271 0.801 2026.3 2344.9 5.54
F 4.32 210 1.0 0.402 0.0304 0.820  2025.6 2350.1 5.49
G 4.32 210 0.8 0.396 0.0232 0.815 2024.8 2343.9 5.48
H 2.88 210 0.8 0.373 0.0245 0.766  2026.3 2329.2 5.31
J 4.32 250 0.8 0.374 0.0203 0.773  2025.6 2329.0 5.37
K 2.88 250 0.8 0.369 0.0198 0.763  2030.8 2329.9 5.14

Table 3.2: Table of model parameters and fit results, similar to TafiJebut with all models
computed using the likelihood scheme for the PNe as discrete kinematic tr&mgusnns (8)
and (9) now give the likelihood of the PN data geind the merit function including [equation
3.17]. The other columns are equivalent to those in Table
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cle model (hereafter, model RIC) is used as a starting point to constagies of dynamical
models by fitting the photometry and kinematics in different halo potentials, asviolléor
every dark matter halo from Tab&1, we first relax RIC for5000 time steps in the total grav-
itational potential, assuming a mass-to-light ratio of 5.74. For refera@®80 time steps in
the self-consistent potential correspondktel0 circular rotation periods aR. in spherical ap-
proximation. After this relaxation phase, we evolve the particle system-faf® NMAGIC
correction steps while fitting the complete set of constraints. During thisatmmnephase, the
potential generated by the particles is updated after each correctiorustiye lolark matter po-
tential (if present) is constant in time. (iii) Subsequently, we keep the glaiiehpal constant
and evolve the system freely for anotts€00 steps, without further correction steps. Models A,
D, G and K were in addition evolved for a furthB»000 steps with all potential terms active, to
confirm that the modest radial anisotropy required in these models do&saddo dynamical
instabilities.

To make sure that the results are not biased by the way we incorporat®&léhdd®a, we
have constructed three models in most halo potentials. Each time the PNe dajarasented
differently, using the binnings PND1, PND2, or the likelihood method.

The quality of the fit for different halo models can be characterized bguhetity F' defined
in equation 8.12 or (3.17) and is given in Table8.1and3.2 In addition, the value of? per
data point is also shown, globally and for each data set separatelg, e atellar mass-to-light
ratios. For the same reasons as for the isotropic rotator test models, 8igy denstraints are
very accurately fit. The slit kinematics are typically fit within ab@uo per point, slightly
better than required. This is due to the relatively low value used for themngimoothing,
needed not to bias the range of allowed potentials by the imposed smoothi@dNY? and
likelihood values show that the PN data are consistent with all models.

Figures3.16 3.17, 3.18present results from some of these models, comparing the stars-only

model A and the three halo models D, G, and K to the data. Figdi@shows the comparison

of models A, D, G with the photometric constraints. The model lines match the @atget
points perfectly, in accordance with the very smd)),, /Nam values in Table.1 Figure3.17
compares the projected absorption line kinematics of the three models with osunae&nts

and the BDI data. The fits are generally excellent. Along the major and miesrane can see
how the models have found compromises to deal with asymmetries of the datéhasides of

the galaxy, and slight discrepancies between our and the BDI data, etlge ingion around
+10” along the major axis. As for the isotropic rotator, the major axis higher orderents in

Fig. 3.17are even somewhat overfitted; see the discussion in Se&doh

Figure3.18compares the final A, D, G, and K models with the PNe kinematic constraints
along the major axis (left) and minor axis (right); on each axis we show medacityg(top) and
velocity dispersion (bottom). The model curves in Fgl8and they? per data point values in
Table3.1are computed for PN dataset PND1. There was no difference betwesnvalues and
those obtained with PN dataset PND2 in all cases where we modelled bottwd hdditional
lines in the panels of Fid.18show the mean velocities and velocity dispersions for the variants
of models A, K obtained with the likelihood scheme for the PNe (see Se8t®h§, computed
by binning the particles in these models a posteriori in the same bins as fogtdal31. While
there is little difference for model K, the likelihood variant of model A fits the@tved PN data
points actually better than the original model A based on the PND1 data.

Overall, this figure illustrates that with increasing halo mass the fit to the PNenkiie
data improves slightly. Models G and K bracket the best-fitting models to the bohatadn
Fig. 3.18 However, also model A without dark matter still hag®,/Npn just below one,
despite being systematically a little low in the minor axis dispersion plot. When we fbec
self-consistent model to improve the PN data fit at the expense of the slih&tieedata fit,
the model starts to develop specific anisotropy features at the radii ofitbe PN data. This
suggests that with PN data extending to somewhat larger radii)0 arcsec R ~ 6R.), the
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Figure 3.16: Comparison of the photometric constraints with the final modekfAc@nsistent,
dashed), D (dotted), and G (full line). The points correspond to thettamgut data. From top
to bottom: luminosity on radial shells profile, = 4w Ag, and normalizeddsy and A4g
profiles.

model without dark halo might start to fail. However, given the present&d the differences
between our models are not yet large enough to rule out constant miigisti@tio models for
NGC 4697 (see also the likelihood values in Tabld.

The conclusion that both models with and without dark halos are consisignthe data
currently available for NGC 4697 is also confirmed by considering the modeldfiall the
data in Figures3.16:3.18 Models with massive dark halos overall fit slightly better, having
slightly lower y? values in Table8.1, but these variations are all withj? < 1. Certainly these
differences are not sufficient to rule out any of the models, giventhtspossibility of residual
systematic effects.

Finally, Figure3.19shows the internal kinematics of the particle models A, D, G, and K.
The upper panels giver, o4 ando, followed byv,. The last panel displays the anisotropy
parametepy = 1—o7 /o2, which is zero for an isotropic rotator model. All quantities are given
as averages over the models’ equatorial plane. The more massive halts leceme more
radially anisotropic in the outer parts in termsaf vs. o4, but 35 does not increase beyond
model D becauser ando increase in parallel while, remains constant. Thus the additional
kinetic energy that stars at large radii must have in these models, is hiddbe plane of
the sky. Conversely, at small radii the velocity dispersions in models Gekslaghtly lower,
compensating for the larger radial velocities of halo stars along the lisggbf-to the center.
These models havé ~ 0.3 at the center, which increases with radius and reaghes0.5 at
2> 2R..

3.6 Summary and Conclusions

In this chapter, we have presented new surface brightness meastg@meéiong slit spectro-
scopic data for the E4 galaxy NGC 4697, and combined these data with existionglit kine-
matics and discrete PNe position and velocity measurements to construct dghamdels for
this galaxy. The combined data set runs from the center of the galaxyub4bceffective radii.
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Figure 3.17: Comparison of models A, D, and G to the absorption line kinematcattang

the major axis (top left), minor axis (top right), the slits parallel to the major axigdioleft),

and the slits parallel to the minor axis (bottom right). Full and starred data biat our new
data and the BDI data, respectively. The model data points are aversgab@same slit cells

as the target data (see F§)5), and are connected by straight line segments. Linestyles for the
models are the same as in F&j16
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Figure 3.18: Comparison of the PNe velocity and velocity dispersion datBIPpbints) with
models A, D, G, and K. Top leftv along the positive major axis. Top right: The same for the
minor axis. Bottom left:c along the positive major axis. Bottom right: The same but for the
minor axis. Dashed, dotted, full, and upper dashed lines show models@, &nd K; the two
dash-dotted lines show the variants of models A and K obtained with the likeléwume for
the PNe.
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Figure 3.19: Internal velocity moments in the equatorial plane for models &, X (dashed,
dotted, full, and dash-triple dotted lines, respectively). The verticdiethsines indicate the
radial extent of the minor axis slit data, major axis slit data, and PN data,l&fbno right.
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For the first time, we have modelled such a dataset with the new and flexibieade-
to-measure>M2M) particle code NMAGIC. We have extended NMAGIC to include seeing
effects and have implemented an efficient method to estimate the mass-to-light rafests
of this scheme using isotropic rotator input models have shown that the metbodersY
within a few percent both for self-consistent and dark matter dominatedttgegaxies. In
addition, we have implemented a likelihood scheme which allows us to treat thesRi\szeete
velocity measurements, so that no binning in velocities is needed. The modelisgnped
in this chapter shows that th¢ M2M/NMAGIC particle method is now competitive with the
familiar Schwarzschild method. In fact, it has already gone further in tlegthvitational
potential of the stars has been allowed to vary in the modelling, the mass-todighihas been
adapted on the fly, the stability of the models has been checked, atellorenzi et al(2007),
NMAGIC has been used to construct triaxial and rotating triaxial models.

Even though NMAGIC does not require any symmetry assumptions for thelfimay we
have in this chapter forced the method to generate axisymmetric particle madsis @4697.
Both self-consistent models without dark matter, and models following a sequ circular
speed curves with increasing dark halo contributions have been intestigane PN data have
been used both binned on two different spatial grids, as well as with thékedihood scheme,
to make sure that the results are not biased by the way the PNe data apoiated.

Our main astronomical result is that models both with and without dark matteoasestent
with all the data for NGC 4697. These models fit all kinematic data w?tﬂ\f < 1, both in
potentials with only luminous matter and in potentials including sufficiently massies ha
generate nearly flat circular rotation curves. The massive dark halelstahd to fit the data
slightly better in the sense of lowgF /N, for both the slit kinematics and the PN data, but these
variations are small and not yet statistically significant. To exclude modelsutittzok matter
would require PN velocities at even larger radii than currently availahletman estimated
~ 6R, from the center.

Our models differ from earlier studies performedMgndez et al(2001) in the sense that
we generate axisymmetric models instead of spherical ones and that ous mw@déexible with
regard to anisotropy. The best-fitting models are slightly radially anisotrafitt5 ~ 0.3 at the
center, increasing t@ ~ 0.5 at > 2R.. This is consistent with the value given Bekel et al.
(2005 obtained from merger simulations carried out within feDM cosmology framework.
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DEARTH OF DARK MATTER OR MASSIVE DARK
HALO? MASS-SHAPE-ANISOTROPY
DEGENERACIES REVEALED BYNMAGIC
DYNAMICAL MODELS OF THE ELLIPTICAL
GALAXY NGC 3379

Flavio De Lorenzi, Ortwin Gerhard, L. Coccato, M. Arnaboldi, M. Capal, N.G Douglas,
K.C. Freeman, K. Kuijken, M.R. Merrifield, N.R. Napolitano, E. NoorderméeJ.
Romanowsky, V.P. Debattista

to be submitted t&/INRAS 2007

Recentresults from the Planetary Nebula Spectrograph (PN.S) swaveyevealed a rapidly
falling velocity dispersion profile in the nearby elliptical galaxy NGC 337%tiog doubts on
whether this intermediate-luminosity galaxy has the kind of dark matter halotediec.CDM
cosmology. We present a detailed dynamical study of this galaxy, combirongd based long
slit spectroscopy, integral-field data from the SAURON instrument, and Batsreaching to
more than seven effective radii.

We construct dynamical models with the flexibé-made-to-measure particle method in-
plemented in the NMAGIC code. We fit spherical and axisymmetric models to thtemletric
and combined kinematic data, in a sequence of gravitational potentials wihmdarcvelocity
curves at large radii vary between a near-Keplerian decline and #nly flat shapes generated
by massive halos.

Assuming spherical symmetry we find that the data are consistent both witisngapic
systems dominated by the stellar mass, and with models in moderately massive ltalos w
strongly radially anisotropic outer parts (~ 0.8). Formal likelihood limits would exclude
(at 10) the model with stars only, as well as halo models with.(7R.) > 250kms™!. A
sequence of more realistic axisymmetric models of different inclinations cmhflie spherical
results. All valid models fitting all the data are dynamically stable over Gyrs,dimuitthe most
anisotropic ones.

Overall the kinematic data for NGC 3379 out@®,. do not give strong constraints on the
mass distribution in this galaxy. NGC 3379 may well have a dark matter halo temtsigith
the currentACDM paradigm.

4.1 Introduction

There is strong evidence that most galaxies are surrounded by mdagivaatter (DM) halos.
This is most evident in spiral galaxies, where the rotation curves of exteodld gas disks

77
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remain flat out to large radii. In elliptical galaxies the evidence for darkshaés built up more
slowly, and their halo properties are not so well known, because okeofaghiquitous tracer
similar to the HI rotation curves in spirals. Only in a few cases is it possible toureazasses
from extended HI ring velocitiee(g. Franx et al. 199400sterloo et al. 2002

However, at least for giant elliptical galaxies stellar-dynamical studas fntegrated light
spectra €.g. Kronawitter et al. 2000Gerhard et al. 20Q1Cappellari et al. 2006Thomas et al.
2007 analyses of the X-ray emitting hot gas atmosphezas Awaki et al. 1994 Matsushita et al.
1998 Loewenstein and White 199®%umphrey et al. 2006Fukazawa et al. 20Q6and gravi-
tational lensing datag(g. Wilson et al. 2001 Treu and Koopmans 2004&Rusin and Kochanek
2005 Koopmans et al. 20065avazzi et al. 2007are now giving a fairly consistent picture. The
general result from these studies is that these ellipticals are surrobyd#alk matter halos,
the inferred mass profiles (luminous plus dark) are nearly isothermal, i.ecirtiar velocity
curves approximately flat, and the dark matter contributed) — 50% of the mass withinR,..
The central dark matter densities in ellipticals are higher than in spirals,paddy reflecting
their earlier formation epoch&grhard et al. 20QIThomas 2006

In light of this, the finding oRomanowsky et al2003; Douglas et al(2007), that several
intermediate luminosity ellipticals (NGC 3379, NGC 4494, NGC 821) apparentlg baly
diffuse dark matter halos if any, is quite surprising. Could the dark mattgrepties of these
ellipticals be different from those of giant ellipticals.§. Napolitano et al. 2005, perhaps
related to the fact that these lower-luminosity galaxies are less often fogmaups or clusters?
The result ofRomanowsky et al(2003 is based on the outer velocity dispersion profiles of
the three galaxies, determined from individual planetary nebulae (P&legitres measured
with the special PN.S instrumerD¢uglas et a].2002. Two of the three galaxies are nearly
round on the sky, and therefore the dynamical analysis was carrieglithuspherical models.
A fourth galaxy with a fairly rapidly declining outer velocity dispersion profdeNGC 4697
(Méndez et a).2007); however,de Lorenzi et al(2008 have recently shown that models both
with and without massive dark halos can be constructed that fit all the datai$ galaxy
essentially perfectly. Unfortunately, the diffuse gas envelopes of thesenediate luminosity
ellipticals have very low densities, so an independent confirmation with Xiaweyis difficult.

The results oRomanowsky et al2003 were criticized byDekel et al.(2005. These au-
thors pointed out that the well known mass-anisotropy degeneracy inuthe af velocity dis-
persion profiles does not allow one to unambiguously determine the mads,jthafi the triaxial
nature of elliptical galaxies can cause low line-of-sight dispersionsraé seewing angles, or
that the PNe could trace young stars generated during the merger forimstiesd of the bulk
of the old stars as usually assum&ahuglas et al(2007) argued thaRomanowsky et a(2003
properly took into account orbital anisotropies in the data fitting proceasthik effect of tri-
axiality is very unlikely to be present in all three galaxies, that the PN numdéesityy and
dispersion profiles match the corresponding integrated light profilesmmably well, and that
this as well as the universality of the bright end of the PN luminosity functi¢esraut that
PNe only trace a young stellar populatioBouglas et al(2007) concluded that their results
continue to conflict with the presence of dark matter halos as predictedrimotmgical merger
simulations.

The issue is important enough to merit a further careful analysis. In tperee construct
dynamical models of NGC 3379 with the very flexible NMAGIC particle code, intakise of
a variety of kinematic data, including SAURON integral field data, slit kinemadied,the PN
dispersion profile.

The NMAGIC method is flexible not only with regard to anisotropy, but alsollimaéng
axisymmetric or triaxial shapes with radially varying axis ratios. This is imposgimte the in-
trinsic shape of NGC 3379 is still in doubTapaccioli et al(1991); Statler and Smecker-Hane
(1999 have suggested that NGC 3379 is a triaxial SO galaxy seen almostriaG¢ater(2001)
considered triaxial dynamical models and constrained the shape of thiy ¢alze axisymmet-
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ric and oblate in the inner parts and triaxial in the outer peBtsapiro et al(2006 argue that
the most likely model is one of a moderately inclined oblate system.

The outline of the paper is as follows. In Sectibr2 we describe briefly how the various
observational data for NGC 3379 are used in the modelling. In Se¢tBwme give a few details
of the y2M2M NMAGIC method, and show how it performs on a mock galaxy data set similar
to that for NGC 3379. In Sectiofh.4 we then construct various dynamical models for the real
galaxy data, both spherical and flattened, in a sequence of potentials arigasimg circular
velocity at large radii. As summarized in the final Sectdiohof the paper, our main conclusion
is that the combined kinematic data for NGC3379 is consistent with a variety aélswaith or
without massive dark matter halos.

4.2 Observational Data

We begin by describing the observational data used in this study, whicldaaé&en from the
literature. We also describe here the procedure employed for obtainitiyéeedimensional lu-
minosity density from the surface brightness data. In the following we adistance.8 Mpc
to NGC 3379 Jensen et 312003, effective radiusk. = 47" (2.23 kpc), and an absolute B
magnitudeM p = —19.8 (Douglas et al.2007).

4.2.1 Photometric Data

The photometric data used in the present work consists of the wide-fietth8{thotometry of
Capaccioli et al(1990, combined with the HST V-band observationgG¥bhardt et al(2000

to increase the spatial resolution within the innéf. The photometry has been matched up
by assuming a constant color offsBt— V' = 1.03. The last eight surface brightness (SB)
points from Capaccioli et al(1990, outside R ~ 500", show fluctuations of an amplitude
which we judged unphysical; these points we have replaced wérsic(1968 profile fitted

to the galaxy further in. The same Sersic fit is used to extrapolate the SB:ofside the
last measured point @& = 676”. Similarly, we have replaced the measured ellipticities for
R > 81", where the observational uncertainties become large,y).14. Figure4.1presents
the combined photometric data, showing surface brightness and ellipticifyhe isophotal
shape parametets, andag are not available for these data and are thus set to zero. For the
spherical models, we have used the SB profile rescaled to a meanRagizsv/ab = av/T — e.

For the axisymmetric models, we have used a constant PA%fthe isophotal PA measured
by Capaccioli et al(1990 are within+3° of this value.

4.2.2 Deprojection

In our implementation of NMAGIC a particle model can be fitted to the surfacehtmggs
and/or the deprojected luminosity densitf, Section4.3. Below we use both options, so first
need to construct models for the three-dimensional luminosity derjsity,

In the spherical case the surface brightness can be deprojecteelynkpr an axisymmet-
ric system the deprojection is unique only for edge-on galaxies; forragsteclined at an angle
1 with respect to the line-of-sight, the SB map contains information about the lgitjrtznsity
only outside a “cone of ignorance” in Fourier space, of opening &tjle- i, wheni = 90° de-
notes edge-orRybicki, 1987. Thus, the deprojection of a moderately inclined galaxy results in
undetermined konus densitigSd€rhard and Binney1996 Romanowsky and Kochangk997).

We deproject the surface brightness of NGC 3379, without correaing$F effects, using
the program oMagorrian(1999. The program finds a smooth axisymmetric density distribu-
tion consistent with the SB distribution for the specified inclination angle, by impgdbkat the
solution maximizes a penalized likelihood. This ensures that the shape of therBbsity
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Figure 4.1: Combined photometry of NGC 3379 fro@apacciolietal. (1990 and
Gebhardt et al(2000 (black points). The two panels show the surface brightness (SB)erofi
and the ellipticitye as a function of major axis distance. Beydstd” the SB points are from a
Sersic model fitted to the interior data, and outsidé, the ellipticity has been set to= 0.14.

In the ellipticity panel the error bar with size 0.02 illustrates the typical errorsdrottier el-
lipticity measurements. The isophotal shape parametesndag are not measured; they are
set to zero. The lines show three-dimensional luminosity models determinadtiese data
and reprojected onto the sky, for assumed inclinations-ef0° (edge-on, full lines); = 50°
(dashed lines), and= 40° (dash-dotted lines).
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Figure 4.2: 1so-density contours of the deprojected B-band luminositytaison of NGC 3379
for different inclinations. Solid, dashed, and dash-dotted contotestethe; = 90° edge-on,
1 = 50°, andi = 40° deprojected models.

density is smooth, but far £ 90°, there would exist other smooth, slightly different, density
distributions that also fit the SB data. We have used the program to compute&ityidensi-
ties for NGC 3379 for the inclinations= 90°, i = 50° andi = 40°. Figure4.1 compares the
observed photometry with the three deprojections reprojected onto thé-glyre 4.2 shows
the corresponding density isocontours of the deprojected B-band lutyidesributions in the
meridional plane. Varying the inclination frof0° to 40° changes the intrinsic shape of the
galaxy from E1 to E3.

4.2.3 Kinematic Data
Stellar-absorption line data

We have taken long-slit absorption line kinematics from the literature. We atse ftbm
Statler and Smecker-Har(@999 at four different position angles, extending out to radii of

~ 80”. We complement these kinematics with the spectroscopic dataKromawitter et al.
(2000. The major axis slits frortatler and Smecker-HafE999 andKronawitter et al(2000

are misaligned byl0° in PA; however, the data along both major axis slits follow each other
closely. The measurements along the shifted sliKi@mnawitter et al.(2000 reach100” from

the center. From both kinematic data sets we have the line-of-sight velaitgity dispersion,

and higher order Gauss-Hermite momemisandh, (Gerhard 1993 van der Marel and Franx
1993. Figure4.3shows the schematic arrangement of the kinematic slits used in the dynamical
modeling.

In addition to the long-slit kinematics we also use the integral-field spectrgsiapined
with the SAURON instrument. These kinematic data were kindly provide&Mmpiro et al.
(2006 and consist of line-of-sight velocity, velocity dispersion and highdeofGauss-Hermite
moments up tég. The SAURON field-of-view (FoV), shown by the (blue) rectangle in Fégu
4.3, extends from-19.6” to 24.4” along its short boundary and from34.8" to 35.6” along
the long boundary. It consists 6612 small grid cells, which serve as the basis grid to de-
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Figure 4.3: Schematic view of the positions with kinematic data as used to cdrtsieudy-
namical models. The slits frotatler and Smecker-Hari£999 andKronawitter et al(2000
are coded in red and black, respectively. Boxes along the slits shovedianrof the galaxy
for which respective kinematic data points were derived; these bogassad to determine the
luminosity-weighted Gauss-Hermite moments. The blue rectangle indicates tHeCtield-
of-view. The ellipse shown is oriented along PAZ, the average major axis of the photometry,
and has a semi-major axis of lendih and axis ratigy = 0.9.



4.2. OBSERVATIONAL DATA 83

fine the1602 voronoi cells on which the kinematic measurements are given. This results in
a total 0f9612 kinematic SAURON observables, as well B#)2 bin-luminosity observables.
The SAURON data are compared to dynamical models in Sedtiyrand are reproduced in
some of the figures there. Each of the six panels showd@b2 voronoi bins, giving (from

left to right) v, o, hs, h4, hs andhg. A comparison of the SAURON data with the data of
Kronawitter et al.(2000 along their major axis is given in Figuke4. Overall, the two data
sets agree well with each other. The same is true for the comparison of e data with
Statler and Smecker-Hai{&€999, as shown byshapiro et al(2006.

Both the SAURON data and the slit data are slightly asymmetric with respect torttes o
the galaxy. If we denote the original SAURON dataset With, y|vios, 010s, 3, ha, hs, he), and
with I*(w, y|vlos, Olos, 3, ha, hs, h@) = I(—SU, -, | — Vlos, Olos, —P3, ha, —hs, h@) the dataset
obtained from/ by point-symmetrical reflection with respect to the origin, we can construct a
symmetrized datasét= 0.5(I + I*). This symmetrized dataséthas ay? per data point with
respect tal of x2/N = 1.01 when the original errors are used. Any point-symmetric model fit
(spherical, axisymmetric, triaxial) to the original ddtavill therefore have a systematic error
floor of this magnitude. In the models below, we will actually fit the symmetrized AN
data to avoid any systematic effects, but keep the original errors on et of the galaxy
separately (see alsthapiro et a].2006.

In a similar fashion, we have constructed symmetrized slit data sets. To dodlzgaerage
the two points at nearly similar radius on both sides of the slit with respect tetiterc Taking
into account the sign reversalswandhs, we take for the symmetrized data point the weighted
mean of the points on both sides, with weights proportional to the inversessgjuthe measure-
ment errors, and assign a new weighted error for the averaged daintando_ are the errors
on both sides, the weights ane, = 1/0—3, w_ = 1/0%, and the new erras is given by the
maximum of2/0% = 1/0% + 1/02 and half of the deviation between the original data points
on both sides. Again, the symmetrized data hay€ AV = 1.0 systematic deviation from the
original data, and therefore we will fit the symmetrized data below to avoid thaehim®ing
pulled around by points with small error bars but large systematic deviafitvessecond panel
of Figured4.4compares the symmetrized SAURON data with the symmetKzedawitter et al.
(2000 data along the same slit as before. Again, the two data sets agree well ghitbtbar.

PNe data

Planetary nebulae (PNe) are dying low- to intermediate mass stars that emifrtuest light

in a few narrow lines of which th@III]A5007 is the most prominent one. Because there are
hardly other emission sources in elliptical galaxies, they can be detectigycetasily, and once
identified, their line-of-sight velocity can be estimated from the Doppler shiftie emission
line. The PN population in elliptical galaxies is expected to arise from the lyiugigalactic
population of old stars and hence the PNe can be used as kinematic tcadbesdtellar distri-
bution. Their number relative to the luminosity of the galaxy is parametrized hy tlaeameter,
which is a function of colourHui et al, 1995.

Douglas et al(2007 processed observations of NGC 3379 conducted with the Planetary
Nebula Spectrograph (PN.S) instrument and detected 214 spatially anichipeinresolged PN
candidates of which 191 are assigned to NGC 3379. Using the “friericlegsrithm applied
by Merrett et al (2003 they identified a small number of velocity outliers, probably unresolved
background galaxy contaminants, which would be uniformly spread in tgldte algorithm
determined tha? emission objects were more than= 5 standard deviations away from the
centroid of the velocity distribution of theiv = 15 nearest neighbours, and = 5 more
thann = 3 standard deviations (see Fig. 8 oDouglas et al.2007). The 3¢ line itself has
considerable uncertainty at large radii, due to the small number of PNe thene. Thus the
exclusion of the outermost outlier is somewhat uncertain. Because thig dbexhave some
influence on the outermost velocity dispersion point, we will compare the moanlé¢te data
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Figure 4.4. Comparison of the line-of-sight velociy distribution data alongydiaxy’s major

axis (PA = 70°). The black circles correspond to the SAURON data and the open square
symbols in red show thKronawitter et al (2000 data. The upper panel compares the original
datasets, the lower panel is for the symmetrized data. In each panel fpoto twttom are
shown:v, o, hs, h4, hs, andhg, for the latter two there are only SAURON data.
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obtained both with and without this PN.

The radial distribution of the PNe in NGC 3379 was found to be consistentthatistellar
density profile, and their kinematics consistent with absorption-line data ired¢ji@rwhere the
data sets overlap. Because the kinematics of the PNe in NGC 3379 are dahtipatsdom
motions with little azimuthal variation, the velocity dispersion can be computed in eatiali
without losing significant dynamical structure. We will thus use the radrabfithe azimuthally
averaged PN velocity dispersion in the dynamical modelling, but also conipamodels to
the individual velocities in a relative likelihood sense (cf. the tables anddign Sectior#.4).

4.3 NMAGIC modelling

To investigate the amount of dark matter consistent with the kinematic data for 382g,
we construct a range of dynamical models for the stellar component of tlisygaie use
the flexible y2-made-to-measurey¢M2M) particle method as described and implemented in
the NMAGIC code byde Lorenzi et al(2007, 2008. x*M2M is a development of the M2M
algorithm of Syer and Tremain€l996 that is suitable for modelling observational data. The
M2M methods work by gradually adjusting individual particle weights as theahedblves,
until the N-particle system reproduces a set of target constraintg?Nt2M the standardy?
statistics is used in the function to be maximized upon convergence of the wéigigsallows
for a proper treatment of observational errors, and the quality of therfindel can be assessed
directly from the target data.

Compared to the familiar Schwarzschild method the particle approach is rglatisw
and there are as yet only a few galactic dynamics studies in which it hasemeglioyed.
Bissantz et ali2004) made a first practical application of the M2M methodger and Tremaine
(1996 and constructed a dynamical model of the Milky Way's barred bulge #sidlay con-
straining the projected density map. First attempts to extend the M2M method tond¢op
kinematic observables in addition to density constraints were made lhyorenzi et al(2006);
Jourdeuil and Emselle2007). However, a proper treatment of observational errors was not yet
included in their implementationsle Lorenzi et al(2007) incorporated this in theiy?M2M al-
gorithm and demonstrated the potential of the NMAGIC code by constructrtgcle models
for spherical, axisymmetric, triaxial and rotating target stellar systems. Sgt@mes@ons of the
method and the first detailed modelling of slit kinematic and PN data for an elliptidakyg
(NGC 4697) are described de Lorenzi et al(2008.

The NMAGIC method is flexible not only with regard to the orbit structure, dsb in
allowing axisymmetric or triaxial shapes with varying axis ratios. Contrary tsw&czschild’s
method, the final stellar density and potential need not be known befatehihis makes it
ideal for the present study because different intrinsic shapes leavednggested for NGC 3379
(see the Introduction) and the issue of whether the kinematics require wrddllc matter may
well be connected not only with the orbital anisotropies but also with the detstilepe of the
stellar density distribution of the galaxy. Given that NGC 3379 is nearlydamthe sky, we
have constrained the models in this paper to be axisymmetric but have alladvaldveaiations
in axis ratio. This has proved sufficient for answering our main scienestapn.

4.3.1 Luminous and dark mass distributions

As inde Lorenzi et al(2008, we assume that the luminous mass of NGC 3379 follows the light
and we can characterize it by a constant mass-to-light tatiso that the stellar mass density

is given byp, = Tj. The total gravitational potential is generated by the combined luminous
mass and dark matter distributions= ¢. + ¢, whereg, is generated by, = Yj. Only the
luminosity density; is represented by th&-particle system. Its potential is computed using
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a spherical harmonic decomposition as describeseifwood(2003; de Lorenzi et al(2007).
The stellar potential is allowed to vary during the modeling process, but thé@d/is rigid.

Here our aim is not to determine the detailed shape of the dark matter halo in RT3C 3
but rather to first see whether the PN velocities allow or require any dattemnad all in this
galaxy. To answer this question we will investigate a one-dimensional seguéd potentials
whose circular velocity curves vary at large radii between the neplelkian decline expected
when the mass in stars dominates, and the nearly flat shapes generatessbwe mark halos.

As inde Lorenzi et al(2008 we thus represent the dark matter halo by the logarithmic potential

(Binney and Tremainel987)
2

or(r) = %0 In(r2 + r2). (4.1)

4.3.2 Model and target observables

Target observables include surface or volume densities and linetdfigigematics. For mod-
elling the luminosity distribution of NGC 3379, we generally use the deprojectathbsity
density of NGC 3379, expanded in spherical harmonic coefficidpison a 1-D radial mesh
of radii r,. The corresponding model observables are computed from the paltéded on a
cloud-in-cell (CIC) scheme; sate Lorenzi et al(2007).

In some models, we do not constrain the three-dimensional luminosity densilguthe
stellar surface density, leaving the former free to evolve. In the remaiasgsgwe constrain the
model by both the deprojected luminosity density and the projected surfasiydén a similar
spirit as for the volume density, we use as target constraints for thevells®B distribution the
coefficients of a Fourier expansion in the azimuthal angle, computed oD eaflial mesh of
projected radiiR;. For the corresponding model observables, the particles are assmtied
radial grid using a CIC scheme, and the Fourier coefficiept@ndb,, for the particle model
on shellk are computed via

U e = LZWCIC cos(my;)w; (4.2)

bk = LZVCIC sin(me;)w;, m >0 (4.3)

wherew; are the particle weightsp; their angular positions, ang{/“ is a radial selection
function. We use units for which the liglit; of a stellar particle can be written ds = Lw;
with L the total luminosity of the galaxy.

As kinematic constraints, we use the luminosity-weighted Gauss-Hermite ceficrom
the SAURON or slit data, and luminosity-weighted velocity moments for the PN &atathe
SAURON data Ehapiro et a.2006, the luminosity-weighted coefficients are determined from
the truncated Gauss-Hermite representation of the line-of-sight velocitipdison (LOSVD)
up to orderhg and the luminosity in the corresponding Voronoi bin. For the slit kinematics
(Statler and Smecker-Hane 199%Qonawitter et al. 200 they are constructed again from the
measured Gauss-Hermite moments, up to okdeand the luminosity in the slit section corre-
sponding to the relevant LOSVD. The PN da(glas et al.2007) are modelled either as 1-D
radial dispersion profile or as a discrete set of velocities; in the fornsr wa use as suitable
observables the second velocity momepj’gg,, luminosity-weighted by the number of PNe per
radial bin.

The corresponding model observablgsare construced from the particles via equations of

the form
Zwl z:(t)], (4.4)
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wherew; are the particle weights arg] are the phase-space coordinates of the particles,
1,---,N. Here the Kernek; corresponds to the observable Detailed expressions for the
kinematic model observables are giverdimLorenzi et al(2007, 2008.

In general, we replace the observables by the corresponding temparallythed quanti-
ties to increase the effective number of particles in the systéng§yer and Tremainél996);
de Lorenzi et al(2007). For the parameters chosen, the smoothing is typically eveli0?
correction time steps.

4.3.3 Fitting a particle model to the observations

Performing an NMAGIC fit to the observational constraints proceedsblyvieg the force-of-
change (FOC) equations for the particle weights,

ducjf;t) = cw;(t) ('uéazi - Z WAj (t)) o

depending on the discrepancies between maggland target observable¥}), A;(t) = (y; —
Y;)/o(Y;). Hereo(Y;) in the denominator is the error in the target observable. Evolving the
particle weights to convergence in this way is equivalent to maximizing the maatifun

F=puS— %;8 (4.6)
with respect to the particle weights;, where for the profit functior we use the entropy, and
the standard> measures the goodness of the fit. The parametamtrols the contribution of
the entropy function t@". The entropy term pushes the particle weights to remain close to their
priors, so models with large will have smoother distribution functions than those with small
. The best choice fon depends on the observational data to be modeledspatial coverage
and phase-space structure of the galaxy under consideration, dbwratke initial conditions,
and will be determined for the NGC 3379 dataset in the following Seetigrl

Any NMAGIC model fit starts from a suitable initial model. For the models preskim this
paper, we have used as initial conditiontdernquist1990 model particle realization generated
from a distribution function (DF) using the method describeDa@battista and Sellwog@000).
The particle realization consists b x 10° particles, has a scale length= 1, maximum radius
rmax = 60, and a total luminosity of unity. In model units, the gravitational consta6t is 1.
When we match the model lengthscale to the effective radius of NGC 337%iatamce of
9.8Mpc, one model unit length correspondsstd’.

4.3.4 Isotropicy-model

To prepare for the modeling of NGC 3379, we now construct a sphésimabpic mock galaxy
with known intrinsic properties to determine the optimal value of the entropy “tmmog
parameter. in equation 4.6). Following a similar approach as Berhard et al(1998 and
Thomas et al(2005 we determine for which value qf the fitted particle model best repro-
duces the intrinsic velocity moments of the input mock galaxy model. The “besté @iy
depends on the observational data to be modelled and their spatial ecavemabe phase-space
structure of the galaxy, but also on the initial conditions from which the NMA@odelling
starts. The same value can then be used for the modelling of NGC 337%]qudiae mock
galaxy is a reasonable approximation to the real galaxy.

For the luminosity density of the mock galaxy we choose a flatteretbdel,

(3—7)L a
drg  mY(m+ a)t=

j(m) = 4.7)
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Figure 4.5: A comparison of the surface brightness profile of the isotrepiodel (dotted line)
with that of NGC 3379 (full line), along the major axis of NGC 3379.

whereL anda are the total luminosity and scale radius’ = R>+(z/q)?, andq is the flattening
(Dehnen and Gerhar994. We choose the parameters such that the surface brightness closely
resembles that of NGC 3379, i.e.= 1.0, v = 1.0, L = 1.24 x 10'° L, 5 anda = 0.8 kpc,

which corresponds t&®. =~ 30”. Figure4.5 shows that the surface brightness profile of the
mock galaxy is an excellent approximation for NGC 3379.

We calculate LOSVD kinematics for the mock galaxy from internal higherrovd®city
moments, using a program bfagorrian and Binney1994) that solves the higher-order Jeans
equations in the model’s self-consistent potential. We set the mass-to-lighdfréhe isotropic
~v-model asYp = 5. Before calculating the LOSVD parameters, the velocity moments are
slit-averaged to account for the observational setup of the slits giverdtioc4.2.3 To the
final LOSVD parameters we add Gaussian random variates Mitllispersions equal to the
respective error bars of the corresponding NGC 3379 measurentéh& point. In this way
we computev, o, hy and hy for the yv-model along all slits shown in Figu# 3. Figure4.6
compares the kinematics of NGC 3379 with the isotropimodel along the major axis.

In addition, we construct SAURON mock kinematics for each voronoi céllerNGC 3379
data as follows. We first compute the velocity profiles from higher ordieccitg moments at a
few nearby radial positions. Using the spherical symmetry, we interpolateand the higher
order moments to the mid-cell positions of the fine grid described in Sett8 using a spline
interpolation scheme. Then we compute the mock data for each voronoi @rumginosity
weighted average over those cells of the fine grid which contribute to tfeneocell under
consideration. Finally, we add Gaussian random variates to the kinematicsondispersions
corresponding to the respective SAURON error bars in this voronoiTsie SAURON pseudo
data are shown in the top panels of Figdré

We do not construct mock PNe data and neglect them for the entropyliestge need to
complete the mock observational data set with the photometric constraints. dnttbpy tests
here, we restrict ourselves to spherical models, so in the expansior afrtfinosity density
(equation 4.7) the only non-zero term in the spherical harmonics sedésSection4.3.2 is
the radial light in shells[, = \/EAOO,,C. However, to ensure sphericity, we also need to use
the higher order coefficientdy 1, - - -, Aao 1, and Agg 1. as constraints, set to zero. We define
these photometric observables on a grid of ragliquasi-logarithmically spaced in radius with
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Figure 4.6: Comparison of the LOSVD kinematics of thenodel mock galaxy with those of
NGC 3379 along its major axis, and withthe particle model fit fop: = 2 x 10%. The red
open squares show the NGC 3379 data ffatatler and Smecker-Hai£999, the black circles
show they-model pseudo data, and the solid line the self-consistent particle modéiaibta
from fitting the pseudo data. The model data points are averages ovemtlees$it cells as the
target data (see Fig¢..3), and are connected by straight line segments. The panels from top to
bottom are fow, o, hg andhy.
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Figure 4.7: Top panel: SAURON mock kinematic data for a spherical isotrepiodel. Bot-
tom panel: Self-consistent particle realization obtained from a model fitwit2 x 10*. From
left to right: v, o and the higher order momeriig-hg.
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Figure 4.8: Top: Deviation rma(u) between the internal velocity moments of the final
particle model and the input model. Bottom: The circles shdwer data point of the model
fit to the kinematic and photometric targets as a function of entropy parameidre triangles
display the same but faf, cf. equation 4.6). The starred symbol indicates the optimal value
of u, the full dot theu value appropriate to avoid bias against rotation and anisotropy.

inner and outer boundariesmat;, = 0.01” andry. = 2500”. We assume Poisson errors for
the radial lighto (L) = \/LiL/N where N is the total number of particles used in the particle
model andL is the total light of the system. To estimate the errors in the higher order luminosity
moments, we use Monte-Carlo experiments in which we generate particle tieakzaf the
density field of the target system withs x 10° particles, which is the same number as in the
Y2M2M models.

We then construct self-consistent particle models for the isotrgitodel target in a two
step process, using the mock observations as constraints for NMA@KE, We start with
the particle model described in sectidr8.2and evolve it using NMAGIC to generate a self-
consistent particle realization with the desired luminosity distributiepdrticle model), fitting
only the photometric constraints. Then, we use-kgarticle model as initial conditions to fit
both the kinematic and photometric target constraints for different values of

The results are presented in Figur& The lower panel shows the goodness of the fit as
a function of i, both in terms of the normalizeg? per data point and in terms of the merit
function £’ from equation 4.6). The upper panel shows the rrds difference between the
internal velocity moments of the mock galaxy and the particle model realizatiagamet for
different values of:. The intrinsic kinematics of the particle models are computed by binning
the particles in spherical polar coordinates, using a quasi-logarithmic ghid2@radial shells
bounded by,,;, = 0.01” andr,,., = 500.0”, 12 bins in azimuthal anglg, and 21 bins equally
spaced irsin #. As can be seen from the top panel of Figdr8 the minimum in the rma\ as
a function ofyu for which the model best recovers the internal moments of the input model is a
u~ 7.5 x 10*. For larger (smaller);, the rmsA is larger because of oversmoothing (excess
fluctuations) in the model. Especially atvalues larger than the minimum rrds increases
rapidly. The lower panel of the figure shows thé&tper data point is of order unity for a large
range ofu but then increases for > 3 x 10%.

At first sight . = 7.5 x 10* at the minimum of rms\ might seem to be the best choice.
However, a more conservative valugis= 2 x 10, such that the entropy has not yet degraded
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Figure 4.9: Internal kinematics of the isotropic target galaxy and its pargelization in the
equatorial plane. From top to bottomyz, 0,4, 0., v4 and anisotropy parametgp. The kine-
matic quantities of the input mock galaxy (circles) are very well fitted by thdégb@model
generated fopr = 2 x 10* (lines). Dotted lines show the model kinematics in different az-
imuthal bins in the equatorial plane, and the solid lines show the azimuthabavera

the fit to the data (oversmoothing). This also takes into account thateheguist(1990 model
we have used as a starting point for this test is not very different frentattyet galaxy, so that
the particle weights did not need to change too much. The choipe-ef2 x 10* has proved
good for near-isotropic models; it is indicated by the starred symbol irdFgg.

However, in our modelling of NGC 3379 we have found that for strongiga@ropic targets,
this value ofu is too large. The reason for this is that the entropy term tries to retain amnarro
distribution of particle weights around their priors which, because our irdbalditions are
near-isotropic, biases the model against anisotropic orbit distributianalldw the models to
converge towards strongly anisotropic orbit distributions we have therefsed in SectioA.4
a lower value ofu = 2 x 103. This is indicated by the solid symbol in Fig.8,

The fit of the particle model to the kinematic data of the isotropimodel obtained with
uw = 2 x 10%, and its intrinsic kinematic properties, are illustrated in Figutes; 4.7 and
4.9. Figure4.6 compares the target kinematics and the self-consistent particle realizatign alo
the galactic major axis. Figu#7 shows the SAURON mock data and compares them to the
corresponding kinematics obtained from the particle model. The model fit toneliatic data
is excellent. In fact, it is evident from Fid..7 that the model is smoother than the mock data
themselves, which is a consequence of orbit-smoothing and time-smoothing.

Figure4.9 shows how well the internal kinematics of the particle model;for 2 x 10*
compare with the intrinsic kinematics of the mock galaxy target. All velocity dispess ,

o4 ando, the streaming rotationy, and even the anisotropy parametigr= 1 — ag /o? (zero
for this isotropic model) are very well reproduced by the model fit. The fiagicle realization
is indeed isotropic.

Mass-to-light ratio  So far all model fits have been made with the mass-to-light ratio fixed
to the actual value used for the mock galaXy= 5. Now we investigate how accurately we can
recoverY with the dynamical models, given the spatial extent and quality of the olismsrah
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Figure 4.10: Recovering the mass-to-light ratio of the mock galaxy. Thityjoathe model
fit as a function of mass-to-lighf is shown in terms of? per data point (circles) and merit
function F (triangles). All models are generated from the target pseudo datafo® x 10%.
The input mass-to-light ratitf = 5 is recovered as the minimum in the cury®/ N (Y), where
the model fit hag?/N ~ 1.

data. To this end we fit particle models to the mock galaxy observations feretitf mass-to-
light ratios in the rang& < [3, 10], keeping the entropy parameter fixeduat= 2 x 10*. The
results are presented in Figu4elQ, which shows how the quality of the model fit varies as a
function of Y, both in terms ofy? per data point and merit functiof. As expected, the best
model is obtained folt = 5 and hasy? per data point approximately unity.

4.4 Dynamical models of NGC 3379

In this section we construct dynamical models for NGC 3379 to learn abostelisr and
dark matter distribution. We investigate spherical and axisymmetric models witkvidmalt
dark matter halos, and fit the photometry, SAURON integral field data, slitiaties, and
PNe velocity data. Our aim in this paper is not to constrain the detailed halo mudiss pf the
galaxy, but only to ascertain whether a dark matter halo is allowed, or esljlbiy the kinematic
data. Thus, as ide Lorenzi et al(2008 we investigate a simple sequence of potentials which
include the contribution from the stellar component and a halo potential asuatieq @.1).
The circular speed curves corresponding to these potentials vangatrkadii from the near-
Keplerian decline expected when the mass in stars dominates, to the neathafias generated
by massive halos. They are shown in Figdr&land their halo potential parameter are given in
Table4.1

In the following subsections, we describe spherical modéds4(l) and oblate models
(84.4.2, as well as a few models without imposed axisymmetry constrajdtd.@, and then
discuss the significance of the fits to the data in a separate subseéetié®)( To begin with
we construct self-consistent particle models for NGC 3379 in which theliititn of stars is
spherical. This allows for an easy comparison with previous wRBidnfanowsky et al2003
Douglas et a].2007).
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Figure 4.11: Circular velocity curves for the potentials used in the dynamodkelling, in-
cluding the self-consistent stars-only model A (dashed line), and modsgigling different
spherical dark matter halos in addition to the stellar component (solid lines, bodgtom to
top: models B, C, D and E). For this figure the distribution of stars is assumuael $pherical
with mass-to-light ratio as given by the final NMAGIC fit to the data in the respe spherical

potential.
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HALO 7'0/Re /U()/k/m/s_l XQ/N Xglm/Nalm X?b/Nsb Xgau/Nmu Xgl/Nsl X%N/NPN —F T

A 0 0 0.208 0.137 — 0.176 0.565 0.371 2131.3 8.23
B 3 90 0.215 0.162 — 0.184 0.548 0.323 22319 8.03
C 3 130 0.216 0.201 — 0.184 0.539 0.340 2320.1 7.82
D 3 200 0.219 0.271 - 0.186 0.522 0.564 2622.9 7.28
D+ 3 200 0.362 0.641 — 0.300 0.814 1.002 4409.2  7.57
E 3 260 0.237 0.484 — 0.192 0.535 1.557 31752 6.73
E* 3 260 0.241 — 0.084 0.215 0.522 0.504 2649.4 6.52

Table 4.1: Table of parameters and fit results for models of NGC 3379 wittrisjal potentials.
Models A-E correspond to the circular rotation curves in Big.l Model D' is the same as

D but for a higher value of the entropy. Modet & the self-flattened oblate model in halo E
of Section4.4.2 For these models columns (1)-(3) give the model code and the paramgters
andvg used in equatiord() for the respective dark halo potential. The next six columns list
the x? values per data point, for all observables [column (4)] and for the luritindensity and
surface brightness constraints, the SAURON kinematic observablesnsim&tic observables,
and PN observables separately [columns (5)-(9)]. Column (10) dineesiumerical value of
the merit function in equatior4(6), and column (11) the final (B-band) mass-to-light ratio.
The respective number of constraints &fe= 12997 for A-E and N = 12557 for E*, whith
Nyim = 640, Ng, = 200, Nggy, = 11214, Ny = 1135, Npy = 8.

4.4.1 Spherical models
Model fits

First we must determine the photometric and kinematic observables. Analtm@&extion
4.3.4 we use the spherical harmonics expansion coefficiaptsof the deprojected luminosity
density as target data to constrain the particle models. Specifically, wégysd o, Aso, - - -,

Agg, but set all terms higher tha#y, to zero, adopting the same radial grid as in Seclich4
Errors for the luminosity terms are estimated as in Secti@M As kinematic observables, we
use the SAURON and slit kinematics, as well as the binned PN velocity dispgnsiéile; see
Sections4.2.3and4.3.2 The SAURON data and most slit data are symmetrized, only the slit
parallel to their minor axis oKronawitter et al(2000 cannot be symmetrized and for this slit
the original kinematic data points are used.

We fit the particle models to these data in the following three-step processe §)ai from
the initial particle realization described in Secti:3.3and evolve it with NMAGIC to a self-
consistent model that reproduces the tardgt. (i) Starting with this density model we then
construct dynamical models, fitting the full set of photomedrickkinematic target observables.
If the potential includes a dark matter halo, we first relax the density modébfi) steps in
the total gravitational potentiatf{, Section4.3.1), assuming a mass-to-light ratio of 8. This
is to make sure that the model is in approximate equilibrium before we start ti#tét. this
relaxation phase, we evolve the particle system~oi0> NMAGIC correction steps while
fitting the complete set of constraints. During the correction phase the mégkttatio T is
adjusted in parallel, using its own force-of-change equation as givéa irorenzi et al(2008.
After each correction step, the potential generated by the particles iseddul the dark matter
potential (if present) is constant in time. In the fitting process the entro@nmper has value
pu = 2 x 103; cf. the discussion below. (iii) In the final step, we keep the global pofentia
constant and evolve the system freely for anothf@i0 steps, without changing the particle
weights (phase-mixing). With this the fitting process is complete. Thereafteyemerally
evolve the model with all potential terms active for a further 10000 stepsttadesability. For
reference, 10000 correction steps in the self-consistent potentralspond to= 110 circular
rotation periods ak,, or 5.8 Gyr.
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Figure 4.12: Comparison of the surface brightness profiles of the isphatodels with the
photometric data (points). The lines are for the spherical models A-E ansetfilattened
model E.

Results

In this way we obtain spherical dynamical models for NGC 3379, fitting to thesideex-
pansion and all kinematic data including the PN velocity dispersion profile. eMads the
self-consistent model without dark matter halo, models B-E have halos m@faisiag circular
velocities, as shown in Figur®.11and Table4.1 The quality of fit for these models can be
judged from Tablet.1, which gives the numerical values of the merit functidrand lists var-

ious values ofy? per data point, both those obtained globally for all the data, and those found
for each of the four data sets separately (density expansion, SAUR®Nnd PNe). Th&c
outlier point discussed in Sectigh2.3is not included in the fits and in the?.,, in Table4.1,

but its influence will be discussed below.

Figures4.124.15compare the different data with the models. FidL.2shows the surface
brightness profiles, Figt.13the integral field LOSVD parameter fields, Figl4the kinematics
along several slits, and Fig.15the PN velocity dispersion profiles. The model SB profiles fit
the observed profile very well, and agree with each other within the thislafabe lines in the
plot. The SAURON data are fitted wit?,,,, /Nsqu ~ 0.2 by all our spherical models. Notice
that the particle noise in the models is significantly smaller than the noise in the synadetriz
data. Also the(?, /N, for the combined slit data are less than unity; the plots for models (B,D)
in Fig. 4.14show a few small systematic deviations but generally the fits are very godhe |
central 30 arcsec the slit data are dominated by the SAURON data. Notideekatspherical
models are not constrained to be spherically symmetric also inkmeimaticproperties; hence
they can also fit the small rotation of NGC 3379 with high accuracy.

The comparison of the models to the PN.S data is shown indFléh If we use the outer-
most dispersion point as given Douglas et al(2007), models A-D with no or moderate halos
provide a good match to the data, but the most massive halo model E fits leskeirgdl high
by ~ 20 with respect to the outermost dispersion point and~byl.30 with respect to the
second-outermost point. If we include the object classifieBbadriendless” outlier (see Sec-
tion 4.2.3and Douglas et al.2007) in the outermost bin, the corresponding outer PN dispersion
point increases significantly; see the red open circle and error bar id By Then model E
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Figure 4.13: Symmetrized SAURON kinematic data for NGC 3379 (top row) cozdpaith
similar data extracted for the spherical models B and D and the self-flatterdel Eo(lower
three rows). Notice that the particle noise in the model panels is significantlesrtiean the
noise in the corresponding data fields for all LOSVD parameters shawhelpanels fos and
h4 a slightly colder ring-like structure with largér; hints at some deviations from spherical
symmetry.
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also fits the PN dispersion profile, overestimating the outermost velocity dispgroint by less
thanlo.

The intrinsic kinematics of these spherical models is shown in Figui®& One recognizes
the expected signature of the well-known mass-anisotropy degendBaumyey and Mamon
1982: In the more massive halos, the same falling line-of-sight dispersionlemefijuires
larger radial anisotropy. Thus in the models with halo the radial anisotisey outside 1-2..
Particularly the more massive halo models D and E require strongly radiallyteopgc orbit
distributions (3 ~ 0.9) to be consistent with the falling dispersion profile of NGC 3379. Radial
anisotropy was suggested as one of the possible causes for the rdgasdite byDekel et al.
(2009, based on a comparison with their merger models. However, the typicat@pigs in
these models are more moderate~x 0.5).

Despite their strong radial anisotropy, the massive halo models D and Ershsign of an
instability when evolved freely after the model fitting and phase-mixing. Rathey evolve
very slowly, reaching after 5.8 Gyr of evolution a configuration with slightlgxial shape
(e < 0.1) in which the initial slow rotation has mostly gone away. A similar evolution is seen
for the near-isotropic model A without dark matter halo, indicating that thituéea may be
connected to these equlibria being spherically symmetric only in their mass distnibut, due
to the rotation. not in their kinematics. In any case, the PN dispersion prdélest change
during the evolution, i.e., the constraints on the dark matter halo remain ag befor

In conclusion, the results of this section show that both near-isotropgrisphmodels with
low density dark matter halos, and radially anisotropic spherical models witBiveasalos
provide excellent fits to the available kinematic data for NGC 3379, includinBthdispersion
profile to~ 7R.. A more quantitative discussion is deferred to Sectigh4

Entropy smoothing

The entropy term in the force-of-change equatidrbl smoothes the particle models by trying
to maintain the values of the particle weights near their priors, here choseiiVasBecause

all fits start from an isotropic system with equal weight particles, the eptsapothing thus
biases the final models towards isotropy and slow rotation. To allow the moddksvédop
strong radial anisotropy in their outer parts, it is necessary to reduceathe of the entropy
parameter below that appropriate for an isotropic system (see Séc8ah Otherwise the
constraints from the small number of PN dispersion points with their relativedy IRoisson
error bars are overwhelmed by the entropy smoothing.4-ichand Tablet.1 show that model
D* constructed with, = 2 x 10* is indeed degraded in its ability to fit the PNe data, relative to
model D which is foru = 2 x 102 in the same halo. On the other hand, the results from model
DY with ;. = 0 are only slightly different from those for model D. Hence our choice hg

p = 2 x 103 throughout.

Contrary to second derivative regularisation, say, entropy smootliag dot distinguish
between local and global uniformity of the particle weights; it likes to hefparticle weights
similar to their priors. Thus if: is chosen such as to allow large differences in weight between
radial and circular orbits, it also allows similar differences between pastmbeneighbouring
orbits if this is preferred by the data. With= 2 x 103 the models can therefore fit the data with
x2/N < 1 as seen in Tabld.1 The effect is strongest for the spherical models because these
have a larger number of independent orbits than less symmetric systemsveétpwig.4.16
shows that the intrinsic velocity moments are smooth functions of radius, & e will see
that also the LOSVDs are smooth functions. Thus the good fits of the variodsls to the PN
data are not achieved by large local variations of the orbital weightgitsanear the PN data
points.
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Figure 4.14. Comparison of models B (dashed lines), D (full lines) @n(l&sh-dotted lines)

with the symmetrized slit data along the major and minor axes Btatler and Smecker-Hane
(1999 (top and middle panel) and the unsymmetrized minor-axis parallel slit from
Kronawitter et al.(2000 (bottom panel). The model data points are averages over the same
slit cells as the target data (see Hg3), and are connected by straight line segments.
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Figure 4.15: Comparison of the PNe velocity dispersion profiles of therigghenodels with
the PN.S data (diamonds). The dashed line shows the self-consisteriepadiz| A. The solid
lines represent the dynamical models including a DM halo, i.e., from bottom tomtaels B,
C, D, and E. The heavy dotted line is for the higher-entropy modeldhd the dash-dotted line
is for the self-flattened model'E
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Figure 4.16: Intrinsic kinematics of the final spherical models A (dashed)lared B,D,E (full
lines), and the self-flattened modet Elash-dotted lines). Panels from top to bottom show
the radial, azimuthal, and vertical velocity dispersion profiles, the mean azirstteaming
velocity, and the meridional anisotropy profile, all computed in the equateak through the
models that coincides with the sky plane. The models in the more massive darkmasdteare
more radially anisotropic, as expected.
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Figure 4.17: Edge-on surface brightness contours obtained wheimyighe kinematically
deprojected oblate model perpendicular to the line-of-sight.

4.4.2 Oblate models including dark matter halos

There is some evidence that NGC 3379 may be non-sphefiegdaccioli et al(1991) argued
that the bulge of NGC 3379 is remarkably similar to the one of NGC 3115, a weilkk

SO galaxy. Further, also the SAURON kinematic data, shown in the uppel gialfigure4.13
show signatures of non-sphericity, particularly, a faint cold ring visibte@welocity dispersion
andh, panels with projected radiu8 ~ 15”* Thus to understand how much dark mass around
NGC 3379 is allowed by the kinematic data for this galaxy may require more glenedels
than spherical ones. In this section we will present oblate axisymmetric maodbksfamily of
halo potentials considered already in the last section.

Face-on oblate model in a spherical potential

As a first step we attempt to construct a model for NGC 3379 in a massikendkr, in which
the distribution of stars is flattened along the line-of-sight. This model is redjua have a
small line-of-sight velocity dispersion at large radii, thus will be flattenedcroedance with
the virial theorem €.g. Binney and Tremainel987. We do not know beforehand what the
required shape of this model must be, so we will use the NMAGIC method tatffiod us,
keeping the potential spherically symmetric. For illustration we embed this modellanE
and will hence hereafter denote it as model E

To construct this model we replace tlg,, constraints ¢f. Section4.4.1), which before
imposed a spherical shape on the particle distribution, by the Fourier monfahts surface
brightness distribution given in Figurkel They are computed from the photometry as in Sec-
tion 4.3.2 on a grid in projected radius quasi-logarithmically spaced betign = 0.01” and
Ruax = 1500”. The higher-order moments are set to zero, enforcing axisymmetry. \We the
start from spherical initial conditions and use NMAGIC to flatten the particldehthrough
fitting the kinematic observables, particularly the PN velocity dispersion prégekinematic

!As can be seen from Fig.13 the feature can also be reproduced in spherical models.
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HALo  ro/R. ’UO/k"Lsi1 i X2/N Xglm/NaJm ng/Ns-b Xgau/Nsau X?l/Ns’l X%JN/NPN —F T
A90 0 0 90 0.619 0.173 0.331 0.624 0.866 0.369 4899.995  8.09
A50 0 0 50 0.773 0.291 0.437 0.781 1.031 0.426 6129.759  8.12
A40 0 0 40 0.789 0.507 0.587 0.780 1.079 0.515 6634.361  8.22
B90 3 90 90 0.631 0.243 0.40 0.635 0.852 0.344 5051.231 7.923
B50 3 90 50 0.777 0.352 0.523 0.782 1.008 0.371 6196.835  7.97
B40 3 90 40 0.782 0.570 0.670 0.770 1.047 0.438 6562.924  8.10
C90 3 130 90 0.651 0.296 0.457 0.655 0.851 0.401 5291.926  7.72
C50 3 130 50 0.741 0.429 0.611 0.742 0.933 0.396 6030.503  7.82
Cc40 3 130 40 0.766 0.661 0.591 0.753 0.990 0.414 6478.453  7.98
D90 3 200 90 0.611 0.367 0.462 0.603 0.847 0.887 5343.843  7.26
D50 3 200 50 0.761 0.394 0.663 0.763 0.961 0.815 6394.686  7.50
D40 3 200 40 0.745 0.618 0.639 0.738 0.906 0.654 6466.793  7.693
E90 3 260 90 0.684 0.577 0.751 0.652 1.037 2.602 6325.564  6.86
E50 3 260 50 0.765 0.530 0.854 0.749 1.026 2.401 6782.397  7.20
E40 3 260 40 0.756 0.819 0.739 0.899 0.737 1.662 6806.086  7.42
DR 3 200 50 0.715 — 0.567 0.699 0.897 0.890 5990.4 7.57
ER 3 260 50 0.710 — 1.313 0.676 0.894 6.317 6219.4 6.85

Table 4.2: Table of parameters agtHit results for oblate models of NGC 3379. Columns (1)-
(3) give the model code and the parameigrg, used in equatiord(l) for the respective dark
halo potential; all halo potentials are spheriegl € 1.0). The fourth column gives the inclina-
tion ¢ and the next six columns list the’ values per data point, for all observables [column (5)],
and for the density constraints, surface brightness constraints, SNWR@matic observables,
slit kinematic observables, and PN observables separately [columii$0()- Column (11)
gives the numerical value of the merit function in equatiém), and column (12) the final (B-
band) mass-to-light ratio. The respective number of constraint®’are 13237, N, = 680,
Ngp = 200, Nggo, = 11214, Ny = 1135, Npy = 8.

constraints, we use the SAURON, slit, and PNe velocity dispersion dataerikirapy parameter
is kept at the same value as for the spherical mogets,2 x 103. During this “kinematic de-
projection”, the spherically averaged potential generated by the paiticipslated after regular
time intervals, but the non-spherical terms are ignored. The DM potentidlés gy equation
(4.1 and remains constant in time. After the correction phase, the model is dyaved to
freely evolve for some time.

Figures4.12 4.14 4.13 and 4.15 show how the final “self-flattened” particle modet E
compares to the various data. The model fits the data as well as the best{fittargal models.
As anticipated, the model makes the PN dispersion profile compatible with a mdssk/halo
potential by flattening the outer distribution of stars and decreasing the madehg the line-
of-sight. Fig.4.16shows that the line-of-sight) velocity dispersion measured in the equatorial
plane is half they-dispersion in this plane; the radial dispersion still dominates. The model's
flattening is illustrated in Figuré.17, which shows the SB distribution in an edge-on projection
perpendicular to the line-of-sight. The axis ratigis: 0.7.

While this model provides an excellent fit to the photometric and kinematic data issivea
dark DM halo, it is not a completely realistic model for NGC 3379. For it is onlg spherical
potential as assumed for model that a face-on distribution of stars can show rotation. More
realistic axisymmetric models must therefore be inclined to allow for the rotationisgbe
SAURON and slit data.

Self-consistent oblate models

Therefore we now consider oblate models for NGC 3379 with inclinatiors90°, ¢ = 50°
andi = 40°, in which the axisymmetric gravitational potential of the stellar component is
computed self-consistently from the particles. We investigate models withoua®Mell as
models including various DM halos as detailed in Tal2 The gravitational potential of
the DM halo is still assumed to be spherical and is kept fixed. All models are toafit
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Figure 4.18: Comparison of axisymmetric models with SAURON kinematic data f& BE&79
(top panel). Following panels are for models A90, D90, D50. Model A8€ &l the mass in
the stars, while the later two models include a massive halo; see4dable
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the photometry, the slit and SAURON absorption line kinematic data, and the RSty
dispersion profile.

The procedure employed for constructing the models is similar to that in Settdoh
Again, we need to first specify the observables. We expand the defmdjeiminosity density
of NGC 3379 for each inclination in a spherical harmonics series andnieethe expansion
coefficients on the same quasi-logarithmic grid in radius as before. Asvallbes we use the
luminosity on radial shelld.;, and the higher order moments,y, Az, ---, Agg, but set the
m # 0 terms of the expansion to zero to force the models to remain axisymmetric. Errors
for the A;,,, coefficients are estimated as in SectibB.4 We thus obtain three different sets
of luminosity density observabled;,, with corresponding errors, one for each of the three
inclinations. In addition to thel;,,,, we also fit the surface brightness itself, using the Fourier
moment observables on the grid of projected r&tliias in the previous Sectiagh4.2 Errors for
these Fourier moments are computed similarly ashgerrors. The kinematic constraints are
identical to those used for the spherical models: they are the luminosity weiglytemetrized
Gauss-Hermite moments from the slit data and SAURON data (see Séi8n and the PNe
kinematics represented by the binned line-of-sight velocity dispersionispoin

To the combined set of observables we fit particle models in a similar thre@stegss as
for the spherical models. (i) We start with the spherical particle modelitbescin Sectior#.3.2
and use NMAGIC to generate an equilibrium model with the desired luminosityldigan, as
given by the deprojection of the photometry for the given inclination. (ii) Wenthise the
resulting particle model as a starting point to generate the final set of mogldigilg the
photometric and kinematic constraints in the different DM halos. We use the satrapy
parameten: = 2 x 103 as for the spherical models. (iii) Finally, we first keep the potential
constant and let the system evolve freely without changing the particlétge@nd thereafter
test the stability of the model.

The quality of the fit for the different halo models and inclinations is agaimacierized
by the value of the merit functiof” of equation 4.6) and the values of the different® per
data point, both globally and for the individual data sets. These are giveable4.2 and will
be discussed further in Sectidn4.4 In addition to the models shown in Table2, we have
also constructed a similar suite of models for the unsymmetrized SAURON andtslitthese
fits were of similar quality as the models for the symmetrized data, i.e., when dirgrtte
systematic error floors determined in Sect#bR.3(x2,,,/Nsau(sys) = 1.0 andx? /Ny (sys) =
1.0) from thex? values of the models for the unsymmetrized data, the mgtiedlues became
very similar to those reported in in Table2

Figures4.184.20compare some of the final axisymmetric particle models to the SAURON,
slit and PNe data. Both edge-on and inclined models again are very gootesdtr the
SAURON and slit data, with or without dark matter halo. The PN velocity dispersrofile is
fitted well by the models with the lower mass halo models B,C; halo D slightly overestimate
the outer PN velocity dispersion point given Bpuglas et al(2007) but is consistent with the
outer point when the “friendless” outlier point is included. Model E90 imirgistent with the
outer dispersion point ddouglas et al(2007), consistent with Tabld.2, but is only marginally
inconsistent with the data when the outlier is included. Based on this togethethwitikeli-
hood results reported below, halo D is the most massive halo consistenteviRiNtata. Figure
4.21shows that for this model the dark halo contributes about 60% of the totalwidsn the
radius of the last PN data pointat7R. ~ 15kpc.

Figure4.22 shows the intrinsic velocity dispersions, streaming velocity, and anisotmpy f
some of the models. Because of the small projected ellipticity of NGC 3379, tfee@dmodels
are very similar to the spherical models in the respective halo potentials ahéytier circu-
lar velocity halos require large radial anisotropy to match the PN data. Thedddlattened
models have similarly sma#t. = o4 in the model equatorial plane, but somewhat larggras
expected. Also in the axisymmetric models it is the radially increasing, strowng eadisotropy
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Figure 4.19: Comparison of models A90 (dashed lines), D90 (full lined)z40 (dash-dotted
lines) with the symmetrized slit data fro®tatler and Smecker-Har{@999 along the major
(top) and minor axes (bottom panel). The model data points are avensyab® same slit cells
as the target data (see Fg3), and are connected by straight line segments.
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Figure 4.20: Comparison of the radial velocity dispersion profile from tHeSRlata with the
oblate particle models. The dashed line shows the stellar-mass only modelT&@0other
broken lines show models B90, C90, D90, the solid line shows model D8Gharupper dotted
line shows model E9QO.
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Figure 4.21: Enclosed DM fraction as function of radius for the finaliglarmodels B90, C90,
D90, D50.
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Figure 4.22: Intrinsic kinematics of the final models A90, B90 (dashed), ©90 (full) and
D50 (dash-dotted lines). Panels from top to bottom show the radial, azimatia¥, veloc-
ity dispersion profiles, the mean azimuthal streaming velocity, and the meridiaistropy
profile. The models in the most massive halos are strongly radially anisqtegpéxpected.

which causes the rapidly decreasing PN velocity dispersion profile in theiveagark halo
potentials.

Finally, we comment briefly on the stability of these models. All models in halos AeW/s
no signs of any change after 5.8 Gyr of evolution following the phase-mégditeg the NMAGIC
fit. The D models are almost unchanged, despite the strong radial anisatemeloping after
5.8 Gyr a percent-level triaxiality just outside the error bars ofAhgconstraints. The models
in halo E show a similar slow evolution during which they in addition develop sigmifipos-
itive h, across the entire image. As in the spherical models, the PN dispersiongrefiiain
unchanged during this evolution.

4.4.3 Models without axisymmetry constraint

We have constructed a small number of models for which the stellar densityotvasnstrained
to remain axisymmetric, in order to see whether the larger freedom in the tumtwse of
non-axisymmetric potentials would allow the models to fit the PN kinematics also in thie mos
massive halo E. However, we have kept the constant value PiAdeg for the position angle
in the photometry, neglecting the observed small variatidi®s\ = +3 deg, so these models
do not have isophote twists. We generate these models as follows, usinglltpevier of
NMAGIC, by (i) fitting only surface brightness and kinematic data, in a similay as for
model E, (ii) leaving all densityA4;,, terms and corresponding potential terms free to change
during the fit, in order to allow the model to freely change its orientation, andu@iig a
spherical model, a model flattened along the line-of-sight, or the inclined nitehs initial
conditions.

Because we know that valid models in halo D can be found, we have folteglva model
in halo D, starting from initial conditions D a model that had previously been obtained exactly
analogously to model E(see Sectiod.4.2. Because of the line-of-sight streaming velocities,
this system rotates out of the sky plane while NMAGIC simultaneously kegpstad) the
orbit structure to match both the surface brightness and the projected kioemEhis model



4.4. DYNAMICAL MODELS OF NGC 3379 107

converges to an almost axisymmetric model with inclinatiod3 deg, and is then completely
stable over 5.8 Gyr of evolution. It matches all the kinematic data, very similar tela®40
and D50, and is listed in Tabke2 as model DR.

Also shown in the Table are the results for model ER, which was obtainddganesly
starting from model E This model does not fit the PN data. None of our other attempts to
obtain a valid model E has been successful, including one inspired by ddmerk on merger
remnants Gerhard 1983ab), following which we tried to construct a model that changes from
edge-on oblate in its inner parts to face-on triaxial in its outer regions. \lilevbehe main
reason for the failure in halo E is the observed rotation of NGC 3379, aftwdither the sense
(along the projected major axis) or the amplitude do not allow the low-inclinatiofigioations
required by the low values of velocity dispersion at large radii.

4.4.4 Likelihoods and quality of the fits to the data

We now turn to discussing the question which models are acceptable fits tatahendiawhich
models can be ruled out. To do this, it is customary to determigévalues relative to the best-
fitting models, and determine the confidence boundaries according to thenahgarameters
to be determined. In our case, we essentially determine only one parametkaldhcircular
velocity at~ 7R, or vg, so the relevani\y? = 1 (the mass-to-light ratio of the models is opti-
mized together with the weights). However, all our models match the Sauraslibkidematic
data to withinlo per data point, i.e., better than the underlying “true” model. Clearly, we ¢anno
apply aAy? = 1 for small variations withinlo relative to, say, the Sauron data points. Even
if the best model fitted with exactty?,,, ~ 10%, this would make little sense: fav,,, = 10,
Ax? = 1 corresponds to an average change per data point i —*o. Only if the Ax? = 1
arises because of significant mismatch of a few crucial data points woulskis reasonable.
The crucial data points for the issue addressed in this paper, the dark haddtén NGC 3379,
are the PN velocities or the binned PN dispersions. Thus we focus ouisdiso on the merit
of the models relative to these data.

Figure 4.23 shows they%, and Ax? values for both the spherical and the axisymmetric
models from Tabled.1and4.2 For the PN dispersion points we have 7 degrees of freedom
(8 data points minus 1 fitted parameter), so expéct 8.18 (68.3% probability) for a typical
good model. Thus we consider any model that fits the PN velocity dispersidretter than
x? = 8.18 as valid as the underlying “true” model and compuig? relative tox%,, = 8.18.
The curves in Figurd.23are plotted for the two cases with and without the “friendless” outlier
of Douglas et al(2007) contributing to the outermost dispersion point. The models with halos
A-D are allowed in both cases, while the models for halo E are consistent weittiata only
when the outlier is included.

So far we have compared the models only to the PN velocity dispersion prafher than
to the LOSVDs or unbinned velocity data. Figut®4 shows the LOSVD histograms for the
PNe in the outermost three circular annuli used for computing the PN veldsjigmion pro-
file, superposed on the LOSVDs of models B and D in the same radial sheltke plot for
the outermost bin, the PN histogram and model LOSVD are shown with anduvithe3c
“friendless” outlier according t®ouglas et al(2007). Both the near-isotropic low-density halo
model B and the radially anisotropic massive halo model D are consistent wifPNtvelocity
distributions in the first and third annuli, and both appear inconsistent withahearo mean
motion of the PNe in the second annulus.

Table4.3shows the posterior likelihoods of the spherical models for the obseiNeglBc-
ity data set, evaluated from the model LOSVDs in the eight radial shells ugkd fits. Also
listed are the likelihoods resulting from direct likelihood fits of the sphericadef®to the PN
data, using the method describeddimLorenzi et al(2008. Figure4.25shows a plot of these
likelihoods as a function of the models’ circular velocityrdt., the radius of the outermost PN
dispersion point. Despite the small number of potentials investigated and teeoisatnether
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Figure 4.23:x? and A? values of the various spherical and axisymmetric models for NGC
3379 with respect to the PN velocity dispersion data. The full black linesdashed lines)
connect they?-values obtained without (including) ti3e “friendless” outlier ofDouglas et al.
(2007). Ax? is computed relative to the expected valugdf= 8.18 for 7 degrees of freedom.

without outlier with outlier
HALO InL 2AIn L InL 2AIn L
A —605.14 2.50 —611.18 4.58
B —604.21 0.64 —609.67 1.56
C —603.89 0.0 —608.89 0.0
D —604.74 1.7 —609.23 0.68
E —607.16 6.54 —611.38  4.98
A —608.50  4.23 —613.53 5.01
B —607.01 1.25 —611.82 1.60
C —606.38 0.0 —611.02 0.0
D —606.68 0.60 —611.14 0.23
E —608.81 4.85 —613.04 4.02

Table 4.3: Likelihood values for the PN data in the spherical models. Colujnnntdel
code. Columns (2,3): log likelihoobh £ and differenceA In L relative to the best model C,
for the PN sample not including ther "friendless” outlier in the outermost shell, according
to Douglas et al(2007). Columns (4,5): same, but for the PN sample including this outlier.
The top half of the table refers to posterior likelihoods of the models fitted to kheefocity
dispersion profile, the lower half gives likelihoods for similar models in whichRiNe were
fitted with the likelhood method afe Lorenzi et al(2008.



4.4. DYNAMICAL MODELS OF NGC 3379 109

LOSVD

L= b b v b by o

v (km/s)

Figure 4.24: Comparison of the PNe LOSVDs in the circular annuli cooredipg to the out-
ermost three bins in the velocity dispersion profile, with the LOSVDs of thelynestropic,
low-density halo model B, and the radially anisotropic massive halo model Beisamme cir-
cular annuli. The ordinate is in units of PN number, and the model LOSVDs bagn nor-
malized to the same integral over the velocity range shown. In the middle marieefsecond
annulus, the mean velocity of the PNe is non-zero attter level; both models are inconsis-
tent with this velocity distribution. The velocity distributions in the other two paneddally
consistent with both models. In the lower panel for the outermost shell, theigdgram is
shown with (dashed) and without (solid lines) the-""friendless™ outlier; see Sectiod.2.3
andDouglas et al(2007).
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Figure 4.25: Relative likelihoods from the data in Ta#l8 as a function of the model circu-
lar velocity at7R.. Open symbols show posterior likelihoods of models fitted to the binned
dispersion profile, full symbols show likelihood values based on diredtHiked fits to the PN
velocities. Squares show likelihoods for the PN sample withoutdtériendless” outlier in the
outermost shell, according idouglas et al(2007), circles for the sample including this outlier.
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the 3¢ "friendless” outlier should be included, the overall shape of the likeliloodtion £ is
not too far from a Gaussian. Thus we can determine a confidence intrenvathe condition
Alog £ > 0.5, resulting in approximately65kms ™ < vere(7TRe) < 250kms™! at1o. This
would exclude both model A without dark matter and the most massive halo fEodHelwever,
we do not believe this is a very strong result, given the influence of a sindlier on the likeli-
hood values in Tablé.3, and the asymmetries in some of the LOSVDs (see4R&y). Note also
that all models are consistent with the data atazhdevel, for whichv,,..(7TRe) < 290kms "
(20).

4.5 Summary and conclusions

In this paper, we have carried out a dynamical study of the elliptical ga\%¢ 3379. This
intermediate luminosity E1 galaxy has a rapidly declining velocity dispersiongrofiich has
been taken as evidence Bpmanowsky et al2003 andDouglas et al(2007) that this galaxy
may lack the kind of dark matter halo that the curr&@DM cosmology requires.

To explore this issue further, we have combined photometry, long slit sgeopic data,
SAURON absorption line kinematics and PN velocity dispersion data, to fitrdioah mod-
els in a sequence of potentials whose circular velocity curves at largeveag between a
near-Keplerian decline and the nearly flat shapes generated by enhséds. The combined
kinematic data set runs from the center of NGC 3379 to abeffiective radii.

For constructing the dynamical models we have used the flexiblmade-to-measure par-
ticle code NMAGIC developed bydé Lorenzi et al.2007, 2008. The NMAGIC models de-
scribed in this paper consist @f5 x 10° particles, and for the first time incorporate integral
field kinematic data for a real galaxy.

We find that a variety of dynamical models both with and without dark mattergeodiable
fits to all the data. For assumed spherical symmetry we find that the datanaisteat both with
near-isotropic systems which are dominated by the stellar mass out to the kEsiakin data
points, and with models in moderately massive halos whose outer parts arglhstradially
anisotropic § ~ 0.8). In these latter models, the stellar mass distribution dominates in the
center, and the dark matter fractionns60% of the total at7 Rz...

In the spherical potentials we have also used the likelihood scherde bbrenzi et al.
(2008 to fit the models directly to the PN velocities. From the likelihood values obtained
in these fits as well as the posterior likelihoods of the models fit to the dispepsidites,
we estimate confidence limits on the halo circular velocity &t, resulting in approximately
165kms ™ < veire(TRe) < 250kms ™! at 1. This would exclude both the model without dark
matter and the most massive halo model E in our sequence whieh;hdgR.) ~ 275kms ™.

For illustration we have used NMAGIC to find the shape of a model flattened #herline-
of-sight in a spherical potential including this most massive halo E, whichlfitee kinematic
data with high accuracy. However, all attempts to find more realistic models witmtssive
halo have failed, suggesting that we may have found the upper limit of tige @frconsistent
mass distributions.

Finally, we have constructed self-consistent axisymmetric models of inclisatien90°,

1 = 50°, andi = 40° in the same sequence of halos potentials. These models essentially confirm
the spherical results. The edge-on models are very similar to the sphrandels, becoming
highly anisotropic in the more massive halos. The inclined models in additionrizeowore
flattened at large radii, which helps in decreasing the outer velocity dispgnofile. All these
models are stable over Gyrs.

In summary, the kinematic data for NGC 3379 out7tB, are consistent with a variety
of potentials and do not give strong constraints on the mass distribution inalsisyg The
main reason for this is the well-known degeneracy between mass andanaidiatropy which is
substantial when the velocity dispersion profile falls with radius. In sushg&inematic data
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are required even further out than the presently available data set. R&Bn#ay well have the
kind of dark matter halo consistent with the currdl@DM paradigm.



CHAPTERS

SUMMARY AND OUTLOOK

As indicated in the beginning, the two key aspects of this thesis have be€lu dgvelop a
made-to-measure method to construct particle models from observatiah@i)da apply the
new method to the intermediate luminosity elliptical galaxies NGC 4697 and NGC 379 w
focus on their DM contribution at large radii. Consequently, | will structine discussion in
the same way and start with the results concerning the method itself, befantimg on the
astronomical results. Finally, | will give a brief outlook.

5.1 Summary

NMAGIC modelling

Syer and Tremain@l 996 proposed a made-to-measure (M2M) algorithm to construct N-particle
systems from observational data and used it to generate a triaxial mochet&osity observ-
ables. The first practical application was madeBigsantz et al(2004), who constructed a
dynamical model of the projected face-on density distribution of the Milky Wy far, only
density constraints have been considered and all models have beeadewojywedetermined
potentials.

In chapter2, a y?-made-to-measure¢M2M) algorithm was developed, extending earlier
ideas by Syer and Tremaine. An important component of the new method ise¢hef tthe
standardy? merit function at the heart of the algorithm, which allows to assess the quality of
model fit directly. In addition, kinematic observables including higher omtements have been
incorporated. Hence, kinematic and density (or surface density) edrtstcan be used to tailor
particle models. The new?M2M method was implemented in a fast, parallel code, NMAGIC.
This code also incorporates an optional but fast potential solver, alipivio recompute the
potential during a model fit and, in addition, to test the stability of the final partiodel.
The NMAGIC implementation of the>M2M algorithm is highly efficient, with a sequential
fraction of only~ 1%.

The geometric flexibility and performance of NMAGIC was illustrated with a nundie
tests using spherical, oblate and triaxial target models. In the spherfiments, the correct
isotropic target model was recovered, independently of the adopted aitiditions. The initial
model with density closer to the density of the final model had smaller final titaviafrom the
target observables, and a narrower distribution of weights.

The oblate tests showed that a large phase-space gradient can\mreddbpresent, and
illustrated the advantage of integral field data over slit data for constrainéignodel.

The triaxial experiments demonstrated that it is possible to start from aisph®odel and
converge to a triaxial target, and illustrated NMAGIC's ability in constructinglei®for triaxial
elliptical galaxies with which nature confronts us. A second triaxial experinia which a
slowly rotating model was used as a target for a non-rotating model, reiéaethe residuals
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in the first order kinematic moment are correlated. This gives a signatuwentiing which,

at least for this triaxial system, allows to distinguish between internal stellarstng and
pattern rotation within?., provided a full velocity field is available. However, a more complete
study of this problem is needed to firm up this result. This experiment alsorddrates the
usefulness of thg2M2M algorithm for modelling mock (rather than real) galaxies in order to
learn about their dynamics. Such an experiment would not have beeticptavith standard
N-body simulations.

In chapter3, | extended NMAGIC to account for seeing effects and proposedrapté-
mented an efficient method to estimate the mass-to-light fatidrests of this scheme using
isotropic rotator input models have shown that the method recaverishin a few percent both
for self-consistent and dark matter dominated target galaxies. In additiielihood scheme
was implemented, by which discrete velocity measurements can be taken intmawsdhout
binning them beforehand.

The modelling of NGC 4697 and NGC 3379, presented in chaptersd 4, respectively,
showed that thg 2M2M/NMAGIC particle method is a very promising modelling technique. In
fact, it has already gone further than the Schwarzschild method in thateiéagional potential
of the stars has been allowed to vary in the modelling, the mass-to-light ratlmebasadapted
on the fly and the stability of the models has been checked.

Compared to the Schwarzschild method, the main advantages gffM2M algorithm
as implemented in NMAGIC are that no symmetry restrictions have to be made @nibtha
complicated procedure for orbit sampling is needed. Another advanttitg the gravitational
potential can be evolved self-consistently, which further allows to testt#indisy of a model
after the correction phase. Eveg¢M2M model corresponds to a computation of an orbit
library in the Schwarzschild method. In problems where the same orbit licearpe reused,
Schwarzschild’s method is more efficient.

The present implementation of NMAGIC is optimized for modeling nearly sphesica
tems. This is mainly due to the potential solver and the density observahlgy poth based
on a spherical harmonics decomposition of the density distribution.

In the next two sections below, | will discuss the astronomical results frendyinamical
modelling of NGC 4697 and NGC 3379.

Astronomical results
NGC 4697

Chapter3 presented a dynamical study of the E4 galaxy NGC 4697 using surfagterness
measurements and a combined kinematic data set, which runs from the cahieigafaxy to
about 4.5 effective radii. The kinematic data set consists of long slit gsecipic data and
discrete PNe velocity measurements.

Even though NMAGIC does not require any symmetry assumptions for thelfimag | have
forced the method to generate axisymmetric particle models for NGC 4697. &lbtiossistent
models without dark matter, and models following a sequence of circulad speges with
increasing dark halo contributions have been investigated. The PN datdbbhan used both
binned on two different spatial grids, as well as with the new likelihood reeh¢o make sure
that the results are not biased by the way the PNe data are incorporated.

The main result is that models both with and without dark matter are consistenalvith
the data. These models fit all kinematic data withY N < 1, both in potentials with only
luminous matter and in potentials including sufficiently massive halos to genezathy rflat
circular rotation curves. The massive dark halo models tend to fit the dakdl\sliggtter in
the sense of Iowe;gQ/N, for both the slit kinematics and the PN data, but these variations are
small and not yet statistically significant. To exclude models without dark matteidwequire
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PN velocities at even larger radii than currently available, out to an estimatefl. from the
center.

These models differ from earlier studies performediBndez et al(2001) in the sense that
we generate axisymmetric models instead of spherical ones and that ous mw@déexible with
regard to anisotropy. The best-fitting models are slightly radially anisotrafitt 5 ~ 0.3 at the
center, increasing t@ ~ 0.5 at > 2R.. This is consistent with the value given Bekel et al.
(2005 obtained from merger simulations carried out within fieDM cosmology framework.

NGC 3379

In chapterd, the dynamical modelling of the intermediate luminosity E1 galaxy NGC 3379 was
presented. The models were constructed using photometric and kinematieailuss for this
galaxy. Again, a combined kinematic data set was used, consisting of lorspettroscopic
data with SAURON integral field absorption line kinematics and PN velocity measants
with the PN.S instrument frordouglas et al(2007). The combined data set runs from the
center of NGC 3379 to abouteffective radii. This is the first time that integral field SAURON
kinematic data of a real galaxy has been incorporated in NMAGIC.

Both self-consistent models without dark matter, and models following a segué circu-
lar speed curves with increasing dark halo contributions have beerigatesl.

Several dynamical models, with and without DM, produce a viable fit to aldtdta. For
assumed spherical symmetry the data is consistent with near-isotropic modglsated by
stellar mass and with radially anisotropic models in moderately massive halos witrebfibns
~ 60 percentage at R.. In addition, a series of of oblate models have been constructed which
essentially confirm the spherical results.

The main conclusion is that the steeply declining PNe velocity dispersion pisotitnsis-
tent with a variety of DM halos. It is difficult to constrain the potential in this galaith the
present data. This is mainly due to the well known mass anisotropy deggnetach masks
the DM distribution by preferentially populating radial orbits. Hence the ipdigg remains
that NGC 3379 has the kind of dark matter halo that is consistent with thentuyxteD M
paradigm.

5.2 Outlook

In the first part of this outlook, | discuss some of the possible technicalowvepnents and
extensions of the NMAGIC code. In the second part | give some exaroplesssible future
applications.

5.2.1 Technical improvements

e The profit function
The present implementation of th&M2M algorithm uses the entropy

S== w;ln(w;/), (5.1)

as a profit function. The isotropic rotator experiments of chapteave shown, that for

the given spatial coverage of the kinematic data, a large entropy contribntibe mod-
elling process is needed in order to obtain a smooth model. However, theelargpy
value prevented the models to fit the rotation of the target model. Similar resutiolye
tained in chapted, where a large entropy value prevented the model to become strongly
anisotropic. Hence, a large entropy value suppresses global ppase-gradients. It

is worth considering alternatives to the entropy as a profit function, wigidhce local
phase-space fluctuations, but allow for global phase-space gtadien
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e The dark matter halo

In the present work, we have represented the gravitational influehttee adark mat-

ter halo on the luminous component by an analytic logarithmic potential. Cosmdlogica
simulations reveal universal DM halo density profiles described by a Fdfile (e.g.
Navarro et al.1996 1997

_ ps
PNEW () = S A e (®-2)

and hence, provide a physically motivated halo model. | have implemented ivehise
as an option in the NMAGIC code for future projects, but it has yet to dedes

Further, the dark matter halo could react to the luminous matter via adiabatiectoric
It may also be interesting to use live dark matter halos, represented byeeetitizations
made from a DF or even generated by cosmological simulations.

Initial conditions

The spherical initial conditions used in the present work were genedatectly from a

DF, cf. sectionA.2, assigning to each particle the same mass. For a Hernquist particle
realization the number of particles within a radiusiuch smaller than the scale length
scales a$r/a)?. This implies that there is only a small number of particles which samples
the central density cusp. The resolution in the central region can be istblmwvusing

a multi-mass scheme .. Sigurdsson et al1995 Magorrian 2007, where the particle
mass becomes a function of its pericenter distance.

Integration scheme

| used a “drift-kick-drift” version of a standard leapfrog integratioheme. An unattrac-

tive feature of this scheme is that it uses the same time step for all the partiglestiéle

on an almost radial orbit which passes close by the galaxy center, lyolsaiboring a
black hole, requires a very small time step to be integrated accurately nearidser.

This implies that all the particles are integrated with the same small time step, even if the
are on almost circular orbits at large distances from the center of thersystes can be
very time consuming because the forces have to be calculated every timAgiépng a
block-time step scheme will improve the efficiency and would allow to either isertdae
number of particles or the number of iteration steps during an NMAGIC Magorrian
(2007 proposed a block-time step scheme in combination with a particle mesh method
using a refinement scheme which results in a gain of speed up to a factee.of fi

Particle splitting

Syer and Tremaingl996 suggested to improve their method by incorporating a scheme
which kills particles with low weights and splits particles with high weights into sev-
eral particles with slightly perturbed orbits. It would be interesting to studyhiétier
convergence and a better model fit could be achieved using this method.

Discrete velocity measurements

The treatment of discrete line-of-sight velocity measurements can be egtemeccount
for proper motion measurements, as well as any arbitrary velocity direatfona(so
Chanaré et al, 2007). Further, it is worthwhile to study in more detail how well the
intrinsic properties of a mock galaxy are recovered from discrete measmts alone,
and how the results change with the number of measured velocities and/osgghgéa
distribution.
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5.2.2 Future applications

Modeling radial PNe velocities in elliptical galaxies

It would be interesting to model other intermediate luminosity ellipticals to compare the
results concerning the DM content with the findingsRadfmanowsky et al(2003, and

to test the alternative idea that the PNe population may be affected by ratiatrapy,
which masks the dark matter distribution.

Black holes

With an increased resolution at the center, black hole mass studies with NM&@y
become feasible. It would be interesting to test how well one can consteimndks of a
central black hole and how this compares with Schwarzschild’s method.

Triaxial systems

The geometric flexibility of NMAGIC allows to model triaxial systems. A detailed gtud
of how well the intrinsic shape and the orientation with respect to the obsafrtréaxial
systems can be constrained would be interesting.

Figure rotating stellar systems

In chapterz, the kinematics of a triaxial tumbling system inside one effective radius was
modeled with a non-rotating triaxial system having the same intrinsic shapere$k

was that the first order kinematic moment were correlated, which giveshatsig of
figure rotation. A more complete study of the effects of different patteseds, intrinsic
shapes, dark matter component and initial conditions would be necesssirgrigthen

the result.

Pseudo bulges

An application of the NMAGIC modeling technique to pseudo bulges using mitégtd
kinematics with a large field of view may provide a better understanding of thigmsic
kinematics.

Milky Way

Using the original M2M methodBissantz et al(2004) built a stellar-dynamical model

of the Milky Way'’s barred bulge and disk, matching the projected faceemsity distri-
bution. Rattenbury et al(2007) presented a refined model, which was fitted also to the
vertical density distribution. However, no kinematic constraints have sbefan taken
into account. Nonetheless, the dynamical model was in rough agreemeptogtr mo-
tion dispersion measurements of the Galactic bulge region. An extensionlidtiteood
approach to discrete proper motion measurements would be of interesinftruacting
dynamical models of the MW.

Direct comparison with Schwarzschild models

A direct comparison with Schwarzschild models could provide a broad#gratanding
of several aspects of both modelling techniques.






APPENDIX A

SOME TECHNICAL DETAILS

A.1 Potential solver

Modelling stellar systems with large mass concentrations at their centersasugliptical
galaxies, requires the force field to be computed with high accuracy at sadéll This can
be achieved by computing the potentiafrom a multipole expansion. In addition, using a sur-
face harmonics expansion of the potential offers the possibility to entooegtain symmetry,
e.g.an axisymmetric potential if only the terms = 0 are include.

The potential at positiofir, 6, ¢), generated byV particles with weightsv; and positions
(15,05, 8%) 1is given by the real part otf. Jackson1975 Binney and Tremainel987)

00 l

o(r) = —Glzg mz::O@ - 5mO)MBm(cose)eim¢ <ﬁlﬁ + 7! Blm) (A1)
with
Apn = Z w; P/"(cos 0})eim¢3’r9l
ri<r
Bl =Y w;P"(cos #)e™ .Y (A.2)
ri>r

Many authors€.g. van Albada 1982 Villumsen 1982 McGlynn, 1984 have performedV-
body simulations based on a multipole expansions of the potential.

The direct use of equatioi(1) leads to large two-body relaxation in the simulations, caused
by the finite truncation ihand by “shell-crossing”, the discontinuous change of the acceleration
of particles when they cross each other in radius. Different technigaes been applied to
reduce these effects.g. White, 1983 McGlynn, 1984 Sellwood 2003.

| have implemented a parallel version of the method describddelmattista(1998 and
Sellwood(2003, and use it as the potential solver in the NMAGIC code. The coefficidpis
and By, are computed at radii;, £ = 0,--- ,n with r¢ = 0, while retaining the angular
dependence of the potential. Similar to the cloud-in-cell schafieHockney and Eastwood
1988, the point particles are replaced by “clouds” smeared along the ratbusa particle
with radiusr’, the nearest grid point, is determined and the particle gets a finite radial extent
57*;. = %(rkﬂ — 1), centered om;. This is schematically illustrated in Figufel. The particle
massw; is uniformly distributed over the radial extent of the “particle cloud”. Herlee mass

fractions ) )
1 r—rg 1 =k
fj,lzf_]ia and fj,2:7+J7

/ /
2 (57“j 2 (57°j

(A.3)

1| use subscripj to label the particles instead 6fo prevent confusion with = /—1.
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lie interior and exterior to, respectively. Exceptions to this rule occur at the center, since no
mass can be interior to= 0, and atr,,, because no mass can extend beyond the outer edge of
the system. Now, the contribution from each particle fragment to the interibexerior terms
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Figure A.1: Schematic view of the CIC scheme. The star denotes the patrticle.

on the two neighboring grid points are evaluated

l

1,
am (k) = Z fipwi P (cos 0;)e™P — <J>

v=1,2 "k "k
1 l
m (o Tk
Bum(k) = Y fiwwiP"(cosb;)e’ - (T/_ ) ) (A.4)
v=1,2 IV Vil

where the summation fax;,,, (k) (G, (k)) is over mass fragments immediately interior (exte-
rior) to ry, cf. FigureA.l. Ther;ﬁ, denote the center of mass of the fragments. Hence, each
particles contributes ta;,,, (k), aum (k+1), B (k—1) andg,, (k) with exceptions at the center
and the outer edgey;,,, (k) = 0 because no mass can lie insige

Finally, the coefficientsi;,,, (k) and By, (k) are computed by summing up the contributions

from all the shells interior and exterior tq, respectively. These are recursive sums over the
radial shells

I+1
A (k) = o (k) + A (k = 1) (”;:)

!
Bin(k) = B (k) + Bum(k + 1) ( k_’;) | (A5)

The potential at positiofr, 6, ¢) can now be computed via

00 l
$(r,0,0)=>_> (2- 5m0)m13[m(c089)ei¢ (A + Bin)
=0 m=0 ’

where the coefficientd,,, andB;,,, at radius- are obtained by linear interpolation. The poten-
tial is then differentiated to get the force field.
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Particles experience forces from other particles belonging to the sarherstieven self-
forces. Provided that the total number of particles is large and the nurhpartwles per bin is
small, these contributions are small. Thus, the number of radial grid pointtdshe increased
with an increasing number of particles. | have replaced the coefficiépték) and By, (k)
with the corresponding temporal smoothed quantitigs(k) and By, (k), cf. section2.3. This
further reduces the effects of two-body relaxation and particle noise.

| have parallized the method by distributing (equal) fractions of the particiestbe avail-
able nodes. Once, the partial sums4) have been evaluated on each processor, the only com-
munication needed occurs, when the global values;pf k) and 3, (k) are computed from
the contributions of each nodef, sectionA.4.

A comparison of a FFT potential solver with the implementation of the method dedcrib
above is illustrated in Figures.2 andA.3. The left panel in Figuré\.2 shows potential con-
tour lines in the xz-plane computed from a triaxial particle distribution. Thei#igarticle
distribution was generated as follows. First, a spherical Hernquist leartiglization was made
from DF, cf. sectionA.2 with N = 5 x 10°, truncation radiug0 and scale length = 1. |
squeezed the spherical particle modely and0.5 along thex- and thez-axes, respectively.
The solid lines in FiguréA.2 show the contour lines computed using a FFT potential solver
using a Cartesian grid with573 cells equally spaced betweer25 to 25 along each direction.
The dashed contours were obtained using the method described ahmead & radial grid at
radii r, = e’* — 1 with v = log(Tmae + 1)/n; 1usen = 201, 7,4, = 25 andl,e, = 2. The
right panel shows the same as the left panel but now,fer = 4. FigureA.3 showsF,, along

Figure A.2: (a) Left: Potential contour plot in the xz-plane for a triaxiatipke distribution. The
solid line was computed using an FFT whereas the dashed line was obtaimgthesspherical
harmonic code with,,.. = 2, details in the text. (b) Right: Same as a butffgf,. = 4.

thex-axis computed using the FFT potential solver (solid line) and using theisphiearmonic
code withl,,,,,. = 4 (dashed line). The better resolution at the center achieved with the sgdheric
harmonic code is evident.

A.2 Initial conditions

| have adapted the method Debattista and Sellwoo(000 to generate particle realizations
from distribution functions (DFs) belonging to the family of spherigahodels Pehnen1993
Carollo et al, 1995, which are used as initial conditions for NMAGIC. The central density
slope~ and the scale length, of the model to be generated, is estimated from the observed
surface brightness profile. The central surface brightness preSiE lx R~ for v > 1 and

is logarithmically divergent fofy = 1. Models withy < 1 appear to have cores and can hardly
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Figure A.3: F}, as function of long-axis distance. The solid line was computed using the FFT
potential solver whereas the dashed line was obtained using the spharitanics code.

be distinguished. The scale length is estimated uging » ~ 3/4 with ry j, = a(2"/6=7) —
1)~!. Once, the scale lengthand central density slopeare given, the corresponding isotropic
DF is determined. Selecting particles randomly from a Blg.( Kuijken and Dubinski1995
yields particle fluctuation®(N'/?) in any range of the integrals, which can be reduced by
applying the quiet-start procedure outlinedDebattista and Sellwoo(000. For a spherical
system, the density of particles with enerfyand total angular momentuiis given by

N(E,L) =8x*Lf(E,L)r(E, L), (A.6)

where f is the DF andr is the radial period (seBinney and Tremainel987. The DF is
truncated atF,,.. = ¢(rmaz) Whereo is the gravitational potential of the self-consistent
model andr,,... is the maximum radius of the particle realization. At that truncation, the mass

enclosed is

Emaax L.
S / dE / dL N'(E, L), (A.7)
Emin 0

with E,,;, = ¢(0) andL,. the angular momentum of a circular orbit at enefgyThe accessible
(E, L) space is divided inta = ngny, small areas, each enclosing a fraction of mass,,, /n
as illustrated in the left panel of Figufe4. Theng cuts at energies’; defined via

E. L.
jMrun._ / " aE / dL N(E, L) (A.8)
nE min 0
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L L

Figure A.4: (a) Left: Areas of equal mass in the, L) plane for a Hernquist DF. The right
hand boundary indicates the limit of circular orbits and the boundary at 0 indicate the
radial orbits. The upper curve shows the truncation in energy. (b)tRjktribution of points
in (E, L) plane chosen from an isotropic Hernquist DF.

and do not depend on angular momentlnOn the other hand, the boundarieg( ') depend
on energy and are defined by the relation

Meut L
k— :/ dL N(E, L), (A.9)
nr L=0

wherem,; = [dL N|g. This defines: cellsC;;, with E € (E;_q, Ej] andL € (Ly_1, L]

for a given energyfy = E,,;» and Ly = 0). Now, an orbit in each cell is selected, but rather
than using a regular grio(E;,Lz) is chosen at random in each,,. First, an energy value
E} € (Ej-1, Ej] is selected from the distributiofdZ N (E, L), and then the corresponding
angular momentum valuk, computed via

Meut

L,
= / dL N(E}, L) (A.10)
L

=0

(k= 1)

nr

with mey,e = [dL /\/’|E:E]/_ and random fractiorf € (0, 1]. The right panel of Figuré.4

shows such a distribution of orbits in thé&', L) plane.

Finally, each orbit has to be populated with an equal number of partigles making a
total number of particle = ngnyngr, each of mass = my...,,/N. In a spherical system,
a particle moves in a plane perpendicular to its angular momentum vector araillétes in
radius between the pericenter and apocenter with periéd ). The radial phase must be
uniformly distributed, but the probability density varies with radius as the &svef the radial
velocity and peaks at the apocenter and pericenter. This difficulty inrghasradius can be
circumvented by numerically integrating the orbit for a random fraction ofrétakal period
starting from its apocenter or pericenter.

The radial and azimuthal velocities are determined By, L; ) and the radius, except for
the sign ambiguity of the radial velocity. The azimuthal phase and the orienti#tibie orbit
plane can be selected at random.

The left panel of Figuré.5 shows the evolution of the radial density profile of a spherical
Hernquist particle realization when integrated in the analytic potential farabdynamical
times. The solid line shows the analytic density profile, the dashed line shovwasdihédensity
profile atT = 0, the dashed-dotted line was obtained affe= 250 and the dotted line for
T = 500. The lines are shifted for readability. The dynamical time at a is t4,, = 7. The
profiles were computed using radial bins containifg0 particles each. The right panel shows
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log(r/a) log(r/a)

Figure A.5: (a) Left: Evolution of the radial density profile of a spheridarnquist particle
realization made from DF when integrated in the analytic potential. The solid lmessthe
analytic density profile, the dashed line shows the radial density profiled{C, the dashed-
dotted line was obtained aftér= 250 and the dotted line faf' = 500. The lines are shifted for
readability. The dynamical time at= a is t4,,, = 7. The profiles were computed using radial
bins containingl 000 particles each. (b) Right: The same as the left panel but Delanen
(1993 sphere with a shallow inner-power index= 0.5.

the same but for ®ehnen(1993 sphere with a shallow inner-power index= 0.5. For both
models, the radial density profile remain remarkably constant over mamyrdgal times.
A.3 Integration scheme

The stellar particles in galaxy simulations move according to Newton’s laws of matfo
Hockney and Eastwood 988

dx_ g

dt

dv

— =F A1l
T (A.11)

whereF = —V ¢ is the force per unit mass acting on a particle at position in phase space.
The gravitational potentiat is generated by the hole system. | integrate the equations of motion
using a “drift-kick-drift” version of the leapfrog schemef( Magorrian 2007

ot
Xn+1/2 = Xn + vn 5
Vn+1 = Vp + F(Xn+1/2) ot
ot
Xnt1 = Xnt1/2 F Vi1 5 (A.12)

wheredt is a fixed time step and the subscript indicates the time lgvel ndt). The leapfrog
scheme produces a second-order accurate solution to equakidi$ énd is symplectic, re-
versible in time and conserves linear momentum, providedeys Newton’s third law.

For the NMAGIC runs presented here, a constant time &tep 0.005, given in dimen-
sionless units, was used. As an illustration, | have integrated a particl&l@rraquist(1990
sphere with unit mass and scale length= 1. The orbit of the particle is almost radial with
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Figure A.6: Time evolution of the energy of a particle moving along an almost radial orbit in
a analytic Hernquist potential. The time is given in units of the radial pefiod

pericenter distanc@.11, apocenter distancel and a radial period® = 5.8. FigureA.6 shows
the evolution of the energy of the particle as it moves along its orbit and illustitaét no long
term drift in energy is present.

A.4 Parallelization

When | had finished a first scalar version of a made-to-measure cpa€iormed several test
runs on a standard desktop PC. These experiments were very time cogsitrisrpossible to
reduce the computation time of a scalar program by using vector machinieb, egm perform
operations simultaneously on linear arrays of numbers. The disadvarfttigie approach is,
that vector machines are generally very expensive and consequestlificult to get com-
putation time contingents. A cheaper possibility to increase computation poweunss ta PC
clusters as a parallel computation environment, which allow numerical modeésdonbputed
with a high spatial resolution and a large number of particles. The disadpistéhat the code
has to be adapted for the parallel cluster environmiemt,one has to specify the distribution
of memory onto the individual processors and the interprocess commungatibave paral-
lelized the NMAGIC code using the MPI library, a library specification for sagm-passing, as
described below.

The particlesj.e. their positions in phase space and their weights, are distributed equally
between the available nodes, as schematically illustrated in FAgdrdntegrating the particles
along their trajectories does not require any inter-node communicationisatahe on each
processor separately. Communication between the different prosessaurs only during an
NMAGIC correction step, or when the gravitational potential is recomputed.

To compute the global value of a linear quantidy such as the model observablgsor
the expansion coefficient$;,,, and B;,,, of the gravitational potential, each node computes the
contribution@,, to Q generated by its subsample of particles, and séhd® the master node
(proc 0), which then comput&d = > @, and distributes it to all the other nodes.

Hence, inter-node communication is only needed for the evaluation of th€sum | Q.
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proc 0

proc 1

Yj,0=2WiKj;

Yj,1=§Wi

A

proc O

Y =§ Yj,a

Figure A.7: Schematic representation of the parallelization scheme.

and thus thec>?M2M algorithm is well suited to be parallized. The fraction of sequential code
including communication overheadas1%, cf. section2.6.
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B.1 Photometric and kinematic data
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Figure B.1: Isophotal parameters of NGC 4697 as a function of the logaiththe semi-
major axis distance in arcsec. The radial profiles of the R-band sbfagteness, third, fourth,
and sixth cosine Fourier coefficientss( a4, andag), and x—coordinate of the centek,.,,
are plotted in the left panels (from top to bottom). The surface brightne$®ovensalong the
major (upper profile) and minor axis (lower profile). The radial profileghe position angle
(PA), ellipticity (1 — b/a), third fourth, and sixth sine Fourier coefficients, (b4, andbg), and
y—coordinate of the centel’(.,,) are plotted in the right panels (from top to bottom).



TableB.1: Photometric parameters of NGC 4697

a nh e PA Az, Ay, Err? az/a  b3fa  asfa  by/a  as/a  bg/a  Err
[arcseE [mag arcsec?] ] [arcset [arcset [arcset x100 x100 x100 x100 %100  x100
1.013+£0.013 15.5150.006 0.246-0.013 65.&2.0 -0.012 0.007 0.009 0.110 4.380 2750 0.380 0.260 -0.210 0.162
1.201+ 0.014 15.6350.008 0.24# 0.013 67.&2.0 0.000 0.000 0.010 0.430 4.850 2750 -0.490 -0.180 0.160 0.123
1.359+ 0.020 15.753 0.007 0.2120.017 67.62.9 0.019 0.019 0.014 0.620 6.790 3.580 -0.610 -0.080 -0.160 0.080
1517+ 0.029 15.84# 0.008 0.15#0.023 68.6c04.9 0.045 0.071 0.020 0.520 9.620 3.570 0.240 1.030 -1.090 0.151
1.739+ 0.028 15.923 0.008 0.15% 0.019 66.24.3 0.069 0.129 0.020 -0.660 8.320 0.440 0.840 1.630 -0.200 0.206
2.023£0.025 16.0380.006 0.188 0.014 66.42.6 0.083 0.162 0.018 -0.650 6.000 -1.680 0.440 0.100 0.160 0.154
2.365+£ 0.021 16.1340.005 0.24Z20.009 66.&1.5 0.095 0.190 0.015 -0.540 3.580 -2.690 0.130 -1.570 0.300 0.112
2.759+ 0.017 16.233 0.004 0.29%#0.006 65.6-0.8 0.100 0.212 0.012 -0.320 1.540 -2.220 -0.270 -2.310 -0.070 0.114
3.235+0.009 16.333 0.003 0.358 0.003 65.20.3 0.109 0.221 0.007 -0.340 0.430 -0.600 -0.120 -1.430 -0.010 0.158
3.747+0.007 16.436: 0.002 0.406-0.001 65.&0.2 0.112 0.226 0.005 -0.260 -0.070 1.420 -0.070 0.100 -0.030 0.023
4.1384+ 0.008 16.53#0.002 0.41#£0.002 65.8&0.2 0.114 0.228 0.006 -0.200 -0.140 1.650 -0.060 0.140 -0.030 0.020
4.525+ 0.008 16.63# 0.002 0.42Z20.001 65.8&0.2 0.119 0.228 0.006 -0.250 -0.110 1.600 -0.030 0.130 0.080 0.023
4932+ 0.009 16.73#0.002 0.425-0.001 65.80.2 0.126 0.228 0.006 -0.360 -0.060 1.590 -0.050 0.110 0.080 0.025
5.363+£ 0.009 16.83%0.002 0.426-0.001 65.20.2 0.126 0.228 0.006 -0.290 -0.000 1.560 -0.050 0.040 0.150 0.027
5.835£ 0.009 16.93#0.002 0.4280.001 65.80.2 0.133 0.226 0.006 -0.210 0.010 1570 -0.030 -0.000 0.130 0.034
6.345+ 0.010 17.03#0.002 0.43@0.001 65.¢0.1 0.133 0.224 0.007 -0.070 0.080 1590 -0.020 -0.010 0.070 0.034
6.881+ 0.011 17.13#0.002 0.43%0.001 66.#0.1 0.138 0.217 0.007 0.120 0.130 1.620 -0.070 -0.110 -0.020 0.029
7.444+0.011 17.2320.001 0.43%:0.001 66.20.1 0.145 0.210 0.008 0.210 0.040 1520 -0.190 -0.010 -0.110 0.039
8.056+ 0.012 17.33#0.001 0.43@-0.001 66.20.1 0.138 0.210 0.008 0.210 0.000 1.530 -0.190 0.120 -0.070 0.039
8.706+ 0.014 17.43#0.001 0.4280.001 66.1 0.2 0.138 0.198 0.010 0.160 0.160 1.720 -0.110 0.210 -0.090 0.038
9.398+ 0.016 17.536: 0.001 0.42#0.001 66. 0.2 0.138 0.193 0.011 0.150 0.150 1.720 0.100 0.300 -0.010 0.059
10.136+ 0.016 17.635% 0.001 0.4240.001 66.1 0.2 0.140 0.186 0.011 0.160 0.120 1.610 0.060 0.320 0.000 0.044
10.900+ 0.015 17.736 0.001 0.412%0.001 66.20.1 0.138 0.176 0.011 0.150 0.090 1.420 0.060 0.260 0.090 0.039
11.706+ 0.015 17.83% 0.001 0.4140.001 66.60.1 0.131 0.174 0.011 0.120 0.110 1.360 0.080 0.210 0.080 0.031
12.598+ 0.017 17.93%#0.001 0.41%*0.001 66.6c0.1 0.112 0.181 0.012 0.170 0.130 1.400 0.020 0.250 -0.040 0.052
13.531+ 0.018 18.036:0.001 0.40#£ 0.001 66.&0.1 0.117 0.176 0.013 0.110 0.080 1.360 -0.060 0.200 -0.090 0.039
14.530+ 0.018 18.136:0.001 0.405%-0.001 66.@0.1 0.119 0.174 0.013 0.010 0.090 1.320 -0.070 0.160 -0.100 0.028
15.595+ 0.022 18.236: 0.001 0.403:0.001 66.1 0.1 0.121 0.178 0.016 -0.070 0.100 1.420 -0.090 0.250 -0.190 0.030
16.761+ 0.027 18.335%0.001 0.40Z 0.001 66.20.2 0.107 0.188 0.019 -0.130 0.160 1430 -0.110 0.370 -0.320 0.050
18.038+ 0.029 18.4350.001 0.40%-0.001 66.20.2 0.105 0.193 0.021 -0.130 0.140 1500 -0.110 0.470 -0.260 0.039
19.477+£0.034 18.53% 0.001 0.4130.001 66.40.2 0.088 0.193 0.024 -0.050 0.140 1.660 -0.020 0.490 -0.120 0.034
20.955+ 0.049 18.63%# 0.001 0.412-0.002 66.%* 0.2 0.157 0.181 0.035 -0.100 -0.140 1.890 -0.300 0.670 -0.350 0.130
22.5544+ 0.074 18.735% 0.001 0.425-0.003 65.80.3 0.248 0.162 0.053 -0.230 -0.350 2.070 -0.520 0.790 -0.540 0.270
24.352+ 0.078 18.835 0.001 0.433-0.003 65.860.3 0.228 0.186 0.055 -0.150 -0.220 2.020 -0.340 0.540 -0.380 0.254
26.452+ 0.056 18.936- 0.001 0.446-0.002 65.9-0.2 0.093 0.264 0.040 0.070 -0.000 2.070 0.020 0.400 -0.050 0.070
28.543+£ 0.057 19.036: 0.001 0.4530.001 66.60.2 0.150 0.274 0.040 0.080 -0.040 1.940 0.080 0.510 -0.090 0.077
30.687+ 0.060 19.135% 0.001 0.4580.001 65.20.2 0.147 0.290 0.042 0.020 -0.050 1.870 -0.040 0.650 -0.150 0.059
32.8404+ 0.060 19.236:0.001 0.452-0.001 65.2=0.2 0.124 0.302 0.042 -0.010 -0.070 1.720 -0.140 0.760 -0.120 0.044
35.061+ 0.062 19.336-0.001 0.45%0.001 65.40.2 0.088 0.312 0.044 -0.020 -0.040 1.550 -0.210 0.880 -0.090 0.045
37.385+ 0.059 19.435 0.001 0.4580.001 66.# 0.1 0.102 0.314 0.042 0.030 -0.060 1.280 -0.100 0.810 -0.140 0.066
39.678+ 0.060 19.536-0.001 0.4550.001 66.#0.1 0.078 0.326 0.042 -0.080 0.010 1.290 -0.080 0.830 0.020 0.050
42.1824+0.066 19.635% 0.001 0.4530.001 66.30.1 0.074 0.343 0.046 0.070 -0.060 1.190 -0.070 0.860 0.020 0.071
44.663+ 0.072 19.734 0.001 0.4480.001 66.30.2 0.028 0.359 0.051 0.140 -0.040 1.250 -0.070 0.940 -0.000 0.062
47.1084+ 0.073 19.834 0.001 0.44Z20.001 66.30.1 0.010 0.402 0.052 0.020 -0.100 1.190 -0.100 0.950 -0.120 0.074
49.5344+ 0.078 19.934 0.001 0.436-0.001 66.30.2 -0.088  0.409 0.055 -0.030 0.010 1.210 -0.240 1.000 -0.110 0.045
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a 1% e PA Az, Ay, Err? as/a  b3fa as/a  by/a  ag/a  bg/a Erre
[arcset [mag arcset?| [°] [arcse¢ [arcse¢ [arcset %100 x100 x100 x100 x100 %100
51.950+ 0.083 20.036: 0.001 0.428 0.001 66.4-0.2 -0.119 0.402 0.059 . 0.045
54.308+ 0.087 20.135:0.001 0.41%0.001 66.20.2 -0.098 0459 0.062 -0.040 -0.040 1.060 -0.160 1.090 0.030 0.062
56.753+ 0.092 20.235 0.001 0.4020.001 66.8-0.2 -0.167 0.424 0.065 -0.020 -0.110 0.790 -0.290 1.130 -0.020 0.065
59.253+ 0.092 20.336: 0.001 0.392-0.001 66.6-0.2 -0.198  0.452 0.065 0.065
62.028+ 0.092 20.436:0.001 0.393-0.001 66.60.2 -0.298 0502 0.065 -0.010 0.000 0.700 -0.240 1.150 -0.130 0.059
64.741+0.082 20.536:0.001 0.385-0.001 66.60.1 -0.345 0.505 0.058 -0.050 0.040 0.570 -0.160 0.960 -0.100 0.068
67.520+ 0.078 20.63% 0.001 0.3720.001 66.3-0.1 -0.205 0.476 0.055 -0.090 0.050 0.440 -0.190 0.990 0.010 0.048
70.445+ 0.085 20.7340.001 0.3720.001 66.3-0.1 -0.219 0.438 0.060 -0.140 0.030 0.360 -0.110 0.920 -0.090 0.064
73.422+0.090 20.8340.001 0.364-0.001 66.30.1 -0.279 0567 0.064 -0.140 -0.110 0.140 -0.170 0.850 -0.040 0.078
76.678+0.085 20.936:0.001 0.366-0.001 66.4-0.1 -0.140 0.583  0.060 0.078
80.086+ 0.093 21.03# 0.001 0.3540.001 66.30.1 -0.050 0.497 0.066 0.078
83.687+ 0.109 21.138 0.001 0.35% 0.001 66.4-0.2 -0.228 0.436 0.077 -0.010 -0.080 0.010 -0.350 0.750 -0.060 0.094
87.231+0.101 21.239-0.001 0.344-0.001 66.20.1 -0.502 0.738  0.071 0.094
90.680+ 0.120 21.333-0.001 0.336-0.001 66.60.2 -0.398 0.769  0.085 0.094
94.336+ 0.135 21.439-0.001 0.3220.001 66.4-0.2 -0.445 0.992 0.096 0.094
98.111+ 0.165 21.538 0.001 0.32% 0.002 66.3 0.2 -0.457 1.004 0.117 0.094
101.661+ 0.232 21.63# 0.001 0.31%0.002 66.6:0.3 -0.509 1.214 0.164 0.140 -0.240 -0.560 -0.110 0.640 0.340 0.200
105.981+ 0.288 21.73# 0.001 0.302 0.003 66.6-0.4 -0.347 1.197 0.203  0.020 -0.200 -0.440 -0.260 0.540 0.340 0.210
111.325+ 0.162 21.84% 0.001 0.31Z0.001 66.4-0.2 -0.319 1.230 0.115 0.210
116.502+ 0.166 21.944 0.001 0.313-0.001 66.3-0.2 -0.664 1511 0.117 0.270 -0.430 0.000 -0.450 0.740 -0.040 0.092
121.793+ 0.201 22.043 0.001 0.3130.002 66.%* 0.2 -0.652 1.433 0.142 0.092
127.455+ 0.218 22.138 0.001 0.3130.002 65.80.2 -1.119 1.668 0.154 0.370 -0.440 0.260 -0.410 0.710 0.070 0.099
133.917+ 0.324 22.234 0.001 0.3180.002 65.20.3 -1.509 2.154 0.229 0.420 -0.440 0.370 -0.480 0.970 0.290 0.170
139.843+ 0.460 22.33% 0.001 0.3140.003 65.#0.4 -1.775 1725 0.325 0.430 -0.340 0.400 -0.400 0.620 0.720 0.265
147.198+ 0.536 22.43@-0.001 0.326-0.003 64.8&0.5 -2.335 1.937  0.379 0.265
155.523+ 0.400 22.533 0.001 0.326-0.002 64.8& 0.3 -2.535 2.537 0.283 0.265
163.016+ 0.359 22.633 0.001 0.322-0.002 64.20.3 -2.982 2.651 0.254 0.265
170.075+ 0.429 22.728 0.001 0.329-0.002 64.#+0.3 -3.165 2.720 0.304 0.265
177.623+ 0.365 22.82# 0.001 0.3280.002 63.20.2 -3.611 2977 0.258 0.160 -0.570 0.320 -0.470 0.440 -0.080 0.163
185.102+ 0.334 22.934 0.001 0.325:0.002 62.860.2 -4.251 3.075 0.237 0.163
190.987+ 0.358 23.036: 0.001 0.326-0.002 63.60.2 -4.284 2.625 0.253 0.040 -0.670 -0.350 -0.140 0.320 -0.070 0.153
196.718+ 0.432 23.132 0.001 0.3120.002 62.80.3 -4.146 2.013 0.305 0.070 -0.470 -0.350 0.330 0.260 0.220 0.200
202.089+ 0.559 23.22% 0.001 0.3030.003 62.50.4 -3.715 1.787 0.395 0.200
207.354+ 0.675 23.323 0.001 0.294-0.003 62.20.5 -3.703 1.692 0.478 0.200
212.802+ 0.787 23.42%£ 0.001 0.296-0.004 62.3* 0.5 -4.401 1.973 0.556 0.200
217.940+ 0.851 23.52%0.001 0.27#0.004 62.8:0.6 -5.084 2106  0.602 0.200
222.1914+0.996 23.613 0.001 0.266-0.005 61.80.7 -5.386 1.642 0.704 0.200
226.618+ 1.524 23.70#0.001 0.258 0.007 62.@c1.1 -5.745 1.259 1.078 0.200
233.406+ 0.749 23.8150.001 0.26@-0.003 61.220.5 -5.653 1.309  0.529 0.200
238.734+ 0.519 23.9250.001 0.24#0.002 60.2-0.4 -7.590 1.397  0.367 0.200
243.8214+ 0.590 24.028-0.001 0.246-0.003 60.20.4 -7.878 1.488 0.417 0.200
247.975+ 0.827 24.104 0.001 0.2468-0.004 59.60.6 -7.811 1.447 0.585 0.200
253.321+ 0.972 24.18%0.001 0.245-0.004 59.40.6 -7.540 1.035 0.687 0.200

@ Statistical errors not including systematics due to photometric calibration and sky subtraction

b Error on the center coordinates from the residual rms of the ellipse fit to the isophotes: Err=fmi(f

c . - . Z{/]ZD(aerbz)
Error of Fourier coefficients defined as Er! B 7o T

10

100
o

ijith N < 128 the number of fitted points of the isophotes.
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132 APPENDIX B. PHOTOMETRIC AND KINEMATIC DATA OF NGC 4697

Table B.1: The kinematics of NGC 4697 along the major axis (P.Ay68ositive radii are to

the north-east.
R \Y dv o do hs dhs ha dhy

(") (km/s) (km/s) (km/s) (km/s)

0.38 -132 0.4 180.0 04 -0.004 0.002 0.007 0.002
097 -395 0.2 1753 0.4 0.027 0.002 0014 0.002
157 -51.8 02 1744 04 0.041 0.002 0.017 0.002
227 -701 0.3 1694 04 0049 0.002 0.029 0.002
316 -831 03 1634 04 008 0002 0.037 0.002
426 -89.9 03 1606 0.4 0.095 0.002 0.034 0.002
555 -93.8 0.4 1579 05 0.105 0.003 0.037 0.003
714 -973 04 1623 05 012 0002 0.036 0.002
922 942 04 1633 06 0.096 0.002 0.019 0.003
12.00 -96.6 04 1663 05 0.093 0.002 0.010 0.002
1567 -955 04 1705 0.6 0.080 0.002 0.004 0.003
2063 -1141 0.6 160.3 0.8 0.150 0.003 0.022 0.004
2762 -109.1 0.6 1578 0.8 0.140 0.003 -0.016 0.004
3807 -1151 0.7 1519 1.0 0.122 0.004 -0.003 0.005
58.05 -108.6 1.0 1432 14 0122 0.006 -0.029 0.007
9252 -1115 29 1409 3.7 -0.017 0.020 -0.082 0.015
022 70 04 1796 0.4 -0.024 0.002 0.015 0.002
081 313 03 177.0 04 -0.042 0.002 0.026 0.001
141 519 03 1733 04 -0061 0.002 0.029 0.001
211 701 03 169.0 05 -0.072 0.002 0.045 0.002
300 856 03 1634 05 -0.100 0.002 0.052 0.002
400 928 03 1618 03 -0.112 0.001 0.034 0.002
519 936 03 1627 03 -0.112 0.001 0.041 0.002
669 980 03 1603 0.3 -0.135 0.001 0.043 0.002
857 960 03 1591 03 -0.114 0.001 0.034 0.002
11.05 983 03 1658 0.3 -0.131 0.001 0.030 0.002
1432 932 03 1722 03 -0.126 0.001 -0.014 0.002
1879 1039 03 1721 03 -0.145 0001 -0.011 0.002
2499 1126 04 1681 03 -0.170 0.002 0.005 0.002
34 1201 05 1600 0.5 -0.168 0.002 -0.026 0.003
48.87 1137 0.7 1525 0.6 -0.132 0.004 -0.018 0.004
-76.65 1152 19 1531 2.1 -0.087 0.012 -0.004 0.010
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Table B.2: The kinematics of NGC 4697 along the minor axis (P.A.£13®ositive radii are to

the south-east.
R \Y/ dv o2 do h3 dhg h4 dh4

(") (km/s) (km/s) (km/s) (km/s)
0.09 -1.3 0.2 186.3 0.2 -0.014 0.001 0.011 0.001
0.49 1.6 0.3 183.7 0.3 -0.001 0.001 0.006 0.001
1.00 2.3 0.1 179.8 0.1 -0.013 0.005 0.009 0.001
1.58 0.3 0.3 1764 0.3 -0.007 0.001 0.005 0.001
2.27 1.6 0.3 177.9 0.3 0.001 0.001 0.037 0.001
3.25 -1.3 0.2 1804 0.2 -0.001 0.001 0.030 0.001
4.73 4.1 0.3 184.3 0.3 -0.006 0.001 0.034 0.001
6.98 1.9 0.3 178.1 0.3 -0.019 0.001 0.015 0.001
10.66 -4.2 05 177.6 0.5 -0.022 0.002 0.023 0.002
17.37 5.2 0.7 175.9 0.7 -0.007 0.003 0.005 0.002
31.77 -4.6 1.4 173.2 1.4 -0.005 0.006 -0.012 0.005
-0.31 0.6 0.2 185.0 0.2 0.020 0.001 0.004 0.001
-0.80 1.0 0.1 1819 0.1 0.018 0.005 0.006 0.001
-1.40 -14 0.2 1765 0.2 0.018 0.001 0.021 0.001
-2.18 -0.8 0.3 178.9 0.3 0.013 0.001 0.027 0.001
-3.36 -1.9 0.3 176.7 0.3 -0.004 0.001 0.023 0.001
-5.13 -0.8 0.3 175.0 0.3 0.020 0.001 0.018 0.001
-7.95 1.0 0.4 1752 0.5 0.020 0.002 0.050 0.002
-12.74 0.6 0.6 1732 0.7 0.015 0.003 0.037 0.003
-22.55 1.9 0.9 169.7 1.0 0.017 0.004 -0.001 0.003
-49.42 4.4 2.1 158.1 2.3 0.001 0.010 -0.011 0.007







APPENDIXC

ABBREVIATIONS

Abbreviation Meaning

CCD Charge Coupled Device

CBE Collisionless Boltzmann Equation
CDM Cold Dark Matter

CIC Cloud in cell

CwvB Cosmic Microwave Background
DF Distribution Function

DM Dark Matter

F77 FORTRAN 77

F90 FORTRAN 90

FCQ Fourier Correlation Quotient
FFT Fast Fourier Transform

FP Fundamental Plane

FQ Fourier Quotient

FWHM Full Width at Half Maximum
LOS Line-of-Sight

LOSVD Line-of-Sight Velocity Profile
MPI Message Passing Interface
M2M Made-to-Measure

NGC New General Catalogue

NMAGIC N-particle Made-to-measure AlGorithm minimizing Chi squared
PN Planetary nebula

PN.S Planetary Nebula Spectrograph
PSF Point Spread Function
SB Surface Brightness
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